
MERVA Family

MERVA Connection/6000

SH12-6097-02

IBM

MERVA Family

MERVA Connection/6000

SH12-6097-02

IBM

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix C.
Notices” on page 79.

Third Edition, November 1997

This edition applies to:

Version 3 Release 3 of IBM MERVA for OS/2 LAN (5622-122)

Version 3 Release 3 of IBM MERVA for OS/2 Standalone (5622-127)

OS/2 based features of products of the MERVA family

Version 1 Release 2 of IBM MERVA for AIX (5765-449)

AIX based features of products of the MERVA family

and to all subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SH12-6097-01.

© Copyright International Business Machines Corporation 1993, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

About This Book . vii

Chapter 1. Introduction to MERVA Connection/6000 1
Objectives of MERVA Connection/6000 1
Functions Provided by MERVA Connection/6000 1

Language Support . 1
Security . 1
Message Integrity . 2

Components of MERVA Connection/6000 2

Chapter 2. MERVA Connection/6000 Client Setup 5
MERVA Connection/6000 Requirements 5

Machine Requirements . 5
Programming Requirements. 5

Installing MERVA Connection/6000 Client 5
Deinstalling MERVA Connection/6000 Client 6
Customizing SNA Services . 6

Basic SNA Customization 6
SNA Customization for MERVA Connection/6000 6

Customizing TCP/IP . 7
Basic TCP/IP Customization 7
TCP/IP Customization for MERVA Connection/6000 7

Customizing MERVA Connection/6000 7
Fix Format Application Profile 8
Variable Format Application Profile 8
Variable Format Application Profile Parameters. 9
Selecting the Communication Type 12

Chapter 3. Remote API Server Setup in an AIX System 13
Remote API Server Requirements 13

Machine Requirements . 13
Programming Requirements. 13

Installing the Remote API Server 13
Customizing SNA Services . 13

Basic SNA Customization 14
SNA Customization for the Remote API Server 14

Customizing TCP/IP Services 16
Basic TCP/IP Customization 16
TCP/IP Customization for the Remote API Server 16

Chapter 4. Remote API Server Setup on OS/2 19
Remote API Server Requirements 19

Machine Requirements . 19
Programming Requirements. 19

Installing Remote API Server 19
Installing the Remote MERVA API Server Program 19
Installing the Sample Communications Server Configuration Files 19

Customizing SNA Services . 20
Basic SNA Customization 20
SNA Customization for the Remote API Server 21
Customizing the Trace File for SNA 21

Customizing TCP/IP Services 22
Customizing Client Network Services 22

© Copyright IBM Corp. 1993, 1997 iii

Customizing Super Daemon Services 22
Customizing the Trace File for TCP/IP 22

Chapter 5. Verifying Correct Installation and Customization 25

Chapter 6. The Application Programming Interface 27
Structure of the MERVA API Program on the Client Side 27
C Language Data Types . 27
Additional Functions . 28
Starting and Ending the Conversation 28

ENMSetProfile - Select a Profile 28
ENMStartRAPI - Establish Connection to MERVA Server 29
ENMRestartRAPI - Reconnect to MERVA Server 29
ENMEndRAPI - Disconnect from MERVA Server 30
ENMSetSecurity - Set Conversation Security Information 31
ENMSetTestEnv - Set Test Environment 32

Functions Enabling the API Program to Be Triggered 32
ENMWaitSemList - Wait for a List of Semaphores. 33
ENMCloseSem - Close a Semaphore 34
ENMSetSem - Set a Semaphore 35
ENMClearSem - Clear a Semaphore 36
ENMCreateSem - Create a Semaphore 37
ENMOpenSem - Open a Semaphore 38

Handling Errors . 39
ENMGetReason - Get Reason Code for Internal Error 39

Chapter 7. Resynchronization 43
How Resynchronization Is Implemented 43
Using the Resynchronization Mechanism 44
Hints and Tips . 44

Recovering after a Failed Call 45
Not Using Resynchronization 45

Chapter 8. Security . 47
Encryption of Transferred Information 47
Authentication of Transferred Information 47
User Exit Interfaces . 47

Introduction . 47
User Exit Points . 48

User Exit Interfaces in C Language 49
User Exit for Encryption . 49
User Exit for Decryption . 49
User Exit for MAC Generation 50
User Exit for MAC Verification 50

Chapter 9. Building API Programs 53
Compiling Your Own Program 53
Compiling the Sample Programs 53

List of Sample Files . 53

Chapter 10. Replacing Security User Exits 55
Security User Exits . 55
Generating and Activating Security User Exits 55

Security User Exits on the RAPI Client System. 55
Security User Exits on the MERVA Server System 56

iv MERVA Connection/6000

Chapter 11. Diagnosis Information 59
Log Files on the RAPI Client System 59

Diagnosis Log . 59
Programmer’s Log . 60

Log Files on the RAPI Server System (MERVA AIX) 60
Log Files on the RAPI Server System (MERVA OS/2) 60

Appendix A. Sample SNA Definitions 61
Customizing an APPN End Node (AIX). 61

Initial Node Setup . 62
Check and Modify the Initial Node Setup 62
Defining Additional Resources 65

Customizing an APPN Network Node (AIX) 68
Initial Node Setup . 68
Check and Modify the Initial Node Setup 68
Defining Additional Resources 70

Customizing an APPN Network Node (OS/2) 71

Appendix B. Sample Security User Exits 73
Module ENMSNIL - Empty Functions 73
Module ENMSSEC - Sample Functions 74

Appendix C. Notices . 79
Trademarks . 80

Glossary of Terms and Abbreviations 83

Bibliography . 89
IBM Publications . 89

MERVA Family Books . 89
MERVA OS/2 Books . 89
MERVA AIX Books . 89
MERVA ESA Books . 89

Further IBM Publications . 89
S.W.I.F.T. Publications . 89

Index . 91

Readers’ Comments — We’d Like to Hear from You 93

Contents v

vi MERVA Connection/6000

About This Book

This book is intended for application programmers who want to access an
installation of Message Entry and Routing with Interfaces to Various Applications for
AIX (abbreviated to MERVA AIX in this book) or an installation of Message Entry
and Routing with Interfaces to Various Applications for OS/2 Version 3 (abbreviated
to MERVA OS/2 V3 in this book) from an application program executing in an IBM
RISC System/6000 (RS/6000).

This book can help you to install and customize MERVA Connection/6000, and to
write programs using the MERVA Remote Application Program Interface (RAPI).

It is assumed that you have prior knowledge of and experience with:

v RISC System/6000

v Advanced Interactive Executive (AIX) operating system

v Personal System/2 (PS/2)

v Operating System/2 (OS/2)

v Systems Network Architecture (SNA)

v Application Programming Interface (API) of MERVA OS/2

v Application Programming Interface of MERVA AIX.

© Copyright IBM Corp. 1993, 1997 vii

viii MERVA Connection/6000

Chapter 1. Introduction to MERVA Connection/6000

This chapter introduces MERVA Connection/6000 and briefly describes the facilities
supported by MERVA Connection/6000.

Objectives of MERVA Connection/6000

There is a wide range of banking applications available for the RISC System/6000
platform. While many of these applications create and process SWIFT messages,
they do not provide a connection to public networks.

MERVA OS/2 and MERVA AIX provide connections to the SWIFT network (with
SWIFT Link) and to other MERVA systems (with MERVA Link). Additionally, MERVA
OS/2 and MERVA AIX provide an Application Program Interface (API) to access
some MERVA services.

To use RISC System/6000 applications as banking applications, messages created
on the RISC System/6000 must be transferred to a MERVA system. Messages
received from one of these networks must be transferred from a MERVA system to
the RISC System/6000.

While this can be achieved by saving messages to files and transferring the files,
this solution requires operator intervention and can cause message integrity
problems. It may also not be transparent to the application. Therefore, the best
method is to implement a direct connection from the application on the RISC
System/6000 to MERVA OS/2 or MERVA AIX, as if MERVA OS/2 or MERVA AIX
was a component of the application.

MERVA Connection/6000 is a tool that makes it easier for you to implement such a
solution. MERVA Connection/6000 is not a ready-to-use SWIFT interface on the
RISC System/6000. It does not have a user interface.

MERVA Connection/6000 provides an interface for application programs on the
RISC System/6000. It is called the Remote MERVA API. Using the Remote MERVA
API, you can create an application on the RISC System/6000 to send messages to
MERVA and receive messages from MERVA with a minimum effort.

Functions Provided by MERVA Connection/6000

MERVA Connection/6000 provides the complete functionality of the MERVA AIX or
MERVA OS/2 API on the RISC System/6000. Additional calls are available for
establishing an intersystem connection and making use of MERVA alarms. MERVA
Connection/6000 provides a real-time interface to MERVA AIX or MERVA OS/2.

Language Support

Easy portability of MERVA API programs between OS/2 and AIX is provided by the
C Language interface.

Security

Security aspects are dealt with by a flexible user exit interface (see “Chapter 8.
Security” on page 47).

© Copyright IBM Corp. 1993, 1997 1

Message Integrity

A resynchronization mechanism ensures that the remote API program can provide
the same level of message integrity as a local API program.

Components of MERVA Connection/6000

Figure 1 names the components of MERVA Connection/6000 and illustrates the
programming concepts of MERVA Connection/6000.

MERVA Connection/6000 has two main components:

v The Remote MERVA API Client is installed and executes in an RS/6000, the
Client Application System. MERVA AIX or MERVA OS/2 are not installed in the
Client Application System.

v The Remote MERVA API Server is installed and executes in an RS/6000 or a
PS/2, the MERVA Server System. The Remote MERVA API Server is a part of
the MERVA AIX or MERVA OS/2 system installed in the MERVA Server System.

The Remote MERVA API Client provides the calling interface for a Financial
Application that must use MERVA services. It forwards the API call with the input
parameters to the Remote MERVA API Server on the MERVA Server System. The
Remote MERVA API Server calls the MERVA API function and passes the received
parameters. The output data and the return code of the API function are returned to

┌────────────────────┐ ┌────────────────────┐
│Client Application │ │MERVA Server System │
│System (RS/6000) │ │ │
│ ┌─────────────────┐│ │ ┌─────────────────┐│
│ │AIX ││ │ │AIX or OS/2 ││
│ │ ││ │ │ ││
│ │ Financial ││ │ │ MERVA ││
│ │ Application ││ │ │ ││
│ └───────┐ ┌───────┘│ │ │ SWIFT Link ││
│ ┌───────┘ └───────┐│ │ │ MERVA Link ││
│ │ Application ││ │ │ ││
│ │ Interface ││ │ │ ││
│ │ ││ │ │ ││
│ │Remote MERVA API ││ │ │ Local MERVA API ││
│ └───────┐ ┌───────┘│ │ └───────┐┌────────┘│
│ ┌───────┘ └───────┐│ │ ┌───────┘└────────┐│
│ │Connection/6000 ││ │ │ ││
│ │ ││ │ │ ││
│ │Remote MERVA API ││ │ │Remote MERVA API ││
│ │ Client ││ │ │ Server ││
│ └──────┐ ┌──────┘│ │ └──────┐ ┌──────┘│
└───────┐││ ││┌──────┘ └───────┐││ ││┌──────┘

│││ ││└────────────────────────────────┘││ │││
│││ │└──────────────────────────────────┘│ │││
│││ │ ┌────────────────────────────┐ │ │││
│││ └>>>│API context with input data │>>>┘ │││
│││ └────────────────────────────┘ │││
│││ ┌────────────────────────────┐ │││
││└──<<<│API context with output data│<<<──┘││
││ └────────────────────────────┘ ││
│└──┘│
│ SNA APPC or TCP/IP │
│ Data Communication Services │
└──┘

Figure 1. Concept of MERVA Connection/6000

2 MERVA Connection/6000

the Remote MERVA API Client. The Remote MERVA API Client returns control to
the calling program as if the API function had been executed locally.

Chapter 1. Introduction to MERVA Connection/6000 3

4 MERVA Connection/6000

Chapter 2. MERVA Connection/6000 Client Setup

This chapter describes all aspects for the installation and customization of the
Remote MERVA API Client. It starts with a description of the prerequisites for
MERVA Connection/6000.

MERVA Connection/6000 Requirements

A number of requirements must be met by an RS/6000 in order to install and
execute the Remote MERVA API Client.

Machine Requirements

The Remote MERVA API Client can be installed on any RS/6000 with approximately
one megabyte free space on its hard disk.

The MERVA Connection/6000 Client Application System and the MERVA Server
System must be interconnected by a Data Communication Link. As specified by the
Data Communication Service used (SNA APPC or TCP/IP), Token Ring, SDLC,
Twinax, or other types of intersystem links can be used. A corresponding data link
adapter must be installed in the RS/6000.

For a list of the alternatives available and the hardware required, refer to the
appropriate books listed in the bibliography.

Programming Requirements

The following software must be installed on the RISC System/6000:

v IBM AIX Version 3.2.5, or a subsequent release

v SNA Server for AIX Version 2.1 (if AIX Version 3.2.5 is installed)

v SNA Server for AIX Version 3.1, or Communications Server for AIX Version 4.1,
or a subsequent release (if AIX Version 4.1 or a subsequent release is installed)

v The C Compiler XLC or compatible C Compiler.

SNA Server for AIX or Communications Server for AIX is required only if an SNA
APPC connection is used for the communication between the Remote MERVA API
Client and Server. SNA services are not required if a TCP/IP connection is used for
that purpose.

Installing MERVA Connection/6000 Client

MERVA Connection/6000 is installed from the MERVA AIX CD. You need AIX root
user authorization for this task.

To install the MERVA Connection/6000 client perform the following steps:

1. Insert the MERVA AIX CD.

2. Enter smitty .

3. Select Software Installation and Maintenance .

4. Select Install and Update Software .

5. Select Install and Update from Latest Available Software .

© Copyright IBM Corp. 1993, 1997 5

6. In the field Input device / directory for software , specify the name of the
device in which you inserted the CD, for example, /dev/cd0

7. In the field SOFTWARE to install , specify enmrapi .

Deinstalling MERVA Connection/6000 Client

If you want to remove MERVA Connection/6000 files from the disk, you can
deinstall MERVA Connection/6000. You need AIX root user authorization for this
task.

To deinstall the MERVA Connection/6000 client perform the following steps:

1. Ensure that no Remote MERVA API program is active.

2. Enter
smitty install

3. Select Maintain Installed Software

4. Select Remove Software Products

5. In the field SOFTWARE name , specify enmrapi .

Customizing SNA Services

MERVA Connection/6000 can use SNA APPC services for the communication
between the Remote MERVA API Client and Server. As an alternative, MERVA
Connection/6000 can use TCP/IP services for that purpose.

If SNA APPC services must be used, SNA Server for AIX or Communications
Server for AIX must be installed in the RS/6000 and be customized for binding
APPC sessions between the two partner systems.

Basic SNA Customization

Various methods apply for the interconnection of two RS/6000 systems or a
RS/6000 and a PS/2. The applicable customization is described in the books of
SNA Server for AIX and Communications Server.

A sample for the SNA customization that is independent of MERVA
Connection/6000 is provided in “Appendix A. Sample SNA Definitions” on page 61.

SNA Customization for MERVA Connection/6000

An LU 6.2 Side Information Profile is the only resource that may need to be added
to the SNA customization for access by the Remote MERVA API Client. A Side
Information Profile defines a Symbolic Destination Name for the Remote MERVA
API Server in the partner system. The parameters of a symbolic destination are:

v Symbolic Destination Name (sample: MERVA)

v Local LU Name (sample: LU1)

v Fully Qualified Partner LU Name (sample: APPN1.LUA)

v APPC Session Mode Name (sample: APPCLU62)

v Partner TP Name (sample: ENMRAS or ENM4XECU)

The LU names and the Mode name have been specified by the basic SNA
customization. The Partner TP Name is specified by the partner, the Remote

6 MERVA Connection/6000

MERVA API Server. The sample Remote MERVA API Server TP name in the
MERVA AIX environment is ENMRAS. The sample Remote MERVA API Server TP
name in the MERVA OS/2 environment is ENM4XECU.

If there is already a Symbolic Destination defined with all parameters correct except
the TP name, there is no need to define a Symbolic Destination specifically for the
Remote MERVA API Server. The existing Symbolic Destination can be used to
identify the partner system and the APPC session characteristics, and the
applicable TP name is specified in the MERVA Connection/6000 Application Profile.
The TP name in the Side Information Profile is disregarded in this case.

Customizing TCP/IP

MERVA Connection/6000 can use TCP/IP services for the communication between
the Remote MERVA API Client and Server if the server supports the TCP/IP
communication protocol. The TCP/IP support for a Remote API Server has not been
initially available with MERVA AIX and MERVA OS/2. This is why you must check
whether the applicable Remote MERVA API Server supports TCP/IP.

Basic TCP/IP Customization

The RS/6000 must be customized as a host in an internet, a network of
interconnected hosts using TCP/IP communication protocols. No specific MERVA
Connection/6000 requirements apply for the basic TCP/IP customization.

TCP/IP Customization for MERVA Connection/6000

TCP/IP customization for MERVA Connection/6000 is not applicable. All information
related to the TCP/IP connection to the Remote API Server is provided in the
MERVA Connection/6000 Application Profile.

You must, however, ensure that the partner host name specified in the MERVA
Connection/6000 Application Profile can be interpreted by the TCP/IP service. A
partner host name can be interpreted if it is defined in the AIX hosts file (/etc/hosts),
or if it is known by a Name Server in the TCP/IP network.

Customizing MERVA Connection/6000

Any Financial Application that uses the Remote MERVA API must be customized in
the Client Application System. The most important customization information is the
identification of the applicable Remote MERVA API Server.

A MERVA Connection/6000 application is customized by providing information in a
MERVA Connection/6000 Application Profile, a flat ASCII file that is generated and
updated using any text editor.

Two formats are supported for an application profile, a fix format profile and a
variable format profile. The fix format profile supports only an SNA connection
between Remote API Client and Server. The variable format supports additional
functions such as TCP/IP interconnection, conversation security, and test
environment.

Chapter 2. MERVA Connection/6000 Client Setup 7

Fix Format Application Profile

The parameters of a MERVA application can be provided in a fix format application
profile that contains six parameters. The parameters can be specified in one line
separated by at least one blank, in six separate lines, or as parameter groups in 2
to 5 lines.

The sequence of parameters is fix. It must be:

1. Log level (1 to 4)

2. Name of programmer’s log

3. Name of diagnosis log

4. SNA symbolic destination name of the Remote API Server

5. Name of the message integrity control file

6. Client system type (RS6000)

A parameter file that starts with a digit (the log level) is interpreted as a fix format
application profile. It is interpreted as a variable format application profile otherwise.

An example of a Remote API Client application profile in fix format is shown in
Figure 2.

The fix format of an application profile is supported for compatibility reasons with
older versions of the Remote MERVA API feature only. New functions, such as
conversation security and TCP/IP support, are not supported by an application
profile in fix format.

Application profiles in variable format must be used to benefit from the full
functionality provided by the Remote API Client feature.

Variable Format Application Profile

The variable format application profile provides an extended means to specify
environment parameters for a remote MERVA application. The features of the
variable format are:

v Parameter Keywords

An application parameter is specified in a line by its own in the format
parameter_keyword = parameter_value . Any number of blanks may precede
the parameter keyword, and precede and follow the mandatory equal sign.

v Parameter Sequence

Application parameters can be specified in any sequence. If a parameter is set
twice in the profile, the second of the two parameters becomes effective.

v Comments

1
plog.log
dlog.log
MERVA
mip.ctl
RS6000

Figure 2. Fix Format Application Profile Sample

8 MERVA Connection/6000

Comments can be part of an application profile. Any line that does not start with
a valid parameter keyword is considered as a comment line. An empty line is
also considered as a comment line. The first line of a profile must, however, not
start with a digit. According to conventions in other AIX configuration profiles, it is
recommended to start a comment line with a hash charater ’#’.

A parameter value can be followed by a comment. The comment must be
separated from the parameter value by at least one blank.

An example of a Remote API Client application profile in variable format for an SNA
connection is shown in Figure 3.

The application profile parameters that are not supported by a fix format application
profile are shown in a comment line. Remove the hash character at the begin of a
comment line to activate the parameter in that line.

Variable Format Application Profile Parameters

The parameters supported by the Remote API Client and the corresponding
parameter keywords in a variable format profile are described in the following.

Log Level

The parameter keyword for the log level parameter is log_level . The parameter
value is a single digit, 1, 2, 3, or 4. Log level 4 provides the most detailed
information.

Log File Mode

The parameter keyword for the log file mode parameter is log_mode . The
parameter value is either append or new . Actually, only the initial characters ’a’ or
’n’ are relevant. A log file mode parameter that does not start with either of these
two characters is ignored. The log file mode applies to both, the programmer’s log
and the diagnosis log.

#---
MERVA Connection/6000: Client Application Profile #1
#---

log_level = 1 minimum log level
log_mode = append append new log entries
system_type = RS6000 client system type is RS/6000

programmer_log = enmra1.plog programmer's log file name
diagnosis_log = enmra1.dlog diagnosis log file name
control_file = enmra1.mip message integrity control file name

symbolic_destination = MERVA SNA side information profile name
partner_tp_name = ENMRAS Remote API server APPC TP name

#partner_host_name = merva TCP/IP host name of RAPI server
#rapi_port_number = 7118 TCP/IP port number of RAPI server
#tcp_nodelay = on TCP_NODELAY flag will be set

#client_user_id = userid conversation security user id
#client_password = passwd conversation security user password

#test_environment = on write trace to stdout

Figure 3. Variable Format Application Profile Sample enmra1.prf

Chapter 2. MERVA Connection/6000 Client Setup 9

Log file mode append means that the programmer’s and diagnosis log entries are
appended to existing log files. This is the default log file mode if this parameter is
missing from the application profile.

Log file mode new means that existing log files are deleted and the programmer’s
and diagnosis log entries are written to an empty file.

System Type

The parameter keyword for the client system type parameter is system_type . The
parameter value for a MERVA Connection/6000 client is RS6000. It identifies the
type of the client system to the RAPI server.

Name of Programmer’s Log

The parameter keyword for the programmer’s log is programmer_log . The
parameter value is the name of an AIX file. A programmer’s log is not generated
when this parameter is not specified.

Name of Diagnosis Log

The parameter keyword for the diagnosis log is diagnosis_log . The parameter
value is the name of an AIX file. A diagnosis log is not generated when this
parameter is not specified.

Name of Message Integrity Control File

The parameter keyword for the MIP control file is control_file . The parameter value
is the name of an AIX file. The Message Integrity Control File is a mandatory
resource for the Remote MERVA API Client. The Remote API Client cannot be
initialized when this parameter is not specified.

SNA APPC Symbolic Destination

The parameter keyword for the SNA APPC symbolic destination is
symbolic_destination . The parameter value is the name of a Side Information
profile. It identifies and describes the APPC partner process in the Remote API
Server. The maximum length of a symbolic destination name is 8 characters.

SNA APPC Partner TP Name

The parameter keyword for the SNA APPC partner TP name is partner_tp_name .
The parameter value is the transaction program name (TPN) of the Remote API
Server as it is defined in the partner system. The TP name specified in this
parameter takes precedence over the TP name specified in the Side Information
profile. If this parameter is not specified, the TP name specified in the Side
Information profile applies. The maximum length of a TP name is 8 characters.

TCP/IP Partner Host Name

The parameter keyword for the TCP/IP partner host name is either
partner_host_name or partner_host . The parameter value is the name of the AIX
host that houses the RAPI server, or its dotted decimal TCP/IP address. The
maximum length of a partner host name is 64 characters.

10 MERVA Connection/6000

TCP/IP Port Number

The parameter keyword for the TCP/IP port number of the Remote API Server is
either rapi_port_number or port_number . The parameter value is the number
assigned to the MERVA Remote API Server, an inetd subserver, in the applicable
partner host system. The maximum value of a TCP/IP port number is 65.535.

TCP NODELAY Option

The parameter keyword for the TCP NODELAY option is tcp_nodelay . The
parameter value is either 1 or on if the TCP_NODELAY flag must be set. It is either
0 or off if the TCP_NODELAY flag must not be set. The default parameter value is
1.

The TCP NODELAY option can have a significant impact on the performance of a
remote API program in the TCP/IP communication environment.

Client User Identifier

The parameter keyword for the conversation security client user ID is
client_user_id . The parameter value is the conversation security user identifier that
applies for the conversation with the partner system. The client user must be
defined in the partner system and must be authorized to access the Remote API
Server transaction program. The maximum length of a user ID is 8 characters.

The client user ID specified in this parameter applies only if the user application
program did not provide a user ID before the application profile is handled. The
user ID provided by the application program can, however, be erased by
client_user_id = ″″. A second client user ID statement in this application profile can
then set a client user ID of its choice.

Client User Password

The parameter keyword for the conversation security client user password is
client_password . The parameter value is the conversation security user password
that applies for the specified client user. A password is disregarded by the Remote
API Client if a user ID is not specified in the application profile or by the application
program. The maximum length of a client user password is 8 characters.

The client user password specified in this parameter applies only if the user
application program did not provide a user password before the application profile is
handled.

The password provided by the application program can, however, be erased by
client_password = ″″. A second client password statement in this application profile
can then set a client user password of its choice.

Client Process Test Environment

The parameter keyword for the client process test environment is
test_environment . The parameter value is either on or 1 to activate the test
environment when the client process starts. The test environment is inactive if this
parameter is not specified or if any other parameter value is specified.

The Remote API Client function ENMSetTestEnv() is a means to set or reset the
client process test environment in a Remote API Client user program for specific
phases of the client process.

Chapter 2. MERVA Connection/6000 Client Setup 11

A Remote API Client process in test environment writes a processing trace to the
standard output device (normally the user terminal). This trace can be used for
processing and error analysis. The programmer’s log and the diagnosis log are
other sources of information for error analysis.

Selecting the Communication Type

The Remote API Client can establish a conversation with a Remote API Server
using SNA APPC services or using TCP/IP services. The corresponding partner
system address information must be provided in the application profile, and the
appropriate customization must be applied to the applicable data communication
services.

SNA APPC and TCP/IP partner information can be provided in an application
profile. If the SNA symbolic destination name of the Remote API Server is available,
the Remote API Client tries to establish an APPC conversation with the Remote API
Server. TCP/IP partner information is disregarded in this case.

TCP/IP partner information is used to establish a TCP/IP connection to the Remote
API Server if an SNA symbolic destination name is not available from the
application profile.

The Remote API Client does not support a preferred connection type and an
automatic connection type switch if SNA APPC and TCP/IP partner information is
available from the application profile.

12 MERVA Connection/6000

Chapter 3. Remote API Server Setup in an AIX System

This chapter describes all aspects for the installation and customization of the
Remote MERVA API Server in the MERVA AIX environment. The terms AIX system
and RS/6000 (RISC System/6000) are used as synonyms.

Remote API Server Requirements

A number of requirements must be met by an AIX system in order to install and
execute the Remote MERVA API Server.

Machine Requirements

The MERVA Connection/6000 Client Application System and the MERVA Server
System must be interconnected by a Data Communication Link. As specified by the
Data Communication Service used (SNA APPC or TCP/IP), Token Ring, SDLC,
Twinax, or other types of intersystem links can be used. A corresponding data link
adapter must be installed in the RS/6000.

For a list of the alternatives available and the hardware required, refer to the
appropriate books listed in the bibliography.

Programming Requirements

The following software must be installed on the RISC System/6000:

v IBM AIX Version 4.1.3, or a subsequent release

v SNA Server for AIX Version 3.1, or Communications Server for AIX Version 4.1,
or a subsequent release

SNA Server for AIX or Communications Server for AIX is required only if an SNA
APPC connection must be used for the communication between the Remote
MERVA API Client and Server. SNA Server for AIX or Communications Server for
AIX is not required if a TCP/IP connection is used for that purpose.

Installing the Remote API Server

The Remote MERVA API Server is automatically installed when MERVA AIX is
installed in an RS/6000. No specific installation tasks apply for the Remote API
server in the MERVA AIX environment.

Customizing SNA Services

MERVA Connection/6000 can use SNA APPC services for the communication
between the Remote MERVA API Client and Server. As an alternative, MERVA
Connection/6000 can use TCP/IP services for that purpose.

If SNA APPC services are used, SNA Server for AIX or Communications Server for
AIX must be installed in the RS/6000 and be customized for binding APPC sessions
between the two partner systems.

© Copyright IBM Corp. 1993, 1997 13

Basic SNA Customization

Various methods apply for the interconnection of two RS/6000 systems. The
applicable customization is described in the books of SNA Server for AIX or
Communications Server for AIX.

A sample for the SNA customization that is independent of MERVA
Connection/6000 is provided in “Appendix A. Sample SNA Definitions” on page 61.

SNA Customization for the Remote API Server

An LU 6.2 TP Name Profile is the only resource that must be added to the SNA
customization to support the Remote MERVA API Server. A TPN Profile defines the
characteristics of an inbound APPC Transaction Program. The characteristics of an
inbound TP are, for example:

v TP Name (sample: ENMRAS)

v Full Path Name of the Executable

v Command Line Parameters

v TP Access Security

v AIX User for the TP Process

To define a TPN Profile in SNA Server for AIX or Communications Server for AIX
call smitty sna and select:

1. Configure SNA Profiles

2. Advanced Configuration

3. Sessions

4. LU 6.2

5. LU 6.2 Transaction Program Name (TPN)

6. Add a Profile

A sample LU 6.2 TPN profile for ENMRAS in the Communications Server for AIX
environment is shown in Figure 4 on page 15.

14 MERVA Connection/6000

The sample TPN profile in Figure 4 defines that both the sample TPN Profile name
and the sample Transaction program name (TPN) are ENMRAS.

Command line parameter keyword trace is used to request an inbound
conversation trace. It is written to a file in the /tmp file system starting with the
name /tmp/enmtpi.t. If you specify a trace directory name starting and ending with a
forward slash instead of the keyword trace , a conversation trace is written to a
trace file starting with enmtpi.t. in that directory.

The sample Full path to TP executable specifies an AIX shell script that calls the
Remote API Server program enmtpi via a symbolic link from the MERVA AIX IPC
directory (for example, /u/merva1/ipc) to the MERVA installation directory (for
example, /usr/lpp/merva/bin).

The AIX shell script enmtpi.cmd reads, for example,
#!/bin/bsh
/u/merva1/ipc/enmtpi $1 $2 $3 $4 $5 $6 &

This sample AIX shell script ensures that the program enmtpi is called with the full
path name as the first parameter. The full path name is needed to identify the
applicable MERVA AIX instance (MERVA AIX IPC directory name).

Multiple instances of this TP must be enabled to allow concurrent inbound
conversations with multiple clients.

Add LU 6.2 TPN Profile

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
* Profile name [ENMRAS]
Transaction program name (TPN) [ENMRAS]
Transaction program name (TPN) is in hexadecimal? no +
PIP data? no +

If yes, Subfields (0-99) [0] #
Use command line parameters? yes +
Command line parameters [trace]
Conversation type mapped +
Sync level confirm +
Resource security level none +

If access, Resource Security Acc List Prof. []
Full path to TP executable [/u/merva1/ipc/enmtpi.cmd]
Multiple instances supported? yes +
Use user id from attach? no +
User ID [210] #
Server synonym name [ENMRASRV]
Restart action once +
Communication type signals +

If IPC, communication IPC queue key [0] #
Time out Attaches? yes +
If yes, time-out value (0-3600 seconds) [60] #

Standard INPUT file/device [/dev/null]
Standard OUTPUT file/device [/dev/null]
Standard ERROR file/device [/dev/null]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

Figure 4. LU 6.2 Transaction Program Name Profile for ENMRAS

Chapter 3. Remote API Server Setup in an AIX System 15

The User ID 210 represents the MERVA Instance Owner merva1 in this sample.

Customizing TCP/IP Services

MERVA Connection/6000 can use TCP/IP services for the communication between
the Remote MERVA API Client and Server. TCP/IP customization applies in the
Remote MERVA API Server environment.

Basic TCP/IP Customization

The RS/6000 must be customized as a host in an internet, a network of
interconnected hosts using TCP/IP communication protocols. No specific MERVA
Connection/6000 requirements apply for the basic TCP/IP customization.

TCP/IP Customization for the Remote API Server

The Remote MERVA API Server executes as an inetd subserver if TCP/IP services
are used for the communication between the Remote MERVA API Client and
Server. An inetd subserver is defined in two steps, the definition of the internet
service and the definition of the inetd subserver.

Customizing Client Network Services (/etc/services)

To add an entry to the file /etc/services, call smit tcpip or smitty tcpip and select:

1. Further Configuration

2. Client Network Services

3. Services

4. Add a Service

A sample internet services profile for the Remote API Server enmras is shown in
Figure 5. The sample TCP socket port number for the Remote MERVA API Server
is 7118. This port number aligns with other sample port numbers in the MERVA AIX
environment.

Customizing Super Daemon Services (/etc/inetd.conf)

To add an entry to the file /etc/inetd.conf, call smit tcpip or smitty tcpip and select:

1. Further Configuration

2. Server Network Services

Add an Internet Service

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Official Internet SERVICE Name [enmras]
* Transport PROTOCOL tcp +
* Socket PORT Number [7118] #
Unofficial Internet SERVICE NAMES []
(separate names with blanks)

Figure 5. Internet Service Profile Sample

16 MERVA Connection/6000

3. Other Available Services

4. Super Daemon (inetd)

5. inetd Subservers

6. Add an inetd Subserver

You must specify the service name and the transport protocol in that initial screen
before you can enter the other subserver parameters. A sample for the initial screen
is shown in Figure 6.

When you have specified the subserver name and the transport protocol you must
press the ENTER key to get the screen that provides the full set of subserver
parameters. A sample inetd subserver profile is shown in Figure 7.

The USER Name (for example, merva1) is the name of the MERVA Instance
Owner. The service program enmtci executes under the identifier of this AIX user.
The program must, however, have root authority at its begin to check whether the
client is authorized to access the server system. This is why program enmtci must
be owned by the root user, must be executable by members of its owning group,
and must have set the AIX setuid flag. The user specified as USER Name must be
a member of the group that owns program enmtci .

You can also use the following path name as the Service Program PATH Name :

Add an inetd Subserver

Please refer to help for information concerning subserver dependencies

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Available Subservers [enmras tcp] +

Figure 6. inetd Subserver Profile Identification Sample

Add an inetd Subserver

Please refer to help for information concerning subserver dependencies

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Internet SERVICE Name [enmras]
* Transport PROTOCOL tcp +
* SOCKET Type stream +
* WAIT for Server to Release Socket nowait +
* USER Name [merva1]
* Service Program PATH Name [/usr/lpp/merva/bin/enmtci]
Service Program Command Line ARGUMENTS [/u/merva1/ipc/ trace]

Figure 7. inetd Subserver Profile Sample

Chapter 3. Remote API Server Setup in an AIX System 17

|

/home/<merva instance owner>/ipc/enmtci

<merva instance owner> denotes the home directory of the MERVA instance
owner.

The service program enmtci switches to normal user authority (user merva1) as
soon as the client authorization has been executed.

The Service Program Command Line ARGUMENTS are as follows:

v The first command line argument must be the IPC directory of the applicable
MERVA AIX instance.

v An inbound conversation trace can be requested in another command line
argument. The command line parameter keyword ’trace’ causes a conversation
trace to be written to a file in the /tmp file system starting with the name
/tmp/enmtci.t. If you specify a trace directory name starting and ending with a
forward slash, a conversation trace is written to a trace file starting with enmtci.t.
in that directory.

v Command line parameter keyword delay can be specified (separated from other
parameters by a blank) to keep the inbound TCP/IP socket as it was passed to
the inbound TP. By default, the Remote API Server TP for TCP/IP (enmtci) sets
the TCP_NODELAY flag for the inbound socket. A significantly decreased
execution time of a remote API application program can be the effect of that flag.
Depending on the size of the API Response Data Units, the flag can have no
effect at all, or save up to 90% of the execution time.

18 MERVA Connection/6000

|

|
|

Chapter 4. Remote API Server Setup on OS/2

This chapter describes all aspects for the installation and customization of the
Remote API (RAPI) Server in the MERVA OS/2 environment.

Remote API Server Requirements

A number of requirements must be met by a OS/2 system in order to install and
execute the Remote MERVA API Server.

Machine Requirements

The MERVA Connection/6000 Client Application System and the MERVA Server
System must be interconnected by a Data Communication Link. As specified by the
Data Communication Service used (SNA APPC or TCP/IP), Token Ring, SDLC,
Twinax, or other types of intersystem links can be used. A corresponding data link
adapter must be installed o the OS/2 system.

For a list of the alternatives available and the hardware required, refer to the
appropriate books listed in the “Bibliography” on page 89.

Programming Requirements

The following software must be installed on your OS/2 PC:

v IBM OS/2 Warp Version 3, or a subsequent release

v Personal Communications 4.1 or Communication Server 4.1 or

TCP/IP for OS/2 Version 3.0, or a subsequent release

v MERVA OS/2 V3.3, including the latest available PTF level, or a subsequent
release.

Installing Remote API Server

The Remote MERVA API Server is automatically installed when MERVA OS/2 is
installed on a OS/2 system. Specific customization tasks apply for the Remote API
Server in the OS/2 environment.

Installing the Remote MERVA API Server Program

Refer to “Customizing SNA Services” on page 20 or “Customizing TCP/IP Services”
on page 22 on how to install MERVA Connection/6000 with SNA or TCP/IP.

Refer to “Chapter 10. Replacing Security User Exits” on page 55 on how to replace
the Security User Exits provided with MERVA Connection/6000.

Installing the Sample Communications Server Configuration Files

The directory \SAMPLES\CONNECT\PC\ on the MERVA OS/2 V3.3 CD contains a
sample set of Communications Server configuration files. If you want to use these,
unzip them to the directory where Communications Server is installed:

unzip enmsrvnn.zip *:* -d x :\CMLIB or

© Copyright IBM Corp. 1993, 1997 19

unzip enmsrvpp.zip *:* -d x :\CMLIB

in which x is the drive where Communications Server is installed on (usually the
CMLIB directory). The zip file enmsrvnn.zip contains a Communications Server
configuration file using APPN on the Server side. The zip file enmsrvpp.zip
contains a Communications Server configuration file using a peer-to-peer
connection for the Server side. Change the name of the default configuration file in
Communications Server to enmsrvnn or enmsrvpp by double-clicking on the icon
“Replace Default Configuration” of the Communications Server folder. The files with
the extension NDF are plain text files and can be read by any text editor. All other
files can only be read by the Communications Server setup program.

Customizing SNA Services

The Remote API Server can use SNA APPC services for the communication
between the Remote MERVA API Client and Server. As an alternative, the Remote
API Server can use TCP/IP services for that purpose.

If SNA APPC services are used, one of the following programs must be installed
and be customized for binding APPC sessions between the two partner systems on
the OS/2 system:

v Personal Communications 4.1

v Communication Server 4.1

Whenever the term Communications Server is used in this book, Personal
Communications is also meant (both are sufficient for MERVA Connection/6000).

If TCP/IP is used, TCP/IP for OS/2 Version 3.0 or higher must be installed on the
OS/2 system.

Basic SNA Customization

Various methods apply for the interconnection of two OS/2 system. The applicable
customization is described in the books of Communications Server.

20 MERVA Connection/6000

SNA Customization for the Remote API Server

An LU 6.2 TP is the only resource that must be added to the Communications
Server customization to support the Remote MERVA API Server. A TP defines the
characteristics of an inbound APPC Transaction Program. The characteristics of an
inbound TP are, for example:

v TP Name (example: ENMRAS)

v Full Path Name of the Executable

v Command Line Parameters

v TP Access Security

A sample LU 6.2 TP definition is shown in Figure 8.

If Conversation security is used, an appropriate entry must be added to
Conversation security in the SNA Features List. It is recommended to use the
Utilize User Profile Management option. Therefore, any user registered in the
Server’s User Profile Management has automatically the access right for the
Transaction Program.

Customizing the Trace File for SNA

The trace file path must be set with an Environment variable. Add the following line
to CONFIG.SYS:
SET ENM_TRC_DIR=C:\TRACE\

The path name given is the path to a directory where all trace files will be written.
Replace ‘C:\TRACE\’ with an appropriate path name. The trace file names will be of
the type
<partner host name>.trc

If the ENM_TRC_DIR environment variable is not set, no trace file will be written.

Note that this change to CONFIG.SYS does not take effect until the OS/2 system is
rebooted.

Figure 8. Transaction Program Definition in Communications Server Setup

Chapter 4. Remote API Server Setup on OS/2 21

Customizing TCP/IP Services

MERVA Connection/6000 can also use TCP/IP services for the communication
between the Remote MERVA API Client and Server. As prerequisite, TCP/IP for
OS/2 Version 3.0 must be installed on the Remote API Server and all Remote API
Clients.

The Remote MERVA API Server executes as an inetd subserver if TCP/IP services
are used for the communication between the Remote MERVA API Client and
Server. An inetd subserver is defined in two steps, the definition of the internet
service and the definition of the inetd subserver.

Customizing Client Network Services

The file C:\MPTN\ETC\SERVICES contains all TCP/IP services available on the
Remote API Server. It is used to map a service to a specific port and a transport
protocol.

Add the following line to the C:\MPTN\ETC\SERVICES file:
enmras 7118/tcp # MERVA Connection Remote Api Server

This defines the TCP/IP service ‘enmras’, maps it to the port 7118, and defines ‘tcp’
as transport protocol for this service. The name of the service and the port number
may be freely choosen. The service name should match the name given in
INETD.LST (see below) and the port number must match the port number given in
the profile of the Client.

Customizing Super Daemon Services

The file
%ETC%\INETD.LST

contains all services that were started with the inetd daemon. Next to the service
name, the transport protocol and the executable file to start are indicated.

Add the following line to the %ETC%\INETD.LST file:
enmras tcp <drive>:\merva2\base\enmotci.exe

Note: The implementation of inetd in TCP/IP for OS/2 3.0 is somewhat incomplete
in comparison with TCP/IP on AIX. No parameters are allowed in
%ETC%\INETD.LST and the Configuration program supplied with TCP/IP for
OS/2 3.0 doesn’t allow selfdefined services for inetd. Particulary, take the
following into consideration: The TCP/IP Configuration program overrides
all changes made in %ETC%\INETD.LST! That is, if the configuration is
saved with the Configuration program, all changes made to
%ETC%\INETD.LST must be done again!

Customizing the Trace File for TCP/IP

The trace file path must be set with an Environment variable. Add the following line
to CONFIG.SYS:
SET ENM_TRC_DIR=C:\TRACE\

22 MERVA Connection/6000

|

The path name given is the path to a directory where all trace files will be written.
Replace ‘C:\TRACE\’ with an appropriate path name. The trace file names will be of
the type
<partner host name>.trc

If the ENM_TRC_DIR environment variable is not set, no trace file will be written.

Note that this change to CONFIG.SYS does not take effect until the OS/2 system is
rebooted.

Chapter 4. Remote API Server Setup on OS/2 23

24 MERVA Connection/6000

Chapter 5. Verifying Correct Installation and Customization

To verify that the installation and customization of MERVA Connection/6000 was
successful, run the sample program smp6le4.

Before you can run this program, the user ID SAMPLE with the password
SAMPLE1 has to be defined in MERVA. This user ID must be approved for
application programs. The program also checks that the queues API_IN and
API_OUT have been customized.

© Copyright IBM Corp. 1993, 1997 25

26 MERVA Connection/6000

Chapter 6. The Application Programming Interface

The following description of the API is based on the descriptions in MERVA OS/2
V3 Application Programming and MERVA AIX Application Programming. This
chapter describes only the differences between the MERVA API programming on
the RISC System/6000 and the MERVA OS/2 API programming on the PS/2 or the
MERVA AIX API programming on the RISC System/6000.

Structure of the MERVA API Program on the Client Side

One major task of the MERVA API program on the RISC System/6000 is that it
must call functions that deal with connecting and disconnecting to and from the
PS/2 or the RISC System/6000:

�1� Before the API functions can be called, the Remote MERVA API Client on
the RISC System/6000 must be initialized by calling the function
ENMSetProfile. This function tells the Remote MERVA API Client the name
of the profile. The profile is described in “Customizing MERVA
Connection/6000” on page 7.

�2� After having set the profile name, the connection to the Remote MERVA API
Server on the MERVA OS/2 or MERVA AIX side can be established. To do
this, call the function ENMStartRAPI. When this function is called, the
Remote MERVA API Client is initialized and the network connection to the
Remote MERVA API Server is established.

After the ENMStartRAPI call, the MERVA OS/2 or MERVA AIX API functions
can be called as if the program ran locally on a MERVA OS/2 or MERVA
AIX machine.

�3� Before terminating the program, the connection to the Remote MERVA API
Server must be released by calling the function ENMEndRAPI. It is
important to call this function even if an error occurs in the API program,
otherwise, the Remote MERVA API Server misses the termination and is
not ready to receive the next connection request when the API program is
started again.

C Language Data Types

The file enmrapi.h contains the data types and prototypes of the MERVA OS/2 and
MERVA AIX API functions. When compiling a MERVA OS/2 or MERVA AIX API
program locally on the MERVA machine, the file enmoapi.h is included. When
compiling an API program on the RISC System/6000, the file enmrapi.h is included
instead.

�1� ENMSetProfile(profile name)
�2� ENMStartRAPI(application name)

|
| API program logic with MERVA OS/2 or MERVA AIX API calls
|

�3� ENMEndRAPI()

Figure 9. Remote MERVA API Program Structure

© Copyright IBM Corp. 1993, 1997 27

For the description of the API calls in this book, some data types defined in the
supplied include file enmrapi.h are used. Their meanings are as follows:

Type Definition

USHORT unsigned short

UCHAR unsigned char

PUCHAR unsigned char*

PUSHORT unsigned short*

ULONG unsigned long

PULONG unsigned long*

Additional Functions

MERVA Connection/6000 provides more API calls than the MERVA OS/2 and
MERVA AIX API. They are divided into the following categories:

v Functions for starting and ending the conversation

v Functions enabling the API program to be triggered by MERVA OS/2 alarms

v Functions for error handling.

Starting and Ending the Conversation

If you want that the API program starts and ends the conversation between the
Remote MERVA API Client and the Remote MERVA API Server, use the following
functions:

v ENMSetProfile - Select a Profile

v ENMStartRAPI - Establish Connection to MERVA

v ENMRestartRAPI - Reconnect Remote API Program to MERVA

v ENMEndRAPI - Disconnect from MERVA

v ENMSetSecurity - Set Conversation Security Information

v ENMSetTestEnv - Set test environment

Each function is described in the following.

ENMSetProfile - Select a Profile

Specify the name of the profile you want to use.

C Definition

void ENMSetProfile (PUCHAR pucProfileName);

Parameter Description

The following parameter is required:

v pucProfileName (PUCHAR)

Pointer to a null-terminated string with a maximum length of 80 characters. This
is the full path name of the profile.

Note: If several API programs run concurrently, each must use a different profile
name.

28 MERVA Connection/6000

Remarks

The format and contents of the profile file are described in “Customizing MERVA
Connection/6000” on page 7.

C Language Example:

#include "enmrapi.h"

ENMSetProfile ("enm6r1.prf");

ENMStartRAPI - Establish Connection to MERVA Server

C Definition
USHORT ENMStartRAPI (PUCHAR pucApplicationName);

Parameter Description

The following parameters are required:

v retCode (USHORT) - output

Code Meaning

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason, described in
“Handling Errors” on page 39. The reason code is also written to the
diagnosis log on the RISC System/6000 (see “Chapter 11. Diagnosis
Information” on page 59). If it is an internal error of the MERVA OS/2 or
MERVA AIX API, the reason code is zero.

v pucApplicationName (PUCHAR) - input

A pointer to a null-terminated string of up to 8 characters. This name is registered
by the Remote MERVA API Server.

Note: If several API programs run concurrently, each must use a different name.

Remarks

This call establishes the conversation with MERVA (Remote MERVA API Server)
and initializes internal buffers and variables. After this function was called, the
program must not end without calling ENMEndRAPI.

C Language Example

#include "enmrapi.h"

USHORT rc = 0;

if ((rc = ENMStartRAPI ("APPLID")) == 0)
puts("Conversation is up\n");

else
puts("Error in ENMStartRAPI");

ENMRestartRAPI - Reconnect to MERVA Server

C Definition
USHORT ENMRestartRAPI (PUCHAR pucApplicationName);

ENMSetProfile

Chapter 6. The Application Programming Interface 29

Parameter Description

The following parameters are required:

v retCode (USHORT) - output

Code Meaning

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason, described in
“Handling Errors” on page 39. The reason code is also written to the
diagnosis log on the RISC System/6000 (see “Chapter 11. Diagnosis
Information” on page 59). If it is an internal error of the MERVA OS/2 or
MERVA AIX API, the reason code is zero.

v pucApplicationName (PUCHAR) - input

A pointer to a null-terminated string of up to 8 characters. This name is registered
by theRemote MERVA API Server.

Note: If several API programs run concurrently, each must use a different name.

Remarks

If the connection is established with this call instead of ENMStartRAPI, the
resynchronization described in Figure 10 on page 43 is provided for the following
API calls:

v ENMAdd

v ENMDelete

v ENMPut

v ENMRouteAdd

v ENMRoutePut

If the connection was not interrupted within the critical time period in a previous
session, this call has the same functions as ENMStartRAPI. Therefore, you can
also use it if the previous connection did not end abnormally.

C Language Example

#include "enmrapi.h"

USHORT rc = 0;

if ((rc = ENMRestartRAPI ("APPLID")) == 0)
puts("Conversation is up\n");

else
puts("Error in ENMRestartRAPI");

ENMEndRAPI - Disconnect from MERVA Server

C Definition
USHORT ENMEndRAPI (void);

Parameter Description

The following parameter is required:

v retCode (USHORT) - output

Code Meaning

ENMRestartRAPI

30 MERVA Connection/6000

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason, described in
“Handling Errors” on page 39. The reason code is also written to the
diagnosis log on the RISC System/6000 (see “Chapter 11. Diagnosis
Information” on page 59). If it is an internal error of the MERVA OS/2 or
MERVA AIX API, the reason code is zero.

Remarks

The RAPI conversation to MERVA is terminated.

C Language Example

#include "enmrapi.h"

USHORT rc = 0;

if ((rc = ENMEndRAPI ()) == 0)
puts("Conversation successfully terminated\n");

else
puts("Error in ENMEndRAPI");

ENMSetSecurity - Set Conversation Security Information

C Definition
VOID ENMSetSecurity (PUCHAR pucUserID,

PUCHAR pucPassword);

Parameter Description

The following parameters are required:

v pucUserID (PUCHAR) - input

A pointer to a null-terminated string of up to 8 characters containing the client
user ID.

v pucPassword (PUCHAR) - input

A pointer to a null-terminated string of up to 8 characters containing the client
password.

Remarks

A MERVA application program can provide conversation security information to be
used for client authorization in the Remote API Server system. The function
ENMSetSecurity() must be used for that purpose. The parameters of this function
are a client user ID and a password. Either of these parameters or both can be
empty.

Conversation security information must be provided before ENMStartRAPI() or
ENMRestartRAPI() is issued. An ENMSetSecurity() function call has no effect
thereafter.

Conversation security information can also be provided via application profile
parameters. Normally, the information provided by ENMSetSecurity() takes
precedence over profile parameters. There is, however, a means to overwrite the
security information set by ENMSetSecurity() via application profile parameters.

ENMEndRAPI

Chapter 6. The Application Programming Interface 31

|
|

C Language Example

#include "enmrapi.h"

ENMSetSecurity ("SAMPLE1", "SAMPLEPW");

ENMSetTestEnv - Set Test Environment

C Definition
VOID ENMSetTestEnv (UCHAR ucTestEnvIndicator);

Parameter Description

The following parameter is required:

v ucTestEnvIndicator (UCHAR) - input

Function parameter 1 activates the test environment, 0 inactivates it.

Remarks

A MERVA application program can activate or inactivate the Remote API Client test
environment for specific sections of the application program. The function
ENMSetTestEnv() must be used for that purpose. It can be called as often as
required.

The variable ENMTestEnv is provided as part of the Remote MERVA API to test
whether the Remote API Client test environment is active or inactive. The
instruction ENMSetTestEnv(!ENMTestEnv); toggels the test environment setting
either from active to inactive, or from inactive to active.

C Language Example

#include "enmrapi.h"

#define TESTENV_ON '1'

ENMSetTestEnv (TESTENV_ON);

Functions Enabling the API Program to Be Triggered

If you want that the API program is triggered by MERVA alarms, use the following
functions (the semaphores reside on the MERVA system):

v ENMWaitSemList - Wait for a List of Semaphores

v ENMCloseSem - Close a Semaphore

v ENMSetSem - Set a Semaphore

v ENMClearSem - Clear a Semaphore

v ENMCreateSem - Create a Semaphore

v ENMOpen - Open a Semaphore.

Each function is described in the following.

ENMSetSecurity

32 MERVA Connection/6000

ENMWaitSemList - Wait for a List of Semaphores

This call blocks the current process until one of the specified semaphores is
cleared. It allows the API program to wait for a list of up to 16 semaphores and up
to 16 different MERVA alarms.

C Definition

USHORT ENMWaitSemList(PUSHORT Index,
ULONG timeout,
ULONG SemHandle,

...,
(ULONG) 0);1

Parameter Description

The following parameters are required:

v retCode (USHORT) - output

Code Meaning

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason, described in
“Handling Errors” on page 39. The reason code is also written to the
diagnosis log on the RISC System/6000 (see “Chapter 11. Diagnosis
Information” on page 59). If it is an internal error of the MERVA OS/2 or
MERVA AIX API, the reason code is zero.

121 No semaphore is cleared. The timeout was reached.

Others
See the description of OS/2 system call DosMuxSemWait in the OS/2
Programming Tools and Information Version 1.3 Control Program
Programming Reference.

v Index (PUSHORT) - output

In this parameter, ENMWaitSemList returns an index (0..15) that tells you which
of the semaphores is cleared.

v timeout (ULONG) - input

Code Meaning

-1 Wait indefinitely for a semaphore to be cleared.

0 Return immediately.

>1 Wait the indicated number of milliseconds for a semaphore to be cleared
before resuming execution.

v SemHandle (ULONG) - input

Up to 16 semaphore handles that were created by the calls of ENMCreateSem
or ENMOpenSem.

v (ULONG)0 - input

This parameter terminates the list of semaphores. Its value must be zero and a
4-byte value. If the parameter is missing, ENMWaitSemList is not able to
recognize the end of the semaphore list.

1. The last parameter ((ULONG)0) is not part of the C function prototype. It is only mentioned here to show that the list of
SemHandle parameters must be terminated by the value 0 (4 bytes).

ENMWaitSemList

Chapter 6. The Application Programming Interface 33

C Language Example
/*

If a connection to MERVA OS/2 should be used,
use the following define statements:

*/
#define TRIGGER "\\SEM\\SAMPLE2"
#define STOP "\\SEM\\STOP.SMP"
/*

If a connection to MERVA AIX should be used,
use the following define statements:

*/
/*
#define TRIGGER "SAMPLE2"
#define STOP "STOP.SMP"

*/
#include "enmrapi.h"

USHORT rc = 0;
ULONG SemTrigger;
ULONG SemStop;
USHORT Index = 0;

if ((rc = ENMCreateSem (&SemStop, STOP)) == 0)
if ((rc = ENMCreateSem (&SemTrigger, TRIGGER)) == 0)

if ((rc = ENMSetSem (SemStop)) == 0)
if ((rc = ENMSetSem(SemTrigger)) == 0)

rc = ENMWaitSemList(&Index, -1L,
SemStop,
SemTrigger,
(ULONG)0);

ENMCloseSem - Close a Semaphore

This call closes a semaphore obtained with an ENMCreateSem or ENMOpenSem
call.

C Definition
USHORT ENMCloseSem (ULONG SemHandle);

Parameter Description

The following parameters are required:

v retCode (USHORT) - output

Code Meaning

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason, described in
“Handling Errors” on page 39. The reason code is also written to the
diagnosis log on the RISC System/6000 (see “Chapter 11. Diagnosis
Information” on page 59). If it is an internal error of the MERVA OS/2 or
MERVA AIX API, the reason code is zero.

102 A semaphore is set and therefore cannot be closed.

Others
See the description of the OS/2 system call DosCloseSem in the OS/2
Programming Tools and Information Version 1.3 Control Program
Programming Reference.

v SemHandle (ULONG) - input

Generated by ENMCreateSem or ENMOpenSem.

ENMWaitSemList

34 MERVA Connection/6000

C Language Example

/*
If a connection to MERVA OS/2 should be used,
use the following define statements:

*/
#define TRIGGER "\\SEM\\SAMPLE2"
/*

If a connection to MERVA AIX should be used,
use the following define statements:

*/
/*
#define TRIGGER "SAMPLE2"

*/
#include "enmrapi.h"

USHORT rc = 0;
ULONG SemTrigger;

if ((rc = ENMCreateSem (&SemTrigger, TRIGGER)) == 0)
rc = ENMCloseSem (SemTrigger);

ENMSetSem - Set a Semaphore

Remarks

ENMSetSem sets a semaphore unconditionally. For MERVA OS/2 or MERVA AIX
this means that the semaphore can be cleared by raising an alarm.

C Definition
USHORT ENMSetSem (ULONG SemHandle);

Parameter Description

The following parameters are required:

v retCode (USHORT) - output

Code Meaning

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason, described in
“Handling Errors” on page 39. The reason code is also written to the
diagnosis log on the RISC System/6000 (see “Chapter 11. Diagnosis
Information” on page 59). If it is an internal error of the MERVA OS/2 or
MERVA AIX API, the reason code is zero.

100 The limit of open semaphores in the system is exceeded.

103 Too many semaphore requests on the system.

Others
See the description of the OS/2 system call DosSemSet in the OS/2
Programming Tools and Information Version 1.3 Control Program
Programming Reference.

v SemHandle (ULONG) - input

Generated by ENMCreateSem or ENMOpenSem.

C Language Example

/*
If a connection to MERVA OS/2 should be used,

ENMCloseSem

Chapter 6. The Application Programming Interface 35

use the following define statements:
*/
#define TRIGGER "\\SEM\\SAMPLE2"
/*

If a connection to MERVA AIX should be used,
use the following define statements:

*/
/*
#define TRIGGER "SAMPLE2"

*/
#include "enmrapi.h"

USHORT rc = 0;
ULONG SemTrigger;

if ((rc = ENMCreateSem (&SemTrigger, TRIGGER)) == 0)
rc = ENMSetSem (SemTrigger);

ENMClearSem - Clear a Semaphore

This call clears a semaphore unconditionally. If processes are blocked on the
semaphore, they are restarted.

C Definition
USHORT ENMClearSem (ULONG SemHandle);

Parameter Description

The following parameters are required:

v retCode (USHORT) - output

Code Meaning

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason, described in
“Handling Errors” on page 39. The reason code is also written to the
diagnosis log on the RISC System/6000 (see “Chapter 11. Diagnosis
Information” on page 59). If it is an internal error of the MERVA OS/2 or
MERVA AIX API, the reason code is zero.

101 A semaphore cannot be cleared because it is owned by another process.

Others
See the description of the OS/2 system call DosSemClear in the OS/2
Programming Tools and Information Version 1.3 Control Program
Programming Reference.

v SemHandle (ULONG) - input

Generated by ENMCreateSem or ENMOpenSem.

C Language Example

/*
If a connection to MERVA OS/2 should be used,
use the following define statements:

*/
#define TRIGGER "\\SEM\\SAMPLE2"
/*

If a connection to MERVA AIX should be used,
use the following define statements:

*/
/*
#define TRIGGER "SAMPLE2"

ENMSetSem

36 MERVA Connection/6000

*/
#include "enmrapi.h"

USHORT rc = 0;
ULONG SemTrigger;

if ((rc = ENMCreateSem (&SemTrigger, TRIGGER)) == 0)
rc = ENMClearSem (SemTrigger);

ENMCreateSem - Create a Semaphore

This call creates an OS/2 or AIX semaphore. The semaphore is used by several
API programs to synchronize their access to resources or to wait for MERVA
alarms.

C Definition

USHORT ENMCreateSem (PULONG SemHandle,
PUCHAR SemName);

Parameter Description

The following parameters are required:

v retCode (USHORT) - output

Code Meaning

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason, described in
“Handling Errors” on page 39. The reason code is also written to the
diagnosis log on the RISC System/6000 (see “Chapter 11. Diagnosis
Information” on page 59). If it is an internal error of the MERVA OS/2 or
MERVA AIX API, the reason code is zero.

87 One of the parameters is not valid.

100 The limit of open semaphores in the system is exceeded.

123 The name of the semaphore is not valid.

183 The semaphore already exists.

Others
See the description of the OS/2 system call DosCreateSem in the OS/2
Programming Tools and Information Version 1.3 Control Program
Programming Reference.

v SemHandle (PULONG) - output

Address of the semaphore handle.

v SemName (PUCHAR) - input

Pointer to a null-terminated string containing the name of the semaphore to be
created. In MERVA AIX the semaphore name is a logical name without path
details. In MERVA OS/2 it must be a full OS/2 path name starting with \SEM\.

C Language Example

/*
If a connection to MERVA OS/2 should be used,
use the following define statements:

*/
#define TRIGGER "\\SEM\\SAMPLE2"
/*

ENMClearSem

Chapter 6. The Application Programming Interface 37

If a connection to MERVA AIX should be used,
use the following define statements:

*/
/*
#define TRIGGER "SAMPLE2"

*/
#include "enmrapi.h"

USHORT rc = 0;
ULONG SemTrigger;

rc = ENMCreateSem (&SemTrigger, TRIGGER);

ENMOpenSem - Open a Semaphore

This call opens an existing semaphore created by another process with
ENMCreateSem. The other process can also run on the PS/2 or the RISC
System/6000.

C Definition

USHORT ENMOpenSem (PULONG SemHandle,
PUCHAR SemName);

Parameter Description

The following parameters are required:

v retCode (USHORT) - output

Code Meaning

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason, described in
“Handling Errors” on page 39. The reason code is also written to the
diagnosis log on the RISC System/6000 (see “Chapter 11. Diagnosis
Information” on page 59). If it is an internal error of the MERVA OS/2 or
MERVA AIX API, the reason code is zero.

100 Limit of open semaphores in the system is exceeded.

123 The name for the semaphore is not valid.

187 The semaphore does not exist.

Others
See the description of the OS/2 system call DosOpenSem in the OS/2
Programming Tools and Information Version 1.3 Control Program
Programming Reference.

v SemHandle (PULONG) - output

Address of the handle of the opened semaphore.

v SemName (PUCHAR) - input

Pointer to a null-terminated string containing the name of the semaphore to be
opened.

C Language Example

/*
If a connection to MERVA OS/2 should be used,
use the following define statements:

*/
#define TRIGGER "\\SEM\\SAMPLE2"

ENMCreateSem

38 MERVA Connection/6000

/*
If a connection to MERVA AIX should be used,
use the following define statements:

*/
/*
#define TRIGGER "SAMPLE2"

*/
#include "enmrapi.h"

USHORT rc = 0;
ULONG SemTrigger;

rc = ENMOpenSem (&SemTrigger, TRIGGER);

Handling Errors

If you want that the API call returns reason codes, use the function ENMGetReason
- Get Reason Code for Internal Error. This function is described in the following.

ENMGetReason - Get Reason Code for Internal Error

This call returns the reason code for an internal error in MERVA Connection/6000.

If an internal error occurs either in MERVA Connection/6000 or in the local MERVA
OS/2 or MERVA AIX API, an API call returns the return code 2. If it is an error of the
MERVA Connection/6000, ENMGetReason returns a more specific reason code.
Otherwise, the reason code is 0.

C Definition
USHORT ENMGetReason (void);

Parameter Description

The following parameter is required:

v retCode (USHORT) - output

Code Meaning

2xxx All reason codes between 2000 and 2999 indicate communication
problems.

2110 The APPC conversation cannot be established or is canceled.

2120 The Communications Side Information object is not found.

2130 Connection to Remote MERVA API Server program failed.

2140 Deallocation failed because the conversation has already been
terminated.

2150 Conversation is interrupted while trying to receive data.

2200 An empty data buffer was received.

28xx xx is a return code of the MERVA Connection/6000 TCP/IP services
program.

29xx xx is a return code of the CPI-C call.

2999 A general communication problem occurred (see diagnosis log).

7006 The Remote MERVA API Server failed while allocating memory.

ENMOpenSem

Chapter 6. The Application Programming Interface 39

7012 The Remote MERVA API Server does not accept further API calls due to
a previous error.

7013 The Remote MERVA API Server received a negative return code from
user exit ENM4ExitDecrypt.

7014 The Remote MERVA API Server received a negative return code from
user exit ENM4ExitEncrypt.

7015 The Remote MERVA API Server received a negative return code from
user exit ENM4ExitMacVerify or ENM4ExitMacGen.

7016 The Remote MERVA API Server received an incorrect API request.

7018 The Remote MERVA API Server received an error when converting ASCII
to EBCDIC. See the diagnosis log of MERVA OS/2 or MERVA AIX.

7019 The Remote MERVA API Server received an error while accessing the
message integrity control file.

7030 Internal message space has not been created.

8002 The Remote MERVA API Client cannot open the programmer’s log file
specified in the profile.

8003 The Remote MERVA API Client cannot close the programmer’s log file
specified in the profile.

8004 The Remote MERVA API Client cannot open the diagnosis log file
specified in the profile.

8005 The Remote MERVA API Client cannot close the diagnosis log file
specified in the profile.

8006 The Remote MERVA API Client could not allocate memory.

8007 The Remote MERVA API Client cannot write to the diagnosis log file
specified in the profile.

8008 The Remote MERVA API Client cannot write to the programmer’s log file
specified in the profile.

8010 The Remote MERVA API Client failed because the profile name in
ENMSetProfile was incorrect or was not specified.

8011 The Remote MERVA API Client failed because the profile specified in
ENMSetProfile does not exist.

8013 The Remote MERVA API Client received a negative return code from
user exit ENM4ExitDecrypt.

8014 The Remote MERVA API Client received a negative return code from
user exit ENM4ExitEncrypt.

8015 The Remote MERVA API Client received a negative return code from
user exit ENM4ExitMacVerify.

8016 The Remote MERVA API Client received a negative return code from
user exit ENM4ExitMacGen.

8017 Conversation has not been started with ENMStartRAPI (or with
ENMStartAPPC).

8019 The Remote MERVA API Client could not access the message integrity
control file.

ENMGetReason

40 MERVA Connection/6000

C Language example

#include "enmrapi.h"

USHORT rc = 0;
USHORT reason = 0;

rc = ENMFree();
if (rc) {

reason = ENMGetReason();
if (reason) {
printf ("Internal error in Connection/6000 occurred, reason code %d",

reason);
}

}

ENMGetReason

Chapter 6. The Application Programming Interface 41

ENMGetReason

42 MERVA Connection/6000

Chapter 7. Resynchronization

If a network connection is interrupted, the recovery procedure must ensure that all
changes of message status in MERVA (such as Add, Route, or Delete) are done
only once. This affects both programs using the remote API and programs calling
the local MERVA OS/2 or MERVA AIX API.

During normal processing, an API call is transferred from the Remote MERVA API
Client to the Remote MERVA API Server (positions (1) and (2) in Figure 10). The
return data from MERVA is transferred back from the Remote MERVA API Server to
the Remote MERVA API Client (positions (3) and (4)) and to the calling program.

The return code ERR_SYSTEM of the API call and a corresponding reason code
(2000 to 2999) of an additional ENMGetReason call indicates whether the network
connection is interrupted. MERVA Connection/6000 does not know whether the call
completed successfully, unsuccessfully, or whether it is not executed on the MERVA
system. In the example shown in Figure 10 this means that the API program does
not know whether the message has been added to the MERVA queue.

With MERVA Connection/6000the API program reestablishes the connection in the
next run using ENMRestartRAPI. It recreates the message with the same contents
and fields, and repeats the call that failed. This mechanism is provided for those
API calls that are important for the integrity of the message database:

v ENMAdd

v ENMDelete

v ENMPut

v ENMRouteAdd

v ENMRoutePut

How Resynchronization Is Implemented

The Remote MERVA API Client generates an internal unique identifier when it
receives a call from the application program. The identifier is saved locally and also
sent to the Remote MERVA API Server. The Remote MERVA API Server deletes the
identifier after the API call has been executed and the return data is passed back to
the Remote MERVA API Client.

Figure 10. Resynchronization Support

© Copyright IBM Corp. 1993, 1997 43

If the network connection terminates before the return data is passed back,
identifier and return data are saved. After the connection is reestablished, the same
identifier arrives with the first of the above mentioned API calls. The saved return
data is passed back as if the call was executed now.

The necessary control data is saved in files. On the Remote MERVA API Client you
can specify the file name in the MERVA Connection/6000 profile as described in
“Customizing MERVA Connection/6000” on page 7. On the Remote MERVA API
Server the file name must be the same as the application name specified in the
ENMStartRAPI or ENMRestartRAPI call.

To ensure that resynchronization works correctly, note the following:

v Specify unique file names for the Message Integrity Control file (MIP) in the
profiles of your application programs.

v Use unique application names for the ENMStartRAPI and ENMRestartRAPI calls
if you run more than one remote API program.

Using the Resynchronization Mechanism

The following is a program that issues calls in a loop:

ENMSetProfile
ENMRestartRAPI
ENMAttach
do

ENMCreate
ENMWriteField
read message from application
ENMRouteAdd

until (no more message to send)
ENMDetach
ENMEndRAPI

If the network connection breaks down after the ENMRouteAdd call is issued, the
API program terminates. When it is restarted, the loop is entered as if there had
been no interruption in the previous run.

Notes:

1. Use the same profile as in the previous run.

2. Call ENMRestartRAPI using the same application name.

3. Call ENMCreate and ENMWriteField using the same data as in the previous run
(same message, same field contents).

4. Call ENMRouteAdd using the same queue name.

5. After resynchronization continue with the loop as in normal processing.

If the program runs like that, it does not have to check how far processing went in
the previous run when the ENMRouteAdd call was interrupted.

Hints and Tips

44 MERVA Connection/6000

Recovering after a Failed Call

If calling ENMAdd or ENMRouteAdd fails, you usually call ENMClear to clear the
message space (see MERVA AIX Application Programming).

If these calls fail after reestablishing the connection as described before because of
other reasons than network problems, calling ENMClear may return the return code
ERR_NO_MSG_CREATED

(that is, 202).

This means that the API call was executed in the first run. The error message can
be ignored.

The same applies to an ENMFree call returning the message
ERR_NO_MSG_LOCKED

(that is, 201)

after calling of ENMDelete, ENMPut, or ENMRoutePut failed.

Not Using Resynchronization

If you do not use the resynchronization option, call ENMStartRAPI instead of
ENMRestartRAPI. ENMStartRAPI deletes the internal control information for
resynchronization. Then each API call is considered as a new one.

MERVA Connection/6000 does not save the type or input data of the API call that
failed due to the network failure. Therefore, when using ENMRestartRAPI, you must
ensure that the same call is repeated after reconnecting to the MERVA system if
one of the above mentioned calls failed.

MERVA Connection/6000 does not recognize an inappropriate API call. The call is
not executed if the internal state indicates that the last API call from the previous
run was executed. If this is not considered, an API call with new data could be
treated as a repeated call from a previous run.

Chapter 7. Resynchronization 45

46 MERVA Connection/6000

Chapter 8. Security

Security is a fundamental requirement for all financial institutions. When discussing
the security of message transfers, a number of different aspects must be
considered:

v Encryption of transferred information

v Authentication of transferred information.

These requirements are supported by MERVA Connection/6000.

Encryption of Transferred Information

Using MERVA Connection/6000 you can encrypt all information that is exchanged.

You do this by activating user exits. User exits allow you to include your own
algorithm or even other products that support encryption and decryption routines.

There are two user exits:

v ENM4ExitEncrypt for encryption

v ENM4ExitDecrypt for decryption.

See “User Exit Interfaces” for more information on how to implement these routines.

Authentication of Transferred Information

Using MERVA Connection/6000 you can generate an authentication key covering all
exchanged information. You do this by activating user exits. User exits allow you to
include your own algorithm or even other products that support authentication
routines.

There are two user exits:

v ENM4ExitMacGen for MAC generation

v ENM4ExitMacVerify for MAC verification.

See “User Exit Interfaces” for more detailed information on how to implement these
routines.

User Exit Interfaces

The following introduces the user exit interfaces of MERVA Connection/6000.

Introduction

There is a fundamental difference between an API call and a user exit:

v For an API call, you write a program that calls the API routine provided by
MERVA Connection/6000.

v A user exit is a routine written by you and called by MERVA Connection/6000.
The user exit routines must contain the declaration for the function name and
formal parameter list, as described in the following.

© Copyright IBM Corp. 1993, 1997 47

User Exit Points

Figure 11 shows what happens when an API function is called by an API program
on the RISC System/6000. You can see who is calling a user exit at which
processing step. In the figure, the following abbreviations are used for the user
exits:

ENCRYP ENM4ExitEncrypt

DECRYP ENM4ExitDecrypt

MACGEN ENM4ExitMacGen

MACVFY ENM4ExitMacVerify

Figure 11. User Exit Points

48 MERVA Connection/6000

User Exit Interfaces in C Language

The data types used in these routines can be different, depending on whether they
are implemented on the PS/2 or the RISC System/6000. See the coded samples
(“Appendix B. Sample Security User Exits” on page 73) for more information.

User Exit for Encryption

C Definition

unsigned short ENM4ExitEncrypt (unsigned char* pucApplId,
unsigned char* pucBuffer,
unsigned short usBufferLen);

Purpose of the User Exit Routine

Encrypts the passed data buffer.

Parameter Description

The following parameters are required:

v pucApplId (unsigned char*) - input

Address of a null-terminated string with a maximum length of 8. The string
contains the application identifier that you passed as a parameter of the API call
ENMStartRAPI. You can use this string to provide different encryption keys for
different partner connections, or decide for which connections or for which API
programs the information is to be encrypted.

v pucBuffer (unsigned char*) - input/output

Address of the data buffer to be encrypted.

v usBufferLen (unsigned short) - input

Length of the data buffer to be encrypted.

User Exit for Decryption

C Definition

unsigned short ENM4ExitDecrypt (unsigned char* pucApplId,
unsigned char* pucBuffer,
unsigned short usBufferLen);

Purpose of the User Exit Routine

Decrypts the passed data buffer.

Parameter Description

The following parameters are required:

v pucApplId (unsigned char*) - input

Chapter 8. Security 49

Address of a null-terminated string with a maximum length of 8. The string
contains the application identifier that you passed as a parameter of the API call
ENMStartRAPI. You can use this string to provide different decryption keys for
different partner connections, or to decide for which connections or for which API
programs the information is to be decrypted.

v pucBuffer (unsigned char*) - input, output

Address of the data buffer to be decrypted.

v usBufferLen (unsigned short) - input

Length of the data buffer to be decrypted.

User Exit for MAC Generation

C Definition

unsigned short ENM4ExitMacGen (unsigned char* pucApplId,
unsigned char* pucBuffer,
unsigned short usBufferLen,
unsigned char* pucMacBuffer);

Purpose of the User Exit Routine

Generates a MAC (Message Authentication Code) for the passed data buffer.

Parameter Description

The following parameters are required:

v pucApplId (unsigned char*) - input

Address of a null-terminated string with a maximum length of 8. The string
contains the application identifier you passed as a parameter of the API call
ENMStartRAPI. You can use this string to provide different MAC generation
algorithms for different partner connections, or to decide for which connections or
for which API programs a MAC shall be generated.

v pucBuffer (unsigned char*) - input

Address of the data buffer for which to generate a MAC.

v usBufferLen (unsigned short) - input

Length of the data buffer for which to generate a MAC.

v pucMacBuffer (unsigned char*) - output

Address of the area to copy the generated MAC to. The address can be up to 32
bytes in length.

User Exit for MAC Verification

C Definition

unsigned short ENM4ExitMacVerify (unsigned char* pucApplId,
unsigned char* pucBuffer,
unsigned short usBufferLen,
unsigned char pucMacBuffer);

ENM4ExitDecrypt

50 MERVA Connection/6000

Purpose of the User Exit Routine

Generates a MAC for the passed data buffer and compares it with the passed
MAC. Set the return code to 0 if the MAC matches, and otherwise to 1.

Parameter Description

The following parameters are required:

v pucApplId (unsigned char*) - input

Address of a null-terminated string with a maximum length of 8. The string
contains the application identifier you passed as a parameter of the API call
ENMStartRAPI. You can use this string to provide different MAC verification
algorithms for different partner connections, or to decide on which connections or
for which API programs a MAC is to be verified.

v pucBuffer (unsigned char*) - input

Address of the data buffer for which to generate a MACand for which the passed
MAC has been generated on the partner side.

v usBufferLen (unsigned short) - input

Length of the data buffer for which to generate a MAC.

v pucMacBuffer (unsigned char*) - input

Address of the area holding the MAC key that has been received from the
partner. The address can be up to 32 bytes in length.

ENM4ExitMacVerify

Chapter 8. Security 51

ENM4ExitMacVerify

52 MERVA Connection/6000

Chapter 9. Building API Programs

This chapter describes how to compile MERVA Connection/6000 programs in the C
programming language.

Compiling Your Own Program

To generate your API program on the RISC System/6000, issue the following
commands:

v cc -o <name> <name>.o -lcpic -lsxit -lrapi

v xlc <name>.c -c -o<name>.o -qenum=small

Compiling the Sample Programs

To generate the executable files for the delivered sample programs, copy all files
from the directory /usr/lpp/enm6rapi/samples (see the following list) to a directory of
your choice.

List of Sample Files
enm6rsmp.mak

Make file to generate sample API programs

enm6sgen.mak
Make file to generate sample user exit libraries

enmrapi.exp Export file containing the Remote API user program interface
function names

enmsxit.exp Export file containing the Remote API user exit function names

smp6le1.c Sample program to send and receive messages to and from
MERVA

smp6le2.c Sample program to receive messages from MERVA, uses alarms

smp6le2s.c Sample program to stop SMP6LE2 program

smp6le3.c Sample program to send telex messages to MERVA

smp6le4.c Sample program to verify correct installation

enmra1.prf File containing first sample profile

enmra2.prf File containing second sample profile

enmssec.c File containing sample security user exit routines

enmsnil.c File containing empty security user exit routines.

Run enm6rsmp.mak with the following command:

make -f enm6rsmp.mak

© Copyright IBM Corp. 1993, 1997 53

54 MERVA Connection/6000

Chapter 10. Replacing Security User Exits

This chapter describes how you can replace the provided security user exits by
generating and activating your own security user exits on the RAPI client and server
systems.

Security User Exits

Two sets of sample security user exits are provided (see “User Exit Interfaces” on
page 47):

enmssec These routines contain sample code for encryption and
authentication. They show how to access the variables of the formal
parameter list in the function call but do not provide genuine
security. The provided code in the RAPI client is the shared library
libssec.a. In the RAPI server, it is the the shared library
libenmssec.a (MERVA AIX) or the dynamic link library enmssec.dll
(MERVA OS/2).

enmsnil These routines do not contain any code. Use this file if no
encryption or authentication is desired. The provided code in the
RAPI client is the shared library libsnil.a. In the RAPI server, it is
the shared library libenmsnil.a (MERVA AIX) or the dynamic link
library enmsnil.dll (MERVA OS/2).

In the RAPI client the shared library containing the user exits must have the name
libsxit.a . The shipped version of libsxit.a is a copy of the sample library libsnil.a.

In the RAPI server (MERVA AIX) the shared library containing the user exits must
have the name libenmsxit.a . The shipped version of libenmsxit.a is a copy of the
sample library libenmsnil.a.

In the RAPI server (MERVA OS/2) the dynamic link library containing the user exits
must have the name enmsxit.dll . The shipped version of enmsxit.dll is a copy of
the sample library enmsnil.dll.

If you want to use the second set (enmssec) of sample user exit routines, copy the
following files:

v libssec.a to libsxit.a in the RAPI client

v libenmssec.a to libenmsxit.a in the RAPI server (MERVA AIX)

v enmssec.dll to enmsxit.dll in the RAPI server (MERVA OS/2)

Generating and Activating Security User Exits

Security user exits must be generated and activated in the Remote API client
system and in the MERVA server system.

Security User Exits on the RAPI Client System

On the RAPI client system the user exit routines must be placed in shared libraries.

To replace the sample user exits by your own routines, use enmssec.c as a
skeleton. Generate a shared library to replace /usr/lib/libsxit.a. For example:

© Copyright IBM Corp. 1993, 1997 55

xlc enmssec.c -c -o enmssec.o -qenum=small
cc -o enmsxit.o enmssec.o -bE:enmsxit.exp -bM:SRE -e_nostart -O
ar -vq libssec.a enmsxit.o

The files that you need for the generation reside in the directory
/usr/lpp/enm6rapi/samples. You can also use enm6rgen.mak which generates the
sample user exit libraries as a sample. emnsxit.h must be in the local directory
when making the library.

Replace /usr/lib/libsxit.a with your new library using the following command:

cp libssec.a /usr/lib/libsxit.a

Security User Exits on the MERVA Server System

Security User Exits must be generated and activated differently in a MERVA OS/2
and a MERVA AIX server system.

Security User Exits for MERVA OS/2

In the MERVA OS/2 environment the user exit routines must be placed in DLLs.

If you want to replace the sample user exits with your own routines, use enmssec.c
as a skeleton. The following file generates a new enmssec.dll from enmssec.c:

56 MERVA Connection/6000

Use the following command to create the new file: make /f enmssec.mak

Error messages are written to the file enmssec.log. Copy the newly generated
enmssec.dll to enmsxit.dll.

#---
ENMSSEC.MAK - Make file to generate a DLL with Security User Exits
#---
#---
Compile-Options:
/C+ Compile, do not link
/Gd- Static linking of the runtime library
/Sp1 Structure alignment set to 1-byte boundaries to be compatible
with the 16-bit code (/ZP option) of MERVA/2
/Se Allow all C Set/2 language extensions except migration
/Ss+ Allow use of double slashes (//) for comments
/Re Generate executable code for C Set/2 runtime environment
/Gm+ Use the multithread version of the libraries
/Kb+ Produce basic diagnostic messages
/Fo+ Create an object file
/Ti+ Generate debugger information
/Ge- Build a .DLL file
#
/DOS2 enable 'define INCL_BASE', 'include <OS2.H>' - see ENMSSEC.C
#
Link-Options:
/NOE[EXTDICTIONARY] Ignore Extended Dictionary
/NOD[EFAULTLIBRARYSEARCH] Ignore Default Libraries
/NOI[GNORECASE] Case sensitive
/CO[DEVIEW] Include symbolic debugging information
/BATCH Return error, if input file name is missing
/A[LIGNMENT] Alignment Factor in the executable, 512 is default
/E[XEPACK] Packing Executable Files
/STACK Stack size
#---

C_OPT= /C+ /Gd- /Sp1 /Se /Ss+ /Re /Gm+ /Kb+ /Fo+ /Ti+ /Ge- /DOS2
L_OPT= /NOE /NOD /NOI /CO /BATCH /A:512 /E /STACK:16384

#---
Objects which are to be generated in this make file
#---
ALL: ENMSSEC.DLL ENMSXIT.LIB

#---
Link ENMSSEC.DLL
#---
ENMSSEC.DLL: ENMSSEC.OBJ ENMSXIT.DEF

-LINK386 $(L_OPT) ENMSSEC.OBJ,ENMSSEC.DLL,ENMSSEC.MAP,\
OS2386.LIB + DDE4MBS.LIB,ENMSXIT.DEF >>ENMSSEC.LOG;2>&1

#--
Compile ENMSSEC
#--
ENMSSEC.OBJ: ENMSSEC.C ENMSXIT.H

icc $(C_OPT) ENMSSEC.C >>ENMSSEC.LOG;2>&1

#---
Generate LIB file for exit DLL
#---
ENMSXIT.LIB: ENMSXIT.DEF

IMPLIB ENMSXIT.LIB ENMSXIT.DEF

Figure 12. Make File to Generate a DLL

Chapter 10. Replacing Security User Exits 57

If your source file name is different from enmssec.c, replace every occurrence of
enmssec within the make file enmssec.mak with your program name.

Security User Exits for MERVA AIX

The sample security user exits can be accessed by the MERVA AIX Remote API
server if you copy the library libenmssec.a to the library libenmsxit.a. If you want to
replace the sample user exits by your own routines, use the enmssec.c as a
skeleton. The file can be retrieved from directory /usr/lpp/merva/samples. The file
enmssec.mak generates a new library libenmssec.a from the source file enmssec.c.

Use the following command:

make -f enmssec.mak all

Replace /usr/lpp/merva/lib/libenmsxit.a with your new library using the following
command:

cp libenmssec.a /usr/lpp/merva/lib/libenmsxit.a

58 MERVA Connection/6000

Chapter 11. Diagnosis Information

This chapter describes the diagnosis information that is written to log files on the
RAPI client system and on the RAPI server system (MERVA OS/2 or MERVA AIX).

Log Files on the RAPI Client System

Two logs are written. You can choose their names and directories by setting them in
the MERVA Connection/6000 profile (see “Customizing MERVA Connection/6000”
on page 7).

Each message written to the logs consists of two parts, the message header and
the message body, as shown in Figure 13.

Diagnosis Log

The diagnosis log provides you with:

v Error messages that help you recover from errors when using the API calls or
errors concerning the communication with the MERVA system.

v Trace information when the API Trace is switched on with the call ENMTrace
(see MERVA AIX Application Programming).

* 19970603170116ENMRAPI ENMTrace
ENM9151: Trace: ON

* 19970603170116ENMRAPI ENMAttach
ENM9153: API function ENMAttach called.

Parameters:
Uid: SAMPLE
Pwd: SAMPLE1
Fid: API

* 19970603170117ENMRAPI ENMQueryQueue
ENM9153: API function ENMQueryQueue called.

Parameters:
Qn : API_IN

* 19970603170117ENMRAPI ENMQueryQueue
ENM9153: API function ENMQueryQueue called.

Parameters:
Qn : API_OUT

* 19970603170117ENMRAPI ENMDetach
ENM9153: API function ENMDetach called.

Parameters: no input parms

* 19970603170118ENMRAPI ENMEndRAPI
ENM9153: API function ENMEndRAPI called.

Parameters: no input parms

Figure 13. Example of Diagnosis Log with API Trace Entries

© Copyright IBM Corp. 1993, 1997 59

Programmer’s Log

The programmer’s log is a general debugging tool. It contains all entries of the
diagnosis log and additional more detailed information to be analyzed by your IBM
representative.

The layout of the header is as follows:

Date The date is in the form YYYYMMDD, where YYYY is the year, MM
is the month, and DD is the day.

Time The time is in the form HHMMSS, where HH is the hour, MM are
the minutes, and SS are the seconds.

Module name The module name is an 8-character code identifying the module the
message originated from.

Function name
The function name is a 15-character code identifying the function
the message originated from.

The layout of the message is as follows:

Message The variable-length message to be recorded. See MERVA
Messages and Codes for the meaning of the messages.

Note: Logging entries are appended to the existing files. If you want that MERVA
Connection/6000 creates new log files, delete the old log files.

Log Files on the RAPI Server System (MERVA AIX)

Diagnosis information concerning the Remote MERVA API Server program is
provided by the MERVA AIX log files. Error and trace information is written to the
diagnosis log. IBM service information is written to the programmer’s trace log. You
can list or browse the diagnosis log file using the Display Diagnosis Log function in
the MERVA AIX menu program.

The log files are located in the MERVA AIX instance logging directory as selected in
the “Create MERVA AIX Instance” step described in the MERVA AIX Installation and
Customization Guide.

Log Files on the RAPI Server System (MERVA OS/2)

Diagnosis information concerning the Remote MERVA API Server program is
provided by the MERVA OS/2 log files. Error and trace information is written to the
diagnosis log. IBM service information is written to the programmer’s log. You can
list or browse the diagnosis log file using the Display/Print Diagnosis Log (DPD)
function of MERVA OS/2.

The log files are located on the disk and directory x:\MERVA2\, where x is the drive
on which MERVA OS/2 is installed. See the MERVA OS/2 V3 Diagnosis Guide for
further information.

60 MERVA Connection/6000

Appendix A. Sample SNA Definitions

MERVA Connection/6000 uses LU 6.2 sessions for the communication between the
Remote MERVA API Client and Server in the SNA Data Communication
environment. There are many ways how the data communication subsystems in the
client and server systems can be customized to bind the required sessions.

This appendix provides one example for these many ways. It is based on a
customization example shown in the SNA Server for AIX User’s Guide. (Configuring
an APPN Network of Two Nodes), and uses the naming conventions of the latter
example.

The MERVA Connection/6000 SNA customization sample defines an APPN network
of two nodes in a token ring. The name of the sample network is APPN1. The
MERVA Server System is defined as an APPN Network Node (NN), and the Client
Application System is defined as an APPN End Node (EN). A second Client
Application System can be easily added to this sample network.

The naming conventions for the SNA resources in the sample network node
(MERVA Server System) are:

NNA The network node name. A second network node in this APPN network
would be named NNB.

CPA The name of the Control Point in NNA.

LUA The name of an independent LU 6.2 in NNA.

The sample token ring address of NNA is 10005aa88fe0.

The naming conventions for the SNA resources in the sample end node (Client
Application System) are:

EN1 The end node name. A second end node in this APPN network would be
named EN2.

CP1 The name of the Control Point in EN1.

TR1 The name of the Token Ring Link Station in EN1 that provides the link to
the network node server (NNA).

LU1 The name of an independent LU 6.2 in EN1.

The sample customizations of an APPN End Node (MERVA Connection/6000 Client
Application System), an APPN Network Node (AIX Server System), and an APPN
Network Node (OS/2 Server System) are provided in the following sections.

Customizing an APPN End Node (AIX)

A detailed description how to configure an end node in a two-node APPN network
can be found in the SNA Server for AIX User’s Guide. In the following it is assumed
that you are familiar with this description.

© Copyright IBM Corp. 1993, 1997 61

Initial Node Setup

The initial node setup can be performed by entering the applicable parameters in
the SNA Server for AIX Initial Node Setup menu or by entering the following
command:

mk_qcinit -w APPN1 -d CP1 -y token_ring -q TR1 -N yes -s 10005aa88fe0

The w-flag defines the APPN network name (APPN1). The d-flag defines the control
point name (CP1). The y-flag defines the data link type (token_ring). The q-flag
defines the name of the SNA DLC profile and the name of the Link Station profile
(TR1). The N-flag specifies whether the link station is a calling link station (yes).

The s-flag specifies the sample link address (10005aa88fe0). It is the token ring
address of the APPN network node server. The sample link address must be
replaced by the actual address of the network node server. For the correct value to
enter, see your system administrator.

If the APPN Network Node executes in the AIX environment, you can ask for its
token ring address using the following AIX command:

/usr/sbin/lscfg/ -l tok0 -v

This command must be entered in the network node.

The initial node setup modifies the APPN Control Point Profile node_cp, and
creates the SNA DLC profile TR1 and the Token Ring Link Station profile TR1.

Check and Modify the Initial Node Setup

You may wish to check the initial node setup for the APPN end node by comparing
the modified and generated profiles with following figures. A small number of
parameters in the SNA DLC profile TR1 and in the Token Ring Link Station profile
TR1 are modified in this example.

Control Point Profile

To display the sample SNA Control Point Profile call smitty sna and select:

1. Configure SNA Profiles

2. Advanced Configuration

3. Control Point

4. Change/Show a Profile

The sample SNA Control Point profile for node EN1 is shown in Figure 14 on
page 63.

62 MERVA Connection/6000

The Control Point profile modified by the initial node setup is not modified by the
MERVA Connection/6000 configuration sample.

Token Ring SNA DLC Profile

To display the sample Token Ring SNA DLC Profile call smitty sna and select:

1. Configure SNA Profiles

2. Advanced Configuration

3. Links

4. Token Ring

5. Token Ring SNA DLC

6. Change/Show a Profile

Part of the sample Token Ring SNA DLC profile TR1 for node EN1 is shown in
Figure 15 on page 64.

Change/Show Control Point Profile

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Profile name node_cp
XID node ID [*]
Network name [APPN1]
Control Point (CP) name [CP1]
Control Point alias [CP1]
Control Point type appn_end_node +
....
....

Figure 14. SNA Control Point in Node EN1

Appendix A. Sample SNA Definitions 63

The modified Link Recovery Parameters provide for faster and permanent automatic
recovery of the link to the APPN network server when the network server has been
temporarily inactive.

Token Ring Link Station Profile

To display the sample Token Ring Link Station Profile call smitty sna and select:

1. Configure SNA Profiles

2. Advanced Configuration

3. Links

4. Token Ring

5. Token Ring Link Station

6. Change/Show a Profile

The sample Token Ring SNA Link Station profile TR1 for node EN1 is shown in
Figure 16 on page 65.

Change/Show Token Ring SNA DLC Profile

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Current profile name TR1
New profile name []
Data link device name [tok0] +
....
....
....
Dynamic link stations supported? yes +

Link Recovery Parameters
Retry interval (1-10000 seconds) [30] #
Retry limit (0 or 1-500 attempts) [0] #

....

....

....

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

Figure 15. Token Ring SNA DLC Profile TR1 in Node EN1

64 MERVA Connection/6000

The modified Restart Parameters provide for an automatic recovery of the link to
the APPN network server when the network server has been temporarily inactive.

Defining Additional Resources

A Local LU, an APPC Session Mode, and a Side Information Profile are the
additional resources required for the communication with the MERVA Server
System.

Local LU Profile

To add the sample Local LU Profile call smitty sna and select:

1. Configure SNA Profiles

2. Advanced Configuration

3. Sessions

4. LU 6.2

Change/Show Token Ring Link Station Profile

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Current profile name TR1
New profile name []
Use Control Point's XID node ID? yes +

If no, XID node ID [*]
* SNA DLC Profile name [TR1]

:
:

Adjacent Node Address Parameters
Access routing link_address +
If link_name, Rmote link name []
If link_address,

Remote link address [10005aa88fe0] X
Remote SAP address [04] X

Adjacent Node Identification Parameters
Verify adjacent node? yes +
Network ID of adjacent node [APPN1]
CP name of adjacent node [CPA]
XID node ID of adjacent node (LEN node only) [*]
Node type of adjacent node learn +

Link Activation Parameters
Solicit SSCP sessions? yes +
Initiate call when link station is active? yes +
Activate link station at SNA startup? yes +
Activate on demand? no +
CP-CP sessions supported? yes +
If yes,

Adjacent network node preferred server? yes +
Partner required to support CP-CP sessions? no +
Initial TG number (0-20) [0] #

Restart Parameters
Restart on activation? no +
Restart on normal deactivation? yes +
Restart on abnormal deactivation? yes +

Figure 16. Token Ring Link Station Profile TR1 in Node EN1

Appendix A. Sample SNA Definitions 65

5. LU 6.2 Local LU

6. Add a Profile

The sample LU 6.2 Local LU profile for node EN1 is shown in Figure 17.

Mode Profile

To add the sample Mode Profile call smitty sna and select:

1. Configure SNA Profiles

2. Advanced Configuration

3. Sessions

4. LU 6.2

5. LU 6.2 Mode

6. Add a Profile

The sample LU 6.2 Mode profile for application sessions (APPCLU62) is shown in
Figure 18 on page 67.

Add LU 6.2 Local LU Profile

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Profile name [LU1]
Local LU name [LU1]
Local LU alias [LU1]
Local LU is dependent? no +

If yes,
....
....
Conversation Security Access List Profile name []
Recovery resource manager (RRM) enabled? no +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

Figure 17. LU 6.2 Local LU Profile in Node EN1

66 MERVA Connection/6000

The sample Mode profile in Figure 18 defines an SNA logon mode that can be used
for APPC sessions to all kinds of partner systems.

LU 6.2 Side Information Profile

To add the sample Side Information Profile call smitty sna and select:

1. Configure SNA Profiles

2. Advanced Configuration

3. Sessions

4. LU 6.2

5. LU 6.2 Side Information

6. Add a Profile

The sample LU 6.2 Side Information profile for the Remote MERVA API Server is
shown in Figure 19.

Add LU 6.2 Mode Profile

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Profile name [APPCLU62]
Mode name [APPCLU62]
Maximum number of sessions (1-5000) [2] #
Minimum contention winners (0-5000) [1] #
Minimum contention losers (0-5000) [0] #
Auto activate limit (0-500) [1] #
Upper bound for adaptive receive pacing window [16] #
Receive pacing window (0-63) [7] #
Maximum RU size (128,...,32768: multiples of 32) [1024] #
Minimum RU size (128,...,32768: multiples of 32) [256] #
Class of Service (COS) name [#CONNECT]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

Figure 18. LU 6.2 Mode Profile in Node EN1

Add LU 6.2 Side Information Profile

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Profile name [MERVA]
Local LU or Control Point alias [LU1] +
Provide only one of the following:

Partner LU alias [] +
Fully qualified partner LU name [APPN1.LUA]

Mode name [APPCLU62] +
Remote transaction program name (RTPN) [ENMRAS]
RTPN in hexadecimal? no +

Figure 19. LU 6.2 Side Information Profile ENMRAS

Appendix A. Sample SNA Definitions 67

Customizing an APPN Network Node (AIX)

A detailed description how to configure a network node in a two-node APPN
network can be found in the SNA Server for AIX User’s Guide. In the following it is
assumed that you are familiar with this description.

Initial Node Setup

The initial node setup can be performed by entering the applicable parameters in
the SNA Server for AIX Initial Node Setup menu or by entering the following
command:

mk_qcinit -w APPN1 -d CPA -y token_ring -N yes -t appn_network_node

The w-flag defines the APPN network name (APPN1). The d-flag defines the control
point name (CPA). The y-flag defines the data link type (token_ring). The N-flag
specifies whether the link station is a calling link station (yes). The t-flag specifies
the APPN network node type (appn_network_node).

The initial node setup modifies the APPN Control Point Profile node_cp and creates
the SNA DLC profile tok0.00001. A Token Ring Link Station profile is not generated.
The sample Network Node uses only dynamically generated link stations.

Check and Modify the Initial Node Setup

You may wish to check the initial node setup for the APPN end node by comparing
the modified and generated profiles with following figures. The profiles modified or
generated by the initial node setup are not modified in this example.

Control Point Profile

To display the sample SNA Control Point Profile call smitty sna and select:

1. Configure SNA Profiles

2. Advanced Configuration

3. Control Point

4. Change/Show a Profile

The sample SNA Control Point profile for node NNA is shown in Figure 20 on
page 69.

68 MERVA Connection/6000

The Control Point profile modified by the initial node setup is not modified by the
MERVA Connection/6000 configuration sample.

Token Ring SNA DLC Profile

To display the sample Token Ring SNA DLC Profile call smitty sna and select:

1. Configure SNA Profiles

2. Advanced Configuration

3. Links

4. Token Ring

5. Token Ring SNA DLC

6. Change/Show a Profile

The sample Token Ring SNA DLC profile for node NNA is shown in Figure 21 on
page 70.

Change/Show Control Point Profile

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Profile name node_cp
XID node ID [*]
Network name [APPN1]
Control Point (CP) name [CPA]
Control Point alias [CPA]
Control Point type appn_network_node +
....
....
....

Figure 20. SNA Control Point in Node NNA

Appendix A. Sample SNA Definitions 69

The Token Ring SNA DLC profile generated by the initial node setup is not modified
by the MERVA Connection/6000 configuration sample.

Defining Additional Resources

A Local LU, a Partner LU, an APPC Session Mode, and a TPN Profile are the
additional resources required for the communication with the Client Application
System.

Local LU Profile

To add the sample Local LU Profile call smitty sna and select:

1. Configure SNA Profiles

2. Advanced Configuration

3. Sessions

4. LU 6.2

5. LU 6.2 Local LU

6. Add a Profile

The sample LU 6.2 Local LU profile for node NNA is shown in Figure 22 on
page 71.

Change/Show Token Ring SNA DLC Profile

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Current profile name tok0.00001
New profile name []
Data link device name [tok0] +
....
....
....
Dynamic link stations supported? yes +

Link Recovery Parameters
Retry interval (1-10000 seconds) [60] #
Retry limit (0 or 1-500 attempts) [20] #

....

....

....

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

Figure 21. Token Ring SNA DLC Profile in Node NNA

70 MERVA Connection/6000

Mode Profile

The sample LU 6.2 Mode profile for application sessions (APPCLU62) is shown in
Figure 18 on page 67. It is the same in nodes EN1 and NNA.

TP Name Profile

The Remote MERVA API Server TP must be defined in an LU 6.2 TPN profile. The
sample TP name is ENMRAS. A sample LU 6.2 TPN profile for ENMRAS is shown
in Figure 4 on page 15.

Customizing an APPN Network Node (OS/2)

An APPN Network Node can only be customized with Communications Manager/2
or Communication Server. Personal Communications is capable of APPN functions,
but only as an End Node.

Start the Communication Server Setup program, select “Setup...” and a
configuration file. Then double-cklick on “CPI Comunications” and in the following
profile list choose “SNA local node characteristics”.

Add LU 6.2 Local LU Profile

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Profile name [LUA]
Local LU name [LUA]
Local LU alias [LUA]
Local LU is dependent? no +

If yes,
....
....
Conversation Security Access List Profile name []
Recovery resource manager (RRM) enabled? no +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

Figure 22. LU 6.2 Local LU Profile in Node NNA

Appendix A. Sample SNA Definitions 71

Select Network Node as node type. The field Local node ID may be left blank.

This is all you have to do if you want to customize an APPN Network Node with
Communication Server.

Figure 23. SNA Local Node Characteristics for a Network Node

72 MERVA Connection/6000

Appendix B. Sample Security User Exits

This appendix contains listings of sample security user exits that you can use.

Module ENMSNIL - Empty Functions

This program is integrated into MERVA Connection/6000 in the supplied version. No
actions are taken in the functions. This means that data transferred between the
MERVA system and the remote application system is not encrypted and no
authentication key is built or transferred. You can use this program as a skeleton for
your code.

/*--*\
| ENMSNIL.C |
--/
#if defined(OS2)
#define INCL_BASE
#include <OS2.H>
#endif

#include "enmsxit.h"

#ifndef __32BIT__
#define APIENTRY16 APIENTRY
#define PUCHAR16 PUCHAR

#endif

USHORT APIENTRY16 ENM4ExitMacGen (PUCHAR16 pucApplId,
PUCHAR16 pucBuffer,
USHORT usBufferLen,
PUCHAR16 pucMacBuffer)

{
return(0);

}

USHORT APIENTRY16 ENM4ExitMacVerify (PUCHAR16 pucApplId,
PUCHAR16 pucBuffer,
USHORT usBufferLen,
PUCHAR16 pucMacBuffer)

{
return(0);

}

USHORT APIENTRY16 ENM4ExitEncrypt (PUCHAR16 pucApplId,
PUCHAR16 pucBuffer,
USHORT usBufferLen)

{
return(0);

}

USHORT APIENTRY16 ENM4ExitDecrypt (PUCHAR16 pucApplId,
PUCHAR16 pucBuffer,
USHORT usBufferLen)

{
return(0);

}

Figure 24. Sample Security User Exit ENMSNIL.C

© Copyright IBM Corp. 1993, 1997 73

Module ENMSSEC - Sample Functions

This module is supplied as an example for coding security functions. Simple
encryption and authentication routines are included. However, they do not provide
genuine security.

74 MERVA Connection/6000

/*--*\
| ENMSSEC.C |
--/
#if defined(OS2)
#define INCL_BASE
#include <OS2.H>
#endif
#include<string.h>
#include "enmsxit.h"
/* defines that this module can be compiled with Cset/2 and IBM C/2 */
#ifndef __32BIT__

#define APIENTRY16 APIENTRY
#define PUCHAR16 PUCHAR

#endif
unsigned char Enm36Table[36]= {'\x00', '\x01', '\x02', '\x03',

'\x04', '\x05', '\x06', '\x07',
'\x08', '\x09', '\x0A', '\x0B',
'\x0C', '\x1D', '\x1E', '\x1F',
'\x10', '\x11', '\x12', '\x13',
'\x14', '\x15', '\x16', '\x17',
'\x18', '\x19', '\x1A', '\x1B',
'\x1C', '\x1D', '\x1E', '\x1F',
'\x20', '\x21', '\x22', '\x23' };

#define ENM_MAX_BASE 36
#define ENM_FILL_CHAR 0

unsigned short EnmBasestr(unsigned short base,
unsigned long num,
unsigned char* basestring,
unsigned short max_len)

{
unsigned long count=0,reminder=0;
short position;
unsigned long number;
number = num;
position = max_len-1;
memset (basestring, ENM_FILL_CHAR, max_len);
basestring[position]=0;

if (base > ENM_MAX_BASE) return(1);
do {

if (--position < 0) return(1);
reminder = number % (unsigned long)base;
count = number / (unsigned long)base;
if (!count) {

basestring[position++]=Enm36Table[reminder];
break;

}
basestring[position]=Enm36Table[reminder];
number = count;

} while (1);
return(0);

}
USHORT APIENTRY16 ENM4ExitMacGen (PUCHAR16 pucApplId,

PUCHAR16 pucBuffer,
USHORT usBufferLen,
PUCHAR16 pucMacBuffer)

Figure 25. Sample Security User Exit ENMSSEC.C (Part 1 of 3)

Appendix B. Sample Security User Exits 75

{
register i;
unsigned long ulAddedByteValues=0;
unsigned short rc = 0;

if (!strcmp(pucApplId,"APPLAUTH") || !strcmp(pucApplId,"APPLSECR")) {
for (i=0;i<usBufferLen;i++) {

ulAddedByteValues += (unsigned long) pucBuffer[i];
}
rc = EnmBasestr(2,

ulAddedByteValues,
pucMacBuffer,
32);

}
return(rc);

}

USHORT APIENTRY16 ENM4ExitMacVerify (PUCHAR16 pucApplId,
PUCHAR16 pucBuffer,
USHORT usBufferLen,
PUCHAR16 pucMacBuffer)

{
register i;
unsigned long ulAddedByteValues=0;
unsigned char ucaCalcMacBuffer[32];
unsigned short rc = 0;

if (!strcmp(pucApplId,"APPLAUTH") || !strcmp(pucApplId,"APPLSECR")) {
for (i=0;i<usBufferLen;i++) {

ulAddedByteValues += (unsigned long) pucBuffer[i];
}
memset (ucaCalcMacBuffer,0,32);

rc = EnmBasestr(2,
ulAddedByteValues,
ucaCalcMacBuffer,
32);

if (!rc) rc = memcmp(ucaCalcMacBuffer,pucMacBuffer,32);
}
return(rc);

}
USHORT APIENTRY16 ENM4ExitEncrypt (PUCHAR16 pucApplId,

PUCHAR16 pucBuffer,
USHORT usBufferLen)

{
register i;

if (!strcmp(pucApplId,"APPLENCR") || !strcmp(pucApplId,"APPLSECR")) {
for (i=0;i<usBufferLen;i++) {

pucBuffer[i] = pucBuffer[i] [255; /* negation */
}

}
return(0);

Figure 25. Sample Security User Exit ENMSSEC.C (Part 2 of 3)

76 MERVA Connection/6000

}

USHORT APIENTRY16 ENM4ExitDecrypt (PUCHAR16 pucApplId,
PUCHAR16 pucBuffer,
USHORT usBufferLen)

{
register i;

if (!strcmp(pucApplId,"APPLENCR") || !strcmp(pucApplId,"APPLSECR")) {
for (i=0;i<usBufferLen;i++) {

pucBuffer[i] = pucBuffer[i] [255; /* negation */
}

}
return(0);

}

Figure 25. Sample Security User Exit ENMSSEC.C (Part 3 of 3)

Appendix B. Sample Security User Exits 77

78 MERVA Connection/6000

Appendix C. Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Deutschland
Informationssysteme GmbH
Department 3982
Pascalstrasse 100
70569 Stuttgart
Germany

© Copyright IBM Corp. 1993, 1997 79

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement or
any equivalent agreement between us.

The following paragraph does apply to the US only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries, or both:

v ACF/VTAM

v AIX

v AIX/6000

v AS/400

v CICS/ESA

v C/400

v DATABASE 2

v DB2

v IBM

v MERVA

v MVS/ESA

v MVS/SP

v Operating System/2

v OS/2

v OS/400

v Personal System/2

v POWER Architecture

v PS/2

80 MERVA Connection/6000

v RACF

v RISC System/6000

v RISC/6000

v RS/6000

v RPG/400

v SAA

v Systems Application Architecture

v VSAM

v VTAM

Workstation (AWS) and Directory Services Application (DSA) are trademarks of
S.W.I.F.T., La Hulpe in Belgium.

Pentium is a trademark of Intel Corporation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Microsoft, Windows, and the Windows 95 logo are trademarks or registered
trademarks of Microsoft Corporation.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix C. Notices 81

82 MERVA Connection/6000

Glossary of Terms and Abbreviations

This glossary defines terms and abbreviations as
they are used in the MERVA AIX books. If you do
not find the terms your are looking for, refer to
Dictionary of Computing, New York: McGraw-Hill,
1994, the S.W.I.F.T. User Handbook, or the
S.W.I.F.T. USE Planning Guide.

A
AMPDU. Application Message Protocol Data Unit
defined in the MERVA Link P1 protocol. It consists of an
envelope and the content, which is an ASP-supplied
information.

answerback. In telex, the response from the dialed
correspondent to the “WHO R U” signal.

AP. Application.

APAR. Authorized Program Analysis Report.

APDU. Application protocol data unit.

API. Application Programming Interface.

APPC. Advanced Program-to-Program Communication
based on LU 6.2 protocols.

Application Support (AS). Application Support is the
name of the upper sublayer functionality of MERVA
Link.

Application Support Layer (ASL). ASL contains the
Application Support functionality.

Application Support Process (ASP). The part of
MERVA Link that implements the Application Support
Layer.

ASCII. American Standard Code for Information
Interchange.

ASP. Application Support Process.

ASPDU. Application Support Protocol Data Unit
defined in the MERVA Link P2 protocol.

association time-out. The period of time allowed for
the establishment of a MERVA Link session with the
remote partner before giving up.

authentication. The SWIFT security check used to
ensure that a message is not changed during
transmission and that it was sent by an authorized
sender.

authenticator key. A set of alphanumeric characters
used to check the authentication of a message sent via
the SWIFT network.

authenticator-key file. This file contains the keys
used for authenticating messages. The file contains a
record for each correspondent bank.

B
Bank Identifier Code. The SWIFT address of a bank
as assigned by SWIFT. See also SWIFT address.

BCR. Basic Card Reader.

BIC. Bank Identifier Code. See SWIFT address.

bi-directional. A type of bilateral key where the same
key is used to authenticate messages sent to and
received from a correspondent.

bilateral key. A key, generated inside an SCR, that is
used to authenticate financial messages passing
between a pair of correspondents. A bilateral key can be
bi-directional or uni-directional.

bilateral key exchange (BKE) service. The SWIFT
USE service in which authenticator keys are generated
in an SCR and exchanged by means of the SWIFT
network, as an alternative to exchanging keys by mail.

BK. Bilateral Key.

BKE. Bilateral Key Exchange.

BK-ID. Bilateral key identifier. The BK-ID has the
following format:

v The first character is either B (Bilateral) or M
(Manual)

v The second character is the BK type, as defined by
SWIFT

v Characters 3 to 8 inclusive are the date

v Characters 9 to 16 inclusive are the key check value.

blacklist. A list of USE items, such as SCRs or CVs,
that are no longer valid. For example, a stolen SCR is
blacklisted to prevent future use.

branch code. The last 3 digits of the BIC, used to
identify a bank.

C
CBT. SWIFT Computer Based Terminal.

certificate. A guarantee issued by SWIFT that the
holder of a public key is genuine. You must obtain a
certificate for each public key you generate before
starting bilateral key exchange.

CID. Central Institution Destination.

© Copyright IBM Corp. 1993, 1997 83

control database. Contains all MERVA AIX-specific
configuration data, such as routing table information,
system configuration data, and user-specific information,
such as the user file containing details of MERVA AIX
users and their access rights to functions and queues.

correspondent. An institution to which your institution
sends messages and from which messages are
received.

correspondents database. A database containing the
SWIFT address, nickname, and descriptive name and
address of each bank with which your bank
corresponds. The file is used to store the descriptive
names and addresses used in the address expansion
process.

country code. A 2-character code that is part of the
BIC, used to identify countries.

CRC. Cyclic Redundancy Check.

CS. When CS is used, you can use Communications
Server or Personal Communications.

CUG. Closed User Group.

CV. See certificate.

CV-ID. Certificate identity. A unique identifier of a
certificate made up of the destination, expiration date,
and number of the certificate.

D
destination. For SWIFT, the first 8 characters of the
SWIFT address, consisting of the bank, country, and
location codes.

domain. For MERVA AIX, a set of workstations that
share a MERVA installation. The MERVA domain is a
part of the MERVA Message Reference Number (MRN).

E
emitting destination. The SWIFT destination that
appears on messages sent to SWIFT. You must specify
the emitting destination, for example, when sending a
message to SWIFT requesting the blacklisting of a card
reader.

F
FIN. Financial Application (SWIFT).

four-eyes principle. A banking security concept,
whereby changes and approval of changes must always
be carried out by two different people.

I
IAM. Interapplication messaging is a MERVA Link
message exchange protocol.

ICC. Integrated Circuit Card.

IM-ASPDU. Interapplication messaging application
support PDU. It contains an application message and
consists of a header and a body.

initiator. The correspondent that begins bilateral key
exchanges. See also responder.

ISC. Intersystem communication.

ISN. Input sequence number.

ISO. International Organization for Standardization.

K
kernel. A secret value stored on a USER ICC for each
LT, used to define access rights to SWIFT applications
and to generate session keys. There are eight kernels
per USER ICC.

kernel version. A pointer to the kernel currently in
use.

key check value. (1) Part of the BK-ID. If you
encounter problems communicating with your
correspondent, check the key check value, which
should be identical to your correspondent’s. (2) Part of
the secure transmission key (STK), used as a check
that you have entered the remainder of the STK
correctly.

KMA. Key Management Authority.

L
LAK. Login acknowledgment message. This message
informs you that you have successfully logged in to the
SWIFT network.

LNK. SWIFT login negative acknowledgment
message. This message informs you that the login to
the SWIFTnetwork has failed.

local LU name. The logical unit name, or workstation
identifier, of the local machine.

logging database. Contains all MERVA AIX audit
logging data.

logical unit. In SNA, a port through which the user
accesses the SNA network.

log in. To start the connection to the SWIFT network.

LSN. Login Sequence Number.

84 MERVA Connection/6000

LT. Logical Terminal. The S.W.I.F.T. II equivalent of the
TID (Terminal Identifier).

LU name. Logical Unit name.

M
MAC. Message Authentication Code.

master logical terminal. The 9-character code
assigned by SWIFT to uniquely identify each terminal
attached to the S.W.I.F.T. II network.

MERVA AIX. Message Entry and Routing with
Interfaces to Various Applications for AIX.

MERVA domain. See domain.

MERVA Link. The component that can be used to
interconnect MERVA systems.

message. A string of fields in a predefined form used
to provide or request information. See also SWIFT
message.

message buffer. The part of the queue buffer that
holds messages in network format.

message database. Contains all messages created by
the user or received by the MERVA AIX system.

message field. A predefined part of a message,
identified either by a known offset from the start of a
message, or by a delimiter known as a scan pattern.

message header. The leading part of a message that
contains the sender and receiver of the message, the
message priority, and the type of message.

message integrity. A facility provided by MERVA Link
that ensures that, in the case of an interruption during
message exchange, duplicates of messages are not
sent, and that no messages are lost.

message integrity protocol. A facility used by
MERVA Link to assist the provision of message integrity.

message queue. A queue used to store messages on
a first-in, first-out basis.

message reference number. A unique 16-digit
identifier assigned by MERVA AIX to each message for
identification purposes. The message reference number
consists of an 8-character domain identifier followed by
an 8-digit sequence number.

message separator. A predefined series of characters
used to separate message fields. For example, :32A is
the separator of the SWIFT currency field. Also known
as a scan pattern.

message sequence number (MSN). MERVA Link
protocol element. Sequence number for messages
transferred by MERVA Link.

message transfer. Message Transfer is the name of
the lower sublayer functionality of MERVA Link.

Message Transfer Process or Program (MTP). The
MERVA Link Message Transfer Program supports a
specific remote partner MTP. It exchanges messages
and reports with this partner. The conversation protocol
used by these programs must be bilaterally agreed
between two programs.

message type (MT). A number, up to 7 digits long,
that identifies a message. SWIFT messages are
identified by a 3-digit number; for example, SWIFT
message type MT S100.

MPDU. Message Protocol Data Unit defined in the
MERVA Link P1 protocol.

MRN. Message reference number.

Msg.ID. Message identifier.

MSN. Message Sequence Number.

MTN. Message Transfer Node. The unique identifier of
a MERVA Link system. Exchanged as part of the
address information when establishing a connection with
a remote MERVA Link system.

MTP. Message Transfer Process or Program (MTP).
The lower layer of the MERVA Link communications
protocol. The MERVA Link Message Transfer Program
supports a specific remote partner MTP. It exchanges
messages and reports with this partner. The
conversation protocol used by these programs must be
bilaterally agreed between two programs.

N
nested message. A message that contains another
message. For example, SWIFT MT 195 could be used
to request information about a SWIFT MT 100
(customer transfer). The SWIFT MT 100 (only
mandatory fields) is then nested in SWIFT MT 195.

network identifier. A single character stored together
with the message in the MERVA AIX message database
that shows which network is to be used to send the
message. For example S for SWIFT.

NCP. Network Control Program.

nickname. An abbreviation or synonym of the Bank
Identifier Code (BIC) of a financial institution with which
you frequently correspond.

NSDU. Network Service Data Unit. A logical unit of
data used at the network layer of the SWIFT Link
communications protocol.

Glossary of Terms and Abbreviations 85

O
OSN. Output sequence number.

P
Partner Table (PT). In MERVA ESA, the Partner Table
defines message processing in MERVA Link. It consists
of a header and different entries, such as entries to
define the message-processing parameters of an ASP
or MTP.

PDE. Possible Duplicate Emission.

PDU. Protocol Data Unit.

Personal Identification Number (PIN). A 6-digit
confidential code number used to restrict the use of
ICCs to authorized card holders only.

personalize. To customize the information stored
about a card set. This includes unblocking the cards,
setting the PIN parameters, and for USER cards, setting
the LT access rights.

PIN. Personal Identification Number.

pre-agreement. An agreement between an institution
and its correspondent that governs the exchange of
bilateral keys.

protocol data unit (PDU). In MERVA Link a PDU
consists of a structured sequence of implicit and explicit
data elements:

v Implicit data elements contain other data elements.

v Explicit data elements cannot contain any other data
elements.

PSN. Public switched network (connection).

PT. MERVA Link Partner Table (for MERVA ESA).

PTF. Program Temporary Fix.

PTT. National Post and Telecommunication Authority
(post, telegraph, telephone).

PU. Physical unit.

public key. A key held by each institution that is used
to encipher a bilateral key received from a
correspondent. See also secret key.

purpose group. A logical grouping of queues
associated with a function. The function is responsible
for processing the messages in all queues belonging to
the purpose group.

P1. In MERVA Link, a peer-to-peer protocol between
cooperating ASPs in remote systems.

P2. In MERVA Link, a peer-to-peer protocol between
cooperating MTPs in remote systems.

Q
queue. See message queue.

queue buffer. The internal representation of a MERVA
AIX message when held in a queue.

queue management. A MERVA AIX process that
handles the storing and retrieval of messages in the
message database.

R
repeatable sequence. A field or group of fields that
can be entered or displayed more than once in a
message.

responder. The correspondent that does not initiate a
bilateral key exchange. See also initiator.

routing. The passing of messages from one of the
processing stages in a predefined processing path to
the next stage.

routing condition. A logical test to determine the
target queues that messages are sent to. Routing
conditions are defined for source queues, that is, the
queue that messages are taken from for further routing.
You can test for:

v The presence of a field within a message

v The presence of data within a message field

v The value of the contents of a message field.

RSA. Asymmetric cryptographic algorithm designed by
Rivest, Shamir, and Adleman.

S
scan pattern. A character string placed between
message fields to identify where a field begins. Also
known as a tag.

SCR. Secure Card Reader.

SDLC. Synchronous Data Link Control.

secret key. The part of an RSA key used to encipher
bilateral keys that remains stored inside the SCR. See
also public key.

secure login and select (SLS) service. ICC-based
alternative to the use of paper LOGIN/SELECT tables.

secure transmission key (STK). The key that is
generated by the SCR and used to protect the transfer
of bilateral keys over the link between the SCR and the
workstation. The STK is also used in the workstation to
store the bilateral keys securely.

86 MERVA Connection/6000

security management center (SMC). The SWIFT
facility responsible for security administration and the
issue of ICCs to users. The SMC also acts as the
certification authority for Public RSA keys.

session key (SK). A number required for each LOGIN
and SELECT request.

sign on. To start a MERVA AIX session.

SK. Session Key.

SK number. A parameter stored on an ICC that
specifies the number of session keys that can be
generated with a USER card before the user must enter
the PIN again.

SLS. Secure Login and Select.

SMC. Security Management Center.

SNA. Systems network architecture.

source queue. In a routing condition, the queue from
which messages are routed to the next defined
message queue.

SSN. Select Sequence Number.

STK. Secure Transmission Key.

subfield. A subdivision of a field with a specific
meaning. For example, the SWIFT field 32 has the
subfields date, currency, and amount. A field can have
several subfield layouts depending on the way the field
is used in a particular message.

SWIFT. Society for Worldwide Interbank Financial
Telecommunication, s.c.

SWIFT. Refers to the SWIFT II network of the Society
for Worldwide Interbank Financial Telecommunication,
s.c. (SWIFT).

SWIFT address. A code used to identify a bank within
the SWIFT network. The code is also called a bank
identifier code (BIC) or a terminal identifier and is
assigned by SWIFT.

SWIFT correspondents database. The database
containing the SWIFT address or BIC, together with the
name, postal address, and zip code of each financial
institution in the BIC Directory.

SWIFT destination address. The first 8 characters of
the SWIFT address consisting of the bank, country, and
location codes.

SWIFT financial message. A message in one of the
SWIFT categories 1 to 9 that you can send or receive
via the SWIFT network. See SWIFT input message and
SWIFT output message.

SWIFT header. The leading part of a message that
contains the sender and receiver of the message, the
message priority, and the type of message.

SWIFT input message. A SWIFT message prepared
by a user to be sent to the SWIFT network.

SWIFT Link. The MERVA AIX component that
provides you with a link to the S.W.I.F.T. II network,
enabling you to send messages to and receive
messages from the SWIFT network.

SWIFT message. A message in one of the SWIFT
categories as defined in the S.W.I.F.T. User Handbook
that can be sent or received via the SWIFT network.
See also SWIFT input message and SWIFT output
message.

SWIFT output message. A SWIFT message coming
from the SWIFT network.

SWIFT system message. A message in SWIFT
category 0.

systems network architecture (SNA). The
description of the logical structure, formats, protocols,
and operating sequences for transmitting information
units through, and controlling the configuration and
operation of, networks.

T
tag. A field identifier, consisting of a 2- or 3-digit
number, or a 2-digit number followed by a letter.

target queue. In a routing condition, the message
queue to which messages are next routed.

TCT. Terminal control table.

technology flag. A parameter, which is controlled by
the USOF, that indicates to SWIFT which access
technology, ICCs or paper tables, is being used by the
LTs of a particular destination.

TPDU. Transport Protocol Data Unit. A logical unit of
data used at the Transport layer of the SWIFT Link
communications protocol.

TRN. Transaction Reference Number.

U
UKMO. User Key Management Officer.

uni-directional. A type of bilateral key where different
separate keys are used to authenticate messages send
to and received from a correspondent.

USE. User Security Enhancements.

USER. SWIFT Link operator; the holder of a USER
ICC.

Glossary of Terms and Abbreviations 87

user file. The user file has a record for each MERVA
AIX user, containing the user’s details. The record
specifies the functions that a user is allowed access to.
The user file can only be accessed by authorized users.

user key management officer (UKMO). The
administrator who is the holder of a UKMO ICC. The
UKMO is responsible for managing the exchange and
use of bilateral keys, and other BKE-related functions.

user security officer (USOF). The administrator who
is the holder of a USOF ICC. The USOF is responsible
for control and management of ICCs and card readers
and their related data, and for liaison with SWIFT for
matters relating to ICCs and card readers.

USOF. User Security Officer.

W
whitelist flag. A mechanism for preventing the use of
cards that are suspected of being lost, stolen, or
otherwise compromised. If a card is lost, the USOF
increments the whitelist flag on the remaining cards,
thus rendering the whitelist flag on the lost card
incorrect.

X
X.25. ISO standard for interface to packet switched
communications services.

88 MERVA Connection/6000

Bibliography

IBM Publications

With exception of the General Information and the
Licensed Program Specifications, all MERVA
books are available as softcopy on the

v MERVA Family C-Kit, SK2T-0157

MERVA Family Books
v MERVA OS/2 Client User’s Guide, SH12-6282

v MERVA Family USE Administration Guide,
SH12-6065

MERVA OS/2 Books
v MERVA OS/2 V3 and MERVA ESA V3 General

Information, GH12-6018

v MERVA OS/2 V3 Licensed Program
Specifications, GH12-6057

v MERVA OS/2 V3 Application Programming,
SH12-6058

v MERVA OS/2 V3 Diagnosis Guide, SH12-6059

v MERVA OS/2 V3 User’s Guide, SH12-6060

v MERVA OS/2 V3 Installation and
Customization Guide, SH12-6061

MERVA AIX Books
v MERVA AIX Licensed Program Specifications,

GH12-6180

v MERVA AIX User’s Guide, SH12-6181

v MERVA AIX Installation and Customization
Guide, SH12-6182

v MERVA AIX Application Programming,
SH12-6183

v MERVA AIX Diagnosis Guide, SH12-6184

MERVA ESA Books
v MERVA OS/2 V3 and MERVA ESA V3 General

Information, GH12-6018

v MERVA ESA V3 Licensed Program
Specifications, GH12-6019

v MERVA ESA V3 Application Programming
Interface Guide, SH12-6183

v MERVA ESA V3 Operations Guide, SH12-6021

v MERVA ESA V3 User’s Guide, SH12-6022

v MERVA ESA V3 Macro Reference, SH12-6023

v MERVA ESA V3 Installation Guide, SH12-6025

v MERVA ESA V3 Messages and Codes,
SH12-6026

v MERVA ESA V3 Customization Guide,
SH12-6027

v MERVA ESA V3 Concepts and Components,
SH12-6028

v MERVA ESA V3 Advanced MERVA Link,
LY12-5081

v MERVA ESA V3 Workstation Based Functions,
SH12-6069

v MERVA ESA V3 IFT Connection for MVS,
SH12-6280

v MERVA ESA V3 Traffic Reconciliation
Reference, SH12-6281

Further IBM Publications
v IBM AIX and Related Products Documentation

Overview, SC23-2456

v IBM DATABASE 2 for AIX Planning Guide,
S20H-4758

v DB2 Application Programming Guide,
S20H-4643

v DB2 API Reference, S20H-4984

v DB2 Problem Determination Guide, S20H-4779

v SNA Server for AIX Diagnosis Guide and
Messages, SC31-8215

v SNA Server for AIX Command Reference,
SC31-8214

v SNA Server for AIX Configration Reference,
SC31-8213

v CID Enablement Guidelines, S10H-9666

v CICS-RACF Security Guide, SC33-1185

v MVS/ESA Planning: APPC Management,
GC28-1110

v ITSC redbook APPC Security: MVS/ESA,
CICS/ESA, and OS/2, GG24-3960

v IMS/ESA Version 4 Data Communication
Administration Guide, SC26-3060

S.W.I.F.T. Publications

The following books are published by the Society
for Worldwide Interbank Financial
Telecommunication, s.c., in La Hulpe, Belgium:

v S.W.I.F.T. User Handbook (1996)

v S.W.I.F.T. Dictionary (1996)

© Copyright IBM Corp. 1993, 1997 89

v S.W.I.F.T. Directory (1996)

v S.W.I.F.T. FIN Security Guide (1996)

v S.W.I.F.T. Card Readers User Guide (1996)

90 MERVA Connection/6000

Index

A
activating security user exits 55, 56, 58
API

building programs 53
Remote MERVA API Client 2
Remote MERVA API Server 2

API functions (C) 31, 32
data types 27
ENMClearSem 36
ENMCloseSem 34
ENMCreateSem 37
ENMEndRAPI 30
ENMGetReason 39
ENMOpenSem 38
ENMRestartRAPI 29
ENMSetProfile 28
ENMSetSem 35
ENMStartRAPI 29
ENMWaitSemList 33

authentication 47

C
Communications Server

installing sample configuration files 19
connection to MERVA AIX

disconnecting 30
reconnecting remote program 29
starting 29

connection to MERVA OS/2
disconnecting 30
reconnecting remote program 29
starting 29

conversation to MERVA AIX
ending 28
starting 28

conversation to MERVA OS/2
ending 28
starting 28

D
decryption

user exit for 49
diagnosis log

on the RAPI client system 59
on the RAPI server system (MERVA AIX) 60
on the RAPI server system (MERVA OS/2) 60

disconnecting from MERVA (C) 30

E
encryption

of transferred information 47
user exit for 49

ENM4ExitDecrypt 49
ENM4ExitEncrypt 49
ENM4ExitMacVerify (C) 50

ENMClearSem 36
ENMCloseSem 34
ENMCreateSem 37
ENMEndRAPI 30
ENMGetReason 39
ENMOpenSem 38
ENMRestartRAPI 29
ENMSetProfile 28
ENMSetSecurity 31
ENMSetSem 35
ENMSetTestEnv 32
ENMStartRAPI 29
ENMWaitSemList 33
error handling

getting the reason code 39

G
generating security user exits 55, 56, 58

L
language support 1
log files

on the RAPI server system (MERVA AIX) 60

M
MAC

user exit to generate 50
user exit to verify 50

MERVA AIX
Display Diagnosis Log function 60
logging directory 60

MERVA Connection/6000
differences to MERVA AIX API 27
differences to MERVA OS/2 API 27
functions provided by 1
language support 1
objectives 1

MERVA Connection/6000 Client
client requirements 5
customizing a client application 7
customizing SNA services 6
customizing TCP/IP services 7
deinstalling the client 6
installing the client 5

MERVA OS/2
additional functions 28
diagnosis log 60
Display/Print Diagnosis Log (DPD) function 60
programmer’s log 60

message authentication code 50

N
Notices 79

P
profile

selecting 28

© Copyright IBM Corp. 1993, 1997 91

programmer’s log
Display/Print Diagnosis Log (DPD) function 60
on the RAPI client system 60
on the RAPI server system (MERVA AIX) 60
on the RAPI server system (MERVA OS/2) 60

R
RAPI Server OS/2

server requirements 19
RAPI Server OS/2 system

customizing SNA services 20
installing the Server 19

reason code, returning 39
reconnecting remote program (ENMRestartRAPI) 29
Remote API Server RS/6000

customizing SNA services 13
customizing TCP/IP services 16
installing the server 13
server requirements 13

resynchronization 43

S
sample

security exits 56
security user exits 73
SNA definitions 61

security considerations
overview 47
replacing user exits 55

Security information 31
security user exits

activating on RAPI client system 55
activating on the RAPI server system (MERVA

AIX) 58
activating on the RAPI server system (MERVA

OS/2) 56
generating on RAPI client system 55
generating on the RAPI server system (MERVA

AIX) 58
generating on the RAPI server system (MERVA

OS/2) 56
sample 56, 73

semaphore
clearing 36
closing 34
creating 37
opening 38
setting 35

semaphores
waiting for a list of 33

Setting conversation security information 31
setting semaphores 35
Setting test environment 32

T
Test environment 32

U
user exit

replacing security 55

user exit points 48
user exits

ENM4ExitDecrypt (C) 49
ENM4ExitEncrypt (C) 49
ENM4ExitMacGen 50
ENM4ExitMacVerify 50
for MAC generation 50
for MAC verification 50
generating authentication key with 47
introduction to interfaces 47
sample security exit 73
using to encrypt data 47

92 MERVA Connection/6000

Readers’ Comments — We’d Like to Hear from You

MERVA Family
MERVA Connection/6000

Publication No. SH12-6097-02

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way
it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SH12-6097-02

SH12-6097-02

IBM
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH
Information Development, Dept. 0446
Postfach 1380
71003 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBM

Program Number: 5765-449

Printed in Denmark by IBM Danmark A/S

SH12-6097-02

