
LANDP Family IBM

Programming Guide
Version 5.0

 SC34-5781-00

LANDP Family IBM

Programming Guide
Version 5.0

 SC34-5781-00

 Note

Before using this information and the product it supports, be sure to read the general information
under Appendix A, “Notices” on page 181.

First Edition (April 2000)

This edition applies to LANDP Family Version 5 (part number 0781197 in the United States of America, program
number 5639-I90 in Europe, the Middle East, and Africa) and to all subsequent releases and modifications, until
otherwise indicated in new editions. Make sure you are using the correct edition for the level of product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the addresses given below.

At the back of this publication is a page titled “Sending your comments to IBM”. If you want to make comments, but
the methods described are not available to you, please address them to:

IBM United Kingdom Laboratories, User Technologies,
Mail Point 095, Hursley Park, Winchester, Hampshire, England, SO21 2JN.

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1992, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

 Contents

About this book . xiii
Who should read this book . xiii
What you need to know . xiii
How this book is organized . xiii
Conventions used in this book . xiv

Operating environments . xiv
Function, return, and event codes . xv
Bit positions . xv
DB2 Universal Database . xv
Windows 2000 . xv

Related information . xvi
Web site . xvi

Summary of Changes . xvii

Chapter 1. Clients and servers . 1
Communicating between clients and servers . 2

Common API used by clients . 4
Common API used by servers . 5
Connectivity programming request block (CPRB) 5
Passing parameters . 9
Passing data . 10
Naming system resources . 10
Server names . 10

Compiling and linking your application program 13
LANDP for OS/2 programming environments . 14

LANDP for OS/2 dynamic link library . 14
LANDP for OS/2 program types . 15
Include file EHCDEFC.H for C and C++ language programs 16

LANDP for Windows NT programming environments 17
LANDP for Windows NT dynamic link library 17
Include file EHCDEFC.H for C and C++ language programs 17

Migration considerations . 18
Moving to the latest LANDP for DOS . 18
Moving LANDP for DOS and FBSS (DOS) services to LANDP for OS/2 19
Moving LANDP for DOS and FBSS (DOS) services to LANDP for Windows NT . 19
Migrating FBSS (DOS) clients or user servers to the LANDP common API . . . 19
Migrating FBSS/2 16-bit clients and user servers to 32-bit mode 21
Migrating LANDP for DOS and FBSS (DOS) clients to LANDP for OS/2 21
Migrating LANDP for DOS and FBSS (DOS) user servers to LANDP for OS/2 . . 22
Migrating LANDP for DOS and FBSS (DOS) clients to LANDP for Windows NT . 22
Migrating LANDP for DOS and FBSS (DOS) user servers to LANDP for

Windows NT . 23
Migrating from the shared-file server to the LANDP for OS/2 query server 24
Migrating LANDP for OS/2 clients and user servers to LANDP for Windows NT . 25

 Copyright IBM Corp. 1992, 2000 iii

Chapter 2. Writing client programs . 27
Invoking the common API . 27

CPRB fields used and set by clients . 28
Call RMTREQ (Remote request) . 28
Call RMTREQ using the NoWait option . 29
Call GETRPLY (Get reply) . 32
Hints . 35

Sample application programs . 36
LANDP event notification support . 36

Types of event . 36
Event ID . 37
Receiving event notifications . 38
Waiting for multiple events . 38
Polling asynchronous event information . 39
Event notification using graphical user interface (GUI) message posting 39
LANDP system events . 40

LANDP for DOS and Windows 3.1/3.11 support 43
Running standard LANDP for DOS applications 43
Requirements for your standard LANDP for DOS applications 45
Unloading LANDP for DOS . 45
Building Windows 3.1 applications that request LANDP for DOS services 45
Performance considerations . 46
Restrictions . 46

Chapter 3. Writing your own server programs 47
Structure of a server . 47
Invoking the common API . 48

CPRB fields used and set by servers . 48
Call SRVINIT (server initialization) . 49
Call GETREQ (get request) . 51
Call RMTRPLY (remote reply) . 54
Call RMTAREQ (remote asynchronous request) 55

Receiving system requests . 56
End of service (ES function) . 57
Server recognition (IN function) . 58
Timer-generated request (TT function) . 59
Workstation disconnection (** function) . 61
Process disconnection (** function) . 61
Workstation connection (&& function) . 62
Process connection (&& function) . 63

Sending asynchronous events . 64
Server-to-server calls . 65
Writing LANDP for DOS servers . 66

Memory management considerations . 66
Interrupt handling . 68
Expanded memory considerations . 68

Writing LANDP for OS/2 servers . 69
Using multiple threads . 69

iv LANDP Programming Guide

Using wait multiple (WM) in a server . 70
Writing LANDP for Windows NT servers . 71

Using multiple threads . 71
Using wait multiple (WM) in a server . 72

Writing LANDP for AIX servers . 73
LANDP for AIX server structure . 73
Calling SRVINIT . 75
Reply buffer allocation . 75
Server child support . 76
Server events . 76

Chapter 4. LANDP–DCE application programming interface 77
The LANDPDCE.IDL and LANDPDCE.ACF files 78
Writing a LANDP–DCE client . 78

Obtaining a binding handle for LANDP services 78
Obtaining a LANDP context . 80
Requesting LANDP services . 80
Releasing a LANDP context . 81
DCE client structure . 81

Writing a LANDP–DCE server . 82
Binding . 82
Providing a LANDP context in the server manager routines 83
Providing services to LANDP clients in the server manager routines 84
Releasing LANDP context in the server manager routines 84
DCE server structure . 85

Chapter 5. Object-oriented application programming 87
Writing application programs using C++ . 87

LandpRequest class . 87
RequestFromLandp class . 89
LandpServer class . 90

Writing application programs using Smalltalk . 92
LandpRequest class . 92

Chapter 6. LANDP support for Java . 95
Support for Version 4 classes . 95
VisualAge for Java support . 95
Java client development . 96
Support for multiple client applications within a JVM 97
Exception handling . 100
Writing servlets to access LANDP . 100
Writing applets to access LANDP . 100
Writing LANDP servers in Java . 101

Chapter 7. Writing programs using VisualAge for COBOL 103
Writing GUI programs under OS/2 . 103
Writing non-GUI programs . 103
VisualAge for COBOL compilation settings . 104

 Contents v

Chapter 8. VisualAge Generator Application Programming Interface 105
Overview . 105

The LANDP Dynamic Link Library . 105
Calling LANDP servers from VisualAge Generator application programs 106
Calling functions within the DLL . 107
Return codes . 112
Testing applications . 112
Generating an application . 112

Chapter 9. LANDP for OS/2 REXX application programming interface 113

Chapter 10. Testing your application programs 117
Defining a specific test . 118

Using the keyboard . 120
DCZYXSVP test program . 121

Testing with Windows 3.1/3.11 or Windows NT 121
Invocation . 121
Menu options . 122
Parameter and data entry fields . 124

Using your own SVPCPRB exit server . 124

Chapter 11. Sample application programs 127
Sample application (C, Windows NT) . 127

Sample client application LDPCMAIN.C . 127
Header files . 138
Sample user server LDPSMAIN.C . 139

Sample application (COBOL, OS/2 AND Windows NT) 149
Sample client (COBOL, OS/2 and Windows NT) SAMP-CLI.CBL 149
Sample server (COBOL, OS/2 and Windows NT) SAMPSERV.CBL 164

Sample client application (COBOL), DOS and OS/2 170
Sample client application program SAMPLECB.CBL 170

Building sample applications . 178
Sample client and server, C, Windows NT 178
Sample client and server, COBOL, OS/2 and WINDOWS NT 179
Sample client application, COBOL, DOS and OS/2 179
Running the sample programs . 180

Appendix A. Notices . 181
Trademarks and service marks . 183

Glossary . 185

Bibliography . 207
IBM LANDP Family . 207
IBM Financial Branch System Services Licensed Programs 207
IBM Financial Branch System Integrator Licensed Programs 207
IBM Transaction Security System . 207
Banking Self-Service . 207

vi LANDP Programming Guide

IBM workstations . 208
IBM RISC System/6000 . 208
IBM Local Area Network . 209
IBM 3270 . 209
Wide Area Communications . 209
IBM NetView . 210
IBM Financial I/O Devices . 210
Distributed Computing Environment . 211
Encryption and Decryption . 211
IBM VisualAge C++ . 211
IBM VisualAge Generator . 211
IBM VisualAge Smalltalk . 211
Java . 211
IBM Personal Communications . 212
IBM Communications Server . 212
WorkSpace On-Demand . 212
MQSeries . 212

Index . 213

 Contents vii

viii LANDP Programming Guide

 Figures

1. General Client/Server Relationship . 1
2. DCE Client Accessing LANDP Server . 77
3. LANDP Client Accessing DCE Server with LANDP Interface 77
4. LANDP Client Accessing DCE Server with Non-LANDP–DCE Interface . . 77
5. VisualAge Generator SRPIBLK definition 106
6. Conversion table, ASCII to EBCDIC . 110
7. Conversion table, EBCDIC to ASCII . 111
8. System verification program - send CPRBs 123
9. Sample Windows application - events and function calls in client and server 128

10. Functions and calls in client and server 149

 Copyright IBM Corp. 1992, 2000 ix

x LANDP Programming Guide

 Tables

1. Files needed for LANDP application program development 13
2. System Request Function Codes, which must be accepted by All Servers . 47
3. SRVINIT calling syntax . 49
4. EHC_SRVINIT_OPTS control block format 51
5. GETREQ syntax . 51
6. EHC_GETREQ_OPTS structure . 53
7. RMTRPLY syntax. . 54
8. RMTAREQ syntax . 56
9. ES function, CPRB contents . 57

10. IN function, CPRB contents . 58
11. TT function, CPRB contents . 60
12. Workstation disconnection (**) function, CPRB contents 61
13. Process disconnection (**) function, CPRB contents 62
14. Workstation connection (&&) function, CPRB contents 63
15. Process connection (&&) function, CPRB contents 64
16. SRPIBLK contents for HC function . 107
17. SRPIBLK for CH function . 108
18. SRPIBLK for AE and EA functions . 109

 Copyright IBM Corp. 1992, 2000 xi

xii LANDP Programming Guide

About this book

About this book

This book provides information about the following IBM LAN Distributed Platform
(LANDP) Family products:

� LANDP Family Version 5.0
with its components:

– LANDP for DOS
– LANDP for OS/2
– LANDP for Windows NT

� IBM LANDP for AIX, Version 2 Release 1.0 (LANDP for AIX)

This book provides guidance on how to design and develop user servers and
applications for a LANDP environment.

Who should read this book
This book is written for system programmers and application programmers.

What you need to know
You should be familiar with the operating systems that support your LANDP
environment and the programming language you are using.

Also, if you are involved in the development of application programs using wide area
communications, you should be familiar with System Network Architecture (SNA)
protocols and Synchronous Data Link Control (SDLC), X.25 Data Link Control, or
Token-Ring Data Link Control.

How this book is organized
The book contains the following chapters:

Chapter 1, “Clients and servers” on page 1 This chapter introduces the LANDP
family of programs, explains the common application programming
interface (API), and tells you how to use it when writing LANDP application
programs.

Chapter 2, “Writing client programs” on page 27 This chapter provides guidance for
writing client application programs, using the common API. Client
programs can use IBM-supplied LANDP servers or user-written servers.

Chapter 3, “Writing your own server programs” on page 47 This chapter gives
guidance on writing your own servers that provide services that clients can
request through the common API.

 Copyright IBM Corp. 1992, 2000 xiii

About this book

Chapter 4, “LANDP–DCE application programming interface” on page 77 This
chapter describes how to write Distributed Computing Environment (DCE)
clients and server applications using the LANDP-DCE application
programming interface.

Chapter 5, “Object-oriented application programming” on page 87 This chapter
describes how to write object-oriented application programs for LANDP for
DOS, OS/2, and Windows NT.

Chapter 6, “LANDP support for Java” on page 95 This chapter describes support
for the Java programming language in LANDP for OS/2 and Windows NT.

Chapter 7, “Writing programs using VisualAge for COBOL” on page 103 This
chapter describes how to write LANDP application programs in VisualAge
COBOL.

Chapter 8, “VisualAge Generator Application Programming Interface” on
page 105 This chapter describes how to use VisualAge Generator
application programs with LANDP.

Chapter 9, “LANDP for OS/2 REXX application programming interface” on
page 113 This chapter describes how to write REXX programs to use the
LANDP for OS/2 application programming interface.

Chapter 10, “Testing your application programs” on page 117 This chapter
describes how to use the LANDP system verification program to test
user-written client and server application programs.

Chapter 11, “Sample application programs” on page 127 This chapter supplies
annotated listings of some of the supplied sample application programs.

A bibliography, glossary, and index are provided at the back of the book.

Conventions used in this book
This book uses a conventional notation for the system environments in which LANDP
server functions operate, for the values of function codes, return codes, and event
codes, and for describing fields that contain blanks.

 Operating environments
Throughout the book there are tables that indicate the functions that are supported by
each IBM-supplied LANDP server. Not all functions operate in all platforms, and the
tables use the following convention to show the operating environment:

0 LANDP for DOS
2 LANDP for OS/2
6 LANDP for AIX
N LANDP for Windows NT

For example, “-26-” denotes a function available from a LANDP server that runs in the
LANDP for OS/2 or LANDP for AIX environment, but is not available on LANDP for
DOS, or LANDP for Windows NT.

xiv LANDP Programming Guide

About this book

Also, the same information is given in words for each function request, or a global
statement is made at the start of the chapter that describes the server.

Function, return, and event codes
References made in this book to the contents of the following fields use a symbolic
notation to simplify the understanding of the actual values that these fields contain:

 � Function code
� Router return code
� Server return code
� Asynchronous event code

Function codes and asynchronous event codes are unsigned two-byte integers.
Their values have been chosen so that if you represent their numeric value
in ASCII form, you get a significant string.

For example, the value X'494E' represents the function code IN.

On Intel Machines, because the function code field is a two-byte integer
and stored in Intel reversed format, the field contains X'4E' in the first
position and X'49' in the second memory position.

Router and server return codes are unsigned four-byte integers. To get the symbol
for the numeric value, apply the previous rules to the two least significant
bytes. To convert a symbol into a numeric value, use the same rule as for
the function code and the asynchronous event code to get the two least
significant bytes. Examples are given in the next table.

Value Symbol
X'49' I
X'4E' N

Examples of LANDP Return Codes

Value Two least significant bytes Symbol

X'01004C38' 4C38 L8

X'01005031' 5031 P1

 Bit positions
The highest order bit in a byte is labelled bit 7, and the lowest bit 0.

DB2 Universal Database
In this book, all references to DB2 or DB2/2 apply to IBM DB2 for OS/2 and to IBM
DB2 Universal Database.

 Windows 2000
In this book, all references to Windows NT apply to Microsoft Windows NT and to
Microsoft Windows 2000.

 About this book xv

About this book

 Related information
The LANDP family is supported by the following books. In this book, references to
other LANDP books use the shortened title shown here. For the full title, order number
of these publications, and a comprehensive list of LANDP-related literature, refer to
“Bibliography” on page 207.

LANDP Introduction and Planning
This book provides a brief description of the components and features of the
LANDP family, and gives information about planning a LANDP system.

LANDP Installation and Customization
This book provides information about installing, customizing, and distributing the
LANDP family.

LANDP Programming Reference
This book describes the application programming interfaces that are used to
develop user servers and client applications.

LANDP Programming Guide
This book gives guidance on writing application programs to use the interfaces
described in the LANDP Programming Reference.

LANDP Problem Determination
This book describes how to use trace tools, diagnostic programs, alerts, and
return codes to debug code while developing LANDP applications and user
servers, or resolve problems while using LANDP family components.

LANDP Servers and System Management
This book provides detailed information on the LANDP servers, and describes
how to manage and administer a LANDP system.

 Web site
For more information about LANDP please visit our web site at:
http://www.ibm.com/software/ts/landp/

xvi LANDP Programming Guide

Summary of Changes

This manual has been updated to reflect enhancements made to LANDP in Version 5.
The major changes in this version are:

� The LANDP MQSeries Link server enables LANDP applications to access the
Message Queueing Interface of MQSeries

� The LANDP TCP/IP wide area communications server enables existing SNA wide
area communication networks to be replaced with TCP/IP networks without impact
to LANDP applications interfacing to the LANDP SNA or PPC servers. The TCP/IP
wide area communications server also supports LANDP’s 3270 emulator over the
TELNET protocol.

� The LANDP ODBC query server on Windows NT supports access to various
relational databases through the LANDP API using industry standard ODBC
drivers.

� The External Logging Replication (XLR) feature of the Shared File server, when
used with the Service Availability Manager, provides improved performance and
availability of replicated Shared File databases.

� The enhanced Java support enables access to LANDP services from devices not
running LANDP code, for example, browser-based applications.

� Support for the IBM 9069 transaction printer has been added.

� The range of servers supported by LANDP on the Windows NT platform has been
extended to be more comparable to the function available on OS/2. The additional
servers available on Windows NT include Electronic Journal, Store for
Forwarding/forwarding, System Manager, PPC and the 4748 DBCS printer servers.

� In addition to the new function which LANDP V5 delivers, the levels of operating
systems and other system software with which LANDP operates have been
updated.

 Copyright IBM Corp. 1992, 2000 xvii

xviii LANDP Programming Guide

clients and servers

Chapter 1. Clients and servers

IBM LANDP Family (LANDP for DOS, OS/2, Windows NT, and AIX) provides the
means to implement a client/server system in a distributed processing environment.

In LANDP, a client is an application program that needs the services of another
program. A server is an application program that can provide these services to the
client. The client and server may be running in the same machine or in another
machine in the same LANDP workgroup. A LANDP workgroup is a set of workstations
that form part of a local area network (LAN) and that use the client/server mechanism
of LANDP.

When a client requests something of a server (a server function), it does not need to
know where the server is located. Similarly, when a server receives a request, it treats
the request the same way, regardless of where the client is located. However, if the
server needs to know where the request came from, this information is available to it.

A server can be accessed by any number of clients and can process one or more
requests at the same time depending on its characteristics.

The interaction between clients and servers is characterized by a request and reply
process. Clients request services from LANDP or user-written servers by specifying the
function to be performed, the server name, data, and any parameters that are required.
The specified server receives the request, performs the required function, and returns
the result as a return code, data, and any parameters that are defined. Figure 1
illustrates the general relationship between servers and clients.

 Client Server

┌────────┐ ┌─────────┐

│ │ request message │ │

│ │ ┌────────────────────────────────>│ GETREQ │

│ │ │ │ │

│ RMTREQ ├────┘ │ │

│ │ │ perform │

│ │ │ request │

│ │<───┐ │ │

│ │ │ reply message │ │

│ │ └─────────────────────────────────┤ RMTRPLY │

│ │ │ │

└────────┘ └─────────┘

Figure 1. General Client/Server Relationship. RMTREQ, GETREQ, and RMTRPLY are some of
the calls used to communicate between clients and servers.

The LANDP client/server mechanism makes the interaction between clients and servers
consistent and transparent. Clients do not need to know on which LANDP workstation
(DOS, OS/2, or Windows NT) or LANDP for AIX system the server is installed. Servers
can be distributed within a LANDP workgroup. Clients request services from them
without needing to identify the location of the server within the LANDP workgroup. The
client/server mechanism automatically routes the requests to the required server

 Copyright IBM Corp. 1992, 2000 1

communication between clients and servers

(identified by the server name) and the reply back to the appropriate client. Also, the
client/server mechanism provides a set of supervisor local functions. Clients and
servers can request these functions to influence their interaction and their operation.

A server can also request services from another server using the same programming
interface as the clients. The LANDP electronic journal server, for example, takes
advantage of this. It requests services from the LANDP shared-file server. In this
relationship, the electronic journal server is acting as a client.

A server can also use other facilities provided by the operating system or by other
programs. When LANDP for OS/2, Windows NT, and AIX servers are acting as
clients, there are no limitations on what they can do. They can use any service
provided by the operating system or by any other product. However, when a LANDP
for DOS server is acting as a client, there are several restrictions because the server is
a terminate and stay resident (TSR) program (see “Writing LANDP for DOS servers” on
page 66 for more information about the restrictions).

A major part of the client/server mechanism is the application programming interface
that is common for the entire LANDP family. This interface, called the LANDP common
API, enables the clients to request services from the servers, and the servers to get the
requests and send replies. (Where there is no ambiguity, the interface may be
abbreviated to the common API or simply the API.)

This common API is available with LANDP for DOS, OS/2, Windows NT, and AIX. It
allows you to easily port LANDP application programs across DOS, OS/2, AIX, and
Windows NT. However, application programs that use the native operating system
functions (DOS, OS/2, AIX, and Windows NT) are limited in their portability. This
should be considered when you design an application program.

Communicating between clients and servers
Clients request a service from a server by calling a special entry point, RMTREQ, and
supplying the address of the connectivity programming request block (CPRB). The
CPRB contains data, parameters, and addresses necessary to describe the request
and to identify the server. To exchange data and parameters between clients and
servers, the CPRB also specifies the following complementary areas:

Request PARMLIST A parameter area used by the client to pass parameters to the
server. It typically holds flags that specify in more detail how the
requested service is to be performed, for example, that a record
is to be retrieved for update.

Reply PARMLIST A parameter area used by the server to return parameters to the
client. It typically holds flags that specify more detail about the
requested service, for example, that a file was full.

Request DATA A data area used by the client to transfer data to the server, for
example, data intended to be printed.

Reply DATA A data area used by the server to return data to the client, for
example, a message received from a host computer.

2 LANDP Programming Guide

communication between clients and servers

 �1�
 ┌────────────────────────┐

 │ │

┌────┴────┐ V ┌─────────┐

│ Client │ �2� ┌─────────┐ �5� │ Server │

│ ├─────────────>│ CPRB ├─────────────>│ │

│ │ �8� │ │ �7� │ │

│ │<─────────────┤ │<─────────────┤ │

│ │ └─────────┘ │ │

│ │ │ │

│ │ �3� ┌─────────┐ �5� │ │

│ ├─────────────>│ Request ├─────────────>│ │

│ │ │ DATA │ │ │

│ │ └─────────┘ │ │

│ │ │ │

│ │ �3� ┌─────────┐ �5� │ │

│ ├─────────────>│ Request ├─────────────>│ │

│ │ │ PARMLIST│ │ │

│ │ └─────────┘ │ │

│ │ │ │

│ �4� ───┼───────────────────────────────────────┼──> �6� │

│ │ │ │

│ │ �8� ┌─────────┐ �7� │ │

│ │<─────────────┤ Reply │<─────────────┤ │

│ │ │ DATA │ │ │

│ │ └─────────┘ │ │

│ │ │ │

│ │ �8� ┌─────────┐ �7� │ │

│ │<─────────────┤ Reply │<─────────────┤ │

│ │ │ PARMLIST│ │ │

│ │ └─────────┘ │ │

└─────────┘ └─────────┘

�1� Client defines within its own storage the areas for the CPRB, Request DATA,
Request PARMLIST, Reply DATA, and Reply PARMLIST.

�2� Client writes in the CPRB the information for the request to the server (function to
be performed, Request DATA length, Reply DATA length, server ID, and so on).

�3� Client writes Request DATA and Request PARMLIST information as required to
the areas it defined in Step 1.

�4� Client invokes the common API by calling RMTREQ.

�5� Server receives the CPRB, Request DATA and Request PARMLIST information
through the common API (calling GETREQ).

�6� Server does the function requested.

�7� Server completes the CPRB and provides information in the Reply DATA and
Reply PARMLIST areas, as required.

�8� Client receives the CPRB, Reply DATA, and Reply PARMLIST information
through the common API.

 Chapter 1. Clients and servers 3

common API

The CPRB and the Request DATA and Reply DATA and Request PARMLIST and
Reply PARMLIST areas are allocated in the storage space of the client application
program. Before a client issues a request, it must initiate the required fields in the
CPRB, and the associated PARMLIST and DATA areas. Request PARMLIST and
Reply PARMLIST areas can be the same physical storage area. Request DATA and
Reply DATA areas can be the same physical storage area.

The entire process is controlled by several routines that build up the common API.
These routines are provided by LANDP in libraries that must be included in the
application at link time. These routines are:

RMTREQ Called by the client to issue a request and get the reply. (LANDP for DOS,
OS/2, and Windows NT applications that use RMTREQ with the “NoWait”
option must use the GETRPLY routine to get the reply.)

GETREQ Called by the server to obtain a request issued from a client.

RMTRPLY Called by the server to return its reply.

GETRPLY Called by LANDP for DOS, OS/2, and Windows NT clients, which used
RMTREQ with the “NoWait” option, to get the reply.

RMTAREQ Called by the server to notify the client about asynchronous events.

SRVINIT Called by the server for its initialization upon loading.

The LANDP common API provides the means to write applications that are portable at
source code level among the DOS, OS/2, AIX and Windows NT environments, and that
can be written in a variety of commonly available programming languages.

Common API used by clients
For clients, LANDP provides (as the common API) the routine called RMTREQ. To
request a LANDP service, the client initializes the CPRB and defines areas for passing
data and parameters as required by the requested service. Then it calls RMTREQ, and
passes the address of the CPRB as a parameter.

RMTREQ invokes the client/server mechanism that, in turn, forwards the request to the
appropriate server. Servers can be local (installed on the same workstation) or remote
(installed on LAN-attached LANDP for DOS, OS/2, Windows NT, and AIX workstations).
The server then processes the request and returns the reply to the requesting
workstation. Processing in the requesting client is suspended until the server returns its
reply (unless the NoWait option is used).

Some older LANDP for OS/2 and Windows NT applications, and LANDP for DOS
Windows 3.1 applications, need to issue a RMTREQ to LANDP servers that may have a
slow response. If these applications cannot wait for the server reply, they can issue a
RMTREQ with the “NoWait” option and then get the reply issuing a call to GETRPLY later.
In this way they do not cause other Windowed applications to stop.

4 LANDP Programming Guide

CPRB

Common API used by servers
The common API as used by the servers is characterized by the routines SRVINIT,
GETREQ, RMTRPLY, and RMTAREQ.

The typical server structure consists of an initialization part, a request processing loop,
and a termination part. The first part includes all initial processing needed by the
server, and the processing of the SRVINIT routine to notify LANDP that the server is
being loaded. In the request processing loop, the server gets a request using GETREQ,
processes the request, and returns the result using RMTRPLY. A server receives a
request each time it issues a GETREQ call. The server processes the termination part
when it receives an End of Service (ES) request. It then releases all the resources that
were used and terminates its processing.

The RMTAREQ routine enables a server to notify a client about the occurrence of an
asynchronous event. This frees the client to continue with other work until it is notified
by the server that the event has occurred. The client can send specific requests for
polling a status and can control time periods itself.

Connectivity programming request block (CPRB)
The following table shows the format of the CPRB. Some of these fields contain values
that apply to most requests. Therefore they do not have to be changed for each
request, if the same CPRB instance is used for multiple requests.

Connectivity Programming Request Block (CPRB)

Offset Length Field Name Content/Description

X'00'
(00)

4 ehc_reserved1 Reserved; see note 1 on page 7

X'04'
(04)

4 ehcretcode Router return code

X'08'
(08)

1 ehcverb_type Verb type (provided by LANDP); see
note 2 on page 7

X'09'
(09)

1 ehc_flags Flags field; see notes 3 and 4 on
page 7

X'0A'
(10)

2 ehcfunct Function code

X'0C'

(12)
2 ehctimeout Timeout per request; see note 5 on

page 8

X'0E'
(14)

2 ehcqparml Request PARMLIST length; see note
6 on page 8

X'10'
(16)

4 ehcqparmad Request PARMLIST address; see
note 7 on page 8

X'14'
(20)

2 ehcqdatal Request DATA length; see note 6 on
page 8

X'16'
(22)

4 ehcqdataad Request DATA address; see note 7
on page 8

 Chapter 1. Clients and servers 5

CPRB

Connectivity Programming Request Block (CPRB)

Offset Length Field Name Content/Description

X'1A'
(26)

2 ehcrparml Reply PARMLIST length; see note 6
on page 8

X'1C'

(28)
4 ehcrparmad Reply PARMLIST address; see note

8 on page 8

X'20'
(32)

2 ehcrdatal Reply DATA length; see note 6 on
page 8

X'22'
(34)

4 ehcrdataad Reply DATA address; see note 8 on
page 8

X'26'
(38)

2 ehc_event_id LANDP for OS/2 and Windows NT
only: event ID for ZN function (see
the “Extended asynchronous event
notification (ZN function)” section in
the “Supervisor local functions”
chapter of the LANDP Programming
Reference.); otherwise, reserved
(see note 1 on page 7)

X'28'
(40)

4 ehcservrc Server return code provided by the
server

X'2C'

(44)
2 ehcrepldplen Replied PARMLIST length provided

by the server

X'2E'
(46)

2 ehcreplddlen Replied DATA length provided by the
server

X'30'
(48)

2 ehcpc_id Originator workstation ID; see note 9
on page 8

X'32'
(50)

8 ehcresource_origin Originator resource name; see note
10 on page 8

X'3A'
(58)

2 ehcdest_pc_id Destination workstation ID; see note
3 on page 7

X'3C'

(60)
6 ehc_reserved5 Reserved; see note 1 on page 7

X'42'
(66)

2 ehcfirst_pc_origin First originator workstation ID of a
server-to-server request; see note 11
on page 8

X'44'
(68)

8 ehcfirst_res_origin First originator resource name of a
server-to-server request; see note 11
on page 8

X'4C'

(76)
1 ehcfields_meaningful Server-to-server request indicator

provided by LANDP; see note 12 on
page 8

X'4D'

(77)
1 ehc_reserved6 Reserved; see note 1 on page 7

6 LANDP Programming Guide

CPRB

Notes:

1. The fields marked Reserved must be initialized with binary zero values once before
issuing the first request. The fields are then used internally and must not be
changed by the client or the server.

2. The client/server mechanism provides a value for the verb type that only servers
can read. The values used are:

� X'01' for a request
� X'02' for a reply
� X'03' for an asynchronous request

The value is also X'03' for process connection (&&) and for process disconnection
(**). These are described in Chapter 3, “Writing your own server programs” on
page 47.

3. Explicit destination routing is where a request is directed to a specific server in a
specific workstation, rather than using the standard LANDP routing system, which
is fixed at customization time. The ehcdest_pc_id field specifies the destination.
One bit (bit 5) in ehc_flags indicates whether such routing is to be used:

B'..0.....': do not use explicit destination routing
B'..1.....': use explicit destination routing

See also note 4. Other flags are reserved; see note 1.

4. LANDP for OS/2 and Windows NT only: three bits in ehc_flags are used with the
Extended Asynchronous Event Notification (ZN) supervisor local function (see the
“Extended asynchronous event notification (ZN function)” section in the “Supervisor
local functions” chapter of the LANDP Programming Reference):

Connectivity Programming Request Block (CPRB)

Offset Length Field Name Content/Description

X'4E'
(78)

2 ehcfirst_pid_origin First originator process ID of a
server-to-server request; see note 11
on page 8

X'50'
(80)

4 ehc_reserved7 Reserved; see note 1 on page 7

X'54'
(84)

2 ehcpid_origin Originator process ID

X'56'
(86)

2 ehcpid_dest Destination process ID

X'58'
(88)

6 ehc_reserved8 Reserved; see note 1 on page 7

X'5E'
(94)

2 ehcservnamlen Destination server name length.
Always equal to X'0008'.

X'60'
(96)

8 ehcserver Destination server name (uppercase,
left-justified, and padded with
blanks); see note 13 on page 8

 Chapter 1. Clients and servers 7

CPRB

B'....1...': bit 3 = 1 means that bits 1 and 4 have significant values
B'...X....': bit 4 value
B'......X.': bit 1 value

See also note 3 on page 7. Other flags are reserved; see note 1 on page 7.

5. During customization you define a default timeout in seconds (the LAN TIMEOUT
parameter) for all the requests. If you want to modify the timeout value for a
specific request, you must provide the appropriate value in this field. Allowed
values are in the range from X'0001' to X'7FFF' seconds. When the contents of
this field are X'0000', the customized timeout is assumed. For value X'FFFF',
the timer is not limited to a certain time.

6. These length specifications are set by the client. The server cannot change them.

7. These address specifications are used by the server to access information
(parameter and data) provided by the client. The server cannot change them.

8. These address fields are specified by the client. The servers use these areas to
write the output information, and must not change these addresses.

9. This field, set by RMTREQ, is useful for servers. They can inspect it whenever such
information is needed. For more information, see Chapter 3, “Writing your own
server programs” on page 47.

10. This is the name of the client (the process that creates the request) that calls the
RMTREQ. A server that issues a request must initiate this field with its server name,
left-justified, and padded with blanks.

11. First resource origin on server-to-server communication. If a server that just
received a request needs to call another server and wants to identify the original
resource initiating the client to it, it can provide the client's resource ID, workstation
ID, and process ID. (A process is either a server or a client.)

12. This field shows whether the three fields at offsets X'42', X'44', and X'4E'
contain significant information. If it contains the character '+', these fields tell the
called server the workstation ID, the resource ID, and the process ID of the original
client.

The server which was called first must fill in these fields.

13. To make requests to a server, you can use any of its registered service names
(see “Server names” on page 10).

The following CPRB fields contain ASCII characters:

� Originator workstation ID (ehcpc_id)
� Originator resource name (ehcresource_origin)
� Destination workstation ID (ehcdest_pc_id)
� First originator workstation ID (ehcfirst_pc_origin)
� First originator resource name (ehcfirst_res_origin)
� Server-to-server request indicator (ehcfields_meaningful)
� Destination server name (ehcserver)

8 LANDP Programming Guide

parameters and data

The remaining fields are filled with binary information. In these binary fields, words and
integers are in byte-reversed format and long integers are in word-reversed
byte-reversed format.

Including the CPRB and options control block structures
When you use the common API, you need to include the CPRB structure (and, under
LANDP for OS/2 and Windows NT, the options control block structures—see “The
RMTREQ options control block (EHC_RMTREQ_OPTS)” on page 31 and “The
GETRPLY options control block (EHC_GETRPLY_OPTS)” on page 34) provided with
LANDP into the application program. To do this, use the following statements:

Language Statement

VisualAge C++
Visual C++
C Set/2
C/6000

#include <EHCDEFC.H>

MASM/2 include EHCDEFM.INC

Pascal/2
Pascal/6000

(*$I EHCDEFP.INC *)

VisualAge COBOL
COBOL/2
COBOL/6000
Micro Focus COBOL

(In the WORKING-STORAGE SECTION)
COPY “EHCDEFVA.CBL”
COPY EHCDEFCB.CBL

 Passing parameters
Parameters are passed between clients and servers within defined PARMLIST areas.
The server specifications tell you which parameters are to be provided for each case.
The CPRB fields associated with the PARMLISTs are:

Request PARMLIST length (ehcqparml, at offset X'0E')
The length in bytes of the PARMLIST at request. If a value of 0 is
specified, no parameters are provided at request.

Request PARMLIST address (ehcqparmad, at offset X'10')
The address of the PARMLIST used at request.

Reply PARMLIST length (ehcrparml, at offset X'1A')
The length in bytes of the PARMLIST used by the server to return
parameters.

Reply PARMLIST address (ehcrparmad, at offset X'1C')
The address of the PARMLIST used by the server at reply. It can be
the same as the Request PARMLIST address field.

Replied PARMLIST length (ehcrepldplen, at offset X'2C')
The actual length in bytes of the PARMLIST returned by the server.

 Chapter 1. Clients and servers 9

naming servers

 Passing data
Data is passed between clients and servers within defined Request DATA and Reply
DATA areas. The server specifications tell you which data is to be provided for each
case. The CPRB fields associated with the data transfer are as follows:

Request DATA length (ehcqdatal, at offset X'14')
The length in bytes of the DATA area at request. If a value
of 0 is specified, no data is provided at request.

Request DATA address (ehcqdataad, at offset X'16')
The address of the DATA area used at request.

Reply DATA length (ehcrdatal, at offset X'20')
The length in bytes of the DATA area used by the server to
return data.

Reply DATA address (ehcrdataad, at offset X'22')
The address of the DATA used by the server at reply. It can
be the same as the Request DATA address field.

Replied DATA length (ehcreplddlen, at offset X'2E')
The actual length in bytes of the DATA area used by the
server to return data.

Notes:

1. The length of PARMLIST and DATA areas is limited.

LANDP for DOS, OS/2, and Windows NT:
The sum of Request PARMLIST and Request DATA length must be
less than or equal to 57500 bytes.

LANDP for AIX:
The sum of Request PARMLIST and Request DATA length must be
less than or equal to 4160 bytes.

These values are also the maximum values for the sum of the Reply PARMLIST
and Reply DATA lengths.

2. You should always specify the length of the PARMLIST fields as indicated in the
text. Often, this length is 26 (decimal), even though some of it may not be required
by the specific function requested.

Naming system resources
LANDP for OS/2, Windows NT, and AIX use system resources, such as shared
memory, system semaphores, queues, and pipes. To avoid conflicts, clients and
servers that need to allocate their own resources must not use names that start with
EHC for LANDP for OS/2 and LANDP for Windows NT or DCZY for LANDP for AIX.

 Server names
To request a LANDP service, the client must provide the name of the server required in
the CPRB field ehcserver.

10 LANDP Programming Guide

naming servers

LANDP servers provide general network services to share software and hardware
resources for applications running in a LANDP workgroup. To access these resources,
LANDP servers can register and make available to clients, one or more service names.
The service names are registered to LANDP using the SRVINIT call. Using SRVINIT, a
server can register:

� The service name that is the name of the server executable file.
� In LANDP for OS/2, Windows NT, and AIX, service names that are used in addition

to, or instead of, the server executable file name. You can also specify an alias
name—see “Alias names in LANDP for OS/2, Windows NT, and AIX” on page 12.

The statements required to call SRVINIT are given in “Call SRVINIT (server
initialization)” on page 49.

Any of these registered service names can be entered in the server name field of the
CPRB, when requesting a function that is provided by a server. The service names are
described in the chapters of LANDP Programming Reference that describe each
LANDP server.

 Mono-service servers
A server that makes available only one service name is called a mono-service server.
Usually, mono-service servers provide the services of a unique resource, although a
server can also define a service name for a set of resources.

 Multiple-service servers
A server that makes available several service names is called a multiple-service server.
Each service name can correspond to different resources. A server makes several
service names available, in two possible ways:

� By registering service names with the SRVINIT call.

In LANDP for OS/2, Windows NT, and AIX, a SRVINIT call can be issued with or
without a service names list. Clients then access a server using any of its
registered service names. This name (see below) can be any valid name, from
one to eight characters long. An alias name can also be specified.

In LANDP for DOS, a SRVINIT call can only be issued without a service names list.
The server's executable file name is registered to LANDP.

� By using the '#' character as a place-holder for any valid characters that you can
enter in the server name. A server with a name including a # character is a set of
logical servers with names resulting from the substitution of this special character.

For example, if a server with the name PRINTER# is loaded, clients can specify
the server name as PRINTER1, PRINTER2, PRINTERA, or PRINTERB, as
specified during customization. The request is routed to the server if the LAN was
configured as the server giving services to the client. If you load the PRINTER#
server, it is as if several servers with names resulting from the substitution of the #
character by valid characters had been loaded. A set of logical servers are loaded
and provide the same services for several objects managed by the same server.

 Chapter 1. Clients and servers 11

naming servers

The names of the servers provided by LANDP are reserved. Do not use any of the
names listed below, nor names beginning with the characters EHC or DCZY to
name your files.

The # character can appear in any position in the server name, provided it follows
the server name restriction described above. This means, for example, that a
server name with eight # characters is not allowed, because this would include
reserved names.

BIWP BMLS BMOP BPP DCADLC
DTAQ DTAU4733 EHCTCP ELECJO## EMU3270
EMU3287 FORWARD LDA7 EHCMQ## MSRE47##
EHCODB## OPBS OPER PBMS PINP47##
PPC PR4748## PR4770## PR47X2## PRTMGR
PT4721 RCMS RDVVOLS SDLC SFORFORW
SFQUERY SHFILE## SHRDIR SMGR SMOP
SNA## SPV SP4721## SS##### SS######
TRDLC VBIWP VFILE X25DLC X25DLC2
X25NAT##

Alias names in LANDP for OS/2, Windows NT, and AIX
With LANDP for OS/2 and Windows NT, and LANDP for AIX you can specify logical
names for each resource during customization. (See the LANDP Installation and
Customization book for more information.) These alias names are handled
transparently by LANDP. Three examples of the use of alias names are given below:

� You can apply other preferred names to LANDP servers.

In this example, AA, BB, and CC are workstation identifiers. Workstation AA has
defined resource SNA01 in workstation BB, and resource SNA02 in workstation
CC. Aliases are defined, with SNA01 having ACCOUNT as an alias name, and
SNA02 having STOCK:

ACCOUNT
STOCK

BB
CC

SNA01 BB

SNA02 CC

LAN

AA

BB

CC

� You can enable one client to access replicated servers that are located in various
workstations. LANDP for OS/2, Windows NT, and AIX allow one client/workstation
to access the same server replicated in different workstations. Different alias
names can be applied to the same resource when located in different workstations:

12 LANDP Programming Guide

compiling application programs

PRINT1
PRINT2

BB
CC

PRT BB

PRT CC

LAN

AA

BB

CC

� You can use replicated servers to back up your servers dynamically. Specify two
names in the client– one for the default server, and one for the backup server.
Load the server program with its actual file name. Then, application programs
running under LANDP for OS/2, Windows NT, and AIX can request a service from
a server by specifying the previously defined alias name in the server name field of
the CPRB, before calling RMTREQ.

Compiling and linking your application program
The routines of the LANDP common API are included in a library file. Table 1 shows
the files needed for application program development.

Table 1 (Page 1 of 2). Files needed for LANDP application program development

File Description

EHCDOS.LIB (LANDP for
DOS)

EHCDOSXM.LIB (LANDP
for DOS for use with Micro
Focus COBOL programs
that use the XM interface)

EHCOS216.LIB (LANDP
for OS/2) or
EHCOS2.LIB (FBSS/2)

EHCOS232.LIB (LANDP
for OS/2)
LIBDCZY.A (LANDP for
AIX)

Library needed by the application programs and
user-written servers during link editing. See also
“LANDP for OS/2 programming environments” on
page 14 for more information.

EHCDEFM.INC CPRB structure for programs written in MASM/2.

EHCDEFVA.CBL CPRB structure for programs written in VisualAge
COBOL

EHCDEFCB.CBL CPRB structure for programs written in COBOL.

 Chapter 1. Clients and servers 13

LANDP for OS/2

Application programs using LANDP routines must specify the library at program link
time, and also any other libraries needed.

Table 1 (Page 2 of 2). Files needed for LANDP application program development

File Description

EHCDEFC.H CPRB structure for programs written in VisualAge
C++, Visual C++, C, C/2, C Set/2, or C/6000.

EHCDEFP.INC CPRB structure for programs written in Pascal/2 or
Pascal/6000.

EHCWINNT.COF (LANDP
for Windows NT: COFF)

EHCWINNT.OMF (LANDP
for Windows NT: OMF)

Libraries needed by the application programs and
user-written servers during link editing with COFF
(for example, for Microsoft Visual C++) or OMF (for
example, for VisualAge C++) format object files and
libraries. To use the libraries, copy the appropriate
file to EHCWINNT.LIB.

See also “LANDP for Windows NT programming
environments” on page 17 for more information.

LANDP for OS/2 programming environments
LANDP for OS/2 runs on IBM OS/2 Warp V4 (or higher), which supports the 16-bit and
32-bit programming environments. This section describes how the dynamic link library
(DLL), the import library, and the include file provided by LANDP for OS/2 enable you
to develop application programs (clients or user servers) for the 16-bit or the 32-bit
environment.

LANDP for OS/2 dynamic link library
LANDP for OS/2 provides the EHCOS2.DLL dynamic link library (DLL) that contains the
interface routines RMTREQ, GETRPLY, SRVINIT, GETREQ, RMTRPLY, and RMTAREQ.

EHCOS2.DLL is a 32-bit dynamic link library that provides entry points for both 16-bit
and 32-bit programs. For the 16-bit entry points, the DLL provides a “thunking” layer
which converts 16-bit calls to 32-bit calls. This conversion is done transparently by
EHCOS2.DLL. For more information about “thunking,” see the Application Design
Guide for your level of OS/2.

Clients or user servers that belong to the 16-bit or the 32-bit environment call the same
set of interface routines, for example, RMTREQ. To provide the appropriate conversion,
LANDP for OS/2 provides two import libraries to be used when linking the program:
EHCOS216.LIB and EHCOS232.LIB.

Note: LANDP for OS/2 also provides the library EHCOS2.LIB for compatibility with
FBSS/2. You can use EHCOS2.LIB or EHCOS216.LIB for your 16-bit
applications.

14 LANDP Programming Guide

LANDP for OS/2

For example, the routine RMTREQ exists with the same name as an entry point in both
libraries. The relationship between the import libraries and the DLL for 16-bit and 32-bit
program environments is shown in the following figure. This relationship is the same
for the other routines provided with the LANDP common API:

EHCOS232.LIBEHCOS216.LIB

RMTREQ RMTREQ

EHCOS2.DLL

16-bit INTERFACE
thunking layer to call
32-bit code

32-bit INTERFACE

LANDP for OS/2 program types
LANDP for OS/2 considers three different types of programs according to the
programming environment to which they belong:

� Pure 16-bit programs
� Pure 32-bit programs
� Mixed 16-bit and 32-bit programs

Pure 16-bit programs
These programs are developed using 16-bit code objects that call the LANDP common
API routines, for example, RMTREQ. These 16-bit programs could be existing programs
developed in a 16-bit environment for IBM Financial Branch System Services or 16-bit
LANDP for OS/2 programs developed on OS/2 V2.0. See the IBM OS/2 Application
Design Guide.

These 16-bit programs:

� Use a 16-bit compiler
� Use the 16-bit OS/2 toolkit (if needed)
� Include the appropriate FBSS or LANDP for OS/2 include file
� Use a 16-bit linker with the import library: EHCOS216.LIB (or library EHCOS2.LIB

for FBSS/2)

These programs have a 16-bit EXE-format, and must run on OS/2 Warp Version 4.0 (or
later) with LANDP for OS/2.

 Chapter 1. Clients and servers 15

LANDP for OS/2

Pure 32-bit programs
These programs are developed using 32-bit code objects that call the LANDP common
API routines. These 32-bit programs must be developed in a 32-bit environment with,
for example, the IBM VisualAge for C++ compiler.

These 32-bit programs:

� Use a 32-bit (C or C++) compiler
� Use the 32-bit OS/2 Warp V4.0 (or later) Toolkit (if needed)
� Include the LANDP for OS/2 file: EHCDEFC.H
� Use a 32-bit linker with the import library: EHCOS232.LIB

These programs have a 32-bit EXE-format and must run on OS/2 Warp V4.0 (or later)
with LANDP for OS/2.

Mixed 32-bit programs
These programs are developed using two different types of objects:

� 16-bit code objects
� 32-bit code objects

These programs consist of 16-bit objects, developed in a 16-bit programming
environment, and 32-bit objects. These programs need to follow the rules for mixed
32-bit programs as explained in the Application Design Guide for your level of OS/2.
These programs:

� Use a 32-bit (C or C++) compiler and the corresponding toolkit (if needed)

� Use a 16-bit compiler and the corresponding toolkit (if needed)

� Include the file: EHCDEFC.H

� Use a 32-bit link program with the import library: EHCOS232.LIB

These programs have a 32-bit EXE-format, and must run on OS/2 Warp V4.0 (or later)
with LANDP for OS/2.

Include file EHCDEFC.H for C and C++ language programs
Clients and user servers developed in the C or C++ language need to include the
EHCDEFC.H file. This file contains the definitions of the LANDP common API for the
different environments.

For 32-bit programs, the include file uses the __32BIT__ macro. This declares the
LANDP common API using the 32-bit _System linkage convention.

For C++ programs, EHCDEFC.H must be included as an external C header file. This
can be done as follows:

extern "C"

{

#include <ehcdefc.h>

}

16 LANDP Programming Guide

LANDP for Windows NT

LANDP for Windows NT programming environments
LANDP for Windows NT runs on Microsoft Windows NT Version 3.51 or higher, which
supports 32-bit programming environments. This section describes how the dynamic
link library (DLL), the import library, and the include file provided by LANDP for
Windows NT enable you to develop application programs (clients or user servers) for
32-bit environments.

Examples of these environments are:

� Microsoft Visual C++

This development environment processes object files in the Common Object File
Format (COFF). Link them with the COFF type library, which is in
EHCWINNT.COF. Copy this file to EHCWINNT.LIB.

 � VisualAge C++

This development environment (provided by, for example, Borland and Symantec
compilers) processes object files in the Intel Object Module Format (OMF) file
format. Link them with the OMF type library, which is in EHCWINNT.OMF. Copy
this file to EHCWINNT.LIB.

Size Mismatch for Type bool in Visual C++

A size mismatch for type bool can occur in Visual C++ 4.2 Programs that are
built with Visual C++ 6.0.

In Visual C++4.2, the Standard C++ header files contained a typedef that
equated bool with int. In Visual C++ 6.0, bool is implemented as a built-in type
with a size of 1 byte. This means that for Visual C++ 4.2, a call of sizeof(bool)
yields 4, while in Visual C++ 6.0, the same call yields 1. This can cause
memory corruption problems if you have defined structure members of type
bool in Visual C++ 4.2 and are mixing object files (OBJ) or DLLs built with the
4.2 and 6.0 compilers.

LANDP for Windows NT dynamic link library
LANDP for Windows NT provides the EHCWINNT.DLL dynamic link library (DLL) that
contains the interface routines RMTREQ, GETRPLY, SRVINIT, GETREQ, RMTRPLY, and
RMTAREQ.

EHCWINNT.DLL is a 32-bit dynamic link library that provides entry points for 32-bit
programs.

EHCWINNT.COF and EHCWINNT.OMF (copied, as appropriate, to EHCWINNT.LIB)
are provided as the import libraries when linking programs.

Include file EHCDEFC.H for C and C++ language programs
Clients and user servers developed in the C++ language need to include the
EHCDEFC.H file.

 Chapter 1. Clients and servers 17

migration considerations

For C++ programs, EHCDEFC.H must be included as an external C header file. This
can be done as follows:

extern "C"

{

#include <ehcdefc.h>

}

The calling convention is CDECL (not Pascal, as on DOS and OS/2).

 Migration considerations
This section describes changes that you may need to make to your application
programs (clients and user servers), and also some compatibility considerations if you
are using any of the supplied LANDP servers.

Considerations that apply to specific servers are described later, in the sections that
describe those servers.

Moving to the latest LANDP for DOS
The initialize (IN) and disconnect (EJ) functions are now mandatory in LANDP for DOS
application programs. The connect (CN) function is also required by the SNA
communications server. If your programs do not contain these requests, then add
them. (IN and EJ are described in the “Extended asynchronous event notification (ZN
function)” chapter in the “Supervisor local functions” chapter of the LANDP
Programming Reference. CN is described in the “SNA communication server” chapter
in the LANDP Programming Reference.).

Two supplied applications issue the supervisor IN and the SNA server CN functions for
user applications that do not contain these function requests. They are EHCIN and
EHCCONN respectively. They must be executed before starting the application.

EHCIN has no parameters.

The syntax of the EHCCONN program call is:

EHCCONN /SNAA1/SNAA2/.../SNAnn

where:

SNAA1, ... SNAnn

are the SNA sessions required by the application.

There is also a corresponding program, EHCREL, that issues a release (RL) function
request to the SNA server. Its syntax is:

EHCREL /SNAA1/SNAA2/.../SNAnn

18 LANDP Programming Guide

migration considerations

Moving LANDP for DOS and FBSS (DOS) services to LANDP for OS/2
You can continue running your applications on DOS, but go over to use the servers
provided by LANDP for OS/2. You need to install LANDP for DOS in all DOS
workstations and LANDP for OS/2 in all OS/2 workstations, and during customization
specify which LANDP for OS/2 servers you want to use.

Moving LANDP for DOS and FBSS (DOS) services to LANDP for Windows NT
You can continue running your applications on DOS, but go over to use the servers
provided by LANDP for Windows NT. You need to install LANDP for DOS in all DOS
workstations and LANDP for Windows NT in all Windows NT workstations, and during
customization specify which LANDP for Windows NT servers you want to use.

Migrating FBSS (DOS) clients or user servers to the LANDP common API
The LANDP and FBSS program families provide a common API that enables you to
write applications and servers that can be ported at the source code level from one
current LANDP or FBSS program to another. The following sections describe how to
migrate existing FBSS (DOS) applications or servers to this interface.

Migrating existing clients
If the application uses the CPRB/SEND_REQUEST interface, make the following
changes:

1. Change every occurrence of the verb SEND_REQUEST to RMTREQ.

2. Change the CPRB type to EHC_CPRB.

The LANDP family provides a definition of a CPRB structure that can be copied
into the program. To include it in the program, use the following statements:

3. Change the names of the CPRB fields (by changing the first three characters from
UER to EHC). For example uerqparml (request parameter length) becomes
ehcqparml.

Language Statement

VisualAge C++
Visual C++
C/2
C Set/2

#include <EHCDEFC.H>
instead of #include "UUCCPRB.H"

VisualAge COBOL
COBOL/2

(in the WORKING-STORAGE SECTION)
COPY "EHCDEFVA.CBL"
COPY EHCDEFCB.CBL
instead of COPY UUCBCPRB.CBL

Pascal/2 (*$I EHCDEFP.INC*)
instead of *$include "UUPCPRB.INC*"

MASM/2 include EHCDEFM.INC
instead of include UUMCPRB.INC

 Chapter 1. Clients and servers 19

migration considerations

Depending on the programming language used, it may be necessary to make one
more change in the definition of the server name. Formerly, using C or COBOL,
the uerserver field of the CPRB contained a pointer to the address of a string
containing the server name. Now, the ehcserver field is 8 bytes long and must
contain the server name itself.

For example, using VisualAge C++, where the current application has:

cprb.uerserver = "SNAA3 ";

you must change this to:

memcpy(cprb.ehcserver,"SNAA3 ",8);

Using Pascal/2 this change is not necessary since it already provided the server
name, not the address.

4. Change the length of the variable to store the return code from RMTREQ. For
example, in C or C++, the variable type has to be changed from long integer to
short integer. (This modification has been introduced to conform with OS/2 remote
calls programming rules. System routines in OS/2 return an integer in the AX
register.)

5. In FBSS V2.1.1, the return code is the router return code, which could have been
used directly without checking the CPRB. Now, the return code is nonzero if any
of the CPRB return codes (router or server) is nonzero. The application must
check the return codes in the CPRB if it did not already do so.

6. A new parameter has to be added at the end of every call. This parameter
(EHC_RESERVED) is language independent. For further information, refer to the
specific call description, for example “Call RMTREQ (Remote request)” on
page 28.

If the application uses the COMMAREA/DATAREA format, make the following change:

� Map the COMMAREA fields into a CPRB.

Note: This is the same change needed to migrate the API from FBSS V2.0 to
FBSS V2.1. For a detailed explanation refer to the IBM FBSS Version 2
Programmer's Reference Manual.

Migrating existing user servers
The existing user servers for FBSS (DOS) run under LANDP for DOS without
modification even if they are used in a mixed LAN. However, if they have to run in an
OS/2 workstation they have to be modified to use the common API.

� You must call server initialization (SRVINIT).

� You must issue a GETREQ (get request) call to receive requests and a RMTRPLY
(remote reply) at the end of the request processing. The request processing itself
can be kept unchanged.

� You must change type Dn (device type) asynchronous events to use the Z5 or ZN
(under LANDP for OS/2) function code.

20 LANDP Programming Guide

migration considerations

The WM function does not support type Dn asynchronous events (with function
code Z2). Use Z5 or ZN instead.

The server can use the Z5 or ZN function to send asynchronous messages or
signals to any client. The server must create a CPRB with function code Z5 or ZN
and queue this CPRB to the FBSS client/server mechanism queue using the
RMTAREQ routine.

For detailed information see “Call RMTAREQ (remote asynchronous request)” on
page 55, and the “Extended asynchronous event notification (Z5 function)” and
“Extended asynchronous event notification (ZN function)” sections in the
“Supervisor local functions” chapter of the LANDP Programming Reference.

Migrating FBSS/2 16-bit clients and user servers to 32-bit mode
The following steps are required to migrate 16-bit mode programs to 32-bit mode:

1. Migrate the programs to 32-bit mode following the programming requirements of
OS/2 Warp V4.0 or higher. For a detailed description of these programming
requirements, refer to your OS/2 Application Design Guide.

2. At the FBSS/2 source code level, the migration is carried out without any change in
the code by:

 � Using EHCDEFC.H

� Linking your program with EHCOS232.LIB
� Running your program with EHCOS2.DLL

Migrating LANDP for DOS and FBSS (DOS) clients to LANDP for OS/2
If you have a LANDP for DOS or FBSS (DOS) application using the common API and
you want it to run under LANDP for OS/2, you must follow these rules:

1. Change functions that are unique to DOS.

Ensure that the application is portable from the operating system point of view.
Use the subset of OS/2 system functions that are compatible with DOS.

2. Add the IN and EJ supervisor local functions, if they are not already included in the
existing application. (See the “Supervisor local functions” chapter of the LANDP
Programming Reference.)

It is mandatory that the first service requested by a LANDP application is the
initialization (IN) function. Also, the program must issue the EJ function before
ending.

3. Change the EX, SA, and RA supervisor local functions.

Use the WM (wait for asynchronous events) function instead of the EX (exit to idle
state) function.

The WM function allows the application to remain in idle state while it is waiting for
a specific asynchronous event or events specified in a parameter list. These
events can be sent by the keyboard, the host processor, the I/O devices, user
servers, user timers, or a timeout of a special WM timer. The client/server

 Chapter 1. Clients and servers 21

migration considerations

mechanism checks for these entries in the order specified by the WM function.
While this function is running the application remains idle.

If no parameter list is specified for the WM function, the default provides the same
function as the EX function.

Since the WM function allows waiting for a specific event, it is no longer necessary
to use the enabling and disabling asynchronous events (SA and RA) functions.

LANDP for OS/2 does not support the asynchronous event type Dn in the WM
function.

Migrating LANDP for DOS and FBSS (DOS) user servers to LANDP for OS/2
If you want to migrate a LANDP for DOS or FBSS (DOS) user server that uses the
common API to LANDP for OS/2, then:

1. Change functions that are unique to DOS.

Ensure that the server is portable from the operating system point of view. Use the
subset of OS/2 system functions that are compatible with DOS.

2. The server cannot use the supervisor local function Z2.

If the server must be portable at the same source code level to a LANDP for DOS or
FBSS (DOS) workstation, take into account that:

� The last statement in the initialization procedure must be the statement calling the
SRVINIT routine. As control is not returned to the server in the LANDP for DOS or
FBSS (DOS) environment, this routine allocates the server as a resident program
in memory. Therefore the server at its initialization procedure must calculate the
program size before calling the SRVINIT routine providing this size as a parameter.

Note: In the LANDP for DOS or FBSS (DOS) environment, the routine SRVINIT

does not return the control to the caller. Therefore statements following the
SRVINIT call can be processed only in a LANDP for OS/2 environment.

� An entry point to the server process associated with every request received by the
server must exist in the server code. The LANDP for DOS or FBSS (DOS)
client/server mechanism calls a server as a routine, so the system must know this
server entry point. The client/server mechanism calls the server at the entry point
address specified in a parameter of the SRVINIT function.

� RMTRPLY in LANDP for DOS and FBSS (DOS) ends the routine, returning control to
the client/server mechanism. Therefore anything following the call to RMTRPLY is not
processed under DOS. However, in LANDP for OS/2 the RMTRPLY routine returns
control to the caller, requiring a loop statement to the GETREQ to wait for the next
request to be processed.

Migrating LANDP for DOS and FBSS (DOS) clients to LANDP for Windows NT
If you have a LANDP for DOS or FBSS (DOS) application using the common API and
you want it to run under LANDP for Windows NT, you must follow these rules:

1. Change functions that are unique to DOS.

22 LANDP Programming Guide

migration considerations

Ensure that the application is portable from the operating system point of view.
Use the subset of Windows NT system functions that are compatible with DOS.

2. Add the IN and EJ supervisor local functions, if they are not already included in the
existing application. (See the “Supervisor local functions” chapter of the LANDP
Programming Reference.)

It is mandatory that the first service requested by a LANDP application is the
initialization (IN) function. Also, the program must issue the EJ function before
ending.

3. Change the EX, SA, and RA supervisor local functions.

Use the WM (wait for asynchronous events) function instead of the EX (exit to idle
state) function.

The WM function allows the application to remain in idle state while it is waiting for
a specific asynchronous event or events specified in a parameter list. These
events can be sent by the keyboard, the host processor, the I/O devices, user
servers, user timers, or a timeout of a special WM timer. The client/server
mechanism checks for these entries in the order specified by the WM function.
While this function is running the application remains idle.

If no parameter list is specified for the WM function, the default provides the same
function as the EX function.

Since the WM function allows waiting for a specific event, it is no longer necessary
to use the enabling and disabling asynchronous events (SA and RA) functions.

LANDP for Windows NT does not support the asynchronous event type Dn in the
WM function.

Migrating LANDP for DOS and FBSS (DOS) user servers to LANDP for Windows
NT

If you want to migrate a LANDP for DOS or FBSS (DOS) user server that uses the
common API to LANDP for Windows NT, then:

1. Change functions that are unique to DOS.

Ensure that the server is portable from the operating system point of view. Use the
subset of Windows NT system functions that are compatible with DOS.

2. The server cannot use the supervisor local function Z2.

If the server must be portable at the same source code level to a LANDP for DOS or
FBSS (DOS) workstation, take into account that:

� The last statement in the initialization procedure must be the statement calling the
SRVINIT routine. As control is not returned to the server in the LANDP for DOS or
FBSS (DOS) environment, this routine allocates the server as a resident program
in memory. Therefore the server at its initialization procedure must calculate the
program size before calling the SRVINIT routine providing this size as a parameter.

Note: In the LANDP for DOS or FBSS (DOS) environment, the routine SRVINIT

does not return the control to the caller. Therefore statements following the

 Chapter 1. Clients and servers 23

migration considerations

SRVINIT call can be processed only in a LANDP for Windows NT
environment.

� An entry point to the server process associated with every request received by the
server must exist in the server code. The LANDP for DOS or FBSS (DOS)
client/server mechanism calls a server as a routine, so the system must know this
server entry point. The client/server mechanism calls the server at the entry point
address specified in a parameter of the SRVINIT function.

� RMTRPLY in LANDP for DOS and FBSS (DOS) ends the routine, returning control to
the client/server mechanism. Therefore anything following the call to RMTRPLY is not
processed under DOS. However, in LANDP for Windows NT, the RMTRPLY routine
returns control to the caller, requiring a loop statement to the GETREQ to wait for the
next request to be processed.

Migrating from the shared-file server to the LANDP for OS/2 query server
Migrating existing applications that use the LANDP for DOS or the FBSS (DOS)
shared-file server to work with the query server involves three steps:

1. Migrating the application.

� Change the resource name in the requester CPRB from SHFILE## to
EHCSQL##.

� Remove shared-file server functions that are not supported in the LANDP for
OS/2 environment:

– Open batch (OB), close batch (CB)
– Read header (RH) (information not available in SQL database)

You must redesign your applications that use the batch mode of the shared-file
server to work with the query server. Online mode must be used instead of
batch mode. The EX function can be used in online mode to lock a table.

� There are some differences between the shared-file server and the database
manager that should be noted:

– Depending on the use of functions, accesses to the DB2 Universal
Database have different performance characteristics. LANDP for OS/2
provides some control at server load time that allows you to select
different processing options with different performance characteristics.

– A non-ASCII data type for indexed fields can result in a different collating
sequence of the data.

– Because of multitasking, OS/2 may access databases in a different
sequence. With the shared-file server all function calls are sequenced,
while the query server functions are processed in parallel if possible. The
maximum number of simultaneous threads is defined during query server
customization.

– There are some differences in the base locking mechanism between the
shared-file server and the database manager. The SQL database
manager performs physical record locking where the shared-file server
performs logical record locking. This means that:

24 LANDP Programming Guide

migration considerations

- Functions that give return code zero with the shared-file server can
now return RL.

- Get functions do not return a record that is currently held by another
workstation (RL status returned).

The meaning of “being held by another workstation” depends on the
ISOLATION LEVEL parameter that is used when the server is bound
to RDBMS. Although this is done transparently by the server, a
manual rebind of the file EHCSQLRQ.BND is possible to change the
isolation level. Refer to the DB2 UDB documentation for a description
of the binding process parameters.

2. Migrating shared-file server data structures (DBD and PCB) to SQL tables using
the utilities provided by LANDP for OS/2.

EHCMGR1
This program reads the .PCB and .DBD definition files and optionally the record
definition file, RDF.CFG, and creates an ASCII file with the correct SQL
sentences to create the SQL tables.

EHCOS2Q or EHCDOSQ
EHCOS2Q (for LANDP for OS/2 workstations) or EHCDOSQ (for LANDP for
DOS or FBSS (DOS) workstations) read the ASCII files created by EHCMGR1
and use the query server to create the SQL tables.

3. Migrate existing shared-file server data files to SQL files using the utility program
provided by LANDP for OS/2.

EHCMGR2
This program runs on LANDP for DOS and reads the shared-file server data files
and the output files from the data structure migration program (EHCMGR1). It
uses the query server to move data to the SQL files.

EHCMGROS
This program runs on LANDP for OS/2 and is functionally equivalent to
EHCMGR2.

Migrating LANDP for OS/2 clients and user servers to LANDP for Windows NT
If you have a LANDP for OS/2 client or user server using the common API and you
want it to run under LANDP for Windows NT, change functions that are unique to OS/2.
Ensure that the application is portable from the operating system point of view.

It is mandatory that the first service requested by a LANDP client application is the
initialization (IN) function. Also, a client must issue the EJ function before ending.

 Chapter 1. Clients and servers 25

migration considerations

26 LANDP Programming Guide

invoking the common API

Chapter 2. Writing client programs

The LANDP common application programming interface (API) consists of several
routines that client and server programs call when they interact with each other. To
request a LANDP service, the client (or server acting as client) program calls the
synchronous routine RMTREQ and supplies the address of the connectivity programming
request block (CPRB) as a parameter. The CPRB is the control block used for
specifying the request, and for the server program to supply the answer.

If the client and the server programs are not in the same workstation of the LANDP
LAN, the client/server mechanism passes the request to the respective workstation.
The client program does not need to know where the server program is located.

Calling the routine RMTREQ is similar to a main routine in a program calling a subroutine.
The local or remote server program acts as such a subroutine. It processes the
request and returns the results to the application program. The client program calling
the RMTREQ is suspended until the reply arrives or the request timeout expires. The
example below shows how the call is made using the C language:

retcode = RMTREQ(cprb_addr, EHC_RESERVED);

The statements required to call RMTREQ are given in “Call RMTREQ (Remote request)”
on page 28.

Invoking the common API
The common API contains a set of routines. These routines are provided by LANDP in
an import library. Depending on the LANDP licensed program and the environment
(16-bit, or 32-bit with OS/2 Warp V4 or higher or Windows NT), you need to link your
application program with one of the following libraries:

� EHCDOS.LIB for LANDP for DOS (or EHCDOSXM.LIB, see note)
� EHCOS216.LIB for LANDP for OS/2 (or EHCOS2.LIB for FBSS/2)
� EHCOS232.LIB for LANDP for OS/2
� EHCWINNT.COF for LANDP for Windows NT (for Microsoft compilers, for

example)
� EHCWINNT.OMF for LANDP for Windows NT (for VisualAge compilers, for

example)
� LIBDCZY.A for LANDP for AIX

Copy EHCWINNT.COF or EHCWINNT.OMF to EHCWINNT.LIB as appropriate.

See “LANDP for OS/2 programming environments” on page 14 and “LANDP for
Windows NT programming environments” on page 17 for more information.

Note: The EHCDOSXM.LIB library allows Micro Focus COBOL applications that use
the XM interface and run in protected mode to work with extended memory and
use LANDP services.

 Copyright IBM Corp. 1992, 2000 27

CPRB, RMTREQ call

CPRB fields used and set by clients
These entries are the fields the client program must supply when requesting a service.

CPRB Fields Used by Clients

Offset Length Field Name Content/Description

X'0A' 2 ehcfunct Function code

X'0E' 2 ehcqparml Request PARMLIST length

X'10' 4 ehcqparmad Request PARMLIST address

X'14' 2 ehcqdatal Request DATA length

X'16' 4 ehcqdataad Request DATA address

X'1A' 2 ehcrparml Reply PARMLIST length

X'1C' 4 ehcrparmad Reply PARMLIST address

X'20' 2 ehcrdatal Reply DATA length

X'22' 4 ehcrdataad Reply DATA address

X'5E' 2 ehcservnamlen Destination server name length
always equal to X'0008'

X'60' 8 ehcserver Destination server name

Call RMTREQ (Remote request)
The common API routine that client programs use to request services from a server
program is RMTREQ. To call RMTREQ, the following statements are used:

Language Statement

VisualAge C++, Visual
C++,
C, C Set/2, C/6000

retcode = RMTREQ (cprb_addr, EHC_RESERVED);

MASM/2 @RMTREQ cprb_addr EHC_RESERVED

Pascal/2
Pascal/6000

retcode := RMTREQ (cprb_addr,
EHC_RESERVED);

VisualAge COBOL

COBOL/2
COBOL/6000
Micro Focus COBOL using
XM

(In the PROCEDURE DIVISION)
CALL "RMTREQ" USING

BY REFERENCE EHC_CPRB
BY VALUE EHC_RESERVED

END-CALL

CALL __RMTREQ USING EHC_RESERVED,
cprb_addr
CALL "__RMTREQ" USING EHC_RESERVED,
cprb_addr

REXX call RMTREQ cprb_addr

28 LANDP Programming Guide

RMTREQ NoWait call

where:

� retcode is the return code

� cprb_addr is the address of the CPRB structure

� EHC_RESERVED is a reserved value, an unsigned long integer set to zero. It
must be specified exactly as shown. (It is not required in REXX.)

Examples: To see the calls in the context of a sample program, refer to the following
pages for C and COBOL.

C page 133

retcode = RMTREQ (&mycprb, EHC_RESERVED);

COBOL page 155

CALL "RMTREQ" USING BY REFERENCE EHC-CPRB

 BY VALUE EHC-RESERVED

 END-CALL.

Call RMTREQ using the NoWait option
LANDP for OS/2, LANDP for Windows NT, and LANDP for DOS (Microsoft Windows
3.1/3.11 or non-Windows) clients can issue a RMTREQ without being suspended until the
reply arrives, by using the RMTREQ with the NoWait option. Here, control is returned
immediately to the client. The client can issue further RMTREQ calls without having to
wait for the reply to the RMTREQ call with the NoWait option.

To use the NoWait option, the client must call the RMTREQ routine and supply the
address of the RMTREQ options control block (see “The RMTREQ options control
block (EHC_RMTREQ_OPTS)” on page 31).

Note: RMTREQ with the NoWait option cannot be used to call supervisor local functions.

The statements required to call RMTREQ using the NoWait option, are:

Language Statement

VisualAge C++
Visual C++
C or C Set/2

retcode = RMTREQ (cprb_addr, ehc_rmtreq_opts);

MASM/2 @RMTREQ cprb_addr, ehc_rmtreq_opts

Pascal/2 retcode := RMTREQ (cprb_addr, ehc_rmtreq_opts);

 Chapter 2. Writing client programs 29

RMTREQ NoWait call

where:

� retcode is the return code

� cprb_addr is the address of the CPRB structure

� ehc_rmtreq_opts is the address of the options control block, described in “The
RMTREQ options control block (EHC_RMTREQ_OPTS)” on page 31

The client that issued the RMTREQ using the NoWait option obtains the reply by calling
the synchronous routine GETRPLY and supplying the address of the GETRPLY options
control block. The sample below shows how the call is made using the C language:

retcode = GETRPLY(cprb_addr, &ehc_getrply_opts);

The statements required to call GETRPLY are given in “Call GETRPLY (Get reply)” on
page 32.

Language Statement

COBOL/2

VisualAge COBOL

(In the PROCEDURE DIVISION)
CALL __RMTREQ USING ehc_rmtreq_opts,
cprb_addr

CALL "RMTREQ" USING
BY REFERENCE EHC_CPRB
BY REFERENCE EHC_RMTREQ_OPTS

END-CALL

REXX call RMTREQ cprb_addr, ehc_rmtreq_opts

Application flow using RMTREQ NoWait
The typical flow of a client program that uses the RMTREQ call with the NoWait option is
given below.

1. The client issues the RMTREQ NoWait call, and RMTREQ then returns a reply handle.
Clients written as OS/2, Windows NT, or Windows 3.1/3.11 applications can show
in RMTREQ NoWait a window handle, and a message identity to be posted when the
reply arrives.

2. The client resumes its operation. The client can issue other requests or, in LANDP
for OS/2, it can wait for the reply by requesting the WM function. Clients written as
OS/2, Windows NT, or Windows 3.1/3.11 applications can return to OS/2, Windows
NT, or Windows 3.1/3.11 and wait for the posted message.

3. In LANDP for OS/2 and Windows NT, to wait for the reply using the WM function,
the client must use as event ID for the WM function the concatenation of reply
handle + SPV.

4. Clients in LANDP for OS/2 and Windows NT that use the WM function are notified
that the reply is ready with the event ID described in the previous step. Clients
written as OS/2, Windows NT, or Windows 3.1/3.11 applications that have defined

30 LANDP Programming Guide

RMTREQ NoWait call

a window handle and message identity using RMTREQ NoWait, receive this message
in the window message queue.

5. The client obtains the reply using the GETRPLY routine, passing as a parameter the
reply handle.

The client may choose to use GETRPLY without using the WM, or waiting for the posted
message. Here the client is suspended until the reply arrives, or until the timeout in the
GETRPLY CPRB expires.

If the GETRPLY timeout expires, RMTREQ NoWait is cancelled, unless the Keep_Flag was
set to 1 in the GETRPLY. Here the client must issue another GETRPLY to obtain the reply,
or cancel the RMTREQ NoWait.

The RMTREQ options control block (EHC_RMTREQ_OPTS)
LANDP for DOS, OS/2, and Windows NT clients that issue a RMTREQ call with the
NoWait option must supply the address of the EHC_RMTREQ_OPTS control block.
The NoWait indicator is specified in this control block.

Clients written as OS/2, Windows NT, or Windows 3.1/3.11 applications can also
specify in this control block:

� A window handle
� A message identity to be posted when the server reply arrives

The use of the EHC_RMTREQ_OPTS control block is supported only in LANDP for
DOS, OS/2, and Windows NT. Clients that are installed on other LANDP systems must
set this option to EHC_RESERVED, which is an unsigned long integer and set to zero.

You can copy the definition of this control block into your program as described in
“Including the CPRB and options control block structures” on page 9.

EHC_RMTREQ_OPTS Format

Field Type I/O Content

struct_size 2 bytes
unsigned

short

Input Length of
EHC_RMTREQ_OPTS,
including this field (12).

reserved 6 bytes Reserved Must be set to binary zeros.

nowait_parmad address (4
bytes)

Input Address of the NoWait
parameter structure
(EHC_NOWAIT_PARM). If set
to zero, the RMTREQ is then
Wait.

 Chapter 2. Writing client programs 31

GETRPLY call

Example: To see the call in the context of a sample COBOL program, refer to page
159.

SET NOWAIT-PARMAD OF EHC-RMTREQ-OPTS

TO ADDRESS OF

 EHC-NOWAIT-PARM

CALL "RMTREQ" USING BY REFERENCE EHC-CPRB

BY REFERENCE EHC-RMTREQ-OPTS

 END-CALL.

EHC_NOWAIT_PARM Format Used With RMTREQ

Field Type I/O Content

struct_size 2 bytes
unsigned

short

Input Length of
EHC_NOWAIT_PARM,
including this field (16).

reply_handle 2 bytes Output reply_handle.

nowait_flags 4 bytes
unsigned

long

Not used Not used. Must be set to
zeros.

window_handle handle (4
bytes)

Input Window that is to receive a
message. If set to zero, no
automatic posting of the reply
occurs and the value in the
message identity field is
ignored.

message_id 4 bytes
unsigned

long

Input Message identity to be posted.

Call GETRPLY (Get reply)
LANDP for DOS, OS/2, and Windows NT clients (or servers acting as clients) that have
issued a RMTREQ call using the NoWait option must later issue a GETRPLY to obtain the
reply. The statements required to call GETRPLY, are:

Language Statement

VisualAge C++, Visual C++
C or C Set/2

retcode = GETRPLY (cprb_addr, ehc_getrply_opts);

MASM/2 @GETRPLY cprb_addr, ehc_getrply_opts

Pascal/2 retcode := GETRPLY (cprb_addr, ehc_getrply_opts);

32 LANDP Programming Guide

GETRPLY call

where:

� retcode is the return code

� cprb_addr is the address of the CPRB structure

� ehc_getrply_opts is the address of the options control block, described in “The
GETRPLY options control block (EHC_GETRPLY_OPTS)” on page 34

Language Statement

COBOL/2

VisualAge COBOL

(In the PROCEDURE DIVISION)
CALL __GETRPLY USING ehc_getrply_opts,
cprb_addr

CALL "GETRPLY" USING
BY REFERENCE EHC_CPRB
BY REFERENCE EHC_GETRPLY_OPTS

END-CALL

REXX call GETRPLY cprb_addr, ehc_getrply_opts

CPRB fields required for GETRPLY
LANDP for DOS, OS/2, and Windows NT clients that issue GETRPLY to obtain the reply
to a previous RMTREQ issued using the NoWait option must set the CPRB fields shown
below. For the CPRB fields not listed below, you can either use the same values that
were entered during the original RMTREQ, or you can set these fields to zero.

On reply to the GETRPLY, LANDP copies the CPRB that was used with the original
RMTREQ, except for the five fields above.

CPRB fields used by GETRPLY

Offset Length Field Name Content/Description

X'0C' 2 ehctimeout Timeout to wait for the reply. Valid
values are:

X'0000' (use default LAN
timeout)
X'0001' to X'7FFF' (timeout in
seconds)

 X'FFFE' (timeout=0)
X'FFFF' (no timeout—wait until
the reply arrives)

X'1A' 2 ehcrparml Reply PARMLIST length

X'1C' 4 ehcrparmad Reply PARMLIST address

X'20' 2 ehcrdatal Reply DATA length

X'22' 4 ehcrdataad Reply DATA address

 Chapter 2. Writing client programs 33

GETRPLY call

If the length for Reply DATA or Reply PARMLIST is too short to contain the replies
from the server, the available length is copied and a nonzero router return code results.

LANDP also provides the router return code and copies the server return code.

The GETRPLY options control block (EHC_GETRPLY_OPTS)
LANDP for DOS, OS/2, and Windows NT clients that issue a RMTREQ call with the
NoWait option must use the GETRPLY call to obtain the server reply. The client must
supply the address of the options control block EHC_GETRPLY_OPTS. This control
block supplies the reply handle of the reply.

You can copy the definition of this control block into your program as described in
“Including the CPRB and options control block structures” on page 9.

EHC_GETRPLY_OPTS Format

Field Type I/O Content

struct_size 2 bytes
unsigned

short

Input Length of
EHC_GETRPLY_OPTS,
including this field (12)

reserved 6 bytes Reserved Must be set to binary zeros

nowait_parmad address (4
bytes)

Input Address of the NoWait
parameter area. Must be the
address of a valid
EHC_NOWAIT_PARM
structure

EHC_NOWAIT_PARM Format Used With GETRPLY

Field Type I/O Content

struct_size 2 bytes
unsigned

short

Input Length of
EHC_NOWAIT_PARM,
including this field (16)

reply_handle 2 bytes Input Handle returned by RMTREQ
NoWait

nowait_flags 4 bytes
unsigned

long

Input Flags
Keep_Flag
1 = Do not cancel RMTREQ
NoWait, if the GETRPLY
timeout expires

window_handle handle (4
bytes)

Not used Not used

message_id 4 bytes
unsigned

long

Not used Not used

34 LANDP Programming Guide

programming hints

Example: To see the call in the context of a sample COBOL program, refer to page
159.

SET NOWAIT-PARMAD OF EHC-GETRPLY_OPTS

TO ADDRESS OF

 EHC-NOWAIT-PARM

CALL "GETRPLY" USING BY REFERENCE EHC-CPRB

BY REFERENCE EHC-GETRPLY-OPTS

 END-CALL.

 Hints
This section gives tips on economical and efficient coding of LANDP client applications.

 Requesting services
After you have initialized the CPRB, following these suggestions should simplify
requesting services:

� Use the same area for Request PARMLIST and Reply PARMLIST.
� Use the same area for Request DATA and Reply DATA. Here, the information on

request can be overlapped by the information on reply.

For each request you only need to specify the following fields of the CPRB:

 � Function code
� Request PARMLIST length
� Request DATA length
� Reply PARMLIST length
� Reply DATA length

 � Server name

On return from a request, you need to inspect the following fields:

� Replied PARMLIST length
� Replied DATA length
� Router return code
� Server return code

 Return codes
It is strongly recommended that you always test first the router return code and then the
server return code after requesting a service. If both are zero (X'00000000') the
operation was performed successfully.

If the router return code is different from X'00000000', the server return code is
meaningless.

The X'00000000' router return code shows successful routing of the RMTREQ function.
Any other value shows an error. Here you should see the appropriate section of
LANDP Problem Determination, to identify the cause of this return code and the
possible actions to take.

 Chapter 2. Writing client programs 35

events

The X'00000000' server return code shows successful completion of the RMTREQ
function. Any other value shows an error. Here you should see the appropriate section
of the LANDP Problem Determination book to identify the cause of this return code and
the possible actions to take. Return codes in the LANDP Problem Determination book
are listed according to the server's operating environment.

Sample application programs
Sample application programs are supplied with LANDP. After LANDP has been
installed, the sample programs can be found in the samples sub-directories of the
platform directories. If the installation directory is defined as EHC:

DOS samples are in EHC\EHCD500\SAMPLES

OS/2 samples are in EHC\EHCO500\SAMPLES

Windows NT samples are in EHC\EHCN500\SAMPLES

Each samples sub-directory contains an introductory readme.txt file.

Note: Five of the sample programs are analysed in Chapter 11, “Sample application
programs” on page 127.

For LANDP for AIX, a description file with the name landpsamples.doc is provided
which describes the LANDP for AIX sample programs, profiles, and specific features.
Sample programs and profiles are listed according to the server to which they apply.
The purpose of each sample program and details of how each sample program can
best be compiled and carried out, are also explained. This file is located in the
sub-directory /usr/lpp/landp.

LANDP event notification support
A LANDP client application program can request services from servers and be informed
when specific events occur in the system. The LANDP event notification support allows
servers to notify clients about events and provide a dispatching mechanism to clients.
This support includes:

� Clients to get notified of external events
� Servers to process the requests asynchronously to the main process
� Transactions to be processed in parallel

Types of event
The LANDP event notification support allows clients to be notified of:

� System-generated events (see page 40). These events are generated by the
client/server mechanism when, for example, a key is pressed on the keyboard or a
timer has elapsed.

� Server-generated events. Servers generate events in a way similar to clients
requesting services from a server. Instead of calling RMTREQ, the server calls the
RMTAREQ routine with function Z5 (or ZN under LANDP for OS/2 and Windows NT)

36 LANDP Programming Guide

events

to generate the event. After that, the client/server mechanism receives the events
generated by servers and passes the information to the destination client.

 Event ID
The event ID is the identification of one event. It is used by clients to request
notification of one specific event, and by the client/server mechanism to notify clients
when this event has occurred.

The event ID is a 10-byte record that consists of two fields:

� A 2-byte value, called the Event Code
� An 8-byte character string that identifies the originator of the event

In the remainder of this book, event IDs are shown as character strings, where the first
two characters are the corresponding ASCII codes of the 2-byte event code, and the
remaining characters represent the resource name of the originator of the event.

For example, the event ID “KBSPV” consists of an event code X'4B42' (KB) and an
originator name “SPV ”.

On Intel machines, the event code is in byte-reversed form. To assist with the
portability of programs across different environments, you should define a structure for
an event ID as follows:

typedef struct

{

unsigned short event_code;

 char resource_name[8];

}

EVENT_ID;

With this structure, you could assign values in a portable way:

#define KB_CODE Ax4b42

...

EVENT_ID one_event;

...

one_event.event_code = KB_CODE;

memcpy (one_event.resource_name, "SPV ",8);

...

Event ID

Offset Length Content

0 2 X'nnnn' Event code (integer)

2 8 SERVNAME Name of the resource that originates the event.
(Eight characters, left-aligned and padded with
blanks)

The server name field may contain a resource name,
a server name, or an alias name (see “Server
names” on page 10)

 Chapter 2. Writing client programs 37

events

with similar programming for testing a received event notification.

Receiving event notifications
The client/server mechanism keeps and maintains event information. If application
programs specify events for which they want to get notified, the client/server
mechanism notifies them about these events. Application programs receive the event
notification by requesting the appropriate supervisor local function, all of which are
described in more detail in the “Supervisor local functions” chapter of the LANDP
Programming Reference:

� WM (Wait Multiple)
� AA (Ask for Asynchronous Events)
� SP (Start Posting Events)
� QE (Query Events)
� TP (Stop Posting Events)

WM allows clients to wait for specific events to occur. When a client requests WM
control passes to the client/server mechanism. This checks the event information it
maintains, and passes back control to the client as soon as a specific event occurs that
the client is waiting for.

With the AA function, clients can poll the asynchronous event information maintained by
the client/server mechanism for a list of events. The client/server mechanism returns
either nothing or the first event that is pending to be notified. WM and AA return the
same information in the form of a 10-byte event ID in the Reply PARMLIST.

The functions SP, QE, and TP are used by OS/2 PM, Windows NT, Windows 3.1/3.11,
and (with LANDP for AIX) X-Windows application programs. SP requests the
client/server mechanism to post an OS/2 PM, Windows NT, Windows 3.1/3.11, or
X-Windows message to a window procedure when any of the specified events take
place. When the message is received in the window procedure, the application
interrogates the client/server mechanism by issuing a QE function. With the TP
function, the application can reset any event specified through an earlier SP function.

LANDP for OS/2, Windows NT, and AIX servers can also receive event notifications
using their GETREQ routine. For more information, refer to “Additional GETREQ options”
on page 52.

Waiting for multiple events
Clients mainly use the supervisor local function WM (Wait Multiple) to receive event
notifications. A client can be in the active or idle state. When a client requests WM, it
enters the idle state and gives control to the client/server mechanism.

When a client requests WM it usually specifies a list of events it is waiting for. The
client/server mechanism checks the specified event list, and scans its event queue in
the order the client has specified them in its event list. If the event queue contains one
of the events in the list, the client/server mechanism returns the corresponding event
ID. If the event queue does not contain any of the events the client has specified, WM
waits until an event occurs that matches one of the events the client has specified.

38 LANDP Programming Guide

events

WM then returns the corresponding event ID to the client. If the client does not specify
a list of events, the client/server mechanism scans its event queue in a default order.

WM returns only one event ID every time it is requested. After an event ID is returned
to the client, the client/server mechanism removes the corresponding event from its
event queue. Exceptions are defined for events generated by communication servers.
Here the client must issue a request to the server to read the data. This prompts the
server to request the local supervisor to remove the event from the queue.

Polling asynchronous event information
The AA supervisor local function provides a polling mechanism for clients. This
mechanism allows clients to ask for specific events to be notified, without waiting or
removing the event from the event queue.

Note: You should be wary of using polling mechanisms in a client application because
it can be very expensive on system resources.

Event notification using graphical user interface (GUI) message posting
A GUI application program for LANDP can be developed for the following environments:

� OS/2 Presentation Manager (PM)
 � Windows NT
� Windows 3.1 or 3.11

 � X-Windows

These applications have their main process in a window procedure. It is an
event-driven process, and the events received by the window procedure are serialized
by OS/2 PM, Windows NT, Windows 3.1/3.11, or X-Windows in the application queue.
LANDP provides asynchronous notifications to the application program as posted
graphical user interface (GUI) messages. This conforms to the conventions of these
environments, allowing the use of the environments’ standard programming tools.

The message is posted to the window procedure message queue that the application
defines using the SP function. The application chooses which window procedure
receives and processes the message. The application also defines the message
identity posted. In LANDP for AIX this identity is an X-Windows atom, and the event is
a ClientMessage event. The message_type contains the message_identity. The data
field contains the 2-byte event_handle and the 10-byte event ID.

The application can use its current parsing of the posted windows messages also for
parsing the LANDP events. The window_handle and message_identity pair constitutes
the notification posting identifier, because it uniquely identifies both the place to notify
and the identity to be notified. For each window_handle and message_identity pair,
LANDP maintains a list of events. The application program uses the SP function to add
or the TP function to remove events from this list.

LANDP accepts, for OS/2 and Windows NT applications, a maximum of 100 different
pairs of window_handle and message_identity per application. For OS/2 and Windows
NT applications, LANDP maintains a maximum of 102 events in the event list for each

 Chapter 2. Writing client programs 39

system events

window_handle and message_identity pair. For Windows 3.1/3.11 applications, LANDP
maintains a maximum of 23 events in the event list for each window_handle and
message_identity pair.

When an event matching one of the events in the list occurs, LANDP generates an
OS/2 or Windows NT message for the window message queue, with the message
identity associated in the SP function. LANDP also generates an event handle in the
low word of the message parameter 1. This event handle can later be used with the
QE (query event) function to obtain the event ID of the posted event. LANDP for AIX
applications using X-Windows can alternatively use the event ID provided with the
ClientMessage event.

Three supervisor local functions are provided to notify events by posting a windows
message:

� SP (Start posting events)
� QE (Query event)
� TP (Stop posting events)

OS/2, Windows NT, Windows 3.1/3.11, LANDP Supervisor
or X-Windows Application

Set up environment

Start posting (SP) ────────────────────>

Continue processing Monitor for event

<──────────────────── Notify event through

 Windows procedure

Query event (QE) ────────────────────>

 event information

 <────────────────────

Process information

Stop posting (TP) ────────────────────> Stop monitoring for event

LANDP system events
LANDP system events are events generated by the LANDP client/server mechanism.
They provide notifications for:

� User input through the keyboard
� LANDP for OS/2 and Windows NT: user input through the mouse

 � Application timers
� OS/2 and Windows NT semaphore events
� Connection and disconnection of LANDP processes and workstations

40 LANDP Programming Guide

system events

 Keyboard events
LANDP provides a system event that notifies the client of any key pressed on the
keyboard. The event ID is KBSPV. This event is generated every time the supervisor
local functions WM or AA are requested and the keyboard buffer contains data to be
read.

After the client receives the event ID, usually when the WM ends and the client regains
control from the client/server mechanism, the client must read the input from the
keyboard using the standard functions of the programming language used. If the
application program does not read the input from the keyboard, the input (keystroke)
remains in the keyboard buffer. The next request of WM or AA repeats the event.

OS/2 PM or Windows 3.1 application programs cannot use the WM or SP functions to
wait for keyboard events. They receive keyboard events through the standard OS/2
event notification.

X-Windows application programs receive events through the standard X-Windows event
notification system that uses X-Windows messages. X-Windows applications cannot
use the WM function to wait for keyboard events.

Mouse events under LANDP for OS/2 and Windows NT
Mouse events are notified in the same way as keyboard events. LANDP for OS/2 and
Windows NT provide the event ID MOSPV that notifies of a mouse movement or a
clicked mouse button (including button press, button release, and double clicks).

After the client receives the event ID, usually when it regains control from the
client/server mechanism and the WM ends, the client must use standard operating
system functions to determine whether the mouse was moved or a button was clicked.

To receive a mouse event notification, the client must specify the event ID MOSPV in
the event list when requesting WM or AA. If the event ID is not specified or WM or AA
is requested without passing an event list, mouse events are ignored and therefore not
notified to the application program.

OS/2 PM application programs cannot use the WM function to wait for or receive a
mouse event. They receive mouse events through the standard OS/2 event notification
using OS/2 messages as WM_MOUSEMOVE or WM_LBUTTONCLICK. The SP (Start
Posting Events) does not support the MOSPV event, because SP only works with OS/2
PM application programs.

 Timer events
Clients use timer events, for example, to control transaction timeouts or to submit jobs
at predetermined times. Clients start one of the LANDP system timers, to expire at a
given time. When the timer expires the client/server mechanism generates a system
event with event ID TxSPV, where x identifies the timer and has a value from 1 to 8.
The timer event IDs T1SPV through T8SPV are notified to the client following the same
procedure (using WM or AA) as for keyboard events.

 Chapter 2. Writing client programs 41

system events

Semaphore events under LANDP for OS/2 and Windows NT
LANDP for OS/2 and Windows NT applications can use the multiple-tasking facilities
that OS/2 and Windows NT provide. Semaphores are used to signal between or
synchronize concurrent threads or processes running on OS/2 or Windows NT. A
thread or process waits on a semaphore to be cleared by another thread or process.

LANDP for OS/2 and Windows NT provide for the notification of semaphore system
events, combining semaphore waiting or signalling with other LANDP events in the
same WM function.

The semaphore event notifications can also be received using the functions AA and SP.
Using the WM function clients can make most use of the semaphore event notifications.

LANDP for OS/2 and Windows NT support waiting for semaphores, but provide no
functions to handle them. The semaphores need to be handled by the client program,
which is responsible for creating, opening, clearing, or setting the semaphores. The
client can specify semaphore events on the event list that is passed to the client/server
mechanism when it requests the WM function. LANDP for OS/2 and Windows NT only
accept and wait for 32-bit event semaphores, not for Mutex or MuxWait semaphores.

LANDP for OS/2 and Windows NT associate semaphores, identified by semaphore
handles, with Semaphore events. In this way, LANDP for OS/2 and Windows NT allow
clients to wait for the required semaphore, together with other events specified on the
event list for the WM function. They also allow clients to associate the notified event ID
with a semaphore handle. This association is similar to the one used to set up or to
clear the LANDP for OS/2 and Windows NT timers. For this association, LANDP for
OS/2 and Windows NT provide two supervisor local functions:

� AS (Associate Semaphore with Event)
� DS (Disassociate Semaphore from Event)

Process connection and disconnection events
The LANDP client/server mechanism supervises the availability of processes in the
LANDP workgroup. For example, a LANDP client application program receives
notification of events related with the availability of servers that the client has accessed.
LANDP generates two system events:

� Process connection event (with event code X'2626' or '&&')
� Process disconnection event (with event code X'2A2A' or '**')

The event IDs consist of the event code and the name of the server (left-justified and
padded with blanks) that has been connected or disconnected. If the server name
corresponds to an alias name, LANDP for OS/2, Windows NT, and AIX notify with the
alias name, and generate as many process connection or process disconnection events
as there are resource names defined as aliases for the server.

Every time a server successfully completes its initialization and responds to the
initialization request, LANDP makes it available to clients and notifies them about the
connection of that server. The client/server mechanism generates in turn the process
connection event with the name of the server. The process connection and

42 LANDP Programming Guide

DOS and Windows 3.1/3.11 support

disconnection events are received by the clients and servers located in workstations,
with access to the server being connected or disconnected.

Similarly, when a server is unloaded, or the workstation containing that server
disconnects, LANDP releases the server, and each client/server mechanism (in each
workstation that has access to that server) generates the process disconnection event
with the name of the server. When the unload or disconnection affects a complete
workstation, the client/server mechanism generates a process disconnection event for
each server that was accessible in that workstation.

LANDP for DOS and Windows 3.1/3.11 support
Up to eight concurrent applications (both Windows 3.1/3.11 and non-Windows) can
request LANDP services, each standard LANDP for DOS application running in its own
virtual DOS machine, and the Windows 3.1 applications running in the system virtual
machine.

Application programs for LANDP for DOS can also be developed as Windows 3.1
applications. Such Windows 3.1 programs use the LANDP common API by calling the
RMTREQ routine.

For Windows 3.1 applications, asynchronous events, such as communications events or
the connection or disconnection of servers, can be handled following the standard
Windows 3.1 protocol, by queueing Windows 3.1 messages to the application queue.
Clients running under Windows 3.1 request the SP, QE, and TP local functions in the
same way that an OS/2 client does (see “Event notification using graphical user
interface (GUI) message posting” on page 39). This standard Windows 3.1 protocol
“replaces” the use of the WM function, which is not recommended because it can cause
other Windows 3.1 applications to be stopped and unpredictable results might occur.
However, if you choose to use WM instead of SP, QE, and TP, you should set a
timeout value of zero. In this way, control immediately returns, allowing you to poll for
any desired event. Better performance results from handling timer and keyboard
events through the standard Windows 3.1 interface.

Running standard LANDP for DOS applications
The LANDP for DOS kernel (supervisor and servers) runs alone under Microsoft
Windows 3.1 in a virtual DOS machine (VDM), and has access to the entire VDM
machine memory space.

Standard LANDP for DOS applications run in other VDMs, and can therefore use more
memory than if they were running in a pure DOS environment. Also, multiple LANDP
Windows 3.1 applications are supported.

When working with Windows 3.1, you can have the following running at the same time:

� LANDP for DOS kernel in VDM1
� LANDP non-Windows applications in VDM1, VDM2, ... VDMn
� Non-LANDP non-Windows applications in other virtual machines
� Windows applications (LANDP or non-LANDP) in the system virtual machine

 Chapter 2. Writing client programs 43

DOS and Windows 3.1/3.11 support

To communicate from a LANDP application to the LANDP for DOS kernel, you may
require four modules supplied with LANDP for DOS in the LANDP subdirectory of the
workstation where LANDP is installed. They are:

EHCVMSD.386
This is a Windows 3.1 virtual device driver (also called a virtual machines services
device) that must be included in the Windows 3.1 SYSTEM.INI file in the [386Enh]
section as follows:

 device=drive:\path\ehcvmsd.386

This module is always required.
EHCWGMDI.EXE

This interface (called a global memory data interface) must be loaded before
Windows 3.1, and reserves a buffer in global memory to contain the data areas of
the requests from LANDP applications. This buffer supports multiple concurrent
requests.

To load EHCWGMDI, enter:

 EHCWGMDI /L:xx

where xx is a value in kilobytes that is the maximum length of the Request DATA,
Reply DATA, and PARMLIST fields in the CPRB used by all the installed
applications. It can take any value from 1 through 56. The default is 4. Calculate
the maximum length of DATA plus PARMLIST fields and add 156 bytes. This
module is always required.

EHCWVDMI.EXE
This interface (the virtual DOS machine interface) must be loaded before the LANDP
application in the corresponding VDM. It transfers the request from the application to
the LANDP for DOS kernel VDM. This interface serves either the common API, or
the LANDP 3270 emulator API and the 3270 high-level language API. This module
must be included in the WINSTART.BAT file, so that it can service requests from
LANDP Windows 3.1 applications. Resident modules included in this file remain
accessible to all the Windows 3.1 applications. This module is always required.

EHCWIN.DLL
This Windows 3.1 DLL exports the LANDP RMTREQ protected mode call from Windows
3.1 applications to a real interrupt call using DOS protected mode interface (DPMI)
services provided by Windows 3.1. The call is then processed by the EHCWVDMI
module, just like any other call from a standard DOS application in a virtual DOS
machine. This module is required if you are running LANDP Windows 3.1
applications.

Other files, such as program information files (PIFs) may be required. Some are
generated during LANDP customization, and can include the four files named above.
For example, the SYSTEM.ADD file contains the device sentence for ehcvmsd.386. The
EHCPREV.BAT file (which must be run before Windows 3.1) contains the call to ehcwgmdi
and appropriate LOADER calls. EHCDOSVM.BAT contains calls to ehcwvdmi and
AUTOUSER.BAT.

See the LANDP Installation and Customization book for more information.

44 LANDP Programming Guide

DOS and Windows 3.1/3.11 support

Requirements for your standard LANDP for DOS applications
LANDP clients and user servers may require a few changes to run under Microsoft
Windows 3.1. Those changes are:

� If the client or user server uses the CPRB/SEND_REQUEST or the
COMMAREA/DATAREA interface, it must be migrated to the LANDP common API.
The common API allows you to write programs portable at the source code level
between LANDP for DOS, OS/2, and Windows NT.

� The Wait for Asynchronous Events (WM) supervisor function must be used instead
of the Exit to Idle Status (EX) supervisor function. Because the WM function
allows waiting for a specific event, it is no longer necessary to use the Activate
Dispatcher Entries (SA) and Deactivate Dispatcher Entry (RA) supervisor functions.

� The Initialize (IN) and Disconnect an application program (EJ) functions are
mandatory. If you are using the SNA server the Connect (CN) function is also
mandatory.

� When starting both LANDP for DOS and the client automatically through Microsoft
Windows 3.1, the client can start before LANDP for DOS has ended its loading
procedure. Here the client should check for LANDP availability.

Unloading LANDP for DOS
To unload LANDP for DOS, the FREE program must be run from the application’s VDM
after EHCWVDMI. Some LANDP modules are removed from memory, if the application
performs an Unload LANDP for DOS (ES) supervisor function. The FREE program
removes only the LANDP modules loaded after Microsoft Windows 3.1.

Building Windows 3.1 applications that request LANDP for DOS services
If you want to write Windows 3.1 applications that request LANDP for DOS services,
you must follow these guidelines:

� Link your applications with the Dynamic Link Library EHCWIN.DLL, which is
included on the LANDP CD-ROM or diskette images.

� Your applications must use the common RMTREQ routine to call the LANDP
interface.

� The Initialize (IN) function is mandatory.

� Asynchronous LANDP events are notified to your application through the standard
Windows 3.1 protocol. Windows 3.1 messages are queued in the application
queue.

� You must not use the Wait for Asynchronous Events (WM) function call because it
may conflict with the Windows 3.1 dispatching mechanism, unless the timeout
interval is zero.

� To deal with asynchronous events, your Windows 3.1 applications must use the
following supervisor function calls:

– SP (Start posting events)
– QE (Query event)
– TP (Stop posting events)

 Chapter 2. Writing client programs 45

DOS and Windows 3.1/3.11 support

� Your Windows 3.1 application must deal with system events (keyboard, mouse,
timers, and so on) through the standard Windows 3.1 protocol. These events are
not available to LANDP.

� Load EHCWGMDI before loading Microsoft Windows 3.1 and the LANDP for DOS
kernel in a VDM.

� Build your WINSTART.BAT file to include the EHCWVDMI module.

� Windows 3.1 applications may use the RMTREQ call with the NoWait option (see “Call
RMTREQ using the NoWait option” on page 29) and GETRPLY (see “Call GETRPLY
(Get reply)” on page 32) to access servers whose response is slow. In this way,
other Windows 3.1 applications are not stopped.

 Performance considerations
You should investigate the following Windows 3.1 settings to achieve optimum system
performance, depending on your specific environment:

 � MinTimeSlice
 � WinTimeSlice
 � KeyIdleDelay
 � KeyBoostTime

Also, the Detect_Idle_Time setting of both the LANDP kernel and the LANDP
application program information files (PIFs) should be set OFF in most cases to get
better performance.

The EHCWKDE program should be executed after the LANDP supervisor in the kernel
VDM to enhance Windows 3.1 dispatching.

 Restrictions
The implementation of LANDP for DOS with Microsoft Windows 3.1 involves some
restrictions:

� The IBM 3270 emulator LAN management program is not supported. This means
that alerts generated by LAN adapters are not collected by the system manager
server.

� The IBM X.25 Interface Co-Processor/2 adapter used by the X.25 data link control
(X25DLC2) server is not compatible with Microsoft Windows 3.1.

� The IBM 4717 magnetic stripe reader and the IBM 4718 PIN pad devices are not
supported. (The IBM 4777 and 4778 are supported, attached to a serial port.)

46 LANDP Programming Guide

structure of a server

Chapter 3. Writing your own server programs

A LANDP server is a program that uses LANDP routines to receive, perform, and reply
to requests coming from a LANDP application program (client).

A server application program can also act as a client. If you write such programs, read
Chapter 2, “Writing client programs” on page 27.

All server programs must be prepared to process the requests that are listed in
Table 2. The client/server mechanism of LANDP directs these requests to a server.

Table 2. System Request Function Codes, which must be accepted by All Servers. The
first and second columns give the function code and the name of the system request.
The third column shows the operating environment of the server, as explained in
“Operating environments” on page xiv. “O26N” means that it applies to LANDP for DOS,
OS/2, Windows NT, and AIX servers. The last column refers to the page where you can
find the function described.

Function
code

Description Env. Page

&& Process connection O26N 63
&& Workstation connection O26N 62
** Process disconnection O26N 61
** Workstation disconnection O26N 61
ES End of service O26N 57
IN Server recognition O26N 58
TT Timer-generated request O26N 59

Structure of a server
The structure of a LANDP server is determined by the sequence in which it calls the
common API routines:

1. After the server is loaded and has received control, it calls the SRVINIT routine to
register itself to LANDP. This notifies the client/server mechanism that the server
is loaded.

LANDP for DOS servers are automatically converted into terminate and stay
resident (TSR) programs that remain in memory until LANDP is unloaded.

2. The server calls the GETREQ routine to obtain a pending request. The server
provides an address to which the GETREQ routine passes the CPRB information sent
by the client (or server acting as client). Then the server takes the request and
does the processing required. The first request that a server receives through the
GETREQ routine is the IN function. This shows that the SRVINIT routine (which
operates asynchronously) has completed and that the client/server mechanism
recognizes the server as being loaded. See “Server recognition (IN function)” on
page 58.

 Copyright IBM Corp. 1992, 2000 47

structure of a server

3. After the server has received a request through the GETREQ routine, it may call
operating system functions to satisfy this request (for example, opening, reading,
writing, and closing files).

The server can also use RMTREQ to send requests to other servers, or RMTAREQ to
issue asynchronous notifications (functions Z4, Z5, and, under LANDP for OS/2
and Windows NT, ZN) In both cases, it should use a separate CPRB so that the
initial one is not modified. You should save the Process ID and Workstation ID
fields of the incoming CPRB, so that you can specify them as the destination for
any Z5 or ZN function that you subsequently use.

4. The server must be prepared to receive, and reply to, system requests (see
“Receiving system requests” on page 56). In all requests, the originator resource
name is “SPV”, except for process connection (&&) and process disconnection (**)
where the originator resource name is the name of the process. The server can
perform any required processing when receiving a system request. The default
action associated with a system request is to simply send a reply to it.

5. Every request that the server receives through the GETREQ routine is answered
using the RMTRPLY routine. The server supplies to the RMTRPLY routine the address
of the CPRB used with the GETREQ routine. Before the server calls RMTRPLY, it
updates the required fields in the CPRB, and the Reply PARMLIST and Reply
DATA areas.

6. The server continues to call GETREQ and to process any requests until it receives an
End of Service (ES) request. On receiving the ES request, the server releases its
resources and terminates processing. This includes restoring any interrupt vectors
that were chained during the IN request.

Invoking the common API
The link routines (see “Compiling and linking your application program” on page 13 and
“Including the CPRB and options control block structures” on page 9) should be
included in any user server program.

The main LANDP calls used in servers are: SRVINIT, GETREQ, RMTRPLY, and RMTAREQ.
They are described later in this chapter.

If a server is acting as a client, it may need to call RMTREQ (see “Call RMTREQ (Remote
request)” on page 28) or GETRPLY (see “Call GETRPLY (Get reply)” on page 32).

CPRB fields used and set by servers
The following table shows the CPRB fields that must be returned by server programs
when replying to a service request.

CPRB Fields Used by LANDP

Offset Length Field name Content/Description

X'28' 4 ehcservrc Server return code

X'2C' 2 ehcrepldplen Replied PARMLIST length

48 LANDP Programming Guide

SRVINIT call

CPRB Fields Used by LANDP

Offset Length Field name Content/Description

X'2E' 2 ehcreplddlen Replied DATA length

Call SRVINIT (server initialization)
SRVINIT is the first routine that a server calls. It initializes the server and notifies the
client/server mechanism that the server has been loaded. If the server tries to call
GETREQ or RMTRPLY before SRVINIT has completed, it receives an error message.

Under LANDP for OS/2, Windows NT, and AIX, when a SRVINIT call is issued, a list of
service names can be supplied containing the services that the server wishes to
register and therefore make available to clients. See “Additional SRVINIT options” on
page 50 for further information. Alternatively, under LANDP for OS/2, Windows NT,
and AIX, there may be no list of service names supplied. Here, the server’s executable
file name is registered to LANDP.

Under LANDP for DOS, a SRVINIT call can only be issued without a list of service
names, and the server executable file name is registered to LANDP.

Table 3 shows the calling syntax for SRVINIT. The SRVINIT return code and
parameter fields are explained after the table.

Table 3. SRVINIT calling syntax

Language Statement

VisualAge C++
Visual C++
C, C/2, and C/6000

retcode = SRVINIT (size, init_error,
process_request, ehc_srvinit_opts);

Macro Assembler/2 @SRVINIT size, init_error, process_request,
ehc_srvinit_opts

Pascal/2 and Pascal/6000 retcode := SRVINIT (size, init_error,
process_request, ehc_srvinit_opts);

COBOL/2 and
COBOL/6000

VisualAge COBOL

call __SRVINIT using ehc_srvinit_opts,
process_request, init_error, size

CALL "SRVINIT" USING
BY VALUE SIZE
BY VALUE INIT_ERROR
BY VALUE PROCESS_REQUEST
BY REFERENCE EHC_SRVINIT_OPTS

END-CALL

REXX call SRVINIT size, init_error, process_request,
ehc_srvinit_opts

 Chapter 3. Writing your own server programs 49

SRVINIT call

In Table 3 on page 49, the SRVINIT call parameters are as follows:

� retcode is an unsigned short integer. It holds any return code on completion of the
routine.

� size is an unsigned short integer. For LANDP for DOS servers, it represents the
size of the server in paragraphs (one paragraph equals 16 bytes). When SRVINIT
is successfully completed the server is a TSR with that size.

Using LANDP for OS/2, Windows NT, and AIX, this parameter is ignored. It is
supported for compatibility reasons.

� init_error is an unsigned short integer. It shows if an error was found during the
initialization phase of the server. If init_error is zero, no errors were found. If
init_error is not zero, an error procedure is processed and the server is terminated.
The value of init_error is used as the return code of the loader statement in
AUTOFBSS and can be checked on the command line by using ERRORLEVEL.
Values of init_error for user-written servers should be in the range X'E0' to
X'EF'. For more information, see LANDP Problem Determination.

� process_request is the far address of a procedure (in a 16-bit environment). For
LANDP for DOS servers, this procedure receives and replies to requests from
clients.

Using LANDP for OS/2, Windows NT, and AIX, this parameter is ignored. It is
supported for compatibility reasons.

� ehc_srvinit_opts contains additional parameters for the routine. If not used, it
should be set to EHC_RESERVED. ehc_srvinit_opts is the pointer to a control
block called EHC_SRVINIT_OPTS. LANDP for DOS does not support this
parameter and it should therefore be set to EHC_RESERVED. EHC_RESERVED
is an unsigned long integer. It is a reserved value and should be set to zero.
EHC_RESERVED is a predefined constant in LANDP, so the calling process must
use the constant as defined here.

Additional SRVINIT options
LANDP for OS/2, Windows NT, and AIX servers that make several service names
available must register these service names to LANDP using the SRVINIT options
control block EHC_SRVINIT_OPTS. Table 4 on page 51 shows the structure of
EHC_SRVINIT_OPTS.

50 LANDP Programming Guide

GETREQ call

Examples To see the calls in the context of a sample program, refer to the following
pages.

C++ page 143

init_error = A;

optionsptr = EHC_RESERVED;

retcode=SRVINIT(size, init_error,routine, optionsptr);

COBOL page 167

CALL "SRVINIT" USING BY VALUE TWO-BYTES

BY VALUE INIT-ERROR

BY VALUE FOUR-BYTES

BY VALUE EHC-RESERVED

Table 4. EHC_SRVINIT_OPTS control block format

EHC_SRVINIT_OPTS Format

Field Type I/O Content

struc_size 4 bytes
unsigned

long

Input Length of
EHC_SRVINIT_OPTS,
including this field (8)

service_name_list address (4
bytes)

Input Address of a null-terminated
(ASCIIZ) string containing the
service names that the server
wishes to be registered

service_name_list: Each service name is separated by a semicolon (;). The maximum
length of a service name is 8 bytes. The format of the service_name_list is:

Service_Name[;Service_Name2;...;Service_Namen]\A

Call GETREQ (get request)
The server calls the GETREQ routine to obtain pending requests, stored in a first-in
first-out (FIFO) way.

Table 5 shows the calling syntax for GETREQ. The GETREQ return code and
parameter fields are explained after the table.

Table 5 (Page 1 of 2). GETREQ syntax

Language Statement

VisualAge C++
Visual C++
C, C/2, and C/6000

retcode = GETREQ (cprb_addr, ehc_getreq_opts);

Macro Assembler/2 @GETREQ cprb_addr, ehc_getreq_opts

Pascal/2 and Pascal/6000 retcode := GETREQ (cprb_addr, ehc_getreq_opts);

 Chapter 3. Writing your own server programs 51

GETREQ call

In Table 5 on page 51, the GETREQ return code and call parameters are as follows:

� retcode is the return code from the routine.

� cprb_addr is the address where the server has defined the CPRB structure.

� ehc_getreq_opts is the address of a control block EHC_GETREQ_OPTS used to
specify additional parameters to the routine. If not used, it should be set to
EHC_RESERVED or, in the case of REXX, omitted. LANDP for DOS servers do
not support this parameter, so it has to be set to EHC_RESERVED. For more
information, see “Additional GETREQ options.”

The server calls GETREQ to check the contents of its entry queue. When an entry is
found, GETREQ passes the CPRB information defined by the client to the server.

Table 5 (Page 2 of 2). GETREQ syntax

Language Statement

COBOL/2 and
COBOL/6000

VisualAge COBOL

call __GETREQ using ehc_getreq_opts, cprb_addr.

CALL "GETREQ" USING
BY REFERENCE EHC_CPRB
BY REFERENCE EHC_GETREQ_OPTS

END-CALL

REXX call GETREQ cprb_addr, ehc_getreq_opts

Additional GETREQ options
For LANDP for OS/2, Windows NT, and AIX servers, GETREQ extracts from the server
queue the oldest request matching the specified conditions. These conditions are
specified by the ehc_getreq_opts parameter of GETREQ. This parameter represents the
address of a control block with the structure shown in Table 6 on page 53.

52 LANDP Programming Guide

GETREQ call

The following cases are possible:

� EHC_GETREQ_OPTS is set to EHC_RESERVED. No control block is specified.
GETREQ receives requests with ehcverb_type = 1 (normal synchronous requests).
Also, two special client/server mechanism requests with ehcverb_type = 3 can also
be received:

– && (Process Connection)
– ** (Process Disconnection)

� EHC_GETREQ_OPTS points to a control block where eventlist and eventlist_size
are both zero. A control block is specified, but the relevant fields are zero.
GETREQ behaves as explained in the previous item.

� EHC_GETREQ_OPTS points to a control block where eventlist = 1 but
eventlist_size = 0. The list can be considered as the null list. GETREQ gets entries
in the queue with ehcverb_type = 1 only. These are normal requests from clients
sent by the RMTREQ routine and the client/server mechanism requests LAN
Connection Established (&&), LAN Connection Lost (**) and the function Timer
Generated Request (TT).

� EHC_GETREQ_OPTS points to a control block where eventlist and eventlist_size
are both nonzero. The pointer points to a valid list. GETREQ receives all entries
with ehcverb_type = 1, together with those entries with ehcverb_type = 3 which are
specified in the list. For more information about the verb type, see note 2 on
page 7.

Examples To see the calls in the context of a sample program, refer to the following
pages.

C++ page 143

retcode = GETREQ(&mycprb, EHC_RESERVED);

Table 6. EHC_GETREQ_OPTS structure

EHC_GETREQ_OPTS Format

Field Type I/O Content

struct_size 2 bytes
unsigned

short

Input Length of
EHC_GETREQ_OPTS,
including this field (14)

reserved 6 bytes Reserved Must be set to binary zeros

eventlist_size 2 bytes
unsigned

short

Input Length of the list pointed to by
the following field

eventlist address (4
bytes)

Input Address of a list with the same
format as the list that specifies
the events to wait for in the
WM (wait multiple) function

Note: For a detailed description of the list used with the WM function, see LANDP
Programming Reference, chapter entitled “Supervisor local functions”.

 Chapter 3. Writing your own server programs 53

RMTRPLY call

COBOL page 167

CALL "GETREQ" USING BY REFERENCE EHC-CPRB

 BY VALUE EHC-RESERVED

 END-CALL

Call RMTRPLY (remote reply)
RMTRPLY returns the result of the processing of the request received through GETREQ to
the client (or server acting as client), after having updated the fields specified in “CPRB
fields used and set by servers” on page 48. Table 7 shows the calling syntax for
RMTRPLY. The GETREQ return code and parameter fields are explained after the
table.

In Table 7, the SRVINIT call parameters are as follows:

� retcode is the return code from the routine.

� cprb_addr is the address of the CPRB which was received through a GETREQ.

� EHC_RESERVED is reserved for future use. It must be specified exactly as explained
or, in the case of REXX, omitted.

The CPRB that is pointed to by cprb_addr must be the same as the one received by a
previous GETREQ.

For LANDP for OS/2, Windows NT, and AIX servers, the thread issuing the RMTRPLY

does not have to be the same as the one that issued the GETREQ. The server has to
call RMTRPLY to reply to each request received using GETREQ. But the server can first
receive some requests and then reply to each using RMTRPLY. This means that LANDP

Table 7. RMTRPLY syntax.

Language Statement

VisualAge C++
Visual C++
C, C/2, and C/6000

retcode = RMTRPLY (cprb_addr,
EHC_RESERVED);

Macro Assembler/2 @RMTRPLY cprb_addr, EHC_RESERVED

Pascal/2 and Pascal/6000 retcode := RMTRPLY (cprb_addr,
EHC_RESERVED);

COBOL/2 and
COBOL/6000

VisualAge COBOL

call __RMTRPLY using EHC_RESERVED,
cprb_addr.

CALL "RMTRPLY" USING
BY REFERENCE EHC_CPRB
BY VALUE EHC_RESERVED

END-CALL

REXX call RMTRPLY cprb_addr

54 LANDP Programming Guide

RMTAREQ call

for OS/2, Windows NT, and AIX servers can collect requests and process them in
batches.

LANDP for DOS servers must reply to the requests in the same order as they received
the requests. The client/server mechanism sends the reply to the corresponding client.
In contrast to LANDP for OS/2, Windows NT, and AIX, servers under LANDP for DOS
can have only one direct line of processing. The procedure calling RMTRPLY is always
the same as the one calling GETREQ. GETREQ can only be called if the previously
received request has been performed and replied to.

A CPRB received from GETREQ cannot be modified before calling RMTRPLY, except for
the ehcservrc, ehcrepldplen, and ehcreplddlen fields. This means that a CPRB
received from GETREQ cannot be reused (for other GETREQs or RMTREQs, for example) until
RMTRPLY completes successfully.

Event notification and cancellation with RMTRPLY
By setting the ehc_flags and ehc_event_id fields in the CPRB, you can send or cancel
asynchronous event notifications in a reply, using RMTRPLY. Here you cannot send
event data with the reply. For more information, see the “Extended asynchronous
event notification (ZN function)” section in the “Supervisor local functions” chapter of the
LANDP Programming Reference.

Examples To see the calls in the context of a sample program, refer to the following
pages.

C++ page 145

retcode = RMTRPLY(&mycprb, EHC_RESERVED);

COBOL page 167

CALL "RMTRPLY" USING BY REFERENCE EHC-CPRB

 BY VALUE EHC-RESERVED

 END-CALL

Call RMTAREQ (remote asynchronous request)
The RMTAREQ routine is used to:

� Start, stop, and control TT requests using the asynchronous function Z4. Z4 is
explained in LANDP Programming Reference, chapter entitled “Supervisor local
functions”, and TT in “Timer-generated request (TT function)” on page 59.

� Signal asynchronous events to clients. Use the Z5 or ZN (under LANDP for OS/2
and Windows NT) asynchronous request, which are explained in “Sending
asynchronous events” on page 64.

Table 8 on page 56 shows the calling syntax for RMTRPLY. The GETREQ return
code and parameter fields are explained after the table.

 Chapter 3. Writing your own server programs 55

RMTAREQ call

In Table 8, the RMTAREQ return code and parameters are as follows:

� retcode is the return code.

� cprb_addr is the address of the CPRB passed to the routine.

� EHC_RESERVED is reserved. It must be specified exactly as previously explained or,
in the case of REXX, omitted.

Example To see the call in the context of a sample program, refer to the following
page.

C++ page 145

retcode = RMTAREQ (&myacprb, EHC_RESERVED);

Table 8. RMTAREQ syntax

Language Statement

VisualAge C++
Visual C++
C, C/2, and C/6000

retcode = RMTAREQ (cprb_addr,
EHC_RESERVED);

Macro Assembler/2 @RMTAREQ cprb_addr, EHC_RESERVED

Pascal/2 and Pascal/6000 retcode := RMTAREQ (cprb_addr,
EHC_RESERVED);

COBOL/2 and
COBOL/6000

VisualAge COBOL

call __RMTAREQ using EHC_RESERVED,
cprb_addr.

CALL "RMTAREQ" USING
BY REFERENCE EHC_CPRB
BY VALUE EHC_RESERVED

END-CALL

REXX call RMTAREQ cprb_addr

Receiving system requests
Besides the requests from client application programs, servers also receive requests
and notifications from the client/server mechanism. There are several requests and
notifications that apply to servers running in LANDP for DOS, OS/2, Windows NT, and
AIX:

� LAN session services that have lost the connection with another workstation in the
LAN (for example, because a workstation has been turned off). The client/server
mechanism can thereby prevent servers from sending requests to a workstation
that has lost communication with the LANDP workgroup.

� A server that has been recognized by, and synchronized with, the client/server
mechanism.

� A new workstation or LANDP process that has been connected to the LAN.

56 LANDP Programming Guide

end of service (ES function)

These requests are queued in the server entry queue in the same way that client
requests are queued in the client/server mechanism entry queue. Servers must be able
to manage these requests issued by the client/server mechanism. As for any other
type of LANDP requests, the server reads the request by calling GETREQ and sends a
response by calling the RMTRPLY routine. No other routines or procedures need to be
invoked.

Servers can request functions from the client/server mechanism, for example, to start,
cancel, or modify the frequency of periodic timer requests (TT) sent by the client/server
mechanism to the server. Clients and (for LANDP for OS/2, Windows NT, and AIX)
servers acting as clients, can request functions from the client/server mechanism.

The following sections describe these requests in more detail.

End of service (ES function)
The client/server mechanism issues this request to the resident servers because it
received an ES from a client or an operator. This function is the counterpart of the IN
function. Servers should undo whatever they did in the IN function. LANDP for DOS
servers should also restore interrupt vectors that were chained during the IN function.

After having received this request, the server should send the reply and then terminate
processing.

Note the difference between a client calling RMTREQ to issue an ES function and a server
receiving an ES function through the GETREQ routine. In the first case, the client tells the
client/server mechanism that it wants to unload LANDP in the machine where the client
resides. In the second case, the client/server mechanism generates the request to tell
the server to unload itself. The server must then reply to the request by calling the
RMTRPLY routine providing the same CPRB. The client/server mechanism releases the
server the next time the server calls GETREQ.

Table 9 shows the contents of the CPRB for an ES function request.

Table 9. ES function, CPRB contents

CPRB Field Content/Description

Verb type X'01'

Function code ES

Request DATA length 0

Request PARMLIST length 0

Reply DATA length 0

Reply PARMLIST length 0

Replied DATA length 0

Replied PARMLIST length 0

Originator resource name SPV

Server name SERVNAME

 Chapter 3. Writing your own server programs 57

server recognition (IN function)

Server recognition (IN function)
As its first GETREQ call, the server receives an IN request from the client/server
mechanism. This tells the server it has been recognized by, and synchronized with, the
client/server mechanism.

When it receives the IN request, the server should initialize its own environment.
LANDP for DOS servers must also chain into any interrupt required during the LANDP
session.

The client/server mechanism makes the server available for clients when the server
replies with a successful return code. Any other return code causes the client/server
mechanism to terminate the server. For LANDP for DOS, when a server returns a
nonzero return code, the least significant word of the return code is displayed and
LANDP for DOS is unloaded (including all the other servers in the same machine).

Note the difference between a client calling RMTREQ to issue an IN function and a server
receiving an IN request through GETREQ from the client/server mechanism. In the first
case, the client informs the client/server mechanism that it wants to start using a server.
In the second case the client/server mechanism generates this request to inform the
server that it has been recognized and can receive requests when the server returns a
successful reply to this client/server mechanism request. IN also specifies in the CPRB
the destination workstation ID where the server is installed.

Table 10 shows the contents of the CPRB for an IN function request.

Table 10. IN function, CPRB contents

CPRB Field Content/Description

Verb type X'01'

Function code IN

Request DATA length 0

Request PARMLIST length 0

Reply PARMLIST length 2

Reply DATA length 0

Server return code X'nnnnnnnn' (see note 1.)

Replied PARMLIST length 0 or 2 (see note 2.)

Replied DATA length 0

Originator resource name SPV

Destination workstation ID C'cc'

Server name SERVNAME

58 LANDP Programming Guide

TT (timer-generated request)

Notes:

1. The server must set the server return code. Any server return code other than
X'00000000' shows an error.

When an error occurs, the server return code is displayed and the client/server
mechanism considers the server as being off-line. The server then receives an ES
request and is released after the next GETREQ (see “End of service (ES function)” on
page 57).

The return codes that a server provides at loading time differ from the return codes
provided by the client/server mechanism. This allows you to determine the origin
of the error.

2. The server can request periodical timer requests from its client/server mechanism.
To do this, you need to:

a. Define the Replied PARMLIST length as X'0002'
b. Specify the interval time in the first word of the Reply PARMLIST

The interval time is specified in multiples of 50 milliseconds. For example,
X'0003' initiates a periodical request from the client/server mechanism each 150
milliseconds.

Reply PARMLIST Values

Offset Length Content

0 2 bytes � X'0000': no timer generated requests (TT) are issued
� X'xxxx': interval time. Multiples of 50 milliseconds for TT

function (see note 2.)

Timer-generated request (TT function)
Besides the requests that a server receives from clients (or servers acting as clients), it
can make periodical requests of the client/server mechanism.

This is useful if a server needs to perform any process periodically, independently of
client requests.

The client/server mechanism issues the control function TT to the server entry queue,
each time the specified interval time expires.

The server can request or cancel TT requests and start or modify the interval time:

� On the reply to the IN request.

When the server receives the first request (the IN function), it can specify an
interval time in the Reply PARMLIST and return it with a zero server return code.
This tells the client/server mechanism to start sending TT requests to the server at
the specified intervals of time.

� By sending the asynchronous request Z4 (see the “asynchronous request-asking
for TT request (Z4 function)” section in the “Supervisor local functions” chapter of
the LANDP Programming Reference.

 Chapter 3. Writing your own server programs 59

TT (timer-generated request)

With this function you can start, stop, or modify the interval time at which TT
requests are sent to the server.

� On the reply to a previous TT request.

As with the reply to the IN request you can specify in the Reply PARMLIST an
interval time at which TT requests are to be sent.

Note: Because of the server overhead reading the queue, and the characteristics of a
multiple-tasking system, the time at which servers receive the request may not
be completely predictable.

When a server receives TT requests periodically the server reads the requests (calling
the GETREQ routine) and does not receive another TT until it has sent the RMTRPLY for the
current TT.

Table 11 shows the contents of the CPRB for an IN function request.

On reply, the server can update the interval time for receiving TT requests by modifying
the content of the first word of the Reply PARMLIST

Table 11. TT function, CPRB contents

CPRB Field Content/Description

Verb type X'01'

Function code TT

Request DATA length 0

Request PARMLIST length 2

Reply DATA length 0

Reply PARMLIST length 2

Replied DATA length 0

Replied PARMLIST length 0 or 2

Originator resource name SPV

Server name SERVNAME

Request PARMLIST Values

Offset Length Content

0 2 bytes X'nnnn'

Current interval time. Multiples of 50 milliseconds.

Reply PARMLIST Values

Offset Length Content

0 2 bytes X'nnnn'

New interval time. Multiples of 50 milliseconds.

60 LANDP Programming Guide

disconnection functions

Workstation disconnection (** function)
The client/server mechanism issues this request to notify its resident servers that
communication with another workstation is lost. This may happen because LANDP was
unloaded in that workstation or LANDP for AIX system, or because that workstation or
system was turned off.

The notification about lost communication allows the servers to cancel any pending
request and to release any reserved resource belonging to any process residing in the
workstation or system with which communication has been lost.

The server must check whether there was a process in the disconnected workstation or
LANDP for AIX system, using any resource managed by the server at the time the
connection-lost signal is received. If this is the case, the server must release these
resources to make them available to other processes.

Table 12 shows the contents of the CPRB for a workstation disconnection (**) function
request.

Table 12. Workstation disconnection (**) function, CPRB contents

CPRB Field Content/Description

Verb type X'01'

Function code **

Request DATA length 0

Request PARMLIST length 0

Reply DATA length 0

Reply PARMLIST length 0

Replied DATA length 0

Replied PARMLIST length 0

Originator workstation ID C'cc'—the workstation with which
communication was lost

Originator resource name SPV

Originator process ID X'0000'

Server name SERVNAME

Process disconnection (** function)
This request is issued by the client/server mechanism to notify its resident servers of a
disconnected LANDP process. This allows the servers to cancel any pending requests
or release any reserved resource belonging to the disconnected LANDP process.

A process is considered to be disconnected when:

� The process is a LANDP client and the process issues the EJ (End of Job) function

� The process is a LANDP for OS/2, Windows NT, or AIX client and the process
terminates, either normally or abnormally

 Chapter 3. Writing your own server programs 61

connection functions

� The process is a LANDP for OS/2, Windows NT, or AIX server and it is unloaded
(see description of the ES function for clients in LANDP Programming Reference,
chapter entitled “Supervisor local functions”).

� The process is a LANDP for OS/2, Windows NT, or AIX server and terminates
abnormally

Table 13 shows the contents of the CPRB for a process disconnection (**) function
request.

Table 13. Process disconnection (**) function, CPRB contents

CPRB Field Content/Description

Verb type X'03'

Function code **

Request DATA length 0

Request PARMLIST length 0

Reply DATA length 0

Reply PARMLIST length 0

Replied DATA length 0

Replied PARMLIST length 0

Originator workstation ID C'cc'—the workstation where the process
was loaded

Originator resource name C'cccccccc'—the process that originated the
request

Origin process ID X'xxxx'

Server name SERVNAME

Workstation connection (&& function)
Each time LANDP is started or restarted in a workstation or LANDP for AIX system, the
configured LAN sessions are automatically established or re-established.

The client/server mechanism issues this request to notify the resident servers of a new
workstation or LANDP for AIX system that has been connected to the LAN.

Table 14 on page 63 shows the contents of the CPRB for a workstation connection
(&&) function request.

62 LANDP Programming Guide

connection functions

Table 14. Workstation connection (&&) function, CPRB contents

CPRB Field Content/Description

Verb type X'01'

Function code &&

Request DATA length 0

Request PARMLIST length 0

Reply DATA length 0

Reply PARMLIST length 0

Replied DATA length 0

Replied PARMLIST length 0

Origin workstation ID C'cc'—the connected or reconnected
workstation

Originator resource name SPV

Originator process ID X'0000'

Server name SERVNAME

Process connection (&& function)
Servers receive this request from their local client/server mechanism when a server
from which they can request services connects to LANDP.

A server is considered to be connected when it replies with a successful return code
(X'00000000') to the IN function.

Table 15 on page 64 shows the contents of the CPRB for a process connection (&&)
function request.

 Chapter 3. Writing your own server programs 63

asynchronous events

Table 15. Process connection (&&) function, CPRB contents

CPRB Field Content/Description

Verb type X'03'

Function code &&

Request PARMLIST length 0

Request DATA length 0

Reply PARMLIST length 0

Reply DATA length 0

Replied DATA length 0

Replied PARMLIST length 0

Originator workstation ID C'cc'—the workstation where the process is
loaded

Originator resource name C'cccccccc'—the name of the server that is
loaded

Originator process ID X'xxxx'

Server name SERVNAME

Sending asynchronous events
An asynchronous event can be issued by a server that operates without a regular or
predictable time relationship with a client. Such an application program is event-driven.

An example where you might use an asynchronous event is when a client interacts with
a personal identification number (PIN) pad device and the PIN pad server. The client
sends a request to the LANDP PIN pad server to start the PIN pad so that it can accept
input from the user. However, the user might not enter the PIN number correctly (for
example, entering only three of the required four digits) and the PIN entry activity is not
completed. In this situation the PIN pad server and the client remain active and
unusable.

To overcome such problems, LANDP supports asynchronous events, enabling
application programs and user servers to be event-driven. In the PIN pad example, an
asynchronous event could be the completion of a PIN pad entry, or the expiry of a timer
set by the application program to limit the time for a PIN pad entry.

LANDP allows clients to wait for asynchronous events with the WM (wait multiple)
function; see the “Wait for asynchronous events (WM function)” section in the
“Supervisor local functions” chapter of the LANDP Programming Reference. WM allows
the client to remain in an idle state until any of the specified events happen in the
LANDP workgroup. After an event is notified, the client regains control and can
process the event or return to a wait state. Asynchronous events ensure that
processing time in a multiple-tasking environment is efficiently used.

64 LANDP Programming Guide

server-to-server calls

The server uses the RMTAREQ routine, to request the function Z5 (see the “Asynchronous
event notification or cancellation (Z5 function)” section in the “Supervisor local
functions” chapter of the LANDP Programming Reference) without the reset parameter
to notify the client that a specific asynchronous event occurred. If the client is in idle
state, the event is passed to the client. Otherwise the event is queued by the
client/server mechanism until the client issues a WM function. If the client does not
enter the idle state and therefore does not receive the event, the server is then
responsible for removing the event. To do this the server calls RMTAREQ and requests
the function Z5, with the reset parameter. It is recommended that the server cancels
events when they are no longer valid, since the server does not know whether the
client has received the notification from the client/server mechanism queue through the
WM function. If the client has already received this event the client/server mechanism
discards the cancel notification. With LANDP for OS/2 and Windows NT, you can use
the ZN function (see the “Extended asynchronous event notification (ZN function)”
section in the “Supervisor local functions” chapter of the LANDP Programming
Reference) instead of Z5.

Using the example of the PIN pad device, the process flow is as follows:

1. The client requests the AR (Arm the PIN Pad for Data Input) function to start the
device to accept user input.

2. The server receives the AR request, starts the device, and replies to the requester.

3. The client receives the reply and requests the WM function to wait for the event
(and possibly other events). The client then enters the idle state.

4. At some time, the server accepts the user input and signals this event using
RMTAREQ, function Z5 or ZN (under LANDP for OS/2 and Windows NT).

5. The client regains control and requests the RD (Read from the PIN Pad) function
to obtain data from the server.

6. The server receives the RD request and returns the data to the client.

When the server notifies or cancels an event, it has to specify the client as the
destination within the Z5 or ZN request. The server identifies the client by inspecting
the CPRB, received with the client’s AR request. The server specifies the client using
the fields ehcdest_pc_id and ehcpid_dest in the CPRB before calling RMTAREQ. These
fields correspond to the ehcpc_id and ehcpid_origin fields the server received with the
AR request.

 Server-to-server calls
As explained in Chapter 1, “Clients and servers” on page 1, servers can act as clients,
using the same programming interface as used by clients. A server can request
services from another server which can call another server, and so on. The servers
can be located in the same or different machines in the LANDP workgroup. However,
in LANDP for DOS, if both servers are in the same machine, they must be identified in
the EHCUSER.CFG file, an ASCII file with separate records containing the name of
each server. If a server uses RMTREQ while processing a request, then it must use a
different CPRB from that received in a previous GETREQ.

 Chapter 3. Writing your own server programs 65

LANDP for DOS servers

To prevent deadlock situations, the following rules apply for server-to-server calls:

� Circular calls are allowed for LANDP for OS/2, Windows NT, and AIX servers with
more than one thread. Here, the additional threads are dedicated to service the
incoming request generated this way, while one of the threads is blocked on the
RMTREQ. Take care not to loop forever in circular calls.

� Circular calls are not allowed for LANDP servers with only one procedure (this
includes all LANDP for DOS servers). Server ONE cannot call server TWO, which
calls server THREE, which calls server ONE.

Writing LANDP for DOS servers
When writing a LANDP for DOS server, consider the following information related to the
special nature of the DOS environment.

Memory management considerations
In LANDP for DOS, a server is a Terminate and Stay Resident (TSR) program. LANDP
provides transparent support at loading time for LANDP for DOS servers to call DOS
services without having DOS re-entrancy problems that can occur with TSR programs.

There are, however, several important things to remember related to DOS memory
management services.

� To run a TSR program, DOS must know the size of the program at run time. The
server must calculate the memory it occupies at run time. The server can discard
the memory needed by initialization routines at load time by putting them at the
end of the server and declaring a size from the beginning of the server to the
beginning of the initialization code and data. This is why SRVINIT needs the
parameter size.

� By default, DOS allocates all available memory to a program when it is initiated
from the command line, so the server has all available DOS memory management
services during its load time phase. The load time lasts from when the server
starts executing up to the call to SRVINIT. During this time, the server can freely
shrink or expand itself, or request blocks of memory, or release them.

� At run time, when the server receives a request, it can still use DOS memory
management services, but they are likely to fail with a not enough memory error,
as all available memory may have been assigned to a running foreground
application. Remember that even though the client may not be using such
memory, DOS allocates all of it to the client.

� Thus servers should not use DOS memory management services at run time. All
memory needed at run time must be allocated at load time.

For servers developed using the IBM C/2 compiler, the above requirements give rise to
the following considerations:

� A C/2 program is ordered in CODE segments, DATA segments, the STACK
segment, and the HEAP. (See the appropriate compiler books for detailed
descriptions.) You can control the amount of program stack and the size of the

66 LANDP Programming Guide

LANDP for DOS servers

HEAP either at link time (with the /STACK and /CPARMAXALLOC options) or after
generating the executable file with the EXEMOD utility supplied with the compiler
(options /STACK and /MAX).

If you are concerned with the server size at run time, then you can change the
sizes of these areas, but you must be very careful with the sizes you choose. The
default STACK size for IBM C/2 programs is 2048 bytes. The default HEAP size
(assuming there is enough memory when the server is loaded) is:

HEAP size = 65535 - (DEFAULT DATA SEGMENT size) - STACK size

So, even for very small servers, the default size for DATA plus STACK and HEAP
is 64 KB. Adding the CODE segments and additional DATA segments, the
“default” server needs more than 64 KB.

� Tuning the STACK size is possible by examining the source code of the server.
Estimate the “worst case” stack requirements by following every possible path in
the server code of every possible request coming to the server. The stack
requirements depend on the number and size of parameters passed to called
routines during the processing, the number and size of local variables defined in
each called routine, and the type of calls (near or far, depending on the memory
model used when compiling).

It is recommended not to use the /Gs compiler option (to eliminate stack checking)
during the testing phase of the server. A stack overflow could cause unpredictable
results.

The available stack size when a request is received through GETREQ is nearly the
same as the available stack when the server called SRVINIT. LANDP “remembers”
the stack that was in use when calling SRVINIT and resets it every time a request
is received.

� Internally the C/2 compiler uses the HEAP for dynamic memory allocation when
using routines like:

malloc, calloc, _nmalloc, or _fmalloc

Some run-time library routines also use the HEAP, because they call the memory
allocation routines when they need memory for their internal buffers or variables
(examples of these are the stream I/O routines). It is not possible to predict which
library routine calls the memory allocation routines internally.

The C/2 compiler handles memory management internally. Therefore DOS
memory management calls need not be used except when there is insufficient
memory available in the HEAP to satisfy a request. Here, C/2 attempts to expand
the HEAP size by a fixed amount (8 KB) and issues DOS memory management
calls to satisfy the current request. Later calls are then again handled internally by
C/2 memory management until the remaining HEAP memory has been exhausted.
At this point the HEAP memory must be expanded by another 8 KB. You can use
the C/2 memory management routines at run time (or routines that call them),
when there is enough HEAP space available. DOS memory calls are not allowed
at run time.

You can reduce the HEAP size using the options mentioned above (for example,
LINK with /CPARMAXALLOC:1 and EXEMOD with /MAX 1 both reduce the HEAP

 Chapter 3. Writing your own server programs 67

LANDP for DOS servers

size to 0). You can write a server that does not use the HEAP at run time, but you
must not use the memory allocation routines or routines that call these in turn.

If you still need dynamic memory allocation at load time, you can access the DOS
memory management services directly, bypassing the compiler memory
management and leaving the program size intact. Then you only use the memory
you need and can return the memory not used to DOS.

 Interrupt handling
Sometimes a server needs to capture an interrupt vector (either software or hardware
interrupt vector). For example, a server managing a communications adapter needs to
capture the hardware interrupt that the adapter generates. When the server receives
control because the interrupt has been generated, it bypasses the LANDP mechanism
that allows the server to perform operations not normally allowed to TSRs (for example,
accessing DOS).

Consider these restrictions when developing the server's interrupt handler:

� The interrupt vector has to be captured when it receives the IN request. The
interrupt vector cannot be captured at load time, before calling SRVINIT.

� The server must release the interrupt vector when it receives the ES request.
When unloading LANDP for DOS, the client/server mechanism sends ES requests
to the servers in reverse order—the first server that received the IN request is the
last one to receive the ES. This ensures the proper order for releasing an interrupt
vector.

Expanded memory considerations
The LOADERE program allows servers to be loaded into expanded memory, which
makes more memory available for application programs in that workstation. LOADERE
is used with LANDP for DOS servers and user-written servers. For more information
about LOADERE, see the LANDP Installation and Customization book. Consider the
following rules for writing a server to be loaded in expanded memory:

� The server size must be smaller than 64 KB. The maximum number of contiguous
expanded memory specification (EMS) pages (16 KB each) is four.

� If a server needs a large block of memory for its operation, exceeding the 64 KB
limit, it must allocate this memory at load time using the DOS memory
management services. The memory is allocated in low memory, but the server can
always access it.

� If the server captures software interrupt vectors, LOADERE takes care of it
automatically and changes the interrupt vector from normal memory to EMS when
the interrupt happens at run time. When the interrupt happens, LOADERE maps
the server from EMS to normal memory and gives control to the server’s software
interrupt handler. The server receives control as if it was running in normal
memory. However, between the software interrupt being generated and the server
getting control, the server must not rely on interrupts not being enabled, because
the map and unmap EMS calls needed for changing the interrupt vector enable
interrupts.

68 LANDP Programming Guide

LANDP for OS/2 servers

� The server cannot capture hardware interrupts (or software interrupts which are
issued inside a hardware one), because the EMS calls that map and unmap the
server enable interrupts, possibly causing reentrancy problems.

Writing LANDP for OS/2 servers
When writing LANDP for OS/2 servers, you can benefit from the advanced capabilities
of the operating system which are not available when running on DOS. The
consequences are:

� The server is more powerful and has better performance
� The server is not portable at the source code level

If servers do not need to be portable at the source code level, then powerful servers
can be developed using OS/2 unique features in combination with LANDP for OS/2
support, as explained below.

Using multiple threads
By using several threads in the server to process several requests at the same time,
you can increase the overall performance of the server, and also lower the standard
deviation for the mean response time for requests from application programs.

LANDP for OS/2 does not impose any restrictions on the use of threads in servers.
LANDP for OS/2 supports several threads calling the LANDP routines at the same time
(including GETREQ and RMTRPLY). Thread serialization to access the server’s request
queue is handled by LANDP for OS/2. However, LANDP for OS/2 does not handle the
problem of trying to access the server’s own resources (memory, files, and so on) from
several threads, at the same time as a request is being processed (a typical problem in
any multi-threaded application). It is your responsibility to ensure that proper sharing
rules exist. If more than one thread is waiting for GETREQ, it cannot be predicted which
thread will get the next request. This depends on the OS/2 dispatching algorithm.

LANDP for OS/2 also allows a request to be answered (through RMTRPLY) from a thread
different from the one that originally received the request (through GETREQ). The only
restriction is that both threads must belong to the same server. Even the order of
replying to requests can be different from the order in which requests were received.
LANDP for OS/2 automatically matches the RMTRPLYs with the appropriate GETREQs.

The above considerations give the application programmer flexibility when implementing
a multi-threaded server. Server structures can range from very simple to being very
complex. For example:

1. Each thread calls GETREQ and RMTRPLY, handling the entire request process. All of
the threads contend for requests by calling GETREQ. This is the simplest structure.
Request queueing and serialization is entirely performed by LANDP for OS/2. The
threads can be created at initialization by the main thread. All the threads are
identical.

2. There is only a single thread calling GETREQ. When this thread gets a request, it
analyzes and then passes the request to another thread (one of several “service”

 Chapter 3. Writing your own server programs 69

LANDP for OS/2 servers

threads) which uses OS/2 native primitives. The single thread then goes back and
calls GETREQ again.

When a request has been serviced, one of the “service” threads replies through the
RMTRPLY.

The complexity of this approach is greater than in the previous case:

� The synchronization between the thread calling GETREQ and the “service”
threads must be performed using explicit calls to OS/2 inter-process
communication primitives.

� The application programmer has to decide what to do when a request has
already been received by the first thread and no more free “service” threads
are available. It could return an error to the client, create a new thread for
servicing the request, or write the request back into the queue for later
processing.

Using wait multiple (WM) in a server
LANDP for OS/2 servers can request the wait multiple (WM) function for handling
asynchronous events. However, the WM function cannot be requested by LANDP for
DOS servers. This feature can be very useful when writing a server acting as client,
that calls a second server, and where the server acting as client uses asynchronous
events for its operation. For example, it is useful when developing a server that calls
the SNA server, the PIN Pad server, or the Magnetic Stripe Reader server. Events like
host messages or the user entering data in the PIN Pad could be asynchronously
detected through the WM function, instead of having some polling mechanism.

Remember, that the WM function is a blocking call. This means that the server acting
as client remains idle until one of the events specified in the asynchronous event list
occurs (or the timeout for the request expires). A server with only one thread that
requests the WM function can prevent other clients from using this server.

A LANDP for OS/2 server acting as client can use the WM function in the same way
(with no restrictions) as a normal client. For a detailed description of the call, see the
“Wait for asynchronous events (WM function)” section in the “Supervisor local functions”
chapter of the LANDP Programming Reference. Note the following:

� As well as receiving notifications as posted OS/2 or Windows 3.1 messages,
LANDP clients receive asynchronous event notifications using the WM function
mechanism. However, LANDP for OS/2 servers acting as clients have two further
possibilities: calling GETREQ with a list of pending asynchronous events (see
“Additional GETREQ options” on page 52), or using the WM function.

� Take care if the same event list is specified for both GETREQ and WM. If two
threads are blocked, one in GETREQ and the other in WM, it cannot be predicted
which one will “own” the event.

� Usually, specifying asynchronous events in GETREQ simplifies the server acting as
client when it has to handle “general” events. These are events not tied
specifically to any request being processed at that time, but are mixed with
“normal” requests.

70 LANDP Programming Guide

LANDP for Windows NT servers

WM events can be used to handle events specific to the current request, and
which are of no interest to any other thread the server may have.

For example, process connection (&&), which signals that another server can be
used, is a general event suitable for handling in GETREQ. However, a request that
needs to access, say, the SNA server, should use the WM function to wait for the
host reply. This event is specified as the single event to wait for in the WM
function. Process connections are received through GETREQ and host events (for
one specific SNA session) are received with the WM.

There can be several outstanding GETREQs together with several outstanding WM
functions. It is recommended that the sets of events specified in each call are
mutually exclusive, that is, no event is specified in more than one list at the same
time. Remember that supplying a null list to WM is like specifying all possible
events. Also, specifying events as SNA## is like specifying SNA01, SNA02, and
so on. This is because the ## expands into a list, so you might inadvertently get
non-mutually exclusive lists.

Writing LANDP for Windows NT servers
When writing LANDP for Windows NT servers, you can benefit from the advanced
capabilities of the operating system which are not available when running on DOS. The
consequences are:

� The server is more powerful and has better performance
� The server is not portable at the source code level

If servers do not need to be portable at the source code level, then powerful servers
can be developed using Windows NT unique features in combination with LANDP for
Windows NT support, as explained below.

Using multiple threads
By using several threads in the server to process several requests at the same time,
you can increase the overall performance of the server, and also lower the standard
deviation for the mean response time for requests from application programs.

LANDP for Windows NT does not impose any restrictions on the use of threads in
servers. LANDP for Windows NT supports several threads calling the LANDP routines
at the same time (including GETREQ and RMTRPLY). Thread serialization to access the
server’s request queue is handled by LANDP for Windows NT. However, LANDP for
Windows NT does not handle the problem of trying to access the server’s own
resources (memory, files, and so on) from several threads, at the same time as a
request is being processed (a typical problem in any multi-threaded application). It is
your responsibility to ensure that proper sharing rules exist. If more than one thread is
waiting for GETREQ, it cannot be predicted which thread will get the next request. This
depends on the Windows NT dispatching rules.

LANDP for Windows NT also allows a request to be answered (through RMTRPLY) from a
thread different from the one that originally received the request (through GETREQ). The
only restriction is that both threads must belong to the same server. Even the order of

 Chapter 3. Writing your own server programs 71

LANDP for Windows NT servers

replying to requests can be different from the order in which requests were received.
LANDP for Windows NT automatically matches the RMTRPLYs with the appropriate
GETREQs.

The above considerations give the application programmer flexibility when implementing
a multi-threaded server. Server structures can range from very simple to being very
complex. For example:

1. Each thread calls GETREQ and RMTRPLY, handling the entire request process. All of
the threads contend for requests by calling GETREQ. This is the simplest structure.
Request queueing and serialization is entirely performed by LANDP for Windows
NT. The threads can be created at initialization by the main thread. All the
threads are identical.

2. There is only a single thread calling GETREQ. When this thread gets a request, it
analyzes and then passes the request to another thread (one of several “service”
threads) which uses Windows NT native primitives. The single thread then goes
back and calls GETREQ again.

When a request has been serviced, one of the “service” threads replies through the
RMTRPLY.

The complexity of this approach is greater than in the previous case:

� The synchronization between the thread calling GETREQ and the “service”
threads must be performed using explicit calls to Windows NT inter-process
communication primitives.

� The application programmer has to decide what to do when a request has
already been received by the first thread and no more free “service” threads
are available. It could return an error to the client, create a new thread for
servicing the request, or write the request back into the queue for later
processing.

Using wait multiple (WM) in a server
LANDP for Windows NT servers can request the wait multiple (WM) function for
handling asynchronous events. However, the WM function cannot be requested by
LANDP for DOS servers. This feature can be very useful when writing a server acting
as client, that calls a second server, and where the server acting as client uses
asynchronous events for its operation. For example, it is useful when developing a
server that calls the SNA server, the PIN Pad server, or the Magnetic Stripe Reader
server. Events like host messages or the user entering data in the PIN Pad could be
asynchronously detected through the WM function, instead of having some polling
mechanism.

Remember that the WM function is a blocking call. This means that the server acting
as client remains idle until one of the events specified in the asynchronous event list
occurs (or the timeout for the request expires). A server with only one thread that
requests the WM function can prevent other clients from using this server.

A LANDP for Windows NT server acting as client can use the WM function in the same
way (with no restrictions) as a normal client. For a detailed description of the call, see

72 LANDP Programming Guide

LANDP for AIX servers

the “Wait for asynchronous events (WM function)” section in the “Supervisor local
functions” chapter of the LANDP Programming Reference. Note the following:

� As well as receiving notifications as posted Windows messages, LANDP clients
receive asynchronous event notifications using the WM function mechanism.
However, LANDP for Windows NT servers acting as clients have two further
possibilities: calling GETREQ with a list of pending asynchronous events (see
“Additional GETREQ options” on page 52), or using the WM function.

� Take care if the same event list is specified for both GETREQ and WM. If two
threads are blocked, one in GETREQ and the other in WM, it cannot be predicted
which one will “own” the event.

� Usually, specifying asynchronous events in GETREQ simplifies the server acting as
client when it has to handle “general” events. These are events not tied
specifically to any request being processed at that time, but are mixed with
“normal” requests.

WM events can be used to handle events specific to the current request, and
which are of no interest to any other thread the server may have.

For example, process connection (&&), which signals that another server can be
used, is a general event suitable for handling in GETREQ. However, a request that
needs to access, say, the SNA server, should use the WM function to wait for the
host reply. This event is specified as the single event to wait for in the WM
function. Process connections are received through GETREQ and host events (for
one specific SNA session) are received with the WM.

There can be several outstanding GETREQs together with several outstanding WM
functions. It is recommended that the sets of events specified in each call are
mutually exclusive, that is, no event is specified in more than one list at the same
time. Remember that supplying a null list to WM is like specifying all possible
events. Also, specifying events as SNA## is like specifying SNA01, SNA02, and
so on. This is because the ## expands into a list, so you might inadvertently get
non-mutually exclusive lists.

Writing LANDP for AIX servers
When writing LANDP for AIX servers, you can benefit from specific features that are
provided by LANDP for AIX.

LANDP for AIX server structure
Servers can be structured in two possible ways:

1. A server can be written so that everything is performed within the same process.
This type of server can easily be ported to all LANDP platforms.

2. A server can be written by using the AIX multiple-processing facilities. You need
this support when you have to perform parallel processing (such as controlling two
devices at the same time).

 Chapter 3. Writing your own server programs 73

LANDP for AIX servers

Using AIX multiple-processing facilities
Provided you follow the rules provided here, your servers can be structured to receive
requests in one process and send replies or asynchronous requests from a different
process. This type of server structure is useful when writing servers that support more
than one service at the same time.

In the following example, a server with name FAX## supports multiple FAX devices,
named FAX01, FAX02, FAX03, to FAXnn:

 ┌────────────────────────────┐

 │ Child-process 1 │

 │ Support FAXA1 │

 ├────────────────────────────┤

 │ do │

 ┌────┼──>Select(pipe1,faxdevice1) │

 │ │ switch (event) │

 │ │ case pipe1: │

 │ │ read pipe1 │

 │ │ process request │

 │ │ send RMTRPLY │

 │ │ case faxdevice1: │

 ┌────────────────────────┐ │ │ read faxdevice1 │

 │ Main │ │ │ process inbound data │

 │ Server Process │ │ │ RMTAREQ(Z5) │

 ├────────────────────────┤ │ │ case broken pipe: │

 │ read config_file │ │ │ perform housekeeping │

 │ for number of childs │ │ │ end = TRUE; │

 │ create unnamed pipe │ │ │ while not end │

 │ create child-process │ │ │ exit () │

 │ endfor │ │ └────────────────────────────┘

 │ for (;;) │ │

 │ GETREQ() │ │ ┌────────────────────────────┐

 │ if origin = SPV │ │ │ Child-process 2 │

│ process request │ │ │ Support FAXA2 │

 │ RMTRPLY() │ │ ├────────────────────────────┤

 │ if srvname = FAXnn │ │ │ do │

 │ write request to │ ├────┼──>Select(pipe2,faxdevice2) │

 │ pipe nn. ─────────┼───┘ │ switch (event) │

 │ endfor │ │ case pipe2: │

 │ │ │ read pipe2 │

 │ exit(); │ │ process request │

 └────────────────────────┘ │ send RMTRPLY │

 │ case faxdevice2: │

 │ read faxdevice2 │

│ process inbound data │

 │ RMTAREQ(Z5) │

│ case broken pipe: │

 │ perform housekeeping │

│ end = TRUE; │

│ while not end │

│ exit () │

 └────────────────────────────┘

This server structure allows the parent-process and child-process to simultaneously
handle all requests, and avoids the need for blocking concurrent memory updates using
semaphores. The structure leads to a saving of resources such as shared memory,

74 LANDP Programming Guide

LANDP for AIX servers

semaphores, and so on, and maximizes server performance. This is possible because
the inter-process communication by queues or pipes prevents you from blocking the
tasks to avoid concurrent updates to the same (shared) resources.

 Calling SRVINIT
The file name of your server may differ from the name of its services. This is fully
explained in “Call SRVINIT (server initialization)” on page 49. In LANDP for AIX you
must specify the service names you are supporting with the SRVINIT options list:

#include "ehcdefc.h"

EHC_SRVINIT_OPTS ehc_srvinopts;

 . . .

 . . .

memset(&ehc_srvinopts,'\A',sizeof(EHC_SRVINIT_OPTS));

ehc_srvinopts.struc_size=sizeof(EHC_SRVINIT_OPTS);

ehc_srvinopts.service_name_list="FAX## ";

Reply buffer allocation
A LANDP for AIX server can send a reply from a child-process which is different from
the server main-process which received the request. The server must provide Reply
PARMLIST and DATA buffers to handle the reply.

If the Reply PARMLIST and DATA buffers have already been made available by your
program, you enter their addresses in the CPRB. RMTRPLY sends these Reply
PARMLIST and DATA areas to the specified reply destination.

The two possibilities for assigning the reply buffers are:

� Allocate special buffers:

ehc_error = GETREQ (&cprb, EHC_RESERVED);

cprb.ehcrparmad = malloc (1AA);

cprb.ehcrdataad = malloc (2AA);

sprintf(cprb.ehcrparmad,"This is the reply param area", 1AA);

sprintf(cprb.ehcrdataad,"This is the reply data area ", 2AA);

cprb.ehcrepldplen = 1AA;

cprb.ehcreplddlen = 2AA;

ehc_error = RMTRPLY (&cprb, EHC_RESERVED);

free(cprb.ehcrparmad);

free(cprb.ehcrdataad);

� Use your own buffers:

ehc_error = GETREQ (&cprb, EHC_RESERVED);

cprb.ehcrparmad = &user_status_structure;

cprb.ehcrdataad = &user_data_buffer;

cprb.ehcrepldplen = sizeof(user_status_structure);

cprb.ehcreplddlen = sizeof(user_data_buffer);

ehc_error = RMTRPLY (&cprb, EHC_RESERVED);

Note: GETREQ provides Reply PARMLIST and DATA buffers that you can use in a
single-process server.

 Chapter 3. Writing your own server programs 75

LANDP for AIX servers

Server child support
LANDP for AIX allows user servers to be structured into several processes, supporting
two different types of parent-child relationship. You should be aware of their
differences and understand which type better suits your requirements. For both types
of parent-child relationship, use the AIX-fork subroutine to create any child-process after
you have called SRVINIT in the parent-process. After the fork, the two types of
parent-child relationship and their corresponding rules, are as follows:

Parent-process
Can perform any common API function call, independent of the child’s
behavior.

Child-process
Can remain in the parent’s LANDP process hierarchy. Now the child
process:

� Can call RMTRPLY for the parent
� Cannot call GETREQ or RMTREQ

The child-process can become a LANDP process of its own outside the
parent’s process hiearchy by calling SRVINIT or the IN function of RMTREQ.
Thereafter, the child-process:

� Can issue any common API function call
� Is independent of the parent
� Cannot call RMTRPLY for the parent

 Server events
You may have the requirement that the server child-process needs to notify the
parent-process. Because during a GETREQ the server parent-process is mostly in a
waiting state, LANDP for AIX supports the sending of server-events to the server, by
calling RMTAREQ.

The only restriction is that the server parent-process cannot call RMTREQ because, while
doing so, all incoming asynchronous messages that are not defined by LANDP as
originating from the supervisor (SPV) are discarded.

76 LANDP Programming Guide

LANDP–DCE API

Chapter 4. LANDP–DCE application programming interface

This chapter describes how to write Distributed Computing Environment (DCE) client
and server applications using the LANDP–DCE Application Programming Interface of
LANDP for AIX. This interface allows client applications in the DCE environment to
make remote calls to servers in the LANDP environment, and client applications in a
LANDP environment to request services from servers in a DCE environment.

The interoperability between the LANDP and DCE environments is provided through a
LANDP for AIX workstation. LANDP client applications and servers can run in any
LANDP workstation.

Using the LANDP–DCE interface a DCE client application can make remote calls to
LANDP servers and to DCE servers that export the LANDP–DCE interface. LANDP
servers receive requests from DCE clients using the LANDP Common API.

DCE LANDP for AIX LANDP

 client ┌────┐ server

 ┌───────┐ │ │ ┌───────┐

 │ │───────────────────>│ │───────────────>│ │

│ │ LANDP-DCE │ │ LANDP │ │

 └───────┘ interface │ │ common API └───────┘

 └────┘

Figure 2. DCE Client Accessing LANDP Server

A DCE server conforming to the LANDP–DCE interface can provide services to both
LANDP clients and DCE clients. LANDP clients access DCE servers using the LANDP
common API.

DCE LANDP for AIX LANDP

 server ┌────┐ client

 ┌───────┐ │ │ ┌───────┐

 │ │<───────────────────│ │<───────────────│ │

 │ │ LANDP-DCE │ │ LANDP │ │

 └───────┘ interface │ │ common API └───────┘

 └────┘

Figure 3. LANDP Client Accessing DCE Server with LANDP Interface

LANDP clients can access DCE servers that do not conform to the LANDP–DCE
interface. To do this, a client uses an intermediate user-written server that has the
LANDP–DCE interface and that acts as a client of the DCE server to be accessed. A
single intermediate server can be used to access several DCE servers.

DCE DCE LANDP for AIX LANDP

 server server ┌────┐ client

 ┌───────┐ ┌───────┐ │ │ ┌───────┐

│ │<──────────│ │<──────────────│ │<───────────│ │

 │ │ Other DCE │ │ LANDP-DCE │ │ LANDP │ │

 └───────┘ interface └───────┘ interface │ │ common API └───────┘

 └────┘

Figure 4. LANDP Client Accessing DCE Server with Non-LANDP–DCE Interface

 Copyright IBM Corp. 1992, 2000 77

LANDP–DCE API

The LANDPDCE.IDL and LANDPDCE.ACF files
The landpdce.idl file contains the definition of the LANDP–DCE interface in Interface
Definition Language (IDL) syntax. The landpdce.acf file contains additional interface
attributes, which modify the behavior of the interface, in Attribute Configuration File
(ACF) syntax.

LANDP for AIX provides these files in the /usr/lpp/landp/c directory.

The definitions in the landpdce.idl file include:

� The data structure, EHC_CPRB, used for information exchange between the DCE
program and the LANDP program

� The function call, LANDP_service, used by DCE clients to make remote calls to
servers and by DCE servers to receive calls from clients

� Function calls for context handling: LANDP_get_context and LANDP_context_rundown

The landpdce.idl and landpdce.acf files are used to obtain the LANDP–DCE client
and server stubs, which are the interfaces between the DCE client and server
applications and the DCE run-time routines.

Writing a LANDP–DCE client
This section describes how to write a DCE client that can make remote calls to LANDP
servers.

LANDP for AIX provides in:

/usr/lpp/landp/c/samples/dce_client.c

a sample DCE client that can be used as a skeleton or template to write DCE clients.

Obtaining a binding handle for LANDP services
To enable accessing LANDP services, a DCE client must bind first to the LANDP
services. A single binding gives access to all LANDP servers.

A DCE client binds to LANDP services either using Naming Services or, when Naming
Services are not available, using string bindings.

Binding using naming services
LANDP services export bindings to two entries in the name-space

/.:/subsys/LANDP/default

/.:/subsys/LANDP/LANsuffix

where LANsuffix is the LANDP workgroup name entered at LANDP customization.

If a DCE client has access to a single LANDP workgroup, it can use the default entry
name in the name-space. However, if a DCE client has access to more than one
LANDP workgroup, it should use the entry name with LANsuffix to get a binding

78 LANDP Programming Guide

LANDP–DCE API

handle. It can even get binding handles for several LANsuffix entries and make
concurrent calls to LANDP servers in different LANDP workgroups.

The /.:/subsys/LANDP directory must exist in the name-space.

DCE clients using Naming Services may import bindings with the
rpc_ns_binding_import calls or with the rpc_ns_binding_lookup calls.

DCE clients importing bindings with these functions must supply the following values for
the required parameters:

Parameter Value

Entry name syntax rpc_c_ns_syntax_default

Entry name /.:/subsys/LANDP/default, or
/.:/subsys/LANDP/LANsuffix

Interface specification LANDPDCE_v1_A_c_ifspec

Object uuid NULL, or an explicit uuid value for a specific instance of
the LANDP–DCE interface

Note: Each instance of the LANDP–DCE interface uses a dynamically generated
object uuid, which is used when exporting the binding to the name-space.
When a DCE client imports bindings using NULL as the object uuid, Naming
Services provide bindings for any entry matching the interface specification,
regardless of the object uuid. Using a specific value for the object uuid

provides the bindings that match also that object uuid value. The object uuid

values exported to an entry in the name-space can be obtained using Cell
Directory Services Control Program (cdscp).

A sample DCE client may use the following DCE remote procedure calls to get access
to all LANDP servers in the LANDP workgroup bcn:

rpc_ns_binding_import_begin(rpc_c_ns_syntax_default,

 "/.:/subsys/LANDP/bcn",

 LANDPDCE_v1_A_c_ifspec,

 NULL,

 bcn_impctx,

 status)

rpc_ns_binding_import_next(bcn_impctx,

 status)

rpc_ns_binding_import_done(bcn_impctx,

 status)

Binding using string bindings
If Naming Services are not available, DCE clients can bind with LANDP services using
string bindings. A string binding is a character representation of the binding handle.

On the LANDP for AIX workstation that provides the LANDP–DCE interoperability, the
system administrator can find the string bindings for LANDP services by looking with

 Chapter 4. LANDP–DCE application programming interface 79

LANDP–DCE API

SMIT (the System Management Interface Tool) at the end-point mappings. The entry
or entries with the annotation LANDP DCE V1.A LANsuffix provide the LANDP–DCE
interoperability for the LANDP workgroup LANsuffix.

Obtaining a LANDP context
LANDP servers and the LANDP client/server mechanism manage context information.
A DCE client making requests to LANDP servers or to the LANDP client/server
mechanism needs to get LANDP context information, and use it in all LANDP service
calls. DCE clients get LANDP context information using DCE context handles.

DCE clients obtain a LANDP context using a function call defined in the LANDP–DCE
interface. The function call used to obtain a LANDP context handle is:

LANDP_get_context(bh, ch)

where:

bh is the binding handle obtained for LANDP services. This is an input parameter of
handle_t type.

ch is the context handle provided by LANDP services to make remote calls. This is
an output parameter of LANDP_context^ type.

The function provides a return code of error_status_t type. Two types of errors can
be returned:

� DCE errors (communication status or fault status)
� LANDP context errors

For information on these errors, see the LANDP Problem Determination book.

Each function call for a LANDP service uses the context handle obtained in this
request.

A single LANDP context handle is used for the requests to all LANDP servers.

Requesting LANDP services
DCE clients make remote calls to LANDP servers using the interface defined in
landpdce.idl. The function call used by DCE clients to access any of the LANDP
servers is:

LANDP_service(ch, cprb_ptr)

where:

ch is the LANDP context handle obtained with the LANDP_get_context function
call. This is an input parameter of LANDP_context^ type.

cprb_ptr is a pointer to the control block defined in landpdce.idl. This is an input
and output parameter of EHC_CPRBP type. The description and contents of
the fields is equivalent to the CPRB described in “Connectivity
programming request block (CPRB)” on page 5.

The errors returned by the function call can be found in:

80 LANDP Programming Guide

LANDP–DCE API

� The function return code (error_status_t type)

– DCE errors (communication status or fault status)
– LANDP context errors

� The corresponding fields of the cprb_ptr parameter

– LANDP router return codes
– LANDP server return codes

For information on these errors, see the LANDP Problem Determination book.

A DCE client that makes a request is suspended until the reply arrives or the timeout
expires. Both LANDP and DCE timeout mechanisms can control the elapsed time.

� DCE timeout is a communication timeout (time to send the request to a server)
� LANDP timeout is a service timeout (time to wait for the reply from a server)

The supervisor local functions that a DCE client can use are:

AA Ask for asynchronous events.
EJ Disconnect an application program.
ES Unload IBM LANDP.
T0 through T8 Activate and deactivate timers.
WM Wait for asynchronous events.

For more information on these functions, see the “Supervisor local functions” chapter of
the LANDP Programming Reference.

The asynchronous events provided in the reply to the WM and AA functions are server
events, timer events, and process connection and disconnection events. For more
information on these events, see “LANDP event notification support” on page 36.

Releasing a LANDP context
The DCE client releases a LANDP context by issuing an EJ supervisor local function. If
the DCE client finishes without issuing the EJ function, LANDP services release the
context information.

DCE client structure
The following example shows the structure of a DCE client.

...

rpc_ns_binding_import_begin

rpc_ns_binding_import_next

keep binding handle (bh)

rpc_ns_binding_import_done

...

 Chapter 4. LANDP–DCE application programming interface 81

LANDP–DCE API

rc=LANDP_get_context(bh, ctxh)

check rc

...

cprb.ehcfunct=IR_FUNCTION

cprb.ehcserver="MYSHF "

parmlist=concat(myfile, myformat)

dataarea=myrecord

rc=LANDP_service(ctxh, cprb)

check rc

If cprb.ehcservrc=OK then

...

cprb.ehcfunct=EJ_FUNCTION

cprb.server="SPV "

LANDP_service(ctxh, cprb)

...

Writing a LANDP–DCE server
This section describes how to write a DCE server that can receive requests from
LANDP clients and from DCE clients.

DCE servers serving requests from LANDP clients have:

� A server code, with the remote procedure calls for setting up the server

� A manager code, with the routines for the remote calls: LANDP_get_context,
LANDP_service, and LANDP_context_rundown

� A DCE server stub, obtained from the landpdce.idl file

You can develop DCE servers to be accessible by both LANDP and DCE clients using
the LANDP–DCE interface.

LANDP for AIX provides in /usr/lpp/landp/c/samples/dce_server.c a sample DCE
server that shows the remote procedure calls required to access this server from
LANDP clients. You can modify this set of function calls if there are specific
requirements for a type of binding, usage of well-known endpoints, or protocol
sequences.

 Binding
DCE servers can make their bindings available by exporting them to Naming Services.
DCE servers can also be accessible using string bindings. LANDP services get binding
handles for all DCE servers using the method (Naming Services or string binding)
defined for each server in LANDP customization.

DCE server exporting bindings to naming services
DCE servers that conform to the LANDP–DCE interface must use
LANDPDCE_v1_A_s_ifspec as the interface specification when exporting their bindings to
Naming Services.

82 LANDP Programming Guide

LANDP–DCE API

The rest of the parameters used when exporting the bindings must match the
definitions for the server made during LANDP customization.

During LANDP customization, you specify every DCE server using the DEFSERV
vector. For DCE servers that export bindings to the name-space, specify the following
in this vector:

Keyword Contents
DCESNAME DCE server CDS entry name.
DCESSYNT DCE server CDS entry name syntax.
DCESUUID DCE server object uuid.

The following table shows a sample of the information as provided in LANDP
customization.

LANDP User
Server Name

DCE Server
Entry Name

DCE Server
Entry Name Syntax

Object UUID

DPTPRT /.:/prt/dpt_1734
0
(rpc_c_ns_syntax
_default)

QLTPRT /.:/prt/quality
3
(rpc_c_ns_syntax
_dce)

12345678
-1234-5678-90ab
-1234567890ab

MAIL /.:/mail_server

DCE server using string bindings
LANDP services bind with DCE servers that do not export their bindings to the
name-space using string bindings. The string binding for these servers must be
provided during LANDP customization.

During LANDP customization you specify every DCE server using the DEFSERV
vector. You specify the string bindings for servers that do not export their bindings to
the name-space by using the DCESTRBI keyword.

The following table shows a sample of the information as provided in LANDP
customization.

LANDP User
Server Name

String Binding

DPTPRT ncadg_ip_udp:16.20.16.27[2001]

QUALPRT
12345678-1234-5678-90ab-1234567890ab@ncadg
_ip_udp:HighRisc

Providing a LANDP context in the server manager routines
The LANDP client/server mechanism manages context information. A DCE server
using the LANDP–DCE interface must provide a LANDP context to LANDP clients.

 Chapter 4. LANDP–DCE application programming interface 83

LANDP–DCE API

DCE servers provide LANDP context using the interface defined in landpdce.idl. The
function to provide a LANDP context handle is:

LANDP_get_context(bh, ch)

where:

bh is the binding handle. This is an input parameter of handle_t type.
ch is the context handle provided to the LANDP client. This is an output parameter

of LANDP_context^ type.

LANDP clients do not manage directly LANDP contexts provided by DCE servers. IBM
LANDP manages them internally and associates them with the LANDP context
information.

The function must provide a return code of error_status_t type that can be used for
reporting context handle errors.

DCE servers that do not manage context information must return a non-NULL context
handle in the LANDP_get_context function. DCE servers that manage context
information should be aware that the LANDP context information, workstation ID, and
Process ID can be obtained from the cprb_ptr parameter supplied in each
LANDP_service request.

Providing services to LANDP clients in the server manager routines
DCE servers obtain requests from LANDP clients using the interface defined in
landpdce.idl. The manager routine used by DCE servers to obtain LANDP requests
is:

LANDP_service(ch, cprb_ptr)

where:

ch is the LANDP context handle that the client application uses. This is an
input parameter of LANDP_context^ type.

cprb_ptr is a pointer to the control block defined in the landpdce.idl. This is an
input and output parameter of EHC_CPRBP type. The description and
contents of the fields is equivalent to the Connectivity Programming
Request Block as described in Chapter 3, “Writing your own server
programs” on page 47.

The function provides a return code of error_status_t type that can be used for
reporting context handle errors.

The code to service the request must be part of the LANDP_service routine. When
DCE servers have finished processing the request from the LANDP client, they reply by
leaving the LANDP_service routine. The cprb must contain the Reply DATA.

Releasing LANDP context in the server manager routines
When a LANDP client having a context handle for a DCE server finishes processing or
releases its LANDP context, the LANDP_context_rundown routine of the server is
invoked with that context handle.

84 LANDP Programming Guide

LANDP–DCE API

A DCE server must release any context information for the LANDP client on its
LANDP_context_rundown routine.

DCE server structure
The following example shows the structure of a DCE server accessible from LANDP
clients:

LANDP_get_context(bh, ctxh)

{

Look for a free entry in Context Handle table

If (no free entry) return(error)

Keep context information

Assign context handle

}

LANDP_service(hdl, cprb_ptr)

{

Look for context information

 Process request

}

LANDP_context_rundown(ctx)

{

Release context information

}

main()

{

Create Context Handle table

 rpc_server_register_if

 rpc_server_use_protseqs

 rpc_server_inq_bindings

 rpc_ep_register_no_replace

 rpc_ns_binding_export

 rpc_server_listen

 rpc_server_binding_unexport

 rpc_ep_unregister

}

 Chapter 4. LANDP–DCE application programming interface 85

LANDP–DCE API

86 LANDP Programming Guide

object-oriented programming

Chapter 5. Object-oriented application programming

LANDP provides wrappers or language bindings that allow object-oriented programs
written in C++, Java, or Smalltalk, to request LANDP services. Both clients and servers
can be written using the object-oriented languages supported by LANDP.

The object-oriented paradigm closely matches the LANDP client/server mechanism
concept, and can therefore be easily used with LANDP.

Classes and examples are shipped on the LANDP Version 5 product CD-ROM in
source code format. The C++ classes can be used in LANDP for DOS, OS/2, and
Windows NT. The Smalltalk class can be used in LANDP for OS/2 and Windows NT.

Writing application programs using C++

The LANDP class library contains class hierarchies that can be used for writing both
clients and servers.

The classes are in the following directories:

EHCD5000/SAMPLES/CPP for DOS

EHCO5000/SAMPLES/CPP for OS/2

EHCN5000/SAMPLES/CPP for Windows NT

 LandpRequest class
The LandpRequest class is the general base class for a client to send a request to a
server. It encapsulates the implementation of the Connectivity Programming Request
Block (CPRB) and RMTREQ function, into one unique interface object. The CPRB and
RMTREQ are supplied with the LANDP common API.

Using the methods contained in this class of objects called LandpRequest, the client can
query and define the common API fields and send a request to the server. The RMTREQ
is therefore translated into an object-oriented call. LandpRequest also contains the
methods to receive the reply from the server, and to access the information returned
with this reply.

You can use LandpRequest as a base class to create subclasses for individual servers.
The subclasses use methods contained in the LandpRequest class.

Following are the LandpRequest methods:

LandpRequest Constructor
Initializes the required fields of the CPRB with default values.

∼LandpRequest Destructor
Disposes of the CPRB.

 Copyright IBM Corp. 1992, 2000 87

object-oriented programming

SetupRequest
The SetupRequest method provides a way of resetting request information
to the default values. For the base class, the values are reset to zero. It is
intended to be overridden by descendant classes for a specific
re-initialization of the CPRB.

The following methods provide a way of defining the information to be used in a
request:

SetServerName
Sets the server name with the given string, truncating or padding the string
if required.

SetFunctionName
Sets the function code with the value corresponding to the given string.

SetFunctionCode
Sets the function code with the given value.

SetRequestData
Sets the Request DATA address and the Request DATA length fields.

SetRequestParmlist
Sets the Request PARMLIST address and the Request PARMLIST length
fields.

SetReplyData
Sets the Reply DATA address and the Reply DATA length.

SetReplyParmlist
Sets the Reply PARMLIST address and the Reply PARMLIST length.

SetTimeOutValue
Sets maximum wait time (in seconds) for the reply to this request.

The following method provides a way of sending a request and waiting for a reply:

SendRequest
Sends the prepared request to LANDP.

The following methods provide a way of accessing the information that was returned
with the reply:

GetServerReturnCode
Obtains the server return code.

GetRouterReturnCode
Obtains the router return code.

GetReturnCode
Checks first the router return code and, if this is correct, checks the server
return code.

GetReturnCodeAsString
Returns a string containing the readable return code.

88 LANDP Programming Guide

object-oriented programming

GetRepliedParmListLength
Returns the Replied PARMLIST length.

GetRepliedDataLength
Returns the Replied DATA length.

 RequestFromLandp class
The RequestFromLandp class is the class that a server uses to receive a client request
from the LANDP client/server mechanism, and to reply to the request.

This class contains the methods that a server requires to access request fields and to
update reply fields. The client on the other hand, requires the methods to define
request fields and to access reply fields. A general example of the use of this class,
together with the LandpServer class, is given in “Example of RequestFromLandp and
LandpServer class use” on page 91.

The RequestFromLandp class provides the following methods:

GetRequest
Provides a way for the server to wait for, and obtain a request, from the
client/server mechanism.

SendReply
Provides a way for the server to send a reply to the client/server
mechanism.

SetupReply
Provides a way for the server to reset the reply information to default
values. The base class resets the Replied DATA length, Replied
PARMLIST length, and server return code to zero. These values can then
be redefined by descendant classes, when a specific initialization of the
reply is required.

The following methods provide a way for the server to access the information contained
in a request that has been received from the client/server mechanism:

GetFunctionCode

GetRequestParmlistLength

GetRequestDataLength

GetReplyParmlistLength

GetReplyDataLength

GetRequestParmlistAddress

GetRequestDataAddress

GetReplyParmlistAddress

GetReplyDataAddress

GetRequesterId

 Chapter 5. Object-oriented application programming 89

object-oriented programming

The following methods provide a way for the server to define the reply fields contained
in a reply that is to be sent to the client/server mechanism:

SetServerReturnCode

SetRepliedDataLength

SetRepliedParmlistLength

 LandpServer class
The LandpServer class provides the structure for all LANDP servers. A server written in
C++ must use an instance of a class derived from LandpServer class. This derived
class should add the specific server service routines to the LandpServer class. A
general example of the use of this class, together with the RequestFromLandp class, is
given in “Example of RequestFromLandp and LandpServer class use” on page 91.

The LandpServer class reflects the general technique of LANDP server programming:
SRVINIT, followed by a GETREQ loop, and then a RMTRPLY (see Chapter 3, “Writing your
own server programs” on page 47). The LandpServer class is the basis for creating a
user-written class to write a server.

The Run method provides the server's main loop. It must be called in the primary
function of the LANDP server. The Run method should not be overridden in any of the
descendant classes.

The InitRequestFromLandp method is used by the LandpServer base class to
instantiate an object of the class RequestFromLandp. Usually, descendant classes
override it, to further instantiate from other classes.

The GetReceivedRequest method provides a way for the server to return the pointer to
the request that has been received.

The ProcessRequest method is intended to be overridden by all its descendants. The
statements that identify the function codes that are supported by the server should be
added in the overridden method. The overridden method should call the inherited
ProcessRequest, before returning, to process the default function codes.

The only requests that are processed on the ProcessRequest method of the
LandpServer class, are those that come with the IN, ES, **, and && functions:

ProcessInitialize

ProcessEndService

ProcessConnection

ProcessDisconnection

A server that is going to process these functions needs to override these methods and
call the inherited method before returning.

90 LANDP Programming Guide

object-oriented programming

Example of RequestFromLandp and LandpServer class use
The following example (LICSTST.CPP) illustrates the use of the RequestFromLandp and
LandpServer classes for creating a LANDP date and time server:

#include "LICSRV.HPP"

// Declare a subclass of LandpServer

// that contains the specific

// behavior of the server

class SampleServer : public LandpServer

{

virtual long ProcessRequest(int fc);

// Mandatory override of

// the request processor

 long ProcessGetDate(void);

 long ProcessGetTime(void);

// Methods to carry out the

// server's function set

};

long SampleServer::ProcessRequest(int fc)

{

switch (fc) {

// Invoke appropriate service

 // function

case fcGetDate: return ProcessGetDate();

case fcGetTime: return ProcessGetTime();

// Or pass it to the super-class

// for default processing

default : return LandpServer::ProcessRequest(fc);

 };

};

long SampleServer::ProcessGetDate()

{

 ... return(A);

};

long SampleServer::ProcessGetTime()

{

 ... return(A);

};

// The program body simply

// instantiates a SampleServer

// object and invokes its inherited

// Run() method

main()

{

 SampleServer thisServer;

 Chapter 5. Object-oriented application programming 91

object-oriented programming

 thisServer.Run();

};

Writing application programs using Smalltalk
The LANDP Smalltalk class libraries contain objects that can be used for writing
LANDP client applications using IBM VisualAge Smalltalk.

The classes are supplied in the following files:

ldpvast4.cls for VisualAge Smalltalk Professional 4.0

ldpvast5.cls for VisualAge Smalltalk Professional 4.02 and VisualAge Smalltalk
Enterprise 4.5 and 5.0

There are simple examples of the classes in use in landpage.txt.

 LandpRequest class
The LandpRequest class is the base class.

The new method returns a new instance of a LandpRequest. The initialize method
loads EHCOS2.DLL (under OS/2) or EHCWINNT.DLL (under Windows NT) and obtains
area blocks for the common API data and parameters.

The remoteRequest method does the call to LANDP.

The LANDP interface from Smalltalk is carried out as a modal interface. All the state
variables are set by the setting methods, and are performed by the remoteRequest
method, which interfaces EHCOS2.DLL (under OS/2) or EHCWINNT.DLL (under
Windows NT) through the RMTREQ entry point.

You can define multiple instances of LandpRequest and each of these instances can be
used as a Smalltalk object.

The methods that can be used are as follows:

new Obtain a new instance
initialize Initialize the environment
pcid Obtain the PC identifier
remoteRequest Call LANDP for service
functionName: aString Set the function code in characters
functionCode: aString Set the function code in hexadecimal
serverName: aString Set the server name
requestData: aString Set the Request DATA
requestParmList: aString Set the Request PARMLIST
requestParmList: aString from: anInteger

Set the Request PARMLIST at offset
repliedData Obtain the Reply DATA
repliedParmList Obtain the Reply PARMLIST
repliedDataLength Obtain the Replied DATA length

92 LANDP Programming Guide

object-oriented programming

repliedParmListLength Obtain the Replied PARMLIST length
replyDataLength: anInteger Set the Reply DATA length
replyParmListLength: anInteger Set the Reply PARMLIST length
timeOutValue: anInteger Set the timeout value for the request
serverReturnCode Check the server return code
routerReturnCode Check the router return code
returnCode Check any error return code
finalize Terminate

The following example shows how to use the LANDP banking printer server
(PR47X2##), using session number 01. The following program statements must be
contained in a method, and then executed:

BankingPrinter:= LandpRequest new.

BankingPrinter initialize.

BankingPrinter serverName: 'SPV'.

BankingPrinter functionName: 'IN'.

BankingPrinter remoteRequest.

BankingPrinter serverName: 'PR47X2A1';

 functionName: 'WR'.

To print a line, you must only then execute one statement:

BankingPrinter requestData: 'Text to be printed'; remoteRequest.

The following statement allows you to obtain data sent by the printer.
BankingPrinterServer is another instance of LandpRequest class.

BankingPrinterServer repliedData.

The following method provides a way of testing the result, by examining the string that
is returned from:

BankingPrinter serverReturnCode.

Also, splitting the Request PARMLIST or Reply PARMLIST area into fields that are
relevant for each server improves the transparency between LANDP services and
Smalltalk.

The method "requestParmList: aString from: anInteger" enters a value in a Request
PARMLIST field, using a given Offset. Using this method you can split the complete
Request PARMLIST area by fields, and then have separate methods for setting and
obtaining the value of a specific server parameter. The layout remains the same as the
rest of the LANDP parameters. You can similarly split the complete Reply PARMLIST,
Request DATA, and Reply DATA areas.

 Chapter 5. Object-oriented application programming 93

object-oriented programming

94 LANDP Programming Guide

Chapter 6. LANDP support for Java

The LANDP support for Java enables LANDP clients and servers to be written in the
Java programming language on both OS/2 and Windows NT. Applications can be
written once and moved between platforms without the need for recompiling. The
Landp support for Java allows you to write Java applications, applets, and servlets that
can access LANDP servers and services.

The LANDP Java support consists of the following files:

LDPJAVA.JAR A Java Archive File containing the LANDP Java classes
LDPJDOCS.ZIP Javadoc documentation
LDPJMAN.EXE The LANDP Java Manager
LDPJDISP.EXE The LANDP Java Dispatcher
LDPJAVA.DLL DLL that implements the native methods of the LANDP Java classes

For information on installing LANDP Java support, refer to the sections headed
"Installation requirements for Java support" in the chapters entitled "Preparing OS/2
workstations" and "Preparing Windows NT workstations" in the LANDP Installation and
Customization

Support for Version 4 classes
LANDP Version 5 Java support includes support for the previous LANDP classes
provided as an add-on to Version 4 from the LANDP web site. Landp.class is included
in LDPJAVA.JAR, but has been marked as deprecated. The LDPJNT.DLL and
LDPJOS2.DLL files have been replaced by LDPJAVA.DLL. To run your existing
LANDP Java applications under the Version 5 Java support, put LDPJAVA.JAR in your
class path to replace the previous classes and replace either LDPJNT.DLL or
LDPJOS2.DLL with LDPJAVA.DLL.

VisualAge for Java support
The LANDP classes are fully compatible with IBM VisualAge for Java version 3 and can
be imported from LDPJAVA.JAR into the VisualAge repository.

To import the LANDP classes, perform the following steps:

1. Create a new project entitled for example "IBM LANDP support"

� From the main menu choose Selected|Add|Project

� Select “Create a new project named”.

� Enter the project name.

2. Import the contents of LDPJAVA.JAR into the project

� From the File menu, select Import...

� When prompted to select an import source select Jar file and click Next.

 Copyright IBM Corp. 1992, 2000 95

� Enter the path and name of the Jar file, for example:. c:\landp\ldpjava.jar

� Select both .class and resource as the types of files to import.

� Where prompted to "Enter name of a project to import into" enter the name of
the project created in step 1.

 � Click Finish

When writing LANDP applications or applets within VisualAge for Java and testing them
within the IDE, the project into which you imported the LANDP classes must be
included in the application classpath:

� Select the class of the application containing the main() or start() method.

� From the Selected menu choose "Run" and then "Check Class Path..."

� Make sure "Project Path" is clicked and then press the "Compute Now" button.

� The project containing the LANDP classes should be added to the Project Path. If
not press the "Edit" button to add it manually.

� When complete press "OK".

Java client development
The LANDP Java classes are contained in LDPJAVA.JAR, and enable LANDP clients
to be written in Java. The classes are:

Cprb
A class representing the CPRB. It contains variables for each field in the CPRB
and methods to get and set those variables.

RmtReq
A class used to send a CPRB to the supervisor. This class can be used in one of
two modes:

� It can send requests to LANDP under the process ID of the Java Virtual
Machine (JVM) in which the class is loaded.

� It can request its own process ID in which to send requests via the LANDP
Java Manager (see below)

The mode can be set by supplying either of the static variables
RmtReq.MODE_JVM_PID or RmtReq.MODE_OWN_PID to the class constructor.
For more information on the two modes and their uses, see “Support for multiple
client applications within a JVM” on page 97.

The RmtReq class has four main methods:

register
The register method must be called before any requests are sent when
MODE_OWN_PID has been specified. It registers the application with the
LANDP Java Manager.

96 LANDP Programming Guide

setCprb
This method sets the CPRB to be sent.

send
This method sends the CPRB to LANDP and returns the CPRB received back.

unregister
Unregisters the application from the LANDP Java Manager.

LandpUtils
Contains utility methods for performing various operations including return code
conversion.

LandpException
An exception class with sub-classes as follows:

InvalidCprbException
Thrown by the send method of RmtReq when a CPRB is incomplete or invalid.

BadRouterRCException
Thrown by the send method of RmtReq when a request is sent to the
supervisor but returned with a non-zero router return code.

BadServerRCException
Thrown by the send method of RmtReq when a request is sent to the
supervisor but returned with a non-zero server return code.

LandpCommunicationException
Thrown for various reasons when communication with the LANDP Java
Manager has failed.

For more detailed information on the LANDP classes, refer to the Java
documentation contained in the file LDPJDOCS.ZIP

Support for multiple client applications within a JVM
LANDP servers identify traditional client applications by their process identifier.
However, in a JVM, all classes loaded run under the same process ID. When two
LANDP applications are loaded into the same JVM, there is the potential for LANDP to
fail to recognise them as separate entities.

The LANDP Java Manager is designed to avoid this problem. The Manager intercepts
requests from registered LANDP Java applications and dispatches them to LANDP from
different process IDs. By using the LANDP Java Manager, it is possible to run LANDP
applications concurrently from within one JVM. This is particularly useful when you are
writing an application that acts on behalf of a number of users, for instance a Java
Servlet.

The LANDP Java Manager can be started from the command line by executing the
command LDPJMAN.EXE

 Chapter 6. LANDP support for Java 97

Each instance of the RmtReq class within a JVM is seen as a separate LANDP
application. When constructing an instance of RmtReq, specify one of the following
static variables as the mode in which the class will be used:

RmtReq.MODE_JVM_PID
In this mode the application will send requests from the PID of the JVM in which it
is running. If you are certain that your application will be the only LANDP
application within that JVM, then using this mode will result in better performance.
When an application is running in MODE_JVM_PID, it does not require the
services of the LANDP Java Manager.

RmtReq.MODE_OWN_PID
If this mode is specified, requests sent from this class will be sent from a unique
process ID obtained from the LANDP Java Manager.

If no mode is specified in the RmtReq constructor, MODE_JVM_PID is assumed by
default. When in MODE_OWN_PID, before requesting LANDP services, register your
instance of RmtReq with the LANDP Java Manager. The register() method of RmtReq
allows you to do this, for example:

RmtReq req = new RmtReq(RmtReq.MODE_OWN_PID);

boolean registered = false;

try{

registered = req.register();

 ...

} catch(LandpCommunicationException lce){

 handleException(lce);

}

When your RmtReq class succesfully registers with the Manager, it can send requests
to LANDP servers. The register method does not perform the IN request to the LANDP
supervisor, therefore, after registering, first send the IN request. Requests are sent by
creating a Cprb object and populating the relevant fields. The Cprb can then be sent to
LANDP by calling the send method of RmtReq as follows:

98 LANDP Programming Guide

Cprb cprb = new Cprb("SPV", "IN");

cprb.setQParmLength(26);

cprb.setQDataLength(A);

cprb.setRParmLength(26);

cprb.setRDataLength(A);

cprb.setQParm(new byte[1A24]);

cprb.setQData(new byte[1A24]);

cprb.setRParm(new byte[1A24]);

cprb.setRData(new byte[1A24]);

req.setCprb(cprb);

try{

cprb = req.send();

 ...

} catch(InvalidCprbException ice){

 handleException(ice);

} catch(BadRouterRCException bre){

 handleException(bre);

} catch(BadServerRCException bse){

 handleException(bse);

} catch(LandpCommunicationException lce){

 handleException(lce);

}

 ...

All further requests to LANDP servers sent via the same RmtReq object will be seen by
LANDP to be coming from the same process ID. When the final request has been
sent, the RmtReq object must unregister from the LANDP Java Manager. This is
performed by calling the unregister() method in much the same way as the register
method():

boolean unregistered = false;

try{

unregistered = req.unregister();

 ...

} catch(LandpCommunicationException lce){

 handleException(lce);

}

 ...

Again, the unregister() method does not automatically perform an EJ request to the
LANDP supervisor. Application programs must do this before calling unregister().

Each RmtReq instance using MODE_OWN_PID within a JVM is essentially an
individual LANDP client application. As such, it is allocated resources by both the
LANDP Java Manager and LANDP itself. To ensure that these resources are cleaned
up correctly, you should not re-use RmtReq objects, nor use them as static class
variables. Once the unregister() method of a RmtReq instance has been called, the
instance should be left to be garbage-collected by the JVM and not re-used.

 Chapter 6. LANDP support for Java 99

 Exception handling
As shown above, the register(), unregister() and send() methods of RmtReq can
generate various exceptions. In the case of the BadRouterRCException,
BadServerRCException and LandpCommunicationException, the exception classes
include a getReturnCode() method that returns a long containing the relevant return
code contained in the CPRB, or resulting from the LANDP Java Manager. By using the
Java try catch constructs, you can control how the application catches and deals with
exceptions.

In the case of the BadRouterRCException and BadServerRCException classes, the
return code represents the actual return code from the router or server accessed by the
request. When one of these exceptions is thrown, the reply CPRB from the request
that caused the exception can be obtained by calling the getCprb() function of RmtReq.

The return code of a LandpCommunicationException provides little information of use to
the application programmer but is useful to service personnel. When a
LandpCommunicationException occurs it generally implies that the LANDP Java
Manager has failed in some way and should be restarted. However, the return code
value 205 suggests that the LANDP Java Manager is not running.

Writing servlets to access LANDP
The LANDP classes can be utilised to write Java Servlets that can be used with an
appropriate application server such as IBM Websphere to provide access to LANDP
services through a web interface.

By providing the logic to the application in a servlet, browser based clients on
non-LANDP workstations can effectively have access to LANDP services. Typically,
the servlet will need to maintain one RmtReq object for each client it is serving.

Writing applets to access LANDP
The Java applet security model restricts the rights of applet code running on a client to
making a connection back to the server from which it was downloaded. By default,
Applets are not allowed to access resources on the client. The RmtReq class needs
access to the LDPJAVA.DLL dynamic link library and attempting to instantiate a
RmtReq object within an applet causes a security exception.

There are two general ways around this problem that enable applets to run. Firstly, by
digitally signing the applet and providing a policy file that grants the applet permission
to load LDPJAVA.DLL on the client, the applet is able to access LANDP services as
normal. This approach requires LANDP to be running on the workstation on which the
applet runs.

In some cases, for instance where the applet is run on a non-LANDP platform such as
a thin client type workstation, it is not possible to run LANDP on the client. In this case,
an option is to provide a proxy through which the applet can direct LANDP requests. If
this proxy resides on the server from which the applet is downloaded, there is no

100 LANDP Programming Guide

requirement to alter the default security model. The applet can use a number of ways
to communicate with the proxy including sockets, RMI, and plain HTTP requests. The
client can send the Cprb it wishes to send across the wire to the proxy as a serialized
object. The proxy then sends the Cprb on behalf of the client applet and passes the
results back. Two example implementations of a proxy server are included in the
samples provided.

Writing LANDP servers in Java
The LandpServer class is provided to enable user servers to be written in Java.

The LandpServer class does not do anything itself except handle all initialisation and
get LANDP remote requests as they appear and return the result back. It handles the
basic IN, ES, && and ** functions that all servers must handle. As such, the server
could be installed 'as is' in a LANDP configuration. Of course there would not be much
point to this exercise since the LandpServer does not do anything constructive.
Therefore it is assumed that the LandpServer class will be extended by the developer
to do a specific task.

The LandpServer class is an abstract class. This means that user servers must
implement an abstract method that has been defined in the LandpServer class. The
abstract method in question is called checkFunction(). Java server code must
implement this method. The method is called when the LandpServer code receives a
request from the supervisor by a call to GETREQ. The checkFunction() method must
parse the functionID to determine if it is one that is handled in this server. If
checkFunction() is not implemented, the Java compiler will generate a compile time
error message.

User servers written in Java must have a name that can be registered with LANDP so
that the LANDP supervisor can pass requests to it. The server name will be the first 8
characters of the class name of the server. The server name is padded with spaces to
a length of 8 characters internally. If the name of the server was 'ABCDEFGHIJK' for
instance, then the server name would be 'ABCDEFGH'. A consequence of this is that
LANDP user servers written in Java cannot be part of a package hierarchy, but must
reside instead within the default package. A packaged server, for instance
com.ibm.landp.server.Foo would be erroneously registered with LANDP as a server
named COM.IBM.

The basic LandpServer supports 2 error codes. They are:

P1 Function not supported.
P3 Reply Data length error.

These error codes are constants in the LandpServer class and are defined as follows:

final int ERR_FUNCTION_SUPP = 16797745; /^ P1 Function not supported ^/

final int DATA_LENGTH_ERROR = 16797747; /^ P3 Reply data length error ^/

Server specific error codes can be created and returned by assigning to the
server_error field of LandpServer.

 Chapter 6. LANDP support for Java 101

For an example implementation of a user server in Java refer to the samples included
with the product.

102 LANDP Programming Guide

VisualAge for COBOL

Chapter 7. Writing programs using VisualAge for COBOL

You can write two types of LANDP program using VisualAge for COBOL:

� GUI (graphical user interface) programs under OS/2

 � Non-GUI programs

This chapter explains how.

Writing GUI programs under OS/2
Using VisualAge for COBOL, it is possible to design a wide variety of GUI applications
with buttons, scrollable entry boxes, menus, and so on. As a result, it is only possible
to offer general advice to developers of LANDP GUI applications. One possible
approach is to complete the example program in the VisualAge for COBOL Getting
Started manual (see the chapter "Build Your First VisualAge for COBOL GUI
Application") and then build a simple LANDP client.

One suggestion for a simple client could consist of three buttons to make an IN
(Initialize) call, an II (Inquire Information) call and an EJ (Disconnect an Application
Program) call to the supervisor. At each stage, the router and server return codes
could be displayed in read-only entry fields.

Keep the following in mind when you build a LANDP GUI application:

� To access the CPRB you must have the following in your source:

COPY "EHCDEFVA.CBL".

� You must make the same changes in the compile notebook that are required for
non-GUI applications (see below)

GUI programs under OS/2 or Windows NT are event driven. This means that, for
example, a GUI program cannot use the WM (Wait Multiple) function to wait for
keyboard events. See “Event notification using graphical user interface (GUI) message
posting” on page 39 for more information on event notification and GUI programs.

Writing non-GUI programs
LANDP provides a sample server and a sample client to help you write non-GUI
LANDP VisualAge for COBOL applications. They are called SAMPSERV.CBL and
SAMP-CLI.CBL respectively.

These programs contain the line

COPY "EHCDEFVA.CBL".

This line copies the file EHCDEFVA.CBL (which can be found in the EHCO500 or
EHCN500 sub-directory) into the source code. This file contains the CPRB, options
control blocks, some common error codes and miscellaneous values.

 Copyright IBM Corp. 1992, 2000 103

VisualAge for COBOL

For annotated listings of SAMPSERV.CBL and SAMP-CLI.CBL, see “Sample
application (COBOL, OS/2 AND Windows NT)” on page 149.

VisualAge for COBOL compilation settings
Before attempting to compile or link your applications or the supplied sample
applications (on OS/2 or Windows NT), make the following changes to the VisualAge
for COBOL compilation settings:

� On the "Syntactic" tab, check that the "Process COPY, BASIS, and REPLACE
statements" option is selected.

� In the "Enter copy file search path" text field, enter the path to the directory that
contains EHCDEFVA.CBL (for example, C:\EHC\EHCO5AA or EHCN5AA)

� Select the "As-is" option of "Resolve program names"

� On the "Link" tab, fill in the path and file name of the appropriate LANDP.LIB file
under "Enter library/object file name(s)". For example,
C:\EHC\EHCO5AA\EHCOS232.LIB for OS/2 or C:\EHC\EHCN5AA\EHCWINNT.LIB for
Windows NT.

When using VisualAge for COBOL on Windows NT, make the following further change:

� On the "System" tab, select "CDECL" as the Call Interface Convention. This
calling convention will be used in your application for all calls to external functions.
If you wish to call external functions with other calling conventions, use the
CALLINTERFACE directive to override this setting.

104 LANDP Programming Guide

VisualAge generator

Chapter 8. VisualAge Generator Application Programming Interface

VisualAge Generator is a tool used to build and deploy multi-tier client/server
applications. VisualAge Generator Developer for OS/2 and Windows NT is one of a set
of workstation-based products for application development providing definition, test,
generation and runtime support for both client/server and stand-alone applications.
With it you can define, test and generate character-based and GUI applications.

VisualAge Generator Developer is integrated on top of VisualAge Smalltalk and allows
you to define definitions and store them in the VisualAge Smalltalk repository. As you
develop an application, VisualAge Generator Developer provides a graphical structure
diagram that shows a hierarchical structure of the components of the application.
VisualAge Generator also provides a test facility for you to interactively test your
application and remove errors even as you define the application. After testing you can
generate a COBOL or C++ application suitable for your execution environment.

 Overview
The VisualAge Generator library contains a number of part types that are used to
generate an application. Some of the types that you can use are:

GUI An event-driven application that contains one or more windows that
represent the graphical user interface of an application.

Program A set of related definitions and instructions that VisualAge Generator
can generate into an executable form. The program is the
specification of the order in which processes, statement groups, and
other programs are run.

Process A block of logic consisting of a set of processing statements
surrounding a central input or output (I/O) operation.

Record A collection of data items (a data structure) organized to serve a
specific purpose. A working-storage record is a special type of record
used to hold temporary data, including data being passed to another
program.

Data item A single unit of information in a record or table.

Linkage table A table required if a program contains external calls. The linkage
table specifies the call and conventions used.

The LANDP Dynamic Link Library
The LANDP / VisualAge Generator Application Programming Interface (API) is handled
by a Dynamic Link library (DLL) called EHCVGEN.DLL located in the EHCO500 (for
OS/2) and EHCN500 (for Windows NT) directories of the LANDP product. You should
copy EHCVGEN.DLL to the directory in which the LANDP run-time files were installed
on the workstations on which your VisualAge Generator application will run. This
directory should be included in your LIBPATH environment variable on OS/2 or your
PATH environment variable on Windows NT.

 Copyright IBM Corp. 1992, 2000 105

VisualAge generator

In order to access the DLL, you must use a VisualAge Generator Linkage Table. The
file LINKAGE.TAB is supplied with LANDP and can be imported into your VisualAge
Generator application. The contents of the file are:

:CALLLINK

 APPLNAME=EZSRPI

 BITMODE=32

 LIBRARY=EHCVGEN

 LINKTYPE=DYNAMIC

 PARMFORM=OSLINK

Calling LANDP servers from VisualAge Generator application programs
Calls to a LANDP server from a VisualAge Generator application are made as follows:

CALL EZSRPI SRPIBLK, REQBLK, REPBLK (NONCSP;

In this call EZSRPI is the main entry point in the DLL and SRPIBLK, REQBLK and
REPBLK are records. The NONCSP option indicates that the called application exists
outside the library. The SRPIBLK contains the major CPRB fields, the REQBLK
contains the Request PARMLIST followed by the Request DATA and the REPBLK
contains the Reply PARMLIST followed by the Reply DATA.

Note: The size and layout of the PARMLIST and DATA areas varies depending on the
server being called.

Figure 5 is an example of a SRPIBLK record where the REQBLK and REPBLK have
been included as level 77 data items. You may choose different names and
descriptions for the first 11 items but the type and size must be as shown here. The
size of the REQBLK and REPBLK depends on the LANDP servers which you intend to
call. (In the following tables and examples the names shown here will be used.)

Figure 5. VisualAge Generator SRPIBLK definition

106 LANDP Programming Guide

VisualAge generator

Calling functions within the DLL
In addition to allowing the VisualAge Generator application to call LANDP servers, the
DLL also contains some functions of its own.

Handling of bit-oriented data
EHCVGEN.DLL contains two functions called HC and CH. These functions convert the
ASCII representation of hexadecimal digits into their half-byte numeric equivalents or
vice versa. For example '3' (X'33') becomes X'3' and X'C' becomes 'C' (X'43'). The
data to be converted is put into the Request PARMLIST and the converted data is
returned in the Reply PARMLIST.

Note: If the CH function is used and the half-byte cannot be converted into the ASCII
representation of a valid hexadecimal digit it will be converted into a NULL (X'00').

The conversions are as follows:

 HC CH

AA11AAAA ('A') ---> AAAA AAAA ---> AA11AAAA ('A')

AA11AAA1 ('1') ---> AAA1 AAA1 ---> AA11AAA1 ('1')

AA11AA1A ('2') ---> AA1A AA1A ---> AA11AA1A ('2')

AA11AA11 ('3') ---> AA11 AA11 ---> AA11AA11 ('3')

AA11A1AA ('4') ---> A1AA A1AA ---> AA11A1AA ('4')

AA11A1A1 ('5') ---> A1A1 A1A1 ---> AA11A1A1 ('5')

AA11A11A ('6') ---> A11A A11A ---> AA11A11A ('6')

AA11A111 ('7') ---> A111 A111 ---> AA11A111 ('7')

AA111AAA ('8') ---> 1AAA 1AAA ---> AA111AAA ('8')

AA111AA1 ('9') ---> 1AA1 1AA1 ---> AA111AA1 ('9')

A1AAAAA1 ('A') ---> 1A1A 1A1A ---> A1AAAAA1 ('A')

A1AAAA1A ('B') ---> 1A11 1A11 ---> A1AAAA1A ('B')

A1AAAA11 ('C') ---> 11AA 11AA ---> A1AAAA11 ('C')

A1AAA1AA ('D') ---> 11A1 11A1 ---> A1AAA1AA ('D')

A1AAA1A1 ('E') ---> 111A 111A ---> A1AAA1A1 ('E')

A1AAA11A ('F') ---> 1111 1111 ---> A1AAA11A ('F')

Table 16 shows the contents of the SRPIBLK when using the HC function:

Table 16 (Page 1 of 2). SRPIBLK contents for HC function

Field name Description Value

EHCFUNCT Function HC

EHCSERVER Server EZHC2CH

EHCQPARML Request parmlist length Length of hexadecimal
string

EHCQDATAL Request data length 0

EHCRPARML Reply parmlist length Length of character string
Note: this must be half the
value in EHCQPARML

 Chapter 8. VisualAge Generator Application Programming Interface 107

VisualAge generator

Table 17 shows the contents of the SRPIBLK when using the CH function:

Table 16 (Page 2 of 2). SRPIBLK contents for HC function

Field name Description Value

EHCRDATAL Reply data length 0

EHCREPLDPLEN Replied parmlist length Length of character string

EHCREPLDDLEN Replied data length 0

EHCRETCODE Router return code (1)

EHCSERVRC Server return code (1)

RESERVED (2)

REQBLK Request parmlist+data (3)

REPBLK Reply parmlist+data (3)

Notes:

(1) See the section on return codes later in the chapter
(2) Reserved for LANDP internal use
(3) Depends on the data to be converted

Table 17. SRPIBLK for CH function

Field name Description Value

EHCFUNCT Function CH

EHCSERVER Server EZHC2CH

EHCQPARML Request parmlist length Length of character string

EHCQDATAL Request data length 0

EHCRPARML Reply parmlist length Length of hexadecimal
string
Note: this must be twice the
value in EHCQPARML

EHCRDATAL Reply data length 0

EHCREPLDPLEN Replied parmlist length Length of hexadecimal
string

EHCREPLDDLEN Replied data length 0

EHCRETCODE Router return code (1)

EHCSERVRC Server return code (1)

RESERVED (2)

REQBLK Request parmlist+data (3)

REPBLK Reply parmlist+data (3)

Notes:

(1) See the section on return codes later in the chapter
(2) Reserved for LANDP internal use
(3) Depends on the data to be converted

108 LANDP Programming Guide

VisualAge generator

Translation from ASCII to EBCDIC and EBCDIC to ASCII
EHCVGEN.DLL provides two functions called AE and EA. These functions translate
strings of ASCII characters into EBCDIC and strings of EBCDIC characters into ASCII
respectively. These functions are provided solely to support migration from applications
written using LANDP Version 4 support for VisualAge Generator Developer for OS/2
V2.2. If you are writing a new VisualAge Generator application and need to perform
ASCII-EBCDIC or EBCDIC-ASCII translation you should use the support provided
within VisualAge Generator itself.

Table 18 shows the contents of the SRPIBLK when using the AE and EA functions.

Figure 6 on page 110 and Figure 7 on page 111 show the tables used in the
translation.

Table 18. SRPIBLK for AE and EA functions

Field name Description Value

EHCFUNCT Function AE or EA

EHCSERVER Server EZAE2EA

EHCQPARML Request parmlist len. 0

EHCQDATAL Request data length Length of string to be
translated

EHCRPARML Reply parmlist length 0

EHCRDATAL Reply data length Length of translated string
Note: this must be the
same as EHCQDATAL

EHCREPLDPLEN Replied parmlist len. 0

EHCREPLDDLEN Replied data length Length of translated string

EHCRETCODE Router return code (1)

EHCSERVRC Server return code (1)

RESERVED (2)

REQBLK Request parmlist+data (3)

REPBLK Reply parmlist+data (3)

Notes:

(1) See the section on return codes later in the chapter
(2) Reserved for LANDP internal use
(3) Depends on the data to be translated

 Chapter 8. VisualAge Generator Application Programming Interface 109

VisualAge generator

X'AA' X'A1' X'A2' X'A3' X'A4' X'A5' X'A6' X'A7'

X'AA' | X'AA' X'A1' X'A2' X'A3' X'A4' X'A5' X'A6' X'A7'

X'A8' | X'A8' X'A9' X'AA' X'AB' X'AC' X'AD' X'AE' X'AF'

X'1A' | X'1A' X'11' X'12' X'13' X'B6' X'B5' X'16' X'17'

X'18' | X'18' X'19' X'1A' X'1B' X'1C' X'1D' X'1E' X'1F'

X'2A' | X'4A' X'4F' X'7F' X'7B' X'5B' X'6C' X'5A' X'7D'

X'28' | X'4D' X'5D' X'5C' X'4E' X'6B' X'6A' X'4B' X'61'

X'3A' | X'FA' X'F1' X'F2' X'F3' X'F4' X'F5' X'F6' X'F7'

X'38' | X'F8' X'F9' X'7A' X'5E' X'4C' X'7E' X'6E' X'6F'

X'4A' | X'7C' X'C1' X'C2' X'C3' X'C4' X'C5' X'C6' X'C7'

X'48' | X'C8' X'C9' X'D1' X'D2' X'D3' X'D4' X'D5' X'D6'

X'5A' | X'D7' X'D8' X'D9' X'E2' X'E3' X'E4' X'E5' X'E6'

X'58' | X'E7' X'E8' X'E9' X'4A' X'EA' X'5A' X'5F' X'6D'

X'6A' | X'79' X'81' X'82' X'83' X'84' X'85' X'86' X'87'

X'68' | X'88' X'89' X'91' X'92' X'93' X'94' X'95' X'96'

X'7A' | X'97' X'98' X'99' X'A2' X'A3' X'A4' X'A5' X'A6'

X'78' | X'A7' X'A8' X'A9' X'CA' X'BB' X'DA' X'A1' X'41'

X'8A' | X'68' X'DC' X'51' X'42' X'43' X'44' X'47' X'48'

X'88' | X'52' X'53' X'54' X'57' X'56' X'58' X'63' X'67'

X'9A' | X'71' X'9C' X'9E' X'CB' X'CC' X'CD' X'DB' X'DD'

X'98' | X'DF' X'EC' X'FC' X'7A' X'B1' X'8A' X'41' X'B4'

X'AA' | X'45' X'55' X'CE' X'DE' X'49' X'69' X'9A' X'9B'

X'A8' | X'AB' X'AF' X'BA' X'B8' X'B7' X'AA' X'8A' X'8B'

X'BA' | X'41' X'41' X'41' X'41' X'41' X'65' X'62' X'64'

X'B8' | X'41' X'41' X'41' X'41' X'41' X'BA' X'B2' X'41'

X'CA' | X'41' X'41' X'41' X'41' X'41' X'41' X'46' X'66'

X'C8' | X'41' X'41' X'41' X'41' X'41' X'41' X'41' X'9F'

X'DA' | X'8C' X'AC' X'72' X'73' X'74' X'DA' X'75' X'76'

X'D8' | X'77' X'41' X'41' X'41' X'41' X'6A' X'78' X'41'

X'EA' | X'EE' X'59' X'EB' X'ED' X'CF' X'EF' X'AA' X'AE'

X'E8' | X'8E' X'FE' X'FB' X'FD' X'8D' X'AD' X'BC' X'BE'

X'FA' | X'CA' X'8F' X'BF' X'B9' X'B6' X'B5' X'41' X'9D'

X'F8' | X'9A' X'BD' X'B3' X'41' X'FA' X'EA' X'41' X'41'

Figure 6. Conversion table, ASCII to EBCDIC

110 LANDP Programming Guide

VisualAge generator

X'AA' X'A1' X'A2' X'A3' X'A4' X'A5' X'A6' X'A7'

X'AA' | X'AA' X'A1' X'A2' X'A3' X'A4' X'A5' X'A6' X'A7'

X'A8' | X'A8' X'A9' X'AA' X'AB' X'AC' X'AD' X'AE' X'AF'

X'1A' | X'1A' X'11' X'12' X'13' X'14' X'15' X'16' X'17'

X'18' | X'18' X'19' X'1A' X'1B' X'1C' X'1D' X'1E' X'1F'

X'2A' | X'2A' X'21' X'22' X'23' X'24' X'25' X'26' X'27'

X'28' | X'28' X'29' X'2A' X'2B' X'2C' X'2D' X'2E' X'2F'

X'3A' | X'3A' X'31' X'32' X'33' X'34' X'35' X'36' X'37'

X'38' | X'38' X'39' X'3A' X'3B' X'3C' X'3D' X'3E' X'3F'

X'4A' | X'2A' X'FF' X'83' X'84' X'85' X'AA' X'C6' X'86'

X'48' | X'87' X'A4' X'5B' X'2E' X'3C' X'28' X'2B' X'21'

X'5A' | X'26' X'82' X'88' X'89' X'8A' X'A1' X'8C' X'8B'

X'58' | X'8D' X'E1' X'5D' X'24' X'2A' X'29' X'3B' X'5E'

X'6A' | X'2D' X'2F' X'B6' X'8E' X'B7' X'B5' X'C7' X'8F'

X'68' | X'8A' X'A5' X'DD' X'2C' X'25' X'5F' X'3E' X'3F'

X'7A' | X'9B' X'9A' X'D2' X'D3' X'D4' X'D6' X'D7' X'D8'

X'78' | X'DE' X'6A' X'3A' X'23' X'4A' X'27' X'3D' X'22'

X'8A' | X'9D' X'61' X'62' X'63' X'64' X'65' X'66' X'67'

X'88' | X'68' X'69' X'AE' X'AF' X'DA' X'EC' X'E8' X'F1'

X'9A' | X'F8' X'6A' X'6B' X'6C' X'6D' X'6E' X'6F' X'7A'

X'98' | X'71' X'72' X'A6' X'A7' X'91' X'F7' X'92' X'CF'

X'AA' | X'E6' X'7E' X'73' X'74' X'75' X'76' X'77' X'78'

X'A8' | X'79' X'7A' X'AD' X'A8' X'D1' X'ED' X'E7' X'A9'

X'BA' | X'BD' X'9C' X'BE' X'FA' X'9F' X'F5' X'F4' X'AC'

X'B8' | X'AB' X'F3' X'AA' X'7C' X'EE' X'F9' X'EF' X'F2'

X'CA' | X'7B' X'41' X'42' X'43' X'44' X'45' X'46' X'47'

X'C8' | X'48' X'49' X'FA' X'93' X'94' X'95' X'A2' X'E4'

X'DA' | X'7D' X'4A' X'4B' X'4C' X'4D' X'4E' X'4F' X'5A'

X'D8' | X'51' X'52' X'D5' X'96' X'81' X'97' X'A3' X'98'

X'EA' | X'5C' X'E1' X'53' X'54' X'55' X'56' X'57' X'58'

X'E8' | X'59' X'5A' X'FD' X'E2' X'99' X'E3' X'EA' X'E5'

X'FA' | X'3A' X'31' X'32' X'33' X'34' X'35' X'36' X'37'

X'F8' | X'38' X'39' X'FC' X'EA' X'9A' X'EB' X'E9' X'FF'

Figure 7. Conversion table, EBCDIC to ASCII

 Chapter 8. VisualAge Generator Application Programming Interface 111

VisualAge generator

 Return codes
The following server error codes are returned by EHCVGEN.DLL in addition to those
returned by LANDP servers:

P1 (X'01005031')

� The server is EZAE2EA but the function is neither AE nor EA.

� The server is EZHC2CH but the function is neither HC nor CH.

P2 (X'01005032')

� The REQBLK or REPBLK parameter (or both) is missing from the
EZSRPI call.

� The server is EZAE2EA but the request and reply data lengths differ.

� The server is EZHC2CH but the request data length is not zero or the
request parmlist length is zero.

� The server is EZHC2CH and the function is CH but the reply parmlist
length is not twice the request parmlist length.

� The server is EZHC2CH and the function is HC but the reply parmlist
length is not half the request parmlist length.

P4 (X'01005034')

� The server is EZHC2CH and the function is HC but the request
parmlist contains invalid hexadecimal characters.

 Testing applications
Once you have defined your program, including appropriate processes and records, you
can test it from within the VisualAge Generator environment. In order to test you need
to specify the linkage table to use. From the VisualAge Organiser, select the Options
menu followed by Preferences. On the "VAGEN - Test Linkage" tab, select the
EZSRPI linkage table.

Generating an application
To generate your application, follow the instructions in the VisualAge Generator
Generation Guide. Set the linkage table to EZSRPI by opening the Generation Options
dialog and choosing the Input Options tab.

Once your application has been generated and prepared, you can run it, ensuring that
EHCVGEN.DLL is in your LIBPATH environment variable on OS/2 or your PATH
environment variable on Windows NT.

112 LANDP Programming Guide

OS/2 REXX

Chapter 9. LANDP for OS/2 REXX application programming
interface

LANDP for OS/2 provides extensions to OS/2 REXX to support LANDP requests to,
and replies from, REXX programs. These extensions are handled by the dynamic link
library EHCREXX.DLL. Before using any LANDP function call you must register the
LANDP functions to be used:

/^ Register the LANDP functions ^/

call rxfuncadd 'GETREQ' , 'EHCREXX', 'RXGETREQ'

call rxfuncadd 'GETRPLY', 'EHCREXX', 'RXGETRPLY'

call rxfuncadd 'RMTAREQ', 'EHCREXX', 'RXRMTAREQ'

call rxfuncadd 'RMTREQ', 'EHCREXX', 'RXRMTREQ'

call rxfuncadd 'RMTRPLY', 'EHCREXX', 'RXRMTRPLY'

call rxfuncadd 'SRVINIT', 'EHCREXX', 'RXSRVINIT'

You can register any or all of the LANDP functions using the method given above. The
only rule you must observe is to register the function before using it.

Alternatively, you can register all the LANDP functions together:

call rxfuncadd 'EHCLOADFUNCS', 'EHCREXX', 'EHCLOADFUNCS'

 call EHCLOADFUNCS

To deregister the LANDP functions:

/^ Deregister the LANDP functions ^/

call rxfuncdrop 'GETREQ'

call rxfuncdrop 'GETRPLY'

call rxfuncdrop 'RMTAREQ'

call rxfuncdrop 'RMTREQ'

call rxfuncdrop 'RMTRPLY'

call rxfuncdrop 'SRVINIT'

If you used the EHCLOADFUNCS call to load all the LANDP functions, you can use the
following method:

 call EHCUNLOADFUNCS

REXX stem variables are used to construct and inspect LANDP structures used during
LANDP function calls. Stem variables representing a LANDP structure have a name in
the form:

<name>.<LANDP structure field name>

where <name> is a user-defined variable name and <LANDP structure field name> is
the name of a LANDP structure field name as defined in EHCDEFC.H (for example,
EHCFUNCT).

Note: There is one exception. The SRVINIT options field, which holds the service
names, is called service_names and not service_name_list.

 Copyright IBM Corp. 1992, 2000 113

OS/2 REXX

User-defined variable names must not exceed 32 characters in length.

Use this form where the LANDP structure contains a pointer to another structure (for
example, the RMTREQ options structure contains a pointer to a NOWAIT structure):

<name>.<LANDP structure name>.<LANDP structure field name>

For example:

 rmtreq_opts.nowait_parmad.reply_handle

The struct_size and reserved fields in the LANDP options structures are initialized
automatically.

The LANDP REXX interface supports stem variables representing the following LANDP
structures:

 � EHC_CPRB

 � EHC_GETREQ_OPTS

 � EHC_GETRPLY_OPTS

 � EHC_NOWAIT_PARM

 � EHC_RMTREQ_OPTS

 � EHC_SRVINIT_OPTS

Use a REXX number where the definition in EHCDEFC.H refers to an integer. For
example:

cprb.ehctimeout = A

Use a REXX string where the definition refers to a character array. For example:

cprb.ehcserver = 'SPV '

Use a REXX string where the CPRB definition in EHCDEFC.H refers to a pointer
(parameter and data addresses - request and reply). For example:

cprb.ehcqparmad = 'L'

Here is a fragment of code that makes an AA call to a server called SERVER, using
the RMTREQ (remote request) call with the NoWait option. One character is supplied
in the Request PARMLIST area and up to five characters may be received in the Reply
PARMLIST area.

114 LANDP Programming Guide

OS/2 REXX

 cprb.ehcfunct = 'AA'

cprb.ehcserver = 'SERVER '

cprb.ehcqparml = 1

cprb.ehcqdatal = A

cprb.ehcrparml = 5

cprb.ehcrdatal = A

cprb.ehcqparmad = '?'

 rmtreq_opts.nowait_parmad.reply_handle = ''

 rmtreq_opts.nowait_parmad.nowait_flags = A

rmtreq_opts.nowait_parmad.window_handle = A

 rmtreq_opts.nowait_parmad.message_id = A

call RMTREQ cprb, rmtreq_opts

A sample server (SAMPSERV.CMD) and client (SAMP-CLI.CMD) can be found in the
samples directory under the EHCO500 sub-directory of the main LANDP installation
directory.

 Chapter 9. LANDP for OS/2 REXX application programming interface 115

OS/2 REXX

116 LANDP Programming Guide

testing programs

Chapter 10. Testing your application programs

The system verification programs are:

� SVPCPRB.EXE for LANDP for DOS and LANDP for OS/2
� SVPCPRBN.EXE for LANDP for Windows NT
� DCZYXSVP and DCZYSVP for LANDP for AIX
� SVPCPRBW.EXE for LANDP for DOS (and Windows 3.1/3.11)

These programs enable you to edit the CPRB and issue calls to the RMTREQ routine.
You can issue your application requests by filling in all the necessary input fields in the
system verification programs panels. You get in return the LANDP program component
response, which is displayed on the same panel.

The programs for use in a Windows 3.1 or Windows NT environment are described in
“Testing with Windows 3.1/3.11 or Windows NT” on page 121.

The system verification programs supplement the standard personal computer system
diagnostic procedures and the diagnostic procedures for the adapters. You can use
them for the following purposes:

� Verifying the correct operation of the LANDP program components without creating
a special application

� Testing your client applications

� Testing your server programs

� Training in application writing

You must load the LANDP program components, from which you want to request
services, before starting the system verification programs.

Before the first verification program is run, you must enter an IN request to SPV, with
lengths 26, 0, 26, and 0. See “Using your own SVPCPRB exit server” on page 124
for more information.

LANDP for AIX: The system verification program DCZYSVP supports conversion of
multiple-byte character set (MBCS) character fields from AIX code pages into
host and PC code pages and conversely. The MBCS convertor is determined
by the LANG environment variable:

LANG value AIX code page Host code page PC code page
ko_KR IBM-eucKR IBM-933 IBM-949
zh_TW IBM-eucTW IBM-937 IBM-938

 Copyright IBM Corp. 1992, 2000 117

testing programs

Defining a specific test
This panel is displayed after calling the SVPCPRB.EXE or DCZYSVP program:

d e
SYSTEM VERIFICATION PROGRAM

INPUT Function: yy Timeout: yy OUTPUT PC identifier: xx

Server name: yyyyyyyy Router return code: xxxx

Request parameter length: yy Server return code: xxxx

Request data length: yyyy Replied parameter length: xx

Reply parameter length: yy Replied data length: xxxx

Reply data length: yyyy Elapsed time (secs.): xxx.xx

Request parameter area:
yy

Request data area:
yy

yy

yy

yyyyyyyyyyyyyyyy

Reply parameter area:
xx

Reply data area:
xx

xx

xx

xxxxxxxxxxxxxxxx

Enter=Process Esc/F3=End F4=ASC-EBC F5=EBC-ASC F6=Char-Hex

 Offset A F7=Reply->Request Hex-Ch=CHR Insert OFF

f g

DCZYSVP has a slightly different layout and its function key assignments are different:

 Enter=Process F3=End F4=ASC-HOST F5=HOST-ASC F6=CHR-HEX

Offset A F7=Rep->Req F8=ASC-PC F9=PC-ASC Hex-Ch=CHR Insert OFF

f g

When the fields are filled in with suitable data, the entered INPUT Function uses that
data for performance. The data is used for one function only. Then, the system
verification program stops and displays the results. This sequence can be repeated as
many times as you require.

When using this panel, you should take into account that:

� The fields initialized with zeros must have numeric contents.

� The fields initialized with blanks can have any alphanumeric data.

� Only the first 256 bytes of both Request DATA and Reply DATA are displayed, and
only 256 bytes of data can be entered. However, DATA lengths can be specified
up to a maximum size of 4096 bytes.

� Only Request DATA and Reply DATA area fields can be converted from ASCII to
EBCDIC, and from EBCDIC to ASCII.

118 LANDP Programming Guide

testing programs

� Only the following fields can be edited in hexadecimal format:

 – Function
– Server Return Code
– Router Return Code
– Request PARMLIST Area
– Request DATA Area
– Reply PARMLIST Area
– Reply DATA Area

In hexadecimal mode, only 128 bytes are displayed.

The fields used for entering information are:

Function Function code.

Timeout Timeout for the request, in seconds.

Server name Requested resource name.

Request parameter length Length of the input parameter area.

Request data length Length of the input data area.

Reply parameter length Length of the output parameter area.

Reply data length Length of the output data area.

Request parameter area Parameters supplied to the server.

Request data area Data supplied to the server.

The fields used for displaying information are:

PC identifier Workstation identifier.
Router return code Return code X'00000000', in hexadecimal

representation, and 'OK', in character representation,
mean successful routing. For other return codes,
refer to the LANDP Problem Determination book.

Server return code Return code X'00000000', in hexadecimal
representation, and 'OK', in character representation,
mean successful completion. For other return codes,
refer to the LANDP Problem Determination book.

Replied parameter length Length of the significant output parameter area.
Replied data length Length of the significant output data area.
Reply parameter area Parameters returned by the server.
Reply data area Data returned to the application.
Elapsed time Performance time, in seconds. When greater than 15

minutes, the field is filled with an asterisk (*).

 Chapter 10. Testing your application programs 119

testing programs

When you select hexadecimal mode for LANDP for DOS or OS/2, this is the panel
layout:

d e
SYSTEM VERIFICATION PROGRAM

INPUT Function: yyyy Timeout: yy OUTPUT PC identifier: xx

Server name: yyyyyyyy Router return code: xxxxxxxx

Request parameter length: yy Server return code: xxxxxxxx

Request data length: yyyy Replied parameter length: xx

Reply parameter length: yy Replied data length: xxxx

Reply data length: yyyy Elapsed time (secs.): xxx.xx

Request parameter area:
yy

yy

Request data area:
yy

yy

yy

yyyyyyyyyyyyyyyy

Reply parameter area:
xx

xx

Reply data area:
xx

xx

xx

xxxxxxxxxxxxxxxx

Enter=Process Esc/F3=End F4=ASC-EBC F5=EBC-ASC F6=Char-Hex

 Offset A F7=Reply->Request Hex-Ch=HEX Insert OFF

f g

Using the keyboard
The keys used to enter data for the SVPCPRB.EXE and DCZYSVP program panels,
and to start and control test performance, are listed below:

Ctrl+End Erases from the cursor position to the end of the field (not DCZYSVP).

Tab Moves from one field to another, backward or forward, depending on
whether the shift key is pressed at the same time or not (not DCZYSVP).

Enter Starts a single function performance.

F3 or Esc Ends the system verification program.

F4 Converts from ASCII to EBCDIC. In DCZYSVP, F4 converts from ASCII
to host format (see page 117).

F5 Converts from EBCDIC to ASCII. In DCZYSVP, F5 converts from host
format to ASCII (see page 117).

F6 Toggles between hexadecimal format and character format.

F7 Moves the first Replied DATA length bytes from the Reply DATA area to
the Request DATA area.

F8 In DCZYSVP, converts from ASCII to PC format (see page 117).

F9 In DCZYSVP, converts from PC format to ASCII (see page 117).

120 LANDP Programming Guide

testing programs

Home Moves the cursor directly to the INPUT Function field from anywhere on
the panel (not DCZYSVP).

Ins Toggles between insert and overwrite modes.

Delete Operates as usual.

Backspace Operates as usual.

DCZYXSVP test program
DCZYXSVP is the Motif version of DCZYSVP. It is functionally similar, but has an
additional feature—the ability to save and recall CPRBs. These are available through
the Save and Recall items of the File menu bar choice.

Testing with Windows 3.1/3.11 or Windows NT
The SVPCPRBW.EXE program for Windows 3.1/3.11 and the SVPCPRBN.EXE
program for Windows NT applications are similar to that for OS/2 and DOS, but with
some changes. Their main characteristics are:

� The Windows graphical user interface

� Function-by-function execution of server and supervisor local calls

– No application code is required

� Verify correct operation of the system:

– Correct CPRB fields
– Correct PARMLIST and DATA areas
– Correct sequence of calling functions
– Return codes to be handled by the application

� Training tool for application programmers

� Diagnostics tools for system operators

� Can be invoked from any Windows 3.1/3.11 or Windows NT system and can use
loaded servers

� Display LANDP system information:

– Servers and applications status
– Local machine information

 Invocation
To run the tool under Windows 3.1/3.11, copy the following files to a directory on your
system from the EHCD500 directory of the main LANDP directory:

SVPCPRBW.EXE

SVPCPRBW.HLP

The tool can then be run by selecting the Run... option from the Program Manager File
menu and entering the full path of the file, for example c:\landp\svpcprbw.exe.

For Windows NT, copy the following files from the EHCN500 directory:

 Chapter 10. Testing your application programs 121

testing programs

SVPCPRBN.EXE

SVPCPRBN.CNT

SVPCPRBN.HLP

EHCXLATE.DLL

The tool can then be run by selecting the Run... option from the Start menu and
entering the full path of the file, for example c:\landp\svpcprbn.exe, or by double
clicking the icon from Windows Explorer.

 Menu options
There are two main options:

Verify: Options to show LANDP system information and to send the CPRB to the
server. The option to show system information is not supported on
Windows NT.

Help: User help and product information

LANDP system information
If you select the System Information item from the Verify menu, you are shown the
status of servers and applications, and global information about the local machine.

L.Access indicates whether you have local access to the item. S/A shows whether it is
a server or an application.

 Send CPRBs
If you choose to send CPRBs from the Verify menu, you are shown the following
dialog:

122 LANDP Programming Guide

testing programs

Figure 8. System verification program - send CPRBs

X fields are alphanumeric. 9 fields are numeric.

The push buttons are:

Send: sends the CPRB to the server
Cancel: ends the dialog
Rep —> Req: copies the Reply DATA area into the Request DATA area
Help: gives user help information.

The “Mode” radio buttons are:

Character: displays the Request DATA and Reply DATA areas, the Request
PARMLIST and Reply PARMLIST areas, and the server and router
return code fields in character mode

Hexadecimal: displays the same fields in hexadecimal mode.

The “Character Code” radio buttons are:

ASCII: displays the Request DATA and Reply DATA areas in ASCII
EBCDIC: displays the same fields in EBCDIC.

DATA and PARMLIST areas are restricted to a maximum of 4096 bytes. You can see
only the first 1365 bytes in hexadecimal mode when using SVPCPRBW.EXE.

 Chapter 10. Testing your application programs 123

testing programs

Parameter and data entry fields
The default data entry mode for these fields is overtype and is denoted by a block
cursor. The mode can be toggled between overtype and insert by using the 'Insert'
key.

On the OS/2 SVPCPRB utility and the Windows 3.1 SVPCPRBW utility, the options to
change parameter and data areas (between ASCII, EBCDIC, and hexadecimal) carry
out conversion on the data itself.

In the Windows NT SVPCPRBN utility, the mode buttons do not convert the existing
data, but alter the way in which keystrokes are interpreted.

In ASCII mode, data is displayed as though it were ASCII characters. For example, a
data byte of Ax45 is displayed as 'E', and therefore an uppercase E from the keyboard
is stored as Ax45.

In EBCDIC mode, an uppercase E from the keyboard is stored as AxC5, the EBCDIC
code for that character.

Because data is never translated, it is possible to switch modes repeatedly without
corrupting the data. However, the correct entry mode must be selected before entering
data. For example, to send data to the host in EBCDIC, select the EBCDIC mode
button before entering data.

Using your own SVPCPRB exit server
You can use your own SVPCPRB exit server (EHCSVPUE) with the LANDP for DOS
and OS/2 SVPCPRB to check user requests before the request is issued by
SVPCPRB.

When an EHCSVPUE server is defined in a workgroup, the SVPCPRB sends the
CPRB built from the user input to the EHCSVPUE server before issuing the CPRB to
the requested server. The EHCSVPUE server can check and modify the CPRB before
replying to SVPCPRB.

The EHCSVPUE exit server can be used to restrict user access to other servers. For
example, you can prevent users writing to a shared file but allow them to read the
same file.

124 LANDP Programming Guide

testing programs

Example: The IN function is issued, after which the following window appears:

d e
System Verification Program - Send CPRBs

 ┌─────────────────────────────────┬─────────────────────────────────┐

 │INPUT │ OUTPUT │

 ├─────────────────────────────────┼─────────────────────────────────┤

│ │ │

│Server Name: SPV │ PC Identifier: ZA │

│Function: IN Time Out: A │ Elapsed Time: AA'AA.A5'' │ < Send >

│Request Parm Length: 26 │ Router Return Code: OK │ < Cancel >

│Request Data Length: A │ Server Return Code: OK │ < Rep -> Req >

│Reply Parm Length: 26 │ Replied Parm Length: 5 │ < Help >

│Reply Data Length: A │ Replied Data Length: A │

│ │ │

│ Request Parameter Area │ Reply Parameter Area │

 │ ----------------------- │ ---------------------- │ Mode

 │ │ 4AAAA1 │

│ │ │ (x) Character

│ │ │ () Hexadecimal

│ │ │

│ │ │ Offset: 999

│ Request Data Area │ Reply Data Area │

 │ ----------------------- │ ----------------------- │

│ │ │

│ │ │ Char Code

│ │ │

│ │ │ (x) ASCII

│ │ │ () EBCDIC

│ │ │

 └─────────────────────────────────┴─────────────────────────────────┘

f g

 Chapter 10. Testing your application programs 125

testing programs

126 LANDP Programming Guide

sample applications

Chapter 11. Sample application programs

This chapter provides annotated lists of some of the supplied sample programs. The
chapter can be used for reference or tutorial purposes.

The contents are:

� “Sample application (C, Windows NT),” client and server

� “Sample application (COBOL, OS/2 AND Windows NT)” on page 149, client and
server

� “Sample client application (COBOL), DOS and OS/2” on page 170, client only

Sample application (C, Windows NT)

NT

The client and server application programs work together. The annotated
listings are:

� “Sample client application LDPCMAIN.C”

� “Sample user server LDPSMAIN.C” on page 139

These programs are written in Microsoft Visual C++.

Sample client application LDPCMAIN.C
Pages 128 to 136 show a sample WINDOWS NT program that illustrates the use of the
LANDP Common Application Programming Interface (CAPI). The code of this sample
is supplied in directory EHCN500\SAMPLES\CLIENT.

To highlight the interface to LANDP, the application is kept deliberately simple. The
most complex applications use the same interface. This sample client is used in
conjunction with the sample server LDPSMAIN.C. (See “Sample user server
LDPSMAIN.C” on page 139.)

The program contains a standard Windows NT entry-point module LDPCMAIN.C (page
129) and an application module LDPCPROC.C (following pages) that is called by
LDPCMAIN.C. Figure 9 on page 128 shows the flows in LANDP, LDPCPROC, and
LDPSMAIN.

LDPCMAIN.C:

1. Defines a class.

2. Creates a window.

3. Displays the window.

4. Gets messages from the window and calls LDPCPROC.C to process each
message as it is received.

 Copyright IBM Corp. 1992, 2000 127

sample client program, C, Windows NT

LDPCPROC.C is called by LDPCMAIN.C, and, depending on the message, processes
as follows:

� When the window is created, issues a LANDP initialize function (IN) and a LANDP
start posting events function (SP) to the LANDP supervisor.

� When a key is pressed in the window created, issues a user defined function (KP)
to a user-defined server.

� When an Asynchronous Event notification (Z5) is received by LANDP from the
server, a Windows message is generated and passed to the client. The client then
issues LANDP query function (QE) to query the event received.

� When the window is destroyed, issues a stop posting events function (TP).

 ┌──────────┐ ┌──────────┐ ┌──────────┐

 WM_CREATE──i| CLIENT | | LANDP | | SERVER |

| | | |j─SRVINIT─┤ |

| | | ├────IN───i| |

| ├────IN──────i| ├────TT───i| |

| ├────SP──────i| ├────TT───i| |

WM_KEYDOWN─i| | | | | |

| ├────KP───────┼──────────┼─────────i| |

| | ┌ ─ ─ ─ ─ ─ ┤ |j───Z5────┤ |

| | | | | |

┌WM_USER────i| | | | | | |

| ├────QE──────i| | | |

|WM_DESTROY─i| | | | | | |

| ├────TP──────i| ├────ES───i| |

 | | LDPCPROC | | | | | LDPSMAIN |

 └──────────┘ └──────────┘ └──────────┘

 └ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┘

Figure 9. Sample Windows application - events and function calls in client and server

Windows NT entry-point module LDPCMAIN.C
LDPCMAIN.C (listed on facing page) is a standard Windows NT entry module. The
numbers of the following notes refer to the highlighted numbers in the listing:

1. ldpcproc.h. is a header file containing the prototype of the function LDPWndProc
(note 1 on page 132), which receives messages from Windows NT. ldpcproc.h.

is listed on page 138.
2. This code displays a window, updates the window, translates data entered in the

window, and sends messages (DispatchMessage) to LDPCPROC.C,

128 LANDP Programming Guide

sample client program, C, Windows NT

/^ Include file and preamble ^/

#include <windows.h>

�1�
#include "ldpcproc.h"

/^ Main entry point, standard Windows code, no LANDP code ^/

int PASCAL WinMain(HINSTANCE hInstance,

 HINSTANCE hPrevInstance,

 LPSTR lpszCmdLine,

 int nCmdShow)

{

 WNDCLASS wc;

 HWND hWnd;

 MSG msg;

 wc.lpszClassName = "LDPClass";

 wc.hInstance = hInstance;

wc.style = CS_VREDRAW | CS_HREDRAW;

 wc.lpfnWndProc = LDPWndProc;

 wc.cbClsExtra = A;

 wc.cbWndExtra = A;

 wc.hCursor = LoadCursor(NULL,IDC_ARROW);

 wc.hIcon = NULL;

 wc.lpszMenuName = NULL;

 wc.hbrBackground = GetStockObject(WHITE_BRUSH);

 if (!RegisterClass(&wc))

 {

MessageBox(NULL, "LANDP Class Register Failed", "LDPCMAIN Error",MB_OK);

 }

hWnd = CreateWindow("LDPClass",

 "LDP Test",

 WS_OVERLAPPEDWINDOW,

 CW_USEDEFAULT,

 CW_USEDEFAULT,

 CW_USEDEFAULT,

 CW_USEDEFAULT,

 NULL,

 NULL,

 hInstance,

 NULL);

�2� ShowWindow(hWnd,nCmdShow);

 UpdateWindow(hWnd);

 while(GetMessage(&msg,NULL,A,A))

 {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 return A;

}

 Chapter 11. Sample application programs 129

sample client program, C, Windows NT

Windows NT application module LDPCPROC.C
The numbers of the following notes refer to the highlighted numbers in the listing on the
facing page.

1. The two include files are:

� windows.h, the standard Windows NT header file, which is in the system
directory

� ehcdefc.h (see page 9) is assumed to be in the same directory as the sample
application, and contains the following structures:

– Connectivity programming request block (CPRB)
– RMTREQ options control block (EHC_RMTREQ_OPTS)
– GETRPLY options control block (EHC_GETRPLY_OPTS)

2. For each LANDP function used in the program, define the function code as the
corresponding ASCII hexadecimal value.

3. Define mycprb as the CPRB for this program. EHC_CPRB is a type defined in
ehcdefc.h (see note 1).

4. Define two character arrays, parm_area and data_area, which are used by the
client program for sending and receiving parameters and data in its communication
with the server.

5. Define the character array supervisor to contain the name of the supervisor. The
length of the array is 9 to allow for the length of the CPRB field ehcserver (8
bytes) plus the end-of-string null byte. The assigned value "SPV ", is padded
with five blanks to fill the EHCSERVER field.

6. Define the character array myldpserv to contain the name of the server. The
length of the array is 9 to allow for the length of the CPRB field ehcserver (8
bytes) plus the end-of-string null byte. The assigned value "LDPSMAIN" needs no
padding to fill the ehcserver field.

7. Define the variable retcode as unsigned long. The program uses this variable to
store the return code from LANDP function calls.

8. To pass and receive parameter data for the Start Posting Events (SP) function call,
define a structure with one structure variable mySPparms. The structure has two
members, the window handle and the message identity.

9. To contain application data for the Start Posting Events (SP) function call, define a
character array SPdata with the value MYLDPSMAIN. This is a predefined value that
is recognized by the server application.

130 LANDP Programming Guide

sample client program, C, Windows NT

/^�1� Include file and preamble
#include <windows.h>

#include "ehcdefc.h"

/^�2� Define CPRB function codes (Supervisor and Server requests) and events ^/

#define IN Ax494E

#define SP Ax535A

#define TP Ax545A

#define QE Ax5145

#define KP Ax4B5A

/^�3� Declare a CPRB for processing requests ^/

EHC_CPRB mycprb;

/^�4� Declare parameter and data areas for use with the CPRB ^/

char parm_area[26];

char data_area[26];

/^�5� Define name of supervisor for all supervisor calls ^/

char supervisor[9] = "SPV ";

/^�6� Define name of the server for all server calls ^/

char myldpserv[9] = "LDPSMAIN";

/^�7� Declare return code ^/

unsigned long retcode;

/^�8� Declare a structure to contain the parameter data of the Start Posting ^/

/^ Events (SP) function call ^/

struct {

HWND WndHandle; /^ Window handle to receive message ^/

UINT MessageType; /^ Message identity ^/

 } mySPparms;

/^�9� ^/

Define the data sent in the Start Posting Events (SP) function call ^/

char SPdata[11] = "MYLDPSMAIN"; /^ data agreed with server application ^/

 Chapter 11. Sample application programs 131

sample client program, C, Windows NT

Windows NT application module LDPCPROC.C (continued)
The numbers of the following notes refer to the highlighted numbers in the listing on the
facing page. (For the names of CPRB fields, see page 5).

1. This is standard Windows NT code to receive a call from the entry module and
initiate this program. The switch statement uses the value of the UINT parameter,
uMessage, to determine which case routine is executed.

2. The case statement identifies the code to be executed for a window creation event.

The following four lines:
� Put the address of parm_area (defined on page 130, note 4) into both the

request and reply parameter address areas of the CPRB.
� Put the address of data_area (defined on page 130, note 4) into both the

request and reply data address areas of the CPRB.
3. For the Initialize function, no parameters or data are involved, therefore set the four

CPRB parameter and data length fields to zero. Set the ehcfunct field to the
Initialize code IN (defined on page 130, note 2).

4. The Initialize function is a request to the LANDP supervisor, so set the CPRB field
ehcserver to the value of the predefined variable supervisor.

5. This line is the standard LANDP function call and is the same for all requests in the
program.
� retcode (defined on page 130, note 7) holds the return code.
� RMTREQ is the common LANDP API routine.
� EHC_RESERVED is a required parameter to be entered as shown.
� mycprb (defined on page 130, note 3) is the address of the CPRB, which is

always required by RMTREQ. The contents of the CPRB distinguish one
request from another. For this request, the CPRB specifies IN as the function
code and the supervisor as the server.

6. Issue an error message if the function request fails.
7. For the Start Posting Events function (SP), set the CPRB as follows:

� Set the request parameter length to 8 bytes. The parameters are the
Windows handle and the message identity in mySPparms (defined on page 130,
note 8), with a combined length of 8 bytes.

� Set the request data length to 10 bytes, the length of SPdata (defined on page
130, note 9).

� Set the reply parameter and data lengths to 0 bytes.
� Set the function code to SP (defined on page 130, note 2).

8. These five statements prepare the CPRB for the function request.
� Copy the character array supervisor (defined on page 130, note 5), into the

server field of the CPRB.
� Assign the window handle to the WndHandle member of the structure variable

mySPparms

� Assign the message identity to the MessageType member of the structure
variable mySPparms

� Copy mySPparms to the request parameter field addressed by the CPRB.
� Copy SPdata to the request data field addressed by the CPRB. SPdata

contains a predefined value that is recognized by the server application.
(defined on page 130, note 9).

132 LANDP Programming Guide

sample client program, C, Windows NT

9. This is the standard LANDP call (note 5 above). The CPRB has been set as
described in notes 7 and 8 above. If the request fails, an error message is issued
as in note 6 above.

LRESULT CALLBACK LDPWndProc(HWND hWnd, UINT uMessage,

�1� WPARAM wParam, LPARAM lParam)

{

LRESULT lResult = AL;

 HDC hDC;

 PAINTSTRUCT ps;

 switch (uMessage)

 {

/^�2� Window Creation Event ^/

 case WM_CREATE:

mycprb.ehcqparmad = (char^)parm_area;

mycprb.ehcrparmad = (char^)parm_area;

mycprb.ehcqdataad = (char^)data_area;

mycprb.ehcrdataad = (char^)data_area;

/^�3� Initialize with LANDP and check return codes ^/

mycprb.ehcqparml = A; /^ Request parameter length ^/

mycprb.ehcqdatal = A; /^ Request data length ^/

mycprb.ehcrparml = A; /^ Reply parameter length ^/

mycprb.ehcrdatal = A; /^ Reply data length ^/

mycprb.ehcfunct = IN; /^ Function ID ^/

�4� memcpy(mycprb.ehcserver,supervisor,8); /^ Destination resource name ^/

�5� retcode = RMTREQ (&mycprb, EHC_RESERVED);

�6� if (retcode != A)

 {

MessageBox(NULL, "LANDP IN TO SPV Failed", "LDPCMAIN Error" ,MB_OK);

 }

/^�7� SP Function call^/

/^ Call the Start Posting Events function and check return codes ^/

mycprb.ehcqparml = 8; /^ Request parameter length ^/

mycprb.ehcqdatal = 1A; /^ Request data length ^/

mycprb.ehcrparml = A; /^ Reply parameter length ^/

mycprb.ehcrdatal = A; /^ Reply data length ^/

mycprb.ehcfunct = SP; /^ Function ID ^/

�8� memcpy(mycprb.ehcserver,supervisor,8); /^ Destination resource name ^/

mySPparms.WndHandle =hWnd; /^ Window handle to receive message^/

mySPparms.MessageType = WM_USER; /^ Message identity ^/

 memcpy(mycprb.ehcqparmad,&mySPparms,sizeof(mySPparms));

memcpy(mycprb.ehcqdataad,SPdata,1A); /^ data agreed with server ^/

�9� retcode = RMTREQ (&mycprb, EHC_RESERVED);

if (retcode != A)

 {

MessageBox(NULL, "LANDP SP TO SPV Failed", "LDPCMAIN Error" ,MB_OK);

 }

 Chapter 11. Sample application programs 133

sample client program, C, Windows NT

Windows NT application module LDPCPROC.C (continued)
The numbers of the following notes refer to the highlighted numbers in the listing on the
facing page. (For the names of CPRB fields, see page 5).

1. Contiguous case statements identify the start of a routine that is to be executed for
any of the conditions specified by the statements. Here, the conditions are the
pressing of the left, middle, or right mouse button, or of any keyboard key.

2. This is a function call to a user-written server, LDPSMAIN.C. No parameters or
data are passed, so set all the CPRB parameter and data length fields to zero.
Set the function code to KP (defined on page 130, note 2), recognized by
LDPSMAIN as Key-Pressed.

3. Copy the character array myldpserv (defined on page 130, note 6), which contains
the value “LDPSMAIN”, to the CPRB server field.

4. Set the CPRB request and reply parameter and data address fields to the
addresses of parm_area and data_area (defined on page 130, note 4)

5. Issue the standard LANDP call (explained in note 5, page 132). This call is
directed to a user-defined server LDPSMAIN.C, but it is exactly the same as the
calls to the supervisor. The contents of the CPRB define the type of function, the
server, and the input and output parameter and data fields.

6. If the function call fails, issue a message.
7. The case statement identifies a routine to be executed for a user event notification.

For the Query Event function (QE), set the CPRB as follows:

� Set the request parameter length to 8 bytes. The parameters are the
Windows handle and the message identity in mySPparms (defined on page 130,
note 8) with a combined length of 8 bytes.

� Set the request data length to 2 bytes, the length of wParam.

� Set the reply parameter length to 0 bytes.

� Set the reply data length to 10 bytes.

� Set the function code to QE (defined on page 130, note 2).

8. The following five statements:

� Copy the character array supervisor (defined on page 130, note 5), into the
server field of the CPRB.

� Assign the window handle to the WndHandle member of the structure variable
mySPparms.

� Assign the message identity to the MessageType member of the structure
variable mySPparms.

� Copy mySPparms to the request parameter field addressed by the CPRB.

� Copy wParam to the request data field addressed by the CPRB.

9. Issue the standard LANDP call (explained in note 5, page 132).
10. Issue a message based on the return code from the call.

134 LANDP Programming Guide

sample client program, C, Windows NT

 �1� /^ Keyboard key or Mouse Button pressed Event ^/

case WM_LBUTTONDOWN: /^ Any mouse button pressed ^/

 case WM_MBUTTONDOWN:

 case WM_RBUTTONDOWN:

case WM_KEYDOWN: /^ Any keyboard key is pressed ^/

 �2� /^ KP Function call - gives client process id to Server (LDPSMAIN) ^/

mycprb.ehcqparml = A; /^ Request parameter length ^/

mycprb.ehcqdatal = A; /^ Request data length ^/

mycprb.ehcrparml = A; /^ Reply parameter length ^/

mycprb.ehcrdatal = A; /^ Reply data length ^/

mycprb.ehcfunct = KP; /^ Function ID ^/

 �3� memcpy(mycprb.ehcserver,myldpserv,8); /^ Destination resource name ^/

 �4� mycprb.ehcqparmad = (char^)parm_area;

mycprb.ehcrparmad = (char^)parm_area;

mycprb.ehcqdataad = (char^)data_area;

mycprb.ehcrdataad = (char^)data_area;

 �5� retcode = RMTREQ (&mycprb, EHC_RESERVED);

 �6� if (retcode != A)

 {

MessageBox(NULL, "LANDP KP TO LDPSMAIN Failed", "LDPCMAIN Error",MB_OK);

 }

lResult = DefWindowProc(hWnd,uMessage, wParam, lParam);

 break;

 �7� /^ Event Triggered by Server's Asynchronous Event Notification ^/

 case WM_USER:

/^ Query the Event Received ^/

mycprb.ehcqparml = 8; /^ Request parameter length ^/

mycprb.ehcqdatal = 2; /^ Request data length ^/

mycprb.ehcrparml = A; /^ Reply parameter length ^/

mycprb.ehcrdatal = 1A; /^ Reply data length ^/

mycprb.ehcfunct = QE; /^ Function ID ^/

 �8� memcpy(mycprb.ehcserver,supervisor,8); /^ Destination resource name ^/

 mySPparms.WndHandle =hWnd;

mySPparms.MessageType = WM_USER;

 memcpy(mycprb.ehcqparmad,&mySPparms,sizeof(mySPparms));

 memcpy(mycprb.ehcqdataad,&wParam,2);

 �9� retcode = RMTREQ (&mycprb, EHC_RESERVED);

�1�� if (retcode != A)

 {

MessageBox(NULL, "LANDP QE TO SPV Failed", "LDPCMAIN Error" ,MB_OK);

 }

 else

 {

MessageBox(NULL, "LANDP EVENT WM_USER TRIGGERED", "LDPCMAIN STATUS",MB_OK);

 }

 break;

 Chapter 11. Sample application programs 135

sample client program, C, Windows NT

Windows NT application module LDPCPROC.C (continued)
The numbers of the following notes refer to the highlighted numbers in the listing on the
facing page. (For the names of CPRB fields, see page 5).

1. The screen repainting event is handled without any LANDP calls.

2. The case statement identifies a routine to be executed for a program ending event.
For the Terminate Program function (TP):

� Set the request parameter length to 8 bytes. The parameters are the
Windows handle and the message identity in mySPparms (defined on page 130,
note 8), with a combined length of 8 bytes.

� Set the request data length to 10 bytes, the length of SPdata (defined on page
130, note 9).

� Set the reply parameter length to 0 bytes.

� Set the reply data length to 0 bytes.

� Set the function code to TP (defined on page 130, note 2).

3. The following five statements:

� Copy the character array supervisor (defined on page 130, note 5), into the
server field of the CPRB.

� Assign the window handle to the WndHandle member of the structure variable
mySPparms

� Assign the message identity to the MessageType member of the structure
variable mySPparms

� Copy mySPparms to the request parameter field addressed by the CPRB.

� Copy the character array SPdata (defined on page 130, note 9). to the request
data field addressed by the CPRB.

4. This is the standard LANDP call (explained in note 5, page 132).

5. If the TP function call fails, issue a message.

6. This is the standard Windows function to close down message loop and end
program LDPCPROC and then LPDCMAIN.

7. This is the standard Windows processing for any event for which there is no case
statement.

 8. Terminate program.

136 LANDP Programming Guide

sample client program, C, Windows NT

/^ Screen needs repainting Event ^/

 �1� case WM_PAINT:

hDC = BeginPaint(hWnd, &ps);

TextOut(hDC, 1A, 1A, "Press Any Mouse or Keyboard Key", 31);

 EndPaint(hDC, &ps);

 break;

 �2� /^ Program Ending Event ^/

 case WM_DESTROY:

mycprb.ehcqparml = 8; /^ Request parameter length ^/

mycprb.ehcqdatal = 1A; /^ Request data length ^/

mycprb.ehcrparml = A; /^ Reply parameter length ^/

mycprb.ehcrdatal = A; /^ Reply data length ^/

mycprb.ehcfunct = TP; /^ Function ID ^/

 �3� memcpy(mycprb.ehcserver,supervisor,8); /^ Destination resource name ^/

 mySPparms.WndHandle =hWnd;

mySPparms.MessageType = WM_USER;

 memcpy(mycprb.ehcqparmad,&mySPparms,sizeof(mySPparms));

 memcpy(mycprb.ehcqdataad,SPdata,1A);

 �4� retcode = RMTREQ (&mycprb, EHC_RESERVED);

 �5� if (retcode != A)

 {

MessageBox(NULL, "LANDP TP TO SPV Failed", "LDPCMAIN Error" ,MB_OK);

 }

 �6� PostQuitMessage(A);

 break;

 �7� /^ All other Events ^/

 default:

lResult = DefWindowProc(hWnd,uMessage, wParam, lParam);

 break;

 }

 �8� return lResult;
}

 Chapter 11. Sample application programs 137

sample client program, C, Windows NT

 Header files

 SERVICE.H
This header file server.h contains the prototypes of two functions:

� ServiceStart (note 4 on page 142)

� ServiceStop (note 7 on page 146)

ServiceStart and ServiceStop are supplied in an object file. “Building the sample
server” on page 178 explains how to build this object with this module.

extern SECURITY_DESCRIPTOR Svc_Sd; // Security Descriptor

extern SECURITY_ATTRIBUTES Svc_Sa; // Security Attributes

extern BOOL Svc_Service; // Service indicator

int _cdecl ServiceStart(long Argc, char ^^Argv);

void _cdecl ServiceStop(void);

 LDPCPROC.H
The header file ldpcproc.h contains the prototype of the function LDPWndProc (note 1 on
page 132).

LRESULT CALLBACK LDPWndProc(HWND hWnd, UINT uMessage,

WPARAM wParam, LPARAM lParam);

138 LANDP Programming Guide

Sample user server LDPSMAIN.C
Pages 140 to 147 show a sample NT server program that demonstrates how the
LANDP Common Application Programming Interface (CAPI) can be used to develop
LANDP server applications. The code of this sample is supplied in directory
EHCN500\SAMPLES\SERVER.

To highlight the interface to LANDP, the server is kept deliberately simple. The most
complex servers use the same interface. This sample server is used in conjunction
with the client program LDCPMAIN.C. (See “Sample client application LDPCMAIN.C”
on page 127.)

LDPSMAIN.C:

1. Issues a LANDP server initialize function (SRVINIT).

2. Loops, issuing a get request (GETREQ), until an Unload LANDP function (ES) is
received.

3. In the loop:

a. Sets the reply to the IN message to get Timer Ticks from the supervisor every
5 seconds. This allows the server to do periodic processing independently of
client messages.

b. Processes the KP message from the client (LDPCMAIN). When receiving KP,
issues an Asynchronous Event Notification Z5 call to the client. A message
box is displayed when KP is received. To see the message box the Service
must have the "Allow Service to Interact with Desktop" check box set from
services in the control panel.

c. The server ends when ES is received.

ES is raised when a user enters ehcfree ldpsmain.exe from the command
line.

 Chapter 11. Sample application programs 139

sample user-written server, C, Windows NT

Windows NT sample user-written server, LDPSMAIN.C
The numbers of the following notes refer to the highlighted numbers in the listing on the
facing page.

1. The first six include files are standard C or Windows NT files, and should be in the
library search path.

ehcdefc.h contains the structure of the LANDP connectivity programming request
block (CPRB) and is assumed to be in the same directory as the sample
application.

service.h is required for service functions, and is assumed to be in the same
directory as the sample application.

2. For each LANDP function used, define the function code as the corresponding
ASCII hexadecimal value. Only Z5 is explicitly issued by this program. The others
are issued by the server recognition process or the client and are received as
event codes in the ehcfunct field of this program’s CPRB.

3. EHC_CPRB defines mycprb as the CPRB for this program.

4. Define two character arrays, parm_area and data_area, which can be used for
sending and receiving parameters and data in client communication.

5. EHC_CPRB defines myacprb as a second CPRB for this program. This is
necessary because communication with the client is not synchronized with the
timer-controlled processing.

6. Define two character arrays, aparm_area and adata_area, which can be used for
sending and receiving parameters and data. This is necessary because
communication with the client is not synchronized with the timer-controlled
processing.

140 LANDP Programming Guide

sample user-written server, C, Windows NT

/^ Include files ^/

�1�
#include <stdio.h>

#include <conio.h>

#include <stdlib.h>

#include <string.h>

#include <windows.h>

#include <process.h>

#include "ehcdefc.h"

/^ Server Functions from service.obj ^/

#include "service.h"

/^ Define CPRB function codes (Supervisor and Server requests) and events ^/

�2�
#define IN Ax494E

#define ES Ax4553

#define Z5 Ax5A35

#define KP Ax4B5A

#define TT Ax5454

#define AM Ax2626

#define AS Ax2A2A

/^ Declare a CPRB for processing requests ^/

�3�
EHC_CPRB mycprb;

/^ Declare parameter and data areas for use with the CPRB ^/

�4�
char parm_area[26];

char data_area[26];

/^ Declare an asynchronous CPRB for processing requests ^/

�5�
EHC_CPRB myacprb; /^ asynchronous request cprb ^/

/^^^/

/^ Declare parameter and data areas for use with the asynchronous CPRB ^/

�6�
/^^^/

char aparm_area[26];

char adata_area[26];

 Chapter 11. Sample application programs 141

sample user-written server, C, Windows NT

Windows NT sample user-written server, LDPSMAIN.C (continued)
The numbers of the following notes refer to the highlighted numbers in the listing on the
facing page.

1. Define the character array supervisor to contain the name of the supervisor. The
length of the array is 9 to allow for the length of the CPRB field ehcserver (8
bytes) plus the end-of-string null byte.

2. Define the character array ResourceOrigin to contain the name of this server. The
length of the array is 9 to allow for the length of the CPRB field ehcserver (8
bytes) plus the end-of-string null byte.

3. Define the Windows NT Timer Tick TT event interval to be 5 seconds.

4. The prototype of the function ServiceStart is in the server.h header file
(described on page 138).

The ServiceStart function is provided only in the supplied service.obj file. You
can use this file to create your own servers in the Windows NT environment.

5. Set up five fields required by the SRVINIT call. The syntax requires all the fields,
even though some are ignored in Windows NT.

� retcode is the return code, which is also used in other calls
� size, which is ignored in Windows NT
� init_error, which contains zero if no errors are found
� The far address of a routine in a 16-bit environment, which is ignored in

Windows NT
� optionsptr, which is the address of additional options

6. Before initializing this user-written server, initialize init_error to zero. Because
there are no additional options, set optionsptr to EHC_RESERVED, as required
by LANDP. Then issue the SRVINIT call with the prepared parameters.

7. These four lines:

� Put the address of parm_area (defined on page 140, note 4) into both the
request and reply parameter address areas of the CPRB.

� Put the address of data_area (defined on page 140, note 4) into both the
request and reply data address areas of the CPRB.

8. Initialize a loop with the while statement. The loop:

� Continues until an ES (End of Service) message is received.
� Issues a standard server GETREQ call to obtain the next pending request:

– &mycprb (defined on page 140, note 3) is the address of the CPRB.
– There are no additional parameters, therefore the LANDP field

EHC_RESERVED is used instead of the address of EHC_GETREQ_OPTS.
� Uses a switch statement to execute only the code appropriate to the event

received.
� When ES is received, executes no code, and exits on the next iteration.

The end of the loop is at �6� on page 147. When ES is received, control passes
to �7� on page 147.

142 LANDP Programming Guide

sample user-written server, C, Windows NT

/^ Define name of supervisor for all supervisor calls ^/

�1�
char supervisor[9] = "SPV ";

/^ Define name of this server ^/

�2�
char ResourceOrigin[9] = "LDPSMAIN";

/^ Set up the Timer Tick TT event interval ^/

�3�
short TT_interval = 5; /^ timer tick interval - 5 seconds ^/

�4�
int _cdecl ServiceStart (long argc, char ^argv [])

{

�5�
unsigned short retcode; /^ return code ^/

unsigned short size; /^ ignored in nt and os2 ^/

unsigned short init_error; /^ if A no errors found ^/

void EHC_PTR ^routine; /^ ignored in nt and os2 ^/

EHC_SRVINIT_OPTSP optionsptr; /^ additional options ^/

/^ Call SRVINIT to initialize the server ^/

�6�
init_error = A;

optionsptr = EHC_RESERVED;

retcode=SRVINIT(size, init_error,routine, optionsptr);

/^ Set the CPRB data and parm address to valid addresses ^/

�7�
mycprb.ehcqparmad = (char^)parm_area;

mycprb.ehcrparmad = (char^)parm_area;

mycprb.ehcqdataad = (char^)data_area;

mycprb.ehcrdataad = (char^)data_area;

/^ Loop Until End of Service Message is received ^/

�8�
while (mycprb.ehcfunct != ES) {

 /^^^/

/^ Call GETREQ to obtain pending requests ^/

 /^^^/

retcode = GETREQ(&mycprb, EHC_RESERVED);

 /^^^/

 Chapter 11. Sample application programs 143

sample user-written server, C, Windows NT

Windows NT sample user-written server, LDPSMAIN.C (continued)
The numbers of the following notes refer to the highlighted numbers in the listing on the
facing page.

1. The switch statement takes the function code in the incoming CPRB to determine
which case routine to execute.

2. In replying to the KP call, the CPRB used is that passed by the client. Set to zero
the only three fields that can be set by a server when replying to a service request.
(See “CPRB fields used and set by servers” on page 48.) These fields are the
server return code, the server-supplied replied parameter list length, and the
server-supplied replied data length. All variable information is in the CPRB passed
as the first parameter. The second parameter must always be EHC_RESERVED.

3. Start to prepare the asynchronous CPRB (note 5, page 140) for asynchronous
event notification call (Z5).

� Initialize all fields in the CPRB to zero.

� Set the server name length to 8 bytes.

� Set the server name to the value of supervisor (note 1, page 142).

� Set the function code to Z5 (defined note 2, page 140).

4. Set the destination workstation ID (the Z5 call) to the originator workstation ID from
the incoming CPRB (the KP call).

5. Set the originator process ID (of this server) using _getpid.

6. Set the destination process ID (the Z5 call) to the originator process ID from the
incoming CPRB (the KP call).

7. Set the originator resource name to ResourceOrigin (note 2, page 142).

8. Set the request parameter length to 3 bytes, and other parameter and data lengths
to zero.

9. Copy the explicit constant "MY1" into the parameter area.

10. Set the parameter and data area addresses to the addresses of aparm_area and
adata_area (note 6, page 140). The same areas are used for request and reply.

11. Issue a standard asynchronous client call (here the server, by sending a call to the
supervisor, is acting as a client). The parameters are as for a synchronous call
RMTREQ (note 5, page 142), except that the second parameter is always
EHC_RESERVED.

144 LANDP Programming Guide

sample user-written server, C, Windows NT

/^ Switch on type of request received ^/

�1�
switch (mycprb.ehcfunct) {

 case KP:

/^ Issue a reply to the KP request ^/

�2�
mycprb.ehcservrc = A;

mycprb.ehcrepldplen = A;

mycprb.ehcreplddlen = A;

retcode = RMTRPLY(&mycprb, EHC_RESERVED);

�3� /^ Issue the Asynchronous Event Notification (Z5 Function call) ^/

memset(&myacprb,A,sizeof(EHC_CPRB)); /^ initialize to A ^/

 myacprb.ehcservnamlen=8;

memcpy(myacprb.ehcserver,supervisor,8); /^ send to supervisor ^/

myacprb.ehcfunct = Z5; /^ Set function ID to Z5 ^/

�4� /^ get client pc id from the KP request ^/

 memcpy(myacprb.ehcdest_pc_id,mycprb.ehcpc_id,2);

�5� /^ get the process id for this server ^/

myacprb.ehcpid_origin = _getpid();

�6� /^ get client process id from the KP request ^/

myacprb.ehcpid_dest = mycprb.ehcpid_origin;

�7�
 memcpy(myacprb.ehcresource_origin,ResourceOrigin,8);

�8�
myacprb.ehcqparml = 3; /^ Request parameter length ^/

myacprb.ehcqdatal = A; /^ Request data length ^/

myacprb.ehcrparml = A; /^ Reply parameter length ^/

myacprb.ehcrdatal = A; /^ Reply data length ^/

/^ the parm area values are set by agreement with the client ^/

�9� /^ except a "A" at offset 2 resets a previous notification ^/

memcpy(aparm_area,"MY1",3); /^ Reason Codes ^/

/^ Set the CPRB data and parm address to valid addresses ^/

�1��
myacprb.ehcqparmad = (char^)aparm_area;

myacprb.ehcrparmad = (char^)aparm_area;

myacprb.ehcqdataad = (char^)adata_area;

myacprb.ehcrdataad = (char^)adata_area;

�11�
retcode = RMTAREQ (&myacprb, EHC_RESERVED);

MessageBox(NULL,"KP Message Received from Client","LDPSMAIN",MB_OK);

 break;

 Chapter 11. Sample application programs 145

sample user-written server, C, Windows NT

Windows NT sample user-written server, LDPSMAIN.C (continued)
The numbers of the following notes refer to the highlighted numbers in the listing on the
facing page.

1. In replying to the server recognition function (IN), set the CPRB as follows:

� Set the timer interval TT_interval (note 3, page 142) to 50ms.

� Copy the timer interval TT_interval to the reply parameter area addressed by
the CPRB.

� Set the server-supplied replied parameter list length to 2 bytes, the length of
TT_interval.

� Set the client-supplied reply parameter list length to 2 bytes, the length of
TT_interval.

� Set the server return code to zero.

� Set the server-supplied replied data length to zero.

Issue the standard server reply call.

2. This is a placeholder for possible processing to deal with the timer interval expiry
event (TT). As the sample is coded, this event is not processed and receives the
default reply.

3. This is a placeholder for possible processing to deal with the workstation or
process connection event (AM). As the sample is coded, this event is not
processed and receives the default reply.

4. This is a placeholder for possible processing to deal with the workstation or
process disconnection event (AS). As the sample is coded, this event is not
processed and receives the default reply.

5. default identifies a routine in the switch block that is executed for an expression
that does not match any of the case expressions. The routine here sets the
mandatory server fields to zero, and issues a server reply call.

6. This is the end of the loop initialized at �8� on page 143.

7. This is exit code when ES is received.

The last two lines of code are never reached in normal processing. They are activated
from the GUI panel created by the service.obj code.

8. The prototype of the function ServiceStop is in the server.h header file (described
on page 138).

9. This is exit code when service is stopped in the ServiceStop module.

146 LANDP Programming Guide

sample user-written server, C, Windows NT

�1�
case IN: /^ server recognition IN function ^/

/^ request timer ticks at 5 second intervals ^/

TT_interval=(TT_interval^1AA)/5; /^ convert to 5Ams intervals ^/

 memcpy(mycprb.ehcrparmad,&TT_interval,2);

mycprb.ehcrepldplen = 2;

 mycprb.ehcrparml =2;

mycprb.ehcservrc = A;

mycprb.ehcreplddlen = A;

retcode = RMTRPLY(&mycprb, EHC_RESERVED);

 break;

�2�
case TT: /^ Timer Tick - do periodic processing here ^/

/^ receives the timer tick at the requested interval ^/

/^ uncomment the next line to see the timer ticks ^/

/^ MessageBox(NULL, "TT Message Received", "LDPSMAIN",MB_OK); ^/

�3�
case AM: /^ && - Workstation or process connection ^/

/^ Here the server could add the workstation or process details ^/

/^ to a list. The state of each workstation or process could be ^/

/^ maintained during a complex message flow ^/

�4�
case AS: /^ ^^ - Workstation or process disconnection ^/

/^ Here the workstation or process details could be removed from^/

/^ the list ^/

�5�
 default:

 /^^/

/^ Issue a reply to all requests eg &&, ^^, ES etc. ^/

 /^^/

mycprb.ehcservrc = A;

mycprb.ehcrepldplen = A;

mycprb.ehcreplddlen = A;

retcode = RMTRPLY(&mycprb, EHC_RESERVED);

 break;

} /^ endswitch ^/

�6� } /^ endwhile ^/

�7�
 return A;

}

�8�
void _cdecl ServiceStop(void)

{

�9�
 ExitProcess(A);

}

 Chapter 11. Sample application programs 147

sample user-written server, C, Windows NT

148 LANDP Programming Guide

Sample application (COBOL, OS/2 AND Windows NT)

OS/2

NT

The client and server application programs work together. The annotated
listings are:

� “Sample client (COBOL, OS/2 and Windows NT) SAMP-CLI.CBL”
� “Sample server (COBOL, OS/2 and Windows NT) SAMPSERV.CBL” on

page 164

These programs are written in COBOL. Figure 10 shows the calls and
functions in the client and server.

┌──────────┐ ┌──────────┐ ┌──────────┐

│ CLIENT │ │SUPERVISOR│ │ SERVER │

│ call │ Function │ │ Function │ call │

│ │ │ │<─────────┤ SRVINIT │

│ RMTREQ ├────IN──────>│ │ │ │

│ RMTREQ ├────GD───────┼──────────┼────GD───>│ GETREQ │

│ │<────────────┼──────────┼──────────┤ RMTRPLY │

│ │ │ │ │ │

│ RMTREQ ├────GT───────┼──────────┼────GT───>│ GETREQ │

│ │ (NOWAIT) │ ┌─ ─ ─┼──────────┤ RMTRPLY │

│ │ │ │ │ │ │

│ RMTREQ ├────II──────>│ │ │ │

│ │<────────────┤ │ │ │ │

│ │ │ │ │ │

│ GETRPLY │<────────────┼─ ─ ┘ │ │ │

│ │ │ │ │ │

│ RMTREQ ├────ES──────>│ ├────ES───>│ GETREQ │

└──────────┘ └──────────┘ └──────────┘

Figure 10. Functions and calls in client and server

Sample client (COBOL, OS/2 and Windows NT) SAMP-CLI.CBL
The code of this sample is supplied in the directories EHCN500\SAMPLES\CLIENT
AND EHCO500\SAMPLES\CLIENT. The SAMP-CLI sample client program:

� Issues a LANDP initialize function.
� Issues a 'Get Date' function to the sample server.
� Issues a 'Get Time' function to the sample server using the NoWait option.
� Issues an 'Inquire Information' function to the supervisor.
� Issues a GETRPLY to get the results from the 'Get Time' function.
� Issues an 'End of Service' function to the supervisor.

Messages are displayed on the screen to show the results of the calls. If a call fails
with a bad router or server return code, an 'End of Service' function is issued and the
program ends.

 Chapter 11. Sample application programs 149

sample client program, COBOL, OS/2 and Windows NT

Sample client (COBOL, OS/2 and Windows NT) SAMP-CLI.CBL
(continued)
The numbers of the following notes refer to the highlighted numbers in the listing on the
facing page, which shows the Identification, Environment, and Data Divisions of the
sample program.

1. These are the mandatory Identification and Environment divisions. The only
non-keyword is the program name "SAMP-CLI.CBL". The rest of this page is the
Data Division, Working-Storage Section.

2. Define three variables, request and reply parameter areas, and a reply data area,
respectively. All are 26 characters long and can hold any valid character.

3. Define two 8-character variables initialized to the names of the supervisor and the
sample user-defined server.

4. Copy the LANDP-supplied copybook that includes the CPRB structure.

5. Define an errors flag ERROR-FLAG, and a conditional variable ERRORS-FOUND
that is set to true if ERROR-FLAG has the value Y.

6. Define variables to hold the required function codes (all byte-reversed).

150 LANDP Programming Guide

sample client program, COBOL, OS/2 and Windows NT

�1� IDENTIFICATION DIVISION.

 ^========================

 PROGRAM-ID. "SAMP-CLI.CBL".

 ENVIRONMENT DIVISION.

 ^=====================

 CONFIGURATION SECTION.

 ^----------------------

 INPUT-OUTPUT SECTION.

 ^---------------------

 DATA DIVISION.

 ^==============

 WORKING-STORAGE SECTION.

�2� ^ Parameter areas

A1 REQPARMAREA PIC X(26) VALUE IS SPACES.

A1 REPPARMAREA PIC X(26) VALUE IS SPACES.

A1 REPDATAAREA PIC X(26) VALUE IS SPACES.

�3� ^ Supervisor and sample server names

A1 SUPERVISOR PIC X(8) VALUE IS "SPV ".

A1 SAMPLE-SERVER PIC X(8) VALUE IS "SAMPSERV".

�4� ^ Copy the LANDP CPRB record structure etc.

 COPY "EHCDEFVA.CBL".

�5� A1 ERROR-FLAG PIC X.

 88 ERRORS-FOUND VALUE "Y".

�6� ^ Supervisor and sample server functions

^ (note reversal of characters)

A1 END-OF-SERVICE-FUNCTION PIC X(2) VALUE IS "SE".

A1 GET-DATE-FUNCTION PIC X(2) VALUE IS "DG".

A1 GET-TIME-FUNCTION PIC X(2) VALUE IS "TG".

A1 INITIALIZE-FUNCTION PIC X(2) VALUE IS "NI".

A1 INQUIRE-INFORMATION-FUNCTION PIC X(2) VALUE IS "II".

 Chapter 11. Sample application programs 151

sample client program, COBOL, OS/2 and Windows NT

Sample client (COBOL, OS/2 and Windows NT) SAMP-CLI.CBL
(continued)
The numbers in the following notes refer to the numbers in the listing on the facing
page. This is the main routine of the application, which is a series of nested ifs with
no else clauses. The first error causes control to pass to �6�, the end-of-service
routine.

Perform each subroutine in turn. Check the return code from each routine with an if
statement. If there are no errors, perform the next routine. The checked value is the
condition name ERRORS-FOUND associated with the conditional variable ERROR-FLAG (note
5, page 150). ERROR-FLAG is set in the CHECK-RETURN-CODES routine (note 1, page 154).

1. Issue an Initialize function call by performing ISSUE-IN-FUNCTION (note 2, page
162).

Check the result of the call by performing CHECK-RETURN-CODES (note 1, page 154).
If there are no errors, perform ISSUE-GD-FUNCTION. If there are errors, exit the
nested ifs.

2. Issue a Get Date function to the sample server by performing ISSUE-GD-FUNCTION

(note 3, page 154). Check the result of the call by performing CHECK-RETURN-CODES

(note 1, page 154).

If there are no errors:
a. Display the date. Before issuing a GET-DATE function call, ISSUE-GD-FUNCTION

has set EHCRDATAL to 8 and set the CPRB reply data address to the address of
REPDATAAREA (notes 3.h and 3.i, page 154).

 b. Perform ISSUE-GT-FUNCTION.

If there are errors, exit the nested ifs.
3. Issue a Get Time function call to the sample server by performing

ISSUE-GT-FUNCTION (note 2, page 158). Check the result of the call by performing
CHECK-RETURN-CODES (note 1, page 154). If there are no errors, perform
ISSUE-II-FUNCTION. If there are errors, exit the nested ifs.

4. Issue an Inquire Information function to the supervisor by performing
ISSUE-II-FUNCTION (note 1, page 162). Check the result of the call by performing
CHECK-RETURN-CODES (note 1, page 154). If there are no errors, display the PC ID
and perform ISSUE-GETRPLY. If there are errors, exit the nested ifs.

5. Issue a GETRPLY (Get Reply) by performing ISSUE-GETRPLY (note 1, page 158).
This call gets the result of a previous RMTREQ (Remote Request) issued by
ISSUE-GT-FUNCTION with the NoWait option. Check the result of the call by
performing CHECK-RETURN-CODES (note 1, page 154). If there are no errors, display
the time. Exit the nested ifs.

6. Issue an End of Service function by performing ISSUE-ES-FUNCTION (note 2, page
154). Check the result of the call by performing CHECK-RETURN-CODES (note 1, page
154).

Terminate the program.

152 LANDP Programming Guide

sample client program, COBOL, OS/2 and Windows NT

 PROCEDURE DIVISION.

 ^===================

�1� ^ Issue IN function

 PERFORM ISSUE-IN-FUNCTION

 PERFORM CHECK-RETURN-CODES

IF NOT ERRORS-FOUND THEN

�2� ^ Get Date

 PERFORM ISSUE-GD-FUNCTION

 PERFORM CHECK-RETURN-CODES

IF NOT ERRORS-FOUND THEN

DISPLAY "The date (in YYYYMMDD format) is "

 REPDATAAREA (1:EHCRDATAL)

�3� ^ Get Time

 PERFORM ISSUE-GT-FUNCTION

 PERFORM CHECK-RETURN-CODES

IF NOT ERRORS-FOUND THEN

�4� ^ Inquire Information

 PERFORM ISSUE-II-FUNCTION

 PERFORM CHECK-RETURN-CODES

IF NOT ERRORS-FOUND THEN

DISPLAY "The PC ID is " REPDATAAREA (1:2)

�5� ^ Get reply

 PERFORM ISSUE-GETRPLY

 PERFORM CHECK-RETURN-CODES

IF NOT ERRORS-FOUND THEN

DISPLAY "The time (in HHMMSS format) is "

 REPDATAAREA (1:EHCRDATAL)

 END-IF

 END-IF

 END-IF

 END-IF

 END-IF

�6� ^ End of Service

 PERFORM ISSUE-ES-FUNCTION

 PERFORM CHECK-RETURN-CODES

 STOP RUN.

 Chapter 11. Sample application programs 153

sample client program, COBOL, OS/2 and Windows NT

Sample client (COBOL, OS/2 and Windows NT) SAMP-CLI.CBL
(continued)
The numbers or letters in the following notes refer to the highlighted characters in the
listing on the facing page.

1. CHECK-RETURN-CODES checks the router and server return codes, using CPRB fields.

a. If the router return code is not zero, display the function code being processed
and the return code. UERERROK is declared and set to zero in the
LANDP-supplied copybook EHCDEFVA.CBL (note 4, page 150).

b. If the server return code is not zero, display the function code and the return
code.

2. ISSUE-ES-FUNCTION issues an ES (End of Service) function to the supervisor. Set
CPRB fields as follows:

a. Set function to "SE", the byte-reversed value of END-OF-SERVICE-FUNCTION

(note 6, page 150).
b. Set request parameter list length to zero.
c. Set request parameter list address to null.
d. Set request data length to zero. This causes the unloading of all servers (see

description of the ES function in LANDP Programming Reference, chapter
entitled “Supervisor local functions”.

e. Set request data address to null.
f. Set reply parameter list length to zero.
g. Set reply parameter list address to null.
h. Set reply data length to zero.
i. Set reply data address to null.
j. Set server name length to 8 bytes.
k. Set server name to "SPV ", the value of SUPERVISOR (note 3, page 150).
l. Issue the standard LANDP request call, passing:

The address in this program’s storage of the CPRB. EHC-CPRB is the
name of the CPRB structure in the LANDP-supplied copybook
EHCDEFVA.CBL (note 4, page 150). This enables the supervisor to
change the contents of the CPRB, making data available to the
application.

The value of the LANDP-supplied keyword EHC-RESERVED.

154 LANDP Programming Guide

sample client program, COBOL, OS/2 and Windows NT

�1� ^ Check the router and server return codes

 CHECK-RETURN-CODES.

�a� IF EHCRETCODE IS NOT EQUAL TO UERERROK THEN

DISPLAY "Router error issuing function " EHCFUNCT

DISPLAY "Router return code is " EHCRETCODE-BIN

MOVE "Y" TO ERROR-FLAG

 ELSE

�b� IF EHCSERVRC IS NOT EQUAL TO UERERROK THEN

DISPLAY "Server error issuing function " EHCFUNCT

DISPLAY "Server return code is " EHCSERVRC-BIN

MOVE "Y" TO ERROR-FLAG

 END-IF

 END-IF.

�2� ^ Issue an ES (End of Service) function to the supervisor

 ISSUE-ES-FUNCTION.

 �a� MOVE END-OF-SERVICE-FUNCTION TO EHCFUNCT

 �b� MOVE ZERO TO EHCQPARML

 �c� SET EHCQPARMAD TO NULL

 �d� MOVE ZERO TO EHCQDATAL

 �e� SET EHCQDATAAD TO NULL

 �f� MOVE ZERO TO EHCRPARML

 �g� SET EHCRPARMAD TO NULL

 �h� MOVE ZERO TO EHCRDATAL

 �i� SET EHCRDATAAD TO NULL

 �j� MOVE 8 TO EHCSERVNAMLEN

 �k� MOVE SUPERVISOR TO EHCSERVER

�l� CALL "RMTREQ" USING BY REFERENCE EHC-CPRB

 BY VALUE EHC-RESERVED

 END-CALL.

 Chapter 11. Sample application programs 155

sample client program, COBOL, OS/2 and Windows NT

Sample client (COBOL, OS/2 and Windows NT) SAMP-CLI.CBL
(continued)
The numbers or letters in the following notes refer to the highlighted characters in the
listing on the facing page.

1. ISSUE-GD-FUNCTION issues a GD (Get Date) function to the sample server. Set
CPRB fields as follows:

a. Set function code to "DG", the value of GET-DATE-FUNCTION (note 6, page 150).

b. Set request parameter list length to zero.

c. Set request parameter list address to null.

d. Set request data length to zero.

e. Set request data address to null.

f. Set reply parameter list length to zero.

g. Set reply parameter list address to null.

h. Set reply data length to 8 bytes.

i. Set reply data address to address of REPDATAAREA (note 2, page 150).

j. Set server name length to 8 bytes.

k. Set server name to "SAMPSERV", the value of SAMPLE-SERVER (note 3, page
150).

l. Issue the standard LANDP request call, passing:

The address in this program’s storage of the CPRB. EHC-CPRB is the
name of the CPRB structure in the LANDP-supplied copybook
EHCDEFVA.CBL (note 4, page 150). This enables the supervisor to
change the contents of the CPRB, making data available to the
application.

The value of the LANDP-supplied keyword EHC-RESERVED.

156 LANDP Programming Guide

sample client program, COBOL, OS/2 and Windows NT

^ Issue a GD (Get Date) function to the sample server

�1� ISSUE-GD-FUNCTION.

 �a� MOVE GET-DATE-FUNCTION TO EHCFUNCT

 �b� MOVE ZERO TO EHCQPARML

 �c� SET EHCQPARMAD TO NULL

 �d� MOVE ZERO TO EHCQDATAL

 �e� SET EHCQDATAAD TO NULL

 �f� MOVE ZERO TO EHCRPARML

 �g� SET EHCRPARMAD TO NULL

 �h� MOVE 8 TO EHCRDATAL

�i� SET EHCRDATAAD TO ADDRESS OF REPDATAAREA

 �j� MOVE 8 TO EHCSERVNAMLEN

 �k� MOVE SAMPLE-SERVER TO EHCSERVER

�l� CALL "RMTREQ" USING BY REFERENCE EHC-CPRB

 BY VALUE EHC-RESERVED

 END-CALL.

 Chapter 11. Sample application programs 157

sample client program, COBOL, OS/2 and Windows NT

Sample client (COBOL, OS/2 and Windows NT) SAMP-CLI.CBL
(continued)
The numbers or letters of the following notes refer to the highlighted characters in the
listing on the facing page.

1. ISSUE-GETRPLY issues a GETRPLY (Get Reply) request to get the results of a
previous RMTREQ (Remote Request) with the NoWait option, issued by
ISSUE-GT-FUNCTION. Set CPRB fields as follows:

a. Set timeout per request to zero.

b. Set reply parameter list length to zero.

c. Set reply parameter list address to null.

d. Set reply data length to 6 bytes.

e. Set reply data address to address of REPDATAAREA (note 2, page 150).

f. Set the NOWAIT-PARMAD (No Wait Parameter Address) field of EHC-GETRPLY-OPTS
(GETRPLY Options Control Block) to the address of EHC-NOWAIT-PARM, which
contains the RMTREQ no wait parameter structure. For the layout of
EHC-GETRPLY_OPTS and EHC-NOWAIT-PARM, see page 32. The structures of
EHC-GETRPLY_OPTS and EHC-NOWAIT-PARM are included in EHCDEFVA.CBL, which
is copied into working-storage (note 4, page 150).

g. Issue the standard LANDP request call, passing:

The address in this program’s storage of the CPRB. EHC-CPRB is the
name of the CPRB structure in the LANDP-supplied copybook
EHCDEFVA.CBL (note 4, page 150). This enables the supervisor to
change the contents of the CPRB, making data available to the
application.

The address of EHC-GETRPLY_OPTS, also included in EHCDEFVA.CBL.

158 LANDP Programming Guide

sample client program, COBOL, OS/2 and Windows NT

^ Issue a GETRPLY (Get Reply) to get the results of a previous

^ RMTREQ (Remote Request) issued with the NoWait option.

�1� ISSUE-GETRPLY.

 �a� MOVE ZERO TO EHCTIMEOUT

 �b� MOVE ZERO TO EHCRPARML

 �c� SET EHCRPARMAD TO NULL

 �d� MOVE 6 TO EHCRDATAL

�e� SET EHCRDATAAD TO ADDRESS OF REPDATAAREA

�f� SET NOWAIT-PARMAD OF EHC-GETRPLY_OPTS

TO ADDRESS OF

 EHC-NOWAIT-PARM

�g� CALL "GETRPLY" USING BY REFERENCE EHC-CPRB

BY REFERENCE EHC-GETRPLY-OPTS

 END-CALL.

 Chapter 11. Sample application programs 159

sample client program, COBOL, OS/2 and Windows NT

Sample client (COBOL, OS/2 and Windows NT) SAMP-CLI.CBL
(continued)
The numbers or letters of the following notes refer to the highlighted characters in the
listing on the facing page.

1. ISSUE-GT-FUNCTION issues a GT (Get Time) function to the sample server. Set
CPRB fields as follows:

a. Set function code to "TG", the value of GET-TIME-FUNCTION (note 6, page 150).

b. Set request parameter list length to zero.

c. Set request parameter list address to null.

d. Set request data length to zero.

e. Set request data address to null.

f. Set reply parameter list length to zero.

g. Set reply parameter list address to null.

h. Set reply data length to 6.

i. Set reply data address to address of REPDATAAREA (note 2, page 150).

j. Set server name length to 8 bytes.

k. Set server name to "SAMPSERV", the value of SAMPLE-SERVER (note 3, page
150).

l. Set the NOWAIT-PARMAD (No Wait Parameter Address) field of EHC-RMTREQ-OPTS
(RMTREQ Options Control Block) to the address of EHC-NOWAIT-PARM, which
contains the RMTREQ no wait parameter structure. For the layout of
EHC-RMTREQ-OPTS and EHC-NOWAIT-PARM, see pages 31 and 32. The structures
of EHC-RMTREQ-OPTS and EHC-NOWAIT-PARM are included in EHCDEFVA.CBL, which
is copied into working-storage (note 4, page 150).

m. Issue the standard LANDP request call, passing:

The address in this program’s storage of the CPRB. EHC-CPRB is the
name of the CPRB structure in the LANDP-supplied copybook
EHCDEFVA.CBL (note 4, page 150). This enables the supervisor to
change the contents of the CPRB, making data available to the
application.

The address of EHC-RMTREQ-OPTS, also included in EHCDEFVA.CBL.

160 LANDP Programming Guide

sample client program, COBOL, OS/2 and Windows NT

^ Issue a GT (Get Time) function to the sample server using the

^ NoWait option of the RMTREQ (Remote Request) call

�1� ISSUE-GT-FUNCTION.

 �a� MOVE GET-TIME-FUNCTION TO EHCFUNCT

 �b� MOVE ZERO TO EHCQPARML

 �c� SET EHCQPARMAD TO NULL

 �d� MOVE ZERO TO EHCQDATAL

 �e� SET EHCQDATAAD TO NULL

 �f� MOVE ZERO TO EHCRPARML

 �g� SET EHCRPARMAD TO NULL

 �h� MOVE 6 TO EHCRDATAL

�i� SET EHCRDATAAD TO ADDRESS OF REPDATAAREA

 �j� MOVE 8 TO EHCSERVNAMLEN

 �k� MOVE SAMPLE-SERVER TO EHCSERVER

�l� SET NOWAIT-PARMAD OF EHC-RMTREQ-OPTS

TO ADDRESS OF

 EHC-NOWAIT-PARM

�m� CALL "RMTREQ" USING BY REFERENCE EHC-CPRB

BY REFERENCE EHC-RMTREQ-OPTS

 END-CALL.

 Chapter 11. Sample application programs 161

sample client program, COBOL, OS/2 and Windows NT

Sample client (COBOL, OS/2 and Windows NT) SAMP-CLI.CBL
(continued)
The numbers or letters of the following notes refer to the highlighted characters in the
listing on the facing page.

1. ISSUE-II-FUNCTION issues an Inquire Information function to the supervisor. Set
CPRB fields as follows:

a. Set function code to "II", the value of INQUIRE-INFORMATION-FUNCTION (note 6,
page 150).

b. Move "L" to the request parameter list area. This parameter value requests
the return of the PC ID. (See the table “Reply DATA values when 'L' entered
in Request PARMLIST” in the “Inquire information (II function)” section in the
“Supervisor local functions” chapter of the LANDP Programming Reference.).

c. Set request parameter list length to 1 byte.
d. Set request parameter list address to the address of REQPARMAREA (note 2,

page 150).
e. Set request data length to 0 bytes.
f. Set request data address to null.
g. Set reply parameter list length to zero.
h. Set reply parameter list address to null.
i. Set reply data length to 10 bytes.
j. Set reply data address to address of REPDATAAREA (note 2, page 150).

k. Set server name length to 8 bytes.
l. Set server name to the value of SUPERVISOR (note 3, page 150).

m. Issue the standard LANDP request call, passing:
� The address in this program’s storage of the CPRB. EHC-CPRB is the

name of the CPRB structure in the LANDP-supplied copybook
EHCDEFVA.CBL (note 4, page 150). This enables the supervisor to
change the contents of the CPRB, making data available to the
application.

� The value of EHC-RESERVED, also included in EHCDEFVA.CBL.

2. ISSUE-IN-FUNCTION issues an Initialize function to the supervisor. Set CPRB fields
as follows:

a. Set function code to "NI", the value of INITIALIZE-FUNCTION (note 6, page
150).

b. Set request parameter list length to 0 bytes.
c. Set request parameter list address to null.
d. Set request data length to 0 bytes.
e. Set request data address to null.
f. Set reply parameter list length to 6 bytes.
g. Set reply parameter list address to address of REPPARMAREA (note 2, page

150).
h. Set reply data length to 0 bytes.
i. Set reply data address to null.
j. Set server name length to 8 bytes.
k. Set server name to the value of SUPERVISOR (note 3, page 150).
l. Issue the standard LANDP request call as in �1m�.

162 LANDP Programming Guide

sample client program, COBOL, OS/2 and Windows NT

^ Issue an II (Inquire Information) function to the supervisor

^ (Put an "L" in the request PARMLIST to obtain the PC ID)

�1� ISSUE-II-FUNCTION.

�a� MOVE INQUIRE-INFORMATION-FUNCTION TO EHCFUNCT

 �b� MOVE "L" TO REQPARMAREA

 �c� MOVE 1 TO EHCQPARML

�d� SET EHCQPARMAD TO ADDRESS OF REQPARMAREA

 �e� MOVE ZERO TO EHCQDATAL

 �f� SET EHCQDATAAD TO NULL

 �g� MOVE ZERO TO EHCRPARML

 �h� SET EHCRPARMAD TO NULL

 �i� MOVE 1A TO EHCRDATAL

�j� SET EHCRDATAAD TO ADDRESS OF REPDATAAREA

 �k� MOVE 8 TO EHCSERVNAMLEN

 �l� MOVE SUPERVISOR TO EHCSERVER

�m� CALL "RMTREQ" USING BY REFERENCE EHC-CPRB

 BY VALUE EHC-RESERVED

 END-CALL.

^ Issue an IN (Initialize) function to the supervisor

�2� ISSUE-IN-FUNCTION.

 �a� MOVE INITIALIZE-FUNCTION TO EHCFUNCT

 �b� MOVE ZERO TO EHCQPARML

 �c� SET EHCQPARMAD TO NULL

 �d� MOVE ZERO TO EHCQDATAL

 �e� SET EHCQDATAAD TO NULL

 �f� MOVE 6 TO EHCRPARML

�g� SET EHCRPARMAD TO ADDRESS OF REPPARMAREA

 �h� MOVE ZERO TO EHCRDATAL

 �i� SET EHCRDATAAD TO NULL

 �j� MOVE 8 TO EHCSERVNAMLEN

 �k� MOVE SUPERVISOR TO EHCSERVER

�l� CALL "RMTREQ" USING BY REFERENCE EHC-CPRB

 BY VALUE EHC-RESERVED

 END-CALL.

END PROGRAM "SAMP-CLI.CBL".

 Chapter 11. Sample application programs 163

Sample server (COBOL, OS/2 and Windows NT) SAMPSERV.CBL
This sample program shows how the LANDP Common Application Programming
Interface (CAPI) can be used to develop LANDP server applications. This sample
implements a very simple server but demonstrates the same principles that are used by
functionally richer server applications. The code of this sample is supplied in the
directories EHCN500\SAMPLES\SERVER AND EHCO500\SAMPLES\SERVER.

The program:

� Calls SRVINIT to register itself with LANDP.

� Repeats the following steps until the ES (End of Service) function is received:

– Calls GETREQ to receive a request.

– Performs various actions depending on the type of request.

- GD (Get Date): checks parameters and returns the date.

- GT (Get Time): checks parameters and returns the time.

- Calls RMTRPLY to reply to the request.

The numbers of the following notes refer to the highlighted numbers in the listing on the
facing page. This listing shows the Identification, Environment, and Data Divisions of
the sample program.

1. These are the mandatory Identification and Environment divisions. The only
non-keyword is the program name "SAMPSERV.CBL". The rest of this page is the
Data Division, Working-Storage Section and Linkage Section.

2. Copy the LANDP-supplied copybook that includes the CPRB structure.

3. Set up two parameters for the SRVINIT function. These represent the size and
process_request parameters that are required by LANDP for DOS, but ignored by
LANDP for OS/2 and Windows NT. They are included for compatibility purposes.

4. Set up the init_error field used in the SRVINIT call (note 2 page 166) as the
parameter that records an error detected during the initialization phase of the
server.

5. Define variables to hold the required function codes (byte-reversed because the
sample was tested on an Intel machine).

6. Set up a variable to hold the returned error code if a client call passes an incorrect
reply data length in the CPRB.

7. Set variables to hold the correct returned data lengths for GET-DATE and GET-TIME.

8. Set up linkage-section definitions. These are applied to storage addresses passed
by the client in the reply data address field of the CPRB (note 3.i, page 154).

164 LANDP Programming Guide

�1� IDENTIFICATION DIVISION.

 ^========================

 PROGRAM-ID. "SAMPSERV.CBL".

 ENVIRONMENT DIVISION.

 ^=====================

 CONFIGURATION SECTION.

 ^----------------------

 INPUT-OUTPUT SECTION.

 ^---------------------

 DATA DIVISION.

 ^==============

 WORKING-STORAGE SECTION.

 ^------------------------

�2� ^ Copy the LANDP CPRB record structure etc.

 COPY "EHCDEFVA.CBL".

�3� ^ SRVINIT dummy parameters

 A1 FOUR-BYTES PIC 9(8)

USAGE IS COMP-5 VALUE IS ZERO.

 A1 TWO-BYTES PIC 9(4)

USAGE IS COMP-5 VALUE IS ZERO.

�4� ^ SRVINIT parameter

A1 INIT-ERROR PIC 9(4) USAGE IS COMP-5.

�5� ^ Functions handled by the server (note reversal of characters)

A1 END-OF-SERVICE PIC X(2) VALUE IS "SE".

A1 GET-DATE PIC X(2) VALUE IS "DG".

A1 GET-TIME PIC X(2) VALUE IS "TG".

�6� ^ Error code for GET-DATE and GET-TIME calls (note byte reversal)

A1 BAD-REPLY-DATA-LENGTH PIC X(4) VALUE IS X"5A5AAAA1".

�7� ^ Lengths of returned data

A1 DATE-LENGTH PIC 9(8) USAGE IS COMP-5.

A1 TIME-LENGTH PIC 9(8) USAGE IS COMP-5.

 LINKAGE SECTION.

 ^----------------

�8� ^ Storage (supplied by the client) for the results of

^ GET-DATE and GET-TIME

 A1 DATE-YYYYMMDD PIC X(8).

 A1 TIME-HHMMSS PIC X(6).

 Chapter 11. Sample application programs 165

Sample server (COBOL, OS/2 and Windows NT) SAMPSERV.CBL
(continued)
The numbers of the following notes refer to the highlighted numbers in the listing on the
facing page, which is the main routine of SAMPSERV.

1. Set up the lengths of the returned data.

Set DATE-LENGTH (note 7, page 164) to length of DATE-YYYYMMDD (note 8, page 164).

Set TIME-LENGTH to length (note 7, page 164) TIME-HHMMSS (note 8, page 164).
2. Issue a SRVINIT call to register this program as a server with LANDP.

The first and third parameters (note 3, page 164) are ignored in LANDP for OS/2
and Windows NT, but are included for compatibility with LANDP for DOS

The second parameter (note 4, page 164) is required to hold an error code if the
call fails.

EHC-RESERVED (defined in EHCDEFVA.CBL, note 2, page 164) is a required
parameter.

3. Initialize a loop to iterate until the function code in the passed CPRB is "SE", the
byte-reversed value of END-OF-SERVICE (note 5, page 164). The loop ends at �11�.

4. Issue a Get Request call to obtain the next pending request. EHC-CPRB (defined in
EHCDEFVA.CBL, note 2, page 164) is the CPRB structure applied to the first
parameter of the incoming request. If the call used additional options,
EHC-RESERVED would be replaced by EHC-GETREQ-OPTS (also defined in
EHCDEFVA.CBL, note 2, page 164).

5. Initialize EVALUATE statement, which ends at �9�. When a WHEN phrase is true,
the associated statement is executed.

6. When the function code in the incoming request is GET-DATE (note 5, page 164),
perform PROCESS-GET-DATE (note 1, page 168).

7. When the function code in the incoming request is GET-TIME (note 5, page 164),
perform PROCESS-GET-TIME (note 2, page 168).

8. When the function code in the incoming request is neither GET-DATE nor
GET-TIME, in the client’s CPRB:
� Set the server-provided parameter list length to zero.
� Set the server-provided data length to zero.
� Set the server return code to zero, using UERERROK, defined and initialized in

EHCDEFVA.CBL (note 2, page 164).
This action is taken for any value (including "SE") of EHCFUNCT other than "DG" or
"TG".

9. End EVALUATE statement.
10. Issue a Remote Reply call returning exactly the same parameters as received by

the Get Request call, the address of the CPRB and the value of EHC-RESERVED.
The contents of the CPRB have been changed.

11. End PERFORM statement.
12. Terminate program.

166 LANDP Programming Guide

 PROCEDURE DIVISION.

 ^===================

 �1� ^ Set up lengths of returned data

MOVE LENGTH OF DATE-YYYYMMDD TO DATE-LENGTH.

MOVE LENGTH OF TIME-HHMMSS TO TIME-LENGTH.

 �2� ^ Register the server with LANDP (note that the first and third

^ parameters are ignored under LANDP for OS/2 and Windows NT)

CALL "SRVINIT" USING BY VALUE TWO-BYTES

BY VALUE INIT-ERROR

BY VALUE FOUR-BYTES

BY VALUE EHC-RESERVED

 END-CALL.

 �3� ^ Loop until ES (End of Service) function is received

PERFORM WITH TEST AFTER

UNTIL EHCFUNCT IS EQUAL TO END-OF-SERVICE

 �4� ^ Get a request

CALL "GETREQ" USING BY REFERENCE EHC-CPRB

 BY VALUE EHC-RESERVED

 END-CALL

 �5� EVALUATE TRUE

 �6� ^ GD (Get Date) received

WHEN EHCFUNCT IS EQUAL TO GET-DATE

 PERFORM PROCESS-GET-DATE

 �7� ^ GT (Get Time) received

WHEN EHCFUNCT IS EQUAL TO GET-TIME

 PERFORM PROCESS-GET-TIME

 �8� ^ Other function received

 WHEN OTHER

 MOVE ZERO TO EHCREPLDPLEN

 MOVE ZERO TO EHCREPLDDLEN

MOVE UERERROK TO EHCSERVRC

 �9� END-EVALUATE

�1�� ^ Reply to a request

CALL "RMTRPLY" USING BY REFERENCE EHC-CPRB

 BY VALUE EHC-RESERVED

 END-CALL

�11� END-PERFORM.

�12� STOP RUN.

 Chapter 11. Sample application programs 167

Sample server (COBOL, OS/2 and Windows NT) SAMPSERV.CBL
(continued)

The numbers or letters of the following notes refer to the highlighted characters in the
listing on the facing page.

1. PROCESS-GET-DATE sets fields in the client CPRB for an RMTRPLY call to be issued
by the main routine. The call is in reply to a GET-DATE function call from the
client.
a. If the reply data length in the CPRB is equal to the date field length,

DATE-LENGTH (note 8, page 164), set CPRB as follows, lines �1)�-�5)�:
1) Set DATE-YYYYMMDD (note 8, page 164 and note 1, page 166) to apply to

the area pointed to by the reply data address.
2) Set DATE-YYYYMMDD (that is, the area pointed to by reply data address) to

the value returned by the function CURRENT-DATE. DATE-LENGTH gives the
number of characters, starting at position 1.

3) Set server-provided replied parameter list length field to zero.
4) Set server-provided replied data length field to the value of DATE-LENGTH.
5) Set the server return code to zero, using UERERROK (defined and initialized

in EHCDEFVA.CBL, note 2, page 164).
b. If the reply data length in the CPRB is not equal to DATE-LENGTH, set CPRB as

follows, lines �1)�-�3)�:
1) Set server-provided replied parameter list length field to zero.
2) Set server-provided replied data length field to zero.
3) Set the server return code to BAD-REPLY-DATA-LENGTH (note 6, page 164),

indicating that the client passed an incorrect reply data length.
c. End of if statement at �1a�.

2. PROCESS-GET-TIME sets fields in the client CPRB for an RMTRPLY call to be issued
by the main routine. The call is in reply to a GET-TIME function call from the
client.
a. If the reply data length in the CPRB is equal to the time field length,

TIME-LENGTH (note 8, page 164), set CPRB as follows, lines �1)�-�5)�:
1) Set TIME-HHMMSS (note 8, page 164 and (note 1, page 166) to apply to the

area pointed to by the reply data address.
2) Set TIME-HHMMSS (that is, the area pointed to by reply data address) to the

value returned by the function CURRENT-DATE (TIME-LENGTH gives the
number of characters, starting at position 9).

3) Set server-provided replied parameter list length field to zero.
4) Set server-provided replied data length field to the value of TIME-LENGTH.
5) Set the server return code to zero, using UERERROK (defined and initialized

in EHCDEFVA.CBL, (note 2, page 164).
b. If the reply data length in the CPRB is not equal to TIME-LENGTH, set CPRB as

follows, lines �1)�-�3)�:
1) Set server-provided replied parameter list length field to zero.
2) Set server-provided replied data length field to zero.
3) Set the server return code to BAD-REPLY-DATA-LENGTH (note 6, page 164),

indicating that the client passed an incorrect reply data length.
c. End of if statement at �2a�.

168 LANDP Programming Guide

3. This line is documentation.

^ If the reply data length is correct copy the date into the

^ client's storage and set up the replied parameter and data

^ lengths and a good server return code. If the reply data length

^ is incorrect set up the replied parameter and data lengths and a

^ bad server return code.

�1� PROCESS-GET-DATE.

�a� IF EHCRDATAL IS EQUAL TO DATE-LENGTH

 �1)� SET ADDRESS OF DATE-YYYYMMDD TO EHCRDATAAD

 �2)� MOVE FUNCTION CURRENT-DATE (1:DATE-LENGTH)

 TO DATE-YYYYMMDD

 �3)� MOVE ZERO TO EHCREPLDPLEN

 �4)� MOVE DATE-LENGTH TO EHCREPLDDLEN

 �5)� MOVE UERERROK TO EHCSERVRC

 �b� ELSE

 �1)� MOVE ZERO TO EHCREPLDPLEN

 �2)� MOVE ZERO TO EHCREPLDDLEN

 �3)� MOVE BAD-REPLY-DATA-LENGTH TO EHCSERVRC

 �c� END-IF.

^ If the reply data length is correct copy the time into the

^ client's storage and set up the replied parameter and data

^ lengths and a good server return code. If the reply data length

^ is incorrect set up the replied parameter and data lengths and a

^ bad server return code.

�2� PROCESS-GET-TIME.

�a� IF EHCRDATAL IS EQUAL TO TIME-LENGTH

�1)� SET ADDRESS OF TIME-HHMMSS TO EHCRDATAAD

�2)� MOVE FUNCTION CURRENT-DATE (9:TIME-LENGTH)

 TO TIME-HHMMSS

 �3)� MOVE ZERO TO EHCREPLDPLEN

 �4)� MOVE TIME-LENGTH TO EHCREPLDDLEN

 �5)� MOVE UERERROK TO EHCSERVRC

 �b� ELSE

 �1)� MOVE ZERO TO EHCREPLDPLEN

 �2)� MOVE ZERO TO EHCREPLDDLEN

 �3)� MOVE BAD-REPLY-DATA-LENGTH TO EHCSERVRC

 �c� END-IF.

�3� END PROGRAM "SAMPSERV.CBL".

 Chapter 11. Sample application programs 169

sample client program, COBOL, DOS and OS/2

Sample client application (COBOL), DOS and OS/2

OS/2 DOS
The sample program SAMPLECB.CBL shows how the LANDP Common
Application Programming Interface (CAPI) can be used to develop LANDP
client applications. This sample is portable between LANDP for DOS and
LANDP for OS/2. To highlight the interface to LANDP, the application is kept
deliberately simple. The most complex applications use the same interface.
The code of this sample is supplied in the directories
EHCD500\SAMPLES\CLIENT AND EHCO500\SAMPLES\CLIENT.

Note: Because the sample was tested on an Intel machine, function codes
and event codes are byte-reversed. See “Function, return, and event codes”
on page xv.

This application:

1. Issue a LANDP initialize function
2. Repeat the following steps:

a. Issue Start Timer function with a one second interval.
b. Issue Wait Multiple function to wait for any asynchronous event (one of them

is Timer expired).
c. Determine why the Wait Multiple returned.
d. If the reason was Timer expired, display the timeout counter and continue.
e. If the reason was Keyboard pressed, display the reason and terminate.
f. If the reason was any other, display a suitable message and continue.

Sample client application program SAMPLECB.CBL
The numbers of the following notes refer to the highlighted numbers in the listing on the
facing page.

1. These lines are the mandatory identification division and environment

division. The only non-keywords are _MAIN, the name that identifies the object
program to the system, and ibm-personal-computer, which is documentation.

2. Define data area for setting up the Timer function call. The minutes and seconds
fields each contain three digits initialized to zeros.

3. Define request and reply parameter fields for function calls. Each field contains 26
characters initialized to blanks. The fields can include any valid character.

4. Define the variable SUPERVISOR as 8 characters initialized to SPV with five trailing
blanks. This variable is used to set the CPRB server field.

5. Copy the supplied file EHCDEFCB into working storage. This file defines the CPRB
(connectivity programming request block, see page 5).

6. Define the LANDP function and event codes required by the program. The codes
are held in byte-reversed mode in two-character fields. In the order defined, the
functions are Activate Timer, Wait for Asynchronous Events, Keyboard Event, and
Initialize.

7. Define a field to contain the return code from the server (to an activate timer call) if
the timer is already set. This field is used at �3�, page 175.

170 LANDP Programming Guide

sample client program, COBOL, DOS and OS/2

�1� identification division.

 program-id. "_MAIN".

 environment division.

 configuration section.

 source-computer. ibm-personal-computer.

 input-output section.

 data division.

 working-storage section.

�2� ^ Definition of the Datarea for the Supervisor

 A1 DATAREA.

A2 MINUTES PIC 9(3) USAGE IS COMP VALUE IS A.

A2 SECONDS PIC 9(3) USAGE IS COMP VALUE IS A.

�3� ^ Parameter area

A1 REQPARMAREA PIC X(26) VALUE IS SPACES.

A1 REPPARMAREA PIC X(26) VALUE IS SPACES.

�4� ^ The name of the Supervisor is SPV

A1 SUPERVISOR PIC X(8) VALUE IS 'SPV '.

�5� ^ The CPRB definition

 COPY EHCDEFCB.CBL.

�6� ^ Some Supervisor functions

77 T1 PIC X(2) VALUE IS '1T'.

77 WM PIC X(2) VALUE IS 'MW'.

77 KB PIC X(2) VALUE IS 'BK'.

77 INF PIC X(2) VALUE IS 'NI'.

�7� ^ The status returned when the Timer is already set

77 P3 PIC X(4) VALUE IS X"335AAAA1".

 Chapter 11. Sample application programs 171

sample client program, COBOL, DOS and OS/2

Sample client application program SAMPLECB.CBL (continued)
The numbers of the following notes refer to the highlighted numbers in the listing on the
facing page.

1. Set CPRB fields for the IN call as follows:
� Set server field to the required value SPV using the variable SUPERVISOR

(defined in note 4, page 170).
� Set function code to the required value NI using the variable INF (defined in

note 6, page 170).
� Set request data length to zero.
� Set request parameter length to zero.
� Set reply parameter length to zero.
� Issue the standard LANDP request call, passing:

– The value of the LANDP-supplied keyword EHC-RESERVED
– The address in this program’s storage of the CPRB (EHC-CPRB is the

name of the CPRB structure in the supplied copybook EHCDEFCB.CBL
(note 5, page 170)). This enables the supervisor to change the contents
of the CPRB, in this example by inserting the return codes.

2. If the return code from the IN call is zero (successful completion), skip the nested
if then else clause and go to �5� to start the application loop.

3. If the router return code is not zero, display a message and terminate program.
4. If the server return code is not zero, display a message and terminate program.
5. The label forever identifies the start of a loop. Control returns here when a timer

event or unrecognizable asynchronous event is detected (notes 5 and 6, page
176).

6. Set CPRB fields for the Activate Timer (T1) call as follows:
� Set server field to the required value SPV using the variable SUPERVISOR

(defined in note 4, page 170).
� Set function code to the required value 1T using the variable T1 (defined in

note 6, page 170).
� Set MINUTES to zero. Set SECONDS to 1. These are the minutes and

seconds parts of the timer interval held in the non-CPRB field DATAREA
(defined in note 2, page 170). DATAREA defines the format of the request
data area required by an Activate Timer function call. For a description of the
activator and deactivator timer functions, see LANDP Programming Reference,
chapter entitled “Supervisor local functions”. Here, the requested timer interval
is one second.

� Set the CPRB request data length to 4 bytes, the length of DATAREA.
� Set the CPRB request data address to the address of DATAREA.
� Set request parameter length to 26 bytes.
� Set reply parameter length to 26 bytes.
� Set request parameter address to the address of REQPARMAREA (note 3,

page 170).
� Set reply parameter address to the address of REPPARMAREA (note 3, page

170).
7. Issue the standard LANDP request call, passing:

� The value of the LANDP-supplied keyword EHC-RESERVED
� The address in this program’s storage of the CPRB (EHC-CPRB is the name

of the CPRB structure in the LANDP-supplied copybook EHCDEFCB.CBL

172 LANDP Programming Guide

sample client program, COBOL, DOS and OS/2

(note 5, page 170)). This enables the supervisor to change the contents of the
CPRB, in this example by inserting the return codes.

 procedure division.

�1� ^ Issue function IN.

move SUPERVISOR to EHCSERVER.

move INF to EHCFUNCT.

move A to EHCQDATAL.

move A to EHCQPARML.

move A to EHCRPARML.

call "__RMTREQ" using

by value EHC-RESERVED

by reference EHC-CPRB

 end-call.

^ Parse return codes from the Supervisor

�2� if (return-code not = A) then

�3� if (EHCRETCODE not = UERERROK) then

display 'Router error issuing function IN'

 stop run

 else

�4� if (EHCSERVRC not = UERERROK) then

display 'Server error issuing function IN'

 stop run

 end-if

 end-if

 end-if.

^ Beginning of the eternal loop

�5� forever.

�6� ^ Issue Activate Timer function (T1) to the Supervisor

move SUPERVISOR to EHCSERVER.

move T1 to EHCFUNCT.

move A to MINUTES.

move 1 to SECONDS.

move 4 to EHCQDATAL.

set EHCQDATAAD to address of DATAREA.

move 26 to EHCQPARML.

move 26 to EHCRPARML.

set EHCQPARMAD to address of REQPARMAREA.

set EHCRPARMAD to address of REPPARMAREA.

�7� call "__RMTREQ" using

by value EHC-RESERVED

by reference EHC-CPRB

 end-call.

 Chapter 11. Sample application programs 173

sample client program, COBOL, DOS and OS/2

Sample client application program SAMPLECB.CBL (continued)
The numbers of the following notes refer to the highlighted numbers in the listing on the
facing page.

1. If the return code from the T1 call is zero (successful completion), skip the nested
if then else clause and go to �4� to issue a Wait Multiple function call to wait for
an asynchronous event.

2. If the router return code is not zero, display an appropriate message and terminate
the program.

3. If the server return code is not zero and the timer was not already set, display an
appropriate message and terminate the program. The variable P3 (defined in note
7, page 170) contains the value returned by the supervisor if the timer is already
set.

4. Set CPRB fields for the WM call as follows:

� Set server field to the required value SPV using the variable SUPERVISOR
(defined in note 4, page 170).

� Set function code to the required value MW using WM (defined in note 6, page
170).

� Set request data length to zero.

� Set request data address to the address of DATAREA (note 2, page 170).

� Set request parameter length to 26 bytes.

� Set reply parameter length to 26 bytes.

� Set request parameter address to the address of REQPARMAREA (note 3,
page 170).

� Set reply parameter address to the address of REPPARMAREA (note 3, page
170).

Issue the standard LANDP request call, passing:

� The value of the LANDP-supplied keyword EHC-RESERVED

� The address in this program’s storage of the CPRB (EHC-CPRB is the name
of the CPRB structure in the LANDP-supplied copybook EHCDEFCB.CBL
(note 5, page 170)). This enables the supervisor to change the contents of the
CPRB, in this example by inserting the return codes.

174 LANDP Programming Guide

sample client program, COBOL, DOS and OS/2

^ Parse return codes from the Supervisor

�1� if (return-code not = A) then

�2� if (EHCRETCODE not = UERERROK) then

display 'Router error issuing function T1'

 stop run

 else

�3� if (EHCSERVRC not = UERERROK) and

(EHCSERVRC not = P3) then

display 'Server error issuing function T1'

 stop run

 end-if

 end-if

 end-if.

^ Now, for the Wait Multiple function to wait for asynchronous event

�4� ^ Issue WM function

move SUPERVISOR to EHCSERVER.

move WM to EHCFUNCT.

move A to EHCQDATAL.

set EHCQDATAAD to address of DATAREA.

move 26 to EHCQPARML.

move 26 to EHCRPARML.

set EHCQPARMAD to address of REQPARMAREA.

set EHCRPARMAD to address of REPPARMAREA.

call "__RMTREQ" using

by value EHC-RESERVED

by reference EHC-CPRB

 end-call.

 Chapter 11. Sample application programs 175

sample client program, COBOL, DOS and OS/2

Sample client application program SAMPLECB.CBL (continued)
The numbers of the following notes refer to the highlighted numbers in the listing on the
facing page.

1. If the return code from the WM call is zero (successful completion), skip the nested
if then else clause and go to �4� to check the parameter returned by the call.

2. If the router return code is not zero, display an appropriate message and terminate
the program.

3. If the server return code is not zero, display an appropriate message and terminate
the program.

4. If the reply parameter list contains 'BKSPV', the user has pressed a keyboard key,
which is interpreted as a request for program termination. Display an appropriate
message and terminate the program.

In the reply parameter list, 'BKSPV', the first two bytes are KB (byte-reversed)
indicating a keyboard event. The last three bytes are SPV, the name of the server,
which in this case is the supervisor. See “Function, return, and event codes” on
page xv.

5. If the reply parameter list contains '1TSPV', the timeout specified in the timer call
has expired. Display an asterisk and return to the start of the loop (note 5, page
172).

In the reply parameter list contains '1TSPV', the first two bytes are T1
(byte-reversed) representing a timer event. 1T explicitly identifies the timer call that
requested the timeout that has expired (note 6, page 172). The last three bytes
are SPV, the name of the server, which in this case is the supervisor. See
“Function, return, and event codes” on page xv.

6. Control reaches here only if:

The supervisor return code is zero

 and

The reply PARMLIST is not 'BKSPV' or '1TSPV'.

Display an appropriate message and the reply parameter list. Return to the start of
the loop (note 5, page 172).

This program loops until one of the following occurs:

� The user presses a keyboard key.

� The router returns a non-zero return code.

� The server returns a non-zero return code.

176 LANDP Programming Guide

sample client program, COBOL, DOS and OS/2

^ Parse return codes from the Supervisor

�1� if (return-code not = A) then

�2� if (EHCRETCODE not = UERERROK) then

display 'Router error issuing function WM'

 stop run

 else

�3� if (EHCSERVRC not = UERERROK) then

display 'Server error issuing function WM'

 stop run

 end-if

 end-if

 end-if.

^ Parse reason to know why we have been dispatched

�4� if REPPARMAREA = 'BKSPV' then

display 'The user requested termination'

 stop run

 end-if.

�5� if REPPARMAREA = '1TSPV' then

display ' ^ '

go to forever

 end-if.

�6� ^ If we reach here, there has been another reason

display 'Unrecognized function from WM'.

 display REPPARMAREA.

go to forever.

 stop run.

 Chapter 11. Sample application programs 177

sample client program, COBOL, DOS and OS/2

Building sample applications
This section descibes how to build the sample applications documented in this chapter.
The main headings are:

� “Sample client and server, C, Windows NT”

� “Sample client and server, COBOL, OS/2 and WINDOWS NT” on page 179

� “Sample client application, COBOL, DOS and OS/2” on page 179

� “Running the sample programs” on page 180

Sample client and server, C, Windows NT

Building a client program
1. Ensure that the LANDP C include file (EHCDEFC.H) is in the defined INCLUDE

search path.

2. Ensure that the correct .LIB file is in the defined LIBRARY search path.

For details, see “Compiling and linking your application program” on page 13.

Building the sample server
1. This sample uses service.h and service.obj to handle making an NT service.

Compile with the following options:

/Gz /MT /DWIN_32 /D_DLL /D_MT

2. Link with ehcwinnt.lib and advapi32.lib..

3. Ensure that the LANDP C include file (EHCDEFC.H) is in the defined INCLUDE
search path.

4. Ensure that the appropriate .LIB files are in the defined LIBRARY search path. See
“Compiling and linking your application program” on page 13.

To handle making an NT service, the sample uses the header file service.h and the
object file service.obj.

Running the application
 1. Run autofbss.bat.

2. Load sample server, loader ldpsmain.exe, unless it is included in autofbss.bat.

3. Run the client, ldpcmain.exe.

4. To end the program, enter ehcfree ldpsmain.exe from the command line or stop
LANDP with ehcfree spv.

178 LANDP Programming Guide

sample client program, COBOL, DOS and OS/2

Sample client and server, COBOL, OS/2 and WINDOWS NT
Follow the initial steps in the VisualAge for COBOL Getting Started manual (which is
supplied with VisualAge for COBOL) in the chapter "Build Your First VisualAge for
COBOL Application". When the COBOL editor displays, you can either start writing
your own application or use one of the sample programs supplied with LANDP. The
following steps apply if you choose to use a sample program:

� Select Get File from the File menu

� Select a sample program (SAMPSERV.CBL or SAMP-CLI.CBL) which you will find
in the samples sub-directory or EHCO500 or EHCN500 under the LANDP directory
(for example, C:\EHC)

� Select Save as ... from the File menu and select the directory you chose for your
project’s files in an earlier step

� Close the COBOL editor

Press F5 in the window that shows the icon view of your project to refresh the view.
The sample program’s name and icon will then appear.

You must do the following before you compile and link the program:

� Select Compile from the Options menu

� On the first page of the notebook (Syntactical), select the option called Process
COPY, BASIS, and REPLACE statements

� On the same page, select the As-is option under the title Resolve program
names:

� Under Windows NT on the page with the tab System, in the Call Interface
Convention field select CDECL

� On the page with the tab Link, fill in the field called Enter library/object file
name(s): with the path and name of the LANDP for OS/2 32-bit library file (for
example, C:\EHC\EHCO500\EHCOS232.LIB) or the LANDP for Windows NT 32-bit
library file (for example, C:\EHC\EHCN500\EHCWINNT.LIB)

� On the page with the tab Other, fill in the field called Enter copy file search path:
with the path containing the sample include file (for example, C:\EHC\EHCO500 or
C:\EHC\EHCN500)

� Click the OK button to save your changes

Click on the Build::Build normal icon to compile and link the program.

Sample client application, COBOL, DOS and OS/2
To build a 16-bit sample client, the IBM COBOL/2 compiler (or equivalent) is needed.
Ensure that the LANDP include file EHCDEFCB.CBL is accessible by the compiler. For
linking, the LANDP library file EHCDOS.LIB is required for DOS and EHCOS216.LIB for
OS/2. Ensure that these libraries are in the defined library search path.

To compile the sample server file:

 Chapter 11. Sample application programs 179

sample client program, COBOL, DOS and OS/2

COBOL samplecb /vsc2;

To link for DOS:

 LINK samplecb,,,ehcdos;

To link for OS/2:

LINK samplecb,,,pcobol + os2 + ehcos2 /NOP;

If you compile using the /LITLINK switch, you can take out the two underscores in
'__RMTREQ' when calling LANDP. The compiler then generates external references
for all call literal statements. Depending on your needs, this may be desirable. For
more details, look at the compiler documentation.

Running the sample programs
See the information on user server definitions in the LANDP Installation and
Customization book for details of setting up workgroups containing user servers.

If you intend to run your program on a machine which does not have VisualAge for
COBOL installed you must create a package containing your application and the
run-time files it uses. Please see the VisualAge for COBOL on-line documentation for
details of the Package process.

180 LANDP Programming Guide

 Appendix A. Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this information in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program, or
service is not intended to state or imply that only that IBM product, program, or service
may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM product,
program, or service.

IBM may have patents or pending patent applications covering subject matter described
in this information. The furnishing of this information does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

North Castle Drive
Armonk, NY 10504-1785

 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
 Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated in
new editions of the information. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this information at any time without
notice.

Any references in this information to non-IBM documentation or non-IBM Web sites are
provided for convenience only and do not in any manner serve as an endorsement of
those documents or Web sites. The materials for those documents or Web sites are

 Copyright IBM Corp. 1992, 2000 181

not part of the materials for this IBM product and use of those documents or Web sites
is at your own risk.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,

 Hursley Park,
 Winchester,
 Hampshire,
 England
 SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Programming License Agreement, or any equivalent agreement between
us.

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM, for
the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for which
the sample programs are written. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,
or function of these programs. You may copy, modify, and distribute these sample
programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM’s application
programming interfaces.

182 LANDP Programming Guide

Trademarks and service marks
The following terms are trademarks of the IBM Corporation in the United States or other
countries, or both:

Lotus is a registered trademark of Lotus Development Corporation in the United States
and other countries.

Tivoli and NetView are registered trademarks of Tivoli Systems Inc. in the United States
and other countries In Denmark, Tivoli is a trademark licensed from Kjøbenhavns
Sommer - Tivoli A/S.

Java and all Java-based trademarks and logos are trademarks or registered trademarks
of Sun Microsystems, Inc in the United States and/or other countries.

Microsoft, Windows, Windows NT, Windows 2000, and the Windows logo are registered
trademarks of Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.

 ACF/VTAM
 AIX/6000
 AnyNet
 Application System/400
 AS/400
 AT
 BookManager
 C/2
 CICS
 CICS OS/2
 CICS/ESA
 COBOL/2

Common User Access
 CUA

DB2 Universal Database
 Distributed Database

 Connection Services/2
 Distributed Relational

 Database Architecture
 DRDA
 Extended Services
 IBM
 IBMLink
 IMS/ESA
 LAN Distance
 LANDP
 Macro Assembler/2
 Micro Channel

 MQSeries
 MVS/XA
 OfficeVision
 OfficeVision/MVS
 OfficeVision/VM
 Operating System/2
 Operating System/400
 OS/2
 OS/390
 Presentation Manager
 RETAIN
 RISC System/6000
 RS/6000
 S/390
 SecureWay
 SP
 ThinkPad
 VisualAge
 VisualGen
 VM/ESA
 VSE/ESA
 VTAM
 WIN-OS/2
 Workplace Shell
 WebSphere
 Xstation Manager
 XT

 Appendix A. Notices 183

Intel is a registered trademark of Intel.

PC/TCP and NetManage are registered trade marks of NetManage Inc..

Other company, product, and service names may be trademarks or service marks of
others.

184 LANDP Programming Guide

 Glossary

This glossary includes abbreviations, terms, and
definitions used in the IBM LANDP Licensed Programs
Family publications. It does not include all terms
previously established for IBM networks, programs,
operating systems, or other IBM products.

If you do not find the term you are looking for, refer to
the IBM Dictionary of Computing.

This glossary includes terms and definitions from the
following sources:

� The IBM Dictionary of Computing, New York:
McGraw-Hill, copyright 1994 by International
Business Machines Corporation. Copies may be
purchased from McGraw-Hill or in bookstores.

� The American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies may be purchased from the
American National Standards Institute, 11 West
42nd Street, New York, New York 10036.
Definitions are identified by the symbol (A) after the
definition.

� The ANSI/EIA Standard—440-A, Fiber Optic
Terminology. Copies may be purchased from the
Electronic Industries Association, 2001 Pennsylvania
Avenue, N.W., Washington, DC 20006. Definitions
are identified by the symbol (E) after the definition.

� The Information Technology Vocabulary, developed
by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1). Definitions of published parts
of this vocabulary are identified by the symbol (I)
after the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after the
definition, indicating that final agreement has not yet
been reached among the participating National
Bodies of SC1.

Definitions that are specific to IBM products are so
labeled, for example, “In LANDP,” or “In SNA.”

A
abend. Abnormal end of task.

abnormal end of task (abend). Termination of a task
before its completion because of an error condition that
cannot be resolved by recovery facilities while the task is
executing.

abstract class. A class that provides common
information for subclasses, and that therefore cannot be
instantiated. Abstract classes provide at least one
abstract method.

abstract method. A method with a signature, but no
implementation. You provide the implementation of the
method in the subclass of the abstract class that
contains the abstract method.

account. In the AIX operating system, the log-in
directory and other information that gives a user access
to the system.

ACF. Advanced Communications Function.

ACF/NCP. Advanced Communications Function for the
Network Control Program.

activate logical unit request (ACTLU). A request,
sent by the host to the LANDP SNA server, to establish
a logical session. The LANDP SNA server sends a
positive response if the logical unit has been defined for
this workstation.

activate physical unit request (ACTPU). A request,
sent by the host to the LANDP SNA server, to establish
a physical session.

active. In an XLR environment, the server (and, by
implication, the workstation) that handles client requests
and sends logging data to the backup.

ACTLU. Activate logical unit request.

ACTPU. Activate physical unit request.

adapter. (1) A part that electrically or physically
connects a device to a computer or to another device.
(2) A printed circuit board that modifies the system unit
to allow it to operate in a particular way.

 Copyright IBM Corp. 1992, 2000 185

address. The unique code assigned to each device or
workstation connected to a network. A standard Internet
address is a 32-bit address field. This field can be
broken into two parts. The first part contains the
network address; the second part contains the host
number.

Advanced Communications Function (ACF). (1) A
group of IBM licensed programs, principally VTAM
programs, TCAM, NCP, and SSP, that use the concepts
of Systems Network Architecture (SNA), including
distribution of function and resource sharing. (2) See
also Network Control Program (NCP).

Advanced Communications Function for the Network
Control Program (ACF/NCP). (1) An IBM program
product that provides communication controller support
for single-domain, multiple-domain, and interconnected
network capability. (2) See also Advanced
Communications Function (ACF) and Network Control
Program (NCP).

advanced program-to-program communication
(APPC). The general facility characterizing the LU 6.2
architecture and its various implementations in products.

AID. Attention identifier.

AIX (Advanced Interactive Executive). IBM's licensed
version of the UNIX operating system.

alert. (1) A message sent to a management services
focal point in a network to identify a problem or an
impending problem. (2) In the NetView program, a
high-priority event that warrants immediate attention. A
database record is generated for certain event types that
are defined by user-constructed filters.

alert condition. A problem or impending problem for
which information is collected and possibly forwarded for
problem determination, diagnosis, or resolution.

alert description. Information in an alert table that
defines the contents of a Systems Network Architecture
(SNA) alert for a particular message ID.

alert focal point. The system in a network that
receives and processes (logs, displays, and optionally
forwards) alerts. An alert focal point is a subset of a
problem management focal point.

alert ID number. A value created from specific fields in
the alert using a cyclic redundancy check. A focal point
uses this value to refer to a particular alert, for example,
to filter out duplicate alerts.

alert type. A value in an alert that indicates the
problem being reported.

American National Standards Institute (ANSI). An
organization consisting of producers, consumers, and
general interest groups, that establishes the procedures
by which accredited organizations create and maintain
voluntary industry standards in the United States. (A)

ANSI. American National Standards Institute.

APAR. Authorized program analysis report.

API. Application program interface.

APPC. Advanced program-to-program communication.

applet. A Java program designed to run within a Web
browser. Contrast with application.

application. (1) In LANDP, a program using IBM
LANDP for DOS, IBM LANDP for OS/2, IBM LANDP for
Windows NT, IBM LANDP for AIX, IBM FBSS/2, IBM
PC/Integrator, or IBM PC Integrator/2, tailored to the
needs of the workstation user. (2) The use to which an
information processing system is put; for example, a
payroll application, an airline reservation application, a
network application. (3) A collection of software
components used to perform specific types of
user-oriented work on a computer. (4) In Java
programming, a self-contained, stand-alone Java
program that includes a static main method. It does not
require an applet viewer. Contrast with applet.

application program. (1) A program that is specific to
the solution of an application problem. Synonymous
with application software. (T) (2) A program written for
or by a user that applies to the user's work, such as a
program that does inventory control or payroll. (3) A
program used to connect and communicate with stations
in a network, enabling users to perform
application-oriented activities.

application program interface (API). (1) In LANDP,
the common interface by which server functions are
requested. Requests are expressed by issuing a call to
the supervisor. (2) A functional interface supplied by the
operating system or by a separately orderable licensed
program that allows an application program written in a
high-level language to use specific data or functions of
the operating system or the licensed program. (3) The
interface through which an application program interacts
with an access method.

186 LANDP Programming Guide

application software. (1) Software that is specific to
the solution of an application problem. (T) Synonymous
with application program. (2) Software coded by or for
an end user that performs a service or relates to the
user's work. (3) Software products such as games,
spreadsheets, and word processing programs designed
for use on a personal computer.

argument. (1) An independent variable. (I) (A) (2) Any
value of an independent variable; for example, a search
key; a number identifying the location of an item in a
table. (I) (A) (3) A parameter passed between a calling
program and a called program.

arrival sequence. An order in which records are
retrieved that is based on the order in which records are
stored in a physical file.

AS/400. IBM Application System/400.

ASCII (American National Standard Code for
Information Interchange). The standard code, using a
coded character set consisting of 7-bit coded characters
(8-bits including parity check), used for information
interchange among data processing systems, data
communication systems, and associated equipment.
The ASCII set consists of control characters and graphic
characters. (A)

Note: IBM has defined an extension to ASCII code
(characters 128-255).

ASCIIZ format. A string of ASCII characters ending
with a null character (X'00').

ASYNC. Asynchronous.

asynchronous (ASYNC). (1) Pertaining to two or more
processes that do not depend upon the occurrence of
specific events such as common timing signals. (T)
(2) Without regular time relationship; unexpected or
unpredictable with respect to the execution of program
instructions.

attention identifier (AID). (1) A code in the inbound
3270 data stream that identifies the source or type of
data that follow. (2) A character in a data stream
indicating that the user has pressed a key, such as the
Enter key, that requests an action by the system.

authorization. (1) In computer security, the right
granted to a user to communicate with or make use of a
computer system. (T) (2) An access right. (3) The
process of granting a user either complete or restricted
access to an object, resource, or function.

authorized program analysis report (APAR). A report
of a problem caused by a suspected defect in a current
unaltered release of a program.

B
back-out. To restore a file to a previous condition by
removing changes in the inverse chronological order
from which the changes were originally made.

backup. In an XLR environment, the server (and, by
implication, the workstation) that accepts logging data
from the active and maintains a mirror set of databases
(at a transaction level).

BASIC. (1) Beginner's all-purpose symbolic instruction
code. A procedural algebraic language originally
designed for ease of learning with a small instruction
repertoire. (A) (2) A high-level programming language
with a small number of statements and a simple syntax
that is designed to be easily learned and used and that
is widely used for interactive applications on
microcomputers.

Basic Input/Output System (BIOS). (1) Code that
controls basic hardware operations, such as interactions
with diskette drives, hard disk drives, and the keyboard.
(2) See also NetBIOS.

BAT, bat. (1) A DOS batch file extension (.BAT).
(2) A batch file that contains a series of commands to
be processed sequentially.

BB. Begin bracket.

begin bracket (BB). (1) An SNA bracket protocol term
issued by the LANDP SNA server when bracket protocol
is requested in the bind session. (2) Contrast with end
bracket.

BID. In SNA, a request to start a bracket.

bind. To associate a variable with an absolute address,
identifier, or virtual address, or with a symbolic address
or label in a program.

BIND. (1) In SNA, a request to start a session between
two logical units. (2) Contrast with UNBIND.

binding. (1) In programming, an association between a
variable and a value for that variable that holds within a
defined scope. The scope may be that of a rule, a
function call, or a procedure invocation. (T) (2) In the
AIX operating system, a temporary association between

 Glossary 187

a client and both an object and a server that exports an
interface to the object. A binding is meaningful only to
the program that sets it and is represented by a bound
handle.

BIOS. Basic Input/Output System.

block. (1) The smallest complete unit of data that can
be transmitted between units in a communication
network. The maximum size of a block depends on the
characteristics of the sending or receiving unit. (2) A
group of contiguous characters recorded as a unit.
(3) See also connectivity programming request block,
program control block.

browser. An Internet-based tool that lets users browse
web sites.

buffer. (1) A routine or storage used to compensate for
a difference in rate of flow of data, or time of occurrence
of events, when transferring data from one device to
another. (A) (2) A portion of storage used to hold input
or output data temporarily.

C
C language. A language used to develop software
applications in compact, efficient code that can be run
on different types of computers with minimal change.

call. In LANDP, the invocation of one of the LANDP
API routines, RMTREQ, GETRPLY and RMTAREQ
(client calls) and GETREQ, RMTRPLY, and SRVINIT
(server calls). A LANDP client uses the RMTREQ call to
request a LANDP function. Calls use the connectivity
programming request block (CPRB) to pass and receive
information. The syntax of a call varies with the
programming language. The following examples are for
COBOL and C respectively

CALL "RMTREQ" USING BY REFERENCE EHC-CPRB

 BY VALUE EHC-RESERVED

retcode = GETREQ(&mycprb, EHC_RESERVED);

CCITT. Comité Consultatif International Télégraphique
et Téléphonique. The International Telegraph and
Telephone Consultative Committee.

CD. Compact disc.

CD-ROM. Compact disc-read-only memory.

CICS. Customer Information Control System.

CID. Configuration, Installation, and Distribution. An
IBM standard methodology for installing and distributing
products under DOS, OS/2, and Windows 3.1.

ciphertext. (1) In computer security, text produced by
encryption. (2) Synonym for enciphered data.

cleartext. (1) Nonencrypted data. (2) Synonym for
plaintext.

class. An encapsulated collection of data and methods
to operate on data. A class can be instantiated to
produce an object that is an instance of the class.

CLASSPATH. In your deployment environment, the
environment variable keyword that specifies the
directories in which to look for class and record files.

client. (1) A functional unit that receives shared
services from a server. (T) (2) A user. (3) See also
client/server, client workstation, server, and user.

client workstation. (1) In IBM LANDP for DOS, IBM
LANDP for OS/2, IBM LANDP for AIX, IBM LANDP for
Windows NT, IBM FBSS/2, IBM PC/Integrator, and IBM
PC Integrator/2, a workstation in a LAN that uses a
service. (2) See also client, client/server, server, and
user.

client/server. (1) In communications, the model of
interaction in distributed data processing in which a
program at one site sends a request to a program at
another site and awaits a response. The requesting
program is called a client; the answering program is
called a server. (2) See also client, client workstation,
server, and user.

CLIST, clist. Command list.

close. (1) A LANDP family function used to release a
server. (2) To end the processing of a file. (3) A data
manipulation function that ends the connection between
a file and a program. (4) Contrast with open.

COBOL. Common business-oriented language. A
high-level programming language, based on English, that
is used primarily for business applications.

code page. An assignment of graphic characters and
control function meanings to all code points; for
example, assignment of characters and meanings to 256
code points for an 8-bit code, assignment of characters
and meanings to 128 code points for a 7-bit code.

collating sequence. A specified arrangement used in
sequencing. (I) (A)

188 LANDP Programming Guide

COM, com. A DOS file with the file extension .COM.

command. (1) Loosely, a mathematical or logic
operator. (A) (2) A request from a terminal for
performance of an operation or processing of a program.
(3) A character string from a source external to a
system that represents a request for system action.

command list (CLIST, clist). A list of commands and
statements designed to perform a specific function for
the user.

Common User Access architecture. Guidelines for
the dialog between a human and a workstation or
terminal. One of the three SAA architectural areas.

communication configuration. In LANDP, the process
of selecting and describing to the LANDP programs the
particular arrangement of communication functions about
a particular user.

communication controller. (1) A device that directs
the transmission of data over the data links of a network;
its operation may be controlled by a program executed
in a processor to which the controller is connected or it
may be controlled by a program executed within the
device. (T) (2) A type of communication control unit
whose operations are controlled by one or more
programs stored and executed in the unit. It manages
the details of line control and the routing of data through
a network.

communication server. A server that communicates
with a remote computer for various workstations in a
local area network.

Communications Server. An IBM licensed program
that supports the development and use of OS/2
applications involving two or more connected systems or
workstations. IBM SecureWay Communications Server
for OS/2 Warp provides multiple concurrent
connectivities using different protocols for IBM 3270 and
5250 emulation sessions, printer sessions, and file
transfers. It supports a range of application
programming interfaces (API), which may be called
concurrently and are designed for a variety of
applications. IBM SecureWay Communications Server
for OS/2 Warp includes the necessary interfaces for
network management.

compact disc (CD). (1) A disc, usually 4.75 inches in
diameter, from which data is read optically by means of
a laser. (2) A disc with information stored in the form of
pits along a spiral track. The information is decoded by

a compact-disc player and interpreted as digital audio
data, which most computers can process.

compact disc-read-only memory (CD-ROM). A
4.75-inch optical memory storage medium, capable of
storing about 550 megabytes of data. The standards for
CD-ROM storage are known as the “Yellow Book.”

compaction. (1) Any method for encoding data to
reduce the storage it requires. (2) In SNA, the
transformation of data by packing two characters in a
byte so as to take advantage of the fact that only a
subset of the allowable 256 characters is used; the most
frequently sent characters are compacted. (3) See also
compression and encode.

compression. (1) The process of eliminating gaps,
empty fields, redundancies, and unnecessary data to
shorten the length of records or blocks. (2) In SNA, the
replacement of a string of up to 64 repeated characters
by an encoded control byte to reduce the length of the
data stream sent to the LU-LU session partner. The
encoded control byte is followed by the character that
was repeated (unless that character is the prime
compression character). (3) Contrast with
decompression.

config.sys. A file created during the customization
process that holds the details about the system
configuration. The CONFIG.SYS file is used during
system operation.

configuration. (1) The manner in which the hardware
and software of an information processing system are
organized and interconnected. (T) (2) The physical and
logical arrangement of devices and programs that make
up a data processing system. (3) The devices and
programs that make up a system, subsystem, or
network.

connection. (1) An association established between
functional units for conveying information. (2) The path
between two protocol modules that provide reliable
stream delivery service. On the Internet, a connection
extends from a TCP module on one machine to a TCP
module on the other.

connectivity. The capability to attach a variety of
functional units without modifying them.

connectivity programming request block (CPRB).
The control block used for communication between a
server and a client. This control block contains the
information that is exchanged between clients and

 Glossary 189

servers, and the information required for routing the
requests and replies.

constructor. A method called to set up a new instance
of a class.

control program. A computer program designed to
schedule and supervise the execution of programs of a
computer system. (I) (A)

coprocessor. (1) A supplementary processor that
performs operations in conjunction with another
processor. (2) In personal computers, a microprocessor
on an expansion board that extends the address range
of the processor in the system unit or adds specialized
instructions to handle a particular category of operations;
for example, an I/O coprocessor, math coprocessor, or
networking coprocessor.

corrective service diskette. A diskette provided by
IBM to registered service coordinators for resolving
user-identified problems with previously installed
software. This diskette includes program updates
designed to resolve problems.

CPRB. Connectivity programming request block.

CRC. The cyclic redundancy check character. (A)

critical error handler. A routine that the operating
system calls automatically if an error occurs in an
operating system function call. There is a standard error
handler or the user can provide one for special
functions.

CRV. Cryptography verification request.

cryptography. (1) The transformation of data to
conceal its meaning. (2) In computer security, the
principles, means, and methods for encrypting plaintext
and decrypting ciphertext.

cryptography key. A parameter that determines
cryptographic transformations between plaintext and
ciphertext.

cryptography verification (CRV) request. A request
unit sent by the primary logical unit (PLU) to the
secondary logical unit (SLU) as part of cryptographic
session establishment, to allow the SLU to verify that the
PLU is using the correct session cryptography key and
initialization vector (IV).

CTS. Clear to Send.

CUA architecture. Common User Access
architecture.

cursor. (1) A movable, visible mark used to show a
position of interest on a display surface. (A) (2) In SAA
Common User Access architecture, a visual cue that
shows a user where keyboard input will appear on the
screen.

Customer Information Control System (CICS). An
IBM licensed program that allows transactions entered at
remote terminals to be processed concurrently by
user-written application programs. It includes facilities
for building, using, and maintaining databases.

Customer Information Control System for Virtual
Storage (CICS/VS). An IBM licensed program used in
a communications network.

customization. The process of designing a data
processing installation or network to meet the
requirements of particular users.

customization workstation. A workstation on which
LANDP is installed, and which is used to customize a
LANDP workgroup.

cyclic redundancy check character (CRC). A
character used in a modified cyclic code for error
detection and correction. (A)

D
DASD. Direct access storage device.

data circuit-terminating equipment (DCE). In a data
station, the equipment that provides the signal
conversion and coding between the data terminal
equipment (DTE) and the line. (I)

Notes:

1. The DCE may be separate equipment or a part of
the DTE or an integral part of the DTE or of the
intermediate equipment.

2. A DCE may perform other functions that are usually
performed at the network end of the line.

Data Encryption Standard (DES). In computer
security, the National Institute of Standards and
Technology (NIST) Data Encryption Standard, adopted
by the U.S. government as Federal Information
Processing Standard (FIPS) Publication 46, which allows
only hardware implementations of the data encryption
algorithm.

190 LANDP Programming Guide

data flow control (DFC). In SNA, a request/response
unit (RU) category used for requests and responses
exchanged between the data flow control layer in one
half-session and the data flow control layer in the
session partner. Half duplex, flip-flop is the only
LANDP-supported data flow control for both send and
receive.

data link control (DLC). (1) In SNA, the layer that
consists of the link stations that schedule data transfer
over a link between two nodes and perform error control
for the link. Examples of data link control are SDLC for
serial-by-bit link connection and data link control for the
System/370 channel. (2) See also Systems Network
Architecture (SNA). (3) In SNA, a set of rules used by
two nodes on a data link to accomplish an orderly
exchange of information.

data set. The major unit of data storage and retrieval,
consisting of a collection of data in one of several
prescribed arrangements and described by control
information to which the system has access. Sometimes
called a file.

data terminal equipment (DTE). The part of a data
station that serves as a data source, data sink, or both.
(I) (A)

database description (DBD). (1) In LANDP, the
shared-file server descriptor. (2) In IMS/VS, the
collection of macro-parameter statements that describes
an IMS/VS database. These statements describe the
hierarchical structure, IMS/VS organization, device type,
segment length, sequence fields, and alternate search
fields. The statements are assembled to produce
database description blocks.

datagram. The basic unit of information that is passed
across the Internet. It consists of one or more data
packets.

DBCS. Double-byte character set.

DBD. Database description.

DBM. Database manager.

DCA. Direct communication adapter.

DCE. (1) Data circuit-terminating equipment.
(2) Distributed Computing Environment.

DDE. Dynamic data exchange.

DDT. Diagnostic and debugging tool.

decipher. (1) To convert enciphered data in order to
restore the original data. (T) (2) In computer security, to
convert ciphertext into plaintext by means of a cipher
system. (3) To convert enciphered data into clear data.
(4) Synonymous with decrypt. (5) Contrast with
encipher.

decompression. (1) A function that expands data to
the length that preceded data compression.
(2) Contrast with compression.

decrypt. (1) In computer security, to decipher or
decode. (2) Synonymous with decipher. (T)

default. A value, attribute or option that is assumed
when none is explicitly specified.

delimiter. (1) A character used to show the beginning
and end of a character string. (T) (2) A character that
groups or separates words or values in a line of

deprecation. An obsolete component that may be
deleted from a future release of a product.

DES. Data Encryption Standard.

development workstation. A workstation which is part
of a LANDP workgroup, and which is customized via a
customization workstation.

device driver. In Advanced DOS, a file that contains
the code needed to attach and use a device.

DFC. Data flow control.

DIN. Deutsches Institut für Normung.

direct access. (1) The capability to obtain data from a
storage device, or to enter data into a storage device, in
a sequence independent from their relative position, by
means of addresses indicating the physical position of
the data. (T) (2) Contract with sequential access.

direct access storage device (DASD). A device
where access time is effectively independent of the
location of the data.

directory. (1) A table of identifiers and references to
the corresponding items of data. (I) (A) (2) A type of file
containing the names and controlling information for
other files or other directories. (3) An index that is used
by a control program to locate one or more blocks of
data that are stored in separate areas of a data set in
direct access storage. (4) A listing of the files stored on
a diskette.

 Glossary 191

directory service (DS). An application service element
that translates the symbolic names used by application
processes into the complete network addresses used in
an OSI environment. (T)

disk. (1) A round, flat data medium that is rotated to
read or write data. (T) (2) Loosely, a magnetic disk unit.

disk operating system. An operating system for
computer systems that use disks and diskettes for
auxiliary storage of programs and data.

diskette. (1) A thin, flexible magnetic disk and a
semi-rigid protective jacket, where the disk is
permanently enclosed. (2) Contrast with hard disk.

Distributed Computing Environment (DCE). The
Open Software Foundation (OSF) specification (or a
product derived from this specification) that assists in
networking. DCE provides such functions as
authentication, directory service (DS), and remote
procedure call (RPC).

distributed system. A data processing system where
processing, storage, and control functions, and also
input and output operations, are distributed among
remote locations.

distribution diskette. A diskette on which IBM sends
programs and documentation to a customer.

DLC. Data link control.

DLL. Dynamic link library.

DMA. Direct memory access.

domain. (1) The part of a computer network where the
data processing resources are under common control.
(T) (2) In a database, all the possible values of an
attribute or a data element. (3) In SNA, a system
services control point (SSCP) and the physical units
(PUs), logical units (LUs), links, link stations, and all
associated resources that the SSCP could control with
activation requests and deactivation requests.

DOS. Disk Operating System.

double-byte character set (DBCS). (1) A set of
characters in which each character is represented by 2
bytes. Languages such as Japanese, Chinese, and
Korean, which contain more symbols than can be
represented by 256 code points, require double-byte
character sets. Because each character requires 2

bytes, the typing, display, and printing of DBCS
characters requires hardware and programs that support
DBCS. (2) Contrast with single-byte character set
(SBCS).

DS. Directory service.

DSR. Data Set Ready.

DTE. Data terminal equipment. (A)

DTE/DCE interface. The physical interface and link
access procedures between a data terminal equipment
(DTE) and a data circuit-terminating equipment (DCE).

dynamic data exchange (DDE). The exchange of data
between programs or between a program and a data-file
object. Any change made to information in one program
or session is applied to the identical data created by the
other program.

dynamic link library (DLL). A file containing
executable code and data bound to a program at load
time or run time, rather than during linking. The code
and data in a dynamic link library can be shared by
several applications simultaneously.

E
EB. End bracket.

EBCDIC. Extended binary-coded decimal interchange
code.

EGA. Enhanced graphics adapter.

EID. End-of-message (EOM) identification.

EMM. Expanded memory manager.

emulation. The use of a data processing system to
imitate another data processing system, so that the
imitating system accepts the same data, executes the
same programs, and achieves the same results as the
imitated system. Emulation is usually achieved with
hardware or firm-ware. (T)

encipher. (1) To scramble data or to convert data to a
secret code that masks the meaning of the data to any
unauthorized recipient. Synonymous with encrypt. (T)
(2) In computer security, to convert plaintext into an
unintelligible form by means of a cipher system.
Synonymous with cipher. (3) Contrast with decipher.
See also encode.

192 LANDP Programming Guide

enciphered data. (1) Data whose meaning is
concealed from unauthorized users or observers.
(2) Synonymous with encode.

encode. (1) To convert data by the use of a code in
such a manner that reconversion to the original form is
possible. (T) (2) In computer security, to convert
plaintext into an unintelligible form by means of a code
system. (3) See also plaintext.

encrypt. (1) In computer security, to encode or
encipher. (2) Synonym for encipher. (T)

end bracket (EB). (1) An SNA bracket protocol term
used when the bind session specifies the end bracket
call. If specified in the bind session, the personal
computer may send both begin bracket and end bracket
calls (not-response mode protocol). (2) Contrast with
begin bracket.

end-of-message (EOM). The character or sequence of
characters that shows the end of a message or record.

enhanced graphics adapter (EGA). An adapter, such
as the IBM Enhanced Graphics Adapter, that provides
high-resolution graphics, allowing the use of a color
display for text processing and also graphics
applications.

environment. A named collection of logical and
physical resources used to support the performance of a
function.

EOM. End-of-message.

erase. To remove data from a data medium. Erasing is
usually accomplished by overwriting the data or deleting
the references. (T)

error log. (1) A data set or file in a product or system
where error information is stored for later access. (2) A
record of machine checks, device errors, and volume
statistical data.

error message. An indication that an error has been
detected. (A)

ERRORLEVEL. A parameter of the IF command used
by batch files. It is used in testing for failure of recently
loaded programs.

event. (1) An occurrence or happening. (2) An
occurrence of significance to a task; for example, the
completion of an asynchronous operation, such as an
input/output operation. (3) A data link control command

and response passed between adjacent nodes that
allows the two nodes to exchange identification and
other information necessary for operation over the data
link. (4) In the NetView program, a record indicating
irregularities of operation in physical elements of a
network.

exception. An object that has caused some new
condition, such as an error. In Java, throwing an error
means passing that object to an interested party. A
signal indicates what condition has occurred. Catching
the condition means receiving the sent object. Handling
this exception means dealing with the problem after
receiving the object (though it might mean doing nothing,
which is bad programming practice).

exchange identification (XID). The ID that is
exchanged with the remote physical unit when an
attachment is first established.

EXE, exe. An executable file with the file extension
.EXE.

extended ASCII. A set of ASCII codes that uses the
eighth (most significant) bit to define 127 additional
codes. Standard ASCII uses 7 bits and defines 128
codes.

extended binary-coded decimal interchange code
(EBCDIC). A coded character set of 256 8-bit
characters.

external logging replicator (XLR). Shared-file mode of
operation in which fault-tolerant data replication is
achieved by logging database updates to an external
server.

F
facility. (1) An operational capability, or the means for
providing such a capability. (T) (2) A service provided
by an operating system for a particular purpose; for
example, the checkpoint/restart facility.

FBSI. Financial Branch Systems Integrator.

FBSS (DOS). IBM Financial Branch Systems Service
(DOS). The predecessor to LANDP.

FBSS/2. Financial Branch Systems Service/2.

FCB. File control block.

FIC. First-in-chain.

 Glossary 193

file. (1) A named set of records stored or processed as
a unit. (T) (2) A collection of information treated as a
unit. (3) A collection of data that is stored and retrieved
by an assigned name.

file control block (FCB). A record that contains all of
the information about a file, such as its structure, length,
and name.

file index table (FIT). A table used by WorkSpace
On-Demand to redirect file access requests from a client
workstation’s boot drive to the appropriate location on
the boot server.

file server. A high-capacity disk storage device or a
computer that each computer on a network can use to
access and retrieve files that can be shared among the
attached computers.

file transfer. In remote communications, the transfer of
one or more files from one system to another over a
communications link.

first-in-chain (FIC). A request unit (RU) whose request
header (RH) begin chain indicator is on and whose RH
end chain indicator is off.

FIT. file index table

fixed disk. Synonym for hard disk.

flag. (1) A variable indicating that a certain condition
holds. (T) (2) Any of various types of indicators used for
identification; for example, a word mark. (A) (3) A
character that signals the occurrence of some condition,
such as the end of a word. (A)

FMH. Function management header.

format identification (FID) field. In SNA, a field in
each transmission header (TH) that shows the format of
the transmission header; that is, the presence or
absence of certain fields.

forward recovery. The process of reconstructing a file
from a particular point by restoring a saved version of
the file and then applying changes to that file in the
same order in which they were originally made.

function. (1) In IBM LANDP for DOS, IBM LANDP for
OS/2, IBM LANDP for Windows NT, IBM FBSS (DOS),
IBM FBSS/2, IBM PC/Integrator, and IBM PC
Integrator/2 a function is the specification of an activity to
be performed by a server. (2) In computer
programming, synonym for procedure.

function management header (FMH). (1) A special
record or part of a record that contains control
information for the data that follow. (2) In SNA, one or
more headers optionally present in the leading request
units (RUs) of an RU chain that allow a half-session in
an LU-LU session to: (a) select a destination as session
partner and control way where end-user data it sends
are handled at the destination, (b) change destination or
characteristics of data during session, and (c) send
between session partners status or user information
about destination; for example, whether it is a program
or device.

G
gateway. (1) In LANDP, the workstation that connects
the LANDP workgroup to a host computer with the
necessary LANDP software and the respective physical
attachment. (2) A functional unit that interconnects two
computer networks with different network architectures.
A gateway connects networks or systems of different
architectures. A bridge interconnects networks or
systems with the same or similar architectures. (T) (3) A
network that connects hosts. (4) Contrast with router.

generic alert. A product-independent method of
encoding alert data by means of both (a) code points
indexing short units of stored text and (b) textual data.

H
hard disk. (1) A rigid magnetic disk such as the
internal disks used in the system units of IBM personal
computers and in external hard disk drives.
(2) Synonym for fixed disk. (3) Contrast with diskette.

HDLC. High-level data link control.

hexadecimal. Describing a numbering system with
base of sixteen; valid numbers use the digits 0 through 9
and characters A through F, where A represents 10 and
F represents 15.

high-level data link control (HDLC). In data
communication, the use of a specified series of bits to
control data links under the International Standards for
HDLC: ISO 3309 Frame Structure and ISO 4335
Elements of Procedures.

host, host computer, host processor, or host
system. (1) The primary or controlling computer in a
multiple computer installation. (2) A computer used to
prepare programs for use on another computer or on

194 LANDP Programming Guide

another data processing system; for example, a
computer used to compile, link edit, and test programs to
be used on another system.

hot-key. The key combination used to change from one
session to another on the workstation.

Hypertext Transfer Protocol (HTTP). The Internet
protocol, based on TCP/IP, that is used to fetch
hypertext objects from remote hosts.

I
I/O. Input/output.

IBM Operating System/2 (OS/2). Pertaining to the
IBM licensed program that can be used as the operating
system for personal computers. The OS/2 licensed
program can perform multiple tasks at the same time.

ICV. Initial chaining value.

ID. (1) Identifier. (2) Identification.

identification. In computer security, the process that
allows a system to recognize an entity with personal,
equipment, or organizational characteristics or codes.

identifier. One or more characters used to identify or
name a data element or possibly to show certain
properties of that data element. (A)

IEEE. Institute of Electrical and Electronics Engineers.

IMS/VS. Information Management System/Virtual
Storage.

indexed access. Pertaining to the organization and
accessing of the records of a storage structure through a
separate index to the locations of the stored records. (A)

indexed sequential access. Pertaining to the
organization and accessing of records through an index
of the keys that are stored in arbitrarily partitioned
sequential files. (A)

initial chaining value (ICV). An 8-byte pseudo-random
number used to verify that both ends of a session with
cryptography have the same session cryptography key.
The initial chaining value is also used as input to Data
Encryption Standard (DES) algorithm to encipher or
decipher data in a session with cryptography.

initial program load (IPL). (1) The initialization
procedure that causes an operating system to begin

operation. (2) The process by which a configuration
image is loaded into storage at the beginning of a work
day or after a system malfunction. (3) The process of
loading system programs and preparing a system to run
jobs.

initialization. (1) The operations required for setting a
device to a starting state, before the use of a data
medium, or before implementation of a process. (T)
(2) Preparation of a system, device, or program for
operation.

initiate self. An SNA command issued by the LANDP
SNA server to initiate a host application. The SNA
command is issued in response to the receipt of an
Open command from the personal computer.

INITSELF. Initiate self.

input/output (I/O). (1) Describing a device whose parts
can perform an input process and an output process at
the same time. (I) (2) Describing a functional unit or
channel involved in an input process, output process, or
both, concurrently or not, and to the data involved in
such a process.

Instruction Pointer (IP). In System 38, a pointer that
provides addressability for a machine interface
instruction in a program.

interface. A shared boundary between two functional
units, defined by functional characteristics, signal
characteristics, or other characteristics, as appropriate.
The concept includes the specification of the connection
of two devices having different functions. (T)

International Organization for Standardization (ISO).
An organization of national standards bodies from
various countries established to promote development of
standards to simplify international exchange of goods
and services, and develop cooperation in intellectual,
scientific, technological, and economic activity.

Internet Protocol (IP). A protocol used to route data
from its source to its destination in an Internet
environment.

interoperability. (1) The capability to communicate,
execute programs, or transfer data among various
functional units in a way that requires the user to have
little or no knowledge of the unique characteristics of
those units. (T) (2) In SAA usage, the ability to link SAA
and non-SAA environments and use the combination for
distributed processing.

 Glossary 195

IP. (1) Instruction Pointer. (2) Internet Protocol.

IPL. Initial program load.

ISAM. Indexed sequential access method.

ISO. International Organization for Standardization.

J
Jar file format. Java Archive, a platform-independent
file format that aggregates many files into one. Multiple
Java applets and their requisite components (.class files,
images, sounds, and other resourec files) can be
bundled in a JAR file and subsequently downloaded to a
browser in a single HTTP transaction.

Java. An object-oriented programming language for
portable, interpretive code that supports interaction
among remote objects. Java was specified and
developed by Sun Microsystems, Incorporated. The
Java environment consists of the JavaOS, the Virtual
Machines for various platforms, the object-oriented Java
programming language, and several class libraries.

Java Development Kit (JDK). A set of Java
technologies made available to licensed developers by
Sun Microsystems. Each release of JDK consists of the
Java compiler, Java virtual machine, Java class libraries,
Java applet viewer, Java debugger, and other tools.

JavaDoc. Sun Microsystems tool for generating HTML
documentation of classes by extracting comments from
the Java source code files.

Java Remote Method Invocation (RMI). Method
invocation between peers, or between client and server,
when applications at both ends of the invocation are
written in Java. Java RMI is included in JDK 1.1.

Java Virtual Machine. A software implementation of a
central processing unit (CPU) that runs compiled Java
code (applets and applications).

journal. (1) A chronological record of changes made in
a set of data; the record may be used to reconstruct a
previous version of the set. (T) (2) A special-purpose
data set that provides an audit trail of operator and
system actions, or as a means of recovering superseded
data.

JVM. Java Virtual Machine.

K
KB. Kilobyte; 1024 bytes.

key. (1) An identifier within a set of data elements. (T)
(2) One or more characters used to identify the record
and establish the order of the record within an indexed
file.

keystroke. Actuation of a key on a keyboard to perform
or release a machine function. (T)

keyword. A name or symbol that identifies a parameter
or an ordered set of parameters.

L
LAN. Local area network.

LAN configuration. The process by which the details
about the structure of the LAN for a particular user are
provided to the LANDP family programs. This includes
details about the workstations forming the LAN, the
services provided by each workstation, and the
workstations that receive the services.

LAN trace. A LANDP family trace facility that informs
about the LANDP-related LAN and displays the status of
the local area network.

LAN Distributed Platform. The former name for the
LANDP family of products.

last-in-chain (LIC). A request unit (RU) whose request
header (RH) end chain indicator is on and whose RH
begin chain indicator is off.

LDA. Logical device address.

LED. Light-emitting diode.

LIC. Last-in-chain.

light-emitting diode (LED). A semiconductor chip that
gives off visible or infrared light when operated.

link connection. In SNA, the physical equipment
providing two-way communication between one link
station and one or more other link stations; for example,
a telecommunication line and data circuit-terminating
equipment (DCE).

LIP. LAN Internet Protocol.

196 LANDP Programming Guide

LLAP. Logical link access path.

loader. A routine, commonly a computer program, that
reads data into main storage. (A)

local area network (LAN). A computer network located
on a user's premises within a limited geographical area.
Communication within a local area network is not subject
to external regulations; however, communication across
the LAN boundary may be subject to some form of
regulation. (T)

local host. In the Internet, the computer to which a
user's terminal is directly connected without using the
Internet.

logging. The recording of data about specific events.

logical device address (LDA). (1) A number used to
represent a terminal or terminal component within a
workstation. (2) See also physical device address.

logical link access path (LLAP). In a multi-system
environment, the path between any two systems. One
or more logical link paths must be defined for each
logical link.

logical unit (LU). (1) In SNA, a port through which an
end user accesses the SNA network to communicate
with another end user and through which the end user
accesses the functions provided by the system services
control points (SSCPs). An LU can support at least two
sessions, one with an SSCP and one with another LU,
and may be capable of supporting many sessions with
other logical units. (2) A type of network addressable
unit that allows end users to communicate with each
other and gain access to network resources.

longitudinal parity check. A parity check of a row of
binary digits that are members of a set forming a matrix;
for example, a parity check of the bits of a track in a
block on a magnetic stripe. (T)

longitudinal redundancy check (LRC). Synonym for
longitudinal parity check.

LRC. Longitudinal redundancy check.

LU. Logical unit.

LU—LU session type 0. In SNA, a type of session
between two LU—LU half-sessions using SNA-defined
protocols for transmission control and data flow control,
but using end-user or product-defined protocols to
augment or replace FMD services protocols.

LU—LU session type 1. In SNA, a type of session
between an application program and single- or
multiple-device data processing terminals in an
interactive, batch data transfer, or distributed processing
environment.

LU—LU session type 2. In SNA, a type of session
between an application program and a single display
terminal in an interactive environment, using the SNA
3270 data stream.

LUSTAT. An SNA command used to send logical unit
status information.

M
MAC. Message authentication code.

mapper. A device, such as a piece of code, which
performs a mapping function.

mapping. (1) A list, usually in a profile, that establishes
a correspondence between items in two groups; for
example, a keyboard mapping can establish what
character is displayed when a certain key is pressed.
(2) In a database, the establishing of correspondences
between a given logical structure and a given physical
structure. (T)

MB. Megabyte; 1 048 576 bytes.

memory. All of the addressable storage space in a
processing unit and other internal storages that is used
to execute instructions. (T)

message. (1) An assembly of characters and
sometimes control codes that is transferred as an entity
from an originator to one or more recipients. A message
consists of two parts: envelope and content. (T) (2) A
communication sent from a person or program to
another person or program. (3) A unit of data sent over
a telecommunication line. (4) One or more message
segments transmitted among terminals, application
programs, and systems. (5) In SAA Common User
Access architecture, information not requested by a user
but displayed by an application in response to an
unexpected event, or when something undesirable could
occur.

message authentication code (MAC). (1) In computer
security, a value, part of, or accompanying a message,
used to determine that the contents, origin, author, or
other attributes of all or part of the message are as they
appear to be. (2) In cryptography: (a) a number or

 Glossary 197

value derived by processing data with an authentication
algorithm, (b) the cryptographic result of block cipher
operations on text or data using a cipher block chain
(CBC) mode of operation, (c) a digital signature code.

method. A fragment of Java code within a class that
can be invoked and passed a set of parameters to
perform a specific task.

MIC. Middle-in-chain.

MICR. Magnetic ink character recognition.

microcode. (1) One or more microinstructions. (2) A
code, representing the instructions of an instruction set,
that is done in a part of storage that is not
program-addressable. (3) To design, write, and also to
test one or more microinstructions.

middle-in-chain (MIC). A request unit (RU) whose
request header (RH) begin chain indicator and RH end
chain indicator are both off.

mnemonic. A symbol chosen to help the user
remember the significance of the symbol.

mode. A method of operation.

mode switching. Operator switching between a
concurrently running personal computer application and
3270 emulation or other internal application.

MSR, MSR/E. Magnetic stripe reader; Magnetic stripe
reader/encoder.

multi-tasking. A mode of operation that provides for
concurrent performance, or interleaved execution of two
or more tasks. (I) (A)

MVDM. Multiple Virtual DOS Machine.

N
name server. (1) The server that stores resource
records about hosts. (2) In the AIX operating system, a
host that provides name resolution for a network. Name
servers translate symbolic names assigned to networks
and hosts into the Internet addresses used by machines.
(3) In TCP/IP, synonym for domain name server.

NAU. Network addressable unit.

NCP. Network Control Program.

NDIS. Network Driver Interface Specification

NetBIOS. (1) Network Basic Input/Output System. A
standard interface to networks, IBM personal computers
(PCs), and compatible PCs, that is used on LANs to
provide message, print-server, and file-server functions.
Application programs that use NetBIOS do not need to
handle the details of LAN data link control (DLC)
protocols. (2) See also BIOS.

NetView program. An IBM licensed program used to
monitor and manage a network and to diagnose network
problems.

network. (1) An arrangement of nodes and connecting
branches. (T) (2) A configuration of data processing
devices and software connected for information
interchange.

network addressable unit (NAU). (1) In SNA, a
logical unit, a physical unit, or a system services control
point. The NAU is the origin or the destination of
information transmitted by the path control network.
(2) See also logical unit, physical unit, system services
control point (SSCP).

Network Control Program (NCP). (1) An IBM licensed
program that provides communication controller support
for single-domain, multiple-domain, and interconnected
network capability. (2) See also Advanced
Communications Function (ACF).

network management vector transport (NMVT). A
management services request/response unit (RU) that
flows over an active session between physical unit
management services and control point management
services (SSCP-PU session).

network resource. In ACF/VTAM, a network
component such as a local network control program, an
SDLC data link, or a peripheral node.

network services procedure error (NSPE). A request
unit that is sent by a system services control point
(SSCP) to a logical unit (LU) when a procedure
requested by that LU has failed.

NLS. National language support.

NMVT. Network management vector transport.

node. (1) In a network, a point at which one or more
functional units connect channels or data circuits. (I)
(2) In network topology, the point at an end of a branch.
(T)

NPSI. X.25 NCP Packet Switching Interface.

198 LANDP Programming Guide

NSPE. Network services procedure error.

O
object. The principal building block of object-oriented
programs. Objects are software programming modules.
Each object is a programming unit consisting of related
data and methods.

object-oriented programming (OOP). A programming
approach based on the concepts of data abstraction and
inheritance. Unlike procedural programming techniques,
object-oriented programming concentrates on the data
objects that constitute the problem and how they are
manipulated, not on how something is accomplished.

ODBC. Open Database Connectivity is a standardized
set of API function calls that can be used to access data
stored in both relational and non-relational DBMSs.

OIA. Operator information area.

OIC. Only-in-chain.

only-in-chain (OIC). A request unit (RU) for which the
request header (RH) begin chain indicator and RH end
chain indicator are both on.

OOP. object-oriented programming

open. (1) The function that connects a file to a
program for processing. (2) Contrast with close.

open system. A system with specified standards, and
that therefore can be readily connected to other systems
that comply with the same standards.

operating system. Software that controls the execution
of programs and that may provide services such as
resource allocation, scheduling, input/output control, and
data management. Although operating systems are
predominantly software, partial hardware
implementations are possible. (T)

operator information area (OIA). In the 3270
Information Display System, the area near the bottom of
the display area where terminal or system status
information is displayed.

option. A specification in a statement that may be used
to influence the processing of the statement.

OS/2 operating system. IBM Operating System/2.

P
pacing. A technique by which a receiving station
controls the rate of transmission of a sending station to
prevent overrun.

package. A program element that contains classes and
interfaces.

packet. A sequence of binary digits, including data and
control signals, that is transmitted and switched as a
composite entity.

panel. A formatted display of information that appears
on a display screen.

parallel port. (1) On a personal computer system, a
port used to attach devices such as dot matrix printers
and input/output units; it transmits data one byte at a
time. (2) See also serial port.

parameter. (1) A variable that is given a constant
value for a specified application and that may denote the
application. (I) (A) (2) An item in a menu for which the
user specifies a value or for which the system provides a
value when the menu is interpreted. (3) Data passed
between programs or procedures.

Pascal. A high-level, general purpose programming
language, related to ALGOL. Programs written in Pascal
are block structured, consisting of independent routines.
They can run on different computers with little or no
modification.

path. In a personal computer system, the logical
relationship between directories.

PBM. Personal banking machine.

PC. Personal computer.

PC-ID. Workstation identifier.

PCB. Program control block.

PC/TCP. FTP Software’s implementation of TCP/IP for
systems running DOS and Windows. Now called
PC/TCP Network Software version 5.0 and available
from NetManage Inc..

PDA. Physical device address.

PDP. Problem determination procedure.

 Glossary 199

personal computer system. IBM Personal System/2
and also the various IBM Personal Computer system
units, unless otherwise described.

Personal Identification Number (PIN) pad. A pad with
twelve keys in a specific arrangement that display
alphabetic and numeric characters that may be entered
onto a financial transaction terminal. (T) (A)

physical device address (PDA). An address or set of
addresses that identifies a particular device.

physical unit (PU). In SNA, the component that
manages and monitors the resources, such as attached
links and adjacent link stations,associated with a node,
as requested by an SSCP via an SSCP-PU session. An
SSCP starts a session with the physical unit to indirectly
manage, through the PU, resources of the node such as
attached links. This term applies to type 2.0, type 4, and
type 5 nodes only.

PIN. Personal identification number.

plaintext. (1) Nonencrypted data. Synonymous with
cleartext. (2) Synonym for clear data.

PLU. Primary logical unit.

PM. Presentation Manager (in OS/2).

pointing device port. The IBM PS/2 port that allows
attachment of various devices including pointing devices.

port. (1) An access point for data entry or exit. (2) A
connector on a device to which cables for other devices
such as display stations and printers are attached.
(3) A specific communications end point within a host.
A port is identified by a port number.

Post Telephone and Telegraph Administration
(PTT). An organization, usually a government
department, that provides communication common
carrier services in countries other than the USA and
Canada. Examples of PTTs are the Bundespost in
Germany, and the Nippon Telephone and Telegraph
Public Corporation in Japan.

PPC. Program to program communications.

Presentation Manager. A component of OS/2 that
provides a complete graphics-based user interface, with
pull-down windows, action bars, and layered menus.

primary logical unit (PLU). (1) In SNA, the logical unit
(LU) that contains the primary half-session for a
particular LU—LU session. (2) Contrast with secondary
logical unit (SLU). (3) See also logical unit (LU).

problem determination procedure (PDP). A
prescribed sequence of steps taken to identify the
source of a problem.

process. (1) A unique, finite course of events defined
by its purpose or by its effect, achieved under defined
conditions. (2) Any operation or combination of
operations on data. (3) A function being performed or
waiting to be performed. (4) A program in operation.

processor. (1) In a computer, a functional unit that
interprets and executes instructions. A processor
consists of at least an instruction control unit and an
arithmetic and logic unit. (T) (2) The functional unit that
interprets and processes instructions.

profile. (1) In computer security, a description of the
characteristics of an entity to which access is controlled.
(2) Data that describes the significant characteristics of
a user, a group of users, or one or more computer
resources.

program. A sequence of instructions suitable for
processing by a computer. Processing may include the
use of an assembler, a compiler, an interpreter, or a
translator to prepare the program for execution, and also
to execute it. (I)

program control block (PCB). LANDP family
shared-file server pointer related to a specific DBD.

Program temporary fix (PTF). A temporary solution or
by-pass of a problem diagnosed by IBM as resulting
from a defect in a current unaltered release of the
program.

protocol. In SNA, the meanings of and the sequencing
rules for requests and responses used for managing the
network, transferring data, and synchronizing the states
of network components.

PS/2. Personal System/2.

PTF. Program temporary fix.

PTT. Post Telephone and Telegraph Administration.

PU. Physical unit.

200 LANDP Programming Guide

Q
QLLC. Qualified logical link control.

qualified logical link control (QLLC). An X.25
protocol that allows the transfer of data link control
information between two adjoining systems network
architecture (SNA) nodes that are connected through an
X.25 packet-switching data network. The QLLC provides
the qualifier “Q” bit in X.25 data packets to identify
packets that carry logical link protocol information.

query. (1) A request for information from a file relying
on specific conditions. (2) In the AS/400 system, the
query management object that is used to define queries
against relational data.

quiescing. The process of bringing a device or a
system to a stop by rejection of new requests for work.
(A)

R
RAM. Random access memory. (A)

random access memory (RAM). A storage device
where data can be written and read.

RC. Return code.

RCMS. Remote change management services.

RDBMS. Relational database management system. A
generic name for any relational database system such
as DB2.

re-synchronization. Restarting the transmission of a
function at the point where it was interrupted.

read-only memory (ROM). (1) A storage device where
data, under normal conditions, can only be read. (T)
(2) See also read-only storage (ROS).

read-only storage (ROS). (1) A storage device whose
contents cannot be modified, except by a particular user,
or when operating under particular conditions. (2) See
also read-only memory (ROM).

record. (1) In programming languages, an aggregate
that consists of data objects, possibly with different
attributes, that usually have identifiers attached to them.
In some programming languages, records are called
structures. (I) (2) A set of data treated as a unit. (T)

(3) A set of one or more related data items grouped for
processing.

remote attachment. A method of connecting two
devices over a telecommunication line.

remote initial program load (remote IPL). A feature
that permits a computer to receive its initial program
from another computer, rather than from its own internal
disk or diskette storage.

remote method invocation. A specific instance of the
more general term RPC (remote procedure call).
Remote method invocation (RMI) allows objects to be
distributed over a network, that is, a Java program
running on one computer can call the methods of an
object running on another computer. RMI and java.net
are the only 100% pure Java APIs for controlling Java
objects in remote systems.

remote procedure call (RPC). A facility that a client
uses to request the execution of a procedure call from a
server. This facility includes a library of procedures and
an external data representation.

REMS. Reader/encoder magnetic stripe.

request/response header (RH). In systems network
architecture (SNA), control information preceding a
request/response unit (RU) that specifies the type of RU
and contains control information associated with the RU.

request/response unit (RU). In systems network
architecture (SNA), a generic term for a request unit or a
response unit.

resource. (1) Any of the data processing system
elements needed to perform required operations,
including storage, input/output units, one or more
processing units, data, files, and programs. (T) (2) See
also network resource.

retry. To resend data a prescribed number of times or
until the data is received correctly.

return code (RC). (1) A code used to influence the
execution of succeeding instructions. (A) (2) A value
returned to a program to indicate the results of an
operation requested by that program.

RH. Request/response header.

roll back. To remove changes that were made to
database files under commitment control since the last
commitment boundary.

 Glossary 201

RMI. Remote Method Invocation.

rollback. (1) A programmed return to a prior
checkpoint. (A) (2) The process of restoring data
changed by an application program or user to the state
of its last commitment boundary. (3) In SQL, the
process of restoring data changed by an application
program or user to the state of its last commit point.

ROM. Read-only memory. (A)

ROS. Read-only storage.

router. (1) A computer that determines the path of
network traffic flow. The path selection is made from
several paths based on information obtained from
specific protocols, algorithms that attempt to identify the
shortest or best path, and other criteria such as metrics
or protocol-specific destination addresses. (2) An
attaching device that connects two LAN segments, which
use similar or different architectures, at the reference
model network layer. Contrast with bridge, gateway.
(3) In OSI terminology, a function that determines a path
by which an entity can be reached.

RPC. Remote procedure call.

RTR. Ready to Receive.

RU. Request/response unit.

S
SAM. Service availability manager.

SAP. Service access point.

SBCS. Single-byte character set.

scan code. A code generated by a keyboard.

SCS. Systems network architecture character string.

SDLC. Synchronous data link control.

secondary logical unit (SLU). (1) In systems network
architecture (SNA), the logical unit (LU) that contains the
secondary half-session for a particular LU-LU session.
(2) Contrast with primary logical unit (PLU). (3) See
also logical unit (LU).

SEQ. Sequential file.

sequential access. (1) The capability to enter data
into a storage device or a data medium in the same

sequence as the data is ordered, or to obtain data in the
same order as it has been entered. (T) (2) An access
method in which records are read from, written to, or
removed from a file based on the logical order of the
records in the file. (3) Contrast with direct access.

serial port. (1) On personal computer systems, a port
used to attach devices such as display devices,
letter-quality printers, modems, plotters, and pointing
devices such as light pens and mice; it transmits data
one bit at a time. (2) See also parallel port.

serialization. Turning an object into a stream and back
again.

server. (1) A functional unit that provides shared
services to workstations over a network; for example, a
file server, a print server, a mail server. (T) (2) In
LANDP, a functional area that provides functions to
LANDP workstations in a LANDP workgroup. (3) The
computer that hosts the Web page that contains an
applet. The .class files that make up the applet, and the
HTML files that reference the applet reside on the
server. When someone on the Internet connects to a
web page that contains an applet, the server delivers the
.class files over the Internet to the client that made the
request. The server is also known as the originating
host. (4) See also client, client workstation, and user.
(5) In LANDP, a function provided by a server.

service access point (SAP). A logical point made
available by a token-ring adapter where information can
be received and transmitted.

service availability manager (SAM). Facility used by
the shared-file server to provide fault-tolerant data
access in an XLR environment.

servlet. Server-side program that executes on and
adds function to a Web server. Java servlets allow for
the creation of complicated, high-performance,
cross-platform Web applications. They are highly
extensible and flexible, making it easy to expand from
from client or single-server applications to multi-tier
applications.

session. (1) In systems network architecture (SNA), a
logical connection between two network addressable
units (NAU) that can be started, tailored to provide
various protocols, and deactivated, as requested.
(2) The time during which programs or devices can
communicate with each other.

single-byte character set (SBCS). (1) A character set
in which each character is represented by a one-byte

202 LANDP Programming Guide

code. (2) Contrast with double-byte character set
(DBCS).

SLU. Secondary logical unit.

SNA. Systems network architecture.

SNUF. Systems network architecture up-line facility.

socket. (1) An end-point for communication between
processes or applications. (2) A pair consisting of TCP
port and IP address.

SOM. Start-of-message code.

SPC, spc. Specification file.

specification file (SPC, spc). In LANDP, a file with the
file extension .SPC. This file can be edited. It contains
information for customization purposes.

SQL. Structured query language.

SSCP. System services control point.

start-of-message code (SOM). A character or group of
characters transmitted by the polled terminal and
indicating to other stations on the line that what follows
are addresses of stations to receive the answering
message.

storage. A functional unit into which data can be
placed, where it can be retained, and from which it can
be retrieved. (T)

stream. A continuous sequence of data elements being
transmitted, or intended for transmission, in character or
binary-digit form, using a defined format.

structured query language (SQL). An established set
of statements used to manage information stored in a
database. By using these statements, users can add,
delete, or update information in a table, request
information through a query, and display the results in a
report.

subdirectory. A directory contained within another
directory in a file system hierarchy.

synchronous. (1) About two or more processes that
depend on the occurrence of a specific event such as
common signal timing. (2) Occurring with a regular or
predictable time relationship. (3) See also
asynchronous.

synchronous data link control (SDLC). A discipline
conforming to subsets of the Advanced Data
Communication Control Procedures (ADCCP) of the
American National Standards Institute (ANSI) and
High-level Data Link Control (HDLC) of the International
Organization for Standardization, for managing
synchronous, code-transparent, serial-by-bit information
transfer over a link connection. Transmission exchanges
may be duplex or half-duplex over switched or
not-switched links. The configuration of the link
connection may be point-to-point, multi-point, or loop. (I)

system diskette. (1) The diskette, either real or virtual,
that contains your control program. (2) In personal
computer systems, the diskette on which you have the
operating system.

system distribution manager. A system that contains
the files and programs required for product installation,
and initiates or manages the installation process.

system services control point (SSCP). In systems
network architecture (SNA), the focal point within an
SNA network for managing the configuration,
coordinating network operator and problem
determination requests, and providing directory support
and other session services for end users of the network.

systems network architecture (SNA). The description
of the logical structure, formats, protocols, and
operational sequences for transmitting information units
through and controlling the configuration and operation
of networks.

systems network architecture character string
(SCS). In systems network architecture (SNA), a
character string composed of EBCDIC controls,
optionally intermixed with end-user data, that is carried
within a request/response unit (RU).

systems network architecture network (SNA
network). In systems network architecture (SNA), the
part of an application program network that conforms to
the formats and protocols of SNA. It allows reliable
transfer of data among end users and provides protocols
for controlling the resources of various network
configurations. The SNA network consists of network
addressable units (NAU), boundary function
components, and the path control network.

systems network architecture up-line facility
(SNUF). The communications support that allows an
AS/400 system to communicate with CICS/VS and
IMS/VS application programs on a host computer.

 Glossary 203

T
takeover. In an XLR environment, the process by
which a backup server assumes the role of the (failed)
active. This involves backing out incomplete
transactions, rebuilding indexes, and informing SAM of
the new active workstation.

TCP/IP. Transmission Control Protocol/Internet
Protocol.

terminal status line. Synonym for operator information
area (OIA).

TH. Transmission header.

thin client. A client workstation that loads its operating
system environment and applications across a network
from a server. The degree of local processing power in
a thin client can vary considerably depending on the
implementation of the thin client concept.

The term thin client usually refers to a system that runs
on a resource-constrained machine or that runs on a
small operating system. This clients do not require
require local system administration, and they execute
Java applications delivered over the network.

Time Sharing Option (TSO). An operating system
option; for the System/370 system, the option provides
interactive time sharing from remote terminals.

token-ring network. (1) A ring network that allows
unidirectional data transmission between data stations
by a token passing procedure, so that the transmitted
data returns to the transmitting station. (T) (2) A
network that uses a ring topology, where tokens are
passed in a circuit from node to node. A node that is
ready to send can capture the token and insert data for
transmission.

trace. (1) A record of the execution of a computer
program. It exhibits the sequences in which the
instructions were executed. (A) (2) The process of
recording the sequence in which the statements in a
program are executed and, optionally, the values of the
program variables used in the statements. (3) To record
a series of events as they occur. (4) For data links, a
record of the frames and bytes transmitted or received.

trace file. A file that contains a record of events that
occur in a system.

trace function. A function used for problem
determination.

trace log. A file in which trace events are recorded.

trace program. A computer program that performs a
check on another computer program by exhibiting the
sequence in which the instructions are executed and,
usually, the results of executing the instructions. (I) (A)

trace routine. A routine that provides an historical
record of specified events in the execution of a computer
program. (A)

transaction. An exchange between a workstation and
another device that accomplishes a particular action or
result.

translation. Conversion of a code or codes to another
code or codes according to a set of specifications.

transmission. The sending of data from one place for
reception elsewhere. (A)

Notes:

1. Transmission implies only the sending of data; the
data may or may not be received.

2. The term transmit is used to describe the sending of
data in telecommunication operations. The terms
move and transfer are used to describe movement
of data in data processing operations.

transmission control (TC) layer. The layer within a
half-session or session connector that synchronizes and
paces session-level data traffic, checks session
sequence numbers of requests, and enciphers and
deciphers end-user data.

Transmission Control Protocol (TCP). A
communications protocol used in the Internet and in any
network that follows the US Department of Defense
standards for inter-network protocol. TCP provides a
reliable host-to-host protocol between hosts in
packet-switched communications networks and in
interconnected systems of such networks. It assumes
that the Internet protocol is the underlying protocol.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of communication protocols that support
peer-to-peer connectivity functions for both local and
wide area networks.

transmission header (TH). In systems network
architecture (SNA), control information, optionally
followed by a basic information unit (BIU) or a BIU
segment, that is created and used by path control to

204 LANDP Programming Guide

route message units and to control their flow within the
network.

transmission services (TS) profile. In systems
network architecture (SNA), a specification in a session
activation request (and, optionally in the responses) of
transmission control (TC) protocols, such as
session-level pacing and the usage of session-level
requests, to be supported by a particular session. Each
defined TS profile is identified by a number.

trap. An unprogrammed conditional jump to a specified
address that is automatically activated by hardware. A
recording is made of the location from which the jump
occurred.

TRDLC. Token-ring data link control.

TS. Transmission services.

TSO. Time Sharing Option.

U
UDP. User Datagram Protocol.

UNBIND. (1) In systems network architecture (SNA), a
request to deactivate a session between two logical units
(LU). (2) Contrast with BIND.

user. (1) A function that uses the services provided by
a server. A host can be a user and a server at the
same time. (2) Any person or any thing that may issue
or receive commands and messages to or from the
information processing system. (T) (3) Any person who
requires the services of a computing system. (4) See
also client, client/server, client workstation, and server.

User Datagram Protocol (UDP). In TCP/IP, a
packet-level protocol built directly on the Internet
protocol layer. UDP is used for application-to-application
programs between TCP/IP host systems.

user profile. In computer security, a description of a
user that includes such information as user identification
(ID), user name, password, access authority, and other
attributes obtained at log-on.

user-written server. In LANDP, a server not supplied
with a LANDP program, but developed by the customer.

utility program. (1) A computer program which
supports computer processes; for example, a sort
program. (T) (2) A program designed to perform an
everyday task such as copying data from one storage
device to another. (A)

V
validation. The checking of data for correctness, or
compliance with applicable standards, rules, and
conventions. (A)

VDM. Virtual DOS machine.

vector. A set of keyword=parameter statements that
define configuration items. These items can correspond
to both model and real configurations.

verify. To determine whether a transcription of data or
other operation has been accomplished accurately. (A)

VFS. Virtual file system.

virtual DOS machine (VDM). A functional simulation of
a machine running under DOS.

virtual file system (VFS). A remote file system that
has been mounted so that it is accessible to the local
user.

virtual machine (VM). A virtual data processing system
that seems to be at the exclusive disposal of a particular
user, but whose functions are accomplished by sharing
the resources of a real data processing system. (T)

Virtual Telecommunications Access Method
(VTAM). A set of programs that maintain control of the
communication between terminals and application
programs running under Disk Operating System/Virtual
Storage (DOS/VS), OS/VS1, and OS/VS2 operating
systems.

VisualGen. A high-level object-oriented programming
language.

VM/CMS. Virtual machine/conversational monitor
system.

VTAM. Virtual Telecommunications Access Method.

 Glossary 205

W
WAN. Wide area network.

wide area network (WAN). A network that provides
communication services to a geographical area larger
than that served by a local area network.

WebSphere. A comprehensive solution to build,
deploy, and manage e-business Web sites. WebSphere
is the cornerstone of IBM’s overall Web strategy The
Websphere product line provides companies with an
open, standards-based, Web server deployment
platform, together with Web site development and
management and management tools to help accelerate
the process of moving to e-business.

window. A division of a screen where one of several
programs being run concurrently can display information.

workgroup. In LANDP, the logical connection of
LANDP for DOS, LANDP for OS/2, LANDP for Windows
NT, and LANDP for AIX workstations through the
LANDP client/server mechanism, which is available with
each LANDP program.

Workspace On-Demand. (1) A set of management
utilities that enables OS/2 Warp Server to remotely load
a thin client operating system, known as Workspace
On-Demand client, into a client workstation across a
LAN. (2) The client workstation component of
Workspace On-Demand, which is loaded into a client
workstation from a server machine running OS/2 Warp
Server and Workspace On-Demand Server.

Workspace On-Demand Server. A server, running
OS/2 Warp Server and Workspace On-Demand, that is
used to boot client workstations.

workstation. (1) A functional unit at which a user
works. (2) In LANDP, personal computer system in a
local area network (LAN).

wrapper. A language binding.

X
X.25. A CCITT recommendation that defines the
physical level (physical layer), link level (data link layer),
and packet level (network layer) of the open systems
inter-connection (OSI) reference model. An X.25
network is an interface between data terminal equipment
(DTE) and data circuit-terminating equipment (DCE)
operating in the packet mode, and connected to public
data networks by dedicated circuits. X.25 networks use
the connection-mode network service.

X.25 NCP Packet Switching Interface. An
IBM-licensed program that allows systems network
architecture (SNA) users to communicate over packet
switched data networks that have interfaces complying
with Recommendation X.25 (Geneva 1980) of the
International Telegraph and Telephone Consultative
Committee (CCITT). It allows SNA programs to
communicate with SNA equipment or with non-SNA
equipment over such networks.

XID. Exchange identification.

XLR. External logging replicator.

XOR. Logical operation exclusive-or.

Numerics
4700 Processor. IBM Finance Communication System
4701 Controller Model 3 and IBM 4702 Branch
Automation Processor, unless otherwise described.

206 LANDP Programming Guide

 Bibliography

This bibliography includes publications cited in this book
and other publications on related topics. Where a
shortened title is used in the text, the short title is listed
after the full title.

IBM LANDP Family
IBM LANDP Family: Introduction and Planning.
GC34-5529.
Short title: LANDP Introduction and Planning.

IBM LANDP Family: Installation and Customization.
GC34-5530.
Short title: LANDP Installation and Customization.

IBM LANDP Family: Programming Guide.
SC34-5781.
Short title: LANDP Programming Guide.

IBM LANDP Family: Programming Reference.
SC34-5531.
Short title: LANDP Programming Reference.

IBM LANDP Family: Servers and System
Management. SC34-5532.
Short title: LANDP Servers and System
Management.

IBM LANDP Family: Problem Determination.
GC34-5533.
Short title: LANDP Problem Determination.

IBM Financial Branch System Services
Licensed Programs

IBM FBSS Licensed Programs Family General
Information. GC19-5172.

IBM FBSS Licensed Programs Family Installation
and Customization. SC19-5173.

IBM FBSS Licensed Programs Family Program
Description. SC19-5176.

IBM FBSS Licensed Programs Family Version 2
Programmer's Reference. GA19-5450.

IBM FBSS Licensed Programs Family Version 2
Application Programming. SC19-5174.

IBM Financial Branch System
Integrator Licensed Programs

Financial Branch System Integrator and Financial
Branch System Integrator/2 General Information.
GC19-5187.

Financial Branch System Integrator Programmer's
Reference Manual. GA19-5452.

Financial Branch System Integrator/2 Programmer's
Reference Manual. SC19-5188.

IBM Transaction Security System
IBM Transaction Security System: General
Information Manual and Planning Guide.
GA34-2137.

IBM Transaction Security System: Programming
Guide and Reference. SC31-2934.

 Banking Self-Service
IBM 4721 Self-Service Document Printer
Programmer's Reference. GA19-5342.

IBM 4731/38/39 Personal Banking Machines
P-Models Software Customization and Programming
Reference. GA19-5462.

IBM 4733 Teller Assist Unit Programmer's
Reference. GA19-5425.

IBM 4737 Self-Service Transaction Station
Programmer's Reference. GA19-5408.

IBM Financial Application Development Toolkit
Version 2 Program Description and Operation.
SB11-8461.

 Copyright IBM Corp. 1992, 2000 207

 IBM workstations

PC DOS 7 Technical Update. GG24-4459.

PC DOS 7 User Guide. S83G-9260.

PC DOS 7 Command Reference. S83G-9309.

PC DOS 7 Keyboard and Code Pages. S83G-9310.

IBM TCP/IP Version 2.1.1 for DOS: Installation and
Administration. SC31-7047.

IBM TCP/IP Version 2.1.1 for DOS: User's Guide.
SC31-7045.

IBM TCP/IP Version 2.1.1 for DOS: Programmer's
Reference. SC31-7046.

OS/2 Warp Version 4 Up and Running!.
S84H-3098.

OS/2 Warp Server for e-Business. SG24-5393.

OS/2 Warp, PM Programming Reference Vol I.
G25H-7190.

OS/2 Warp PM Programming Reference Vol II.
G25H-7191.

OS/2 2.0 Application Design Guide. S10G-6260.

OS/2 2.0 Virtual Device Driver Reference.
S10G-6310.

 DB2/2 Guide. S62G-3663.

OS/2 LAN Server Network Administration Reference
Volume 1: Planning, Installation and Configuration.
S10H-9680.

OS/2 LAN Server Network Administrator Reference
Volume 2: Performance Tuning. S10H-9681.

OS/2 LAN Server Network Administrator Reference
Volume 3: Network Administrator Tasks.
S10H-9682.

IBM Systems Application Architecture Common
Programming Interface Dialog Reference.
SC26-4356.

IBM Systems Application Architecture Common
Programming Interface Presentation Reference.
SC26-4359.

IBM OS/2 Programming Tools and Information V1.3
Programming Guide. S91F-9259.

TCP/IP for OS/2 Warp Programming Reference,
SC31-8407.

IBM Network SignON Coordinator/2 Getting Started.
S96F-8629.

IBM RISC System/6000
AIX SNA Server/6000: User's Guide. SC31-7002.

AIX SNA Server/6000: Transaction Program
Reference. SC31-7003.

AIX SNA Server/6000: Configuration Reference.
SC31-7014.

IBM AIX V3.2 Commands Reference for RISC
System/6000, Volume 1. GC23-2376.

IBM AIX V3.2 Commands Reference for RISC
System/6000, Volume 2. GC23-2366.

IBM AIX V3.2 Commands Reference for RISC
System/6000, Volume 3. GC23-2367.

IBM AIX V3.2 Commands Reference for RISC/6000,
Volume 4. GC23-2393.

SNA Transaction Programmer's Reference for LU
Type 6.2. GC30-3084.

Assembler Language Reference for IBM AIX
Version 3 for RISC System/6000. SC23-2197.

General Programming Concepts for IBM RISC
System/6000. SC23-2205.

IBM AIX V3.2 User Interface Programming
Concepts, Volume 1. SC23-2404.

IBM AIX NetBIOS on Token-Ring/6000.
SC23-2336.

Managing Application Software with the Resource
Management System. SC33-9110.

IBM AIX Windows Programming Guide.
GG24-3382.

Writing a Device Driver for IBM AIX V4.1.
SC23-2593.

IBM AIX Calls and Subroutines Reference for RISC
System/6000. SC23-2198.

IBM AIX Communications Programming Concepts
for RISC System/6000. SC23-2206.

IBM AIX for RISC System/6000 Performance
Monitoring and Tuning Guide. SC23-2365.

1 This information is available in multiple languages. Contact your IBM representative for ordering information.

208 LANDP Programming Guide

IBM AIX Files Reference for RISC System/6000.
SC23-2512.

AIX V3.2 Topic Index and Glossary. GC23-2201.

IBM RISC System/6000 Planning for Your System
Installation V3.2. GC23-2407.

IBM RISC System/6000 System Overview V3.2.
GC23-2406.

IBM RISC System/6000 CD-ROM Hypertext
Information Base Library. SC23-2163.

AIX V3.2 System Management Guide: Operating
System and Devices. GC23-2486.

AIX 4777/4778 Programming Guide. SA34-2358.

IBM Local Area Network
IBM Token-Ring Network: Introduction and Planning
Guide. GA27-3677.

IBM Token-Ring Network: Problem Determination
Guide. SX27-3710.

Local Area Network: Administrator's Guide.
GA27-3748.

IBM PC Network: Technical Reference.2

IBM Personal Computer LAN Support Program.2

IBM Personal Computer Baseband and Broadband.2

IBM Cabling System Planning and Installation
Guide. GA27-3361.

Using the IBM Cabling System with Communication
Products. GA27-3620.

IBM Token-Ring Network Architecture Reference.
SC30-3374.

IBM Local Area Network Technical Reference.
SC30-3587.

IBM Local Area Network Support Program User's
Guide. SC21-8288.

 IBM 3270
IBM 3270 Personal Computer Control Program
Programming Guide. SC23-0165.

IBM 3270 Information Display System Character Set
Reference. GA27-2837.

IBM PC 3270 Emulation Program, Entry Level V2.0
Programmer's Guide. S91F-8583.

IBM 3270 PC High Level Language API
Programming Reference. SC23-2473.

Personal Communications Version 4.3 Emulator
Programming, SC31-8478.

Wide Area Communications
SNA Primary Custom Feature Description.
GC31-2509.

Advanced Function for Communications: System
Summary. GA27-3099.

System Network Architecture (SNA) Technical
Overview. GC30-3073.

System Network Architecture (SNA) Format and
Protocol Reference Manual. SC30-3112.

System Network Architecture (SNA) Formats.
GA27-3136.

System Network Architecture (SNA) Format and
Protocol Reference Manual: Management Services.
SC30-3346.

System Network Architecture (SNA) Sessions
between Logical Units. GC20-1868.

CCITT X.25 Recommendations, Interface between
Data Terminal Equipment (DTE) and Data Circuit
Terminating Equipment (DCE) for Terminals
Operating in the Packet Mode on Public Data
Networks. Vol. VIII. Fascicle VIII.5. This document
is useful when writing X.25 applications.

RT PC X.25 Communication Support User's Guide.
SC33-0630.

X.25 Interface for Attaching SNA Nodes to
Packet-Switched Data Network General Information
Manual. GA27-3345.

RT PC X.25 Communications Support Programmer's
Reference. SC33-0631.

IBM Cryptographic Subsystem Concepts and
Facilities. GC22-9063.

IBM X.25 Co-Processor Support Program User's
Guide. X07F-8915.

IBM X.25 Co-Processor Support Program
Programmer's Reference. X07F-8916.

2 This publication is shipped with the product. Contact your IBM Representative for ordering information.

 Bibliography 209

IBM X.25 Interface Co-Processor/2 Technical
Reference. S16F-1879.

SNA Advanced Peer-to-Peer Networking Dependent
LU Requester Architecture Reference. SV40-1010.

Multiprotocol Transport Networking (MPTN)
Architecture: Formats. GC31-7074.

Multiprotocol Transport Networking (MPTN)
Architecture: Technical Overview. GC31-7073.

Telnet Protocol Specification, STD 8, RFC 854,
USC/Information Sciences Institute. J. Postel and J.
Reynolds .
To view this book, use the keyword RFC 854 with
an internet search engine.
Printed copies of RFCs are available for a fee from:

SRI International, Room EJ291
333 Ravenswood Avenue
Menlo Park, CA 94025
(415) 859-3695
(415) 859-6387
FAX (415) 859-6028

 IBM NetView
NetView Distribution Manager: General Information
V1.6. GH19-6792.

NetView Distribution Manager: Planning.
SH19-6589.

NetView Distribution Manager Release 6: Installation
and Customization. SH19-6794.

NetView Distribution Manager: Operation.
SH19-6592.

NetView Distribution Manager: User's Guide V1.6.
SH19-6795.

NetView Distribution Manager: Diagnosis R5.
LY19-6374.

NetView Distribution Manager: Messages and
Codes V1.6. SH19-6798.

IBM Financial I/O Devices
IBM 4009 Operator's manual. GA19-5650.

IBM 4009 Service manual/Parts catalogue.
SY19-6392.

IBM 4009 Quick Reference Card. GX11-6316.

IBM 4009 Customer Setup. GA19-5651.

IBM 4009 Safety Instructions. GA19-5651.

IBM 4009 Product and Programming Description
(PPD) DOS. SH19-4015.

IBM 4009 Product and Programming Description
(PPD) OS/2. SH19-4038.

IBM 4700 Finance Communication System
Summary. GC31-2016.

IBM 4700 Financial I/O Planning Guide.
GC31-3762.

IBM 4700 Financial I/O Devices Programming
Guide. GC31-3770.

IBM 4700 Financial I/O Devices Programming Guide
for OS/2. GC31-2661.

IBM 4700 Finance Communication System,
Controller Programming Library, Volume 5,
Cryptographic Programming. GC31-2070.

IBM 4700 Financial I/O Devices Operating Guide.
SC31-3763.

IBM 4712 Transaction Printer Models 1, 2, and 3
Reference Card. SC31-3765.

IBM 4722 Document Printer Model 3 Programming
Addendum. GC31-2928.

IBM 4722 Document Printer Models 1, 2, and 3
Reference Card. SC31-3767.

IBM 4748 Document Printer Programming Guide.
SA34-2090.

IBM 4748 Document Printer Operating Guide.
SA34-2068.

IBM 4748 Document Printer Service Guide.
SA34-2091.

IBM 4770 Ink Jet Transaction Printer Product
Profile. G571-0276.

IBM 4772 Universal Financial Printer Model 1
Programming Guide. SA34-2199.

IBM 4772 Universal Financial Printer Model 1 and 2
Installation and Operating Guide. GA34-2192.

IBM 4772 Universal Financial Printer Model 1 and 2
Reference Card. GX31-2077.

IBM 4772 Universal Financial Printer Model 1 and 2
Service Guide. SA34-2193.

IBM 4777 Magnetic Stripe Unit Installation and
Operating Guide. GA34-2189.

IBM 4777 Magnetic Stripe Unit: Programming
Guide for OS/2. SA34-2194.

IBM 4777 Magnetic Stripe Unit: Programming
Guide for DOS. SA34-2195.

210 LANDP Programming Guide

IBM 4778 PIN-Pad Magnetic Stripe Reader
Installation and Operating Guide. GA34-2190.

IBM 4778 PIN-Pad Magnetic Stripe Reader:
Programming Guide for OS/2. SA34-2196.

IBM 4778 PIN-Pad Magnetic Stripe Reader:
Programming Guide for DOS. SA34-2197.

IBM 4777 Magnetic Stripe Unit and 4778 PIN-Pad
Magnetic Stripe Reader AIX Programming Guide.
SA34-2358.

IBM 9055-001 Document Printer: Planning and
Programming Guide. SA18-7496.

IBM 9055-002 Document Printer: Planning and
Programming Guide. SA18-7489.

IBM 9068 Multi-Purpose Passbook Printer Model
D01 Planning and Programming Guide. SA18-7505.

IBM 9068 Multi-Purpose Passbook Printer Model
S01 Planning and Programming Guide. SA18-7506.

IBM 9068-S01 Multi-Purpose Passbook Printer
Operating Guide. SA18-7507.

IBM 9069 Printer Planning and Programming Guide,
SA18-7525.

IBM 9069 Operating Guide, SA18-7524.

Distributed Computing Environment
AIX DCE Overview. SC23-2477.

DCE Administration Guide. SC23-2475.

Introduction to DCE. Prentice Hall Inc.

DCE User's Guide and Reference. Prentice Hall
Inc.

DCE Administration Reference. Prentice Hall Inc.

DCE Application Development Guide. Prentice Hall
Inc.

DCE Application Development Reference. Prentice
Hall Inc.

IBM DCE for OS/2: Application Developer's Guide.
S96F-8506.

Encryption and Decryption
IBM Cryptographic Subsystem Concepts and
Facilities. GC22-9063.

IBM 4700 Finance Communication System,
Controller Programming Library, Volume 5,
Cryptographic Programming. GC31-2070.

IBM Transaction Security System Workstation
Security Services: Installation and Operating Guide.
SA34-2141.

IBM Transaction Security System Concepts and
Programming Guide: Volume 1, Access Controls
and DES Cryptography. GC31-3937.

IBM VisualAge C++
Product web site:

http://www.ibm.com/software/ad/vacpp/

IBM VisualAge Generator
Product web site:

http://www.ibm.com/software/ad/visgen/

 IBM Redbook:

VisualAge Generator Version 3.1 System
Development Guide, SG24-4230-02

IBM VisualAge Smalltalk
Product web site:

http://www.ibm.com/software/ad/smalltalk/

 IBM Redbooks:

VisualAge for Smalltalk Handbook - Volume 1:
Fundamentals, SG24-4828-00

VisualAge for Smalltalk Handbook - Volume 2:
Features, SG24-2219-00

 Java
IBM Java web site:

http://www.ibm.com/software/java/

IBM VisualAge for Java product web site:

http://www.ibm.com/software/ad/vajava/

IBM developerworks web site:

http://www.ibm.com/software/developer/java/

IBM VisualAge Developers Domain web site:

http://www.ibm.com/software/vadd/

 IBM Redbooks:

Programming with VisualAge for Java Version
2, SG24-5624-00

 Bibliography 211

Application Development with VisualAge for
Java Enterprise, SG24-5081-00

IBM Personal Communications
Personal Communications AS/400 and 3270 for
OS/2 Up and Running, SC31-8258.

Personal Communications AS/400 and 3270 for
Windows NT Up and Running, GC31-8314.

Personal Communications/3270 Programmer’s
Guide for DOS (Entry Level), S20H-1774.

Personal Communications/3270 Programmer’s
Guide for OS/2, S85G-8681.

Personal Communications/3270 Reference Guide
for OS/2, S85G-8721.

Personal Communications Version 4.3 for Windows
98 and Windows NT Reference, Volumes 1 and 2 ,
SC31-8682, SC31-8680.

Personal Communications Windows NT Quick
Beginnings, GC31-8679.

IBM Communications Server
IBM SecureWay Communications Server for OS/2
Warp Version 6 Quick Beginnings, GC31-8189.

IBM Communications Server for Windows NT Quick
Beginnings, GC31-8424.

eIBM Network Communications Server for OS/2
Guide to AnyNet, GC31-8193, GC31-8320

 WorkSpace On-Demand
WorkSpace On-Demand Road Map Release 2.0,
SG24-5117 (10/98)

WorkSpace On-Demand Handbook Release 2.0,
SG24-5117 (10/98)

WorkSpace On-Demand Handbook (Release 1),
SG24-2028 (12/97)

WorkSpace On-Demand Early Customer
Experiences, SG24-5107 (10-98)

IBM Up and Running! OS/2 Warp Server,
S25H-8004

WorkSpace On-Demand Administrator's Guide.,, on
the web at
www.ibm.com/software/network/workspace/library

 MQSeries
MQSeries for Windows NT V5.0 Quick Beginnings,
GC33-1871-00

MQSeries for OS/Warp Quick Beginnings,
GC33-1868-01

MQSeries Planning Guide, GC33-1349-05

MQSeries Intercommunication, SC33-1872-00

MQSeries Clients, GC33-1632-04

MQSeries System Administration, SC33-1873-00

MQSeries Command Reference, SC33-1369-08

MQSeries Programmable System Management,
SC33-1482-05

MQSeries Messages, GC33-1876-00

MQSeries Application Programming Guide,
SC33-0807-07

MQSeries Application Programming Reference,
SC33-1673-03

MQSeries Using C++, SC33-1877-00

212 LANDP Programming Guide

Index

 Index

Special Characters
** (process disconnection) function in all servers 61
** (workstation disconnection) function in all

servers 61
&& (process connection) function in all servers 63
&& (workstation connection) function in all

servers 62
#, use of in server names 11

Numerics
16-bit programs 15
32-bit programs 16
3270 books 209

A
acting as client, server 2
activate and deactivate timers (T0–T8) supervisor local

function
used in sample application 173

AIX to host and PC code page conversion 117
AIX, use of native system functions 2
alias names 12
API (application programming interface)

See application programming
application programming

32-bit programs 16
alias names 12
API link routines 4

GETREQ 51
GETRPLY 32
RMTAREQ 55
RMTREQ 28
RMTREQ NoWait 29
RMTRPLY 54
SRVINIT 49

asynchronous event notification 36
C Set/2 9
C/6000 9

C++ 87
client/server interaction 27
COBOL programs under VisualAge 103
COBOL/2 9
COBOL/6000 9

application programming (continued)
common API 2, 19

invocation 27
used by clients 4
used by servers 5

compiling and linking 13
connectivity programming request block (CPRB)

fields required for GETRPLY 33
fields required for RMTREQ 28

dynamic link library 14, 17
EHC_GETRPLY_OPTS structure in calls 34
EHC_NOWAIT_PARM structure in calls 32, 34
EHC_RMTREQ_OPTS structure in calls 31
event ID 37
event notification

support (asynchronous) 36
using posted GUI message 39

expanded memory in LANDP for DOS 68
GETREQ 4
GETRPLY 4, 32
GETRPLY options control block 34
hints 35
include file 16, 17
including options control blocks 9
including the CPRB 9
interrupt handling in LANDP for DOS 68
invoking the common API 27
keyboard events 41
LANDP for AIX server structure 73
LANDP for DOS Windows 3.1 support 43
LANDP–DCE client 78
LANDP–DCE server 82
link-editing 13
MASM/2 9
memory management considerations with LANDP for

DOS 66
Micro Focus COBOL 9, 13
mono-service servers 11
mouse events under LANDP for OS/2 and LANDP for

Windows NT 41
multiple threads in LANDP for OS/2 69
multiple threads in LANDP for Windows NT 71
multiple-service servers 11
names of system resources 10
notation conventions xiv
Pascal/2 9

 Copyright IBM Corp. 1992, 2000 213

Index

application programming (continued)
Pascal/6000 9
passing

data 10
parameters 9

polling asynchronous event information 39
process connection and disconnection events 42
pure 16-bit programs 15
receiving event notifications 38
reply buffer allocation in LANDP for AIX 75
requesting services through the common API 27
REXX on LANDP for OS/2 113
RMTAREQ 4
RMTREQ 4, 28
RMTREQ NoWait 4
RMTREQ options control block 31
RMTRPLY 4
router return codes 35
sample application program
sample application programs

LANDP for DOS, OS/2, and AIX 36
semaphore events under LANDP for OS/2 and

LANDP for Windows NT 42
server child support in LANDP for AIX 76
server events in LANDP for AIX 76
server names 10
server return codes 35
Smalltalk 92
special considerations with LANDP for AIX 73
special considerations with LANDP for DOS 66
special considerations with LANDP for OS/2 69
special considerations with LANDP for Windows

NT 71
SRVINIT 4
SRVINIT, calling in LANDP for AIX 75
tutorial 127—180
types of events 36

system events 40
timer events 41

VisualAge for COBOL 103
VisualAge programs 9
waiting for multiple events 38
WM used by LANDP for OS/2 servers 70
WM used by LANDP for Windows NT servers 72

asynchronous events 64
event notification or cancellation with RMTRPLY 55
notation for codes xv
notification 36
polling 39
wait (WM) supervisor local function 38

B
banking self-service books 207
bibliography 207

3270 209
banking self-service 207
Communications server 212
Distributed Computing Environment 211
encryption and decryption 211
FBSS 207
Financial Branch System Integrator 207
Financial I/O Devices 210
LANDP 207
Local Area Network 209
NetView 210
Personal Communications 212
Personal Computer 208
Personal System/2 208
RISC System/6000 208
Transaction Security System 207
VisualAge C++ 211
VisualAge Generator 211
wide area communications 209

binding
using naming services 78, 82
using string bindings 79, 83

bit positions, convention for xv
books for LANDP xvi, 207
building sample applications 178

C
C language programs 16, 17

sample client and server programs 127—147
C Set/2 programs 9
C/6000 programs 9

C++, writing application programs using 87
client, definition of 1
client/server mechanism 2

client/server interaction 27
communication 2
data and the API 10
how clients and servers interact 1
parameters and the API 9
routing requests 1
server acting as client 2
supervisor local functions 2

COBOL (VisualAge for OS/2 programs) 9
COBOL programs under VisualAge

sample client and server programs 149—169

214 LANDP Programming Guide

Index

COBOL programs, under VisualAge 103
COBOL/2 programs 9
COBOL/6000 programs 9
code page conversion by DCZYSVP 117
COFF (Common Object File Format) 17
common API

See application programming
Common Object File Format (COFF) 17
communication

books 209
communication between clients and servers 1, 2
Communications Server

books 212
compiling application programs 13
CONFIG.SYS
connection functions

of process (&&) in all servers 63
of workstation (&&) in all servers 62

connectivity programming request block (CPRB)
all fields 5
definition of 2
fields used and set by clients 28
fields used and set by servers 48
use with GETREQ 52
use with GETRPLY 33
use with RMTAREQ 56
use with RMTREQ 28
use with RMTRPLY 54, 55

CPRB
See connectivity programming request block (CPRB)

cryptography
books 211

D
data, passing through the API 10
DB2 for OS/2 xv
DB2 Universal Database xv
DCE 77

books 211
client structure 81
DCE client accessing LANDP server 77
LANDP client accessing DCE server with

LANDP–DCE interface 77
LANDP client accessing DCE server with

non-LANDP–DCE interface 77
programming interface 77
server exporting bindings to naming services 82
server structure 85
server using string bindings 83

DCZYSVP application test program 118
DCZYXSVP, Motif version of DCZYSVP 121
deactivate and activate timers (T0–T8) supervisor local

function
used in sample application 173

decryption and encryption books 211
definitions of terms 185
disconnection

process (**) function in all servers 61
process events 42
workstation (**) function in all servers 61

Distributed Computing Environment
See DCE

DLL (dynamic link library) 14, 17
DOS box (VDM) 43
DOS, use of native system functions 2
dynamic link library (DLL) 14, 17

E
EHC_GETREQ_OPTS structure in calls 52
EHC_GETRPLY_OPTS structure in calls 34
EHC_NOWAIT_PARM structure in calls 32, 34
EHC_RESERVED field in calls 20, 29
EHC_RMTREQ_OPTS structure in calls 31
EHC_SRVINIT_OPTS structure in calls 50
EHCAGENT.LIB library file 14
EHCCONN SNA connection program 18
EHCDEFC.H header file

compiling and linking 14
include for C programs 16
include for C++ programs 17
including CPRB 9
LANDP for OS/2 mixed 32-bit programs 16
LANDP for OS/2 pure 32-bit programs 16
migrating from FBSS (DOS) 19
migrating from FBSS/2 21

EHCDEFC.INC include file 19
EHCDEFCB.CBL copy file

compiling and linking 13
including CPRB 9
migrating from FBSS (DOS) 19

EHCDEFM.INC include file
compiling and linking 13
including CPRB 9
migrating from FBSS (DOS) 19

EHCDEFP.INC include file 9, 14
EHCDOS.LIB library file 13, 27
EHCDOSQ program for SQL tables 25

 Index 215

Index

EHCDOSXM.LIB library file 27
EHCIN initialization program 18
EHCMGR1 migration program 25
EHCMGR2 migration program 25
EHCMGROS migration program 25
EHCOS2.DLL dynamic link library file 14, 21
EHCOS2.LIB library file

compiling and linking 13
LANDP for OS/2 DLL 14
use with FBSS/2 15, 27

EHCOS216.LIB library file
compiling and linking 13
LANDP for OS/2 DLL 14
use with LANDP for OS/2 27

EHCOS232.LIB library file
compiling and linking 13
LANDP for OS/2 DLL 14
LANDP for OS/2 mixed 32-bit programs 16
LANDP for OS/2 pure 32-bit programs 16
migrating from FBSS/2 21
use with LANDP for OS/2 27

EHCOS2Q program for SQL tables 25
EHCREL SNA release program 18
EHCSVPUE exit server 124
EHCUSER.CFG file for server-to-server calls 65
EHCWINNT library file (LANDP for Windows NT) 27
EHCWINNT.COF library file (LANDP for Windows

NT) 27
EHCWINNT.DLL dynamic link library file 17
encryption and decryption

books 211
end of service (ES)

function in all servers 57
ES (end of service) function in all servers 57

used in sample application 155
event codes, notation for xv
event notification 36

See also asynchronous events
event codes xv
event ID 37
multiple events 38
polling asynchronous events 39
posted GUI messages 39
receiving event notifications 38
types of events 36

event types, system and server 36
event-driven applications 64
events, asynchronous

See asynchronous events

examples
asynchronous event codes xv
asynchronous events and the PIN pad server 64
DCE client 81
DCE server 85
DOS

sample client program (COBOL) 170—180
function codes xv
LANDP for AIX server 75
LANDP for AIX service names 75
listed and annotated 180
OS/2

LANDP application (COBOL) 149—169
sample client program (COBOL) 170—180

PIN pad server using asynchronous events 64
RequestFromLandp and LandpServer class use 91
return codes xv
sample application programs 127
tutorial 180
Windows NT

LANDP application (C) 127—147
LANDP application (COBOL) 149—169

exit to idle status (EX) function in FBSS 45
expanded memory (LANDP for DOS) 68

F
FBSS

books 207
function (in a server) 1
function codes 5

notation for xv
notation for operating environment xiv

G
GETREQ call 4, 51

used in sample application 167
GETRPLY call 4, 32

used in sample application 159
glossary 185
GUI programs, VisualAge for COBOL 103

H
host to AIX code page conversion 117

216 LANDP Programming Guide

Index

I
I/O books 210
II (inquire information) supervisor local function

used in sample application 163
import libraries 13
IN (initialize) supervisor local function

used in sample application 163, 173
IN (server recognition) function in all servers 58
include files

EHCDEFC.H for C and C++
needed by LANDP applications 13
OS/2 16
Windows NT 17

including the CPRB and options control block
structures 9

information about IBM products 207
initialize (IN) supervisor local function

used in sample application 163, 173
interrupt handling 68
invoking the common API 27

J
Java websites and redbooks 211
Java, LANDP support 95—102

client development 96
exception handling 100
LANDP Version 4 classes supported 95
multiple client in a JVM 97
VisualAge for Java 95
writing applets to access LANDP 100
writing LANDP servers 101
writing servlets 100

K
keyboard

events 41

L
LAN (local area network) 1
LAN books 209
LANDP common API

See application programming
LANDP family books xvi
LANDP for AIX programming 73
LANDP for DOS programming 66

LANDP for DOS Windows 3.1 support 43
LANDP for OS/2 programming 14, 17

REXX 113
REXX application programming interface

(OS/2) 115
writing servers 69

LANDP for Windows NT programming
writing servers 71

LANDP workgroup 1
LANDP-DCE application programming interface

LANDP-DCE client
binding using naming services 78
binding using string bindings 79
DCE client structure 81
obtaining a LANDP context 80
obtaining binding handle for LANDP services 78
releasing a LANDP context 81
requesting LANDP services 80

LANDP-DCE server
binding 82
DCE server structure 85
exporting bindings to naming services 82
providing LANDP context 83
releasing LANDP context 84
services to clients 84
using string bindings 83

landpdce.idl and landpdce.acf files 78
landpdce.idl and landpdce.acf files 78
LandpRequest class 87, 92
LandpServer class 90
LIBDCZY.A library file 27
link libraries 13
link routines 4
link-editing application programs 13
local area network (LAN) 1
local servers 4

M
MASM/2 programs 9
memory management considerations (LANDP for

DOS) 66
Micro Focus COBOL programs

call RMTREQ 28
compiling and linking 13
including CPRB 9
using XM interface 27

migrating applications 18
16-bit programs to 32-bit mode 21
clients to common API 19

 Index 217

Index

migrating applications (continued)
FBSS (DOS) clients to LANDP for OS/2 21
FBSS (DOS) clients to LANDP for Windows NT 22
FBSS (DOS) servers to LANDP for OS/2 22
FBSS (DOS) servers to LANDP for Windows NT 23
FBSS (DOS) to LANDP for OS/2 19
FBSS (DOS) to LANDP for Windows NT 19
from shared-file server to LANDP for OS/2 query

server 24
LANDP for DOS clients to LANDP for OS/2 21
LANDP for DOS clients to LANDP for Windows

NT 22
LANDP for DOS servers to LANDP for OS/2 22
LANDP for DOS servers to LANDP for Windows

NT 23
LANDP for DOS to LANDP for OS/2 19
LANDP for DOS to LANDP for Windows NT 19
LANDP for OS/2 clients to LANDP for Windows

NT 25
LANDP for OS/2 servers to LANDP for Windows

NT 25
to this release of LANDP 18
user servers to common API 19, 20

mixed 32-bit programs 16
mono-service servers 11
mouse events under LANDP for OS/2 and LANDP for

Windows NT 41
moving services to LANDP for OS/2 19
moving services to LANDP for Windows NT 19
multiple events 38
multiple threads

LANDP for OS/2 69
LANDP for Windows NT 71

multiple-processing facilities of AIX 74
multiple-service servers 11

N
names of system resources 10
NetView books 210
non-GUI programs, VisualAge for COBOL for 103
notation conventions xiv

O
Object Module Format (OMF) 17
object-oriented programming

C++
LandpRequest class 87
LandpServer class 90
RequestFromLandp class 89

object-oriented programming (continued)
example of RequestFromLandp and LandpServer

class use 91
LandpRequest class 87, 92
LandpServer class 90
RequestFromLandp class 89
Smalltalk

LandpRequest class 92
OMF (Object Module Format) 17
operating environment, notation for xiv
operator panel functions in financial printer server
options control blocks 9
OS/2, COBOL programs under VisualAge 103
OS/2, use of native system functions 2

P
parallel printer port functions in printer manager server
parameters, passing through the API 9
Pascal/2 programs 9
Pascal/6000 programs 9
PC to AIX code page conversion 117
Personal Communications books 212
personal computer books 208
polling asynchronous event information 39
porting applications

See migrating applications
posted GUI messages 39
posting events supervisor local functions
PPC server

See program-to-program communication server
printer functions
printer manager server

server functions
process connection (&&) function in all servers 63
process connection and disconnection events 42
process disconnection (**) function in all servers 61
process identification 7
program types (LANDP for OS/2) 15
program-to-program communication server

server functions
pure 16-bit programs 15
pure 32-bit programs 16

R
relationship between clients and servers 1
release

LANDP context 81
in the server manager routines 84

218 LANDP Programming Guide

Index

remote servers 4
replied DATA length 6, 10
replied PARMLIST length 6, 9
reply buffer allocation (LANDP for AIX) 75
reply DATA 2, 35

address 6, 10
length 6, 10

reply PARMLIST 2, 35
address 6, 9
length 6, 9

request DATA 2, 35
address 5, 10
length 5, 10

request PARMLIST 2, 35
address 5, 9
length 5, 9

RequestFromLandp class 89
reserved names 12
resource name 6
return codes 35

See also router return codes
See also server return codes
notation for xv

REXX application programming interface (OS/2) 113
RISC System/6000 books 208
RMTAREQ call 4, 55
RMTREQ call 4, 27

detailed definition 28
use in sample programs

See sample LANDP applications
RMTREQ NoWait call 4, 29
RMTRPLY call 4, 54
router return codes 5, 35

notation for xv
routing requests 1

S
sample application programs

building 178
DOS client (COBOL) 170—180
for LANDP for AIX 36
header files (C language) 138
listed and annotated 127
OS/2 (COBOL) 149—169
OS/2 client (COBOL) 149—163, 170—180
OS/2 user-written server (COBOL) 164—169
tutorial 127
Windows NT (C) 127—147

building 178
header files (C language) 178

sample application programs (continued)
Windows NT (C) (continued)

using 178
Windows NT (COBOL) 149—169
Windows NT client (C) 127—137
Windows NT client (COBOL) 149—163
Windows NT user-written server (C) 139—147
Windows NT user-written server

(COBOL) 164—169
semaphores

events under LANDP for OS/2 and LANDP for
Windows NT 42

send CPRBs, for application testing 122
sending asynchronous events 64
server programming

in name 11
AIX multiple-processing facilities 74
alias names 12
asynchronous request (ZN, Z4, Z5)

C++ language 87
CPRB 48
definition of server 1
end of service (ES) 57
events 36, 76
expanded memory 68
function of a server 1
GETREQ 51
GETRPLY 32
interrupt handling 68
LANDP for AIX server structure 73
memory management considerations 66
mono-service servers 11
multiple threads 69, 71
multiple-service servers 11
names of servers 10
options for LANDP for OS/2 and LANDP for AIX

servers
GETREQ 52
SRVINIT 50

process
connection (&&) 63
disconnection (**) 61

receiving system requests 56
reply buffer allocation (LANDP for AIX) 75
reserved names 12
return codes 35
RMTAREQ 55
RMTRPLY 54
sending asynchronous events 64
server

acting as client 2

 Index 219

Index

server programming (continued)
server (continued)

events 76
recognition (IN) 58
server child support 76
server-to-server calls 65
structure 5, 47

server names 10
alias names 12
mono-service servers 11
multiple-service servers 11
reserved names 12
use of # 11

server-to-server calls 65
Smalltalk language 92
SRVINIT 49, 75
structure of a server 5
timer generated request (TT) 59
wait multiple (WM) in a server 70, 72
where servers are located 1, 4

CPRB field 6
workstation

connection (&&) 62
disconnection (**) 61

writing servers
LANDP for AIX 73
LANDP for DOS 66
LANDP for OS/2 69
LANDP for Windows NT 71

server recognition (IN) function in all servers 58
server return codes 6, 35

notation for xv
server, definition of 1
servers supplied with LANDP

See server programming
See user-written servers

service marks 183
16-bit programs 15
Smalltalk, writing application programs using 92
SPV (resource name) 48
SPVCPRB exit server 124
SRVINIT call 4, 75

detailed description 49
used in sample application 143, 167

start posting events (SP), supervisor local function
used in sample application 133

summary of changes xvii
supervisor local functions

see Programming Reference manuul i

SVPCPRB.EXE 117
SVPCPRBN.EXE 117
SVPCPRBx.EXE programs 121
system events 40

keyboard events 41
mouse events under LANDP for OS/2 and LANDP for

Windows NT 41
process connection and disconnection events 42
semaphore events under LANDP for OS/2 and

LANDP for Windows NT 42
timer events 41

system requests
end of service (ES) 57
process connection (&&) 63
process disconnection (**) 61
server recognition (IN) 58
timer generated request (TT) 59
workstation connection (&&) 62
workstation disconnection (**) 61

system resources, names of 10
system verification programs 117

See also testing an application program

T
terminate and stay resident (TSR) program 2
terms, definitions of 185
testing an application program 117

defining a test 118
test panel 118
test panel, hexadecimal mode 120
using keyboard 120
using Windows 121

testing LANDP applications 117
testing programs

DCZYSVP application test program 118
DCZYXSVP, Motif version of DCZYSVP 121

32-bit programs 16
threads

LANDP for OS/2 69
LANDP for Windows NT 71

timeouts 8
timer events 41
timer-generated request (TT) function in all

servers 59
trademarks 183
TSR (terminate and stay resident) program 2
TT (timer-generated request) function in all

servers 59

220 LANDP Programming Guide

Index

tutorial programming examples 127—180
types of programs (LANDP for OS/2) 15

U
user-written servers

See also servers supplied with LANDP
asynchronous events

sending 64
client/server mechanism requests 56

end of service (ES) 57
process connection (&&) 63
process disconnection (**) 61
timer generated request (TT) 59
workstation connection (&&) 62
workstation disconnection (**) 61

invoking the common API
GETREQ 51
GETRPLY 32
RMTAREQ 55
RMTRPLY 54
SRVINIT 49

server-to-server calls 65
structure 47

V
VDM 43
virtual DOS machine (VDM) 43
Visual C++ programs 9
VisualAge C++ web site 211
VisualAge C++ programs 9
VisualAge for COBOL 103
VisualAge for COBOL for OS/2 call RMTREQ 28
VisualAge for COBOL for OS/2 programs 9
VisualAge generator 105—112

ASCII/EBCDIC translation 109
bit-oriented data 107
calling functions within the DLL 107
calling LANDP servers 106
generating an application 112
overview 105
return codes 112
testing applications 112
The LANDP Dynamic Link Library 105

VisualAge Generator books 211
VisualAge programs 9
VisualAge Smalltalk web site 211

W
wait for asynchronous events (WM) supervisor local

function
See also asynchronous events
use of, in a client 38
use of, in a server 70, 72

wide area communication
books 209

Windows 2000 xv
Windows 3.1 support under LANDP for DOS 43
Windows NT, COBOL programs under

VisualAge 103
Windows NT, use of native system functions 2
WM (wait for asynchronous events) supervisor local

function
See also asynchronous events
use of, in a client 38
use of, in a server 70, 72

workgroup, definition of 1
workstation functions in all servers

connection (&&) 62
disconnection (**) 61

workstation identification 6
writing clients

See application programming
writing servers

See application programming
See user-written servers

X
X-Windows support under LANDP for AIX 39

Z
Z5 (asynchronous request—event notification or

cancellation) supervisor local function
used in sample application 145

 Index 221

Sending your comments to IBM
LANDP Family

Programming Guide

SC34-5781-00

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on the
accuracy, organization, subject matter, or completeness of this book. Please limit your
comments to the information in this book and the way in which the information is
presented.

To request additional publications, or to ask questions or make comments about the
functions of IBM products or systems, you should talk to your IBM representative or to
your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring any
obligation to you.

You can send your comments to IBM in any of the following ways:

� By mail, use the Readers’ Comment Form (RCF)

 � By fax:

– From outside the U.K., after your international access code use
44 1962 870229

– From within the U.K., use 01962 870229

� Electronically, use the appropriate network ID:

– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
 – IBMLink: HURSLEY(IDRCF)
 – Internet: idrcf@hursley.ibm.com

Whichever you use, ensure that you include:

� The publication number and title
� The page number or topic to which your comment applies
� Your name/address/telephone number/fax number/network ID.

Readers’ Comments
LANDP Family

Programming Guide

SC34-5781-00

Use this form to tell us what you think about this manual. If you have found errors in it,
or if you want to express your opinion about it (such as organization, subject matter,
appearance) or make suggestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the
functions of IBM products or systems, you should talk to your IBM representative or to
your IBM authorized remarketer. This form is provided for comments about the
information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Telephone Email

LANDP Family
LANDP Programming Guide SC34-5781-00 IBM

NameFrom:

Fold along this line

Fasten here with adhesive tape

C
ut along this line

Address

EMAIL

Company or Organization

Telephone

NE PAS AFFRANCHIR

NO STAMP REQUIRED

PHQ - D/1348/SOIBRS/CCRI NUMBER:

REPONSE PAYEE
GRANDE-BRETAGNE

IBM United Kingdom Laboratories
Information Development Department (MP095)
Hursley Park,
WINCHESTER, Hants
SO21 2ZZ United Kingdom

By air mail
Par avion

Fold along this line

C
ut along this line

IBM

Program Number: 5639-I90

Printed in the USA

SC34-5781-AA

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	What you need to know
	How this book is organized
	Conventions used in this book
	Operating environments
	Function, return, and event codes
	Bit positions
	DB2 Universal Database®
	Windows 2000

	Related information
	Web site

	Summary of Changes
	Chapter 1. Clients and servers
	Communicating between clients and servers
	Common API used by clients
	Common API used by servers
	Connectivity programming request block (CPRB)
	Including the CPRB and options control block structures

	Passing parameters
	Passing data
	Naming system resources
	Server names
	Mono-service servers
	Multiple-service servers
	Alias names in LANDP for OS/2, Windows NT, and AIX

	Compiling and linking your application program
	LANDP for OS/2 programming environments
	LANDP for OS/2 dynamic link library
	LANDP for OS/2 program types
	Pure 16-bit programs
	Pure 32-bit programs
	Mixed 32-bit programs

	Include file EHCDEFC.H for C and C<< language programs

	LANDP for Windows NT programming environments
	LANDP for Windows NT dynamic link library
	Include file EHCDEFC.H for C and C<< language programs

	Migration considerations
	Moving to the latest LANDP for DOS
	Moving LANDP for DOS and FBSS (DOS) services to LANDP for OS/2
	Moving LANDP for DOS and FBSS (DOS) services to LANDP for Windows NT
	Migrating FBSS (DOS) clients or user servers to the LANDP common API
	Migrating existing clients
	Migrating existing user servers

	Migrating FBSS/2 16-bit clients and user servers to 32-bit mode
	Migrating LANDP for DOS and FBSS (DOS) clients to LANDP for OS/2
	Migrating LANDP for DOS and FBSS (DOS) user servers to LANDP for OS/2
	Migrating LANDP for DOS and FBSS (DOS) clients to LANDP for Windows NT
	Migrating LANDP for DOS and FBSS (DOS) user servers to LANDP for Windows NT
	Migrating from the shared-file server to the LANDP for OS/2 query server
	Migrating LANDP for OS/2 clients and user servers to LANDP for Windows NT

	Chapter 2. Writing client programs
	Invoking the common API
	CPRB fields used and set by clients
	Call RMTREQ (Remote request)
	Call RMTREQ using the NoWait option
	Application flow using RMTREQ NoWait
	The RMTREQ options control block (EHC_RMTREQ_OPTS)

	Call GETRPLY (Get reply)
	CPRB fields required for GETRPLY
	The GETRPLY options control block (EHC_GETRPLY_OPTS)

	Hints
	Requesting services
	Return codes

	Sample application programs
	LANDP event notification support
	Types of event
	Event ID
	Receiving event notifications
	Waiting for multiple events
	Polling asynchronous event information
	Event notification using graphical user interface (GUI) message posting
	LANDP system events
	Keyboard events
	Mouse events under LANDP for OS/2 and Windows NT
	Timer events
	Semaphore events under LANDP for OS/2 and Windows NT
	Process connection and disconnection events

	LANDP for DOS and Windows 3.1/3.11 support
	Running standard LANDP for DOS applications
	Requirements for your standard LANDP for DOS applications
	Unloading LANDP for DOS
	Building Windows 3.1 applications that request LANDP for DOS services
	Performance considerations
	Restrictions

	Chapter 3. Writing your own server programs
	Structure of a server
	Invoking the common API
	CPRB fields used and set by servers
	Call SRVINIT (server initialization)
	Additional SRVINIT options

	Call GETREQ (get request)
	Additional GETREQ options

	Call RMTRPLY (remote reply)
	Event notification and cancellation with RMTRPLY

	Call RMTAREQ (remote asynchronous request)

	Receiving system requests
	End of service (ES function)
	Server recognition (IN function)
	Timer-generated request (TT function)
	Workstation disconnection (** function)
	Process disconnection (** function)
	Workstation connection (&& function)
	Process connection (&& function)

	Sending asynchronous events
	Server-to-server calls
	Writing LANDP for DOS servers
	Memory management considerations
	Interrupt handling
	Expanded memory considerations

	Writing LANDP for OS/2 servers
	Using multiple threads
	Using wait multiple (WM) in a server

	Writing LANDP for Windows NT servers
	Using multiple threads
	Using wait multiple (WM) in a server

	Writing LANDP for AIX servers
	LANDP for AIX server structure
	Using AIX multiple-processing facilities

	Calling SRVINIT
	Reply buffer allocation
	Server child support
	Server events

	Chapter 4. LANDP–DCE application programming interface
	The LANDPDCE.IDL and LANDPDCE.ACF files
	Writing a LANDP–DCE client
	Obtaining a binding handle for LANDP services
	Binding using naming services
	Binding using string bindings

	Obtaining a LANDP context
	Requesting LANDP services
	Releasing a LANDP context
	DCE client structure

	Writing a LANDP–DCE server
	Binding
	DCE server exporting bindings to naming services
	DCE server using string bindings

	Providing a LANDP context in the server manager routines
	Providing services to LANDP clients in the server manager routines
	Releasing LANDP context in the server manager routines
	DCE server structure

	Chapter 5. Object-oriented application programming
	Writing application programs using C++
	LandpRequest class
	RequestFromLandp class
	LandpServer class
	Example of RequestFromLandp and LandpServer class use

	Writing application programs using Smalltalk
	LandpRequest class

	Chapter 6. LANDP support for Java
	Support for Version 4 classes
	VisualAge for Java support
	Java client development
	Support for multiple client applications within a JVM
	Exception handling
	Writing servlets to access LANDP
	Writing applets to access LANDP
	Writing LANDP servers in Java

	Chapter 7. Writing programs using VisualAge for COBOL
	Writing GUI programs under OS/2
	Writing non-GUI programs
	VisualAge for COBOL compilation settings

	Chapter 8. VisualAge Generator Application Programming Interface
	Overview
	The LANDP Dynamic Link Library
	Calling LANDP servers from VisualAge Generator application programs
	Calling functions within the DLL
	Handling of bit-oriented data
	Translation from ASCII to EBCDIC and EBCDIC to ASCII

	Return codes
	Testing applications
	Generating an application

	Chapter 9. LANDP for OS/2 REXX application programming interface
	Chapter 10. Testing your application programs
	Defining a specific test
	Using the keyboard
	DCZYXSVP test program

	Testing with Windows 3.1/3.11 or Windows NT
	Invocation
	Menu options
	LANDP system information
	Send CPRBs

	Parameter and data entry fields

	Using your own SVPCPRB exit server

	Chapter 11. Sample application programs
	Sample application (C, Windows NT)
	Sample client application LDPCMAIN.C
	Windows NT entry-point module LDPCMAIN.C
	Windows NT application module LDPCPROC.C
	Windows NT application module LDPCPROC.C (continued)
	Windows NT application module LDPCPROC.C (continued)
	Windows NT application module LDPCPROC.C (continued)

	Header files
	SERVICE.H
	LDPCPROC.H

	Sample user server LDPSMAIN.C
	Windows NT sample user-written server, LDPSMAIN.C
	Windows NT sample user-written server, LDPSMAIN.C (continued)
	Windows NT sample user-written server, LDPSMAIN.C (continued)
	Windows NT sample user-written server, LDPSMAIN.C (continued)

	Sample application (COBOL, OS/2 AND Windows NT)
	Sample client (COBOL, OS/2 and Windows NT) SAMP-CLI.CBL
	Sample client (COBOL, OS/2 and Windows NT) SAMP-CLI.CBL (continued)
	Sample client (COBOL, OS/2 and Windows NT) SAMP-CLI.CBL (continued)
	Sample client (COBOL, OS/2 and Windows NT) SAMP-CLI.CBL (continued)
	Sample client (COBOL, OS/2 and Windows NT) SAMP-CLI.CBL (continued)
	Sample client (COBOL, OS/2 and Windows NT) SAMP-CLI.CBL (continued)
	Sample client (COBOL, OS/2 and Windows NT) SAMP-CLI.CBL (continued)
	Sample client (COBOL, OS/2 and Windows NT) SAMP-CLI.CBL (continued)

	Sample server (COBOL, OS/2 and Windows NT) SAMPSERV.CBL
	Sample server (COBOL, OS/2 and Windows NT) SAMPSERV.CBL (continued)
	Sample server (COBOL, OS/2 and Windows NT) SAMPSERV.CBL (continued)

	Sample client application (COBOL), DOS and OS/2
	Sample client application program SAMPLECB.CBL
	Sample client application program SAMPLECB.CBL (continued)
	Sample client application program SAMPLECB.CBL (continued)
	Sample client application program SAMPLECB.CBL (continued)

	Building sample applications
	Sample client and server, C, Windows NT
	Building a client program
	Building the sample server
	Running the application

	Sample client and server, COBOL, OS/2 and WINDOWS NT
	Sample client application, COBOL, DOS and OS/2
	Running the sample programs

	Appendix A. Notices
	Trademarks and service marks

	Glossary
	Bibliography
	IBM LANDP Family
	IBM Financial Branch System Services Licensed Programs
	IBM Financial Branch System Integrator Licensed Programs
	IBM Transaction Security System
	Banking Self-Service
	IBM workstations
	IBM RISC System/6000®
	IBM Local Area Network
	IBM 3270
	Wide Area Communications
	IBM NetView
	IBM Financial I/O Devices
	Distributed Computing Environment
	Encryption and Decryption
	IBM VisualAge C++
	IBM VisualAge Generator
	IBM VisualAge Smalltalk
	Java
	IBM Personal Communications
	IBM Communications Server
	WorkSpace On-Demand
	MQSeries

	Index

