
MERVA Family

MERVA Connection/ESA

SH12-6187-00

IBM

MERVA Family

MERVA Connection/ESA

SH12-6187-00

IBM

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix E.
Notices” on page 95.

First Edition, November 1997

This edition applies to

Version 3 Release 3 of IBM MERVA for OS/2 LAN (5622-122)

Version 3 Release 3 of IBM MERVA for OS/2 Standalone (5622-127)

Version 1 Release 2 of IBM MERVA for AIX (5765-449)

and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1993, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

About This Book . vii

Chapter 1. Introduction to MERVA Connection/ESA 1
The Objectives of MERVA Connection/ESA 1
Functions Provided by MERVA Connection/ESA 1

Environment . 1
Language Support . 1
Security . 2
Message Integrity . 2

Principles . 2

Chapter 2. Planning and Preparing for Installing MERVA Connection/ESA . 3
Machine Requirements . 3
Program Requirements . 3

Programs Required on the MERVA OS/2 V3 Side. 3
Programs Required on the MERVA AIX Side 3
Programs Required on the S/390 Side 3

Network Requirements. 4

Chapter 3. Installing MERVA Connection/ESA 5
Installing MERVA Connection/ESA on the OS/2 System 5

Installing the Remote MERVA API Server Program 5
Installing the Sample Communications Server Configuration Files 5

Installing MERVA Connection/ESA on the RS/6000 5
Installing the SNA Server Profiles. 5

Installing MERVA Connection/ESA on the S/390 6
Installation Steps . 8

Chapter 4. Customization and Network Definitions 25
Customization on the S/390 . 25

Customizing VTAM . 25
Customizing CICS . 26
Settings in the MERVA Connection/ESA Profile. 29

Network Definitions on the OS/2 System 29
Network Definitions on the RS/6000 30

Chapter 5. Verifying Correct Installation and Customization 35

Chapter 6. The Application Programming Interface 37
Structure of the MERVA API Program on the S/390 37
C Language Data Types . 37
Additional Functions . 38
Starting and Ending the Conversation 38

ENMSetProfile - Select a Profile 38
ENMStartRAPI - Establish Connection to MERVA OS/2 V3 or MERVA AIX . 39
ENMRestartRAPI - Reconnect Remote API Program to MERVA OS/2 V3 or

MERVA AIX . 40
ENMEndRAPI - Disconnect from MERVA OS/2 V3 or MERVA AIX. 41

Functions Enabling the API Program to Be Triggered 41
ENMWaitSemList - Wait for a List of Semaphores. 42
ENMCloseSem - Close a Semaphore 43
ENMSetSem - Set a Semaphore 44
ENMClearSem - Clear a Semaphore 45

© Copyright IBM Corp. 1993, 1997 iii

ENMCreateSem - Create a Semaphore 46
ENMOpenSem - Open a Semaphore 47

Handling Errors . 48
ENMGetReason - Get Reason Code for Internal Error 48

Chapter 7. Resynchronization 51
How Resynchronization Is Implemented 52
Using the Resynchronization Mechanism 52
Hints and Tips . 53

Recovering after a Failed Call 53
Not Using Resynchronization 53

Chapter 8. Security . 55
Encryption of Transferred Information 55
Authentication of Transferred Information 55
User Exit Interfaces . 55

Introduction . 55
User Exit Points . 56

User Exit Interfaces in C Language 57
User Exit for Encryption . 57
User Exit for Decryption . 57
User Exit for MAC Generation 58
User Exit for MAC Verification 58

Chapter 9. Building API Programs 61
Compiling the Sample Programs 61
Compiling a MERVA Connection/ESA API Program 61

Chapter 10. Replacing Security User Exits 67
Security User Exits . 67

Generating and Activating Security User Exits on the S/390 67
Generating and Activating Security User Exits on the OS/2 System 67
Generating and Activating Security User Exits on the RS/6000 69

Chapter 11. Diagnosis Information 71
Log Files on the S/390. 71

Diagnosis Log . 71
Programmer’s Log . 71
Log Message Layout . 71

Log Files on MERVA OS/2 V3 73
Log Files on MERVA AIX . 73

Appendix A. Sample Network Definitions for the S/390 75
VTAM Definitions: OS/2 System Connected to a Token Ring Network 75

CICS Application Definition 75
PU/LU Definition for the OS/2 System in a Token Ring 75
Logmode Entry for an APPC Connection 76

VTAM Definitions: OS/2 System Connected by an SDLC Line 76
CICS Application Definition 76
PU/LU Definition for the OS/2 System with SDLC Line 76
Logmode Entry for an APPC Connection 76

CICS Definitions . 77

Appendix B. Sample Network Definitions for the RS/6000 79
Control Point Definition . 79
Local LU Definition . 79

iv MERVA Connection/ESA

Partner LU Definition . 79
Transaction Program Definition 79
Token Ring Link Station Definition 80
Token Ring SNA DLC Definition 80
Mode Definition . 81

Appendix C. Sample Security User Exits 83
Module ENM4SNIL - Empty Functions 83
Module ENM4SSEC - Sample Functions 84

Appendix D. Sample Programs 87
Program ENMVERIF . 87
Program ENMABEND . 91

Appendix E. Notices . 95
Trademarks . 96

Glossary of Terms and Abbreviations 99

Bibliography . 101
IBM Publications . 101

MERVA Family Books . 101
MERVA OS/2 Books . 101
MERVA AIX Books . 101
MERVA ESA Books . 101

Further IBM Publications . 101
S.W.I.F.T. Publications . 102

Index . 103

Readers’ Comments — We’d Like to Hear from You 105

Contents v

vi MERVA Connection/ESA

About This Book

This book is intended for application programmers who want to connect an IBM
S/390 application to the Message Entry and Routing with Interfaces to Various
Applications for OS/2 Version 3 (abbreviated to MERVA OS/2 V3 in this book) or the
Message Entry and Routing with Interfaces to Various Applications for AIX
(abbreviated to MERVA AIX in this book). It is also for users who want to install and
customize MERVA Connection/ESA.

It is assumed that you have prior knowledge of and experience with:

v S/390

v MVS/ESA

v CICS/ESA

v Operating System/2 (OS/2)

v Advanced Interactive Executive (AIX)

v RISC/6000 (RS/6000)

v Systems Network Architecture (SNA)

v Application Programming Interface (API) of MERVA OS/2 V3

v Application Programming Interface of MERVA AIX.

© Copyright IBM Corp. 1993, 1997 vii

viii MERVA Connection/ESA

Chapter 1. Introduction to MERVA Connection/ESA

This chapter introduces the MERVA Connection/ESA and briefly describes the
facilities supported by MERVA Connection/ESA.

The Objectives of MERVA Connection/ESA

There is a wide range of banking applications available for the S/390 platform.

While many of these applications create and process SWIFT messages, they do not
provide a connection to public networks. MERVA OS/2 V3 and MERVA AIX provide
connections to the SWIFT network (with SWIFT Link), to the public telex network
(only MERVA OS/2 V3 with TelexPlus), and to other MERVA OS/2 V3, MERVA AIX,
or MERVA ESA systems (with MERVA Link).

To use S/390 applications as banking applications, messages created on the S/390
must be transferred to MERVA OS/2 V3 or MERVA AIX. Messages received from
one of these networks must be transferred from MERVA OS/2 V3 or MERVA AIX to
the S/390.

While this can be achieved by saving messages to files and transferring the files,
this solution requires operator intervention and can cause message integrity
problems. It may also not be transparent to the application. Therefore, the best
method is to implement a direct connection from the application on the S/390 to
MERVA OS/2 V3 or MERVA AIX, as if MERVA OS/2 V3 or MERVA AIX was a
component of the application.

MERVA Connection/ESA is a tool that makes it easy for you to implement such a
solution. MERVA Connection/ESA is not a ready-to-use SWIFT interface on the
S/390. It does not have a user interface.

It is an interface for application programs on the S/390. With a minimum of effort
you can create an application (remote API) on the S/390 to send messages to
MERVA OS/2 V3 or MERVA AIX and receive messages from there using MERVA
Connection/ESA.

Functions Provided by MERVA Connection/ESA

MERVA Connection/ESA provides the complete functionality of the MERVA OS/2 V3
and MERVA AIX API on the S/390. Additional calls are available for establishing the
connection and making use of MERVA OS/2 V3 or MERVA AIX alarms. MERVA
Connection/ESA provides a real-time interface to MERVA OS/2 V3 or MERVA AIX.

Environment

MERVA Connection/ESA can be run under CICS/ESA in the MVS/ESA environment.

Language Support

Easy portability of MERVA OS/2 V3 API programs between OS/2 and CICS/ESA
and MERVA AIX API programs between AIX and CICS/ESA is provided by the C
Language interface. Consider, however, that under CICS/ESA there is no support by
the C/370 I/O library for disk files and other devices.

© Copyright IBM Corp. 1993, 1997 1

Security

Security aspects are dealt with by a very flexible user exit interface (see “Chapter 8.
Security” on page 55).

Message Integrity

A resynchronization mechanism ensures that the remote API program can provide
the same level of message integrity as a local API program.

Principles

Figure 1 illustrates the main programming concepts of MERVA Connection/ESA.

The Remote MERVA API Client provides the calling interface for the application on
the S/390. It forwards the API call with the input parameters to the Remote MERVA
API Server on the OS/2 or AIX system. The Remote MERVA API Server calls the
MERVA OS/2 V3 or MERVA AIX API function and passes the received parameters
to it. The output data and return code are transferred back to the Remote MERVA
API Client. There, control is passed back to the calling program as if the API
function had been executed locally.

┌────────────────────┐ ┌────────────────────┐
│Client Application │ │MERVA Server System │
│System (S/390) │ │(OS/2 or RS/6000) │
│ ┌─────────────────┐│ │ ┌─────────────────┐│
│ │CICS ││ │ │OS/2 or AIX ││
│ │ ││ │ │ ││
│ │ Financial ││ │ │ MERVA ││
│ │ Application ││ │ │ ││
│ └───────┐ ┌───────┘│ │ │ SWIFT Link ││
│ ┌───────┘ └───────┐│ │ │ MERVA Link ││
│ │ Application ││ │ │ ││
│ │ Interface ││ │ │ ││
│ │ ││ │ │ ││
│ │Remote MERVA API ││ │ │ Local MERVA API ││
│ └───────┐ ┌───────┘│ │ └───────┐┌────────┘│
│ ┌───────┘ └───────┐│ │ ┌───────┘└────────┐│
│ │ Connection/ESA ││ │ │ Connection/ESA ││
│ │ ││ │ │ ││
│ │Remote MERVA API ││ │ │Remote MERVA API ││
│ │ Client ││ │ │ Server ││
│ └──────┐ ┌──────┘│ │ └──────┐ ┌──────┘│
└───────┐││ ││┌──────┘ └───────┐││ ││┌──────┘

│││ ││└────────────────────────────────┘││ │││
│││ │└──────────────────────────────────┘│ │││
│││ │ ┌────────────────────────────┐ │ │││
│││ └>>>│API context with input data │>>>┘ │││
│││ └────────────────────────────┘ │││
│││ ┌────────────────────────────┐ │││
││└──<<<│API context with output data│<<<──┘││
││ └────────────────────────────┘ ││
│└──┘│
│ APPC session between S/390 and │
│ OS/2 System or RS/6000 │
└──┘

Figure 1. Concept of MERVA Connection/ESA

2 MERVA Connection/ESA

Chapter 2. Planning and Preparing for Installing MERVA
Connection/ESA

This chapter describes the machine and software requirements that are
prerequisites for installing MERVA Connection/ESA.

Machine Requirements

MERVA Connection/ESA can communicate with a MERVA OS/2 V3 stand-alone
installation, a workstation within a MERVA OS/2 V3 LAN installation or an instance
of a MERVA AIX installation. For OS/2 system hardware requirements, see the
MERVA OS/2 V3 Installation and Customization Guide. For AIX hardware
requirements, see the MERVA AIX Installation and Customization Guide. Depending
on the type of connection used (see below), a Token Ring card or a multi-protocol
adapter (MPA) card is required.

MERVA Connection/ESA requires an APPC LU 6.2 session between the OS/2
system and the S/390 or between the RS/6000 and the S/390. This can be
achieved by Token Ring, SDLC, and other types of connection for which the
Communications Server, the SNA Server and VTAM provide support for an LU 6.2
session. For a list of the alternatives available and the hardware required for each,
refer to the appropriate books listed in the “Bibliography” on page 101.

Program Requirements

The following describes the software that is required on the OS/2 system, the
RS/6000 and the S/390 machines.

Programs Required on the MERVA OS/2 V3 Side
v Communications Server for OS/2 V4.0, or a subsequent release

or

Personal Communications V4.1, or a subsequent release.

Programs Required on the MERVA AIX Side
v SNA Server for AIX V3.1, or a subsequent release

or

Communications Server for AIX V4.1, or a subsequent release.

Programs Required on the S/390 Side

The following software must be installed on the S/390:

v MVS/SP Version 3 Release 1.3 (MVS/ESA), or a subsequent release

v CICS/ESA Version 3 Release 2.1, or a subsequent release

v ACF/VTAM Version 3 Release 4 for MVS/ESA, or a subsequent release

v ACF/NCP Version 4 Release 3.1, or a subsequent release

v C/370 Library Version 2 Release 2, or a subsequent release

or

© Copyright IBM Corp. 1993, 1997 3

LE/370 Version 1 Release 3, or a subsequent release, together with CICS/ESA
Version 3 Release 3, or a subsequent release

v AD/Cycle C/370 Compiler Version 1 Release 2, or a subsequent release.

Network Requirements

The network connection between the S/390 and the OS/2 system or the RS/6000
must support an LU 6.2 session. For establishing an LU 6.2 session between an
OS/2 system and an S/390, the appropriate profiles in the Communications Server
and the definitions in VTAM and CICS/ESA must be customized. For establishing
an LU 6.2 session between an RS/6000 and an S/390, the appropriate profiles in
the SNA Serverand the definitions in VTAM and CICS/ESA must be customized.

4 MERVA Connection/ESA

Chapter 3. Installing MERVA Connection/ESA

This chapter describes how to install MERVA Connection/ESA on the OS/2 system,
the RS/6000, and the S/390.

Installing MERVA Connection/ESA on the OS/2 System

The installation of MERVA Connection/ESA on the OS/2 system must be done if
you want to use MERVA OS/2 V3.

The following describes what you must do to install the Remote MERVA API Server
program and sample Communications Server configuration files on the OS/2
system.

Installing the Remote MERVA API Server Program

The Remote MERVA API Server program is installed by MERVA OS/2 V3.

To replace the sample security user exits, you must copy a source file from the
MERVA OS/2 V3 samples diskette. You can either copy it to the x:\MERVA2\BASE
directory, or to a directory of your choice. Use the following command:

copy A:\CONNECT\ENM4SSEC.C x:\directory

where x is the drive where MERVA OS/2 V3 is installed and directory is the name of
the directory of your choice.

Installing the Sample Communications Server Configuration Files

The MERVA OS/2 V3 samples diskette contains a sample set of Communications
Server configuration files. If you want to use these, unzip them to the directory
where Communications Server is installed:

PKUNZIP2 A:\CONNECT\ES9000\ES9000.ZIP x:\CMLIB

where x is the drive Communications Server is installed on (CMLIB directory).

Change the name of the default configuration file in Communications Server to
ES9000 by double-clicking on the icon Replace Default Configuration of the
Communications Server folder.

Installing MERVA Connection/ESA on the RS/6000

The installation of MERVA Connection/ESA on the RS/6000 must be done if you
want to use MERVA AIX.

The Remote MERVA API Server program is already installed by MERVA AIX.

Installing the SNA Server Profiles

The connection between the remote application side and the MERVA AIX side must
be an LU 6.2 session. To install the required SNA Server profiles, do the following:

© Copyright IBM Corp. 1993, 1997 5

v Create the required SNA Server profiles manually using the System Management
Interface Tool (SMIT). Samples for the network definitions are shown in
“Appendix B. Sample Network Definitions for the RS/6000” on page 79.

Installing MERVA Connection/ESA on the S/390

A tape contains the libraries that make up the MERVA Connection/ESA system. The
tape is a standard label tape with the label 0HG330. It is installed using SMP/E.

It contains the following files:

SMPMCS MCS Statements

IBM.H0HG330.F1 Installation Library installed as &PRFX.SENMINS0

IBM.H0HG330.F2 Source Library installed as &PRFX.SENMSRC0

IBM.H0HG330.F3 Macro Library installed as &PRFX.SENMMAC0

IBM.H0HG330.F4 Object Library installed as &PRFX.SENMOBJ0

During the installation process you replace &PRFX by the high level qualifier(s) of
your choice for the library name. At the end of the installation, the libraries contain
the following members:

&PRFX.SENMINS0: Installation Library

ENMAC05 Prelink and link-edit procedure for MERVA
Connection/ESA API programs.

ENMCCICS Compile and link-edit procedure for MERVA
Connection/ESA API programs containing
EXEC CICS statements.

ENMCCOMP Compile and link-edit procedure for MERVA
Connection/ESA API programs containing C/370
code only.

ENMFILES Allocation of the MERVA Connection/ESA
sequential data sets and loading of the connection
profile data set.

ENMMICTL Allocation of the MERVA Connection/ESA message
integrity VSAM file.

&PRFX.SENMSRC0: Source Library

ENMABEND Abnormal termination exit for the MERVA
Connection/ESA installation verification program
ENMVERIF.

ENMSAMP Sample API application for loading telex messages
to a MERVA OS/2 V3 queue.

ENMVERIF MERVA Connection/ESA installation verification
program.

ENM4SNIL Skeleton for MERVA Connection/ESA security exits.

ENM4SSEC Sample for MERVA Connection/ESA security exits.

&PRFX.SENMMAC0: Macro Library

ENMAPPL VTAM definition of the CICS Application ID.

6 MERVA Connection/ESA

ENMCSD CICS/ESA resource definitions to be used as input
for the utility DFHCSDUP.

ENMDCT CICS/ESA Destination Control Table (DCT)
definitions.

ENMLOGMO VTAM Logmode entries for an APPC connection.

ENMPULU VTAM PU/LU definition of an OS/2 system in a
Token Ring.

ENM4RAPI Include-file for a MERVA Connection/ESA API
program containing required definitions.

ENM4SXIT Include-file for MERVA Connection/ESA security
exits containing required definitions.

&PRFX.SENMOBJ0: Object Library

ENMABEN Abnormal termination exit for the MERVA
Connection/ESA installation verification program.

ENMRAPI MERVA Connection/ESA API.

ENMRPRF MERVA Connection/ESA profile module.

ENMRUTL MERVA Connection/ESA utility programs.

ENMSAM Sample API application for loading telex messages
to a MERVA queue.

ENMSNIL Skeleton for MERVA Connection/ESA security exits.

ENMSSEC Sample for MERVA Connection/ESA security exits.

ENMVERI MERVA Connection/ESA installation verification
program.

The load modules for the MERVA Connection/ESA sample API programs will be
prelink-edited and link-edited during the installation process (refer to page 17). The
resulting load modules are contained in a library with the low level qualifier
SENMLOD0:

&PRFX.SENMLOD0: Load Library

ENMABEND Abnormal termination exit for the MERVA
Connection/ESA installation verification program
ENMVERIF.

ENMSAMP Sample API application for loading telex messages
to a MERVA queue.

ENMVERIF MERVA Connection/ESA installation verification
program.

The function modification identifier (FMID) and the component identifier (COMPID)
are:

FMID H0HG330

COMPID 562212208

Component Name MERVA Connection/ESA

REL 330

Chapter 3. Installing MERVA Connection/ESA 7

Installation Steps

The installation steps are summarized as follows:

Step 0 Unload the installation JCL from the MERVA Connection/ESA
distribution tape.

Step 1 Allocate distribution and target libraries.

Step 2 Allocate SMP/E data sets and SMP/E CSI.

Step 3 Initialize the SMP/E zones.

Step 4 Carry out the RECEIVE and APPLY processing for MERVA
Connection/ESA.

Step 5 Prelink-edit and link-edit the MERVA Connection/ESA sample API
programs.

Step 6 Carry out the ACCEPT processing for MERVA Connection/ESA.

Beginning with step 0, the provided sample jobs are sequentially numbered in the
sequence in which you should run them after you have modified them as described
in the following.

The sample jobs must be modified according to your installation requirements. The
statements to be modified are marked by MODIFY in columns 65-70 on the
installation library.

The MODIFY instructions given in the control statements for VSAM Access Method
Services jobs and SMP/E jobs would render the affected jobs syntactically invalid
and therefore must be deleted before running.

Step 0 - Unload the Installation JCL

To unload the installation JCL from the MERVA Connection/ESA distribution tape
you need to generate an unload job.

There are two methods to generate the job:

v If a 3270 emulator session to TSO is available on your OS/2 system, you can
copy job UNLOAD.JOB from the MERVA OS/2 V3 samples diskette to an existing
partitioned data set which has a logical record length (LRECL) of 80. Logon to
TSO, then enter the following command on the OS/2 System:

send A:\CONNECT\ES9000\UNLOAD.JOB id:'dsn(UNLOAD)' ASCII CRLF

where id is the 3270 emulator session used for the file transfer, and dsn is the
fully qualified name of the partitioned data set.

v If you cannot transfer job UNLOAD.JOB, type in the job shown in Figure 2 on
page 9. Change all values indicated by MODIFY as required by your local
environment.

8 MERVA Connection/ESA

Submit the job.

When this job completes successfully with a condition code of 0, the data set you
specified in parameter JCLLIB contains the SMP/E JCL.

Run the jobs that are described in more detail in the following sections after
modifying the values indicated by MODIFY in columns 65-70 on the installation
library as required by your local environment. If an installation job completes
abnormally, you must find out why it failed from the error messages produced in
the job log list. Correct the error and rerun the failing job. Do not attempt to run
the next job until the previous job has run successfully.

Step 1 - ENMAC01 - Allocate Distribution and Target Libraries

This sample job (member ENMAC01) allocates the MERVA Connection/ESA
Distribution and Target Libraries.

//JOBNAME JOB (ACCT),NAME,MSGCLASS=L,CLASS=Z MODIFY
//**
//* THIS JOB ALLOCATES THE CONNECTION/ESA INSTALLATION JCL LIBRARY
//* AND UNLOADS INSTALLATION JCL FROM TAPE INTO THIS LIBRARY.
//* --
//* PLEASE REMOVE COMMENTS FROM CONTROL CARDS BEFORE JOB START
//* --
//**
//UNLOAD PROC JCLLIB='CONN.JCLLIB',TAPUNIT=TAPE,UNIT=SYSDA MODIFY
//CPYJCL EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=*
//IN1 DD DSN=IBM.H0HG330.F1,
// UNIT=&TAPUNIT.,VOL=SER=0HG330,
// LABEL=(2,SL),
// DISP=(SHR,KEEP)
//OUT1 DD DSN=&JCLLIB.,
// UNIT=&UNIT.,
// DISP=(NEW,CATLG,DELETE),
// SPACE=(6160,(16,8,2)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160)
// PEND
// EXEC UNLOAD
//CPYJCL.SYSIN DD *
COPY INDD=IN1,OUTDD=OUT1

/*
//

Figure 2. Job to Unload the MERVA Connection/ESA Installation JCL

Chapter 3. Installing MERVA Connection/ESA 9

Step 2 - ENMAC02 - Allocate SMP/E Data Sets and SMP/E CSI

This sample job (member ENMAC02) is used to allocate and initialize the SMP/E
data sets and the SMP/E CSI.

ENMAC02 consists of three steps:

ALLOC allocates all needed SMP/E data sets

DEFINE allocates the SMP/E CSI

INIT initializes the SMP/E CSI

//ENMAC01 JOB (ACCT),NAME,MSGCLASS=L,CLASS=Z MODIFY
//**
//* THIS JOB ALLOCATES THE DISTRIBUTION AND TARGET LIBRARIES
//*
//* MODIFY THE PARAMETERS PRFX, UNIT, AND THE BLKSIZE
//* PARAMETER IN DCBFB3, DCBFB6, AND DCBU UP TO YOUR
//* REQUIREMENTS
//* --
//* PLEASE REMOVE COMMENTS FROM CONTROL CARDS BEFORE JOB START
//* --
//**
//ALLOC PROC PRFX='CONN', MODIFY
// UNIT=SYSDA, MODIFY
// DCBFB3='(RECFM=FB,LRECL=80,BLKSIZE=3200)', MODIFY
// DCBFB6='(RECFM=FB,LRECL=80,BLKSIZE=6160)', MODIFY
// DCBU='(RECFM=U,BLKSIZE=6144)', MODIFY
// DISP='(NEW,CATLG,DELETE)'
//IEFBR14 EXEC PGM=IEFBR14
//DD01 DD DSN=&PRFX..AENMINS0,DISP=&DISP.,
// SPACE=(6160,(8,1,1)),
// UNIT=&UNIT.,DCB=&DCBFB6.
//DD02 DD DSN=&PRFX..AENMSRC0,DISP=&DISP.,
// SPACE=(6160,(16,2,1)),
// UNIT=&UNIT.,DCB=&DCBFB6.
//DD03 DD DSN=&PRFX..AENMMAC0,DISP=&DISP.,
// SPACE=(6160,(16,2,1)),
// UNIT=&UNIT.,DCB=&DCBFB6.
//DD04 DD DSN=&PRFX..AENMOBJ0,DISP=&DISP.,
// SPACE=(3200,(100,10,1)),
// UNIT=&UNIT.,DCB=&DCBFB3.
//DD05 DD DSN=&PRFX..SENMINS0,DISP=&DISP.,
// SPACE=(6160,(8,1,1)),
// UNIT=&UNIT.,DCB=&DCBFB6.
//DD06 DD DSN=&PRFX..SENMSRC0,DISP=&DISP.,
// SPACE=(6160,(16,2,1)),
// UNIT=&UNIT.,DCB=&DCBFB6.
//DD07 DD DSN=&PRFX..SENMMAC0,DISP=&DISP.,
// SPACE=(6160,(16,2,1)),
// UNIT=&UNIT.,DCB=&DCBFB6.
//DD08 DD DSN=&PRFX..SENMOBJ0,DISP=&DISP.,
// SPACE=(3200,(100,10,1)),
// UNIT=&UNIT.,DCB=&DCBFB3.
//DD09 DD DSN=&PRFX..SENMLOD0,DISP=&DISP.,
// SPACE=(6144,(60,6,1)),
// UNIT=&UNIT.,DCB=&DCBU.
// PEND
// EXEC ALLOC

Figure 3. Allocate Distribution and Target Libraries

10 MERVA Connection/ESA

//ENMAC02 JOB (ACCT),NAME,MSGCLASS=L,CLASS=Z MODIFY
//**
//* THIS JOB ALLOCATES THE CONNECTION/ESA SMP/E DATA SETS,
//* THE SMP/E CSI DATA SET AND INITIALIZES THE SMP/E CSI.
//* MODIFY THE PARAMETERS PRFX, UNIT, AND THE BLKSIZE
//* PARAMETER IN DCBFB UP TO YOUR REQUIREMENTS
//*
//* ENSURE THAT THOSE PARAMETERS THAT HAVE DEFAULT
//* VALUES ARE REASONABLE FOR YOUR PURPOSES.
//* --
//* PLEASE REMOVE COMMENTS FROM CONTROL CARDS BEFORE JOB START
//* --
//**
//ALLOCE PROC PRFX='CONN', MODIFY
// UNIT=SYSDA, MODIFY
// DCBFB='(RECFM=FB,LRECL=80,BLKSIZE=6160)', MODIFY
// DISP='(NEW,CATLG,DELETE)'
// EXEC PGM=IEFBR14
//SMPSCDS DD DSN=&PRFX..SMPSCDS,DISP=&DISP.,
// SPACE=(6160,(100,10,80)),
// UNIT=&UNIT.,DCB=&DCBFB.
//SMPMTS DD DSN=&PRFX..SMPMTS,DISP=&DISP.,
// SPACE=(6160,(10,1,10)),
// UNIT=&UNIT.,DCB=&DCBFB.
//SMPPTS DD DSN=&PRFX..SMPPTS,DISP=&DISP.,
// SPACE=(6160,(350,35,80)),
// UNIT=&UNIT.,DCB=&DCBFB.
//SMPSTS DD DSN=&PRFX..SMPSTS,DISP=&DISP.,
// SPACE=(6160,(10,1,10)),
// UNIT=&UNIT.,DCB=&DCBFB.
//SMPLOG DD DSN=&PRFX..SMPLOG,DISP=&DISP.,
// SPACE=(3200,(250,250)),
// UNIT=&UNIT.,DCB=(BLKSIZE=3200,RECFM=VB)
// PEND
//ALLOC EXEC PROC=ALLOCE
//*

Figure 4. Allocate SMP/E Data Sets and SMP/E CSI (Part 1 of 2)

Chapter 3. Installing MERVA Connection/ESA 11

Step 3 - ENMAC03 - Initialize the SMP/E Zones

Before unloading the tape you have to initialize the SMP/E Global Zone, Target
Zone, and DLIB Zone as shown in the sample job (member ENMAC03).

The DSSPACE sub-entry in the GLOBAL zone defines the primary, secondary, and
directory block allocation required for receiving SYSMODs packaged using
RELFILES. DSSPACE specifies the amount of space SMP/E will attempt to allocate
for each relative file on the RELFILE tape and therefore must be large enough to
contain the largest unloaded RELFILE data set.

//**
//* THIS STEP ALLOCATES THE SMP/E CSI DATA SET
//* MODIFY THE PARAMETERS
//* CLUSTER NAME CONN.SMPCSI.CSI
//* DATA NAME CONN.SMPCSI.CSI.DATA
//* INDEX NAME CONN.SMPCSI.CSI.INDEX
//* UNIT / VOLUME 3390 / CSIVOL
//**
//DEFINE EXEC PGM=IDCAMS
//CSIVOL DD UNIT=3390,VOL=SER=CSIVOL,DISP=SHR MODIFY
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE CLUSTER(NAME(CONN.SMPCSI.CSI) - MODIFY
FREESPACE(10 5) -
KEYS(24 0) - MODIFY
RECORDSIZE(24 143) - MODIFY
SHAREOPTIONS(2) -
UNIQUE -
VOLUMES(CSIVOL)) - MODIFY

DATA(NAME(CONN.SMPCSI.CSI.DATA) - MODIFY
CISZ(4096) -
CYLINDERS(5 2)) -

INDEX(NAME(CONN.SMPCSI.CSI.INDEX) - MODIFY
CYLINDERS(1 1) -
IMBED)

/*
//**
//* THIS STEP INITIALIZES THE SMP/E CSI DATA SET
//**
//INIT EXEC PGM=IDCAMS
//ZPOOL DD DSN=SYS1.MACLIB(GIMZPOOL),DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

REPRO INFILE(ZPOOL) OUTDATASET(CONN.SMPCSI.CSI) MODIFY
/*
//

Figure 4. Allocate SMP/E Data Sets and SMP/E CSI (Part 2 of 2)

12 MERVA Connection/ESA

//ENMAC03 JOB (ACCT),NAME,MSGCLASS=L,CLASS=Z MODIFY
//**
//* THIS JOB ALLOCATES THE SMP/E GLOBAL ZONE
//* DLIBZONE AND TARGETZONE ARE DEFINED AND INITIALIZED
//* --
//* PLEASE REMOVE COMMENTS FROM CONTROL CARDS BEFORE JOB START
//* --
//**
//UPD EXEC PGM=GIMSMP,REGION=4M,
// PARM='CSI=CONN.SMPCSI.CSI' MODIFY
//SMPLOG DD DSN=CONN.SMPLOG,DISP=MOD MODIFY
//SMPPTS DD DSN=CONN.SMPPTS,DISP=SHR MODIFY
//SMPCNTL DD *
SET BDY(GLOBAL).
UCLIN .

ADD GLOBALZONE
OPTIONS(ENMOPTN)
SREL(Z038)
ZONEINDEX((ENMTGT,CONN.SMPCSI.CSI,TARGET), MODIFY

(ENMDLB,CONN.SMPCSI.CSI,DLIB)) . MODIFY
ADD

OPTIONS(ENMOPTN)
DSPREFIX(CONN) MODIFY
DSSPACE(100,10,1)
PEMAX(9999)
RETRYDDN(ALL) .

ENDUCL .
SET BDY(ENMTGT) . MODIFY
UCLIN .

ADD TARGETZONE(ENMTGT) MODIFY
RELATED(ENMDLB) MODIFY
OPTIONS(ENMOPTN)
SREL(Z038) .

ENDUCL .
SET BDY(ENMDLB) . MODIFY
UCLIN .

ADD DLIBZONE(ENMDLB) MODIFY
RELATED(ENMTGT) MODIFY
OPTIONS(ENMOPTN)
SREL(Z038) .

ENDUCL .

Figure 5. Initialize SMP/E Zones (Part 1 of 4)

Chapter 3. Installing MERVA Connection/ESA 13

SET BDY(GLOBAL) .
UCLIN .
ADD DDDEF (SMPTLIB) UNIT(SYSDA) . MODIFY
ADD DDDEF (SMPSCDS) DATASET (CONN.SMPSCDS) SHR . MODIFY
ADD DDDEF (SMPMTS) DATASET (CONN.SMPMTS) SHR . MODIFY
ADD DDDEF (SMPPTS) DATASET (CONN.SMPPTS) SHR . MODIFY
ADD DDDEF (SMPSTS) DATASET (CONN.SMPSTS) SHR . MODIFY
ADD DDDEF (SMPLOG) DATASET (CONN.SMPLOG) MOD . MODIFY
ADD DDDEF (SMPOUT) SYSOUT(*) .
ADD DDDEF (SMPRPT) SYSOUT(*) .
ADD DDDEF (SMPSNAP) SYSOUT(*) .
ADD DDDEF (SMPLIST) SYSOUT(*) .
ADD DDDEF (SYSPRINT) SYSOUT(*) .
ADD DDDEF (SYSUT1) CYL SPACE(10,5) UNIT(SYSDA) NEW DELETE .
ADD DDDEF (SYSUT2) CYL SPACE(10,5) UNIT(SYSDA) NEW DELETE .
ADD DDDEF (SYSUT3) CYL SPACE(10,5) UNIT(SYSDA) NEW DELETE .
ADD DDDEF (SYSUT4) CYL SPACE(10,5) UNIT(SYSDA) NEW DELETE .
ADD DDDEF (SMPWRK1) BLK(3120) SPACE(400,40) DIR(100)

UNIT(SYSDA) NEW DELETE .
ADD DDDEF (SMPWRK2) BLK(3120) SPACE(400,40) DIR(100)

UNIT(SYSDA) NEW DELETE .
ADD DDDEF (SMPWRK3) BLK(3120) SPACE(400,40) DIR(100)

UNIT(SYSDA) NEW DELETE .
ADD DDDEF (SMPWRK4) BLK(3120) SPACE(400,40) DIR(100)

UNIT(SYSDA) NEW DELETE .
ADD DDDEF (SMPWRK6) BLK(3120) SPACE(400,40) DIR(100)

UNIT(SYSDA) NEW DELETE .
ENDUCL .

Figure 5. Initialize SMP/E Zones (Part 2 of 4)

14 MERVA Connection/ESA

SET BDY(ENMTGT) . MODIFY
UCLIN .
ADD DDDEF (SMPTLIB) UNIT(SYSDA) . MODIFY
ADD DDDEF (SMPSCDS) DATASET (CONN.SMPSCDS) SHR . MODIFY
ADD DDDEF (SMPMTS) DATASET (CONN.SMPMTS) SHR . MODIFY
ADD DDDEF (SMPPTS) DATASET (CONN.SMPPTS) SHR . MODIFY
ADD DDDEF (SMPSTS) DATASET (CONN.SMPSTS) SHR . MODIFY
ADD DDDEF (SMPLOG) DATASET (CONN.SMPLOG) MOD . MODIFY
ADD DDDEF (SMPOUT) SYSOUT(*) .
ADD DDDEF (SMPRPT) SYSOUT(*) .
ADD DDDEF (SMPSNAP) SYSOUT(*) .
ADD DDDEF (SMPLIST) SYSOUT(*) .
ADD DDDEF (SYSPRINT) SYSOUT(*) .
ADD DDDEF (SYSUT1) CYL SPACE(10,5) UNIT(SYSDA) NEW DELETE .
ADD DDDEF (SYSUT2) CYL SPACE(10,5) UNIT(SYSDA) NEW DELETE .
ADD DDDEF (SYSUT3) CYL SPACE(10,5) UNIT(SYSDA) NEW DELETE .
ADD DDDEF (SYSUT4) CYL SPACE(10,5) UNIT(SYSDA) NEW DELETE .
ADD DDDEF (SMPWRK1) BLK(3120) SPACE(400,40) DIR(100)

UNIT(SYSDA) NEW DELETE .
ADD DDDEF (SMPWRK2) BLK(3120) SPACE(400,40) DIR(100)

UNIT(SYSDA) NEW DELETE .
ADD DDDEF (SMPWRK3) BLK(3120) SPACE(400,40) DIR(100)

UNIT(SYSDA) NEW DELETE .
ADD DDDEF (SMPWRK4) BLK(3120) SPACE(400,40) DIR(100)

UNIT(SYSDA) NEW DELETE .
ADD DDDEF (SMPWRK6) BLK(3120) SPACE(400,40) DIR(100)

UNIT(SYSDA) NEW DELETE .
ADD DDDEF (SYSLIB) DATASET (SYS1.MACLIB) SHR . MODIFY
ADD DDDEF (AENMINS0) DATASET (CONN.AENMINS0) SHR . MODIFY
ADD DDDEF (AENMSRC0) DATASET (CONN.AENMSRC0) SHR . MODIFY
ADD DDDEF (AENMMAC0) DATASET (CONN.AENMMAC0) SHR . MODIFY
ADD DDDEF (AENMOBJ0) DATASET (CONN.AENMOBJ0) SHR . MODIFY
ADD DDDEF (SENMINS0) DATASET (CONN.SENMINS0) SHR . MODIFY
ADD DDDEF (SENMSRC0) DATASET (CONN.SENMSRC0) SHR . MODIFY
ADD DDDEF (SENMMAC0) DATASET (CONN.SENMMAC0) SHR . MODIFY
ADD DDDEF (SENMOBJ0) DATASET (CONN.SENMOBJ0) SHR . MODIFY

ENDUCL .

Figure 5. Initialize SMP/E Zones (Part 3 of 4)

Chapter 3. Installing MERVA Connection/ESA 15

Step 4 - ENMAC04 - Unload and Install the MERVA
Connection/ESA Distribution Tape with SMP/E

Now you can install MERVA Connection/ESA with SMP/E (sample job ENMAC04).

Job ENMAC04 will result in large output and high CPU usage. Ensure that
appropriate execution classes and parameters are chosen.

When RACF is used in your system, and you let SMP/E allocate the temporary data
sets for unloading the tape, you must instruct SMP/E to use an appropriate first
qualifier for the data set names of the temporary libraries. (See job ENMAC03,
parameter DSPREFIX).

SET BDY(ENMDLB) . MODIFY
UCLIN .
ADD DDDEF (SMPTLIB) UNIT(SYSDA) . MODIFY
ADD DDDEF (SMPSCDS) DATASET (CONN.SMPSCDS) SHR . MODIFY
ADD DDDEF (SMPMTS) DATASET (CONN.SMPMTS) SHR . MODIFY
ADD DDDEF (SMPPTS) DATASET (CONN.SMPPTS) SHR . MODIFY
ADD DDDEF (SMPSTS) DATASET (CONN.SMPSTS) SHR . MODIFY
ADD DDDEF (SMPLOG) DATASET (CONN.SMPLOG) MOD . MODIFY
ADD DDDEF (SMPOUT) SYSOUT(*) .
ADD DDDEF (SMPRPT) SYSOUT(*) .
ADD DDDEF (SMPSNAP) SYSOUT(*) .
ADD DDDEF (SMPLIST) SYSOUT(*) .
ADD DDDEF (SYSPRINT) SYSOUT(*) .
ADD DDDEF (SYSUT1) CYL SPACE(10,5) UNIT(SYSDA) NEW DELETE .
ADD DDDEF (SYSUT2) CYL SPACE(10,5) UNIT(SYSDA) NEW DELETE .
ADD DDDEF (SYSUT3) CYL SPACE(10,5) UNIT(SYSDA) NEW DELETE .
ADD DDDEF (SYSUT4) CYL SPACE(10,5) UNIT(SYSDA) NEW DELETE .
ADD DDDEF (SMPWRK1) BLK(3120) SPACE(400,40) DIR(100)

UNIT(SYSDA) NEW DELETE .
ADD DDDEF (SMPWRK2) BLK(3120) SPACE(400,40) DIR(100)

UNIT(SYSDA) NEW DELETE .
ADD DDDEF (SMPWRK3) BLK(3120) SPACE(400,40) DIR(100)

UNIT(SYSDA) NEW DELETE .
ADD DDDEF (SMPWRK4) BLK(3120) SPACE(400,40) DIR(100)

UNIT(SYSDA) NEW DELETE .
ADD DDDEF (SMPWRK6) BLK(3120) SPACE(400,40) DIR(100)

UNIT(SYSDA) NEW DELETE .
ADD DDDEF (SYSLIB) DATASET (SYS1.MACLIB) SHR . MODIFY
ADD DDDEF (AENMINS0) DATASET (CONN.AENMINS0) SHR . MODIFY
ADD DDDEF (AENMSRC0) DATASET (CONN.AENMSRC0) SHR . MODIFY
ADD DDDEF (AENMMAC0) DATASET (CONN.AENMMAC0) SHR . MODIFY
ADD DDDEF (AENMOBJ0) DATASET (CONN.AENMOBJ0) SHR . MODIFY
ADD DDDEF (SENMINS0) DATASET (CONN.SENMINS0) SHR . MODIFY
ADD DDDEF (SENMSRC0) DATASET (CONN.SENMSRC0) SHR . MODIFY
ADD DDDEF (SENMMAC0) DATASET (CONN.SENMMAC0) SHR . MODIFY
ADD DDDEF (SENMOBJ0) DATASET (CONN.SENMOBJ0) SHR . MODIFY

ENDUCL .
/*
//

Figure 5. Initialize SMP/E Zones (Part 4 of 4)

16 MERVA Connection/ESA

Step 5 - ENMAC05 - Prelink-edit and Link-edit the MERVA
Connection/ESA Sample API Programs

MERVA Connection/ESA object modules require C/370 pre-linkage. The customer
application may also require C/370 pre-linkage. This means that the application
object module and the MERVA Connection/ESA object modules must be
prelink-edited and then link-edited resolving all external references.

This is why MERVA Connection/ESA does not provide any load module to be used
by a customer application. The load modules generated in this step are sample
programs for demonstration purposes only.

So whenever any MERVA Connection/ESA object module was maintained, you
have to prelink-edit and link-edit your affected load modules . Therefore you
should extend job ENMAC05 with the appropriate JCL for prelink-editing and
link-editing all your affected load modules.

The return code of the prelink-edit step is 4, the return code of the link-edit step has
to be 0 for each of the sample programs.

//ENMAC04 JOB (ACCT),NAME,MSGCLASS=L,CLASS=Z MODIFY
//**
//* SMP/E RECEIVE AND APPLY PROCESSING FOR THE PRODUCT
//* CONNECTION/ESA: H0HG330
//*
//* MODIFY THE UNIT PARAMETER OF DD CARD SMPPTFIN ACCORDING
//* TO YOUR INSTALLATION
//* --
//* PLEASE REMOVE COMMENTS FROM CONTROL CARDS BEFORE JOB START
//* --
//**
//RCVAPP EXEC PGM=GIMSMP,REGION=4M,
// PARM='CSI=CONN.SMPCSI.CSI' MODIFY
//SMPPTFIN DD DSN=SMPMCS,DISP=(OLD,KEEP),UNIT=TAPE, MODIFY
// VOL=SER=0HG330
//SMPHOLD DD *
++NULL.
//SMPCNTL DD *
SET BOUNDARY (GLOBAL).
RECEIVE SELECT(H0HG330).
SET BOUNDARY (ENMTGT) OPTIONS(ENMOPTN). MODIFY
APPLY SELECT(H0HG330).
/*
//

Figure 6. Unload and Install MERVA Connection/ESA with SMP/E

Chapter 3. Installing MERVA Connection/ESA 17

//ENMAC05 JOB (ACCT),NAME,MSGCLASS=L,CLASS=Z MODIFY
//**
//* THIS JOB PERFORMS THE C/370 PRE-LINKAGE AND CALLS THE
//* LINKAGE EDITOR HEWL FOR THE FINAL LINK OF THE
//* CONNECTION/ESA SAMPLE API LOAD MODULES.
//*
//* THE JOB MAY BE EXTENDED TO PRE-LINK AND LINK-EDIT YOUR
//* APPLICATION WITH THE CONNECTION/ESA OBJECT MODULES
//* CONTAINED IN THE SMP/E TARGET LIBRARY WITH THE LOW LEVEL
//* QUALIFIER SENMOBJ0.
//*
//* THE JOB MUST BE RUN AFTER MAINTENANCE OF ANY
//* CONNECTION/ESA OBJECT MODULE IN ORDER TO RELINK-EDIT
//* ALL APPLICABLE LOAD MODULES.
//*
//* PARAMETERS:
//* CONN HIGH LEVEL QUALIFIER(S) FOR SMP/E TARGET LIBRARIES
//* CICS CICS LOAD LIBRARY
//* CCOMP C/370 COMPILER MODULES
//* CLIB C/370 DYNAMIC LIBRARY
//* CMSGS C/370 COMPILER MESSAGES
//* CSTUBS C/370 LIBRARY STUBS
//* COMLIB COMMON DYNAMIC RUNTIME LIBRARY
//* COMSTUBS COMMON RUNTIME LIBRARY STUBS
//* UNIT UNIT TYPE FOR WORKFILES
//* SPACE SPACE ALLOCATED FOR WORKFILES
//* DCB DCB FOR LRECL OF 80
//* --
//* PLEASE REMOVE COMMENTS FROM CONTROL CARDS BEFORE JOB START
//* --
//**

Figure 7. Prelink-edit and Link-edit MERVA Connection/ESA Sample Programs (Part 1 of 3)

18 MERVA Connection/ESA

//LKCONN PROC CONN='CONN', MODIFY
// CICS='CICS330.SDFHLOAD', MODIFY
// CCOMP='EDC.V2R1M0.SEDCCOMP', MODIFY
// CLIB='EDC.V2R1M0.SEDCLINK', MODIFY
// CMSGS='EDC.V2R1M0.SEDCMSGS', MODIFY
// CSTUBS='EDC.V2R1M0.SEDCBASE', MODIFY
// COMLIB='PLI.V2R3M0.SIBMLINK', MODIFY
// COMSTUBS='PLI.V2R3M0.SIBMBASE', MODIFY
// UNIT=SYSDA, MODIFY
// SPACE='(32000,(30,30))', MODIFY
// DCB='(RECFM=FB,LRECL=80,BLKSIZE=3200)' MODIFY
//* --
//* PRE-LINKEDIT STEP
//* --
//PLKED EXEC PGM=EDCPRLK,REGION=2048K
//STEPLIB DD DSN=&CLIB.,DISP=SHR
// DD DSN=&COMLIB.,DISP=SHR
// DD DSN=&CCOMP.,DISP=SHR
//SYSMSGS DD DSN=&CMSGS.(EDCPMSGE),DISP=SHR
//SYSLIB DD DSN=&CONN..SENMOBJ0,DISP=SHR
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSMOD DD DSN=&&PLKSET,UNIT=&UNIT.,SPACE=&SPACE.,DCB=&DCB.,
// DISP=(MOD,PASS)
//* --
//* LINKEDIT STEP
//* --
//LKED EXEC PGM=HEWL,PARM='XREF,LIST,LET,RENT,AMODE=31,RMODE=ANY'
//SYSLIB DD DSN=&CSTUBS.,DISP=SHR
// DD DSN=&COMSTUBS.,DISP=SHR
// DD DSN=&CICS.,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=&UNIT.,SPACE=&SPACE.
//SYSLIN DD DSN=*.PLKED.SYSMOD,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSLMOD DD DSN=&CONN..SENMLOD0,DISP=SHR
// PEND

Figure 7. Prelink-edit and Link-edit MERVA Connection/ESA Sample Programs (Part 2 of 3)

Chapter 3. Installing MERVA Connection/ESA 19

Job ENMAC05 will result in large output. Ensure that appropriate execution classes
and parameters are chosen.

Step 6 - ENMAC06 - Final SMP/E Installation Step of MERVA
Connection/ESA

ACCEPT MERVA Connection/ESA to the distribution zone (member ENMAC06).

//LKABEND EXEC LKCONN
//PLKED.SYSIN DD *

INCLUDE SYSLIB(ENMABEN)
INCLUDE SYSLIB(ENMRAPI,ENMRPRF,ENMRUTL,ENMSNIL)

/*
//LKED.SYSIN DD *

INCLUDE SYSLIB(DFHELII,DFHCPLC)
ORDER DFHELII,CEESTART
ENTRY CEESTART
NAME ENMABEND(R)

/*
//LKSAMP EXEC LKCONN
//PLKED.SYSIN DD *

INCLUDE SYSLIB(ENMSAM)
INCLUDE SYSLIB(ENMRAPI,ENMRPRF,ENMRUTL,ENMSSEC)

/*
//LKED.SYSIN DD *

INCLUDE SYSLIB(DFHELII,DFHCPLC)
ORDER DFHELII,CEESTART
ENTRY CEESTART
NAME ENMSAMP(R)

/*
//LKVERIF EXEC LKCONN
//PLKED.SYSIN DD *

INCLUDE SYSLIB(ENMVERI)
INCLUDE SYSLIB(ENMRAPI,ENMRPRF,ENMRUTL,ENMSNIL)

/*
//LKED.SYSIN DD *

INCLUDE SYSLIB(DFHELII,DFHCPLC)
ORDER DFHELII,CEESTART
ENTRY CEESTART
NAME ENMVERIF(R)

/*
//

Figure 7. Prelink-edit and Link-edit MERVA Connection/ESA Sample Programs (Part 3 of 3)

20 MERVA Connection/ESA

Job ENMAC06 will result in large output and high CPU usage. Ensure that
appropriate execution classes and parameters are chosen.

Install the MERVA Connection/ESA Data Sets

After successful installation of MERVA Connection/ESA from the distribution tape
you have to allocate and initialize the following sequential data sets required by
MERVA Connection/ESA:

v Connection profile

v Programmer’s log

v Diagnosis log

Job ENMFILES in the library with the low level qualifier SENMINS0 allocates these
data sets and initializes the connection profile with sample profile data.

//ENMAC06 JOB (ACCT),NAME,MSGCLASS=L,CLASS=Z MODIFY
//**
//* SMP/E ACCEPT PROCESSING FOR THE PRODUCT
//* CONNECTION/ESA: H0HG330
//* --
//* PLEASE REMOVE COMMENTS FROM CONTROL CARDS BEFORE JOB START
//* --
//**
//ACCEPT EXEC PGM=GIMSMP,REGION=4M,
// PARM='CSI=CONN.SMPCSI.CSI' MODIFY
//SMPHOLD DD *
++NULL.
//SMPCNTL DD *
SET BOUNDARY (ENMDLB) OPTIONS(ENMOPTN). MODIFY
ACCEPT SELECT(H0HG330).
/*
//

Figure 8. Update SMP/E Distribution Zone

Chapter 3. Installing MERVA Connection/ESA 21

MERVA Connection/ESA also requires a message integrity1 control file, a VSAM
data set. Job ENMMICTL in the library with the low level qualifier SENMINS0
allocates this data set.

1. The message integrity control file is used by the internal integrity processing of MERVA Connection/ESA, described in Figure 17 on
page 51.

//ENMFILES JOB (ACCT),NAME,MSGCLASS=L,CLASS=Z MODIFY
//***
//* THIS JOB COMPRISES TWO STEPS IN PROCEDURE APISDS:
//* ALLOCDS: CREATE CONNECTION/ESA API SEQUENTIAL DATASETS
//* PROFILE: LOAD CONNECTION PROFILE DATASET
//* --
//* PLEASE REMOVE COMMENTS FROM CONTROL CARDS BEFORE JOB START
//* --
//***
//APISDS PROC PRFX='CONN',UNIT=SYSDA MODIFY
//***
//* CREATE CONNECTION/ESA API SEQUENTIAL DATASETS
//***
//ALLOCDS EXEC PGM=IEFBR14
//F1 DD DSN=&PRFX..CONNPROF,UNIT=&UNIT., CONNECTION PROFILE
// SPACE=(80,(1,0),,CONTIG),
// DCB=(DSORG=PS,RECFM=F,BLKSIZE=80,LRECL=80),
// DISP=(NEW,CATLG)
//F2 DD DSN=&PRFX..PROGLOG,UNIT=&UNIT., PROGRAMMER'S LOG
// SPACE=(136,(1000,100),,CONTIG),
// DCB=(DSORG=PS,RECFM=V,BLKSIZE=136,LRECL=132),
// DISP=(NEW,CATLG)
//F3 DD DSN=&PRFX..DIAGLOG,UNIT=&UNIT., DIAGNOSIS LOG
// SPACE=(136,(500,50),,CONTIG),
// DCB=(DSORG=PS,RECFM=V,BLKSIZE=136,LRECL=132),
// DISP=(NEW,CATLG)
//***
//* LOAD CONNECTION PROFILE DATASET
//***
//PROFILE EXEC PGM=IEBGENER,COND=(0,LT,ALLOCDS)
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=&PRFX..CONNPROF,DISP=OLD CONNECTION PROFILE
// PEND
//***
//* CALL PROCEDURE APISDS, PROVIDE CONNECTION PROFILE DATASET RECORDS
//***
// EXEC APISDS
//PROFILE.SYSUT1 DD *
4
PLOG
DLOG
M2API
ENMMICTL
ESA
/*
//

Figure 9. Allocate MERVA Connection/ESA Sequential Data Sets

22 MERVA Connection/ESA

//ENMMICTL JOB (ACCT),NAME,MSGCLASS=L,CLASS=Z MODIFY
//***
//* THIS JOB ALLOCATES THE CONNECTION/ESA MESSAGE INTEGRITY FILE
//* --
//* PLEASE REMOVE COMMENTS FROM CONTROL CARDS BEFORE JOB START
//* --
//***
//DELDEF EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DELETE (CONN.MIPFILE) - MODIFY

CLUSTER PURGE NOERASE
IF MAXCC = 8 THEN SET MAXCC = 0
DEFINE CLUSTER -

(NAME(CONN.MIPFILE) - MODIFY
VOLUMES(US9008) - MODIFY
ERASE -
SHAREOPTIONS (2 3) -
KEYS(8 0) -
RECSZ(12 12)) -

DATA (RECORDS (20 10)) -
INDEX (IMBED)

/*
//

Figure 10. Allocate MERVA Connection/ESA Message Integrity Control File

Chapter 3. Installing MERVA Connection/ESA 23

24 MERVA Connection/ESA

Chapter 4. Customization and Network Definitions

This chapter describes how, after you have installed MERVA Connection/ESA, you
can do the customization on the S/390, the OS/2 system, and the RS/6000.

Customization on the S/390

The customization of MERVA Connection/ESA on the S/390 requires appropriate
definitions in the following areas:

v VTAM

v CICS

Customizing VTAM

The connection between the S/390 and the OS/2 system or between the S/390 and
the RS/6000 must be an LU 6.2 session. Make the following definitions:

v Physical Unit (PU)

Define the OS/2 or the AIX system as a physical unit by means of the VTAM macro
PU. This enables the OS/2 or the AIX system to be activated as a PU 2.1 node in
the SNA network.

v Local node ID

If your OS/2 system resides on a Token Ring network and you have defined the
IDNUM parameter in the PU macro, the IDNUM value specifies your local node ID
defined in the Communications Server.

v XID_NODE_ID

If your RS/6000 resides on a Token Ring network and you have defined the IDNUM
parameter in the PU macro, the IDNUM value specifies your xid_node_id defined in
the control point of the SNA Server.

v LAN destination address

The LAN destination address must be defined in the network control program (NCP)
of the control unit used. This parameter is only necessary when the connection is
established via a Token Ring network.

v SNA network ID

The SNA network ID must be specified in the start option ”NETID=...’’ when VTAM
is started.

v Partner node name

The partner node name is not important if you specify the PU using the local node
ID (IDNUM parameter).

v LU name of CICS (CICS APPLID)

You specify the LU name of CICS when you define the CICS application by means
of VTAM macro APPL.

v LU name of the OS/2 system

You specify the LU name of the OS/2 system by means of VTAM macro LU.

© Copyright IBM Corp. 1993, 1997 25

The LU 6.2 session is established between the CICS APPLID and the OS/2 local
LU defined as an independent LU in the OS/2 system LU macro.

v LU name of the RS/6000

You specify the LU name of the RS/6000 by means of VTAM macro LU.

The LU 6.2 session is established between the CICS APPLID and the AIX local LU
defined as an independent LU in the SNA Server local LU profile.

v Logmode name

You specify the appropriate entries in the Logon mode table by means of VTAM
macro MODEENT.

In “VTAM Definitions: OS/2 System Connected to a Token Ring Network” on
page 75 and in “VTAM Definitions: OS/2 System Connected by an SDLC Line” on
page 76 you find examples for many of these definitions.

Customizing CICS

You make definitions in the following resources:

v CSD (CICS System Definition)

v DCT (Destination Control Table)

v SIT (System Initialization Table)

You find the members for the CSD and the DCT in the library with the low level
qualifier SENMMAC0. The name of the CSD member is ENMCSD, the name of the
DCT member is ENMDCT.

v CSD

Run CICS/ESA utility DFHCSDUP when you make these definitions:

– Program names (DEFINE PROGRAM ...)

ENMVERIF Installation verification

ENMABEND Installation verification abnormal termination exit

ENMSAMP Sample for loading telex messages

You should check whether the C/370 runtime library is already defined to
CICS in your installation. If not, you could define the runtime library as follows:
DEFINE PROGRAM(EDCXV) GROUP(ENMGROUP) LANGUAGE(ASSEMBLER)

– Transaction codes (DEFINE TRANSACTION ...)

ENM2 Installation verification

SAMP Sample for loading telex messages

– File definition (DEFINE FILE(ENMMICTL) ...)

ENMMICTL DD-name of the message integrity control file in your CICS
startup job.

Name of the message integrity control file in the MERVA
Connection/ESA profile.

– Network definitions

Session profile
DEFINE PROFILE(ENMPROF) ...

26 MERVA Connection/ESA

Connection DEFINE CONNECTION(RAPI) ...

Sessions DEFINE SESSIONS(C3RAPI) ...

Partner DEFINE PARTNER(M2API) ...

M2API Name of CSI2 object in the MERVA Connection/ESA profile.

The following table shows the relationship of parameters specified in the CSD
network definitions to other parameters.

In DEFINE ... Parameter ... Must correspond to ...

PROFILE(ENMPROF) MODENAME(CICSISC) VTAM Logon Mode table entry

CONNECTION(RAPI) NETNAME(FD577300) LU name of the OS/2 system or LU name of the RS/6000

SESSIONS(C3RAPI) CONNECTION(RAPI)

MODEMNAME(CICSISC)

DEFINE CONNECTION(RAPI)

VTAM Logon Mode table entry

PARTNER(M2API) NETNAME(FD577300)

PROFILE(ENMPROF)

TPNAME(MERVA2)

or

TPNAME(ENMRAS)
PARNTER(M2API)

DEFINE CONNECTION(RAPI NETNAME(...)

DEFINE PROFILE(ENMPROF)

Transaction program name of the Remote MERVA API Server

in MERVA OS/2 V3

or

Transaction program name of the Remote MERVA API Server
in MERVA AIX

MERVA Connection/ESA profile line 4

In “CICS Definitions” on page 77 you see how the network definitions are used as
input for DFHCSDUP. Modify the definitions contained in member ENMCSD
according to your needs and run DFHCSDUP.

v DCT

Member ENMDCT contains the definitions for the following extrapartition
destinations. You may include them in your DCT using ENMDCT as a copy book.
Then you assemble and link-edit the DCT.

– MERVA Connection/ESA profile

– Programmer’s log

– Diagnosis log

The MERVA Connection/ESA profile is then identified by these names:

ENMCPROF DD-name of the MERVA Connection/ESA profile in your CICS
startup job.

PROF Name of the MERVA Connection/ESA profile in your application
when you select the profile.

2. Communication Side Information - object in CPI Communications containing initialization parameters. These are, for example:

v The name of the partner program (such as the Remote MERVA API Server) with which a program can establish a conversation

v The name of the logical unit (LU) at the partner program’s node, which CPI Communications requires to establish a
conversation.

Chapter 4. Customization and Network Definitions 27

The programmer’s log is then identified by these names:

ENMPLOG DD-name of the programmer’s log in your CICS startup job.

PLOG Name of the programmer’s log in the MERVA Connection/ESA
profile.

The diagnosis log is then identified by these names:

ENMDLOG DD-name of the diagnosis log in your CICS startup job.

DLOG Name of the diagnosis log in the MERVA Connection/ESA profile.

v SIT

You can make the following definitions immediately in your CICS startup job. If
you prefer to make them in the SIT then you have to assemble and link-edit the
SIT.

– ISC=YES

– DCT=xx

where xx is the suffix of your DCT.

After all these definitions, the relevant JCL statements for MERVA Connection/ESA
in a CICS/ESA Version 3 Release 3.0 startup job may look like this (note that
&PRFX represents the high level qualifier(s) you chose when you allocated the data
sets):
//CICS EXEC PGM=DFHSIP,REGION=32M,PARM=SYSIN
//STEPLIB DD DSN=CICS330.SDFHAUTH,DISP=SHR CONTAINS EDCCICS (C-CICS INTERFACE)
//DFHRPL DD DSN=&PRFX.SENMLOD0,DISP=SHR MERVA CONNECTION/ESA LOAD LIBRARY
// DD DSN=XYZ.SEDCLINK,DISP=SHR CONTAINS EDCXV (RUNTIME LIBRARY)
// DD DSN=CICS330.SDFHLOAD,DISP=SHR

...............................

.. further data sets

...............................
//SYSIN DD *
SIT=6$,
APPLID=I40AC388, DEFINED IN VTAM MACRO APPL
GRPLIST=XXXLIST, CONTAINS MERVA CONNECTION/ESA GROUP ENMGROUP
ISC=YES,
DCT=xx,

...............................

.. further SIT overrides

...............................
.END

/*
//***
//* MERVA CONNECTION/ESA DATA SETS
//***
//ENMCPROF DD DSN=&PRFX.CONNPROF,DISP=SHR CONNECTION PROFILE
//ENMPLOG DD DSN=&PRFX.PROGLOG,DISP=SHR PROGRAMMER'S LOG
//ENMDLOG DD DSN=&PRFX.DIAGLOG,DISP=SHR DIAGNOSIS LOG
//ENMMICTL DD DSN=&PRFX.MIPFILE,DISP=SHR MESSAGE INTEGRITY CONTROL
//***
//* TRANSIENT DATA QUEUES, CCSO ALIAS COUT REQUIRED AT LEAST
//***
//COUT DD SYSOUT=*,DCB=(DSORG=PS,RECFM=V,BLKSIZE=137) C/370 STDOUT
//CCSE DD SYSOUT=*,DCB=(DSORG=PS,RECFM=V,BLKSIZE=137) C/370 STDERR
//CCPI DD SYSOUT=*,DCB=(DSORG=PS,RECFM=V,BLKSIZE=137) CPI-C MESSAGE LOG
//CSRL DD SYSOUT=*,DCB=(DSORG=PS,RECFM=V,BLKSIZE=137) PARTNER RESOURCE LOG

...............................

.. further data sets

...............................
//

28 MERVA Connection/ESA

Settings in the MERVA Connection/ESA Profile

You must provide MERVA Connection/ESA with information about logging, network
partner, and internal customization parameters. This information is provided in the
MERVA Connection/ESA profile. The profile must be a sequential data set and
defined as an extrapartition destination in CICS/ESA. With the API call
ENMSetProfile (described in “Structure of the MERVA API Program on the S/390”
on page 37), you can tell MERVA Connection/ESA the symbolic name of the

extrapartition destination which represents the profile. You specify this name in the
CICS/ESA DCT using the macro DFHDCT TYPE=EXTRA,DESTID=name.

After successful execution of job ENMFILES (refer to “Install the MERVA
Connection/ESA Data Sets” on page 21), the profile data set exists and contains
sample profile data. Note that the data must begin in column one.

The following table shows the format of a MERVA Connection/ESA profile.

Line Information Sample

1 Logging level 4

2 Name of programmer’s log PLOG

3 Name of diagnosis log DLOG

4 Name of CSI object M2API

5 Name of message integrity control file ENMMICTL

6 System type ESA

Note: Concurrently running API programs can use the same profile or may refer to
different profiles. In each of the profiles, you may specify different logging
files (lines 2 and 3 of the profile) and different message integrity control file
names (line 5 of the profile).

Network Definitions on the OS/2 System

On the OS/2 system, local definitions, link definitions, and LU definitions must be
made. These are not described here, but a sample configuration file for the
Communications Server, called ES9000, is delivered on the MERVA OS/2 V3
Samples Diskette. The sample configuration file is configured for a Token Ring
connection between an OS/2 system and an S/390. The definitions in the
configuration file conform to the definitions given in the sample definitions for the
S/390.

To adjust the sample profile to your environment, change the Token Ring adapter
addresses and the LU names.

The Remote MERVA API Server program must be defined as a transaction
program. The name of the delivered Remote MERVA API Server program is
enmotpi.exe. The full path name is:

x:\MERVA2\BASE\ENMOTPI.EXE

where x is the drive where MERVA OS/2 V3 is installed.

3. You find more information on the logging levels in “Programmer’s Log” on page 71.

Chapter 4. Customization and Network Definitions 29

Network Definitions on the RS/6000

On the RS/6000 the following definitions must be done:

v Control Point

v Links

v Sessions

– LU 6.2 Local LU

– LU 6.2 Partner LU

– Mode

– Transaction Program Name

These are described in the definitions given in “Appendix B. Sample Network
Definitions for the RS/6000” on page 79.

To adjust the sample profile to your environment, do the following:

v Enter smitty sna

v Select Configure SNA Profiles

v Select Advanced Configuration

Starting from the Advanced Configuration window, perform the following steps:

v Select Control Point

v Select Change/Show a Profile

Figure 11 shows a sample control point profile.

Change the XID node ID and the Network name.

v Select Links

v Select Token Ring

v Select Token Ring Link Station

Change/Show Control Point Profile

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Profile name node_cp
XID node ID [071fea1d]
Network name [DEIBMFD]
Control Point (CP) name [FDA71D]
Control Point alias [FDA71D]
Control Point type appn_end_node +
Maximum number of cached routing trees [500] #
Maximum number of nodes in the TRS database [500] #
Route addition resistance [128] #

Comments [CP for ESA Connection >

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

Figure 11. Change/Show Control Point Profile

30 MERVA Connection/ESA

v Select Change/Show a Profile

v Select tokesa

Figure 12 shows a sample token ring link station profile.

Change the values of the Remote link address and the Remote SAP address.

v Select Sessions

v Select LU 6.2

v Select LU 6.2 Local LU

v Select Change/Show a Profile

v Select MERESALLUP

Figure 13 shows a sample LU 6.2 local LU profile.

Change/Show Token Ring Link Station Profile

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Current profile name tokesa
New profile name []
Use Control Point's XID node ID? yes +

If no, XID node ID [*]
* SNA DLC Profile name [tok0] +
Stop link station on inactivity? no +

If yes, Inactivity time-out (0-10 minutes) [0] #
LU address registration? no +

If yes,
LU Address Registration Profile name [] +

Trace link? no +
If yes, Trace size long +

Adjacent Node Address Parameters
Access routing link_address +
If link_name, Remote link name []
If link_address,

Remote link address [400010000008] X
Remote SAP address (02-fa) [04] X

[MORE...]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

Figure 12. Change/Show Token Ring Link Station Profile

Chapter 4. Customization and Network Definitions 31

Adapt the Local LU name and the Local LU alias to your needs.

v Select Sessions

v Select LU 6.2

v Select LU 6.2 Partner LU

v Select Change/Show a Profile

v Select ESAPLUP

Figure 14 shows a sample LU 6.2 partner LU profile.

Change/Show LU 6.2 Local LU Profile

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Current profile name MERESALLUP
New profile name []
Local LU name [FDA71D00]
Local LU alias [FDA71D00]
Local LU is dependent? no +

If yes,
Local LU address (1-255) [] #
System services control point

(SSCP) ID (*, 0-65535) [*]
Link Station Profile name [] +

Conversation Security Access List Profile name []
Recovery resource manager (RRM) enabled? no +

Comments [RemAPI from a CICS/ESA system]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

Figure 13. Change/Show LU 6.2 Local LU Profile

32 MERVA Connection/ESA

Change the Fully qualified partner LU name and the Partner LU alias. The Fully
qualified partner LU name consists of the network name and the CICS application
ID separated by a period. It defines your partner CICS/ESA system.

v Select Sessions

v Select LU 6.2

v Select LU 6.2 Mode

v Select Change/Show a Profile

v Select CICSISC

You can use the CICSISC profile without changes.

v Select Sessions

v Select LU 6.2

v Select LU 6.2 Transaction Program Name (TPN)

v Select Change/Show a Profile

v Select ENMRAS

Figure 15 shows a sample LU 6.2 TPN profile.

Change/Show LU 6.2 Partner LU Profile

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Current profile name ESAPLUP
New profile name []
Fully qualified partner LU name [DEIBMID.I40AC388]
Partner LU alias [I40AC388]
Parallel sessions supported? yes +
Session security supported? no +
Conversation security level already_verified +

Comments [RemAPI: CICS/ESA system]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

Figure 14. Change/Show LU 6.2 Partner LU Profile

Chapter 4. Customization and Network Definitions 33

The Transaction program name must correspond with the name entered in the CSI
object on the remote application side.

Adapt the Full path to TP executable parameter to your needs. This parameter
identifies your MERVA instance. Your MERVA instance is defined as selected in the
Create MERVA AIX instance step described in the MERVA AIX Installation and
Customization Guide.

In this example the name of the MERVA instance is merva1.

Adapt the User ID to your needs. For example, enter a user ID that has the
necessary MERVA API rights. Dependent of the entered user ID, you should specify
the appropriate Standard input file/device, Standard output file/device and Standard
error file/device.

Change/Show LU 6.2 TPN Profile

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Current profile name ENMRAS
New profile name []
Transaction program name (TPN) [ENMRAS]
Transaction program name (TPN) is in hexadecimal? no +
PIP data? no +

If yes, Subfields (0-99) [0] #
Use command line parameters? yes +
Command line parameters [trace]
Conversation type mapped +
Sync level confirm +
Resource security level none +

If access, Resource Security Access List Prof. []
Full path to TP executable [/home/merva1/ipc/enmtpi.cmd]
Multiple instances supported? no +
User ID [210] #
Server synonym name [ENMRASRV]
Restart action once +
Communication type signals +

If IPC, Communication IPC queue key [0] #
Time out Attaches? yes +
If yes, time-out value (0-3600 seconds) [60] #

Standard input file/device [/dev/null]
Standard output file/device [/dev/null]
Standard error file/device [/dev/null]

Comments [RemAPI server program]
[BOTTOM]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

Figure 15. Change/Show LU 6.2 TPN Profile

34 MERVA Connection/ESA

Chapter 5. Verifying Correct Installation and Customization

To verify that the installation and customization of MERVA Connection/ESA was
successful, run the sample program ENMVERIF. The transaction code for
ENMVERIF is ENM2.

Before you can run this program, the user ID SAMPLE with the password
SAMPLE1 has to be defined in MERVA OS/2 V3 or on MERVA AIX. This user ID
must be approved for application programs.

The program also checks that the queue API_IN has been customized. API_IN will
be used in the sample program ENMSAMP which you should run after the
installation was successfully verified. The transaction code for ENMSAMP is SAMP.
For details on how ENMSAMP works, look into its program header in the source
code contained in the library with the low level qualifier SENMSRC0.

You start both sample programs by entering the appropriate transaction code at the
CICS terminal.

After you have entered the transaction code ENM2, the following output should
appear on the screen:

Transaction ENM2 has started...
Profile name PROF specified
APPC Conversation named ENM2 is up
Program attached to MERVA
Queue API_IN exists
Program detached from MERVA
APPC Conversation successfully terminated
Transaction ENM2 has ended

If the output could not be displayed at the terminal, it is printed at the extrapartition
destination COUT (or any other destination in your installation which represents the
C/370 output device stdout).

In addition, there is logging information available due to the logging level 4 in the
delivered sample profile PROF. You can inspect the logging data in the
programmer’s log contained in the data set with the low level qualifier PROGLOG.
In case of errors, the diagnosis log which is represented by the data set with the
low level qualifier DIAGLOG, shows more detailed information.

© Copyright IBM Corp. 1993, 1997 35

36 MERVA Connection/ESA

Chapter 6. The Application Programming Interface

The following description of the API is based on the description in MERVA OS/2 V3
Application Programming and MERVA AIX Application Programming. This chapter
describes only the differences between MERVA API programming on the S/390 and
MERVA OS/2 V3 API programming on the OS/2 system or MERVA AIX API
programming on the RS/6000.

Structure of the MERVA API Program on the S/390

One major task of the MERVA API program on the S/390 is that it must call
functions that deal with connecting and disconnecting to and from the OS/2 system
or the RS/6000:

�1� Before the API functions can be called, the Remote MERVA API Client on
the S/390 must be initialized by calling the function ENMSetProfile. This
function tells the Remote MERVA API Client the name of the profile. The
profile is described in “Settings in the MERVA Connection/ESA Profile” on
page 29.

�2� After having set the profile name, the connection to the Remote MERVA API
Server on MERVA OS/2 V3 or MERVA AIX can be established. To do this,
call the function ENMStartRAPI. When this function is called, the Remote
MERVA API Client is initialized and the network connection to the is
established.

After the ENMStartRAPI call, the API functions can be called as if the
program ran locally on a MERVA OS/2 V3 or MERVA AIX machine.

�3� Before terminating the program, the connection to the Remote MERVA API
Server must be released by calling the function ENMEndRAPI. It is
important to call this function even if an error occurs in the API program,
otherwise, the Remote MERVA API Server misses the termination and is
not ready to receive the next connection request when the API program is
started again.

C Language Data Types

The member ENM4RAPI of the library with the low level qualifier SENMMAC0
contains the data types and prototypes of the MERVA API functions. When
compiling a MERVA OS/2 V3 API program locally on the OS/2 system or a MERVA
AIX API program locally on the RS/6000, the file enmoapi.h is included. When
compiling a MERVA Connection/ESA API program on the S/390, member
ENM4RAPI is included as file enm4rapi.h instead.

�1� ENMSetProfile(profile name)
�2� ENMStartRAPI(application name)

|
| API program logic with MERVA OS/2 V3 or MERVA AIX API calls
|

�3� ENMEndRAPI()

Figure 16. MERVA API Program Structure on the S/390

© Copyright IBM Corp. 1993, 1997 37

ENM4RAPI contains some used data types, which are used to describe the API
calls covered in this book. Their meaning is as follows:

Type Definition

USHORT unsigned short

UCHAR unsigned char

PUCHAR unsigned char*

PUSHORT unsigned short*

ULONG unsigned long

PULONG unsigned long*

Additional Functions

MERVA Connection/ESA provides more API calls than the MERVA OS/2 V3 and
MERVA AIX API. They are divided into the following categories:

v Functions for starting and ending the conversation

v Functions enabling the API program to be triggered by MERVA OS/2 V3 alarms

v Functions for error handling.

Starting and Ending the Conversation

If you want that the API program starts and ends the conversation between
theRemote MERVA API Client and the Remote MERVA API Server, use the
following functions:

v ENMSetProfile - Select a Profile

v ENMStartRAPI - Establish Connection to MERVA OS/2 V3 or MERVA AIX

v ENMRestartRAPI - Reconnect Remote API Program to MERVA OS/2 V3 or
MERVA AIX

v ENMEndRAPI - Disconnect from MERVA OS/2 V3 or MERVA AIX.

Each function is described in the following.

ENMSetProfile - Select a Profile

Specify the name of the profile you want to use.

C Definition

void ENMSetProfile (PUCHAR pucProfileName);

Parameter Description

The following parameter is required:

pucProfileName (PUCHAR)

Pointer to a null-terminated string with a maximum length of 4 characters. The
profile name is defined in the CICS/ESA DCT by macro DFHDCT
TYPE=EXTRA,DESTID=name.

38 MERVA Connection/ESA

Note: If several API programs run concurrently, each may use the same profile
name.

Remarks

The format and contents of the profile file are described in “Settings in the MERVA
Connection/ESA Profile” on page 29.

C Language Example:

#include "enm4rapi.h"

ENMSetProfile ("PROF");

ENMStartRAPI - Establish Connection to MERVA OS/2 V3 or MERVA
AIX

C Definition
USHORT ENMStartRAPI (PUCHAR pucApplicationName);

Parameter Description

The following parameters are required:

v retCode (USHORT) - output

Code Meaning

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason, described in
“Handling Errors” on page 48. The reason code is also written to the
diagnosis log on the S/390 (see “Chapter 11. Diagnosis Information” on
page 71). If it is an internal error of the MERVA OS/2 V3 or MERVA AIX
API, the reason code is zero.

v pucApplicationName (PUCHAR) - input

A pointer to a null-terminated string of up to 8 characters. This name is registered
by the Remote MERVA API Server.

Note: If several API programs run concurrently, each must use a different name.
For example, the transaction code can be used as a unique name.

Remarks

This call establishes the APPC conversation with MERVA OS/2 V3 or MERVA AIX
(Remote MERVA API Server) and initializes internal buffers and variables. After this
function was called, the program must not end without calling ENMEndRAPI.

C Language Example

#include "enm4rapi.h"

USHORT rc = 0;

if ((rc = ENMStartRAPI ("APPLID")) == 0)
puts("APPC Conversation is up\n");

else
puts("Error in ENMStartRAPI");

ENMSetProfile

Chapter 6. The Application Programming Interface 39

ENMRestartRAPI - Reconnect Remote API Program to MERVA OS/2 V3
or MERVA AIX

C Definition
USHORT ENMRestartRAPI (PUCHAR pucApplicationName);

Parameter Description

The following parameters are required:

v retCode (USHORT) - output

Code Meaning

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason, described in
“Handling Errors” on page 48. The reason code is also written to the
diagnosis log on the S/390 (see “Chapter 11. Diagnosis Information” on
page 71). If it is an internal error of the MERVA OS/2 V3 or MERVA AIX
API, the reason code is zero.

v pucApplicationName (PUCHAR) - input

A pointer to a null-terminated string of up to 8 characters. This name is registered
by the Remote MERVA API Server.

Note: If several API programs run concurrently, each must use a different name.
For example, the transaction code can be used as a unique name.

Remarks

If the connection is established with this call instead of ENMStartRAPI, the
resynchronization described in Figure 17 on page 51 is provided for the following
API calls:

v ENMAdd

v ENMDelete

v ENMPut

v ENMRouteAdd

v ENMRoutePut

If the connection was not interrupted within the critical time period in a previous
session, this call has the same functions as ENMStartRAPI. Therefore, you can
also use it if the previous connection did not end abnormally.

C Language Example

#include "enm4rapi.h"

USHORT rc = 0;

if ((rc = ENMRestartRAPI ("APPLID")) == 0)
puts("APPC Conversation is up\n");

else
puts("Error in ENMRestartRAPI");

ENMRestartRAPI

40 MERVA Connection/ESA

ENMEndRAPI - Disconnect from MERVA OS/2 V3 or MERVA AIX

C Definition
USHORT ENMEndRAPI (void);

Parameter Description

The following parameter is required:

retCode (USHORT) - output

Code Meaning

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason, described in “Handling
Errors” on page 48. The reason code is also written to the diagnosis log on
the S/390 (see “Chapter 11. Diagnosis Information” on page 71). If it is an
internal error of the MERVA OS/2 V3 or MERVA AIX API, the reason code
is zero.

Remarks

The APPC conversation to MERVA OS/2 V3 or MERVA AIX is terminated.

C Language Example

#include "enm4rapi.h"

USHORT rc = 0;

if ((rc = ENMEndRAPI ()) == 0)
puts("APPC Conversation successfully terminated\n");

else
puts("Error in ENMEndRAPI");

Functions Enabling the API Program to Be Triggered

If you want that the API program is triggered by MERVA OS/2 V3 or MERVA AIX
alarms, use the following functions:

v ENMWaitSemList - Wait for a List of Semaphores

v ENMCloseSem - Close a Semaphore

v ENMSetSem - Set a Semaphore

v ENMClearSem - Clear a Semaphore

v ENMCreateSem - Create a Semaphore

v ENMOpen - Open a Semaphore.

The semaphores reside on the OS/2 system or RS/6000 system. A semaphore is
cleared when an alarm is activated. An alarm is activated when a message enters
the associated queue.

Each function is described in the following.

ENMEndRAPI

Chapter 6. The Application Programming Interface 41

ENMWaitSemList - Wait for a List of Semaphores

This call blocks the current process until one of the specified OS/2 or AIX
semaphores is cleared. It allows the API program to wait for a list of up to 16
semaphores and up to 16 different MERVA OS/2 V3 or MERVA AIX alarms.

C Definition

USHORT ENMWaitSemList(PUSHORT Index,
ULONG timeout,
ULONG SemHandle,

...,
(ULONG) 0);4

Parameter Description

The following parameters are required:

v retCode (USHORT) - output

Code Meaning

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason, described in
“Handling Errors” on page 48. The reason code is also written to the
diagnosis log on the S/390 (see “Chapter 11. Diagnosis Information” on
page 71). If it is an internal error of the MERVA OS/2 V3 or MERVA AIX
API, the reason code is zero.

121 No semaphore is cleared. The timeout was reached.

Others
See the description of OS/2 system call DosMuxSemWait in the OS/2
online help or see the description of the ENMWaitSemList function in the
book MERVA AIX Application Programming.

v Index (PUSHORT) - output

In this parameter, ENMWaitSemList returns an index (0..15) that tells you which
of the semaphores is cleared.

v timeout (ULONG) - input

Code Meaning

-1 Wait indefinitely for a semaphore to be cleared.

0 Return immediately.

>1 Wait the indicated number of milliseconds for a semaphore to be cleared
before resuming execution.

v SemHandle (ULONG) - input

Up to 16 semaphore handles that were created by the calls of ENMCreateSem
or ENMOpenSem.

v (ULONG)0 - input

This parameter terminates the list of semaphores. Its value must be zero and a
4-byte value. If the parameter is missing, ENMWaitSemList is not able to
recognize the end of the semaphore list.

4. The last parameter ((ULONG)0) is not part of the C function prototype. It is only mentioned here to show that the list of
SemHandle parameters must be terminated by the value 0 (4 bytes).

ENMWaitSemList

42 MERVA Connection/ESA

C Language Example

/*
If a connection to MERVA OS/2 V3 should be used,
use the following define-statements:

*/
#define TRIGGER "\\SEM\\SAMPLE2"
#define STOP "\\SEM\\STOP.SMP"
/*

If a connection to MERVA AIX should be used,
use the following define-statements:

*/
/*
#define TRIGGER "SAMPLE2"
#define STOP "STOP.SMP"

*/
#include "enm4rapi.h"

USHORT rc = 0;
ULONG SemTrigger;
ULONG SemStop;
USHORT Index = 0;

if ((rc = ENMCreateSem (&SemStop, STOP)) == 0)
if ((rc = ENMCreateSem (&SemTrigger, TRIGGER)) == 0)

if ((rc = ENMSetSem (SemStop)) == 0)
if ((rc = ENMSetSem(SemTrigger)) == 0)

rc = ENMWaitSemList(&Index, -1L,
SemStop,
SemTrigger,
(ULONG)0);

ENMCloseSem - Close a Semaphore

This call closes an OS/2 or AIX semaphore obtained with an ENMCreateSem or
ENMOpenSem call.

C Definition
USHORT ENMCloseSem (ULONG SemHandle);

Parameter Description

The following parameters are required:

v retCode (USHORT) - output

Code Meaning

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason, described in
“Handling Errors” on page 48. The reason code is also written to the
diagnosis log on the S/390 (see “Chapter 11. Diagnosis Information” on
page 71). If it is an internal error of the MERVA OS/2 V3 or MERVA AIX
API, the reason code is zero.

Others
See the description of the OS/2 system call DosCloseSem in the OS/2
online help or see the description of the ENMCloseSem function in the
book MERVA AIX Application Programming.

v SemHandle (ULONG) - input

Generated by ENMCreateSem or ENMOpenSem.

ENMWaitSemList

Chapter 6. The Application Programming Interface 43

C Language Example

/*
If a connection to MERVA OS/2 V3 should be used,
use the following define-statements:

*/
#define TRIGGER "\\SEM\\SAMPLE2"
/*

If a connection to MERVA AIX should be used,
use the following define-statements:

*/
/*
#define TRIGGER "SAMPLE2"

*/
#include "enm4rapi.h"

USHORT rc = 0;
ULONG SemTrigger;

if ((rc = ENMCreateSem (&SemTrigger, TRIGGER)) == 0)
rc = ENMCloseSem (SemTrigger);

ENMSetSem - Set a Semaphore

C Definition
USHORT ENMSetSem (ULONG SemHandle);

Parameter Description

The following parameters are required:

v retCode (USHORT) - output

Code Meaning

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason, described in
“Handling Errors” on page 48. The reason code is also written to the
diagnosis log on the S/390 (see “Chapter 11. Diagnosis Information” on
page 71). If it is an internal error of the MERVA OS/2 V3 or MERVA AIX
API, the reason code is zero.

Others
See the description of the OS/2 system call DosSemSet in the OS/2
online help or see the description of the ENMSetSem function in the
book MERVA AIX Application Programming.

v SemHandle (ULONG) - input

Generated by ENMCreateSem or ENMOpenSem.

Remarks

ENMSetSem sets a semaphore unconditionally. For MERVA OS/2 V3 or MERVA
AIX this means that the semaphore can be cleared by raising an alarm.

C Language Example

/*
If a connection to MERVA OS/2 V3 should be used,
use the following define-statements:

*/
#define TRIGGER "\\SEM\\SAMPLE2"
/*

ENMCloseSem

44 MERVA Connection/ESA

If a connection to MERVA AIX should be used,
use the following define-statements:

*/
/*
#define TRIGGER "SAMPLE2"

*/
#include "enm4rapi.h"

USHORT rc = 0;
ULONG SemTrigger;

if ((rc = ENMCreateSem (&SemTrigger, TRIGGER)) == 0)
rc = ENMSetSem (SemTrigger);

ENMClearSem - Clear a Semaphore

This call clears an OS/2 or AIX semaphore unconditionally. If processes are blocked
on the semaphore, they are restarted.

C Definition
USHORT ENMClearSem (ULONG SemHandle);

Parameter Description

The following parameters are required:

v retCode (USHORT) - output

Code Meaning

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason, described in
“Handling Errors” on page 48. The reason code is also written to the
diagnosis log on the S/390 (see “Chapter 11. Diagnosis Information” on
page 71). If it is an internal error of the MERVA OS/2 V3 or MERVA AIX
API, the reason code is zero.

Others
See the description of the OS/2 system call DosSemClear in the OS/2
online help or see the description of the ENMClearSem function in the
book MERVA AIX Application Programming.

v SemHandle (ULONG) - input

Generated by ENMCreateSem or ENMOpenSem.

C Language Example

/*
If a connection to MERVA OS/2 V3 should be used,
use the following define-statements:

*/
#define TRIGGER "\\SEM\\SAMPLE2"
/*

If a connection to MERVA AIX should be used,
use the following define-statements:

*/
/*
#define TRIGGER "SAMPLE2"

*/
#include "enm4rapi.h"

USHORT rc = 0;

ENMSetSem

Chapter 6. The Application Programming Interface 45

ULONG SemTrigger;

if ((rc = ENMCreateSem (&SemTrigger, TRIGGER)) == 0)
rc = ENMClearSem (SemTrigger);

ENMCreateSem - Create a Semaphore

This call creates an OS/2 or AIX semaphore. The semaphore is used by several
API programs to synchronize their access to resources or to wait for MERVA OS/2
V3 or MERVA AIX alarms.

C Definition

USHORT ENMCreateSem (PULONG SemHandle,
PUCHAR SemName);

Parameter Description

The following parameters are required:

v retCode (USHORT) - output

Code Meaning

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason, described in
“Handling Errors” on page 48. The reason code is also written to the
diagnosis log on the S/390 (see “Chapter 11. Diagnosis Information” on
page 71). If it is an internal error of the MERVA OS/2 V3 or MERVA AIX
API, the reason code is zero.

Others
See the description of the OS/2 system call DosCreateSem in the OS/2
online help or see the description of the ENMCreateSem function in the
book MERVA AIX Application Programming.

v SemHandle (PULONG) - output

Address of the semaphore handle.

v SemName (PUCHAR) - input

Pointer to a null-terminated string containing the name of the semaphore to be
created.

In MERVA AIX the semaphore name is a logical name without path details. In
MERVA OS/2 V3 it must be a full path name and has to start with \SEM\.

C Language Example

/*
If a connection to MERVA OS/2 V3 should be used,
use the following define-statements:

*/
#define TRIGGER "\\SEM\\SAMPLE2"
/*

If a connection to MERVA AIX should be used,
use the following define-statements:

*/
/*
#define TRIGGER "SAMPLE2"

*/
#include "enm4rapi.h"

USHORT rc = 0;

ENMClearSem

46 MERVA Connection/ESA

ULONG SemTrigger;

rc = ENMCreateSem (&SemTrigger, TRIGGER);

ENMOpenSem - Open a Semaphore

This call opens an existing OS/2 or AIX semaphore created by another process with
ENMCreateSem. The other process can also run on the OS/2 system or the
RS/6000.

C Definition

USHORT ENMOpenSem (PULONG SemHandle,
PUCHAR SemName);

Parameter Description

The following parameters are required:

v retCode (USHORT) - output

Code Meaning

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason, described in
“Handling Errors” on page 48. The reason code is also written to the
diagnosis log on the Enterprise System/9000 (see “Chapter 11. Diagnosis
Information” on page 71). If it is an internal error of the MERVA OS/2 V3
or MERVA AIX API, the reason code is zero.

100 Limit of open semaphores in the system is exceeded.

123 The name for the semaphore is not valid.

187 The semaphore does not exist.

Others
See the description of the OS/2 system call DosOpenSem in the OS/2
online help or see the description of the ENMOpenSem function in the
book MERVA AIX Application Programming.

v SemHandle (PULONG) - output

Address of the handle of the opened semaphore.

v SemName (PUCHAR) - input

Pointer to a null-terminated string containing the name of the semaphore to be
opened.

C Language Example

/*
If a connection to MERVA OS/2 V3 should be used,
use the following define-statements:

*/
#define TRIGGER "\\SEM\\SAMPLE2"
/*

If a connection to MERVA AIX should be used,
use the following define-statements:

*/
/*
#define TRIGGER "SAMPLE2"

*/
#include "enm4rapi.h"

ENMCreateSem

Chapter 6. The Application Programming Interface 47

USHORT rc = 0;
ULONG SemTrigger;

rc = ENMOpenSem (&SemTrigger, TRIGGER);

Handling Errors

If you want that the API call returns reason codes use the function ENMGetReason
- Get Reason Code for Internal Error. This function is described in the following.

ENMGetReason - Get Reason Code for Internal Error

This call returns the reason code for an internal error in MERVA Connection/ESA.

If an internal error occurs either in MERVA Connection/ESA or in the local MERVA
API, an API call returns the return code 2. If it is an error of the MERVA
Connection/ESA, ENMGetReason returns a more specific reason code. Otherwise,
the reason code is 0.

C Definition
USHORT ENMGetReason (void);

Parameter Description

The following parameter is required:

retCode (USHORT) - output

Code Meaning

2xxx All reason codes between 2000 and 2999 indicate communication
problems.

2110 The APPC conversation cannot be established or is canceled.

2120 The Communications Side Information object is not found.

2130 Connection to Remote MERVA API Server program failed.

2140 Deallocation failed because the conversation has already been terminated.

2150 Conversation is interrupted while trying to receive data.

2200 An empty data buffer was received.

29xx xx is a return code of the CPI-C call.

2999 A general communication problem occurred (see diagnosis log).

7006 The Remote MERVA API Server failed while allocating memory.

7012 The Remote MERVA API Server does not accept further API calls due to a
previous error.

7013 The Remote MERVA API Server received a negative return code from user
exit ENMExitDecrypt.

7014 The Remote MERVA API Server received a negative return code from user
exit ENMExitEncrypt.

7015 The Remote MERVA API Server received a negative return code from user
exit ENMExitMacVerify or ENMExitMacGen.

ENMOpenSem

48 MERVA Connection/ESA

7016 The Remote MERVA API Server received an incorrect API request.

7018 The Remote MERVA API Server received an error when converting ASCII to
EBCDIC. See the diagnosis log of MERVA OS/2 V3 or MERVA AIX.

7019 The Remote MERVA API Server received an error while accessing the
message integrity control file.

7030 Internal message space has not been created.

8002 The Remote MERVA API Client cannot open the programmer’s log file
specified in the profile.

8003 The Remote MERVA API Client cannot close the programmer’s log file
specified in the profile.

8004 The Remote MERVA API Client cannot open the diagnosis log file specified
in the profile.

8005 The Remote MERVA API Client cannot close the diagnosis log file specified
in the profile.

8006 The Remote MERVA API Client could not allocate memory.

8007 The Remote MERVA API Client cannot write to the diagnosis log file
specified in the profile.

8008 The Remote MERVA API Client cannot write to the programmer’s log file
specified in the profile.

8010 The Remote MERVA API Client failed because the profile name in
ENMSetProfile was incorrect or was not specified.

8011 The Remote MERVA API Client failed because the profile specified in
ENMSetProfile does not exist.

8013 The Remote MERVA API Client received a negative return code from user
exit ENMExitDecrypt.

8014 The Remote MERVA API Client received a negative return code from user
exit ENMExitEncrypt.

8015 The Remote MERVA API Client received a negative return code from user
exit ENMExitMacVerify.

8016 The Remote MERVA API Client received a negative return code from user
exit ENMExitMacGen.

8017 Conversation has not been started with ENMStartRAPI.

8019 The Remote MERVA API Client could not access the message integrity
control file.

81xx The Remote MERVA API Client could not open the MERVA Connection/ESA
profile. xx is the code contained in the CICS/ESA Exec Interface Block field
EIBRESP after an EXEC CICS SET TDQUEUE request.

82xx The Remote MERVA API Client could not read the MERVA Connection/ESA
profile. xx is the code contained in the CICS/ESA Exec Interface Block field
EIBRESP after an EXEC CICS READQ TD request.

8300 The Remote MERVA API Client could not obtain data from storage which is
to be written to the diagnosis log.

83xx The Remote MERVA API Client could not write data to the diagnosis log. xx
is the code contained in the CICS/ESA Exec Interface Block field EIBRESP
after an EXEC CICS WRITEQ TD request.

ENMGetReason

Chapter 6. The Application Programming Interface 49

8400 The Remote MERVA API Client could not obtain data from storage which is
to be written to the programmer’s log.

84xx The Remote MERVA API Client could not write data to the programmer’s
log. xx is the code contained in the CICS/ESA Exec Interface Block field
EIBRESP after an EXEC CICS WRITEQ TD request.

85xx The Remote MERVA API Client could not delete a record in the message
integrity control file. xx is the code contained in the CICS/ESA Exec
Interface Block field EIBRESP after an EXEC CICS DELETE DATASET
request.

86xx The Remote MERVA API Client could not read a record from the message
integrity control file. xx is the code contained in the CICS/ESA Exec
Interface Block field EIBRESP after an EXEC CICS READ DATASET
request.

87xx The Remote MERVA API Client could not write a record to the message
integrity control file. xx is the code contained in the CICS/ESA Exec
Interface Block field EIBRESP after an EXEC CICS WRITE DATASET
request.

C Language Example

#include "enm4rapi.h"

USHORT rc = 0;
USHORT reason = 0;

rc = ENMFree();
if (rc) {

reason = ENMGetReason();
if (reason) {
printf ("Internal error in MERVA Connection/ESA occurred, reason code %d",

reason);
}

}

ENMGetReason

50 MERVA Connection/ESA

Chapter 7. Resynchronization

If a network connection is interrupted, the recovery procedure must ensure that all
changes of message status in MERVA OS/2 V3 or MERVA AIX (such as Add,
Route, or Delete) are made only once. This affects both programs using the remote
API and programs calling the local MERVA OS/2 V3 or MERVA AIX API.

During normal processing, an API call is transferred from the API socket to the
Remote MERVA API Server (positions (1) and (2) in Figure 17). The return data
from MERVA OS/2 V3 or MERVA AIX is transferred back from the Remote MERVA
API Server to the Remote MERVA API Client (positions (3) and (4)) and to the
calling program.

The return code ERR_SYSTEM of the API call and a corresponding reason code
(2000 to 2999) of an additional ENMGetReason call indicates whether the network
connection is interrupted (see MERVA OS/2 V3 Application Programming or MERVA
AIX Application Programming). MERVA Connection/ESA does not know whether the
call completed successfully, unsuccessfully, or whether it is not executed on MERVA
OS/2 V3 or MERVA AIX. In the example shown in Figure 17 this means that the API
program does not know whether the message has been added to the MERVA OS/2
V3 or MERVA AIX queue.

With MERVA Connection/ESA the API program reestablishes the connection in the
next run using ENMRestartRAPI. It recreates the message with the same contents
and fields, and repeats the call that failed. This mechanism is provided for those
API calls that are important for the integrity of the message database:

v ENMAdd

v ENMDelete

v ENMPut

v ENMRouteAdd

v ENMRoutePut

Figure 17. Resynchronization Support

© Copyright IBM Corp. 1993, 1997 51

How Resynchronization Is Implemented

The Remote MERVA API Client generates an internal unique identifier when it
receives a call from the application program. The identifier is saved locally and also
sent to the Remote MERVA API Server. The Remote MERVA API Server deletes the
identifier after the API call has been executed and the return data is passed back to
the Remote MERVA API Client.

If the network connection terminates before the return data is passed back,
identifier and return data are saved. After the connection is reestablished, the same
identifier arrives with the first of the above mentioned API calls. The saved return
data is passed back as if the call was executed now.

The necessary control data is saved in files. On the Remote MERVA API Client you
can specify the file name in the MERVA Connection/ESA profile as described in
“Settings in the MERVA Connection/ESA Profile” on page 29. On the Remote
MERVA API Server the file name must be the same as the application name
specified in the ENMStartRAPI or ENMRestartRAPI call.

To ensure that resynchronization works correctly, note the following:

v The Message Integrity Control file (MIP) must not be a recoverable resource
(in CICS terms).

The MIP file contains all information required for a resynchronization. When a
transaction fails, changes to recoverable resources are backed out by the CICS
dynamic transaction backout. Thus the saved resynchronization information might
be lost.

This also applies to other resources used in the API transaction for a proper
restart of the transaction after a program or system failure.

If you run more than one remote API programs,

v You can share the same MIP file between the API programs.

This requires that each API program has been assigned a different transaction
code (or that a single API program has been assigned several transaction
codes). The transaction code is used as a key for a control record in the MIP file.

The MIP file is a VSAM key-sequenced data set (KSDS). The key has a length of
8 bytes. The first 4 bytes are made up of the transaction code. The last 4 bytes
contain the terminal identifier if the transaction was started by entering the
transaction code at the terminal. When the transaction was started another way
the last 4 bytes of the key consist of four blank characters.

v You must use unique application names for the ENMStartRAPI and
ENMRestartRAPI calls.

As well as for the MIP file key, you can use the transaction code as a unique
application name. You obtain the transaction code from the CICS/ESA Exec
Interface Block field EIBTRNID. Look into the source code of sample program
ENMVERIF on page 87 where this method is used.

Using the Resynchronization Mechanism

The following is a program that issues calls in a loop:

ENMSetProfile
ENMRestartRAPI

52 MERVA Connection/ESA

ENMAttach
do

ENMCreate
ENMWriteField
read message from application
ENMRouteAdd

until (no more message to send)
ENMDetach
ENMEndRAPI

If the network connection breaks down after the ENMRouteAdd call is issued, the
API program terminates. When it is restarted, the loop is entered as if there had
been no interruption in the previous run.

Notes:

1. Use the same profile as in the previous run.

2. Call ENMRestartRAPI using the same application name.

3. Call ENMCreate and ENMWriteField using the same data as in the previous run
(same message, same field contents).

4. Call ENMRouteADD using the same queue name.

5. After resynchronization continue with the loop as in normal processing.

If the program runs like that, it does not have to check how far processing went in
the previous run when the ENMRouteADD call was interrupted.

Hints and Tips

Recovering after a Failed Call

If calling ENMAdd or ENMRouteAdd fails, you usually call ENMClear to clear the
message space (see MERVA OS/2 V3 Application Programming or MERVA AIX
Application Programming).

If these calls fail after reestablishing the connection as described before because of
other reasons than network problems, calling ENMClear may return the return code
ERR_NO_MSG_CREATED

(that is, 202). This means that the API call was executed in the first run. The error
message can be ignored.

The same applies to an ENMFree call returning the message
ERR_NO_MSG_LOCKED

(that is, 201) after calling of ENMDelete, ENMPut, or ENMRoutePut failed.

Not Using Resynchronization

If you do not use the resynchronization option, call ENMStartRAPI instead of
ENMRestartRAPI. ENMStartRAPI deletes the internal control information for
resynchronization. Then each API call is considered as a new one.

Chapter 7. Resynchronization 53

MERVA Connection/ESA does not save the type or input data of the API call that
failed due to the network failure. Therefore, when using ENMRestartRAPI, you must
ensure that the same call is repeated after reconnecting to MERVA OS/2 V3 or
MERVA AIX if one of the above mentioned calls failed.

MERVA Connection/ESA does not recognize an inappropriate API call. The call is
not executed if the internal state indicates that the last API call from the previous
run was executed. If this is not considered, an API call with new data could be
treated as a repeated call from a previous run.

54 MERVA Connection/ESA

Chapter 8. Security

Security is a fundamental requirement for all financial institutions. When discussing
the security of message transfers, a number of different aspects must be
considered:

v Encryption of transferred information

v Authentication of transferred information.

These requirements are supported by MERVA Connection/ESA.

Encryption of Transferred Information

Using MERVA Connection/ESA you can encrypt all information that is exchanged.

You do this by activating user exits. User exits allow you to include your own
algorithm or even other products that support encryption and decryption routines.

There are two user exits:

v ENM4ExitEncrypt for encryption

v ENM4ExitDecrypt for decryption.

See “User Exit Interfaces” for more information on how to implement these routines.

Authentication of Transferred Information

Using MERVA Connection/ESA you can generate an authentication key covering all
exchanged information. You do this by activating user exits. User exits allow you to
include your own algorithm or even other products that support authentication
routines.

There are two user exits:

v ENM4ExitMacGen for MAC generation

v ENM4ExitMacVerify for MAC verification.

See “User Exit Interfaces” for more detailed information on how to implement these
routines.

User Exit Interfaces

The following introduces the user exit interfaces of MERVA Connection/ESA.

Introduction

There is a fundamental difference between an API call and a user exit:

v For an API call, you write a program that calls the API routine provided by
MERVA Connection/ESA.

v A user exit is a routine written by you and called by MERVA Connection/ESA.
The user exit routines must contain the declaration for the function name and
formal parameter list, as described in the following.

© Copyright IBM Corp. 1993, 1997 55

User Exit Points

Figure 18 shows what happens when an API function is called by an API program
on the S/390. You can see who is calling a user exit at which processing step. In
the figure, the following abbreviations are used for the user exits:

ENCRYP ENM4ExitEncrypt

DECRYP ENM4ExitDecrypt

MACGEN ENM4ExitMacGen

MACVFY ENM4ExitMacVerify

Figure 18. User Exit Points

56 MERVA Connection/ESA

User Exit Interfaces in C Language

The data types used in these routines can be different, depending on whether they
are implemented on the OS/2 system, the RS/6000 or the S/390. See the coded
samples (“Appendix C. Sample Security User Exits” on page 83) for more
information.

User Exit for Encryption

C Definition
unsigned short ENM4ExitEncrypt (unsigned char* pucApplId,

unsigned char* pucBuffer,
unsigned short usBufferLen);

Purpose of the User Exit Routine

Encrypts the passed data buffer.

Parameter Description

The following parameters are required:

v pucApplId (unsigned char*) - input

Address of a null-terminated string with a maximum length of 8. The string
contains the application identifier that you passed as a parameter of the API call
ENMStartRAPI. You can use this string to provide different encryption keys for
different partner connections, or decide for which connections or for which API
programs the information is to be encrypted.

v pucBuffer (unsigned char*) - input/output

Address of the data buffer to be encrypted.

v usBufferLen (unsigned short) - input

Length of the data buffer to be encrypted.

User Exit for Decryption

C Definition
unsigned short ENM4ExitDecrypt (unsigned char* pucApplId,

unsigned char* pucBuffer,
unsigned short usBufferLen);

Purpose of the User Exit Routine

Decrypts the passed data buffer.

Parameter Description

The following parameters are required:

v pucApplId (unsigned char*) - input

Address of a null-terminated string with a maximum length of 8. The string
contains the application identifier that you passed as a parameter of the API call
ENMStartRAPI. You can use this string to provide different decryption keys for
different partner connections, or to decide for which connections or for which API
programs the information is to be decrypted.

v pucBuffer (unsigned char*) - input, output

Address of the data buffer to be decrypted.

Chapter 8. Security 57

v usBufferLen (unsigned short) - input

Length of the data buffer to be decrypted.

User Exit for MAC Generation

C Definition
unsigned short ENM4ExitMacGen (unsigned char* pucApplId,

unsigned char* pucBuffer,
unsigned short usBufferLen,
unsigned char* pucMacBuffer);

Purpose of the User Exit Routine

Generates a MAC (Message Authentication Code) for the passed data buffer.

Parameter Description

The following parameters are required:

v pucApplId (unsigned char*) - input

Address of a null-terminated string with a maximum length of 8. The string
contains the application identifier you passed as a parameter of the API call
ENMStartRAPI. You can use this string to provide different MAC generation
algorithms for different partner connections, or to decide for which connections or
for which API programs a MAC shall be generated.

v pucBuffer (unsigned char*) - input

Address of the data buffer for which to generate a MAC.

v usBufferLen (unsigned short) - input

Length of the data buffer for which to generate a MAC.

v pucMacBuffer (unsigned char*) - output

Address of the area to copy the generated MAC to. The address can be up to 32
bytes in length.

User Exit for MAC Verification

C Definition
unsigned short ENM4ExitMacVerify (unsigned char* pucApplId,

unsigned char* pucBuffer,
unsigned short usBufferLen,
unsigned char pucMacBuffer);

Purpose of the User Exit Routine

Generates a MAC for the passed data buffer and compares it with the passed
MAC. Set the return code to 0 if the MAC matches and otherwise to 1.

Parameter Description

The following parameters are required:

v pucApplId (unsigned char*) - input

Address of a null-terminated string with a maximum length of 8. The string
contains the application identifier you passed as a parameter of the API call
ENMStartRAPI. You can use this string to provide different MAC verification
algorithms for different partner connections, or to decide on which connections or
for which API programs a MAC is to be verified.

ENM4ExitDecrypt

58 MERVA Connection/ESA

v pucBuffer (unsigned char*) - input

Address of the data buffer for which to generate a MAC and for which the
passed MAC has been generated on the partner side.

v usBufferLen (unsigned short) - input

Length of the data buffer for which to generate a MAC.

v pucMacBuffer (unsigned char*) - input

Address of the area holding the MAC key that has been received from the
partner. The address can be up to 32 bytes in length.

ENM4ExitMacVerify

Chapter 8. Security 59

ENM4ExitMacVerify

60 MERVA Connection/ESA

Chapter 9. Building API Programs

This chapter describes how to compile MERVA Connection/ESA API programs in
the C/370 programming language. The programs may contain EXEC CICS
statements.

Compiling the Sample Programs

The following list shows the sample programs delivered with MERVA
Connection/ESA. You find the programs in the library with the low level qualifier
SENMSRC0. The programs which use EXEC CICS statements are indicated.

List of Sample Programs

ENMVERIF Sample program to verify correct installation. It contains EXEC
CICS statements.

ENMABEND Sample program (abnormal termination exit) to verify correct
installation. It contains EXEC CICS statements.

ENMSAMP Sample program to send telex messages to MERVA

ENM4SSEC Sample security user exit routines

ENM4SNIL Skeleton for security user exit routines.

The first three programs are available in your installation as executable modules.
ENM4SSEC is link-edited to ENMSAMP, and ENM4SNIL is link-edited to
ENMVERIF and to ENMABEND. So you need not compile any of these programs.
However, if you want to modify one or more of the security user exit routines, you
have to compile and link-edit them.

Compiling a MERVA Connection/ESA API Program

The following JCL shows, how you can compile and link-edit an API program which
does not contain EXEC CICS statements. The IBM-supplied cataloged procedures
EDCC (Compile) and EDCPL (Prelink and Link-edit) are used. You find this job as
member ENMCCOMP in the library with the low level qualifier SENMINS0.

© Copyright IBM Corp. 1993, 1997 61

Comments:

(1) The compiler options RENT, DEF(CICS), MAR(1,80), and NOSEQ are
required.

(2) Specify the name of the file where the object module is to be stored, and
the name of the object module.

(3) This is the CPI-C pseudonym file. For CICS/ESA Version 3 Release 2.1 the
high level qualifier is CICS321. Normally, you do not require the pseudonym
file. It is for your information only.

(4) Specify the name of the file which contains the MERVA Connection/ESA
include-files and your own include-files.

//ENMCC JOB (ACCT),NAME,MSGCLASS=L,CLASS=Z MODIFY
//***
//* COMPILE AND LINK-EDIT A CONNECTION/ESA API PROGRAM
//* --
//* PLEASE REMOVE COMMENTS FROM CONTROL CARDS BEFORE JOB START
//* --
//***
//CC EXEC EDCC,
// CPARM='RENT,SO,OPT,DEF(CICS),MAR(1,80),NOSEQ', (1)
// OUTFILE='Your Object Library(Member),DISP=OLD', (2)
// SYSOUT1=A, OUTPUT CLASS FOR MESSAGES
// SYSOUT6=A OUTPUT CLASS FOR LISTING
//COMPILE.SYSLIB DD
// DD DSN=CICS330.SDFHC370,DISP=SHR (3)
//COMPILE.USERLIB DD DSN=Your User Include File,DISP=SHR (4)
//COMPILE.SYSIN DD DATA,DLM=$$

.
Your C/370 Source Code

.
$$
//*--
//* PRELINK AND LINK-EDIT THE API PROGRAM -
//*--
//PL EXEC EDCPL,COND.PLKED=(4,LE,CC.COMPILE),
// COND.LKED=((4,LE,CC.COMPILE),(4,LT,PLKED)),
// LPARM='LIST,MAP,LET,XREF,RENT,AMODE=31,RMODE=ANY', (5)
// OUTFILE='Your Load Library(Member),DISP=OLD' (6)
//*
//* PRELINK THE API PROGRAM
//*
//PLKED.SYSLIB DD DSN=Your Object Library,DISP=SHR (7)
//PLKED.SYSIN DD *
INCLUDE SYSLIB(Member) (8)
INCLUDE SYSLIB(ENMRAPI,ENMRUTL,ENMRPRF,ENMSSEC) (9)

/*
//*
//* LINK-EDIT THE API PROGRAM
//*
//LKED.SYSLIB DD
// DD
// DD DSN=CICS330.SDFHLOAD,DISP=SHR (10)
//LKED.SYSLIN DD
// DD DDNAME=SYSIN
//LKED.SYSIN DD *
INCLUDE SYSLIB(DFHELII,DFHCPLC) (11)
ORDER DFHELII,CEESTART
ENTRY CEESTART

/*
//

Figure 19. Compile API Program without EXEC CICS Statements

62 MERVA Connection/ESA

(5) The linkage editor options RENT, AMODE=31, and RMODE=ANY are
required.

(6) Specify the name of the file where the load module is to be stored, and the
name of the load module.

(7) Specify the name of the file where the object module was stored in the
compile step (CC.COMPILE).

(8) Specify the name of the object module.

(9) The first three MERVA Connection/ESA modules must always be included.
If you need no security exits, include ENMSNIL instead of ENMSSEC.

(10) This is the CICS load library. For CICS/ESA Version 3 Release 2.1 the high
level qualifier is CICS321.

(11) You must always include the EXEC interface stub DFHELII and the CICS
CPI Communications stub DFHCPLC. DFHELII must be placed before
CEESTART.

The following JCL shows, how you can compile and link-edit an API program with
embedded EXEC CICS statements. The IBM-supplied cataloged procedure
DFHEITDL is used. You find this job as member ENMCCICS in the library with the
low level qualifier SENMINS0.

Chapter 9. Building API Programs 63

Comments:

(1) Specify the appropriate version of the C/370 compiler according to the
conventions in your installation.

(2) All specified CICS translator options are required.

(3) The compiler options RENT, DEF(CICS), MAR(1,80), and NOSEQ are
required.

//ENMCTRN JOB (ACCT),NAME,MSGCLASS=L,CLASS=Z MODIFY
//***
//* TRANSLATE, COMPILE, LINK-EDIT A CONNECTION/ESA API PROGRAM
//* --
//* PLEASE REMOVE COMMENTS FROM CONTROL CARDS BEFORE JOB START
//* --
//***
//CCTRAN EXEC DFHEITDL,
// CVER='C/370 Version', (1)
// PARM.TRN='MAR(1,80,0),NSEQ,OM(1,80,0),NOS', (2)
// CPARM='RENT,SO,OPT,DEF(CICS),MAR(1,80),NOSEQ', (3)
// LNKPARM='LIST,MAP,LET,XREF,RENT,AMODE=31,RMODE=ANY' (4)
//*** LPARM='LIST,MAP,LET,XREF,RENT,AMODE(31),RMODE(ANY)'' (5)
//*
//*--
//* TRANSLATE AND COMPILE THE API PROGRAM -
//*--
//*
//* TRANSLATE THE API PROGRAM
//*
//TRN.SYSIN DD DATA,DLM=$$

.
Your C/370 Source Code

.
$$
//*
//* COMPILE THE API PROGRAM
//*
//C.USERLIB DD DSN=Your User Include File,DISP=SHR (6)
//C.SYSLIN DD DSN=Your Object Library(Member),DISP=OLD (7)
//*
//*--
//* PRELINK and LINK-EDIT THE API PROGRAM -
//*--
//*
//* PRELINK THE API PROGRAM
//*
//PLKED.SYSLIB DD DSN=Your Object Library,DISP=SHR (8)
//PLKED.SYSIN DD *
INCLUDE SYSLIB(Member) (9)
INCLUDE SYSLIB(ENMRAPI,ENMRUTL,ENMRPRF,ENMSSEC) (10)

/*
//*
//* LINK-EDIT THE API PROGRAM
//*
//LKED.SYSLMOD DD DSN=Your Load Library,DISP=OLD (11)
//LKED.SYSIN DD *
INCLUDE SYSLIB(DFHELII,DFHCPLC) (12)
ORDER DFHELII,CEESTART
ENTRY CEESTART
NAME Member(R) (13)

/*
//

Figure 20. Compile API Program Containing EXEC CICS Statements

64 MERVA Connection/ESA

(4) The linkage editor options RENT, AMODE=31, and RMODE=ANY are
required.

(5) This is the parameter for the linkage editor options when you compile the
program for CICS/ESA Version 3, Release 2.1. Again, the linkage editor
options RENT, AMODE(31), and RMODE(ANY) are required.

(6) Specify the name of the file which contains the MERVA Connection/ESA
include-files and your own include-files.

(7) Specify the name of the file where the object module is to be stored, and
the name of the object module.

(8) Specify the name of the file where the object module was stored in the
compile step (CCTRAN.C).

(9) Specify the name of the object module.

(10) The first three MERVA Connection/ESA modules must always be included.
If you need no security exits, include ENMSNIL instead of ENMSSEC.

(11) Specify the name of the file where the load module is to be stored.

(12) You must always include the EXEC interface stub DFHELII and the CICS
CPI Communications stub DFHCPLC. DFHELII must be placed before
CEESTART.

(13) Specify the name of the load module.

Chapter 9. Building API Programs 65

66 MERVA Connection/ESA

Chapter 10. Replacing Security User Exits

This chapter describes how you can replace the provided security user exits by
generating and activating your own security user exits on the S/390, the OS/2
system, or the RS/6000.

Security User Exits

Two sets of sample security user exits are provided (see “User Exit Interfaces” on
page 55):

enm4ssec These routines contain sample code for encryption and
authentication. They show how to access the variables of the formal
parameter list in the function call but do not provide genuine
security. The provided code on the S/390 is named ENMSSEC. It is
contained in the object library with the low level qualifier
SENMOBJ0. On the OS/2 system it is the dynamic link library
enm4ssec.dll. On the RS/6000 it is the shared library libenmssec.a.

enm4snil These routines do not contain any code. Use this file if no
encryption or authentication is desired. The provided code on the
S/390 is named ENMSNIL. It is also contained in the object library
with the low level qualifier SENMOBJ0. On the OS/2 system it is
the dynamic link library enm4snil.dll. On the RS/6000 it is the
shared library libenmsnil.a.

On the OS/2 system the dynamic link library containing the user exits must have
the name enm4sxit.dll. The shipped version of enm4sxit.dll is a copy of the sample
library enm4snil.dll. If you want to use the second set (enm4ssec) of sample user
exit routines, copy enm4ssec.dll to enm4sxit.dll.

On the RS/6000 the shared library containing the user exits must have the name
libenmsxit.a. The shipped version of libenmsxit.a is a copy of the sample library
libenmsnil.a. If you want to use the second set (libenmssec) of sample user exit
routines, copy libenmssec.a to libenmsxit.a.

Generating and Activating Security User Exits on the S/390

On the S/390 the user exit routines must be placed in an object library.

To replace the sample user exits by your own routines, use ENM4SSEC from the
library with the low level qualifier SENMSRC0 as a skeleton. Insert your code in
ENM4SSEC and compile the module using procedure EDCC. Then you can prelink
and link-edit ENM4SSEC to your API program using procedure EDCPL (provided
that the API program is already contained in an object library). You find examples
for the required JCL in “Compiling a MERVA Connection/ESA API Program” on
page 61.

Generating and Activating Security User Exits on the OS/2 System

On the OS/2 system the user exit routines must be placed in DLLs.

© Copyright IBM Corp. 1993, 1997 67

If you want to replace the sample user exits with your own routines, use
enm4ssec.c as a skeleton. The following file generates a new enm4ssec.dll from
enm4ssec.c:

Use the following command to create the new file:

#---
ENM4SSEC.MAK - Make file to generate a DLL with Security User Exits
#---
#---
Compile-Options:
/C+ Compile, do not link
/Gd- Static linking of the runtime library
/Sp1 Structure alignment set to 1-byte boundaries to be compatible
with the 16-bit code (/ZP option) of MERVA OS/2 V3
/Se Allow all C Set/2 language extensions except migration
/Ss+ Allow use of double slashes (//) for comments
/Re Generate executable code for C Set/2 runtime environment
/Gm+ Use the multithread version of the libraries
/Kb+ Produce basic diagnostic messages
/Fo+ Create an object file
/Ti+ Generate debugger information
/Ge- Build a .DLL file
#
/DOS2 enable 'define INCL_BASE', 'include <OS2.H>' - see ENM4SSEC.C
#
Link-Options:
/NOE[EXTDICTIONARY] Ignore Extended Dictionary
/NOD[EFAULTLIBRARYSEARCH] Ignore Default Libraries
/NOI[GNORECASE] Case sensitive
/CO[DEVIEW] Include symbolic debugging information
/BATCH Return error, if input file name is missing
/A[LIGNMENT] Alignment Factor in the executable, 512 is default
/E[XEPACK] Packing Executable Files
/STACK Stack size
#---

C_OPT= /C+ /Gd- /Sp1 /Se /Ss+ /Re /Gm+ /Kb+ /Fo+ /Ti+ /Ge- /DOS2
L_OPT= /NOE /NOD /NOI /CO /BATCH /A:512 /E /STACK:16384

#---
Objects which are to be generated in this make file
#---
ALL: ENM4SSEC.DLL ENM4SXIT.LIB

#---
Link ENM4SSEC.DLL
#---
ENM4SSEC.DLL: ENM4SSEC.OBJ ENM4SXIT.DEF

-LINK386 $(L_OPT) ENM4SSEC.OBJ,ENM4SSEC.DLL,ENM4SSEC.MAP,\
OS2386.LIB + DDE4MBS.LIB,ENM4SXIT.DEF >>ENM4SSEC.LOG;2>&1

#--
Compile ENM4SSEC
#--
ENM4SSEC.OBJ: ENM4SSEC.C ENM4SXIT.H

icc $(C_OPT) ENM4SSEC.C >>ENM4SSEC.LOG;2>&1

#---
Generate LIB file for exit DLL
#---
ENM4SXIT.LIB: ENM4SXIT.DEF

IMPLIB ENM4SXIT.LIB ENM4SXIT.DEF

Figure 21. Make File to Generate a DLL

68 MERVA Connection/ESA

make /f enm4ssec.mak

If there are error messages, they are written to the file enm4ssec.log. Copy the
newly generated enm4ssec.dll to enm4sxit.dll.

If your source file name is different from enm4ssec.c, replace every occurrence of
enm4ssec within the make file enm4ssec.mak with your program name.

Generating and Activating Security User Exits on the RS/6000

The sample security user exits can be accessed by the Remote MERVA API Server
on the RS/6000 if you copy the library libenmssec.a to the library libenmsxit.a. If
you want to replace the sample user exits by your own routines, use the
enm4ssec.c as a skeleton. The file can be retrieved from directory
/usr/lpp/merva/samples. The file enm4ssec.mak generates a new library
libenmssec.a from the source file enm4ssec.c.

Use the following command: make -f enm4ssec.mak all

Replace /usr/lpp/merva/lib/libenmsxit.a with your new library using the following
command:

cp libenmssec.a /usr/lpp/merva/lib/libenmsxit.a

Chapter 10. Replacing Security User Exits 69

70 MERVA Connection/ESA

Chapter 11. Diagnosis Information

This chapter describes the diagnosis information that is written to log files on the
S/390, the OS/2 system, or the RS/6000.

Log Files on the S/390

Two logs are written. In the MERVA Connection/ESA profile, you can:

v Set their names

v Set a logging level between 1 and 4.

The profile contents is described in “Settings in the MERVA Connection/ESA Profile”
on page 29.

Diagnosis Log

The diagnosis log provides you with:

v Error messages that help you recover from errors when using the API calls or
errors concerning the communication with the OS/2 system, or the RS/6000.

v Trace information when the API Trace is switched on with the call ENMTrace
(see MERVA OS/2 V3 Application Programming or MERVA AIX Application
Programming).

Programmer’s Log

The programmer’s log is a general debugging tool. It contains all entries of the
diagnosis log and additional more detailed information to be analyzed by your IBM
representative.

By the logging level in the MERVA Connection/ESA profile, you can influence how
much log information MERVA Connection/ESA is to provide:

v Level 1 should be used in general. No data is written to the log.

v Level 2 and 3 are reserved for future use. No data is written to the log.

v Level 4 should be used when you want to record the activities of MERVA
Connection/ESA in a comprehensive way. This level is suited for debugging or
demonstration purposes (for example, for the MERVA Connection/ESA installation
verification).

Log Message Layout

Each message written to the logs consists of two parts, the message header and
the message body, as shown in Figure 22 on page 72.

© Copyright IBM Corp. 1993, 1997 71

The layout of the message header is as follows:

* Start of header.

Transaction code
The CICS transaction code is a 1- to 4-character code identifying
the API program.

Terminal ID The CICS terminal identifier is a 4-character code identifying the
terminal where the API program is run.

This item is optional . It is part of the message header only when
the CICS task was associated with a terminal. In Figure 22 you see
that there is a transaction code in the message header, but no
terminal ID.

Date The date is in the form YYYYMMDD, where YYYY is the year, MM
is the month, and DD is the day.

Time The time is in the form HHMMSS, where HH is the hour, MM are
the minutes, and SS are the seconds.

Module name The module name is an 8-character code identifying the module the
message originated from.

Function name
The function name is a 15-character code identifying the function
the message originated from.

The layout of the message body is as follows:

Message The variable-length message to be recorded. See the MERVA AIX
Application Programming, MERVA OS/2 V3 Messages and Codes
or the MERVA AIX Messages and Codes manual for the meaning of
the messages.

Note: Log entries are appended to the existing files when you specify parameter
DISP=MOD in the appropriate DD statements for both log files in your CICS
startup job. When you use DISP=OLD or DISP=SHR, MERVA Connection/ESA
starts from the beginning of the file and overwrites previous with new log
entries.

* TXCD 19970402192358ENM4RAPI ENMRestartRAPI 00000 00000
ENM9153: API function ENMRestartRAPI called.

Parameters:
App: SAMPLE3

* TXCD 19970402192358ENM4RUTL APIInit 00000 00000
ENM9108: Error in CPIC Call CMALLC RC = 19.

* TXCD 19970402192413ENM4RAPI ENMRestartRAPI
ENM9109: Error in APPC Initialization.

* TXCD 19970402192413ENM4RAPI ENMRestartRAPI
ENM9152: API function returned with reason code 2130.

Figure 22. Example of Diagnosis Log with API Trace Entries

72 MERVA Connection/ESA

Log Files on MERVA OS/2 V3

Diagnosis information concerning the Remote MERVA API Server program is
provided by the MERVA OS/2 V3 log files. Error and trace information is written to
the diagnosis log. IBM service information is written to the programmer’s log. You
can list or browse the diagnosis log file using the Display/Print Diagnosis Log (DPD)
function of MERVA OS/2 V3.

The log files are located on the disk and directory x:\MERVA2\, where x is the drive
on which MERVA OS/2 V3 is installed. See the MERVA OS/2 V3 Diagnosis Guide
for further information.

Log Files on MERVA AIX

Diagnosis information concerning the Remote MERVA API Server program is
provided by the MERVA AIX log files. Error and trace information is written to the
diagnosis log. IBM service information is written to the programmer’s trace log. You
can list or browse the diagnosis log file using the Display Diagnosis Log function in
the MERVA AIX menu program.

The log files are located in the MERVA AIX instance logging directory as selected in
the Create MERVA AIX Instance step described in the MERVA AIX Installation and
Customization Guide.

Chapter 11. Diagnosis Information 73

74 MERVA Connection/ESA

Appendix A. Sample Network Definitions for the S/390

This appendix contains sample network definitions for the S/390. First you see
VTAM definitions, then CICS definitions follow.

Note: Please keep in mind that the following definitions are examples only. They
are provided to support you when you establish an APPC connection
between the S/390 and the OS/2 system. Before you try this, consult the
VTAM and CICS system specialist to get the required information how to
adapt the provided examples.

VTAM Definitions: OS/2 System Connected to a Token Ring Network

This example contains the VTAM definition of a CICS application, a PU macro
defined for a Token Ring, and the logmode entries of an APPC connection from
CICS to an OS/2 system which is part of a Token Ring network.

You find these definitions as members ENMAPPL, ENMPULU, and ENMLOGMO in
the library with the low level qualifier SENMMAC0.

CICS Application Definition
===
* - CICS-Application *
===

VBUILD TYPE=APPL
* *
I40AC388 APPL AUTH=(PASS,ACQ,VPACE),VPACING=5, CICS APPLID C

ACBNAME=I40AC388, CICS APPLID C
DLOGMOD=CICSISC, LOGMODE NAME C
MODETAB=PPC3270,PARSESS=YES

PU/LU Definition for the OS/2 System in a Token Ring
===
* - PU-Definitions for the OS/2 system *
* - LU-Definitions for the OS/2 system *
===
* *

VBUILD TYPE=SWNET, C
MAXNO=12, C
MAXGRP=5

* *
FD5773 PU ADDR=01, PHYSICAL UNIT (PU) C

ANS=CONT, C
IDBLK=05D, C
IDNUM=FE573, LOCAL NODE ID C
ISTATUS=ACTIVE, C
DLOGMOD=MOD2, C
MAXDATA=1024, C
MAXOUT=1, C
MODETAB=MTGADL, C
USSTAB=USSSNA, C
PUTYPE=2

*
FD577300 LU LOCADDR=0,DLOGMOD=CICSISC LU NAME OF OS/2 MACHINE
* AND LOGMODE NAME
FD577302 LU LOCADDR=2
* *

© Copyright IBM Corp. 1993, 1997 75

Logmode Entry for an APPC Connection
===
* - Logmodes for an APPC connection to an S/390 *
* - Both Logmodes CICSISC and SNASVCMG are necessary *
===
PPC3270 MODETAB
* *
CICSISC MODEENT LOGMODE=CICSISC, LOGMODE NAME C

COS=INTERACT,FMPROF=X'13',TSPROF=X'07', C
PRIPROT=X'B0',SECPROT=X'B0',COMPROT=X'D0B1', C
PSERVIC=X'060200000000000000000300',RUSIZES=X'8585', C
PSNDPAC=X'04',SRCVPAC=X'04',SSNDPAC=X'01',TYPE=X'00'

SNASVCMG MODEENT LOGMODE=SNASVCMG,FMPROF=X'13',TSPROF=X'07', C
PRIPROT=X'B0',SECPROT=X'B0',COMPROT=X'D0B1', C
SSNDPAC=X'01', C
SRCVPAC=X'04', C
PSNDPAC=X'04', C
RUSIZES=X'8585',PSERVIC=X'060200000000000000000300', C
ENCR=B'0000'

END MODEEND

END PPC3270

VTAM Definitions: OS/2 System Connected by an SDLC Line

The CICS application definition and the logmode entries are the same as for an
OS/2 system connected to a Token Ring network. The PU macro, however, is
different.

CICS Application Definition
===
* - CICS-Application *
===

VBUILD TYPE=APPL
* *
I40AC388 APPL AUTH=(PASS,ACQ,VPACE),VPACING=5, CICS APPLID C

ACBNAME=I40AC388, CICS APPLID C
DLOGMOD=CICSISC, LOGMODE NAME C
MODETAB=PPC3270,PARSESS=YES

PU/LU Definition for the OS/2 System with SDLC Line
===
* - PU-Definitions for the OS/2 system with SDLC line *
* - LU-Definitions for the OS/2 system with SDLC line *
===

.........
F38L0036 LINE ADDRESS=(036,HALF) SDLC LINE 036

SERVICE ORDER=(FD5773) PHYSICAL UNIT (PU)
FD5773 PU PUTYPE=2,ADDR=C1, PHYSICAL UNIT (PU) C

DLOGMOD=MOD2,MAXDATA=521, C
MAXOUT=7,PASSLIM=7,SSCPFM=USSSCS,ISTATUS=ACTIVE, C
MODETAB=MTGADL,XID=YES

FD577300 LU LOCADDR=0,ISTATUS=ACTIVE,DLOGMOD=CICSISC LU NAME OF OS/2
* MACHINE AND LOGMODE NAME
FD577302 LU LOCADDR=2,ISTATUS=ACTIVE
*

Logmode Entry for an APPC Connection
===
* - Logmodes for an APPC connection to an OS/2 system *
* - Both Logmodes CICSISC and SNASVCMG are necessary *

76 MERVA Connection/ESA

===
PPC3270 MODETAB
* *
CICSISC MODEENT LOGMODE=CICSISC, LOGMODE NAME C

COS=INTERACT,FMPROF=X'13',TSPROF=X'07', C
PRIPROT=X'B0',SECPROT=X'B0',COMPROT=X'D0B1', C
PSERVIC=X'060200000000000000000300',RUSIZES=X'8585', C
PSNDPAC=X'04',SRCVPAC=X'04',SSNDPAC=X'01',TYPE=X'00'

SNASVCMG MODEENT LOGMODE=SNASVCMG,FMPROF=X'13',TSPROF=X'07', C
PRIPROT=X'B0',SECPROT=X'B0',COMPROT=X'D0B1', C
SSNDPAC=X'01', C
SRCVPAC=X'04', C
PSNDPAC=X'04', C
RUSIZES=X'8585',PSERVIC=X'060200000000000000000300', C
ENCR=B'0000'

END MODEEND

END PPC3270

CICS Definitions

With the following job you can define an APPC connection from CICS/ESA to a
remote OS/2 system, or RS/6000. The DEFINE statements are part of the member
ENMCSD contained in the library with the low level qualifier SENMMAC0.

In this sample four parallel sessions will be defined (see parameter
MAXIMUM(4,2)). For the logmode parameter MODENAME(CICSISC) and the OS/2
system machine LU name parameter NETNAME(FD577300), you can find the
corresponding entries in “VTAM Definitions: OS/2 System Connected to a Token
Ring Network” on page 75 or in “VTAM Definitions: OS/2 System Connected by an
SDLC Line” on page 76.
//UPDCSD EXEC PGM=DFHCSDUP,REGION=4096K
//STEPLIB DD DSN=CICS330.SDFHLOAD,DISP=SHR OR CICS321
//SYSPRINT DD SYSOUT=*
//DFHCSD DD DSN=CICSxxx.CSD,DISP=SHR
//SYSIN DD *
*
DELETE GROUP(ENMGROUP)
*
* CONNECTION/ESA COMMUN. DEFINITIONS FOR MERVA OS/2 V3 and MERVA AIX
*
DEFINE PROFILE(ENMPROF) GROUP(ENMGROUP)

MODENAME(CICSISC) <= LOGMODE NAME
*
DEFINE CONNECTION(RAPI) GROUP(ENMGROUP)

NETNAME(FD577300) <= OS/2 or RS/6000 LU NAME
ACCESSMETHOD(VTAM)
PROTOCOL(APPC)
SINGLESESS(NO)
DATASTREAM(USER)
RECORDFORMAT(U)
AUTOCONNECT(ALL)
INSERVICE(YES)
ATTACHSEC(LOCAL)
BINDSECURITY(NO)

*
DEFINE SESSIONS(C3RAPI) GROUP(ENMGROUP)

CONNECTION(RAPI) <= SEE PREVIOUS DEFINE
MODENAME(CICSISC) <= LOGMODE NAME
PROTOCOL(APPC)
MAXIMUM(4,2)
SENDSIZE(256)
RECEIVESIZE(256)

Appendix A. Sample Network Definitions for the S/390 77

SESSPRIORITY(0)
AUTOCONNECT(ALL)
BUILDCHAIN(YES)
USERAREALEN(0)
IOAREALEN(0,0)
RELREQ(NO)
DISCREQ(NO)
NEPCLASS(0)
RECOVOPTION(SYSDEFAULT)
RECOVNOTIFY(NONE)

*
DEFINE PARTNER(M2API) GROUP(ENMGROUP) <= COMM. SIDE INFORMATION

NETNAME(FD577300) <= OS/2 or RS/6000 LU NAME
PROFILE(ENMPROF) <= SEE PREVIOUS DEFINE
TPNAME(MERVA2) <= TP NAME OF API SERVER (MERVA OS/2 V3)

* TPNAME(ENMRAS) <= TP NAME OF API SERVER (MERVA AIX)
*
ADD GROUP(ENMGROUP) LIST(XXXLIST)
/*
//

78 MERVA Connection/ESA

Appendix B. Sample Network Definitions for the RS/6000

This appendix contains sample network definitions for the RS/6000.

Note: Please keep in mind that the following definitions are examples only. They
are provided to support you when you establish an APPC connection
between the S/390 and the RS/6000.

Control Point Definition
control_pt:

prof_name = "node_cp"
xid_node_id = 0x071fea1d
network_name = "DEIBMFD"
control_pt_name_alias = "FDA71D"
control_pt_name = "FDA71D"
control_pt_node_type = appn_end_node
max_cached_trees = 500
max_nodes_in_topology_database = 500
route_addition_resistance = 128
comments = "CP for ESA Connection over SNA"

Local LU Definition
local_lu_lu6.2:

prof_name = "MERESALLUP"
local_lu_name = "FDA71D00"
local_lu_alias = "FDA71D00"
local_lu_dependent = no
local_lu_address =
sscp_id = *
link_station_prof_name = ""
conversation_security_list_profile_name = ""
rrm_enabled = no
comments = "RemAPI with CICS/ESA system"

Partner LU Definition
partner_lu6.2:

prof_name = "ESAPLUP"
fq_partner_lu_name = "DEIBMID.I40AC388"
partner_lu_alias = "I40AC388"
session_security_supp = no
parallel_session_supp = yes
conversation_security_level = already_verified
comments = "RemAPI with CICS/ESA system"

Transaction Program Definition
local_tp:

prof_name = "ENMRAS"
tp_name = "ENMRAS"
tp_name_in_hex = no
pip_data_present = no
pip_data_subfields_number = 0
command_line_parameters_present = yes
command_line_parameters = "trace"
conversation_type = mapped
sync_level = confirm
resource_security_level = none
resource_access_list_profile_name = ""
full_path_tp_exe = "/home/merva1/ipc/enmtpi.cmd"

© Copyright IBM Corp. 1993, 1997 79

multiple_instances = yes
user_id = 210
server_synonym_name = "ENMRASRV"
restart_action = once
communication_type = signals
ipc_queue_key = 0
attach_timeout = yes
attach_timeout_value = 60
standard_input_device = "/dev/null"
standard_output_device = "/dev/null"
standard_error_device = "/dev/null"
comments = "RemAPI server program"

Token Ring Link Station Definition
link_station_token_ring:

prof_name = "tokesa"
use_control_pt_xid = yes
xid_node_id = "*"
sna_dlc_profile_name = "tok0"
stop_on_inactivity = no
time_out_value = 0
LU_registration_supported = no
LU_registration_profile_name = ""
link_tracing = no
trace_format = long
access_routing_type = link_address
remote_link_name = ""
remote_link_address = 0x400010000008
remote_sap = 0x04
call_out_on_activation = yes
verify_adjacent_node = no
net_id_of_adjacent_node = ""
cp_name_of_adjacent_node = ""
xid_node_id_of_adjacent_node = "*"
node_type_of_adjacent_node = learn
solicit_sscp_sessions = yes
activate_link_during_system_init = no
activate_link_on_demand = no
cp_cp_sessions_supported = yes
cp_cp_session_support_required = no
adjacent_node_is_preferred_server = no
initial_tg_number = 0
restart_on_normal_deactivation = no
restart_on_abnormal_deactivation = no
restart_on_activation = no
TG_effective_capacity = 4300800
TG_connect_cost_per_time = 0
TG_cost_per_byte = 0
TG_security = nonsecure
TG_propagation_delay = lan
TG_user_defined_1 = 128
TG_user_defined_2 = 128
TG_user_defined_3 = 128
comments = "Link Station for CICS/ESA"

Token Ring SNA DLC Definition
sna_dlc_token_ring:

prof_name = "tok0"
datalink_device_name = "tok0"
force_timeout = 120
user_defined_max_i_field = no
max_i_field_length = 30729
max_active_link_stations = 100
num_reserved_inbound_activation = 0

80 MERVA Connection/ESA

num_reserved_outbound_activation = 0
transmit_window_count = 127
dynamic_window_increment = 1
retransmit_count = 8
receive_window_count = 1
priority = 0
inact_timeout = 48
response_timeout = 4
acknowledgement_timeout = 1
link_name = ""
local_sap = 0x04
retry_interval = 60
retry_limit = 20
dynamic_link_station_supported = yes
trace_base_listen_link_station = no
trace_base_listen_link_station_format = long
dynamic_lnk_solicit_sscp_sessions = yes
dynamic_lnk_cp_cp_sessions_supported = yes
dynamic_lnk_cp_cp_session_support_required = no
dynamic_lnk_TG_effective_capacity = 4300800
dynamic_lnk_TG_connect_cost_per_time = 0
dynamic_lnk_TG_cost_per_byte = 0
dynamic_lnk_TG_security = nonsecure
dynamic_lnk_TG_propagation_delay = lan
dynamic_lnk_TG_user_defined_1 = 128
dynamic_lnk_TG_user_defined_2 = 128
dynamic_lnk_TG_user_defined_3 = 128
comments = ""

Mode Definition
mode:

prof_name = "CICSISCP"
mode_name = "CICSISC"
max_sessions = 8
min_conwinner_sessions = 4
min_conloser_sessions = 4
auto_activate_limit = 8
max_adaptive_receive_pacing_window = 16
receive_pacing_window = 7
max_ru_size = 30720
min_ru_size = 256
class_of_service_name = "#CONNECT"
comments = "RemAPI with CICS/ESA system"

Appendix B. Sample Network Definitions for the RS/6000 81

82 MERVA Connection/ESA

Appendix C. Sample Security User Exits

This appendix contains listings of sample security user exits that you can use. You
find the security user exits in the library with the low level qualifier SENMSRC0.

Module ENM4SNIL - Empty Functions

This program is integrated into MERVA Connection/ESA in the supplied version. No
actions are taken in the functions. This means that data transferred between the
S/390 and the OS/2 system, or RS/6000 is not encrypted and no authentication key
is built or transferred. You can use this program as a skeleton for your code.

/*--*\
| ENM4SNIL |
--/
#if defined(OS2)
#define INCL_BASE
#include <OS2.H>
#endif

#include "enm4sxit.h"

#ifndef __32BIT__
#define APIENTRY16 APIENTRY
#define PUCHAR16 PUCHAR

#endif

USHORT APIENTRY16 ENM4ExitMacGen (PUCHAR16 pucApplId,
PUCHAR16 pucBuffer,
USHORT usBufferLen,
PUCHAR16 pucMacBuffer)

{
return(0);

}

USHORT APIENTRY16 ENM4ExitMacVerify (PUCHAR16 pucApplId,
PUCHAR16 pucBuffer,
USHORT usBufferLen,
PUCHAR16 pucMacBuffer)

{
return(0);

}

USHORT APIENTRY16 ENM4ExitEncrypt (PUCHAR16 pucApplId,
PUCHAR16 pucBuffer,
USHORT usBufferLen)

{
return(0);

}

USHORT APIENTRY16 ENM4ExitDecrypt (PUCHAR16 pucApplId,
PUCHAR16 pucBuffer,
USHORT usBufferLen)

{
return(0);

}

Figure 23. Sample Security User Exit ENM4SNIL

© Copyright IBM Corp. 1993, 1997 83

Module ENM4SSEC - Sample Functions

This module is supplied as an example for coding security functions. Simple
encryption and authentication routines are included. However, they do not provide
genuine security.

84 MERVA Connection/ESA

/*--*\
| ENM4SSEC |
--/
#if defined(OS2)
#define INCL_BASE
#include <OS2.H>
#endif
#include<string.h>
#include "enm4sxit.h"
/* defines that this module can be compiled with Cset/2 and IBM C/2 */
#ifndef __32BIT__

#define APIENTRY16 APIENTRY
#define PUCHAR16 PUCHAR

#endif
#if defined(CICS)
#pragma map(Enm36Table,"Enm36Tab")
#endif
unsigned char Enm36Table[36]= {'\x00', '\x01', '\x02', '\x03',

'\x04', '\x05', '\x06', '\x07',
'\x08', '\x09', '\x0A', '\x0B',
'\x0C', '\x1D', '\x1E', '\x1F',
'\x10', '\x11', '\x12', '\x13',
'\x14', '\x15', '\x16', '\x17',
'\x18', '\x19', '\x1A', '\x1B',
'\x1C', '\x1D', '\x1E', '\x1F',
'\x20', '\x21', '\x22', '\x23' };

#define ENM_MAX_BASE 36
#define ENM_FILL_CHAR 0

#if defined(CICS)
#pragma map(EnmBasestr,"ENMBASTR")
#endif
unsigned short EnmBasestr(unsigned short base,

unsigned long num,
unsigned char* basestring,
unsigned short max_len)

{
unsigned long count=0,reminder=0;
short position;
unsigned long number;
number = num;
position = max_len-1;
memset (basestring, ENM_FILL_CHAR, max_len);
basestring[position]=0;

if (base > ENM_MAX_BASE) return(1);
do {

if (--position < 0) return(1);
reminder = number % (unsigned long)base;
count = number / (unsigned long)base;
if (!count) {

basestring[position++]=Enm36Table[reminder];
break;

}
basestring[position]=Enm36Table[reminder];
number = count;

} while (1);
return(0);

}

Figure 24. Sample Security User Exit ENM4SSEC (Part 1 of 2)

Appendix C. Sample Security User Exits 85

USHORT APIENTRY16 ENM4ExitMacGen (PUCHAR16 pucApplId,
PUCHAR16 pucBuffer,
USHORT usBufferLen,
PUCHAR16 pucMacBuffer){

register i;
unsigned long ulAddedByteValues=0;
unsigned short rc = 0;

if (!strcmp(pucApplId,"APPLAUTH") || !strcmp(pucApplId,"APPLSECR")) {
for (i=0;i<usBufferLen;i++) {

ulAddedByteValues += (unsigned long) pucBuffer[i];
}
rc = EnmBasestr(2,

ulAddedByteValues,
pucMacBuffer,
32);

}
return(rc);

}

USHORT APIENTRY16 ENM4ExitMacVerify (PUCHAR16 pucApplId,
PUCHAR16 pucBuffer,
USHORT usBufferLen,
PUCHAR16 pucMacBuffer)

{
register i;
unsigned long ulAddedByteValues=0;
unsigned char ucaCalcMacBuffer[32];
unsigned short rc = 0;

if (!strcmp(pucApplId,"APPLAUTH") || !strcmp(pucApplId,"APPLSECR")) {
for (i=0;i<usBufferLen;i++) {

ulAddedByteValues += (unsigned long) pucBuffer[i];
}
memset (ucaCalcMacBuffer,0,32);

rc = EnmBasestr(2,
ulAddedByteValues,
ucaCalcMacBuffer,
32);

if (!rc) rc = memcmp(ucaCalcMacBuffer,pucMacBuffer,32);
}
return(rc);

}
USHORT APIENTRY16 ENM4ExitEncrypt (PUCHAR16 pucApplId,

PUCHAR16 pucBuffer,
USHORT usBufferLen)

{
register i;

if (!strcmp(pucApplId,"APPLENCR") || !strcmp(pucApplId,"APPLSECR")) {
for (i=0;i<usBufferLen;i++) {

pucBuffer[i] = pucBuffer[i] ¬ 255; /* negation */
}

}
return(0);

Figure 24. Sample Security User Exit ENM4SSEC (Part 2 of 2)

86 MERVA Connection/ESA

Appendix D. Sample Programs

This appendix includes listings of sample MERVA Connection/ESA API programs
written in C/370. You find the sample programs in the library with the low level
qualifier SENMSRC0.

Program ENMVERIF

/**/
/* */
/* PROGRAM NAME: ENMVERIF */
/* ------------- */
/* Installation verification program for Connection/ESA. */
/* */
/* COPYRIGHT: */
/* ---------- */
/* (C) Copyright International Business Machines Corporation 1994, 1997 */
/* */
/* REVISION LEVEL: 3.0 */
/* --------------- */
/* */
/* WHAT THIS PROGRAM DOES: */
/* ----------------------- */
/* This program verifies whether the connection between an application */
/* running under CICS/ESA and the API of MERVA was set up properly. */
/* */
/* It requires that a MERVA user "SAMPLE" with password "SAMPLE1" */
/* exists. User "SAMPLE" must be approved to start an API application */
/* program. */
/* In addition, the queue API_IN must have been customized. */
/* */
/* FILE MEMBERS NEEDED TO COMPILE: */
/* ------------------------------- */
/* ENMVERIF - This file */
/* ENM4RAPI - The API include file */
/* The preprocessor of CICS/ESA V3.2.1 or later and */
/* the AD/Cycle C/370 compiler are required. */
/* */
/* PROGRAMS TO BE LINKED: */
/* ---------------------- */
/* */
/* ENMRAPI */
/* ENMRPRF */
/* ENMRUTL */
/* ENMSNIL */
/* In addition, the stubs DFHELII and DFHCPLC are required. */
/* */
/* */

Figure 25. Sample Program ENMVERIF (Part 1 of 4)

© Copyright IBM Corp. 1993, 1997 87

/* REQUIRED INPUT: */
/* --------------- */
/* Enter the transaction code ENM2 at the CICS terminal. */
/* */
/* EXPECTED OUTPUT: */
/* ---------------- */
/* The confirmation that the connection to the MERVA API */
/* could be established and released, and that the queue API_IN exists. */
/* The appropriate information is displayed on the terminal. */
/* Alternatively, the information is printed at the transient data */
/* destination COUT (or whichever destination represents the */
/* C/370 stdout). */
/* The last line to be displayed or printed must read: */
/* "Transaction ENM2 has ended". */
/* */
/* MERVA CALLS USED: */
/* ----------------- */
/* ENMAttach - Attach to MERVA */
/* ENMDetach - Detach from MERVA */
/* ENMQueryQueue - Query queue information */
/* */
/* ADDITIONAL Connection/ESA CALLS USED: */
/* ------------------------------------- */
/* ENMSetProfile - Select the profile to be used */
/* ENMStartRAPI - Establish connection to MERVA */
/* ENMEndRAPI - Disconnect from MERVA */
/* ENMGetReason - Get reason code for internal error */
/* */
/**/

#include <stdio.h>
#include <string.h>
#include "enm4rapi.h"

#define LENGTH 81

/* Function to write a message line to the screen or to print it */
void SendText(UCHAR Message??(??));

main()
{

USHORT rc = 0; /* Return code of API calls */
SHORT rs = 0; /* Reason code of API calls */
USHORT Messagecount; /* Number of messages in a queue*/

UCHAR ProfName??(5??) = "PROF"; /* Connection profile name */
UCHAR Message??(LENGTH??); /* Message line on screen */

Figure 25. Sample Program ENMVERIF (Part 2 of 4)

88 MERVA Connection/ESA

EXEC CICS ADDRESS EIB(dfheiptr); /* Get address of the CICS EIB */

sprintf(Message,"Transaction %s has started...",dfheiptr->eibtrnid);
SendText(Message); /* Send first line to screen */

/* Specify the name of the Connection/ESA profile */
ENMSetProfile (ProfName); /* Extrapartition TD queue name */

sprintf(Message,"Profile name %s specified",ProfName);
SendText(Message);
/* Establish connection to MERVA */
if ((rc = ENMStartRAPI (dfheiptr->eibtrnid)) == 0) {

sprintf(Message,"APPC Conversation named %s is up",dfheiptr->eibtrnid);
SendText(Message);

/* Attach to MERVA */
if ((rc = ENMAttach ("SAMPLE","SAMPLE1","API")) == 0) {

strcpy(Message,"Program attached to MERVA");
SendText(Message);

/* Check existence of queue API_IN */
if ((rc = ENMQueryQueue ("API_IN",&Messagecount)) == 0)

strcpy(Message,"Queue API_IN exists");
else

if ((rs = ENMGetReason ()) == 0)
sprintf(Message,

"MERVA API: Error in ENMQueryQueue, rc = %d",rc);
else

sprintf(Message,
"Error in ENMQueryQueue, rc = %d, rs = %d",rc,rs);

SendText(Message);

/* Detach from MERVA */
if ((rc = ENMDetach ()) == 0)

strcpy(Message,"Program detached from MERVA");
else

if ((rs = ENMGetReason ()) == 0)
sprintf(Message,

"MERVA API: Error in ENMDetach, rc = %d",rc);
else

sprintf(Message,
"Error in ENMDetach, rc = %d, rs = %d",rc,rs);

} else
if ((rs = ENMGetReason ()) == 0)

sprintf(Message,"MERVA API: Error in ENMAttach, rc = %d",rc);
else

sprintf(Message,"Error in ENMAttach, rc = %d, rs = %d",rc,rs);
SendText(Message);

Figure 25. Sample Program ENMVERIF (Part 3 of 4)

Appendix D. Sample Programs 89

/* Disconnect from MERVA */
if ((rc = ENMEndRAPI ()) == 0)

strcpy(Message,"APPC Conversation successfully terminated");
else

if ((rs = ENMGetReason ()) == 0)
sprintf(Message,"MERVA API: Error in ENMEndRAPI, rc = %d",rc);

else
sprintf(Message,"Error in ENMEndRAPI, rc = %d, rs = %d",rc,rs);

} else
if ((rs = ENMGetReason ()) == 0)

sprintf(Message,"MERVA API: Error in ENMStartRAPI, rc = %d",rc);
else

sprintf(Message,"Error in ENMStartRAPI, rc = %d, rs = %d",rc,rs);
SendText(Message);

sprintf(Message,"Transaction %s has ended",dfheiptr->eibtrnid);
SendText(Message); /* Send last line to screen */

}
/**/
/* Send a message line to the terminal. */
/* If an exceptional condition occurs the message line is printed. */
/**/
void SendText(UCHAR Message??(??))
{

static UCHAR NLMsg??(LENGTH+23??);/* Work field for message line */
static USHORT Line = 0; /* Line number on screen */

ULONG resp, resp2; /*RESP and RESP2 after CICS call*/

EXEC CICS HANDLE ABEND /* Activate abnormal term. exit */
PROGRAM("ENMABEND")
RESP(resp)
RESP2(resp2);

if (resp == DFHRESP(NORMAL))
if (++Line == 1) /* Erase screen when first line */

EXEC CICS SEND TEXT
FROM(Message)
LENGTH(strlen(Message))
ERASE
RESP(resp)
RESP2(resp2);

else { /* Follow-on line */
NLMsg??(Line-2??) = '\n';
NLMsg??(Line-1??) = '\0';
strcat(NLMsg,Message); /* '\n' occurs (Line-1) times */

EXEC CICS SEND TEXT
FROM(NLMsg)
LENGTH(strlen(NLMsg))
WAIT
RESP(resp)
RESP2(resp2);

}

if (resp != DFHRESP(NORMAL)) { /* Displayed successfully ? */
printf("%s\n",Message); /* No, print the message */
EXEC CICS SEND CONTROL ALARM; /* Indicate it by audible alarm */

}

EXEC CICS HANDLE ABEND /* Cancel abnormal term. exit */
CANCEL;

}

Figure 25. Sample Program ENMVERIF (Part 4 of 4)

90 MERVA Connection/ESA

Program ENMABEND

/**/
/* PROGRAM NAME: ENMABEND */
/* ------------- */
/* Abnormal termination exit for the Connection/ESA */
/* installation verification program ENMVERIF. */
/* */
/* COPYRIGHT: */
/* ---------- */
/* (C) Copyright International Business Machines Corporation 1994, 1997 */
/* */
/* REVISION LEVEL: 3.0 */
/* --------------- */
/* */
/* WHAT THIS PROGRAM DOES: */
/* ----------------------- */
/* This program prints the results of the Connection/ESA */
/* installation verification at the transient data destination COUT */
/* (or whichever destination represents the C/370 stdout). */
/* It requires that a MERVA user "SAMPLE" with password "SAMPLE1" */
/* exists. User "SAMPLE" must be approved to start an API application */
/* program. */
/* In addition, the queue API_IN must have been customized. */
/* */
/* ENMABEND gets control only after abnormal termination of the */
/* installation verification program ENMVERIF. A possible reason may be that */
/* the minimum level of the CICS Basic Mapping Support (BMS=MINIMUM) */
/* was specified at the CICS system generation or in the SIT (System */
/* Initialization Table). */
/* */
/* FILE MEMBERS NEEDED TO COMPILE: */
/* ------------------------------- */
/* ENMABEND - This file */
/* ENM4RAPI - The API include file */
/* The preprocessor of CICS/ESA V3.2.1 or later and */
/* the AD/Cycle C/370 compiler are required. */
/* */
/* PROGRAMS TO BE LINKED: */
/* ---------------------- */
/* */
/* ENMRAPI */
/* ENMRPRF */
/* ENMRUTL */
/* ENMSNIL */
/* In addition, the stubs DFHELII and DFHCPLC are required. */
/* */
/* REQUIRED INPUT: */
/* --------------- */
/* None. */
/* */
/* EXPECTED OUTPUT: */
/* ---------------- */
/* The confirmation that the connection to the MERVA API */
/* could be established and released, and that the queue API_IN exists. */
/* The last line to be printed must read: */
/* "Transaction ENM2 has ended". */
/* */

Figure 26. Sample Program ENMABEND (Part 1 of 3)

Appendix D. Sample Programs 91

/* MERVA CALLS USED: */
/* ----------------- */
/* ENMAttach - Attach to MERVA */
/* ENMDetach - Detach from MERVA */
/* ENMQueryQueue - Query queue information */
/* */
/* ADDITIONAL Connection/ESA CALLS USED: */
/* ------------------------------------- */
/* ENMSetProfile - Select the profile to be used */
/* ENMStartRAPI - Establish connection to MERVA */
/* ENMEndRAPI - Disconnect from MERVA */
/* ENMGetReason - Get reason code for internal error */
/**/
#include <stdio.h>
#include "enm4rapi.h"

main()
{

USHORT rc = 0; /* Return code of API calls */
SHORT rs = 0; /* Reason code of API calls */
USHORT Messagecount; /* Number of messages in a queue*/

UCHAR ProfName??(5??) = "PROF"; /* Connection profile name */

EXEC CICS ADDRESS EIB(dfheiptr); /* Get address of the CICS EIB */

printf("Transaction %s has started...\n",dfheiptr->eibtrnid);

/* Specify the name of the Connection/ESA profile */
ENMSetProfile (ProfName); /* Extrapartition TD queue name */

printf("Profile name %s specified\n",ProfName);

Figure 26. Sample Program ENMABEND (Part 2 of 3)

92 MERVA Connection/ESA

/* Establish connection to MERVA */
if ((rc = ENMStartRAPI (dfheiptr->eibtrnid)) == 0) {

printf("APPC Conversation named %s is up\n",dfheiptr->eibtrnid);

/* Attach to MERVA */
if ((rc = ENMAttach ("SAMPLE","SAMPLE1","API")) == 0) {

printf("Program attached to MERVA\n");

/* Check existence of queue API_IN */
if ((rc = ENMQueryQueue ("API_IN",&Messagecount)) == 0)

printf("Queue API_IN exists\n");
else

if ((rs = ENMGetReason ()) == 0)
printf("MERVA API: Error in ENMQueryQueue, rc = %d\n",rc);

else
printf("Error in ENMQueryQueue, rc = %d, rs = %d\n",rc,rs);

/* Detach from MERVA */
if ((rc = ENMDetach ()) == 0)

printf("Program detached from MERVA\n");
else

if ((rs = ENMGetReason ()) == 0)
printf("MERVA API: Error in ENMDetach, rc = %d\n",rc);

else
printf("Error in ENMDetach, rc = %d, rs = %d\n",rc,rs);

} else
if ((rs = ENMGetReason ()) == 0)

printf("MERVA API: Error in ENMAttach, rc = %d\n",rc);
else

printf("Error in ENMAttach, rc = %d, rs = %d\n",rc,rs);

/* Disconnect from MERVA */
if ((rc = ENMEndRAPI ()) == 0)

printf("APPC Conversation successfully terminated\n");
else

if ((rs = ENMGetReason ()) == 0)
printf("MERVA API: Error in ENMEndRAPI, rc = %d\n",rc);

else
printf("Error in ENMEndRAPI, rc = %d, rs = %d\n",rc,rs);

} else
if ((rs = ENMGetReason ()) == 0)

printf("MERVA API: Error in ENMStartRAPI, rc = %d\n",rc);
else

printf("Error in ENMStartRAPI, rc = %d, rs = %d\n",rc,rs);

printf("Transaction %s has ended\n",dfheiptr->eibtrnid);
}

Figure 26. Sample Program ENMABEND (Part 3 of 3)

Appendix D. Sample Programs 93

94 MERVA Connection/ESA

Appendix E. Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Deutschland
Informationssysteme GmbH
Department 3982
Pascalstrasse 100
70569 Stuttgart
Germany

© Copyright IBM Corp. 1993, 1997 95

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement or
any equivalent agreement between us.

The following paragraph does apply to the US only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries, or both:

v ACF/VTAM

v AD/Cycle

v AIX

v AIX/6000

v AS/400

v AT

v C/2

v C/370

v C/400

v CICS

v CICS/ESA

v COBOL/400

v DATABASE 2

v DB2

v IBM

v MERVA

v MVS/ESA

v MVS/SP

96 MERVA Connection/ESA

v Operating System/2

v OS/2

v OS/400

v RACF

v RISC System/6000

v RPG/400

v RS/6000

v S/390

v SAA

v Series/1

v Systems Application Architecture

v VTAM

Workstation (AWS) and Directory Services Application (DSA) are trademarks of
S.W.I.F.T., La Hulpe in Belgium.

Pentium is a trademark of Intel Corporation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Microsoft, Windows, and the Windows 95 logo are trademarks or registered
trademarks of Microsoft Corporation.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix E. Notices 97

98 MERVA Connection/ESA

Glossary of Terms and Abbreviations

This glossary defines terms and abbreviations as
they are used in this book. If you do not find the
terms you are looking for, refer to Dictionary of
Computing, New York: McGraw-Hill, 1994, the
S.W.I.F.T. User Handbook, or the S.W.I.F.T. USE
Planning Guide.

A
Advanced Program-to-Program Communication. A
communications architecture that allows transaction
programs to exchange information on a peer-to-peer
basis. SNA LU 6.2 allows APPC architecture to operate
on an SNA network.

Remote MERVA API Client. MERVA Application
Programming Interface on the S/390.

Remote MERVA API Server. A program of MERVA
Connection/ESA that is installed and runs on OS/2 or
AIX. It communicates with the Remote MERVA API
Client on the S/390 system.

API. application program interface.

application program interface. (1) A set of run-time
routines or system calls that allows an application
program to use a particular service provided by either
the operating system or another licensed program. (2)
The formally defined programming language interface
that is between a system control program or a licensed
program and the user of the program.

APPC. Advanced Program-to-Program
Communications.

C
call. To activate a program or procedure, usually by
specifying the entry conditions and jumping to an entry
point.

Common Programming Interface. An interface
providing languages and services that can be used to
develop applications that take advantage of Systems
Application Architecture (SAA) consistency.

Communications Side Information. An object in CPI
Communications containing initialization parameters.
These are, for example:

v The name of the partner program (for example, of the
Remote MERVA API Server) with which a program
can establish a conversation

v The name of the logical unit (LU) at the partner
program’s node, which CPI Communications requires
to establish a conversation.

CPI. Common Programming Interface.

CPI Communications. Provides a consistent
application programming interface for applications that
require program-to-program communication. The
interface makes use of the SNA LU 6.2 protocol to
create a rich set of interprogram services.

CPI-C. CPI Communications.

CSI. Communications Side Information.

customization. The process of describing optional
changes to defaults of a software program that is
already installed on the system and configured so that it
can be used.

customize. (1) To describe to the system the devices,
programs, users, and user defaults for a particular data
processing system or network. (2) To describe optional
preferences or changes to defaults in a software
program that is already installed and configured.

E
EPM. Extended Programming Model.

H
handle. A data structure that is a temporary local
identifier for an object. You create a handle by allocating
it. You make a handle identify an object at a specific
location by binding it.

I
identifier. (1) A name you use to refer to a data object.
An identifier contains some combination of letters, digits,
and underscores, but its first character cannot be a
digit. (2) In programming languages, a lexical unit that
names a language object, such as the name of an
array, record, label, or procedure. An identifier usually
begins with a letter optionally followed by letters, digits,
or other characters. (3) A sequence of bits or characters
that identifies a program, device, or system to another
program, device, or system.

include file. A text file that contains declarations used
by a group of functions, programs, or users.

I
Input Sequence Number (ISN). A sequential number
that identifies a message sent to the SWIFT network.

© Copyright IBM Corp. 1993, 1997 99

J
JCL. Job Control Language.

L
logical unit. (1) A type of network addressable unit
that enables end users to communicate with each other
and gain access to network resources. (2) In SNA, a
port through which an end user accesses the SNA
network in order to communicate with another user, and
through which the end user accesses the functions
provided by system services control points (SSCPs). A
LU can support at least two sessions, one with an
SSCP and one with another LU, and may be capable of
supporting many sessions with other LUs.

loop. A sequence of instructions performed repeatedly
until an ending condition is reached.

LU. logical unit.

M
MAC. Message Authentication Code.

Message Authentication Code. A code of a specific
length that is calculated with a particular algorithm from
a message buffer. It is sent with the message. The
partner recalculates it and compares it with the received
code. This allows modifications of the transferred data
to be detected.

Message Reference Number. A unique 16-digit
number assigned by MERVA to each message for
identification purposes. The message reference number
consists of an 8-digit domain identifier and an 8-digit
sequential number.

MRN. Message Reference Number.

N
node. An end point of a link, or a junction common to
two or more links in a network. Nodes can be
processors, controllers, or workstations, and they can
vary in routing and other functional capabilities.

P
partner. In data communications, the remote
application program or the remote computer.

peer-to-peer communications. Pertaining to data
communications between two nodes that have equal
status in the interchange. Either node can begin the
conversation.

S
semaphore. (1) Entity used to control access to
system resources. Processes can be locked to a
resource with semaphores if the processes follow
certain programming conventions. (2) Provides a
general method to synchronize two processes.

SNA. System Network Architecture.

System Network Architecture. (1) An architecture for
controlling the transfer of information in a data
communications network. (2) The description of the
logical structure, formats, protocols, and operating
sequences for transmitting information units through,
and controlling the configuration and operation of,
networks.

100 MERVA Connection/ESA

Bibliography

IBM Publications

With exception of the General Information and the
Licensed Program Specifications all MERVA books
are available as softcopy on the

v MERVA Family C-Kit, SK2T-0157

MERVA Family Books
v MERVA OS/2 Client User’s Guide, SH12-6282

v MERVA Family USE Administration Guide,
SH12-6065

MERVA OS/2 Books
v MERVA OS/2 V3 and MERVA ESA V3 General

Information, GH12-6018

v MERVA OS/2 V3 Licensed Program
Specifications, GH12-6057

v MERVA OS/2 V3 Application Programming,
SH12-6058

v MERVA OS/2 V3 Diagnosis Guide, SH12-6059

v MERVA OS/2 V3 User’s Guide, SH12-6060

v MERVA OS/2 V3 Installation and
Customization Guide, SH12-6061

MERVA AIX Books
v MERVA AIX Licensed Program Specifications,

GH12-6180

v MERVA AIX User’s Guide, SH12-6181

v MERVA AIX Installation and Customization
Guide, SH12-6182

v MERVA AIX Application Programming,
SH12-6183

v MERVA AIX Diagnosis Guide, SH12-6184

MERVA ESA Books
v MERVA OS/2 V3 and MERVA ESA V3 General

Information, GH12-6018

v MERVA ESA V3 Licensed Program
Specifications, GH12-6019

v MERVA ESA V3 Application Programming
Interface Guide, SH12-6183

v MERVA ESA V3 Operations Guide, SH12-6021

v MERVA ESA V3 User’s Guide, SH12-6022

v MERVA ESA V3 Macro Reference, SH12-6023

v MERVA ESA V3 Installation Guide, SH12-6025

v MERVA ESA V3 Messages and Codes,
SH12-6026

v MERVA ESA V3 Customization Guide,
SH12-6027

v MERVA ESA V3 Concepts and Components,
SH12-6028

v MERVA ESA V3 Advanced MERVA Link,
LY12-5081

v MERVA ESA V3 Workstation Based Functions,
SH12-6069

v MERVA ESA V3 IFT Connection for MVS,
SH12-6280

v MERVA ESA V3 Traffic Reconciliation
Reference, SH12-6281

Further IBM Publications
v IBM OS/2 Information and Planning Guide,

G326-0160

v IBM DATABASE 2 for OS/2 Planning Guide,
S20H-4784

v OS/2 Programming Tools and Information
Version 1.3 Control Program Programming
Reference, S91F-9260-00

v IBM Communications Server Version 4.1 Up
and Running !, GC31-8189

v IBM Personal Communications Version 4.1 for
OS/2 Up and Running !, GC31-8258

v IBM AIX and Related Products Documentation
Overview, SC23-2456

v IBM DATABASE 2 for AIX Planning Guide,
S20H-4758

v CICS/ESA Intercommunication Guide,
SC33-0657

v CICS/ESA System Definition Guide,
SC33-0664

v CICS/ESA Resource Definition (Online),
SC33-0666

v CICS/ESA Resource Definition (Macro),
SC33-0667

v CICS/ESA Messages and Codes, SC33-0672

v CICS/ESA Application Programming Guide,
SC33-0675

v CICS/ESA Application Programming
Reference, SC33-0676

© Copyright IBM Corp. 1993, 1997 101

S.W.I.F.T. Publications

The following books are published by the Society
for Worldwide Interbank Financial
Telecommunication, s.c., in La Hulpe, Belgium:

v S.W.I.F.T. User Handbook(1996)

v S.W.I.F.T. Dictionary (1996)

v S.W.I.F.T. FIN Security Guide (1996)

v S.W.I.F.T. Card Readers User Guide (1996)

102 MERVA Connection/ESA

Index

A
activating security user exits 67, 69
API

building programs 61
client 2
server 2

API functions (C)
data types 37
ENMClearSem 45
ENMCloseSem 43
ENMCreateSem 46
ENMEndRAPI 41
ENMGetReason 48
ENMOpenSem 47
ENMRestartRAPI 40
ENMSetProfile 38
ENMSetSem 44
ENMStartRAPI 39
ENMWaitSemList 42

authentication 55

C
CICS

APPC sample definitions 77
client, API 2
communication side information (CSI)

initialization parameters 27
Communications Server

installing sample configuration files 5
connection to MERVA AIX

disconnecting 41
reconnecting remote program 40
starting 39

connection to MERVA OS/2 V3
disconnecting 41
reconnecting remote program 40
starting 39

control point 30, 79
conversation to MERVA AIX

ending 38
starting 38

conversation to MERVA OS/2 V3
ending 38
starting 38

D
decryption

user exit for 57
diagnosis log

on RS/6000 73
on S/390 71, 73

disconnecting from MERVA AIX (C) 41
disconnecting from MERVA OS/2 V3 (C) 41

E
encryption

of transferred information 55

encryption (continued)
user exit for 55

ENM4ExitDecrypt 57
ENM4ExitEncrypt 57
ENM4ExitMacVerify (C) 58
ENMABEND 91
ENMClearSem 45
ENMCloseSem 43
ENMCreateSem 46
ENMEndRAPI 41
ENMGetReason 48
ENMOpenSem 47
ENMRestartRAPI 40
ENMSetProfile 38
ENMSetSem 44
ENMStartRAPI 39
ENMVERIF 87
ENMWaitSemList 42
environment 1
error handling

getting the reason code 48

G
generating security user exits 67, 69

I
installing, MERVA Connection/ESA 5
installing,Remote MERVA API Server 5
installing sample configuration files 5

L
language support 1
links 30
local LU 31, 79
log files

diagnosis log 71
on MERVA AIX 73
on MERVA OS/2 V3 73
on S/390 71
programmer’s log 71

log message layout
on S/390 71

M
MAC

user exit to generate 58
user exit to verify 58

MERVA AIX
Display Diagnosis Log function 73
logging directory 73

MERVA Connection/ESA
connection types 3
customizing 25

© Copyright IBM Corp. 1993, 1997 103

MERVA Connection/ESA (continued)
differences to MERVA OS/2 V3 or MERVA AIX

API 3
environment 1
functions provided by 1
installing 5
language support 1
LU 6.2 session 3
network definitions 25
objectives 1
profile settings 29

MERVA OS/2 V3
additional functions 38
Display/Print Diagnosis Log (DPD) function 73

message authentication code (MAC) 58
mode 33, 81

N
network definitions

customizing 25
sample RS/6000 79
sample S/390 75

Notices 95

P
partner LU 32, 79
profile

selecting 38
programmer’s log

Display/Print Diagnosis Log (DPD) function 73
on RS/6000 73
on S/390 71, 73

programs, sample
ENMABEND 91
ENMVERIF 87

R
reason code, returning 48
reconnecting remote program (ENMRestartRAPI) 40
Remote MERVA API Server

installing 5
resynchronization 51

S
sample

network definitions (RS/6000) 79
network definitions (S/390) 75
programs (C) 87
security exits 67
security user exits 83

sample programs
ENMABEND 91
ENMVERIF 87

SDLC 3
security considerations

overview 55
replacing user exits 67

security user exits
activating on RS/6000 69
activating on S/390 67
generating on RS/6000 69
generating on S/390 67
sample 67, 83

semaphore
clearing 45
closing 43
creating 46
opening 47
setting 44

semaphores
waiting for a list of 42

server, API 2
sessions 30
setting semaphores 44
SNA Server

installing sample profiles 5

T
Token Ring 3
Token Ring Link Station 30
Token Ring link station 80
Token Ring SNA DLC 80
transaction program 33, 79

U
user exit

replacing security 67
user exit points 56
user exits

ENM4ExitDecrypt (C) 57
ENM4ExitEncrypt (C) 57
ENM4ExitMacGen 58
ENM4ExitMacVerify 58
for MAC generation 58
for MAC verification 58
generating authentication key with 55
introduction to interfaces 55
sample security exit 83
using to encrypt data 55

V
VTAM

SDLC sample definitions 76
Token Ring sample definitions 75

104 MERVA Connection/ESA

Readers’ Comments — We’d Like to Hear from You

MERVA Family
MERVA Connection/ESA

Publication No. SH12-6187-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way
it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SH12-6187-00

SH12-6187-00

IBM
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH
Information Development, Dept. 0446
Postfach 1380
71003 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBM

Program Number: 5622-122 OS/2 LAN
5622-127 OS/2 Standalone
5765-449 AIX

Printed in Denmark by IBM Danmark A/S

SH12-6187-00

