
MERVA ESA Components

MERVA USE & Branch for Windows NT
Application Programming
Version 4 Release 1

SH12-6336-02

���

MERVA ESA Components

MERVA USE & Branch for Windows NT
Application Programming
Version 4 Release 1

SH12-6336-02

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix C.
Notices” on page 151.

Third Edition, May 2001

This edition applies to

Version 4 Release 1 of IBM MERVA ESA Components (5648-B30)

and to all subsequent releases and modifications until otherwise indicated in new editions.

Changes to this edition are marked with a vertical bar.

© Copyright International Business Machines Corporation 1999, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book v
Who Should Read This Book v
How This Book Is Organized v

Chapter 1. Introduction to the API of
MERVA 1
MERVA Instances 1
The MERVA Message Routing Concept 1
API Queues and Their Routing 2
API Concepts 3

The API Message Space. 3
Concurrent Access 3
Restricting Access to API Programs (API Queues) 3
Audit and Trace Information 3
Triggering an Application from MERVA 4
Message Header Checking 5

Chapter 2. MERVA API Data Types . . . 7
Switch (SWITCH). 7
User ID (USERID) 7
Password (PASSWD) 7
Function ID (FUNCID) 8
Queue Name (QNAME) 8
Key Type (KEYTYPE) 8
Search Key (KEY). 8
Message (MMSG). 9
Field Type (FIELDTYPE) 9
Message-Associated Field (FIELD) 10
Network (NETWORK). 11
Telex Header (TX_HEADER). 11
Telex Information (TX_INFO) 14
Trace Data (TRACEDATA) 15
Purpose Group (GROUP) 16
Message Console Identifer (CON_MSG_ID). . . . 16
Intervention (INTERVENTION). 16
Right (RIGHTS) 17
Pointer to Function (PFUNC) 17

Chapter 3. MERVA API Function Calls 19
Functional Overview 19
ENMAdd—Add Created Message to Queue . . . 23
ENMAttach—Attach to MERVA Instance 26
ENMCheck—Checking a Message 32
ENMCheckSwiftMsg—Checking a SWIFT Message 35
ENMCheckUserRight—Checking User Rights . . . 38
ENMClear—Free Created Message 41
ENMClearSem—Clear a Semaphore 43
ENMCloseSem—Close a Semaphore 45
ENMCreate—Create New Message 47
ENMCreateSem—Create a Semaphore 49
ENMDelete—Delete Current Message from Queue 51
ENMDetach—Detach from MERVA Instance . . . 53
ENMEndRAPI—Disconnect from the MERVA
System 55
ENMFirstEntry—Read First Message of Queue . . 56

ENMFree—Unlock Message 59
ENMGetReason—Get Reason Code for Internal
Error 61
ENMKeyNext—Read Next Message with Key . . . 64
ENMKeyRead—Read Message from Queue by Key 67
ENMLastEntry—Read Last Message of Queue. . . 70
ENMNextEntry—Read Next Message in Queue . . 73
ENMOpenSem—Open a Semaphore 75
ENMPreviousEntry—Read Previous Queue Message 77
ENMPut—Return Message to Queue and Unlock. . 80
ENMQueryQueue—Get Status of Queue 83
ENMQueryQueueEx—Get Status of Queue 85
ENMReadField—Read Field Associated with
Message 87
ENMRestartRAPI—Reconnect Remote API Program
to Another MERVA System 89
ENMRouteAdd—Route and Add a Created Message 91
ENMRoutePut—Route Message to Queue 94
ENMSetAppl—Set Application Name. 97
ENMSetProfile—Set a Connection Profile 99
ENMSetSecurity—Set Conversation Security
Information 100
ENMSetTestEnv—Set Test Environment 101
ENMSetSem—Set a Semaphore 102
ENMStartRAPI—Establish Connection to Another
MERVA System. 104
ENMTrace—Turn API Trace ON or OFF 105
ENMWaitSemList—Wait for a List of Semaphores 107
ENMWhereIs—Query Location of Message . . . 110
ENMWriteField—Write Field Associated with
Message 113
ENMWriteLog—Writing Diagnosis and Console
Log Entries 116
ENMWriteTrace—Write Application Information to
Trace File 118

Chapter 4. How to Use, Build, and
Load an API Program 121
Preparing MERVA for an API Program 121
Using an API Program 121
Building an API Program 122
Loading API Functions Dynamically. 122
Adding an API Program to the MERVA Menu
window 123
API Sample Programs 125

Chapter 5. The REXX Function
Package 127
Preparing MERVA for a REXX Program 127
Using the REXX Function Package 127
REXX Function Calls 128
REXX Return Codes 128
Example 128
REXX Sample Files 129

© Copyright IBM Corp. 1999, 2001 iii

||

Chapter 6. The SWIFT Link API 131
ENMChecksum—Handle Message Checksum . . 132
ENMAuthenticate—Authenticate Message 136

Appendix A. Return Codes 141

Appendix B. Message Header
Checking 149
S.W.I.F.T. Rules 149
Telex Rules 150

Appendix C. Notices 151

Trademarks 152

Glossary of Terms and Abbreviations 155

Bibliography. 167
MERVA ESA Publications 167
MERVA ESA Components Publications 167
Other IBM Publications 167
S.W.I.F.T. Publications 167

Index 169

iv MERVA USE & Branch for Windows NT Application Programming

About This Book

This book describes the Application Programming Interface (API) of the IBM
licensed program Message Entry and Routing with Interfaces to Various
Applications USE & Branch for Windows NT (hereafter abbreviated to MERVA or
MERVA Workstation if it is necessary to be more specific).

Who Should Read This Book
This book is written for application programmers who need to access the services
provided by the MERVA base component of MERVA. It contains examples of
coding methods. It is assumed that you are familiar with the C or REXX
programming language, and with the following MERVA services:
v Queuing and routing of messages in MERVA
v Allowing users to access API programs in MERVA

For a detailed description of these services, refer to the MERVA USE & Branch for
Windows NT User’s Guide.

How This Book Is Organized
“Chapter 1. Introduction to the API of MERVA” on page 1 contains introductory
information about application programming and MERVA. It explains the API
concepts and gives you an overview of the functions.

“Chapter 2. MERVA API Data Types” on page 7 describes to you the symbol
definitions and data types that let you use the interface.

“Chapter 3. MERVA API Function Calls” on page 19 contains a detailed description
of each function call. It describes the purpose of the function, processing
conditions, prerequisites and syntax to use the function, and the function
parameters.

“Chapter 4. How to Use, Build, and Load an API Program” on page 121 contains
tips and techniques for the use of the MERVA API.

“Chapter 5. The REXX Function Package” on page 127 contains information on how
to use the REXX programming language to write application programs with the
REXX function package.

“Chapter 6. The SWIFT Link API” on page 131 contains a detailed description of
the SWIFT Link API functions.

The appendixes describe return codes and message header checking.

© Copyright IBM Corp. 1999, 2001 v

vi MERVA USE & Branch for Windows NT Application Programming

Chapter 1. Introduction to the API of MERVA

With the MERVA API, you can write programs for additional message processing.
You can, for example:
v Load messages in and unload messages from message queues
v Gather statistics on messages
v Edit messages
v Check the contents of messages

MERVA supports the following predefined message types:
v SWIFT messages
v Telex messages

For more information about these message types, refer to the MERVA USE &
Branch for Windows NT User’s Guide.

MERVA also supports the processing of user-defined message types. You can use
MERVA as a queuing and routing system for general messages that are entered
and removed by using the API. Note that the API and MERVA do not check these
types of messages.

MERVA Instances
After you install the MERVA program code to your system, you have to configure
MERVA by creating a MERVA instance. Note that MERVA can run only one
instance at the same time.

The API program needs a running MERVA instance in multi-user mode and the
environment variable ENMD_IPC_DIR.

For detailed information refer to “Chapter 4. How to Use, Build, and Load an API
Program” on page 121 or to the MERVA USE & Branch for Windows NT Installation
and Customization Guide.

The MERVA Message Routing Concept
Messages within a MERVA instance are stored in a message database. A message is
stored in the database when you save a newly created message, add a message
with the API, or when an incoming message is received from the SWIFT network
or via MERVA Link. Within the message database, messages are assigned to logical
entities called message queues.

In general, message queues store messages on a first-in, first-out basis until they
are processed. The messages are then routed to the next message queue. The queue
to which the message is forwarded is determined by the routing table for your
installation. Each message queue belongs to a purpose group. A purpose group is a
logical collection of one or more message queues.

Individual MERVA functions, such as Create SWIFT System Messages or Automatic
Message Print, are associated with a purpose group and are responsible for
processing all messages held in the queues of that purpose group.

© Copyright IBM Corp. 1999, 2001 1

The advantage of using purpose groups is that the system administrator can define
routing conditions by using the MERVA Customization program. A routing
condition tests the contents of message fields, for example, the amount field. It also
routes the messages accordingly, possibly to different queues within the same
purpose group. For more information about message routing, refer to the MERVA
USE & Branch for Windows NT User’s Guide.

MERVA includes a default set of queues and routing definitions. For information
on how to customize MERVA, refer to the MERVA USE & Branch for Windows NT
Installation and Customization Guide.

API Queues and Their Routing
API applications can only access queues that belong to the API purpose group.
Therefore, messages in queues that belong to other purpose groups must be routed
to queues in the API purpose group to be processed by an application program.

With this method, you can define the set of messages that can be accessed by an
external application. You can also limit the changes that an application is allowed
to make to a message. For example, if an application changes a part of the message
that it is not allowed to be changed, the routing checks the field and routes the
message to a queue for investigation. If the message is correct, it can then be
routed to the queue of any purpose group in the MERVA instance.

With the MERVA Customization Program, you can define your own API queues
and their corresponding routing. The following figure shows an API routing
example that allows an API program to load and unload messages to and from the
SWIFT ready-to-send queues.

The messages are routed from the APLOAD queue to a SWIFT ready-to-send
queue, for example, the SLRNRM02 queue as shown in Figure 1. Incoming
messages are routed from the SLINCMS2 queue to the APUNLOAD queue in this
example.

Figure 1. API Routing Example

2 MERVA USE & Branch for Windows NT Application Programming

API Concepts
The following section describes the API concepts. It also informs you about tracing,
triggering, and message header checking.

The API Message Space
You can access a message in an API queue only via a call to an interface function.
The interface allocates sufficient space to store a message and information about
the message.It then allows the application access to that space. The API only
supports one message at a time. If you want to work with more than one message,
you must store these messages in your own program space.

The maximum size of a message is 28000 bytes.

Concurrent Access
You can use more than one API program at a time. Message processing, for
example, can be shared by API programs. A program takes the message from a
queue and routes it to its next queue. The next program takes it from this queue,
processes it, and sends it to a third queue for further processing.

The routing procedure described in Figure 1 on page 2 could also be divided into
two programs. One program handles load processing, the other handles unload
processing.

Restricting Access to API Programs (API Queues)
Because MERVA works in an environment in which programs compete for
resources, it needs to control its own resources. Its own resources are the message
queues. An application program must therefore identify itself to MERVA before it
is allowed to access the system’s queues. The user must also be authorized to
execute API programs. Additionally, queues must be assigned to the API access
right. Otherwise, no queue and therefore no message can be accessed.

To identify an application program, use the function call ENMSetAppl. Otherwise,
the program name is used as the default value.

To authorize a user to execute API programs, you must assign and approve the
API - with password or API - without password access right to the user. To do
this:
1. Select Administration and Users from the MERVA menu.
2. Select Update User Rights from the Selected menu.
3. Select API - with password or API - without password from the list of Current

Access Rights.

To assign queues to the API access right, select the Users program. In this program:
1. Select Update User Rights from the Selected menu.
2. Select the needed access right from the list of Current Access Rights.
3. Select Details.
4. Select one or more queues.

Audit and Trace Information
The API trace-handling function ENMTrace() allows an application to trace its calls
to the API. It also allows to add its own information to the API trace file of
MERVA.

Chapter 1. Introduction to the API of MERVA 3

When the trace is set to ON by using the ENMTrace() function, the API writes an
entry for each function call to that file. Each entry contains the name of the
application, the name of the function called, and the contents of the parameters
passed to the function as shown in the following example.
[7]*232 19990101 12:00:04 174 ENMCAPI 12 12
ENMAdd enmcapi.c 1234
Queue: APLOAD

If the trace is set to ON, an application can use the function ENMWriteTrace() to
write its own entries to the API trace file.Each entry consists of the name of the
application, the function name, and the information to be added as shown in the
following example.
[9]*232 19990101 12:00:04 174 ENMCAPI 12 12
ENMWriteTrace enmcapi.c 1234

This is an information message.

In addition, each call to a function that affects messages in queues, such as
ENMAdd(), ENMPut(), ENMRoutePut(), and ENMDelete() results in an entry in
the User Audit Log file.

For further information about the diagnosis log file, refer to the MERVA USE &
Branch for Windows NT Installation and Customization Guide.

Triggering an Application from MERVA
Application programs can either continually pull message queues using a calling
mechanism, the ENMNextEntry or ENMQueryQueue function, or a triggering
service using alarms. This triggering service is an alternative provided by MERVA.

An alarm consists of the alarm name and the semaphore cleared when the alarm is
activated.An alarm is associated with a queue and activated when a message
enters that particular queue. A queue can have more than one alarm attached to it.
How you define alarms to mark when a message enters a certain queue is
described in the MERVA USE & Branch for Windows NT Installation and
Customization Guide.

The following figure shows you an example of an application program that creates
a semaphore and sets it. It then waits for the semaphore to be cleared.

4 MERVA USE & Branch for Windows NT Application Programming

If a message enters the specified queue, MERVA raises all alarms that are defined
for that queue. One of the alarms clears the semaphore of the application program.
The program processes the message, sets the semaphore, and waits for the
semaphore to be cleared again.

Message Header Checking
The API includes functions to check whether the header of a message conforms to
basic rules of the destination network. The header checking by the API is, however,
not a comprehensive check whether the header is valid. A message that passes the
API header checking can still be rejected by the network.

The rules for the S.W.I.F.T. and Telex networks are described in “Appendix B.
Message Header Checking” on page 149.

Figure 2. Clearing a Semaphore

Chapter 1. Introduction to the API of MERVA 5

6 MERVA USE & Branch for Windows NT Application Programming

Chapter 2. MERVA API Data Types

The API provides you with a set of symbol definitions and data types to facilitate
use of the interface.

It also includes shortened forms of standard data types and pointers to them:
typedef unsigned char UCHAR;
typedef unsigned short USHORT;
typedef USHORT *PUSHORT;
typedef UCHAR *PUCHAR;

Note: All length definitions in the API header file contain the length of the string
excluding the additional character that is needed to store the null terminator
for strings. For example:
#define UIDlen 8

The API also includes definitions of all return codes.

Switch (SWITCH)
This data type indicates the logical states ON and OFF:

typedef enum {;OFF,
ON

}SWITCH;

The API also supplies a pointer to the SWITCH data type:
typedef SWITCH *PSWITCH;

User ID (USERID)
This data type contains the identification of an application to access the MERVA
instance. The API supplies the length definition, the data type, and a pointer to the
data type:
#define UIDlen 8

typedef UCHAR USERID[UIDlen+1];
typedef USERID *PUSERID;

The user ID must conform to the rules of the MERVA Users program. Refer to the
MERVA USE & Branch for Windows NT User’s Guide for details.

Password (PASSWD)
This data type contains the authorization of an application to access the MERVA
instance. The API supplies the length definition, the data type, and a pointer to the
data type:
#define PWlen 8

typedef UCHAR PASSWD[PWlen+1];
typedef PASSWD *PPASSWD;

© Copyright IBM Corp. 1999, 2001 7

Function ID (FUNCID)
This data type is a reserved data type. Currently, only the function ID API is
supported. The API supplies the length definition, the data type, and a pointer to
the data type:
#define FUNClen 3

typedef UCHAR FUNCID[FUNClen+1];
typedef APPLID *PFUNCID;

Queue Name (QNAME)
This data type contains the name of a MERVA queue. The API supplies the length
definition, the data type, and a pointer to the data type:
#define QNlen 8

typedef UCHAR QNAME[QNlen+1];
typedef QNAME *PQNAME;

The queue name must be defined for the API purpose group by using the MERVA
Customization program. For more information refer to the MERVA USE & Branch
for Windows NT Installation and Customization Guide.

Key Type (KEYTYPE)
This data type is an enumerated data type of valid key types to search for a
message in a MERVA queue. The API supplies the data type and a pointer to the
data type:
typedef enum

{
KEY_ISN,
KEY_MRN

}KEYTYPE;

typedef KEYTYPE *PKEYTYPE;

KEY_ISN, the Input Sequence Number (ISN), is returned by the SWIFT network to
uniquely identify each message sent to it. KEY_MRN, the Message Reference
Number (MRN), is assigned by MERVA to uniquely identify each message within
the system.

Search Key (KEY)
This data type is a union of key types. It is used when a message from a queue is
retrieved. The API supplies the length definition, the data type, and a pointer to
the data type:
#define ISNlen 6
#define MRNlen 16

typedef union
{

UCHAR ISN[ISNlen+1];
UCHAR MRN[MRNlen+1];

}KEY;

typedef KEY *PKEY;

The keys must have the following format:

8 MERVA USE & Branch for Windows NT Application Programming

Key Format

ISN Six digits
Sample ISN: 123456

MRN Eight alphanumeric characters, followed by eight numeric digits. Refer to
the MERVA USE & Branch for Windows NT User’s Guide for more
information.
Sample MRN: AIXMERVA12345678

Message (MMSG)
This data type contains the contents of the message. The API supplies the data
type and a pointer to the data type:
#define MSG_LENGTH 28000

typedef PUCHAR MMSG;
typedef MMSG *PMMSG;

A message can be up to 28000 characters long. Note that the definition of
MSG_LENGTH specifies the maximum length of the message but not the real
length.

The following definitions guarantee compatibility with previous API programs for
AIX(R):
#define MSG MMSG
#define PMSG PMMSG

Note that these definitions are only available if <windows.h> is not included in
the API program.

Field Type (FIELDTYPE)
This data type is an enumerated data type of valid field names for data that is
associated with a message of MERVA. The API supplies the data type and a
pointer to the data type:
typedef enum

{
FLD_MRN,
FLD_ISN,
FLD_MSGNET,
FLD_MSGLEN,
FLD_MSGOK,
FLD_MSGACK,
FLD_MSGROUTE,
FLD_MSGCMNT,
FLD_TXHEAD,
FLD_MSGUSER,
FLD_MSGTRUSR,
FLD_TXINFO,
FLD_MSGMAC,
FLD_MSGPAC

}FIELDTYPE;

typedef FIELDTYPE *PFIELDTYPE;

The fields serve the following purpose:

Field Purpose

FLD_MRN Message reference number; key for the message

Chapter 2. MERVA API Data Types 9

FLD_ISN Input SWIFT number; key for the message

FLD_MSGNET Destination network for the message

FLD_MSGLEN Message length

FLD_MSGOK Message status

FLD_MSGACK Response of the network to the message if a
message has been sent to the network

FLD_MSGROUTE Additional routing information

FLD_MSGCMNT Comment

FLD_TXHEAD Telex header data for the message. The contents of
the telex header are listed in “Telex Header
(TX_HEADER)” on page 11.

FLD_MSGUSER Last user who changed the message

FLD_MSGTRUSR Last user who processed the message, for example,
authorized it

FLD_TXINFO Telex transmission data of the message. The
contents of the telex information field are listed in
“Telex Information (TX_INFO)” on page 14.

FLD_MSGMAC Contains the message authentication code (MAC)
information

FLD_MSGPAC Contains the proprietary authentication code (PAC)
information

Message-Associated Field (FIELD)
This data type is a union of the data fields associated with a message. The field
data type can be accessed via the API. The API supplies the length definition for
the fields, the union of fields, and a pointer to the union data type:
#define MRNlen 16
#define ISNlen 6
#define OKlen 8
#define ACKlen 127
#define ROUTlen 19
#define CMTlen 1999
#define UIDlen 8
#define MSGMAClen 127
#define MSGPAClen 127

typedef union
{

UCHAR mrn[MRNlen+1];
UCHAR isn[ISNlen+1];
NETWORK msgnet;
USHORT msglen;
UCHAR msgok[OKlen+1];
UCHAR msgack[ACKlen+1];
UCHAR msgroute[ROUTlen+1];
UCHAR msgcomment[CMTlen+1];
TX_HEADER txhead;
UCHAR msguser[UIDlen+1];
UCHAR msgtrusr[UIDlen+1];
TX_INFO txinfo;
UCHAR msgmac[MSGMAClen+1];
UCHAR msgpac[MSGPAClen+1];

}FIELD;

10 MERVA USE & Branch for Windows NT Application Programming

typedef FIELD *PFIELD;
typedef PFIELD *PPFIELD;

The fields can contain the following values:

Field Value

mrn Any valid message reference number. For a description of the
format, refer to “Search Key (KEY)” on page 8.

isn Any valid input sequence number. For a description of the format,
refer to “Search Key (KEY)” on page 8.

msgnet Any value listed in the enumerated data type NETWORK. For a
description of the network, refer to “Network (NETWORK)”.

msglen An unsigned short value.

msgok Any character string up to the length of this field. For values
predefined by MERVA, refer to the MERVA USE & Branch for
Windows NT Installation and Customization Guide.

msgack Any character string up to the length of this field. For details refer
to the MERVA USE & Branch for Windows NT Installation and
Customization Guide.

msgroute Any character string up to the length of this field.

msgcomment Any character string. For details refer to the MERVA USE & Branch
for Windows NT Installation and Customization Guide.

txhead Telex header structure. For a description of the telex header, refer
to “Telex Header (TX_HEADER)”.

msguser Any character string up to the length of this field.

msgtrusr Any character string up to the length of this field.

txinfo Telex info structure. For a description of the telex info, refer to
“Telex Information (TX_INFO)” on page 14.

msgmac Any character string up to the length of this field.

msgpac Any character string up to the length of this field.

Network (NETWORK)
This data type is an enumerated data type of networks to which MERVA can be
connected. The API supplies the following data type:
typedef enum

{
NET_SWIFT=0x02,
NET_TELEX=0x03,
NET_OWN=0x04

}NETWORK;

Telex Header (TX_HEADER)
This data type contains data that is needed to send a message via the telex
network. All elements of the structure are strings. The API supplies the length
definition structure elements and for the structure itself:
#define TESTKEYlen 16
#define TEST_COMMlen 35
#define ADDRlen 35
#define DATElen 8

Chapter 2. MERVA API Data Types 11

#define TO_IDlen 11
#define DIAL_UPlen 20
#define ANSW_BAlen 20
#define LINElen 2
#define TIMElen 4
#define REFlen 16
#define NOTElen 64

typedef struct
{

UCHAR testkey_cal [1+1];
UCHAR testkey_rc [1+1];
UCHAR testkey_val [TESTKEYlen+1];
UCHAR testkey_comment1[TEST_COMMlen+1];
UCHAR testkey_comment2[TEST_COMMlen+1];
UCHAR sender_addr0 [ADDRlen+1];
UCHAR sender_addr1 [ADDRlen+1];
UCHAR sender_addr2 [ADDRlen+1];
UCHAR sender_addr3 [ADDRlen+1];
UCHAR date [DATElen+1];
UCHAR to_id [TO_IDlen+1];
UCHAR receiver_addr0 [ADDRlen+1];
UCHAR receiver_addr1 [ADDRlen+1];
UCHAR receiver_addr2 [ADDRlen+1];
UCHAR receiver_addr3 [ADDRlen+1];
UCHAR line [LINElen+1];
UCHAR dial_up1 [DIAL_UPlen+1];
UCHAR answ_back1 [ANSW_BAlen+1];
UCHAR dial_up2 [DIAL_UPlen+1];
UCHAR answ_back2 [ANSW_BAlen+1];
UCHAR type [1+1];
UCHAR timed_time [TIMElen+1];
UCHAR timed_date [DATElen+1];
UCHAR ref_text [REFlen+1];
UCHAR note [NOTElen+1];

} TX_HEADER;

All entries to elements of the telex header structure must use the character set
shown in the following figure. It consists of the internationally defined telex
characters.
The fields of the telex header are as follows:
Letters ABCDEFGHIJKLMNOPQRSTUVWXYZ

Numbers 1234567890

Others /.,:+-()=?’

Figure 3. Baudot Character Set

12 MERVA USE & Branch for Windows NT Application Programming

Field Explanation

testkey_cal One of the following characters:

Y Route to testkey calculation (requires correct routing to be
set up).

N Do not route to testkey calculation.

testkey_rc One of the following characters:

(Blank). Testkey calculation has not yet been performed, or
has failed.

C The testkey was calculated by a testkey-processing
program.

V The testkey was verified by a testkey-processing program.

G The testkey was verified, but the sequence number was not
in sequence and therefore not correct.

M The testkey was calculated or verified manually.

testkey_val The testkey of the message.

testkey_comment1-2
A comment of two lines, each up to 35 characters long that can be
added to the testkey.

sender_addr0-3
Four lines, each up to 35 characters long that contain the sender’s
address.

date The date must be in the format YYYYMMDD, where YYYY is the
year, MM the month, and DD the day.

to_id The correspondent’s identifier up to 11 characters long.

receiver_addr0-3
Four lines, each up to 35 characters long that contain the receiver’s
address.

line The telex line number. Numbers only.

dial_up1 The first dial-up number to be used. Numbers, blanks, slashes (/)
and dashes (-).

answ_back1 The expected answerback.

dial_up2 The alternative dial-up number to be used. Numbers, blanks,
slashes (/) and dashes (-).

answ_back2 The expected alternative answerback.

type One of the following characters:

N Normal Messages.

U Urgent Messages.

T Timed Messages.

timed_time The time must be in the format HHMM, where HH is the hour
and MM the minutes.

timed_date The date must be in the format YYYYMMDD, where YYYY is the
year, MM the month, and DD the day.

Chapter 2. MERVA API Data Types 13

ref_text Message identifier, 16 characters.

note A comment of up to 64 characters.

Telex Information (TX_INFO)
This data type contains data that describes the transmission process of received
telexes and of sent telexes. All structure elements are strings.
#define ACK_INFOlen 1
#define TYPElen 1
#define REPORT_NRlen 5
#define DIAL_UPlen 20
#define RCV_AWBlen 20
#define STARTTIMElen 14
#define DURATIONlen 6
#define REASON_CODElen 8
#define TELEX_BOXlen 1
#define TELEX_LINElen 2
#define TERM_CODElen 1
#define EXCEPTIONSlen 1
#define POSS_DUPLlen 1
#define CARGOlen 50

typedef struct
{

UCHAR ack_info [ACK_INFOlen+1];
UCHAR type [TYPElen+1];
UCHAR report_nr [REPORT_NRlen+1];
UCHAR dial_up [DIAL_UPlen+1];
UCHAR rcv_awb [RCV_AWBlen+1];
UCHAR starttime [STARTTIMElen+1];
UCHAR duration [DURATIONlen+1];
UCHAR reason_code[REASON_CODElen+1];
UCHAR telex_box [TELEX_BOXlen+1];
UCHAR telex_line [TELEX_LINElen+1];
UCHAR term_code [TERM_CODElen+1];
UCHAR exceptions [EXCEPTIONSlen+1];
UCHAR poss_dupl [POSS_DUPLlen+1];
UCHAR cargo [CARGOlen+1];

} TX_INFO;

The field values are defined by the telex provider but the standard routing of
MERVA assumes that the ack_info field contains one of the following values:

0 Positive telex transmission acknowledgment

8 Negative telex transmission acknowledgment

If the telex provider does not use these values, you must change the standard
routing.

For more detailed information about standard routing, refer to the MERVA USE &
Branch for Windows NT Installation and Customization Guide.

14 MERVA USE & Branch for Windows NT Application Programming

The following list shows you the fields of the telex information and their
explanations. Note that the explanations do not describe the field contents because
telex information is created only by the telex provider. For a description of the
field contents, refer to the documentation of the telex provider.

Field Explanation

ack_info The acknowledgment information indicates whether the telex was
positively acknowledged by the telex network. Suggested values
are:

0 Positive acknowledgment

8 Negative acknowledgment

type The type field indicates the direction of the telex, for example,
outgoing or received telex.

report_nr The report sequence number.

dial_up The dial-up number for transmission.

rcv_awb The received answerback.

starttime The starting time of transmission.

duration The transmission duration.

reason_code The error message code.

telex_box The telex box for transmission.

telex_line The telex line number.

term_code The box termination code.

exceptions The exception code indicates a possible error in the telex.

poss_dupl Possible duplicate indicator.

cargo Cargo field that the application can use, for example, for the
document number.

MERVA recognizes a message as a Telex message if one of the telex header or telex
information fields are not empty.

Trace Data (TRACEDATA)
This data type contains information that the application adds to the API trace file.
The API supplies the length definition, the data type, and a pointer to the data
type:
#define DATAlen 240

typedef UCHAR TRACEDATA[DATAlen+1];
typedef TRACEDATA *PTRACEDATA;

Chapter 2. MERVA API Data Types 15

Purpose Group (GROUP)
This data type is an enumerated data type of all purpose groups defined in
MERVA. The API supplies the data type and a pointer to the data type:

typedef enum
{

/* Message Processing SWIFT Message */
GROUP_INCOMPLT = 101,
GROUP_VERIFY = 102,
GROUP_AUTH1 = 103,
GROUP_EDIT = 104,
GROUP_AUTH2 = 105,

/* SWIFT Link */
GROUP_SEND = 201,
GROUP_MANL_AUTH = 202,

/* MERVA Link */
GROUP_MLINK_RECEIVE = 301,
GROUP_MLINK_TO_SEND = 302,
GROUP_MLINK_WAIT_ACK = 303,
GROUP_MLINK_CONTROL = 304,

/* MERVA Base */
GROUP_PURGE = 401,
GROUP_DELETE = 402,
GROUP_ERROR = 403,
GROUP_UNLOAD = 404,
GROUP_PRINT = 405,
GROUP_API = 406,
GROUP_USE_FROM_SWIFT = 407,
GROUP_USE_NAKED = 408,
GROUP_USE_MT960_WITHOUT_PRE = 409,
GROUP_USE_INCOMING_COMMAND = 410,

/* Message Processing Telex */
GROUP_TELEX_CALC_TESTKEY = 501,
GROUP_TELEX_NON_ACK = 502,
GROUP_TELEX_VERIFY_TESTKEY = 504

}GROUP;

typedef GROUP *PGROUP;

Message Console Identifer (CON_MSG_ID)
This data type is an enumerated data type of values to determine the error level. It
also defines whether error messages are written only to the diagnosis log or also to
the MERVA message console.

typedef enum
{

CON_ID_NONE = '.',
CON_ID_INFO = 'I', /* Information */
CON_ID_ERROR = 'E', /* Recoverable error */
CON_ID_FATAL = 'F' /* Non-recoverable error */

}CON_MSG_ID;

Intervention (INTERVENTION)
This data type is an ennumerated data type of values that define whether operator
intervention is required for the corresponding error message.

16 MERVA USE & Branch for Windows NT Application Programming

typedef enum
{

INT_NOT_REQ = '.',
INT_REQ = 'R'

}INTERVENTION;

Right (RIGHTS)
This data type enumerates valid rights to be checked. It is an enumerated data
type added to the header file enmcapi.h:

typedef enum
{

USER_R1,
USER_R2,
USER_R3,
USER_R4,
USER_R5,
USER_R6,
USER_R7,
USER_R8,
USER_R9

}RIGHTS

Pointer to Function (PFUNC)
Each function contains a pointer definition. The function type is defined as
PFUNC<function name>. To use, for example, ENMAdd, the following definition
is valid:

USHORT ENMAdd(QNAME QueueID); /* prototype of ENMAdd */
typedef USHORT (* PFUNCENMAdd)(QNAME); /* definition of pointer

to function ENMAdd *

You can use this definition to load the library dynamically. For a detailed
description refer to “Chapter 4. How to Use, Build, and Load an API Program” on
page 121.

Chapter 2. MERVA API Data Types 17

18 MERVA USE & Branch for Windows NT Application Programming

Chapter 3. MERVA API Function Calls

This chapter describes in alphabetical order the MERVA API functions. The
description of each function is divided into the following parts:

Purpose A brief description of the function’s purpose.

Format The syntax of the function, its name in mixed case,
and the number and order of parameters.

Parameters A description of each parameter of the function.

Processing (optional) Conditions that might occur while this function is
processed.

Restrictions (optional) Prerequisites for functions and the validity of data
returned by the function or passed to the function.

Example An example of how to call the function in C
language.

Functional Overview
The following API functions are valid:

Instance connection or disconnection

ENMSetAppl() Set the application name.

ENMAttach() Start to work on messages.

ENMDetach() Stop to work on messages.

Message creation

ENMCreate() Get an empty message.

Message retrieval

ENMKeyRead() Search for a message in a given queue by using a
specified key.

ENMKeyNext() Search for the next message in a queue by using a
specified key.

ENMFirstEntry() Get the oldest message from the message buffer.

ENMLastEntry() Get the latest message from the message buffer.

ENMNextEntry() Get the next message from the message buffer.

ENMPreviousEntry() Get the previous message from the message buffer.

Note: With these calls, you can lock the message.
A locked message can only be changed by
the user who locked it.

© Copyright IBM Corp. 1999, 2001 19

Message routing

ENMAdd() Put a new message in a queue.

ENMRouteAdd() Add the created message to its destination queue.

ENMFree() Return the original message without any changes
to its original queue.

ENMPut() Return a message to its original queue.

ENMRoutePut() Put a message in the next queue, as defined by the
routing tables.

Accessing information associated with messages

ENMReadField() Get the contents of one field with information
associated with the actual message.

ENMWriteField() Set a field of associated information.

Note: To access associated information, a message
must be stored in the message space of the
API.

Message removal

ENMClear() Erase the contents of a new message.

ENMDelete() Delete a message.

Message checking

ENMCheck() Check whether a message conforms to the rules
defined in the message process tables on your
system.

ENMCheckSwiftMsg() Check whether a message conforms to the rules
established by S.W.I.F.T., and whether the length of
the message is appropriate for the message type.

API trace handling

ENMTrace() Switch the trace on or off.

ENMWriteTrace() Add a line to the API trace file.

ENMWriteLog() Write diagnosis and console log entries.

Status inquiry

20 MERVA USE & Branch for Windows NT Application Programming

||
|
|

ENMQueryQueue() Get the number of messages currently in a queue.

ENMQueryQueue can manage up to 65535
messages. The highest number of messages is
2 147 483 647. To get the correct number of
messages, use ENMQueryQueueEx.

ENMQueryQueueEx() Get the number of messages currently in a queue.

ENMQueryQueueEx can manage up to
2 147 483 647 messages. This is the highest
number of messages.

ENMWhereIs() Get the purpose group that a specified message
last entered.

API triggering service

ENMCreateSem() Create a semaphore.

ENMOpenSem() Open a semaphore.

ENMCloseSem() Close and delete a semaphore.

ENMSetSem() Set a semaphore unconditionally.

ENMClearSem() Clear a semaphore unconditionally.

ENMWaitSemList() Wait for a list of semaphores.

API User services

ENMCheckUserRight() Check user rights.

Functions to ensure compatibility between MERVA and MERVA Connection/NT

ENMSetProfile() In MERVA Connection/NT, this function specifies
the name of the profile you want to use. In the
local API, this function does nothing.

ENMStartRAPI() In MERVA Connection/NT, this function
establishes the connection to a MERVA server. In
the local API, this function calls ENMSetAppl().

ENMRestartRAPI() In MERVA Connection/NT, this function
reconnects to a MERVA server. In the local API, this
function calls ENMSetAppl().

ENMEndRAPI() This function disconnects from the MERVA server
if MERVA Connection/NT is called. In the local
API, this function does nothing.

ENMSetSecurity() In MERVA Connection/NT, this function defines
the conversation security information. In the local
API, this function does nothing.

ENMSetTestEnv() Enables or disables the test environment in MERVA
Connection/NT. In the local API, this function does
nothing.

Chapter 3. MERVA API Function Calls 21

ENMGetReason() Returns a reason code for internal errors in MERVA
Connection/NT. In the local API, this function
returns NO_ERROR (0).

22 MERVA USE & Branch for Windows NT Application Programming

ENMAdd—Add Created Message to Queue

Purpose
The ENMAdd function adds a created message to a queue of the API purpose
group.

Format
USHORT ENMAdd(QNAME QueueID)

Parameters
QueueID (QNAME) - input

This is the name of a queue known to MERVA. Only queues of the API
purpose group can be addressed by the API.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not yet been started.

2 (ERR_SYSTEM)
An error in the MERVA instance occurred.

5 (ERR_NOT_ATTACHED)
The application is not attached to the MERVA instance.

7 (ERR_WRITE_TRACE)
An error occurred while writing to the trace file.

101 (ERR_NO_QUEUE_NAME)
The specified queue name is empty or too long.

102 (ERR_INVALID_QUEUE_NAME)
The named queue does not belong to the API purpose group or the user
has no right to use the named queue.

115 (ERR_SWIFT_HEAD)
The header of the message does not match the rules for SWIFT headers.

The checking level for the header of a SWIFT message is described in
“Appendix B. Message Header Checking” on page 149.

116 (ERR_TELEX_HEAD)
The header of the message does not match the rules for telex headers.

The checked fields of the telex header are described in “Telex Header
(TX_HEADER)” on page 11.

117 (ERR_NETWORK)
There is no destination network specified for the network.

202 (ERR_NO_MSG_CREATED)
No message has been previously created by the application.

Processing
The message is checked before it is added to a queue. Depending on the value of
FLD_MSGNET, the message is checked for conformance to S.W.I.F.T or Telex rules.

Chapter 3. MERVA API Function Calls 23

Restrictions
You must call ENMCreate before you call ENMAdd because the application can
only add a previously created message. The message can be added only once.

For details on how to specify message lengths, refer to the ENMWriteField
information in “Processing” on page 113.

Example
The following example shows you how to use the ENMAdd call to add a new
message to an API queue.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

main()
{

USHORT rc = 0;
CHAR msgTxt[200];
MMSG msg;
FIELD fldAssociated;

rc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if(rc == NO_ERROR)
{

printf("Program successfully attached to MERVA\n");
if(ENMCreate(&msg) == NO_ERROR)
{

fldAssociated.msgnet = NET_SWIFT;
rc = ENMWriteField(FLD_MSGNET, &fldAssociated);
if(rc == NO_ERROR)
{

/* create message example type 399 */
strcpy(msgTxt,

"{1:F01VNDPBET2AXXX0000000299}{2:I399VNDPBET2AXXXN}"
"{3:{108:399-14}}{4:\r\n:20:399-14\r\n:79:REPLACE MT 101");

memcpy(msg, msgTxt, strlen(msgTxt));
if(ENMAdd("API_OUT") == NO_ERROR)
{

printf("New Message added to Queue API_OUT\n");
}

}
else
{

printf("Error in ENMWriteField, rc %d\n", rc);
/* delete the created message */
rc = ENMClear();

}
}
/* now do the detach from MERVA */
rc = ENMDetach();
if(rc != NO_ERROR)
{

printf("Error in detach %d\n", rc);
}
else
{

printf("Program detached...\n");
}

}
else

24 MERVA USE & Branch for Windows NT Application Programming

{
printf("Error attaching to MERVA, return code %d\n", rc);

}
}

Chapter 3. MERVA API Function Calls 25

ENMAttach—Attach to MERVA Instance

Purpose
The ENMAttach function connects the application program to the MERVA
instance. It prepares the interface data structures to pass messages from MERVA to
the application and from the application to MERVA.

Format
USHORT ENMAttach(USERID UserID, PASSWD Password,

FUNCID FunctionID)

Parameters
UserID (USERID) - input

The API tries to log on to the MERVA instance with this user ID (USERID). The
user ID is defined and approved to start an API application program with the
MERVA Users program.

The user ID is ignored or can be NULL if the input parameter FunctionID is
identical to MEN because the MERVA logon user ID is used in this case.

Password (PASSWD) - input
This parameter is optional. If it is supplied, the API tries to log on to the
MERVA instance with this password. The password is defined with the
MERVA Users program. It is only necessary if the user has the access right API
- with password.

Can be NULL. The password is ignored if the input parameter FunctionID is
identical to MEN because the MERVA logon password is used in this case.

FunctionID (FUNCID) - input
The function ID for the application program must be specified. The following
values are valid:

API
Application program is started from the command line.

MEN
Application program is started from the MERVA Menu window. For more
information about API programs in the MERVA menu refer to “Adding an
API Program to the MERVA Menu window” on page 123.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not yet been started.

2 (ERR_SYSTEM)
An error occurred in the MERVA instance.

3 (ERR_ATTACH_FAILED)
An application with the same name is already attached.

6 (ERR_OUT_OF_MEMORY)
The application program interface could not allocate the message space.

26 MERVA USE & Branch for Windows NT Application Programming

7 (ERR_WRITE_TRACE)
An error occurred while writing to the trace file.

9 (ERR_NO_FREE_SLOT)
All slots to attach to MERVA Base services are currently in use.

10 (ERR_SIGNON_FAILED)
The application cannot sign on to the MERVA Control Process (daemon).
For more information refer to “Appendix A. Return Codes” on page 141.

22 (ERR_NO_API_QUEUE)
There is no predefined queue that belongs to the API purpose group.

23 (ERR_NO_API_QUEUE_ASSIGNED)
There is no API queue assigned to the available API access right.

106 (ERR_INVALID_ID)
The application name is not correct. The name must start with one of the
approved prefixes.

109 (ERR_NO_PASSWD)
The length of the specified password is not correct.

110 (ERR_NO_AUTHORIZATION)
An authorization problem occurred during the attempt to attach to
MERVA. Therefore the application program cannot get a valid API queue.

118 (ERR_NO_USERID)
The user ID passed to the function is not correct.

119 (ERR_NO_FUNCID)
The function ID passed to the function is not correct.

207 (ERR_CRC_CHECK)
The application detected a CRC error on the Control database.

214 (ERR_USERID_NOT_FOUND)
The supplied user ID is not a defined MERVA user ID.

216 (ERR_RIGHTS_NOT_APPROVED)
The API access rights assigned to the user are not approved.

217 (ERR_NO_RIGHTS)
The user is not authorized to execute an API application program, or has
the access right API - with password but a password is not specified.

406 (ERR_WRONG_PASSWD)
The specified password does not match your MERVA password.

407 (ERR_USERID_REVOKED)
The specified user ID is revoked by the MERVA instance.

410 (ERR_NO_PASSWD_SET)
No initial password is defined for this user in the user maintenance task.

414 (ERR_GET_PSW)
Reading the user’s locally defined password information fails because the
MERVA instance does not have root user authority.

415 (ERR_WRONG_AIX_PSW)
The specified password does not match your Windows NT password.

416 (ERR_NOTIFY_FAILED)
Cannot get MERVA logon user ID and password.

Chapter 3. MERVA API Function Calls 27

Processing
The function uses the supplied values of user ID, password, and function ID to
check whether the user is authorized to run this API application program.

Note: If every user is allowed to run the API application, integrate the user ID and
function ID in the application. Do not specify a password and set the access
right to API - without password. This allows the user to start API programs
only together with MERVA.

Regarding Windows NT signals, consider the following:
v If you use semaphore calls, such as ENMWaitSemList, the signal SIGALRM is

used internally. Then, the time value set in an alarm() call is reset to zero. Be
careful when you use this alarm in your own program.

v If the API program is added to the MERVA Menu window, the API must react to
the signal SIGTERM. When you close this window:
– All user applications are stopped.
– The user is logged off from MERVA.

The logout step sends a SIGTERM signal to all running applications. Each user
application should stop processing when it receives a SIGTERM signal.

Restrictions
Each API program that communicates with MERVA is identified by its name set in
the API call ENMSetAppl(). The name must be unique. If this call is missing, the
program name is used as identifier. For example, only one program with the
application ID PGM1 can be attached to MERVA at one time. To prevent a conflict
with names used by MERVA, do not specify the application name with one of the
following 3-character prefixes:
v enm

v ENM

v enn

v ENN

v eka

v EKA

v enl

v ENL

Note: Before you can use a user ID for an API program, you have to define it in
the MERVA Users program. Even if the user ID has the access right API -
without password, you have to define a valid password for this user ID.

Example
The following example shows you an ENMAttach call to the MERVA instance that
uses the application ID PGM1, the user ID SAMPLE, and the password
SAMPLE1.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include "enmcapi.h"

main()
{

28 MERVA USE & Branch for Windows NT Application Programming

USHORT rc = 0;

rc = ENMSetAppl("PGM1");
printf("\nENMSetAppl processed, rc = %d\n", rc);

rc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if(rc == NO_ERROR)
{

printf("Program successfully attached to MERVA\n");

/* ... do some processing here ... */

/* then do the detach from MERVA */
rc = ENMDetach();
if(rc != NO_ERROR)
{

printf("Error in detach %d\n", rc);
}

}
else
{

switch (rc)
{

case ERR_USERID_NOT_FOUND:
printf("Sorry, you are no MERVA user\n");
break;

case ERR_RIGHTS_NOT_APPROVED:
printf("Sorry, your API access right is not approved.\n");
break;

case ERR_NO_RIGHTS:
printf("Sorry, you have no API access right.\n");
break;

case ERR_WRONG_PASSWORD:
printf("Sorry, your password is not valid.\n");
break;

case ERR_USERID_REVOKED:
printf("Sorry, your user ID is revoked.\n");
break;

case ERR_NO_PASSWD_SET:
printf("Sorry, you have no password defined for this user.\n");
break;

case ERR_NO_AUTHORIZATION:
printf("Sorry, other authorization problems occurred.\n");
break;

default:
printf("Error attaching to MERVA, return code %d\n", rc);
break;

}
}

}

The following example shows how to use ENMAttach if the sample program is
started from the MERVA Menu window.
#include <signal.h>
#include "enmcapi.h"

USHORT PGM_Init(int argc);
VOID sig_term();
VOID PGM_Terminate();

main(int argc, CHAR *argv[])
{

USHORT usRc;
BOOL bRight;
CHAR achLogbuf[200];

Chapter 3. MERVA API Function Calls 29

/* must be done, because program will be started from MENU window */
if (signal(SIGTERM, (void(*)())sig_term) == SIG_ERR)

ENMWriteLog("Unable to register signal handler",
CON_ID_NONE, INT_NOT_REQ);

else
{

usRc = PGM_Init(argc);
if (usRc == NO_ERROR)
{

/* do some processing here */

PGM_Terminate();
}
else
{

sprintf(achLogbuf, "Error calling PGM_Init rc=%d", usRc);
ENMWriteLog(achLogbuf, CON_ID_NONE, INT_NOT_REQ);

} /* endif */

} /* endif */

}

USHORT PGM_Init(int argc)
{

USHORT usRc = NO_ERROR;
UCHAR achLogbuf[200];

usRc = ENMSetAppl("PGM1");
if (usRc == NO_ERROR)
{

/* attach to MERVA that program can be started from MENU window */
usRc = ENMAttach("", "", "MEN");
if (usRc == NO_ERROR)
{

ENMWriteLog("Program successfully attached to MERVA",
CON_ID_NONE, INT_NOT_REQ);

}
else
{

sprintf(achLogbuf, "Error attaching to MERVA rc=%d", usRc);
ENMWriteLog(achLogbuf, CON_ID_NONE, INT_NOT_REQ);

}
}
else
{

sprintf(achLogbuf, "Error calling ENMSetAppl rc=%d", usRc);
ENMWriteLog(achLogbuf, CON_ID_NONE, INT_NOT_REQ);

} /* endif */
return(usRc);

}

VOID PGM_Terminate()
{

USHORT usRc;
UCHAR achLogbuf[200];

usRc = ENMDetach();
if (usRc != NO_ERROR)
{

sprintf(achLogbuf, "Error in detach rc=%d", usRc);
ENMWriteLog(achLogbuf, CON_ID_NONE, INT_NOT_REQ);

}
}

VOID sig_term()

30 MERVA USE & Branch for Windows NT Application Programming

{
PGM_Terminate();
exit(0);

}

Chapter 3. MERVA API Function Calls 31

ENMCheck—Checking a Message

Purpose
The ENMCheck function checks whether a message conforms to the rules defined
in the message process tables on your system. If a checking error is found, it is
written to the MERVA diagnosis log.

Format
USHORT ENMCheck(PUSHORT pusCheckErr)

Parameters
pusCheckErr (PUSHORT) - output

This variable specifies whether a checking error was found in the message.
Possible checking errors are:

304 (NO_CHECK_ERROR)
No checking error was found, the message is syntactically and semantically
correct.

305 (ERR_MSG_SYNTAX)
A syntactical error was found in the message.

306 (ERR_MSG_SEMANTIC)
A semantic error was found in the message.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
Function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not been started.

2 (ERR_SYSTEM)
Installation error. The necessary library could not be found.

5 (ERR_NOT_ATTACHED)
The application is not attached to the MERVA instance.

7 (ERR_WRITE_TRACE)
An error occurred while writing to the trace file.

202 (ERR_NO_MSG_CREATED)
No message has been retrieved by the application program.

303 (ERR_CHECK_MSG)
A message processing error occurred while checking the message.

421 (ERR_NO_DATA)
Message contains no data.

Example
The following example shows you how to check with ENMCheck whether the
message is in correct format before it is written to the MERVA message database.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

32 MERVA USE & Branch for Windows NT Application Programming

|
|
|

|
|

#include "enmcapi.h"

USHORT PGM_Init(int argc);
VOID PGM_Terminate();
USHORT load_message();

main(int argc, CHAR *argv[])
{

USHORT usRc;
MMSG Message; /* Actual storage of the message */
CHAR MsgTxt[200];
FIELD fldAssociated; /* field for network identifier */
USHORT usCheckErr;

usRc = ENMSetAppl("PGM1");
if (usRc == NO_ERROR)
{

usRc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if (usRc == NO_ERROR)
{

printf("Program successfully attached to MERVA\n");

usRc = ENMCreate(&Message);
if (usRc == NO_ERROR)
{

/* Set the destination network to 'SWIFT network'. */
memset(&fldAssociated,; '\0', sizeof(FIELD));
fldAssociated.msgnet = NET_SWIFT;
usRc = ENMWriteField(FLD_MSGNET, &fldAssociated);
if (usRc == NO_ERROR)
{

/* create message example type 999 */
strcpy(MsgTxt,

"{1:F01VNDPBET2AXXX0000000000}"
"{2:I999IBMADEFFXXXXN}{4:\r\n:20:T20\r\n:79:hallo\r\n-}");

memcpy(Message, MsgTxt, strlen(MsgTxt));

/* check whether message is correct */
usRc = ENMCheck(&usCheckErr);
if (usRc == NO_ERROR)
{

if (usCheckErr == NO_CHECK_ERROR)
{

printf("Message syntactically and semantically correct\n");

/* add message to database */
usRc = ENMAdd("API_OUT");
if (usRc != NO_ERROR)
{

printf("Could not add message to queue, usRc = %d\n", usRc);
}

}
else if (usCheckErr == ERR_MSG_SYNTAX)
{

printf("Message syntactically not correct\n");
usRc = ERR_MSG_SYNTAX;

}
else if (usCheckErr == ERR_MSG_SEMANTIC)
{

printf("Message semantically not correct\n");
usRc = ERR_MSG_SEMANTIC;

}

else
printf("Error calling function ENMCheck, return code = %d\n", usRc);

}
else

printf("Could not set destination network, usRc = %d\n", usRc);

Chapter 3. MERVA API Function Calls 33

ENMClear();
}
else

printf("\nCould not create a message, rc = %d\n", usRc);

/* detach from merva */
usRc = ENMDetach();
if (usRc != NO_ERROR)

printf("Error calling ENMDetach return code = %d\n", usRc);
}
else

printf("Error attaching to MERVA rc=%d\n", usRc);
}
else

printf("Error calling ENMSetAppl rc=%d\n", usRc);
}

34 MERVA USE & Branch for Windows NT Application Programming

ENMCheckSwiftMsg—Checking a SWIFT Message

Purpose
The ENMCheckSwiftMsg function checks whether a message conforms to the
rules established by S.W.I.F.T. It also checks whether the length of the message is
appropriate for the message type. If a checking error is found, it is written to the
MERVA diagnosis log.

Format
USHORT ENMCheckSwiftMsg(PUSHORT pusCheckErr)

Parameters
pusCheckErr (PUSHORT) - output

This variable specifies whether a checking error was found in the message.
Possible checking errors are:

304 (NO_CHECK_ERROR)
No checking error was found, the message is syntactically and semantically
correct. Also the length of the message is correct for the message’s message
type.

305 (ERR_MSG_SYNTAX)
A syntactical error was found in the message.

306 (ERR_MSG_SEMANTIC)
A semantic error was found in the message.

419 (ERR_MSG_INVALID_LENGTH)
The message is too long for the corresponding message type.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
Function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not been started.

2 (ERR_SYSTEM)
Installation error. The necessary library could not be found.

5 (ERR_NOT_ATTACHED)
The application is not attached to the MERVA instance.

7 (ERR_WRITE_TRACE)
An error occurred while writing to the trace file.

202 (ERR_NO_MSG_CREATED)
No message has been retrieved by the application program.

303 (ERR_CHECK_MSG)
A message processing error occurred while checking the message.

420 (ERR_NO_MSG_TYPE)
Message buffer contains no message type information.

421 (ERR_NO_DATA)
Message contains no data.

Chapter 3. MERVA API Function Calls 35

|
|

|

|
|
|
|

|

|

|

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

Example
The following example shows you how to check with ENMCheckSwiftMsg
whether the message is in correct format before it is written to the MERVA
message database.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include "enmcapi.h"

USHORT PGM_Init(int argc);
VOID PGM_Terminate();
USHORT load_message();

main(int argc, CHAR *argv[])
{

USHORT usRc;
MMSG Message; /* Actual storage of the message */
CHAR MsgTxt[200];
FIELD fldAssociated; /* field for network identifier */
USHORT usCheckErr;

usRc = ENMSetAppl("PGM1");
if (usRc == NO_ERROR)
{

usRc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if (usRc == NO_ERROR)
{

printf("Program successfully attached to MERVA\n");

usRc = ENMCreate(&Message);
if (usRc == NO_ERROR)
{

/* Set the destination network to 'SWIFT network'. */
memset(&fldAssociated,; '\0', sizeof(FIELD));
fldAssociated.msgnet = NET_SWIFT;
usRc = ENMWriteField(FLD_MSGNET, &fldAssociated);
if (usRc == NO_ERROR)
{

/* create message example type 999 */
strcpy(MsgTxt,

"{1:F01VNDPBET2AXXX0000000000}"
"{2:I999IBMADEFFXXXXN}{4:\r\n:20:T20\r\n:79:hallo\r\n-}");

memcpy(Message, MsgTxt, strlen(MsgTxt));

/* check whether message is correct */
usRc = ENMCheckSwiftMsg(&usCheckErr);
if (usRc == NO_ERROR)
{

if (usCheckErr == NO_CHECK_ERROR)
{

printf("Message syntactically and semantically correct\n");

/* add message to database */
usRc = ENMAdd("API_OUT");
if (usRc != NO_ERROR)
{

printf("Could not add message to queue, usRc = %d\n", usRc);
}

}
else if (usCheckErr == ERR_MSG_SYNTAX)
{

printf("Message syntactically not correct\n");
usRc = ERR_MSG_SYNTAX;

}

36 MERVA USE & Branch for Windows NT Application Programming

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

else if (usCheckErr == ERR_MSG_SEMANTIC)
{

printf("Message semantically not correct\n");
usRc = ERR_MSG_SEMANTIC;

}
else if (usCheckErr == ERR_MSG_INVALID_LENGTH)
{

printf("Message too long\n");
usRc = ERR_MSG_INVALID_LENGTH;

}

else
printf("Error calling function ENMCheckSwiftMsg, return code = %d\n", usRc);

}
else

printf("Could not set destination network, usRc = %d\n", usRc);
ENMClear();

}
else

printf("\nCould not create a message, rc = %d\n", usRc);

/* detach from merva */
usRc = ENMDetach();
if (usRc != NO_ERROR)

printf("Error calling ENMDetach return code = %d\n", usRc);
}
else

printf("Error attaching to MERVA rc=%d\n", usRc);
}
else

printf("Error calling ENMSetAppl rc=%d\n", usRc);
}

Chapter 3. MERVA API Function Calls 37

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

ENMCheckUserRight—Checking User Rights

Purpose
The ENMCheckUserRight function checks whether the specified user right is
granted to the user starting the API program from the MERVA Menu window. For
more information about API programs in the MERVA menu refer to “Adding an
API Program to the MERVA Menu window” on page 123.

Format
USHORT ENMCheckUserRight(RIGHTS Right, PBOOL bRight)

Parameters
Right (RIGHTS) - input

User right to be checked.

bRight (PBOOL) - input
Values are:

TRUE
The specified right is granted to the user.

FALSE
The specified right is not granted to the user.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
The function completed successfully.

417 (ERR_NO_NOTIFY)
ENMAttach was done with wrong function ID.

418 (ERR_CKRIGHT_FAILED)
ENMCheckUserRight failed due to an internal error.

Example
The following example shows you how to check with ENMCheckUserRight
whether user right 1 is granted to the user who is logged on to MERVA.
#include <signal.h>
#include "enmcapi.h"

USHORT PGM_Init(int argc);
VOID sig_term();
VOID PGM_Terminate();

main(int argc, CHAR *argv[])
{

USHORT usRc;
BOOL bRight;
CHAR achLogbuf[200];

/* must be done, because program will be started from MENU window */
if (signal(SIGTERM, (void(*)())sig_term) == SIG_ERR)

ENMWriteLog("Unable to register signal handler",
CON_ID_NONE, INT_NOT_REQ);

else
{

usRc = PGM_Init(argc);
if (usRc == NO_ERROR)

38 MERVA USE & Branch for Windows NT Application Programming

{
/* check whether user right 1 is granted to the user */
usRc = ENMCheckUserRight(USER_R1, &bRight);
if (usRc == NO_ERROR)
{

if (bRight == TRUE)
{

ENMWriteLog("Logged on user has user right 1",
CON_ID_NONE, INT_NOT_REQ);

/* do some processing here */;

}
else
{

ENMWriteLog("Logged on user does not have user right 1",
CON_ID_NONE, INT_NOT_REQ);

} /* endif */
}
else
{

sprintf(achLogbuf, "Error calling ENMCheckUserRight rc=%d", usRc);
ENMWriteLog(achLogbuf, CON_ID_NONE, INT_NOT_REQ);

} /* endif */
PGM_Terminate();

}
else
{

sprintf(achLogbuf, "Error calling PGM_Init rc=%d", usRc);
ENMWriteLog(achLogbuf, CON_ID_NONE, INT_NOT_REQ);

} /* endif */

} /* endif */
}

USHORT PGM_Init(int argc)
{

USHORT usRc = NO_ERROR;
UCHAR achLogbuf[200];

usRc = ENMSetAppl("PGM1");
if (usRc == NO_ERROR)
{

/* attach to MERVA that program can be started from MENU window */
usRc = ENMAttach("", "", "MEN");
if (usRc == NO_ERROR)
{

ENMWriteLog("Program successfully attached to MERVA",
CON_ID_NONE, INT_NOT_REQ);

}
else
{

sprintf(achLogbuf, "Error attaching to MERVA rc=%d", usRc);
ENMWriteLog(achLogbuf, CON_ID_NONE, INT_NOT_REQ);

}
}
else
{

sprintf(achLogbuf, "Error calling ENMSetAppl rc=%d", usRc);
ENMWriteLog(achLogbuf, CON_ID_NONE, INT_NOT_REQ);

} /* endif */
return(usRc);

}

VOID PGM_Terminate()
{

USHORT usRc;

Chapter 3. MERVA API Function Calls 39

UCHAR achLogbuf[200];
usRc = ENMDetach();
if (usRc != NO_ERROR)
{

sprintf(achLogbuf, "Error in detach rc=%d", usRc);
ENMWriteLog(achLogbuf, CON_ID_NONE, INT_NOT_REQ);

}
}

VOID sig_term()
{

PGM_Terminate();
exit(0);

}

40 MERVA USE & Branch for Windows NT Application Programming

ENMClear—Free Created Message

Purpose
The ENMClear function frees the API message space of a message that is created
with the ENMCreate function. For details of the ENMCreate function refer to
“ENMCreate—Create New Message” on page 47.

Format
USHORT ENMClear()

Parameters
rc (USHORT) - return

Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not yet been started.

5 (ERR_NOT_ATTACHED)
The application is not attached to the MERVA instance.

7 (ERR_WRITE_TRACE)
An error occurred while writing to the trace file.

202 (ERR_NO_MSG_CREATED)
No message was previously created by the application.

Example
The following example shows you how to use ENMClear to clear the memory
areas used by the ENMCreate call to detach from the MERVA instance:
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

main()
{

USHORT rc = 0;
FIELD Field;
PFIELD pField = &Field;
MMSG msgBuffer;

rc = ENMSetAppl("PGM1");

rc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if(rc == NO_ERROR)
{

printf("Program successfully attached to MERVA\n");
rc = ENMCreate(&msgBuffer);
if(rc == NO_ERROR)
{

ENMClear();
}
else
{

printf("Error in ENMCreate, rc = %d\n", rc);
}
/* now do the detach from MERVA */

Chapter 3. MERVA API Function Calls 41

rc = ENMDetach();
if(rc != NO_ERROR)
{

printf("Error in detach %d\n", rc);
}
else
{

printf("Program detached...\n");
}

}
else
{

printf("Error attaching to MERVA, return code %d\n", rc);
}

}

42 MERVA USE & Branch for Windows NT Application Programming

ENMClearSem—Clear a Semaphore

Purpose
The ENMClearSem function clears a semaphore unconditionally. If processes are
blocked on the semaphore, they are restarted.

Format
USHORT ENMClearSem(ULONG SemHandle)

Parameters
SemHandle (ULONG) - input

Semaphore handle created by ENMCreateSem or ENMOpenSem.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not been started.

6 (ERR_OUT_OF_MEMORY)
The system does not have enough memory to complete the function.

7 (ERR_WRITE_TRACE)
An error ocurred while writing to the trace file.

255 (ERR_SEMAPHORE_FAILED)
The semaphore call failed with an internal error.

Example
The following example shows you how to use ENMClearSem to unblock a process
that is waiting for a signal.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

#define TRIGGER "apisem"
main()
{

USHORT lRc = 0;
ULONG SemHandle;

lRc = ENMOpenSem(&SemHandle, TRIGGER);
if(lRc == NO_ERROR)
{

printf("Semaphore successfully opened by MERVA\n");

/* ... do some processing here ... */

/* if another process waits until this step is ready */
/* clear now the semaphore */
lRc = ENMClearSem(SemHandle);
if(lRc == NO_ERROR)
{

printf("Semaphore successfully cleared\n");
}
else

Chapter 3. MERVA API Function Calls 43

|
|

|
|

{
printf("Error in ENMClearSem, rc = %d\n", lRc);

}
/* close the semaphore, it will be automatically */
/* deleted by the last ENMCloseSem call */
lRc = ENMCloseSem(SemHandle);

}
else
{

printf("Error opening a semaphore by MERVA, return code %d\n", lRc);
}

}

44 MERVA USE & Branch for Windows NT Application Programming

ENMCloseSem—Close a Semaphore

Purpose
The ENMCloseSem function closes a semaphore that is obtained with an
ENMCreateSem or ENMOpenSem call.

Format
USHORT ENMCloseSem(ULONG SemHandle)

Parameters
SemHandle (ULONG) - input

Semaphore handle created by ENMCreateSem or ENMOpenSem.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not been started.

6 (ERR_OUT_OF_MEMORY)
The system does not have enough memory to complete the function.

7 (ERR_WRITE_TRACE)
An error ocurred while writing to the trace file.

31 (ERR_SEMAPHORE_NO_AUTHORITY)
The user is not authorized to delete the semaphore.

255 (ERR_SEMAPHORE_FAILED)
The semaphore call failed with an internal error.

Processing
The function closes a semaphore and decrements an internal counter by 1. On the
opposite, the ENMCreateSem call increases this counter by 1, and each
ENMOpenSem call also increases the counter by 1. If the counter reaches 0, the
semaphore is automatically removed from the system. For each ENMCreateSem
and ENMOpenSem call, you must call ENMCloseSem. This ensures that no
semaphore remains in the system after the application ends.

Example
The following example shows you how to use an ENMCloseSem call to delete the
created semaphore from the system.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

#define TRIGGER "apisem"
main()
{

USHORT lRc = 0;
ULONG SemHandle;

lRc = ENMCreateSem(&SemHandle, TRIGGER);
if(lRc == NO_ERROR)

Chapter 3. MERVA API Function Calls 45

|
|

|
|

{
printf("Semaphore successfully created by MERVA\n");

/* ... do some processing here ... */

lRc = ENMCloseSem(SemHandle);
if(lRc == NO_ERROR)
{

printf("Semaphore successfully deleted\n");
}
else
{

printf("Error in ENMCloseSem, rc = %d\n", lRc);
}

}
else
{

printf("Error creating a semaphore by MERVA, return code %d\n", lRc);
}

}

46 MERVA USE & Branch for Windows NT Application Programming

ENMCreate—Create New Message

Purpose
The ENMCreate function prepares a new, empty message for the application.

Format
USHORT ENMCreate(PMMSG Message)

Parameters
Message (PMMSG) - output

Reference to empty message.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not yet been started.

2 (ERR_SYSTEM)
An error in the MERVA instance occurred.

5 (ERR_NOT_ATTACHED)
The application is not attached to the MERVA instance.

7 (ERR_WRITE_TRACE)
An error occurred while writing to the trace file.

204 (ERR_MSG_INUSE)
The message is locked by the application, or a created message already
exists in the message space.

Processing
The function requests a message reference number (MRN) from MERVA to identify
the new message. The MRN can be referenced by an ENMReadField call. This
message is further processed with an ENMAdd or ENMRoutePut call.

A created message is locked immediately. Use an ENMClear call to free the API
message space. ENMFree can only unlock a message that is in the message
database.

Example
The following example shows you how to use an ENMCreate call to create a new
message. The MRN of the new message is printed, then an ENMDetach is
attempted. This causes the error ERR_MSG_INUSE (204) because the message is
still in use.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

main()
{

USHORT rc = 0;
FIELD Field;

Chapter 3. MERVA API Function Calls 47

PFIELD pField = &Field;
MMSG msgBuffer;

rc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if(rc == NO_ERROR)
{

printf("Program successfully attached to MERVA\n");
rc = ENMCreate(&msgBuffer);
if(rc == NO_ERROR)
{

printf("New Message created\n");
rc = ENMReadField(FLD_MRN, (PPFIELD)&pField);
if(rc == NO_ERROR)
{

printf("The MRN field contains: %s\n", pField);
}
else
{

printf("Error in read field, rc = %d\n", rc);
}

}
else
{

printf("Error in ENMCreate, rc = %d\n", rc);
}

}
else
{

printf("Error attaching to MERVA, return code %d\n", rc);
}
rc = ENMClear();
/* now do the detach from MERVA */
rc = ENMDetach();
if(rc != NO_ERROR)
{

printf("Error in detach %d\n", rc);
}
else
{

printf("Program detached...\n");
}

}

48 MERVA USE & Branch for Windows NT Application Programming

ENMCreateSem—Create a Semaphore

Purpose
The ENMCreateSem function creates a semaphore. The semaphore is used by
several API programs to wait for MERVA alarms.

Format
USHORT ENMCreateSem(PULONG pSemHandle, PCHAR pszSemName)

Parameters
pSemHandle (PULONG) - output

Address of the semaphore handle.

pszSemName (PCHAR) - input
Pointer to a null-terminated string containing the name of the semaphore to be
created.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not been started.

6 (ERR_OUT_OF_MEMORY)
The system does not have enough memory to complete the function.

7 (ERR_WRITE_TRACE)
An error ocurred while writing to the trace file.

100 (ERR_TOO_MANY_SEMAPHORES)
The count of semaphores available on the system exceeds the maximum
value.

123 (ERR_INVALID_SEMAPHORE_NAME)
The semaphore name is an invalid Windows NT file name.

183 (ERR_SEMAPHORE_ALREADY_EXISTS)
The semaphore already exists.

255 (ERR_SEMAPHORE_FAILED)
The semaphore call failed with an internal error.

Example
The following example shows you how to use an ENMCreateSem call to create a
semaphore. The semaphore is set and the program waits until it gets a clear signal.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

#define TRIGGER "apisem"
main()
{

USHORT usIndex = 0;
USHORT lRc = 0;
ULONG SemHandle;

Chapter 3. MERVA API Function Calls 49

|
|

lRc = ENMSetAppl("PGM1");

lRc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if(lRc == NO_ERROR)
{

lRc = ENMCreateSem(&SemHandle, TRIGGER);
if(lRc == NO_ERROR)
{

printf("Semaphore successfully created by MERVA\n");

lRc = ENMSetSem(SemHandle);

/* Wait indefinitely until the semaphore will be cleared. */
/* For example, if a message reaches an API queue and the */
/* defined alarm will be raised. */
lRc = ENMWaitSemList(&usIndex, -1, SemHandle, 0);

/* ... do some processing with the received message ... */

lRc = ENMCloseSem(SemHandle);
if(lRc == NO_ERROR)
{

printf("Semaphore successfully deleted\n");
}
else
{

printf("Error in ENMCloseSem, rc = %d\n", lRc);
}

}
else
{

printf("Error creating a semaphore by MERVA, return code %d\n", lRc);
}
lRc = ENMDetach();

}
else
{

printf("Error attaching to MERVA, return code %d\n", lRc);
}

}

50 MERVA USE & Branch for Windows NT Application Programming

ENMDelete—Delete Current Message from Queue

Purpose
The ENMDelete function deletes the currently locked message.

Format
USHORT ENMDelete()

Parameters
rc (USHORT) - return

Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not yet been started.

2 (ERR_SYSTEM)
An error in the MERVA instance occurred.

5 (ERR_NOT_ATTACHED)
The application is not attached to the MERVA instance.

7 (ERR_WRITE_TRACE)
An error occurred while writing to the trace file.

201 (ERR_NO_MSG_LOCKED)
No message has been locked by the application.

301 (ERR_MSG_LOCKED)
Another application program has also locked this message.

302 (ERR_MSG_NOT_FOUND)
The message could not be found in the queue.

Example
The following example shows you how to read all messages in the API_OUT
queue and uses the ENMDelete call to delete the messages from this queue. The
number of deleted messages is displayed.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

main()
{

USHORT rc = 0;
MMSG msg;
USHORT usLen;
FIELD Field;
PFIELD pField = &Field;
USHORT i;

rc = ENMSetAppl("PGM1");
rc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if(rc == NO_ERROR)
{

printf("Program successfully attached to MERVA\n");
/* we do not lock the message */

Chapter 3. MERVA API Function Calls 51

do
{

/* Read next with lock */
rc = ENMNextEntry("API_OUT", ON, &msg, &usLen);
if(rc == NO_ERROR)
{

ENMDelete();
i++;

}
} while(rc == NO_ERROR);
printf("%d Messages deleted in queue API_OUT\n", i);
if(rc != ERR_MSG_NOT_FOUND)
{

printf("Error in ENMNextEntry, rc = %d\n", rc);
}
/* now do the detach from MERVA */
rc = ENMDetach();
if(rc != NO_ERROR)
{

printf("Error in detach %d\n", rc);
}
else
{

printf("Program detached...\n");
}

}
else
{

printf("Error attaching to MERVA, return code %d\n", rc);
}

}

52 MERVA USE & Branch for Windows NT Application Programming

ENMDetach—Detach from MERVA Instance

Purpose
The ENMDetach function disconnects the application from the MERVA instance.
An application with the same name can now attach to the MERVA instance.

Format
USHORT ENMDetach()

Parameters
rc (USHORT) - return

Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not yet been started.

4 (ERR_DETACH_FAILED)
The detach failed due to an internal error.

5 (ERR_NOT_ATTACHED)
The application is not attached to the MERVA instance.

7 (ERR_WRITE_TRACE)
An error occurred while writing to the trace file.

204 (ERR_MSG_INUSE)
The message is locked by the application, or a created message already
exists in the message space.

Example
The following example shows you an ENMDetach call to disconnect a connection
between the API program and the MERVA instance.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include "enmcapi.h"

main()
{

USHORT rc = 0;

rc = ENMSetAppl("PGM1");
rc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if(rc == NO_ERROR)
{

printf("Program successfully attached to MERVA\n");
/* ... do some processing here ... */

/* then do the detach from MERVA */
rc = ENMDetach();
if(rc != NO_ERROR)
{

printf("Error in detach %d\n", rc);
}

}
else

Chapter 3. MERVA API Function Calls 53

{
printf("Error attaching to MERVA, return code %d\n", rc);

}
}

54 MERVA USE & Branch for Windows NT Application Programming

ENMEndRAPI—Disconnect from the MERVA System

Purpose
In MERVA Connection/NT, the ENMEndRAPI function stops the conversation
with the remote MERVA system. To ensure compatibility between MERVA API
programs and MERVA Connection/NT programs, this function is also provided for
the local MERVA system, however for the local system it is only a dummy function
that always returns 0 and otherwise does nothing.

Format
USHORT ENMEndRAPI()

Parameters
rc (USHORT) - return

Values are:

0 (NO_ERROR)
The function completed successfully.

2 (ERR_SYSTEM)
An internal error occurred. The API receives further information by calling
the function ENMGetReason (see “ENMGetReason—Get Reason Code for
Internal Error” on page 61).

Example
The following example shows you an ENMEndRAPI call.
#include "enmcapi.h" /* or include "enmrapi.h" for MERVA Connection/NT */

...
ENMSetProfile("enm6ri.prf");
ENMStartRAPI("SAMPLE");
/* ... do some API calls */
if (ENMEndRAPI()!=0)

/* do error handling */
...

Chapter 3. MERVA API Function Calls 55

|
|
|
|
|

|
|

|
|

|
|
|
|

|

ENMFirstEntry—Read First Message of Queue

Purpose
The ENMFirstEntry function returns the oldest message in the queue.

Format
USHORT ENMFirstEntry(QNAME QueueID, SWITCH Lock,

PMMSG Message, PUSHORT MessageLength)

Parameters
QueueID (QNAME) - input

This is the name of a queue known to MERVA. Only queues of the API group
can be addressed by the API.

Lock (SWITCH) - input
The variable defines whether the read message is locked for update.

Message (PMMSG) - output
Message containing the information retrieved from the message.

MessageLength (PUSHORT) - output
Short integer variable containing the length of the found message.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not yet been started.

2 (ERR_SYSTEM)
An error in the MERVA instance occurred.

5 (ERR_NOT_ATTACHED)
The application is not attached to the MERVA instance.

7 (ERR_WRITE_TRACE)
An error occurred while writing to the trace file.

101 (ERR_NO_QUEUE_NAME)
The specified queue name is empty or too long.

102 (ERR_INVALID_QUEUE_NAME)
The named queue does not belong to the API purpose group, or the user is
not allowed to use the named queue.

107 (ERR_NOT_SWITCH)
A value other than ON or OFF has been passed in a variable that has a
SWITCH data type.

204 (ERR_MSG_INUSE)
The message is either locked by the application, or a created message
already exists in the message space.

302 (ERR_MSG_NOT_FOUND)
No matching message could be found.

56 MERVA USE & Branch for Windows NT Application Programming

Processing
With this call, the messages in a queue are sorted according to the time at which
they entered the queue. With the ENMxxxEntry calls, the system maintains a
position pointer for each queue. An application can switch between queues and
resume at the point from where it switched to another queue.

If the ENMFirstEntry call is used with the lock set to ON, the first unlocked
message will be returned.

If the message is read with the lock set to ON, no other program can change the
message. Use ENMFree to unlock the message.

Example
The following example shows you how to use the ENMFirstEntry call to read the
first message in the API_OUT queue and display the MRN of this message.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

main()
{

USHORT rc = 0;
MMSG msg;
USHORT usLen;
FIELD Field;
PFIELD pField = &Field;

rc = ENMSetAppl("PGM1");
rc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if(rc == NO_ERROR)
{

printf("Program successfully attached to MERVA\n");
/* we do not lock the message */
rc = ENMFirstEntry("API_OUT", OFF, &msg, &usLen);
if(rc == NO_ERROR)
{

rc = ENMReadField(FLD_MRN, (PPFIELD)&pField);
if(rc == NO_ERROR)
{

printf("The MRN of the first is: %s\n", pField);
}
else
{

printf("Error in ENMReadField, rc = %d\n", rc);
}

}
else
{

printf("Error in ENMFirstEntry, rc = %d\n", rc);
}
/* now do the detach from MERVA */
rc = ENMDetach();
if(rc != NO_ERROR)
{

printf("Error in detach %d\n", rc);
}
else
{

printf("Program detached...\n");
}

}
else

Chapter 3. MERVA API Function Calls 57

{
printf("Error attaching to MERVA, return code %d\n", rc);

}
}

58 MERVA USE & Branch for Windows NT Application Programming

ENMFree—Unlock Message

Purpose
The ENMFree call unlocks a previously locked message. The message can be
locked by another application.

Format
USHORT ENMFree()

Parameters
rc (USHORT) - return

Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not yet been started.

2 (ERR_SYSTEM)
An error in the MERVA instance occurred.

5 (ERR_NOT_ATTACHED)
The application is not attached to the MERVA instance.

7 (ERR_WRITE_TRACE)
An error occurred while writing to the trace file.

201 (ERR_NO_MSG_LOCKED)
No message has been locked by the application.

301 (ERR_MSG_LOCKED)
Another application program has also locked this message.

302 (ERR_MSG_NOT_FOUND)
The message could not be found in the queue.

Restrictions
An ENMxxxEntry call with the lock set to ON must have been issued already. An
application can only free a message that it has previously locked.

Example
The following example shows you how to use ENMFree to remove the lock on a
message.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

main()
{

USHORT rc = 0;
MMSG msg;
USHORT usLen;
FIELD Field;
PFIELD pField = &Field;

rc = ENMSetAppl("PGM1");
rc = ENMAttach("SAMPLE", "SAMPLE1", "API");

Chapter 3. MERVA API Function Calls 59

if(rc == NO_ERROR)
{

printf("Program successfully attached to MERVA\n");
/* we lock the message */
rc = ENMNextEntry("API_OUT", ON, &msg, &usLen);
if(rc == NO_ERROR)
{

printf("Message locked\n");
rc = ENMReadField(FLD_MRN, (PPFIELD)&pField);
if(rc == NO_ERROR)
{

printf("The MRN field contains: %s\n", pField);
}
else
{

printf("Error in ENMReadField, rc = %d\n", rc);
}
/* now we decide to allow others to work on this message */
/* again, so set it free */
rc = ENMFree();
if(rc == NO_ERROR)
{

printf("Message freed again\n");
}

}
/* now do the detach from MERVA */
rc = ENMDetach();
if(rc != NO_ERROR)
{

printf("Error in detach %d\n", rc);
}
else
{

printf("Program detached...\n");
}

}
else
{

printf("Error attaching to MERVA, return code %d\n", rc);
}

}

60 MERVA USE & Branch for Windows NT Application Programming

ENMGetReason—Get Reason Code for Internal Error

Purpose
In MERVA Connection/NT, the ENMGetReason function returns the reason code
for an internal error. To ensure compatibility between MERVA API programs and
MERVA Connection/NT programs, this function is also provided for the local
MERVA system, however for the local system it is only a dummy function that
always returns 0 and otherwise does nothing.

Format
USHORT ENMGetReason()

Parameters
rc (USHORT) - return

Possible values are:

0 No Connection/NT error occurred. Either a previous API call was
successful or an internal error in the MERVA API (not in the remote
program) occurred.

2xxx Reason codes from 2000 to 2999 indicate communication problems.

2110 The APPC conversation cannot be established or is cancelled.

2120 The Communications Side Information object is not found.

2130 The connection to the Remote MERVA API Server program failed.

2140 Deallocation failed because the conversation has already been stopped.

2150 The conversation was interrupted while the program tried to receive
data.

2200 An empty data buffer was received.

28xx xx is a return code of the TCP/IP service programs.

29xx xx is a return code of the CPI-C call.

2999 A general communication problem occurred. For details refer to the
diagnosis log.

3xxx An internal semaphore error occurred. xxx is the error number
provided by Windows NT.

7006 The Remote MERVA API Server failed while the program tried to
allocate memory.

7012 The Remote MERVA API Server does not accept further API calls due
to a previous error.

7013 The Remote MERVA API Server received a negative return code from
user exit ENM4ExitDecrypt.

7014 The Remote MERVA API Server received a negative return code from
user exit ENM4ExitEncrypt.

7015 The Remote MERVA API Server received a negative return code from
user exit ENM4ExitMacVerify or ENM4ExitMacGen.

7016 The Remote MERVA API Server received an incorrect API request.

Chapter 3. MERVA API Function Calls 61

|
|
|
|
|

|

||

7018 The Remote MERVA API Server received an error while the program
converted ASCII to EBCDIC. For details refer to the diagnosis log of
MERVA.

7019 The Remote MERVA API Server received an error while the program
accessed the message integrity control file.

7030 Internal message space was not created.

8002 The Remote MERVA API Client cannot open the programmer’s log file
that is specified in the profile.

8003 The Remote MERVA API Client cannot close the programmer’s log file
that is specified in the profile.

8004 The Remote MERVA API Client cannot open the diagnosis log file that
is specified in the profile.

8005 The Remote MERVA API Client cannot close the diagnosis log file that
is specified in the profile.

8006 The Remote MERVA API Client could not allocate memory.

8007 The Remote MERVA API Client cannot write to the diagnosis log file
that is specified in the profile.

8008 The Remote MERVA API Client cannot write to the programmer’s log
file that is specified in the profile.

8010 The Remote MERVA API Client failed because the profile name in
ENMSetProfile is incorrect or not specified.

8011 The Remote MERVA API Client failed because the profile specified in
ENMSetProfile does not exist.

8013 The Remote MERVA API Client received a negative return code from
user exit ENM4ExitDecrypt.

8014 The Remote MERVA API Client received a negative return code from
user exit ENM4ExitEncrypt.

8015 The Remote MERVA API Client received a negative return code from
user exit ENM4ExitMacVerify.

8016 The Remote MERVA API Client received a negative return code from
user exit ENM4ExitMacGen.

8017 The conversation has not been started with ENMStartRAPI or with
ENMStartAPPC.

8019 The Remote MERVA API Client could not access the message integrity
control file.

8020 The Remote MERVA API Client could not load the file
ENMRATP.DLL.

8021 The profile does not contain information about the partner system.

Example
The following example shows you an ENMGetReason call.
#include "enmcapi.h" /* or include "enmrapi.h" for MERVA Connection/NT */

USHORT rc = 0;
USHORT reason = 0;

...

62 MERVA USE & Branch for Windows NT Application Programming

rc = ENMFree();
if (rc)
{

reason = ENMGetReason();
if (reason)

printf("Internal error, reason code %d",reason);
else

printf("Internal error, unknown reason");
}
...

Chapter 3. MERVA API Function Calls 63

ENMKeyNext—Read Next Message with Key

Purpose
The ENMKeyNext function searches for the next message that matches the
conditions set by a previous ENMKeyRead call. It searches for the identical key
value, for example, the same MRN in the queues.

Format
USHORT ENMKeyNext(SWITCH Lock, PMMSG Message, PUSHORT MessageLength)

Parameters
Lock (SWITCH) - input

The variable defines whether the message read is locked for update.

Message (PMMSG) - output
Message containing the information retrieved from the message.

MessageLength (PUSHORT) - output
Short integer variable containing the length of the message found.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not yet been started.

2 (ERR_SYSTEM)
An error occurred in the MERVA instance.

5 (ERR_NOT_ATTACHED)
The application is not attached to the MERVA instance.

7 (ERR_WRITE_TRACE)
An error occurred while writing to the trace file.

103 (ERR_NO_KEY)
The specified key is empty.

107 (ERR_NOT_SWITCH)
A value other than ON or OFF is passed in a variable that has a SWITCH
data type.

204 (ERR_MSG_INUSE)
The message is either locked by the application, or a created message
already exists in the message space.

302 (ERR_MSG_NOT_FOUND)
No matching message could be found.

Processing
If the message is read with the lock set to ON, no other program can change the
message. Use ENMFree to unlock the message.

If you call ENMKeyNext with the lock set to ON, the next unlocked message in
the queue that matches the key is returned.

64 MERVA USE & Branch for Windows NT Application Programming

Restrictions
The function requires that search conditions are defined. Search conditions can
only be defined with a call to the ENMKeyRead function.

Example
The following example program shows you how to use ENMKeyNext to search for
the next message matching the conditions set in a previous ENMKeyRead call
(KEY_MRN). The first 50 bytes of a message matching the set conditions are
printed.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

main()
{

USHORT rc = 0;
UCHAR mrnin[MRNlen + 1];
KEY key;
MMSG msg;
USHORT usLen;
FIELD Field;
PFIELD pField = &Field;

rc = ENMSetAppl("PGM1");
rc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if(rc == NO_ERROR)
{

printf("Program successfully attached to MERVA\n");
printf("Please enter the MRN from which the read begins: ");
scanf("%s", mrnin);
strcpy(key.MRN, mrnin);
/* we do not lock the message */
rc = ENMKeyRead("API_OUT", KEY_MRN, key, OFF, &msg, &usLen);
if(rc == NO_ERROR)
{

printf("MRN: %s \nFirst 50 bytes %50.50s\n----\n", mrnin, msg);

rc = ENMKeyNext(OFF, &msg, &usLen);

if(rc == NO_ERROR)
{

printf("Second instance of MRN %s found\n", mrnin);
printf("First 50 bytes %50.50s\n", msg);

}
else
{

if(rc == ERR_MSG_NOT_FOUND)
{

printf("No second instance of same MRN found\n");
}
else
{

printf("Error in KeyNext, rc %d\n", rc);
}

}
}
else
{

printf("Error in ENMKeyRead, rc = %d\n", rc);
}
/* now do the detach from MERVA */
rc = ENMDetach();

Chapter 3. MERVA API Function Calls 65

if(rc != NO_ERROR)
{

printf("Error in detach %d\n", rc);
}

else
{

printf("Program detached...\n");
}

}
else
{

printf("Error attaching to MERVA, return code %d\n", rc);
}

}

66 MERVA USE & Branch for Windows NT Application Programming

ENMKeyRead—Read Message from Queue by Key

Purpose
The ENMKeyRead function searches the named queue for the first message with
the specified key.

Format
USHORT ENMKeyRead(QNAME QueueID, KEYTYPE KeyType, KEY Key,

SWITCH Lock, PMMSG Message,
PUSHORT MessageLength)

Parameters
QueueID (QNAME) - input

The name of a queue known to MERVA. Only queues of the API group can be
addressed by the API.

KeyType (KEYTYPE) - input
Defines the type of key to search for. The supported types are defined in the
enumerated data type.

Key (KEY) - input
The identification of a message in a queue. If a key has a special format, the
API checks for this format.

Lock (SWITCH) - input
Defines whether the message read is locked for update.

Message (PMMSG) - output
Message containing the information retrieved from the message.

MessageLength (PUSHORT) - output
Short integer variable containing the length of the message found.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not yet been started.

2 (ERR_SYSTEM)
An error in the MERVA instance occurred.

5 (ERR_NOT_ATTACHED)
The application is not attached to the MERVA instance.

7 (ERR_WRITE_TRACE)
An error occurred while writing to the trace file.

101 (ERR_NO_QUEUE_NAME)
The specified queue name is empty or too long.

102 (ERR_INVALID_QUEUE_NAME)
The named queue does not belong to the API purpose group or the user
has no right to use the named queue.

103 (ERR_NO_KEY)
The specified key is empty or too long.

Chapter 3. MERVA API Function Calls 67

104 (ERR_INVALID_MRN)
The specified MRN has an invalid format.

105 (ERR_INVALID_ISN)
The specified ISN has an invalid format.

107 (ERR_NOT_SWITCH)
A value other than ON or OFF is passed in a variable with the SWITCH
data type.

108 (ERR_INVALID_KEYTYPE)
The specified key type is not in the range of the KEYTYPE enumerated
data type.

204 (ERR_MSG_INUSE)
The message is locked by the application, or a created message already
exists in the message space.

302 (ERR_MSG_NOT_FOUND)
No matching message could be found.

Processing
The search starts at the first element of the queue. Therefore, the function returns
the same message if neither the key nor the queue change.

Valid key types are defined through the KEYTYPE enumerated data type. If the
key follows a specified format, the MERVA API rejects keys that do not match this
format.

If the message is read with the lock set to ON, no other program can change the
message. Use ENMFree to unlock the message.

Restrictions
A call to this function erases all information about a key search with a prior call.

Example
The following example program requests an MRN and uses this MRN in the
ENMKeyRead call (KEY_MRN). The length, the first 20 bytes, and the network
identifier of the message are printed if the call is successful. For a description of
the network identifiers, refer to “Network (NETWORK)” on page 11.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

main()
{

USHORT rc = 0;
UCHAR mrnin[MRNlen + 1];
KEY key;
MMSG msg;
USHORT usLen;
FIELD Field;
PFIELD pField = &Field;

rc = ENMSetAppl("PGM1");
rc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if(rc == NO_ERROR)
{

printf("Program successfully attached to MERVA\n");

68 MERVA USE & Branch for Windows NT Application Programming

printf("Please enter the MRN from which the read begins: ");
scanf("%s", mrnin);
strcpy(key.MRN, mrnin);
/* we do not lock the message */
rc = ENMKeyRead("API_OUT", KEY_MRN, key, OFF, &msg, &usLen);
if(rc == NO_ERROR)
{

printf("Message length %d\n", usLen);
printf("First 20 bytes %20.20s\n", msg);
rc = ENMReadField(FLD_MSGNET, (PPFIELD)&pField);
if(rc == NO_ERROR)
{

printf("Network Identifier is: %d\n", pField->msgnet);
}
else
{

printf("Error in ReadField, rc = %d\n", rc);
}

}
else
{

printf("Error in ENMKeyRead, rc = %d\n", rc);
}
/* now do the detach from MERVA */
rc = ENMDetach();
if(rc != NO_ERROR)
{

printf("Error in detach %d\n", rc);
}
else
{

printf("Program detached...\n");
}

}
else
{

printf("Error attaching to MERVA, return code %d\n", rc);
}

}

Chapter 3. MERVA API Function Calls 69

ENMLastEntry—Read Last Message of Queue

Purpose
The ENMLastEntry function returns the most recent message in the named queue.

Format
USHORT ENMLastEntry(QNAME QueueID, SWITCH Lock, PMMSG Message,

PUSHORT MessageLength)

Parameters
QueueID (QNAME) - input

This is the name of a queue known to MERVA. Only queues of the API
purpose group can be addressed by the API.

Lock (SWITCH) - input
The variable defines whether the message read is locked for update.

Message (PMMSG) - output
Message contains information about the message found.

MessageLength (PUSHORT) - output
Short integer variable containing the length of the found message.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not yet been started.

2 (ERR_SYSTEM)
An error in the MERVA instance occurred.

5 (ERR_NOT_ATTACHED)
The application is not attached to the MERVA instance.

7 (ERR_WRITE_TRACE)
An error occurred while writing to the trace file.

101 (ERR_NO_QUEUE_NAME)
The specified queue name is empty or too long.

102 (ERR_INVALID_QUEUE_NAME)
The named queue does not belong to the API purpose group, or the user
has no right to use the named queue.

107 (ERR_NOT_SWITCH)
A value other than ON or OFF has been passed in a variable that has a
SWITCH data type.

204 (ERR_MSG_INUSE)
The message is locked by the application, or a created message already
exists in the message space.

302 (ERR_MSG_NOT_FOUND)
No matching message could be found.

70 MERVA USE & Branch for Windows NT Application Programming

Processing
With this call, the messages in a queue are sorted according to the time at which
they entered the queue. With the ENMxxxEntry calls, the system maintains a
position pointer for each queue. An application can switch between queues and
resume at the point from where it switched to the other queue.

If the message is read with the lock set to ON, no other program can change the
message. Use ENMFree to unlock the message.

If you call ENMLastEntry with the lock set to ON, the latest unlocked message in
the queue is returned.

Example
The following example shows you how to use the ENMLastEntry call to read the
last message in the API_OUT queue and display its MRN. It also attempts to read
the next message. This should result in the return code ERR_MSG_NOT_FOUND
(302).
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

main()
{

USHORT rc = 0;
MMSG msg;
USHORT usLen;
FIELD Field;
PFIELD pField = &Field;

rc = ENMSetAppl("PGM1");
rc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if(rc == NO_ERROR)
{

printf("Program successfully attached to MERVA\n");
/* we do not lock the message */
rc = ENMLastEntry("API_OUT", OFF, &msg, &usLen);
if(rc == NO_ERROR)
{

rc = ENMReadField(FLD_MRN, (PPFIELD)&pField);
if(rc == NO_ERROR)
{

printf("MRN of last message in queue: %s\n", pField);
}
else
{

printf("Error in ENMReadField, rc = %d\n", rc);
}
rc = ENMNextEntry("API_OUT", OFF, &msg, &usLen);
printf("Try reading next,return code %d (should be 302)\n", rc);

}
else
{

printf("Error in ENMLastEntry, rc = %d\n", rc);
}
/* now do the detach from MERVA */
rc = ENMDetach();
if(rc != NO_ERROR)
{

printf("Error in detach %d\n", rc);
}
else

Chapter 3. MERVA API Function Calls 71

{
printf("Program detached...\n");

}
}
else
{

printf("Error attaching to MERVA, return code %d\n", rc);
}

}

72 MERVA USE & Branch for Windows NT Application Programming

ENMNextEntry—Read Next Message in Queue

Purpose
The ENMNextEntry function returns the next message from the current position in
the queue of messages sorted by time. If the application accesses the queue for the
first time, the function returns the oldest message.

Format
USHORT ENMNextEntry(QNAME QueueID, SWITCH Lock, PMMSG Message,

PUSHORT MessageLength)

Parameters
QueueID (QNAME) - input

This is the name of a queue known to MERVA. Only queues of the API
purpose group can be addressed by the API.

Lock (SWITCH) - input
This variable defines whether the message read should be locked against
update.

Message (PMMSG) - output
Message containing the information retrieved from the message found.

MessageLength (PUSHORT) - output
Short integer variable containing the length of the message found.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not yet been started.

2 (ERR_SYSTEM)
An error in the MERVA instance occurred.

5 (ERR_NOT_ATTACHED)
The application is not attached to the MERVA instance.

7 (ERR_WRITE_TRACE)
An error occurred while writing to the trace file.

101 (ERR_NO_QUEUE_NAME)
The specified queue name is empty or too long.

102 (ERR_INVALID_QUEUE_NAME)
The named queue does not belong to the API purpose group, or the user
has no right to use the named queue.

107 (ERR_NOT_SWITCH)
A value other than ON or OFF has been passed to a variable that has a
SWITCH data type.

204 (ERR_MSG_INUSE)
The message is locked by the application, or a created message already
exists in the message space.

302 (ERR_MSG_NOT_FOUND)
No matching message could be found.

Chapter 3. MERVA API Function Calls 73

Processing
With this call, the messages of a queue are sorted according to the time at which
they entered the queue. With the ENMxxxEntry calls, the system maintains a
position pointer for each queue. An application can switch between queues and
resume at the point from where it switched to the other queue.

If the ENMNextEntry call is used with the lock set to ON, then the next unlocked
message will be returned.

If the message is read with the lock set to ON, no other program can change the
message. Use ENMFree to unlock the message.

Example
The following example shows you how to use the ENMNextEntry call to locate
and print all the MRNs found in an API queue.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

main()
{

USHORT rc = 0;
MMSG msg;
USHORT usLen;
FIELD Field;
PFIELD pField = &Field;

rc = ENMSetAppl("PGM1");
rc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if(rc == NO_ERROR)
{

printf("Program successfully attached to MERVA\n");
/* we do not lock the message */
do
{

rc = ENMNextEntry("API_OUT", OFF, &msg, &usLen);
if(rc == NO_ERROR)
{

ENMReadField(FLD_MRN, (PPFIELD)&pField);
printf("The MRN field contains: %s\n", pField);

}
} while(rc == NO_ERROR);
if(rc != ERR_MSG_NOT_FOUND)
{

printf("Error in ENMNextEntry, rc = %d\n", rc);
}
/* now do the detach from MERVA */
rc = ENMDetach();
if(rc != NO_ERROR)
{

printf("Error in detach %d\n", rc);
}
else
{

printf("Program detached...\n");
}

}
else
{

printf("Error attaching to MERVA, return code %d\n", rc);
}

}

74 MERVA USE & Branch for Windows NT Application Programming

ENMOpenSem—Open a Semaphore

Purpose
The ENMOpenSem function opens an existing semaphore created by another
process with an ENMCreateSem call.

Format
USHORT ENMOpenSem(PULONG pSemHandle, PCHAR pszSemName)

Parameters
pSemHandle (PULONG) - output

Address of the handle of the opened semaphore.

pszSemName (PCHAR) - input
Pointer to a null-terminated string containing the name of the semaphore to be
opened.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not been started.

6 (ERR_OUT_OF_MEMORY)
The system does not have enough memory to complete the function.

7 (ERR_WRITE_TRACE)
An error ocurred while writing to the trace file.

100 (ERR_TOO_MANY_SEMAPHORES)
The count of semaphores available on the system exceeds the maximum
value.

123 (ERR_INVALID_SEMAPHORE_NAME)
The semaphore name is an invalid Windows NT file name.

187 (ERR_SEMAPHORE_NOT_EXISTS)
The semaphore to be opened does not exist.

255 (ERR_SEMAPHORE_FAILED)
The semaphore call failed with an internal error.

Processing
The function opens an existing semaphore and increments an internal counter by 1.
On the opposite, the ENMCloseSem call decrements this counter by 1. If the
counter reaches 0, the semaphore is automatically removed from the system. As
counterpart to each ENMCreateSem and ENMOpenSem you must code an
ENMCloseSem so that no semaphores remain in the system after the application
has ended.

Example
The following example shows you how to use an ENMOpenSem call to get the
handle of an existing semaphore.

Chapter 3. MERVA API Function Calls 75

|
|

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

#define TRIGGER "apisem"
main()
{

USHORT lRc = 0;
ULONG SemHandle;

lRc = ENMOpenSem(&SemHandle, TRIGGER);
if(lRc == NO_ERROR)
{

printf("Semaphore successfully opened by MERVA\n");

/* ... do some processing here ... */

/* for example, clear this semaphore to */
/* signal another process that your processing */
/* is done. */
lRc = ENMClearSem(SemHandle);

lRc = ENMCloseSem(SemHandle);
if(lRc == NO_ERROR)
{

printf("Semaphore successfully closed\n");
}
else
{

printf("Error in ENMCloseSem, rc = %d\n", lRc);
}

}
else
{

if (lRc == ERR_SEMAPHORE_NOT_EXISTS)
{

printf("Semaphore does not exist.\n");
}
else
{

printf("Error opening a semaphore by MERVA, return code %d\n", lRc);
}

}
}

76 MERVA USE & Branch for Windows NT Application Programming

ENMPreviousEntry—Read Previous Queue Message

Purpose
The ENMPreviousEntry function returns the previous message from the current
position in the queue of messages sorted by time. If the application accesses the
queue for the first time, the function returns the latest message.

Format
USHORT ENMPreviousEntry(QNAME QueueID, SWITCH Lock, PMMSG Message,

PUSHORT MessageLength)

Parameters
QueueID (QNAME) - input

This is the name of a queue known to MERVA. Only queues of the API
purpose group can be addressed by the API.

Lock (SWITCH) - input
The variable defines whether the message read should be locked against
update.

Message (PMMSG) - output
Message containing the information retrieved from the message found.

MessageLength (PUSHORT) - output
Short integer variable containing the length of the message found.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not yet been started.

2 (ERR_SYSTEM)
An error in the MERVA instance occurred.

5 (ERR_NOT_ATTACHED)
The application is not attached to the MERVA instance.

7 (ERR_WRITE_TRACE)
An error occurred while writing to the trace file.

101 (ERR_NO_QUEUE_NAME)
The specified queue name is empty or too long.

102 (ERR_INVALID_QUEUE_NAME)
The named queue does not belong to the API purpose group, or the user
has no right to use the named queue.

107 (ERR_NOT_SWITCH)
A value other than ON or OFF has been passed to a variable that has a
SWITCH data type.

204 (ERR_MSG_INUSE)
The message is locked by the application, or a created message already
exists in the message space.

302 (ERR_MSG_NOT_FOUND)
No matching message could be found.

Chapter 3. MERVA API Function Calls 77

Processing
With this call the messages of a queue are sorted according to the time at which
they entered the queue. The system keeps a position pointer for each queue with
the ENMxxxEntry calls. An application can switch between several queues and
resume at the point where it switched to another queue.

If the message is read with the lock set to ON, no other program can change the
message. Use ENMFree to unlock the message.

If you call ENMPreviousEntry with the lock set to ON, the previous unlocked
message in the queue is returned.

Example
The following example shows you how to:
v Read the first message in the API_OUT queue.
v Display the MRN of this message.
v Read the next message.
v Print the MRN.
v Use the ENMPreviousEntry call to read the first message again.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

main()
{

USHORT rc = 0;
MMSG msg;
USHORT usLen;
FIELD Field;
PFIELD pField = &Field;

rc = ENMSetAppl("PGM1");
rc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if(rc == NO_ERROR)
{

printf("Program successfully attached to MERVA\n");
/* we do not lock the message */
rc = ENMFirstEntry("API_OUT", OFF, &msg, &usLen);
if(rc == NO_ERROR)
{

rc = ENMReadField(FLD_MRN, (PPFIELD)&pField);
printf("The MRN of the first is: %s\n", pField);
rc = ENMNextEntry("API_OUT", OFF, &msg, &usLen);
if(rc == NO_ERROR)
{

rc = ENMReadField(FLD_MRN, (PPFIELD)&pField);
printf("The MRN of the next is: %s\n", pField);

rc = ENMPreviousEntry("API_OUT", OFF, &msg, &usLen);

if(rc == NO_ERROR)
{

rc = ENMReadField(FLD_MRN, (PPFIELD)&pField);
printf("The MRN of the prev. is: %s\n", pField);

}
}

}
else
{

78 MERVA USE & Branch for Windows NT Application Programming

printf("Error in ENMFirstEntry, rc = %d\n", rc);
}
/* now do the detach from MERVA */
rc = ENMDetach();
if(rc != NO_ERROR)
{

printf("Error in detach %d\n", rc);
}
else
{

printf("Program detached...\n");
}

}
else
{

printf("Error attaching to MERVA, return code %d\n", rc);
}

}

Chapter 3. MERVA API Function Calls 79

ENMPut—Return Message to Queue and Unlock

Purpose
The ENMPut function returns a message to the queue from where it was retrieved.
It stays in the same position in the queue. The message is unlocked after the
operation.

Format
USHORT ENMPut()

Parameters
rc (USHORT) - return

Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not yet been started.

2 (ERR_SYSTEM)
An error in the MERVA instance occurred.

5 (ERR_NOT_ATTACHED)
The application is not attached to the MERVA instance.

7 (ERR_WRITE_TRACE)
An error occurred while writing to the trace file.

115 (ERR_SWIFT_HEAD)
The header of the message does not match the rules for SWIFT headers.

The level of checking done for the header of a SWIFT message is described
in “Appendix B. Message Header Checking” on page 149.

116 (ERR_TELEX_HEAD)
The header of the message does not match the rules for telex headers.

The checked fields of the telex header are described in “Telex Header
(TX_HEADER)” on page 11.

117 (ERR_NETWORK)
There is no destination network specified for the network.

201 (ERR_NO_MSG_LOCKED)
No message has been locked by the application.

302 (ERR_MSG_NOT_FOUND)
The message could not be found in the queue.

Processing
The message is checked before it is added to a queue. Depending on the value of
FLD_MSGNET, the message is checked for conformance to S.W.I.F.T or Telex rules.

If processing completes successfully, the message is unlocked. In case of error, use
ENMFree to unlock the message.

80 MERVA USE & Branch for Windows NT Application Programming

Restrictions
A retrieve call with the lock set to ON must have been previously issued, because
an application can only return a message it has previously locked.

For detailed information about how to specify message lengths, refer to
“Processing” on page 113.

Example
The following example shows you how to use an ENMPut call to modify an
existing message in a queue without further routing. The message is retrieved from
the API_OUT queue and the MSG_ACK field is filled with the string API ACK
Message..
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

main()
{

USHORT rc = 0;
MMSG msg;
USHORT usLen;
FIELD Field;

rc = ENMSetAppl("PGM1");
rc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if(rc == NO_ERROR)
{

printf("Program successfully attached to MERVA\n");
/* we lock the message */
rc = ENMNextEntry("API_OUT", ON, &msg, &usLen);
if(rc == NO_ERROR)
{

strcpy(Field.msgack, "API ACK Message");
rc = ENMWriteField(FLD_MSGACK, &Field);
if(rc != NO_ERROR)
{

printf("Error in ENMWritefield %d\n",rc);
}
else
{

/* now put it back */
rc = ENMPut();
if(rc == NO_ERROR)
{
printf("Message modified and put back to queue\n");
printf("Use the Retrieve Message by Queue facility\n");
printf("to view MSGACK field in message\n");
}

}
if (rc != NO_ERROR)
{

rc = ENMFree();
}

}
/* now do the detach from MERVA */
rc = ENMDetach();
if(rc != NO_ERROR)
{

printf("Error in detach %d\n", rc);
}
else

Chapter 3. MERVA API Function Calls 81

{
printf("Program detached...\n");

}
}
else
{

printf("Error attaching to MERVA, return code %d\n", rc);
}

}

82 MERVA USE & Branch for Windows NT Application Programming

ENMQueryQueue—Get Status of Queue

Purpose
The ENMQueryQueue function returns the number of messages in the named
queue at the time of the call. The maximum count of messages is 65535. Even if the
named queue contains more than 65535 messages, the number 65535 is returned.
To get the correct number of messages, use ENMQueryQueueEx.

Format
USHORT ENMQueryQueue(QNAME QueueID, PUSHORT MessageCount)

Parameters
QueueID (QNAME) - input

The QueueID is the name of the queue that the application is enquiring about.

MessageCount (PUSHORT) - output
Short integer variable containing the number of messages in the queried queue
at the time of the call.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not yet been started.

2 (ERR_SYSTEM)
An error in the MERVA instance occurred.

5 (ERR_NOT_ATTACHED)
The application is not attached to the MERVA instance.

6 (ERR_OUT_OF_MEMORY)
The API could not allocate the memory required for processing.

7 (ERR_WRITE_TRACE)
An error occurred while writing to the trace file.

101 (ERR_NO_QUEUE_NAME)
The specified queue name is empty or too long.

102 (ERR_INVALID_QUEUE_NAME)
The specified queue name is not valid (does not exist).

Processing
The ENMQueryQueue function can be used to determine the number of messages
in any MERVA queue and is not restricted to API queues. The ENMQueryQueue
call is independent of any other message function calls, such as ENMCreate,
ENMWriteField, or ENMFirstEntry.

Restrictions
The number is only valid for the time of the call because more than one
application can work on a queue.

Chapter 3. MERVA API Function Calls 83

Example
The following program uses the ENMQueryQueue call to determine the number
of messages in the API_OUT queue.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

main()
{

USHORT rc = 0;
USHORT usMessagecount;
QNAME qnMyQueue;

rc = ENMSetAppl("PGM1");
rc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if(rc == NO_ERROR)
{

printf("Program successfully attached to MERVA\n");
strcpy(qnMyQueue, "API_OUT");

rc = ENMQueryQueue(qnMyQueue, &usMessagecount);

if(rc == NO_ERROR)
{

printf("There are %d messages in Queue %s\n",
usMessagecount, qnMyQueue);

}
else
{

printf("Error in ENMQueryQueue, return code %d\n", rc);
}
/* now do the detach from MERVA */
rc = ENMDetach();
if(rc != NO_ERROR)
{

printf("Error in detach %d\n", rc);
}

}
else
{

printf("Error attaching to MERVA, return code %d\n", rc);
}

}

84 MERVA USE & Branch for Windows NT Application Programming

ENMQueryQueueEx—Get Status of Queue

Purpose
The ENMQueryQueueEx function returns the number of messages in the named
queue at the time of the call. The maximum count of messages is 2 147 483 647.

Format
USHORT ENMQueryQueueEx(QNAME QueueID, PLONG MessageCount)

Parameters
QueueID (QNAME) - input

The QueueID is the name of the queue that the application is enquiring about.

MessageCount (PLONG) - output
Short integer variable containing the number of messages in the queried queue
at the time of the call.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not yet been started.

2 (ERR_SYSTEM)
An error in the MERVA instance occurred.

5 (ERR_NOT_ATTACHED)
The application is not attached to the MERVA instance.

6 (ERR_OUT_OF_MEMORY)
The API could not allocate the memory required for processing.

7 (ERR_WRITE_TRACE)
An error occurred while writing to the trace file.

101 (ERR_NO_QUEUE_NAME)
The specified queue name is empty or too long.

102 (ERR_INVALID_QUEUE_NAME)
The specified queue name is not valid (does not exist).

Processing
The ENMQueryQueueEx function can be used to determine the number of
messages in any MERVA queue and is not restricted to API queues. The
ENMQueryQueueEx call is independent of any other message function calls, such
as ENMCreate, ENMWriteField, or ENMFirstEntry.

Restrictions
The number is only valid for the time of the call because more than one
application can work on a queue.

Example
The following program uses the ENMQueryQueueEx call to determine the number
of messages in the API_OUT queue.

Chapter 3. MERVA API Function Calls 85

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

main()
{

USHORT rc = 0;
LONG lMessagecount;
QNAME qnMyQueue;

rc = ENMSetAppl("PGM1");
rc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if(rc == NO_ERROR)
{

printf("Program successfully attached to MERVA\n");
strcpy(qnMyQueue, "API_OUT");

rc = ENMQueryQueueEx(qnMyQueue, &lMessagecount);

if(rc == NO_ERROR)
{

printf("There are %d messages in Queue %s\n",
lMessagecount, qnMyQueue);

}
else
{

printf("Error in ENMQueryQueueEx, return code %d\n", rc);
}
/* now do the detach from MERVA */
rc = ENMDetach();
if(rc != NO_ERROR)
{

printf("Error in detach %d\n", rc);
}

}
else
{

printf("Error attaching to MERVA, return code %d\n", rc);
}

}

86 MERVA USE & Branch for Windows NT Application Programming

ENMReadField—Read Field Associated with Message

Purpose
The ENMReadField function returns information associated with a message.

Format
USHORT ENMReadField(FIELDTYPE FieldType, PPFIELD Field)

Parameters
FieldType (FIELDTYPE) - input

The field type contains the name of the field the application wants to read.

Field (PPFIELD) - output
The field union contains the contents of the field the application wants to read.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not yet been started.

2 (ERR_SYSTEM)
An error in the MERVA instance occurred.

5 (ERR_NOT_ATTACHED)
The application is not attached to the MERVA instance.

7 (ERR_WRITE_TRACE)
An error occurred while writing to the trace file.

112 (ERR_INVALID_FIELDTYPE)
The specified field type is not in the range of the FIELDTYPE enumerated
data type.

203 (ERR_NO_MSG)
No message has been retrieved by the application.

Restrictions
The information can be read only if a message has been previously retrieved
because the fields are associated with a message. After the return of a message to
MERVA, information can no longer be read.

Example
The following example shows you how to use an ENMCreate call to create a new
message, and then use the ENMReadField function to display the MRN field of
this newly created message.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

main()
{

USHORT rc = 0;
FIELD Field;

Chapter 3. MERVA API Function Calls 87

PFIELD pField = &Field;
MMSG msgBuffer;

rc = ENMSetAppl("PGM1");
rc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if(rc == NO_ERROR)
{

printf("Program successfully attached to MERVA\n");
rc = ENMCreate(&msgBuffer);
if(rc == NO_ERROR)
{

printf("New Message created\n");
rc = ENMReadField(FLD_MRN, (PPFIELD)&pField);
if(rc == NO_ERROR)
{

printf("The MRN field contains: %s\n", pField);
}
else
{

printf("Error in read field, rc = %d\n", rc);
}
rc = ENMClear();

}
else
{

printf("Error in ENMCreate, rc = %d\n", rc);
}
/* now do the detach from MERVA */
rc = ENMDetach();
if(rc != NO_ERROR)
{

printf("Error in detach %d\n", rc);
}
else
{

printf("Program detached...\n");
}

}
else
{

printf("Error attaching to MERVA, return code %d\n", rc);
}

}

88 MERVA USE & Branch for Windows NT Application Programming

ENMRestartRAPI—Reconnect Remote API Program to Another MERVA
System

Purpose
This function reconnects to the remote MERVA API server. If ENMStartRAPI is not
called before this function, this function has the same effect as ENMStartRAPI.
After this function is called, the program must end with the call ENMEndRAPI.

The resynchronization is provided for the following API calls:
v ENMAdd
v ENMDelete
v ENMPut
v ENMRouteAdd
v ENMRoutePut

For details refer to the section of the MERVA Connection/NT manual that describes
resynchronization.

To ensure compatibility between MERVA API programs and MERVA
Connection/NT programs, this function is also provided for the local MERVA
system, however for the local system it internally calls ENMSetAppl.

Format
USHORT ENMRestartRAPI(PUCHAR pucApplicationName)

Parameters
pucApplicationName (PUCHAR) - input

Pointer to a null-terminated string of up to eight characters. This name is
registered by the Remote MERVA API Server if using MERVA Connection/NT.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
The function completed successfully.

2 (ERR_SYSTEM)
If ENMStartRAPI is called in:

The remote MERVA system
An internal error occurred. The API receives further information by
calling the function ENMGetReason (see “ENMGetReason—Get
Reason Code for Internal Error” on page 61).

The local MERVA system
An error occurred while calling ENMSetAppl.

Example
The following example shows you how to use an ENMRestartRAPI call.
#include "enmcapi.h" /* or include "enmrapi.h" for MERVA Connection/NT */

...
ENMSetProfile("enm6ri.prf");
ENMStartRAPI("SAMPLE");
/* ... do some API calls */

Chapter 3. MERVA API Function Calls 89

|

|

|

|

|

|

|
|

|
|
|

|
|

|
|

|
|

|
|
|
|

|
|

|

/* ... there was an error */
rc = ENMRestartRAPI("SAMPLE");
/* ... do some API calls */
ENMEndRAPI();
...

90 MERVA USE & Branch for Windows NT Application Programming

ENMRouteAdd—Route and Add a Created Message

Purpose
The ENMRouteAdd function adds the created message to the destination queue
defined by the routing conditions for the supplied source queue.

Format
USHORT ENMRouteAdd(QNAME QueueID)

Parameters
QueueID (QNAME) - input

This is the name of a queue known to MERVA. Only queues of the API
purpose group can be addressed by the API.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not yet been started.

2 (ERR_SYSTEM)
An error in the MERVA instance occurred.

5 (ERR_NOT_ATTACHED)
The application is not attached to the MERVA instance.

7 (ERR_WRITE_TRACE)
An error occurred while writing to the trace file.

8 (ERR_ROUTING)
The router could not identify a destination for the message.

101 (ERR_NO_QUEUE_NAME)
The specified queue name is empty or too long.

102 (ERR_INVALID_QUEUE_NAME)
The named queue does not belong to the API purpose group, or the user
has no right to use the named queue.

115 (ERR_SWIFT_HEAD)
The header of the message does not match the rules for SWIFT headers.

The level of checking done for the header of a SWIFT message is described
in “Appendix B. Message Header Checking” on page 149.

116 (ERR_TELEX_HEAD)
The header of the message does not match the rules for telex headers.

The checked fields of the telex header are described in “Telex Header
(TX_HEADER)” on page 11.

117 (ERR_NETWORK)
There is no destination network specified for the network.

202 (ERR_NO_MSG_CREATED)
No message has been previously created by the application.

Chapter 3. MERVA API Function Calls 91

Processing
Depending on the value of FLD_MSGNET, the message is checked for correctness
before it is added to a queue. Checking is not performed when FLD_MSGNET
contains NET_OWN. For more information about message checking, refer to
“Appendix B. Message Header Checking” on page 149.

A destination queue is calculated from the routing conditions.

Restrictions
The ENMCreate call must have been issued previously because the application can
only add a message it has previously created. The message can be added only
once.

For detailed information about how to specify message lengths, refer to
“Processing” on page 113.

Example
The following example shows you how to use ENMRouteAdd to add a new
message to an API queue, and route the message from this queue to other queues
defined in the routing set up for this queue.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

main()
{

USHORT rc = 0;
CHAR msgTxt[200];
MMSG msgBuffer;
FIELD fldAssociated;

rc = ENMSetAppl("PGM1");
rc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if(rc == NO_ERROR)
{

printf("Program successfully attached to MERVA\n");
if(ENMCreate(&msg) == NO_ERROR)
{

fldAssociated.msgnet = NET_SWIFT;
rc = ENMWriteField(FLD_MSGNET, &fldAssociated);
if(rc == NO_ERROR)
{

/* create message example type 399 */
strcpy(msgTxt,

"{1:F01VNDPBET2AXXX0000000299}{2:I399VNDPBET2AXXXN}"
"{3:{108:399-14}}{4:\r\n:20:399-14\r\n:79:REPLACE MT 101\r\n-}");

memcpy(msg, msgTxt, strlen(msgTxt));

rc = ENMRouteAdd("API_IN");
if(rc == NO_ERROR)
{

printf("Message added to Queue API_IN and routed\n");
}

}
else
{

printf("Error in ENMWriteField, rc %d\n", rc);
}
rc = ENMClear();

}

92 MERVA USE & Branch for Windows NT Application Programming

/* now do the detach from MERVA */
rc = ENMDetach();
if(rc != NO_ERROR)
{

printf("Error in detach %d\n", rc);
}
else
{

printf("Program detached...\n");
}

}
else
{

printf("Error attaching to MERVA, return code %d\n", rc);
}

}

Chapter 3. MERVA API Function Calls 93

ENMRoutePut—Route Message to Queue

Purpose
The ENMRoutePut function sends a message to one or more queues of the
MERVA instance. The destination queues are defined by message routing. A
message from an API queue can be routed to any queue of any purpose group
defined through the MERVA Customization program. The message is removed
from the source queue.

Format
USHORT ENMRoutePut()

Parameters
rc (USHORT) - return

Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not yet been started.

2 (ERR_SYSTEM)
An error in the MERVA instance occurred.

5 (ERR_NOT_ATTACHED)
The application is not attached to the MERVA instance.

7 (ERR_WRITE_TRACE)
An error occurred while writing to the trace file.

8 (ERR_ROUTING)
The router could not identify a destination for the message.

115 (ERR_SWIFT_HEAD)
The header of the message does not match the rules for SWIFT headers.

The level of checking done for the header of a SWIFT message is described
in “Appendix B. Message Header Checking” on page 149.

116 (ERR_TELEX_HEAD)
The header of the message does not match the rules for telex headers.

The checked fields of the telex header are described in “Telex Header
(TX_HEADER)” on page 11.

117 (ERR_NETWORK)
There is no destination network specified for the message.

201 (ERR_NO_MSG_LOCKED)
No message has been locked by the application.

301 (ERR_MSG_LOCKED)
Another application program has also locked this message.

302 (ERR_MSG_NOT_FOUND)
The message could not be found in the queue.

94 MERVA USE & Branch for Windows NT Application Programming

Processing
The message is checked before it is added to a queue. Depending on the value of
FLD_MSGNET, the message is checked for conformance to S.W.I.F.T or Telex rules.

If processing completes successfully, the message is unlocked. In case of error, use
ENMFree to unlock the message.

Restrictions
A retrieve call with lock set to ON must have been previously issued, because an
application can only return a message it has previously locked.

For detailed information about how to specify message lengths, refer to
“Processing” on page 113.

Example
The following example shows you how to use the ENMRoutePut call to route an
existing message from one queue to the next queue defined in the routing
definition for this queue. When the routing is defined to be from API_OUT to
SLPRINT1, the message is routed to SLPRINT1 in this example.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

main()
{

USHORT rc = 0;
MMSG msg;
USHORT usLen;
FIELD Field;

rc = ENMSetAppl("PGM1");
rc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if(rc == NO_ERROR)
{

printf("Program successfully attached to MERVA\n");
/* get the oldest message and lock it */
rc = ENMNextEntry("API_OUT", ON, &msg, &usLen);
if(rc == NO_ERROR)
{

/* now put it back and route it to the destination */
/* defined by the routing that was set up */
rc = ENMRoutePut();
if(rc == NO_ERROR)
{

printf("Message routed to destination queues\n");
}
else
{

printf("Error in ENMRoutePut %d\n",rc);
rc = ENMFree();

}
}
/* now do the detach from MERVA */
rc = ENMDetach();
if(rc != NO_ERROR)
{

printf("Error in detach %d\n", rc);
}
else

Chapter 3. MERVA API Function Calls 95

{
printf("Program detached...\n");

}
}
else
{

printf("Error attaching to MERVA, return code %d\n", rc);
}

}

96 MERVA USE & Branch for Windows NT Application Programming

ENMSetAppl—Set Application Name

Purpose
The ENMSetAppl function sets the application name used to identify the
application against MERVA. With this call, several programs with the same name
can be attached to MERVA at the same time.

Format
USHORT ENMSetAppl(PUCHAR pszApplName)

Parameters
pszApplName (PUCHAR) - input

The name of the application up to 8 characters long.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
The function completed successfully.

20 (ERR_APPLICATION_SET)
The application identifier is already set.

21 (ERR_WRONG_LENGTH)
The application identifier is too long.

106 (ERR_INVALID_ID)
The application name is not valid; it does begin with one of the approved
prefixes.

Processing
The ENMSetAppl function must be called before the ENMAttach function. If it is
omitted, the program name of the application becomes the default value. The
application name must be unique. For example, only one program with the
application ID PGM1 can be attached to MERVA at any one time. The ENMAttach
function checks whether the application name is unique.

Restrictions
Each API program that communicates with MERVA is identified by its name set in
the API call ENMSetAppl(). The name must be unique. If this call is missing, the
program name is used as identifier. For example, only one program with the
application ID PGM1 can be attached to MERVA at one time. To prevent a conflict
with names used by MERVA, do not specify the application name with one of the
following 3-character prefixes:
v enm

v ENM

v enn

v ENN

v eka

v EKA

v enl

v ENL

Chapter 3. MERVA API Function Calls 97

|

|
|
|
|
|
|

|

|

|

|

|

|

|

|

Note: Before you can use a user ID for an API program, you have to define it in
the MERVA Users program. Even if the user ID has the access right API -
without password, you have to define a valid password for this user ID.

Example
The following example shows you how to use the ENMSetAppl call.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

main()
{

USHORT rc = 0;

rc = ENMSetAppl("PGM1");

rc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if(rc == NO_ERROR)
{

printf("Program successfully attached to MERVA\n");

/* now do the detach from MERVA */
rc = ENMDetach();
if(rc != NO_ERROR)
{

printf("Error in detach %d\n", rc);
}
else
{

printf("Program detached...\n");
}

}
else
{

printf("Error attaching to MERVA, return code %d\n", rc);
}

}

98 MERVA USE & Branch for Windows NT Application Programming

|
|
|

|

ENMSetProfile—Set a Connection Profile

Purpose
This function sets a profile for a connection to a remote MERVA system. To ensure
compatibility between MERVA API programs and MERVA Connection/NT
programs, this function is also provided for the local MERVA system, however for
the local system it is only a dummy function that always returns 0 and otherwise
does nothing.

For a description of the format and contents fo the profile, refer to the section of
the MERVA Connection/NT manual that describes customization.

Format
ENMSetProfile(PUCHAR pucProfileName)

Parameters
pucProfileName (PUCHAR) - input

Pointer to a null-terminated string with a maximum length of 80 characters.
This is the full path name of the profile.

Example
The following example shows you how to use an ENMSetProfile call.
#include "enmcapi.h" /* or include "enmrapi.h" for MERVA Connection/NT */

...
ENMSetProfile("enm6ri.prf");
ENMStartRAPI("SAMPLE");
/* ... do some API calls */
ENMEndRAPI();
...

Chapter 3. MERVA API Function Calls 99

|
|
|
|
|

|
|

ENMSetSecurity—Set Conversation Security Information

Purpose
A MERVA application program can use this function to provide conversation
security information for client authorization at the remote MERVA system. To
ensure compatibility between MERVA API programs and MERVA Connection/NT
programs, this function is also provided for the local MERVA system, however for
the local system it is only a dummy function that always returns 0 and otherwise
does nothing.

Notes:

1. If this function is used, it must be called before ENMStartRAPI() or
ENMRestartRAPI.

2. Regardless of whether this function is called before or after ENMSetProfile(),
the conversation security information this function provides takes precedence
over that provided in the profile established by ENMSetProfile(). However, if
this function does not provide security information, the parameters of the
profile are used.

3. The conversation security set by this function does not affect the MERVA user
information set by ENMAttach().

Format
USHORT ENMSetSecurity(PUCHAR pucUserID,

PUCHAR pucPassword)

Parameters
pucUserID (PUCHAR) - input

Pointer to a null-terminated string of up to eight characters containing the user
ID.

pucPassword (PUCHAR) - input
Pointer to a null-terminated string of up to eight characters containing the user
password.

rc (USHORT) - output
Values are:

0 (NO_ERROR)
The function completed successfully.

2 (ERR_SYSTEM)
An internal error has occurred. For further information refer to the MERVA
USE & Branch for Windows NT User’s Guide.

Example
The following example shows you how to use an ENMSetSecurity call.
#include "enmcapi.h" /* or include "enmrapi.h" for MERVA Connection/NT */

...
ENMSetProfile("enm6ri.prf");
ENMSetSecurity("SAMPLE","SAMPLE1");
ENMStartRAPI("SAMPLE");
/* ... do some API calls */
ENMEndRAPI();
...

100 MERVA USE & Branch for Windows NT Application Programming

|
|
|
|
|
|

|
|
|
|
|

|
|

ENMSetTestEnv—Set Test Environment

Purpose
For specific sections of an application program, a MERVA application program can
use this function to activate or inactivate the test environment of a remote MERVA
API client. This can be done as often as required.

To ensure compatibility between MERVA API programs and MERVA
Connection/NT programs, this function is also provided for the local MERVA
system, however for the local system it is only a dummy function that always
returns 0 and otherwise does nothing.

Format
ENMSetTestEnv(UCHAR ucTestEnvIndicator)

Parameters
ucTestEnvIndicator (UCHAR) - input

Function parameter '1' activates the test environment, function parameter '0'
inactivates the test environment.

Example
The following example shows you how to use an ENMSetTestEnv call.
#include "enmcapi.h" /* or include "enmrapi.h" for MERVA Connection/NT */

...
ENMSetProfile("enm6ri.prf");
ENMStartRAPI("SAMPLE");
ENMSetTestEnv('1');
/* ... do some API calls */
ENMEndRAPI();
...

Chapter 3. MERVA API Function Calls 101

|
|
|

|
|
|
|

ENMSetSem—Set a Semaphore

Purpose
The ENMSetSem function sets a semaphore unconditionally. In MERVA, the
semaphore can be cleared by raising an alarm.

Format
USHORT ENMSetSem(ULONG SemHandle)

Parameters
SemHandle (ULONG) - input

Semaphore handle created by ENMCreateSem or ENMOpenSem.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not been started.

6 (ERR_OUT_OF_MEMORY)
The system does not have enough memory to complete the function.

7 (ERR_WRITE_TRACE)
An error ocurred while writing to the trace file.

255 (ERR_SEMAPHORE_FAILED)
The semaphore call failed with an internal error.

Example
The following example shows you how to use an ENMSetSem call to block the
running process until an alarm is raised by MERVA.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

#define TRIGGER "apisem"
main()
{

USHORT usIndex = 0;
USHORT lRc = 0;
ULONG SemHandle;

lRc = ENMSetAppl("PGM1");

lRc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if(lRc == NO_ERROR)
{

lRc = ENMCreateSem(&SemHandle, TRIGGER);
if(lRc == NO_ERROR)
{

printf("Semaphore successfully created by MERVA\n");

lRc = ENMSetSem(SemHandle);

/* Wait indefinitely until the semaphore will be cleared. */

102 MERVA USE & Branch for Windows NT Application Programming

|
|

|
|

/* For example, if a message reaches an API queue and the */
/* defined alarm will be raised. */
lRc = ENMWaitSemList(&usIndex, -1, SemHandle, 0);

/* ... do some processing with the received message ... */

lRc = ENMCloseSem(SemHandle);
if(lRc == NO_ERROR)
{

printf("Semaphore successfully deleted\n");
}
else
{

printf("Error in ENMCloseSem, rc = %d\n", lRc);
}

}
else
{

printf("Error creating a semaphore by MERVA, return code %d\n", lRc);
}
lRc = ENMDetach();

}
else
{

printf("Error attaching to MERVA, return code %d\n", lRc);
}

}

Chapter 3. MERVA API Function Calls 103

ENMStartRAPI—Establish Connection to Another MERVA System

Purpose
In MERVA Connection/NT, this call establishes the connection to the Remote
MERVA API Server and initializes internal buffers for communication. After this
call, the program must end with the call ENMEndRAPI. To ensure compatibility
between MERVA API programs and MERVA Connection/NT programs, this
function is also provided for the local MERVA system, however for the local
system it internally calls ENMSetAppl.

Format
USHORT ENMStartRAPI(PUCHAR pucApplicationName)

Parameters
rc (USHORT) - return

Values are:

0 (NO_ERROR)
The function completed successfully.

2 (ERR_SYSTEM)
If ENMStartRAPI is called in:

The remote MERVA system
An internal error occurred. The API receives further information by
calling the function ENMGetReason (see “ENMGetReason—Get
Reason Code for Internal Error” on page 61).

The local MERVA system
An error occurred while calling ENMSetAppl.

Example
The following example shows you how to use an ENMStartRAPI call.
#include "enmcapi.h" /* or include "enmrapi.h" for MERVA Connection/NT */

...
ENMSetProfile("enm6ri.prf");
ENMStartRAPI("SAMPLE");
/* ... do some API calls */
ENMEndRAPI();
...

104 MERVA USE & Branch for Windows NT Application Programming

|
|

|
|

|
|

|
|
|
|

|
|

|

ENMTrace—Turn API Trace ON or OFF

Purpose
The ENMTrace function turns the API trace on or off.

Format
USHORT ENMTrace(SWITCH Status)

Parameters
Status (SWITCH) - input

If the variable contains the value ON, the API trace is turned on. If it contains
the value OFF, it is turned off.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance is not started.

7 (ERR_WRITE_TRACE)
An error occurred while writing to the trace file.

107 (ERR_NOT_SWITCH)
A value other than ON or OFF has been passed to a variable that has a
SWITCH data type.

Processing
With trace set to ON, the API puts an entry in the API trace file of MERVA for
every call to one of its functions. In addition to the application and function name,
the entry contains the values of all parameters passed to the function.

Example
The following example shows you how to use the ENMTrace call to write trace
information from an API program to the MERVA API trace file.

Note: ATTACH or DETACH functions are not necessary for using the trace
functions.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

main()
{

USHORT rc = 0;

rc = ENMTrace(ON);
if(rc == NO_ERROR)
{

rc = ENMWriteTrace("This is trace information from the API program");
if(rc == NO_ERROR)
{

printf("Trace written\n");
}
else

Chapter 3. MERVA API Function Calls 105

{
printf("Error writing trace, rc = %d\n", rc);

}
}
else
{

printf("Error setting trace to ON, rc = %d\n",rc);
}

}

106 MERVA USE & Branch for Windows NT Application Programming

ENMWaitSemList—Wait for a List of Semaphores

Purpose
The ENMWaitSemList function blocks the current process until one of the
specified semaphores is cleared. It allows the API program to wait for a list of up
to 16 semaphores and up to 16 different MERVA alarms.

Format
USHORT ENMWaitSemList(PUSHORT pusIndex, LONG lTimeout, ULONG SemHandle, ...)

Parameters
pusIndex (PUSHORT) - output

Pointer to the index value that tells which of the semaphores is cleared (0 ..
15).

lTimeout (LONG) - input
Time to be waited until the function call returns.

Code Meaning

-1 Wait indefinitely for a semaphore to be cleared.

0 Return immediately.

>0 Wait the indicated number of milliseconds for a semaphore to be
cleared before resuming execution.

SemHandle (ULONG) - input
Semaphore handle, created by ENMCreateSem or ENMOpenSem.

... (ULONG) - input
Up to 15 further semaphore handles. The list of SemHandle parameters must
be terminated by the value 0.

rc (SHORT) - return
Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not been started.

6 (ERR_OUT_OF_MEMORY)
The system does not have enough memory to complete the function.

7 (ERR_WRITE_TRACE)
An error ocurred while writing to the trace file.

11 (ERR_PROCESS_EXCEEDED)
The total number of processes running concurrently in the system is
exceeded. The system cannot create a further process.

36 (ERR_SEMAPHORE_REMOVED)
One of the semaphores is removed from the system.

121 (ERR_SEMAPHORE_TIMEOUT)
The waiting time is passed.

255 (ERR_SEMAPHORE_FAILED)
The semaphore call failed with an internal error.

Chapter 3. MERVA API Function Calls 107

|
|

|
|

Example
The following example shows you how to use an ENMWaitSemList call to block
the running process until an alarm is raised by MERVA, or a stop process is
executed.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

#define TRIGGER "apisem"
#define STOP "apistop"
main()
{

USHORT usIndex = 0;
USHORT lRc = 0;
ULONG SemHandleStop;
ULONG SemHandle;

lRc = ENMSetAppl("PGM1");
lRc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if(lRc == NO_ERROR)
{

lRc = ENMCreateSem(&SemHandleStop, STOP);
if(lRc == NO_ERROR)
{

lRc = ENMCreateSem(&SemHandle, TRIGGER);
if(lRc == NO_ERROR)
{

lRc = ENMSetSem(SemHandleStop);
lRc = ENMSetSem(SemHandle);

/* Wait indefinitely until one semaphore will be cleared.*/
/* For example, if a message reaches an API queue */
/* and the defined alarm will be raised */
/* or a stop request is performed. */

lRc = ENMWaitSemList(&usIndex, -1, SemHandle, SemHandleStop, (ULONG) 0);

if (lRc == NO_ERROR)
{

if (usIndex == 0)
{

/* ... do some processing with the received message ... */
}
if (usIndex == 1)
{

printf("Process stopped without message processing\n");
}

}

lRc = ENMCloseSem(SemHandle);
if(lRc != NO_ERROR)
{

printf("Error in ENMCloseSem, rc = %d\n", lRc);
}

}
else
{

printf("Error creating trigger semaphore by MERVA, return code %d\n", lRc);
}
lRc = ENMCloseSem(SemHandleStop);
if(lRc != NO_ERROR)
{

printf("Error in ENMCloseSem, rc = %d\n", lRc);

108 MERVA USE & Branch for Windows NT Application Programming

}
}
else
{

printf("Error creating stop semaphore by MERVA, return code %d\n", lRc);
}
lRc = ENMDetach();

}
else
{

printf("Error attaching to MERVA, return code %d\n", lRc);
}

}

Chapter 3. MERVA API Function Calls 109

ENMWhereIs—Query Location of Message

Purpose
The ENMWhereIs function returns the purpose group where the message with a
specified key resides. An application can, for example, check whether a message is
already sent to the SWIFT network or whether it waits to be sent.

Format
USHORT ENMWhereIs(KEYTYPE KeyType, KEY Key, PGROUP Group)

Parameters
KeyType (KEYTYPE) - input

The variable defines the type of key to be searched for. The supported types
are defined in the KEYTYPE enumerated data type.

Key (KEY) - input
The key is the identification of a message in a queue. If a key has a special
format, the API checks for that format.

Group (PGROUP) - output
Name of the group in which the message is queued.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not yet been started.

2 (ERR_SYSTEM)
An error in the MERVA instance occurred.

5 (ERR_NOT_ATTACHED)
The application is not attached to the MERVA instance.

6 (ERR_OUT_OF_MEMORY)
The API could not allocate the memory required for processing.

7 (ERR_WRITE_TRACE)
An error occurred while writing to the trace file.

103 (ERR_NO_KEY)
The specified key is empty or too long.

104 (ERR_INVALID_MRN)
The specified MRN has an invalid format.

105 (ERR_INVALID_ISN)
The specified ISN has an invalid format.

108 (ERR_INVALID_KEYTYPE)
The specified key type is not in the range of the KEYTYPE enumerated
data type.

302 (ERR_MSG_NOT_FOUND)
No matching message could be found.

110 MERVA USE & Branch for Windows NT Application Programming

Processing
If routing is arranged so that the message is duplicated at some point in the
system, this call returns the purpose group of the most recent message entered.
The ENMWhereIs call is independent of any other message function calls, such as
ENMCreate, ENMWriteField, or ENMFirstEntry.

Restrictions
A call to ENMWhereIs erases all information stored about an ENMKeyRead call.
The search key value and the position in a sequence of matching messages is lost.
Consequently, a call to ENMKeyNext after a call to ENMWhereIs will fail with
ERR_NO_KEY, even if the call had previously completed successfully.

Example
The following example shows you how to use the ENMWhereIs call to ask for an
MRN and print the group identifier for this message. For a description of the
identifiers, refer to “Purpose Group (GROUP)” on page 16.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

main()
{

USHORT rc = 0;
GROUP group;
UCHAR mrnin[MRNlen + 1];
KEY key;

rc = ENMSetAppl("PGM1");
rc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if(rc == NO_ERROR)
{

printf("Program successfully attached to MERVA\n");
printf("Please enter the MRN you are looking for: ");
scanf("%s", mrnin);
strcpy(key.MRN, mrnin);

rc = ENMWhereIs(KEY_MRN, key, &group);

if(rc == NO_ERROR)
{

printf("The MRN %s is in Group %d\n", mrnin, group);
}
else
{

printf("Error in ENMWhereIs, rc = %d\n", rc);
}
/* now do the detach from MERVA */
rc = ENMDetach();
if(rc != NO_ERROR)
{

printf("Error in detach %d\n", rc);
}
else
{

printf("Program detached...\n");
}

}
else

Chapter 3. MERVA API Function Calls 111

{
printf("Error attaching to MERVA, return code %d\n", rc);

}
}

112 MERVA USE & Branch for Windows NT Application Programming

ENMWriteField—Write Field Associated with Message

Purpose
The ENMWriteField function updates information associated with a message.

Format
USHORT ENMWriteField(FIELDTYPE FieldType, PFIELD Field)

Parameters
FieldType (FIELDTYPE) - input

The field type contains the name of the field the application wants to write.

Field (PFIELD) - input
The field union contains the contents of the field the application wants to
write.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not been started.

5 (ERR_NOT_ATTACHED)
The application is not attached to the MERVA instance.

7 (ERR_WRITE_TRACE)
An error occurred while writing to the trace file.

112 (ERR_INVALID_FIELDTYPE)
The specified field type is not in the range of the FIELDTYPE enumerated
data type.

113 (ERR_INVALID_FIELD)
The specified field does not match the rules for the field given by the
union FIELD.

114 (ERR_FIELD_PROTECTED)
The specified field is protected against writing.

203 (ERR_NO_MSG)
No message has been retrieved by the application.

Processing
The message length field parameter FLD_MSGLEN is optional. Messages returned
to a MERVA queue with the ENMAdd, ENMRouteAdd, ENMPut, or
ENMRoutePut function must always end with a null terminator. This enables the
MERVA API to determine the message length. To make use of this automatic
length calculation, the FLD_MSGLEN field in the message space must be 0.

Alternatively, the FLD_MSGLEN field can be set to the correct message length.
This means that if the message has been retrieved before and the length has not
been changed, the FLD_MSGLEN does not need to be set. Unwanted results are
caused if the FLD_MSGLEN field is not set to 0, or the correct length is not
specified.

Chapter 3. MERVA API Function Calls 113

The FLD_MSGLEN field of user-defined messages containing X'00' characters
must always be set to the correct message length before using any of the message
routing functions.

Newly created messages require certain information, such as the destination
network for the message, to be set using this function.

Restrictions
The following fields are write protected:
v FLD_MRN
v FLD_ISN
v FLD_MSGUSER
v FLD_MSGTRUSR

Before an application can apply changes to a message in a queue, it must:
1. Retrieve the message with a lock.
2. Change the necessary information.
3. Put the message back in the queue (or route it to a different queue).

Example
The following example shows you how you set the NETWORK identifier for a
newly created message.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

main()
{

USHORT rc = 0;
CHAR msgTxt[200];
MMSG msg;
FIELD fldAssociated;

rc = ENMSetAppl("PGM1");
rc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if(rc == NO_ERROR)
{

printf("Program successfully attached to MERVA\n");
rc = ENMCreate(&msg);
if(rc == NO_ERROR)
{

fldAssociated.msgnet = NET_SWIFT;

rc = ENMWriteField(FLD_MSGNET, &fldAssociated);

if(rc == NO_ERROR)
{

/* create message example type 399 */
strcpy(msgTxt,

"{1:F01VNDPBET2AXXX0000000299}{2:I399VNDPBET2AXXXN}"
"{3:{108:399-14}}{4:\r\n:20:399-14\r\n:79:REPLACE MT 101\r\n-}");

memcpy(msg, msgTxt, strlen(msgTxt));
if(ENMRouteAdd("API_IN") == NO_ERROR)
{

printf("Message added to Queue API_IN and routed\n");
}

}
else

114 MERVA USE & Branch for Windows NT Application Programming

{
printf("Error in ENMWriteField, rc %d\n", rc);

}
rc = ENMClear();

}
/* now do the detach from MERVA */
rc = ENMDetach();
if(rc != NO_ERROR)
{

printf("Error in detach %d\n", rc);
}
else
{

printf("Program detached...\n");
}

}
else
{

printf("Error attaching to MERVA, return code %d\n", rc);
}

}

Chapter 3. MERVA API Function Calls 115

ENMWriteLog—Writing Diagnosis and Console Log Entries

Purpose
The ENMWriteLog function writes a string of up to 240 characters to the diagnosis
log file. Additionally, the messages can be specified to appear in the MERVA
message console.

The program does not have to be attached to the MERVA instance to call this
function. The functionality is independent of the API trace and its functions
(ENMTrace, ENMWriteTrace).

Format
USHORT ENMWriteLog(TRACEDATA Line, CON_MSG_ID ConMsgID, INTERVENTION Intervention)

Parameters
Line (TRACEDATA) - input

Line contains the information the application requires added to the API log
file.

ConMsgID (CON_MSG_ID) - input
The console message identifier parameter specifies the kind of information that
is passed in the Line parameter. It can be set to one of the values listed in the
CON_MSG_ID enumeration. If it is CON_ID_NONE, the information is just
written to the API log file, but not to the message console. With the other
values the message can be specified as information, error, or fatal error
message.

Intervention (INTERVENTION) - input
The intervention parameter informs you if operator intervention is required to
clear the problem status described by the message. It can be set to one of the
values listed in the INTERVENTION enumeration. If the console message
identifier parameter is CON_ID_NONE, this parameter is ignored.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not yet been started.

12 (ERR_WRITE_LOG)
An error occurred while writing diagnosis information.

Example
The following example shows you how to use the ENMWriteLog to write logging
information from an API program to the MERVA API log file and to the MERVA
Message Console.
#include <signal.h>
#include "enmcapi.h"

main(int argc, CHAR *argv[]")
{

USHORT usRc = NO_ERROR;
TRACEDATA achLogbuf;

116 MERVA USE & Branch for Windows NT Application Programming

usRc = ENMSetAppl("PGM1");
if (usRc == NO_ERROR)
{

usRc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if (usRc == NO_ERROR)
{

ENMWriteLog("Program successfully attached to MERVA",
CON_ID_NONE, INT_NOT_REQ);

/* now do the detach from MERVA */
usRc = ENMDetach();
if (usRc != NO_ERROR)
{

sprintf(achLogbuf, "Error in detach rc=%d", usRc);
ENMWriteLog(achLogbuf, CON_ID_ERROR, INT_REQ);

}
else
{

ENMWriteLog("Program detached..", CON_ID_NONE, INT_NOT_REQ);
}

}
else
{

sprintf(achLogbuf, "Error attaching to MERVA rc=%d", usRc);
ENMWriteLog(achLogbuf, CON_ID_FATAL, INT_REQ);

}
}
else
{

sprintf(achLogbuf, "Error calling ENMSetAppl rc=%d", usRc);
ENMWriteLog(achLogbuf, CON_ID_ERROR, INT_REQ);

} /* endif */
}

Chapter 3. MERVA API Function Calls 117

ENMWriteTrace—Write Application Information to Trace File

Purpose
The ENMWriteTrace function writes a string of up to 240 characters to the API
trace file.

Format
USHORT ENMWriteTrace(TRACEDATA Line)

Parameters
Line (TRACEDATA) - input

Line contains the information the application requires added to the API trace
file.

rc (USHORT) - return
Values are:

0 (NO_ERROR)
The function completed successfully.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not yet been started.

7 (ERR_WRITE_TRACE)
An error occurred while writing to the trace file.

111 (ERR_TRACE_OFF)
Trace is turned off; no information can be written.

Example
The following example shows you how to use the ENMWriteTrace call to write
trace information from an API program to the MERVA API trace file.

Note: ATTACH or DETACH functions are not necessary to use the trace functions.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmcapi.h"

main()
{

USHORT rc = 0;

rc = ENMTrace(ON);
if(rc == NO_ERROR)
{

rc = ENMWriteTrace("This is trace information from the API program");
if(rc == NO_ERROR)
{

printf("Trace written\n");
}
else
{

printf("Error writing trace, rc = %d\n", rc);
}

}
else

118 MERVA USE & Branch for Windows NT Application Programming

{
printf("Error setting trace to ON, rc = %d\n",rc);

}
}

Chapter 3. MERVA API Function Calls 119

120 MERVA USE & Branch for Windows NT Application Programming

Chapter 4. How to Use, Build, and Load an API Program

This chapter tells you how to prepare MERVA for an API program and how to
build an application program.

Preparing MERVA for an API Program
Before you can use an API program, take these steps:
v Use the MERVA Customization program to:

1. Create the queues to be used by the application program in the API purpose
group. If triggering is used, connect the appropriate alarms to the queues.

2. Set up alarms with the alarm maintenance function, if triggering is used for
queues.

3. Add the routing parameters (fields and constants) used in the conditional
routing of these queues.

4. Set up the routing for these queues.
v Use the MERVA Users program to:

1. Authorize a user ID passed with the ENMAttach call to the API function.

Note: The following API user rights are provided:
– Using API - without password

The ENMAttach call does not require a password.
– Using API - with password

The ENMAttach call requires a password.
2. Assign queues to the user access rights with the Details option.
3. Approve the user created in the previous step.

Using an API Program
To run a program that uses the MERVA API functions, ensure the following:
1. The MERVA instance must be running in multi-user mode before you start the

application program.
2. Ensure that the environment variable ENMD_IPC_DIR is set.

Usually, this variable is automatically set in your system environment when
you create the MERVA instance.
If ENMD_IPC_DIR is not set, or if your MERVA instance does not run, your
program cannot connect to the MERVA services. The program then fails.

An API program that runs when you shut down your MERVA instance is not shut
down automatically. The next access to a function that requires the MERVA
instance to be running then fails.

Therefore, ensure that your program either shuts down correctly before your
MERVA instance is terminated, orhandles the shutdown of the MERVA instance
correctly. Do this by:
v Checking every return code for errors indicating that MERVA is not running
v Installing a signal handler in your API program.

© Copyright IBM Corp. 1999, 2001 121

Building an API Program
MERVA currently supports the C programming language to write application
programs using the API functions. The following compilers are supported:
v IBM VisualAge (R) for C++ 3.5.4 or a subsequent release
v Microsoft Visual C++ 6.0 or a subsequent release

To build an application program:
1. Add the header file enmcapi.h to the source file to include all API data

definitions, structures, and function prototypes.
2. If you use enmcapi.dll for the linking, add the API functions library

enmcapi.lib to the link step.

If you compile with VisualAge for C++, you can use the sample make file
sample1.mak as a template for your make files.

To generate an executable, for example, for the sample1 program:
1. Copy the files sample1.c and sample1.mak to your working directory. These

files are contained in the directory samples\API of your MERVA installation
directory.

2. Copy the files enmcapi.h, enmcapid.h, enmcapif.h, and enmcapi.lib to your
working directory. These files are contained in the directory samples\API of
your MERVA installation directory.

3. Compile and link the program with the following command:
nmake -f sample1.mak

Note: All API programs use the library enmcapi.dll. This library is located in the
bin directory of your installation directory. You can access this library only if
you are a member of one of the following groups:
v Administrator

v mervasys

v mervalpp

Note that the developer and the user of the API program have to be a
member of one of these groups.

Loading API Functions Dynamically
You have to use dynamically loaded functions if you want to write an API
program that:
v Connects to the locally installed MERVA system by using the MERVA API
v Connects to another MERVA system by using MERVA Connection/NT

Each function of the API has a corresponding type definition that is contained in
the delivered header file. The following example shows you the type definition for
ENMQueryQueueEx:
USHORT ENMQueryQueueEx(QNAME QueueID, PLONG MessageCount)
typedef USHORT (* PFUNCENMQueryQueueEx)(QNAME,PLONG)

To load API functions dynamically, you have to load the library and retrieve the
address of every function that you want to use. The following example shows you
how to do this:

122 MERVA USE & Branch for Windows NT Application Programming

#include <windows.h>
#include "enmcapi.h"
...
HINSTANCE hLibrary;
PFUNCENMAttach pENMAttach;
PFUNCENMDetach pENMDetach;

...
hLibrary = LoadLibrary("ENMCAPI");
if (hLibrary!=NULL)
{

pENMAttach = (PFUNCENMAttach) GetProcAddress(hLibrary,"ENMAttach");
pENMDetach = (PFUNCENMDetach) GetProcAddress(hLibrary,"ENMDetach");
...
if (pENMAttach!=NULL && pENMDetach!=NULL)
{

if (pENMAttach("SAMPLE","SAMPLE1","API")==NO_ERROR)
{

/* ... do some processing here ... */

pENMDetach();
}

}
FreeLibrary(hLibrary);

}

Adding an API Program to the MERVA Menu window
To make it easier to access your customer-written programs, for example, an API
program, you can add them to the MERVA Menu window. Note that you have to
be a DB2 (R) administrator to be able to process the following calls.

Important
Be careful when using these commands. Incorrect use of these commands can
make your MERVA instance useless.

You have to do the following:
1. Create a program group:

db2 "INSERT into merva2.enmprggp VALUES(<grpID>, <GroupName>)"

Where the following applies:

<grpID>
The group IDs below 1000 are reserved for MERVA. Use a number higher
than 1000 for your own programs.

<GroupName>
The name of the program group. The string may not exceed 25 characters.

2. Create one or more program entries:
db2 "INSERT into merva2.enmprg VALUES(<ProgramName>,<executable>,<rightID>,<grpID>)"

Where the following applies:

<ProgramName>
The displayed name of the started program. The length of the name may
not exceed 40 characters.

Chapter 4. How to Use, Build, and Load an API Program 123

<executable>
The executable that is called if this program is started. The length of the
name may not exceed 25 characters.

<rightID>
The right that is connected to this program. Use the numbers 40 to 47 to
indicate the rights USER_R1 to USER_R10:

USER_R1 to USER_R7
Use numbers 40 to 46.

USER_R8
Use number 46.

USER_R9, USER_R10
Use number 47.

<grpID>
The ID of the group to which the program belongs.

3. Update the display of the right USER_R1 through USER_R10 by using the
following calls:
db2 "UPDATE merva2.enmfkdef SET descript = <newText> WHERE right_item = <extRightID>"

Where the following applies:

<newText>
The new description for the right USER_Rxx. The description may not
exceed 40 characters. For example, use USER_R1: Start Company’s
Application.

<extRightID>
The right that is to be changed. Use the following values:

4001
For USER_R1

4101
For USER_R2

4201
For USER_R3

4301
For USER_R4

4401
For USER_R5

4501
For USER_R6

4601
For USER_R7

4602
For USER_R8

4701
For USER_R9

4702
For USER_R10

124 MERVA USE & Branch for Windows NT Application Programming

API programs that are called from the MERVA Menu window must use MEN as
function ID for the call ENMAttach. For more information, refer to the description
of the ENMAttach function.

The following example adds the Windows NT Notepad and the Windows NT
Explorer to the MERVA Menu window:
db2 "connect to enmcntrl"
db2 "INSERT into merva2.enmprggp VALUES(1000, 'Windows-NT Programs')";
db2 "INSERT into merva2.enmprg VALUES('Windows-Notepad','notepad', 40, 1000)";
db2 "INSERT into merva2.enmprg VALUES('Windows-Explorer','notepad', 41, 1000)";
db2 "UPDATE merva2.enmfkdef SET descript = 'USER_R1: Use Windows-Notepad'

WHERE right_item = 4001";
db2 "UPDATE merva2.enmfkdef SET descript = 'USER_R2: Use Windows-Explorer'

WHERE right_item = 4101";
db2 "connect reset"

API Sample Programs
The sample programs and source code that show you the use of API function calls
to access MERVA with the MERVA API are contained in the samples directory of
your MERVA installation directory.

Note: All sample programs, except sample 4, use the user ID SAMPLE and the
password SAMPLE1. User ID and password are case sensitive.

Ensure that the user ID SAMPLE is a valid MERVA user ID that has the
right to access the API.

For example, the following sample programs are provided:

sample1 To load messages to the API_IN queue or unload messages from
the API_OUT queue.

sample2 Shows you the triggering concept of MERVA.

sample2s Stops the sample2 program.

sample3 To load telex messages to the TP2_SND queue.

sample4 To load or unload messages. It is identical to the sample1 program,
with the exception that the following parameters are variable:
v The queue name of the processed API queue.
v The name of the user who is authorized to use the API

functions.
v The password if the API access right API - with password is

required.
v The way how the length bytes are written to the unload file.
v The network type of the processed message.

The following files are necessary to build your own API programs:

sample1.mak ... sample4.mak
A sample to compile and link the API sample programs sample1.c
to sample4.c contained in the directory samples\API.

enmcapi.h The API function prototypes and type definitions contained in the
directory samples\API.

enmcapif.h The API function prototypes and type definitions contained in the
directory samples\API.

Chapter 4. How to Use, Build, and Load an API Program 125

enmcapid.h The API function prototypes and type definitions contained in the
directory samples\API.

enmoapi.h This file ensures compatibility to MERVA AIX. Do not use this file
for new development projects.

enmcapi.dll The API function library contained in the directory bin.

enmcapi.lib The file that links API programs contained in the directory
samples\API.

126 MERVA USE & Branch for Windows NT Application Programming

Chapter 5. The REXX Function Package

This chapter tells you how to use the Restructured Extended Executor (REXX)
language to write application programs with the REXX function package.

Preparing MERVA for a REXX Program
The REXX function package works like an API program that is, for example,
written in C. For information on how to prepare MERVA for a REXX program refer
to “Chapter 4. How to Use, Build, and Load an API Program” on page 121.

Using the REXX Function Package
The REXX function package for the MERVA API is contained in the file
enmcarex.dll. This shared library is located in the directory bin of the MERVA
installation path. To access the functions in the REXX function package, use the
following REXX code:

rc = RxFuncAdd('ENMLoadFuncs','ENMCAREX','ENMLoadFuncs')
if (rc = 0) then

call ENMLoadFuncs
else do

say 'Could not find REXX function package. Is your PATH variable set correctly?'
exit 0

end
call ENMInit
The ENMInit() function ...

The ENMInit() function loads all MERVA API constants of the following types into
the REXX variable environment:

SWITCH
KEYTYPE
FIELDTYPE
NETWORK
GROUP
CON_MSG_ID
INTERVENTION

For further details refer to “Chapter 2. MERVA API Data Types” on page 7.

You do not have to call ENMInit() if you want to use values instead of variables.

Note: The variables set by ENMInit() are only available in the procedure with
which ENMInit() is called. You must therefore call ENMInit() for each
procedure in which you want to use the variables.

After you use the MERVA API REXX functions, drop the loaded functions by using
the following command:

call ENMUnloadFuncs
call RxFuncDrop 'ENMunloadFuncs'

Note: This command drops the functions of all REXX programs running on your
workstation. If you want to run several REXX programs that use MERVA
API REXX functions, use this command after the last running REXX
program ends.

© Copyright IBM Corp. 1999, 2001 127

REXX Function Calls
Most of the function names and parameters are equal to the API subcommands
listed in “Chapter 3. MERVA API Function Calls” on page 19.

Output parameters are denoted as variable names. To avoid that the REXX
interpreter evaluates the output parameters, you have to quote them. After the
function call ends, the specified variable contains the information.

The following function is different to the description above:

ENMCreate(msg) The output parameter msg is not needed because
the memory space for the message is allocated by
the shared library. You can set the message text by
using the function ENMPutMsgText(msg). This
function is new. It is explained in the following
paragraph.

The following functions are new:

ENMInit() Loads all MERVA API constants.

ENMPutMsgText(msg) This function sets the message text of the currently
active message to the value of MSG.

ENMGetErrorText(rc) This function returns the description of a MERVA
API return code listed in “Appendix A. Return
Codes” on page 141.

The following functions are not supported by the REXX Function Package:
v ENMCheckUserRight(Right,bRight)

v All functions to ensure compatibility between MERVA and MERVA
Connection/NT. For a detailed description of these functions refer to page 21.

Additionally, the REXX Function Package does not support functions to write and
read telex headers.

REXX Return Codes
The MERVA REXX functions return the MERVA API return codes as numbers. For
a description of the return codes, refer to “Appendix A. Return Codes” on
page 141. Additionally, the variable ENMerrno is set to the defined name of the
return value, except for the new function ENMGetErrorText().

The following example shows you how to use the ENMerrno variable:
rc = ENMAttach('SAMPLE',", 'API')
if (ENMerrno = 'ERR_SYSTEM_NOT_UP') then

say 'Sorry, MERVA is not running.'
else if (rc <> 0) then

say 'Could not attach to MERVA: 'ENMGetErrorText(rc)

Example
The following example shows you how to use the REXX function calls:
rc = RxFuncAdd('ENMLoadFuncs','ENMCAREX','ENMLoadFuncs')
if (rc = 0) then

call ENMLoadFuncs
else do

128 MERVA USE & Branch for Windows NT Application Programming

say 'Could not find REXX function package. Is your PATH variable set correctly?'
exit 0

end
call ENMInit

n = d2c(13) || d2c(10) /* CR + LF = new line (for message) */

rc = ENMAttach('SAMPLE', ', 'API') /* Attach to MERVA with user ID 'SAMPLE' */
if (ENMerrno = 'NO_ERROR') then do

say 'Program successfully attached to MERVA'

rc = ENMCreate('msg') /* MSG is only a dummy variable */
if (ENMerrno = 'NO_ERROR') then do

say 'New message created'

/* Use API constants FLD_MSGNET and NET_SWIFT */
rc = ENMWriteField(FLD_MSGNET, NET_SWIFT) /* SWIFT message */
if (ENMerrno = 'NO_ERROR') then do

/* create message example */
msg = '{1:F01VNDPBET2AXXX0000000299}&

{2
:I399VNDPBET2AXXXN}'

msg = msg||'{3:{108:399-14}};{4:'||n
msg = msg||':20:399-14'||n||':79:REPLACE MT 101'||n||'-}'

rc = ENMPutMsgText(msg) /* Set the text of the message */

rc = ENMRouteAdd('API_IN') /* Add message to queue and route it */
if (ENMerrno = 'NO_ERROR') then

say 'New message added to Queue API_IN and routed.'
else do

say 'Error in ENMAdd: 'ENMGetErrorText(rc)
rc = ENMClear() /* If an error occurred clear the message */

end
end
else do

say 'Error in ENMWriteField: 'ENMGetErrorText(rc)
rc = ENMClear() /* If an error occurred clear the message */

end
end
else

say 'Error in ENMCreate: 'ENMGetErrorText(rc)

rc = ENMDetach() /* Now do the detach */
if (ENMerrno <> 'NO_ERROR') then

say 'Error in ENMDetach: 'ENMGetErrorText(rc)
else

say 'Program detached from MERVA'

end
else

say 'Error in ENMAttach: 'ENMGetErrorText(rc)

call ENMUnloadFuncs
call RxFuncDrop 'ENMunloadFuncs'

exit 0 /* End REXX program with error code 0 */

REXX Sample Files
All sample programs that demonstrate the usage of the REXX function package to
access MERVA are contained in the directory samples/API of your MERVA
directory.

The following sample programs are available:

Chapter 5. The REXX Function Package 129

sample1.rex Loads messages to the API_IN queue or unloads messages from
the API_OUT queue.

sample2.rex Shows you the triggering concept of MERVA.

sample2s.rex Stops the sample2.rex program.

sample4.rex Loads or unloads messages like the sample1.rex program with the
exception that the following parameters are variable:
v The queue name of the processed API queue.
v The name of the user who is authorized to use the API

functions.
v The password if the API access right API - with password is

required.
v The way how the length bytes are written to the unload file.
v The network type of the processed message.

Note: All sample programs, except sample 4, use the user ID SAMPLE and the
password SAMPLE1. User ID and password are case sensitive.

Ensure that the user ID SAMPLE is a valid MERVA user ID that has the
right to access the API.

130 MERVA USE & Branch for Windows NT Application Programming

Chapter 6. The SWIFT Link API

The SWIFT Link API offers you new functions that help you handle checksum and
authentication for a message. You can:
v Calculate, compare, add, and replace the checksum of a message
v Authenticate a message

With the SWIFT Link API you can, for example, retrieve or create a message by
using a MERVA API program. You can then check or authenticate this message
with the new SWIFT Link API functions.

The sample program samp_auth.c and the corresponding make filesamp_auth.mak
show how to use the API.

Note: Ensure that you are attached to MERVA before you call any of the SWIFT
Link API functions.

The functions are contained in the library enmcaaut.dll. You also need the files
enmcaaut.lib and enmcaaut.h to use these functions.

The functions are:
v ENMChecksum

INT ENMChecksum(INT iBuflen, PINT piMsglen, MMSG pszMsg, INT iOption)

v ENMAuthenticate
LONG ENMAuthenticate(USHORT usBuflen, USHORT *pusMsglen, MMSG pszMsg,

USHORT usOption, INF_MMSG infMsg1);

The following list explains the abbreviations used in the function code:

LONG Long

USHORT Unsigned short

INT Integer

PINT Pointer to integer

MMSG Pointer to unsigned char string

INF_MMSG Array of 256 characters

Note: You must start MERVA before you can use the SWIFT Link API functions.

The following sections describe the new functions in detail.

© Copyright IBM Corp. 1999, 2001 131

ENMChecksum—Handle Message Checksum

Purpose
The ENMChecksum function calculates the checksum and adds or replaces the
checksum at the end of the message. It also compares the checksum with the
passed checksum of the message. If the message is sent from a training LT and if
the training trailer is missing, the training trailer is added.

Format
INT ENMChecksum(INT iBuflen, PINT piMsglen, MMSG pszMsg, INT iOption)

Parameters
iBuflen (INT) - input

Length of allocated memory for the message.

piMsglen (PINT) - input
Pointer to input message length. If the message length changes, it points to the
changed output message length.

pszMsg (MMSG) - input
Pointer to message. Must be terminated by zero.

iOption (INT) - input
Indicates processing of output messages. This parameter is valid only for
output messages.

CHK_CHKSM - 0
Calculates the checksum and checks it with the passed checksum.

ADD_CHKSM - 1
Calculates the checksum and adds or replaces it at the end of the message.

rc (INT) - output
Values are:

0 (NO_ERROR)

Input message:
The checksum is added or replaced successfully.

Output message:

v Option = 1: The checksum is added or replaced successfully.
v Option = 0: The checksum at the end of the message is correct.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not yet been started.

5 (ERR_NOT_ATTACHED)
The API program is not yet attached to MERVA.

1002 (ERR_MSG_TOO_LONG)
The message is too long. Therefore, the trailer could not be added.

1021 (NO_FIN_MSG)
The message is not a user-to-user or a system message (01 service
identifier).

1022 (ERR_CHKSM_FAILED)
The checksum for the output message failed.

132 MERVA USE & Branch for Windows NT Application Programming

1023 (ERR_MMSG_FORMAT)
A format error occurred, for example, braces are not paired, or incorrect
CHK trailer occurred.

Changes: If the trailer is empty, it is inserted.
v Input:

...{CHK:}...

v Output:
...{CHK:NNNNNNNNNNNN}...

Example
before:
{1:F01IBMADEF0AXXX0116001378}{2:I100IBMADEF0XXXXN}{3:{108:100-02}}{4:
:20:100-01
:32A:960326NLG958,47
:50:FRANZ HOLZAPFEL G.M.B.H
WIEN
:59:H.F.JANSSEN
LEDEBOERSTRAAT 27
AMSTERDAM
-}{5:{MAC:E187CE93}{CHK:111111111111}{TNG:}}";
after:
{1:F01IBMADEF0AXXX0116001378}{2:I100IBMADEF0XXXXN}{3:{108:100-02}}{4:
:20:100-01
:32A:960326NLG958,47
:50:FRANZ HOLZAPFEL G.M.B.H
WIEN
:59:H.F.JANSSEN
LEDEBOERSTRAAT 27
AMSTERDAM
-}{5:{MAC:E187CE93}{CHK:06D9BD12CB96}{TNG:}}";

before:
{1:F01IBMADEF0AXXX0116001378}{2:I100IBMADEF0XXXXN}{3:{108:100-02}}{4:
:20:100-01
:32A:960326NLG958,47
:50:FRANZ HOLZAPFEL G.M.B.H
WIEN
:59:H.F.JANSSEN
LEDEBOERSTRAAT 27
AMSTERDAM
-}";
after:
{1:F01IBMADEF0AXXX0116001378}{2:I100IBMADEF0XXXXN}{3:{108:100-02}}{4:
:20:100-01
:32A:960326NLG958,47
:50:FRANZ HOLZAPFEL G.M.B.H
WIEN
:59:H.F.JANSSEN
LEDEBOERSTRAAT 27
AMSTERDAM
-}{5:{CHK:06D9BD12CB96}{TNG:}}";

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmoapi.h"
#include "enmcaaut.h"

#define MAXMSGLEN 10001 /* Message buffer of msg got from ENMFirstEntry
is 28000, but maxlength of SWIFT messages
is 10000. */

Chapter 6. The SWIFT Link API 133

void main(int argc, char *argv[])
{

INT rc = NO_ERROR;
MMSG msg;
USHORT usorglen;
INT option = ADD_CHKSM; /* Add or Replace CHK Trailer */
INT msglen;
INT msg_found = TRUE;

if (4 != argc)
{

printf("\n This test program add or replace a CHK Trailer");
printf("\n of a SWIFT message, which is got from a API queue.\n");
printf("\n PARAMETER:\n");
printf("\n userid = UserID which is used for API program.");
printf("\n password = Password of UserID");
printf("\n queue = Queue from which a message is modified");
printf("\n and routed.");
printf("\n Usage : ex2 userid password queue \n");
printf("\n e.g. ex2 merva1 xxxxx API_IN\n");

}
else
{

rc = ENMAttach(argv[1], argv[2], "API");

if (rc == NO_ERROR)
{

printf("Program successfully attached to MERVA\n");

rc = ENMFirstEntry(argv[3],ON,&msg,&usorglen);
if (rc != NO_ERROR)
{

printf("Error in ENMFirstEntry rc %d\n", rc);
msg_found = FALSE;

}
else
{

printf("FirstEntry locked\n");
}

if (msg_found == TRUE)
{

msglen = strlen(msg);
rc = ENMChecksum(MAXMSGLEN, &msglen, msg, option);
if (rc != NO_ERROR)
{

printf("Error in ENMChecksum rc %d\n", rc);
}
else
{

printf("ENMChecksum successful msg = %s.\n",msg);
}

if (rc != NO_ERROR)
{

rc = ENMFree();
if (rc != NO_ERROR)
{

printf("Error in ENMFree rc %d\n", rc);
}
else
{

printf("ENMFree successful.\n");
}

}
else
{

134 MERVA USE & Branch for Windows NT Application Programming

rc = ENMRoutePut();
if (rc != NO_ERROR)
{

printf("Error in ENMRoutePut rc %d\n", rc);
}
else
{

printf("ENMRoutePut successful.\n");
}

}
}

/* Now do the detach from MERVA */
rc = ENMDetach();
if (rc != NO_ERROR)
{

printf("Error in detach %d\n", rc);
}
else
{

printf("Program detached...\n");
}

}
else
{

printf("Error attaching to MERVA, return code %d\n", rc);
}

}
}

Chapter 6. The SWIFT Link API 135

ENMAuthenticate—Authenticate Message

Purpose
The ENMAuthenticate function authenticates a SWIFT message. The MAC and
PAC trailer handling depends on the option parameter and the message type. The
message type can be input or output message.

Format
LONG ENMAuthenticate(USHORT usBuflen, USHORT *pusMsglen, MMSG pszMsg,

USHORT usOption, INF_MMSG infMsg1)

Parameters
usBuflen (USHORT) - input

Length of allocated memory for the message.

pusMsglen (USHORT*) - input/output

Input Pointer to input message length.

Output New message length if the message is changed.

pszMsg (MMSG) - input
Pointer to message. Must be terminated by zero.

usOption (USHORT) - input
Indicates processing of MAC and PAC trailer.

infMsg1 (INF_MMSG) - input/output
Returns an information or error message. You should define this parameter as
an array with 256 characters.

The following list shows you the information or error messages that are
returned in the infMsg1 array:

ENN9128E AUTH failed <homeDest> / <correspDest> record.

ENN9129I Auth OK, discontinued key <ID>, <homeDest> /
<correspDest> record.

ENN9130I Auth OK, day = <dayDifference>, key <ID>, <homeDest> /
<correspDest> record.

ENN9131I Auth OK, key <ID>, <homeDest> / <correspDest> record.

ENN9132I Message not to be authenticated.

ENN9133I PAC trailer is empty (bypassed mode).

ENM9979E <homeDest> / <correspDest> key for authentication not found.

ENM9980I <homeDest> / <correspDest> suspended or excluded BK
record found.

ENM9981I Auth OK, suspended or excluded BK record used <homeDest>
/ <correspDest>, key <ID>

ENM9982I <homeDest> / <correspDest> message not to be authenticated.

ENM9983E <homeDest> message format error.

ENM9984E <homeDest> message does not contain text.

ENM9985E <homeDest> / <correspDest> authentication failed.

136 MERVA USE & Branch for Windows NT Application Programming

ENM9986E Message too long. Authentication trailer could not be added.

rc (LONG) - output
Values are:

0 (NO_ERROR)
Authentication OK with any key.

1 (ERR_SYSTEM_NOT_UP)
The MERVA instance has not yet been started.

5 (ERR_NOT_ATTACHED)
The API program is not yet attached to MERVA.

1001 (ERR_INV_HEADER)
The header of the message is not valid.

1002 (ERR_MSG_TOO_LONG)
The message is too long. Therefore, the authentication trailer could not be
added.

1003 (ERR_KEY_NOT_FOUND)
The key for authentication could not be found.

1004 (NOT_TO_BE_AUTH)
The message is not to be authenticated.

1005 (ERR_MSG_EMPTY)
The message does not contain text.

1007 (ERR_AUTH_FAILED)
Authentication failed.

1008 (ERR_NO_PAC_DEF)
The FIN copy definition for the PAC trailer could not be found.

1009 (ERR_PAC_BYPASS)
The PAC trailer is empty. This state is also called bypassed mode.

1010 (ERR_CONN_CTLDB_FAILED)
The connection to the control database failed.

Processing
With this call, you can add or check the MAC and PAC trailer of a SWIFT
message, depending on the option parameter and the message type:
v Input Messages:

With option ADDMAC_ADDPAC, the MAC trailer is added if the message has
to be authenticated according the SWIFT rules. The PAC trailer is added if it is a
FIN Copy message.
With option ADDMAC_NOPAC, the MAC trailer is added if the message has to
be authenticated according the SWIFT rules. The PAC trailer is not to be
handled.

v Output Messages:
With option CHKMAC_CHKPAC, the MAC Trailer is checked. The PAC trailer
is checked if it is customized accordingly.
With option ADDMAC_NOPAC, the MAC trailer is added or replaced. The
PAC trailer is not handled.

If a trailer is added, the message length is increased. If a message contains an
empty MAC trailer ({MAC:}), the MAC trailer is extended with 00000000
({MAC:00000000}). Depending on the outcome of the authentication, additional

Chapter 6. The SWIFT Link API 137

information is returned in parameter infMsg1, for example, the authentication key
that was used. Additional MAC information is written from byte 0 to byte 127 of
infMsg1, additional PAC information is written from byte 128 to byte 255 of
infMsg1.

The ENMAttach function must be called before you can use the ENMAuthenticate
function.

Example
before:
{1:F01IBMDDEFFAXXX0414005032}{2:I199IBMADEFFXXXXN}{4:
:20:SCH
:79:TEST MMSG
-}{5:CHK:794D4B15701B}}
after:
{1:F01IBMDDEFFAXXX0414005032}{2:I199IBMADEFFXXXXN}{4:
:20:SCH
:79:TEST MMSG
-}{5:{MAC:CCCB8B8F}{CHK:794D4B15701B}}

before:
{1:F01IBMDDEFFAXXX0414005032}{2:I199IBMADEFFXXXXN}{4:
:20:SCH
:79:TEST MMSG
-}
after:
{1:F01IBMDDEFFAXXX0414005032}{2:I199IBMADEFFXXXXN}{4:
:20:SCH
:79:TEST MMSG
-}{5:{MAC:CCCB8B8F}}

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmoapi.h"
#include "enmcaaut.h"
#define MAXMSGLEN 10001 /* Messagebuffer of msg got from ENMFirstEntry

is 28000, but maxlength of SWIFT messages
is 10000. */

void main(int argc, char *argv[])
{

INT rc = NO_ERROR;
MMSG msg;
USHORT usorglen;
USHORT option = ADDMAC_NOPAC; /* Add or Replace MAC Trailer */
USHORT msglen;
INT msg_found = TRUE;
UCHAR inf_msg[INF_MSG_LEN + 1];

if (4 != argc)
{

printf("\n This test program checks or replace a MAC Trailer");
printf("\n of a SWIFT message, which is got from a API queue.\n");
printf("\n PARAMETER:\n");
printf("\n userid = UserID which is used for API program.");
printf("\n password = Password of UserID");
printf("\n queue = Queue from which a message is modified");
printf("\n and routed.");
printf("\n Usage : ex1 userid password queue \n");
printf("\n e.g. ex1 merva1 xxxxx API_IN\n");

}
else
{

138 MERVA USE & Branch for Windows NT Application Programming

rc = ENMAttach(argv[1], argv[2], "API");

if (rc == NO_ERROR)
{

printf("Program successfully attached to MERVA\n");

rc = ENMFirstEntry(argv[3],ON,&msg,&usorglen);
if (rc != NO_ERROR)
{

printf("Error in ENMFirstEntry rc %d\n", rc);
msg_found = FALSE;

}
else
{

printf("FirstEntry locked\n");
}

if (msg_found == TRUE)
{

msglen = strlen(msg);
rc = ENMAuthenticate(MAXMSGLEN, &msglen, msg, option, inf_msg);
if (rc != NO_ERROR)
{

printf("Error in ENMAuthenticate rc %d\n", rc);
}
else
{

printf("ENMAuthenticate successful msg = %s.\n",msg);
}

if (rc != NO_ERROR)
{

rc = ENMFree();
if (rc != NO_ERROR)
{

printf("Error in ENMFree rc %d\n", rc);
}
else
{

printf("ENMFree successful.\n");
}

}
else
{

rc = ENMRoutePut();
if (rc != NO_ERROR)
{

printf("Error in ENMRoutePut rc %d\n", rc);
}
else
{

printf("ENMRoutePut successful.\n");
}

}
}

/* Now do the detach from MERVA */
rc = ENMDetach();
if (rc != NO_ERROR)
{

printf("Error in detach %d\n", rc);
}
else
{

printf("Program detached...\n");
}

}

Chapter 6. The SWIFT Link API 139

else
{

printf("Error attaching to MERVA, return code %d\n", rc);
}

}
}

140 MERVA USE & Branch for Windows NT Application Programming

Appendix A. Return Codes

Parameter name (data type of parameter) - input or output

If the function type is not void, the last entry in the parameter list is rc. It contains
a list of return codes that are valid for the function.

Each description contains the following parts:
v Value of the return code
v Defined name of the return code
v Meaning of the return code

This appendix shows you the return codes that are returned by the API function
calls.

0 (NO_ERROR)

Problem Determination: The function completed
successfully. The MERVA instance completed an API
call without an error.

System Action: The API call is processed.

User Response: Continue with normal processing.

1 (ERR_SYSTEM_NOT_UP)

Problem Determination: The MERVA instance has not
yet been started or is started in customization mode.

System Action: The API call could not be processed
because the MERVA system does not run in the right
mode.

User Response: Start the MERVA instance, then restart
your application.

2 (ERR_SYSTEM)

Problem Determination: An error occurred in the
MERVA instance. An internal MERVA error occurred
during processing of the API call. The processing is not
complete. Further API processing can lead to
unpredictable results.

System Action: The API call is not processed.

User Response: Shut down the application program
and MERVA. Read the MERVA diagnosis log file to
find the error and its reason.

3 (ERR_ATTACH_FAILED)

Problem Determination: MERVA did not attach to the
application program because another application
program with the same name is already connected to
MERVA.

System Action: The API call is not processed.

User Response: Use a different identifier to attach the
application program to MERVA or wait until the
identifier is free.

4 (ERR_DETACH_FAILED)

Problem Determination: The detach failed because of
internal errors. MERVA could not disconnect the
application program due to an error.

System Action: The API call is not processed.

User Response: Shut down the application program
and MERVA. Read the MERVA diagnosis log file to
find the error and its reason.

5 (ERR_NOT_ATTACHED)

Problem Determination: The application program is
not attached to the MERVA instance.

System Action: MERVA does not process the API call
because the application program is not connected to the
MERVA instance.

User Response: Connect the application program to
the ENMAttach() call.

6 (ERR_OUT_OF_MEMORY)

Problem Determination: Windows NT could not
supply the requested amount of memory to the API.

System Action: The API call is not processed.

User Response: Increase the amount of memory or
stop other programs.

© Copyright IBM Corp. 1999, 2001 141

7 (ERR_WRITE_TRACE)

Problem Determination: Information could not be
added to the trace file.

System Action: The API tried to add information to
the trace file but did not succeed.

User Response: Ensure that the disk space for the API
file is sufficient and try again.

8 (ERR_ROUTING)

Problem Determination: The router could not identify
a destination queue for the message.

System Action: The message is left in the message
space. It is still part of the queue from which it was
read.

User Response: Check the routing conditions for the
queue from which the message was read.

9 (ERR_NO_FREE_SLOT)

Problem Determination: All slots to attach to Base
Functions services are currently in use.

System Action: The API program is not attached to
MERVA.

User Response: Stop one of the MERVA API programs
or wait until a program ends.

10 (ERR_SIGNON_FAILED)

Problem Determination: The application program
cannot sign on to the MERVA Control Process.

The signon failed for one of the following reasons:

Reason Explanation

702 MERVA Control Process not in
MERVA up status

907 Maximum number of MERVA
instances reached

911 A necessary process does not run

912 Another process that may not run is
running

System Action: The API program is not attached to
MERVA.

User Response: Shut down the application program
and MERVA. Read the MERVA diagnosis log file to
find the error and its reason.

11 (ERR_PROCESS_EXCEEDED)

Problem Determination: The ENMWaitSemList call
executes several subprocesses. Windows NT could not
supply the requested amount of processes.

System Action: The API call is not processed.

User Response: Stop other processes on the system.

12 (ERR_WRITE_LOG)

Problem Determination: An error occurred while
writing diagnosis information.

System Action: The API tried to add information to
the trace file but did not succeed.

User Response: Ensure that the disk space for the API
file is sufficient and try again.

20 (ERR_APPLICATION_SET)

Problem Determination: The application name is
already set.

System Action: The API call is not processed.

User Response: Check the sequence of the calls
ENMSetAppl and ENMAttach. Check whether the
ENMSetAppl call is used more than once.

21 (ERR_WRONG_LENGTH)

Problem Determination: The application identifier is
too long.

System Action: The API call is not processed.

User Response: Correct the application identifier in
the ENMSetAppl function. Its length can be up to 8
characters.

22 (ERR_NO_API_QUEUE)

Problem Determination: There is no predefined queue
that belongs to the API purpose group.

System Action: The API call is not processed.

User Response: Use the MERVA Customization
program to define a queue that belongs to the API
purpose group.

23 (ERR_NO_API_QUEUE_ASSIGNED)

Problem Determination: A queue that belongs to the
API purpose group is not assigned to the user access
right.

System Action: The API call is not processed.

User Response: Use the MERVA Users program to
assign a queue to the API access right API - with
password or API - without password

31 (ERR_SEMAPHORE_NO_AUTHORITY)

Problem Determination: The API semaphore call
ENMCloseSem causes a problem regarding authority.
The semaphore identifier could not be removed
because the calling process does not have the necessary
permission.

142 MERVA USE & Branch for Windows NT Application Programming

System Action: The API call is not processed.

User Response: Synchronize the API programs that
use the semaphore calls. The program that called
ENMCreateSem must close the semaphore with
ENMCloseSem.

36 (ERR_SEMAPHORE_REMOVED)

Problem Determination: The API semaphore call
ENMWaitSemList causes an error. A waiting
semaphore is removed from the system.

System Action: The API call is not processed.

User Response: Restart the API program.

100 (ERR_TOO_MANY_SEMAPHORES)

Problem Determination: The API semaphore call
ENMCreateSem causes an error. The Windows NT
system has reached the maximum number of
concurrently running semaphores.

System Action: The API call is not processed.

User Response: Remove one or more semaphores
from the system.

101 (ERR_NO_QUEUE_NAME)

Problem Determination: The specified queue name is
empty or too long. The character length of the input
queue name is incorrect. A queue name was not
supplied, or the queue name contained too many
characters.

System Action: The API call is not processed.

User Response: Set the queue name variable to a
null-terminated string. Then restart your application.

102 (ERR_INVALID_QUEUE_NAME)

Problem Determination: The specified queue does not
belong to the API purpose group, or the user has no
right to use the specified queue. A queue with the
specified name is not defined in the API purpose
group, or the queue is defined but it is not assigned to
the user API right.

System Action: The API call is not processed.

User Response: Use the MERVA Customization
program to define a queue that belongs to the API
purpose group, or use a queue name that is already
defined for this purpose group. To assign a queue to a
user right, use the MERVA Users program.

103 (ERR_NO_KEY)

Problem Determination: The specified key is empty.
The length of the input key is not correct.

System Action: The API call is not processed.

User Response: Set the key variable to a
null-terminated string. Then restart your application.

104 (ERR_INVALID_MRN)

Problem Determination: The format of the MRN
specified as key is not valid. The last eight characters of
the MRN string are not numeric, or the first eight
characters are not alphanumeric.

System Action: The API call is not processed.

User Response: Correct the MRN, then restart your
application.

105 (ERR_INVALID_ISN)

Problem Determination: The format of the ISN
specified as key is not valid. A character in the ISN
string is not numerical.

System Action: The API call is not processed.

User Response: Correct the ISN, then issue the call
again.

106 (ERR_INVALID_ID)

Problem Determination: The application identifier set
by the ENMSetAppl call starts with an illegal prefix.

System Action: The API call is not processed.

User Response: Correct the application identifier.

107 (ERR_NOT_SWITCH)

Problem Determination: A value other than ON or
OFF has been passed to a variable with the SWITCH
data type. The value of the input variable is not
defined by the SWITCH data type.

System Action: The API call is not processed.

User Response: Correct the value, then restart your
application.

108 (ERR_INVALID_KEYTYPE)

Problem Determination: The specified key type is not
in the range of the KEYTYPE enumerated data type.
The value of the input key type is outside the range of
the defined key types.

System Action: The API call is not processed.

User Response: Correct the value, then restart your
application.

109 (ERR_NO_PASSWD)

Problem Determination: The password is not
specified or too long. The variable for the input
password has a length of zero or more than 8
characters.

Appendix A. Return Codes 143

System Action: The API call is not processed.

User Response: Set the password variable to a
null-terminated string of up to 8 characters, then restart
your application.

110 (ERR_NO_AUTHORIZATION)

Problem Determination: An attempt was made to
attach to MERVA but an authorization problem
occurred. The application program is not authorized to
access messages.

System Action: The application program is not
attached.

User Response: Read the MERVA log file to find the
error and its reason.

111 (ERR_TRACE_OFF)

Problem Determination: The application program
tried to write information to the API trace file but the
API trace was not started.

System Action: Information is not written to the API
trace file.

User Response: Set the API trace to ON, then restart
your application.

112 (ERR_INVALID_FIELDTYPE)

Problem Determination: The specified field type is
not in the range of the FIELDTYPE enumerated data
type. The information in the FIELD structure is not
valid.

System Action: Information is not retrieved.

User Response: Use one of the field types defined by
the FIELDTYPE enumerated data type.

113 (ERR_INVALID_FIELD)

Problem Determination: The specified field does not
conform to the rules for the field specified by the field
type.

System Action: The information associated with the
actual message is not changed.

User Response: Check the strings regarding null
terminators. Fields that have to conform to additional
rules are described in “Chapter 2. MERVA API Data
Types” on page 7.

114 (ERR_FIELD_PROTECTED)

Problem Determination: The field for information
associated with a message cannot be changed by the
application.

System Action: The information is not changed.

User Response: Use an unprotected field.

115 (ERR_SWIFT_HEAD)

Problem Determination: The header of the message
does not conform to the rules for SWIFT headers.

System Action: The message is not passed to MERVA.

User Response: Change the message header
information to comply with the SWIFT network header
rules. They are described in “Appendix B. Message
Header Checking” on page 149.

116 (ERR_TELEX_HEAD)

Problem Determination: The header of the message
does not conform to the rules for telex network
headers.

System Action: The message is not passed to MERVA.

User Response: Change the message header
information to comply with telex network header rules.
They are described in “Appendix B. Message Header
Checking” on page 149.

117 (ERR_NETWORK)

Problem Determination: The MSG_NET field does
not contain a valid network identifier. A value is
outside the range defined for network identifiers in the
field.

System Action: The API call is not processed.

User Response: Set the value to one of the defined
networks.

118 (ERR_NO_USERID)

Problem Determination: The user ID does not exist,
or the user ID is more than eight characters long.

System Action: The API call is not processed.

User Response: Check that the user ID exists, or check
whether it is more than eight characters long.

119 (ERR_NO_FUNCID)

Problem Determination: The function ID is empty, or
the function ID does not contain the string API.

System Action: The API call is not processed.

User Response: Check that the function ID contains
the string API.

121 (ERR_SEMAPHORE_TIMEOUT)

Problem Determination: The waiting time has passed.

System Action: The API program is reactivated and
continues processing.

User Response: Test this error in API program take
the necessary steps.

144 MERVA USE & Branch for Windows NT Application Programming

123 (ERR_INVALID_SEMAPHORE_NAME)

Problem Determination: The semaphore name is not
a valid Windows NT file name.

System Action: The API call is not processed.

User Response: Change the semaphore name to
comply with the Windows NT file naming conventions.

183 (ERR_SEMAPHORE_ALREADY_EXISTS)

Problem Determination: The semaphore already
exists.

System Action: The API call is not processed.

User Response: Rename the semaphore or remove it
from the system. Then retry the call.

187 (ERR_SEMAPHORE_NOT_EXISTS)

Problem Determination: The semaphore to be opened
does not exist.

System Action: The API call is not processed.

User Response: Find out why the semaphore does not
exist. For example, the API program that creates the
semaphore ended or did not run.

201 (ERR_NO_MSG_LOCKED)

Problem Determination: A message has not been
locked by the application program. The application
program called an API function that can handle only
locked messages.

System Action: The API call is not processed.

User Response: Retrieve and lock a message with an
ENMKeyxxx() or an or an ENMxxxEntry() call with the
lock set to ON. Then restart your application.

202 (ERR_NO_MSG_CREATED)

Problem Determination: The message space does not
contain a message, or the message was not created by
the API. The application program called an API
function that can handle only messages created
immediately before this call.

System Action: The API call is not processed.

User Response: Create a new message with the
ENMCreate() call, then restart your application.

203 (ERR_NO_MSG)

Problem Determination: The application program did
not retrieve a message. The application program called
an API function that requires a message for processing.

System Action: The API call is not processed.

User Response: First retrieve a message with an

ENMKeyxxx(), ENMxxxEntry(), or ENMGetxxx() call.
Then retry the call.

204 (ERR_MSG_INUSE)

Problem Determination: One of the following:

v The application program called a function that needs
an empty message space. However, the API contains
a locked or created message in the message space.

v The application program requires a message that is
locked by another MERVA user or MERVA program.
Probably the user or program terminated abnormally
without first freeing the message.

System Action: The API call is not processed.

User Response: Check whether there is a locked or
created message in the message space. If so, free the
message by calling an API function that unlocks a
message after processing. If not, the problem is that the
IN_USE flag for the message is set. Either reset this flag
manually, or restart the MERVA system (this will reset
this flag automatically).

207 (ERR_CRC_CHECK)

Problem Determination: A CRC error on the control
database occurred.

System Action: The API call is not processed.

User Response: Check the corrupted control database.
Repair the database, then try again.

214 (ERR_USERID_NOT_FOUND)

Problem Determination: The specified user ID is not
defined in MERVA.

System Action: The API call is not processed.

User Response: Define the user ID in MERVA with
the Users program or specify another user ID. Then try
again.

216 (ERR_RIGHTS_NOT_APPROVED)

Problem Determination: The API access rights
assigned to the user are not yet approved.

System Action: The API call is not processed.

User Response: Approve the user rights with the
Users program. Then try again.

217 (ERR_NO_RIGHTS)

Problem Determination: You are not authorized to
execute an API application program, or you have only
the access right API - with password but a password is
not specified.

System Action: The API call is not processed.

User Response: Use the MERVA Users program to

Appendix A. Return Codes 145

|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

assign the API access rights or specify a valid password
in the ENMAttach call.

255 (ERR_SEMAPHORE_FAILED)

Problem Determination: The semaphore call failed
with an internal error.

System Action: The API call is not processed.

User Response: Stop the application program and
read the MERVA log file to find the error and its
reason.

301 (ERR_MSG_LOCKED)

Problem Determination: The message found is
already locked. The API tried to get a lock for the
message and was rejected because another application
program had that lock already.

System Action: The message space is returned empty.

User Response: Wait for the other application
program to free the message, or try to read another
message.

302 (ERR_MSG_NOT_FOUND)

Problem Determination: No matching message could
be found. The API call did not produce data.

System Action: The message space is returned empty.

User Response: Try a different call or a different
queue. Possibly, there is no data that the application
program can process.

303 (ERR_CHECK_MSG)

Problem Determination: A message-processing error
occurred while the message was checked.

System Action: The API call is not processed.

User Response: Shut down the application program
and MERVA. Read the MERVA diagnosis log file to
find the error and its reason.

304 (NO_CHECK_ERROR)

Problem Determination: No checking error was
found.

System Action: The message is syntactically and
semantically correct.

User Response: Continue with normal processing.

305 (ERR_MSG_SYNTAX)

Problem Determination: A syntactical error was
found in the message.

System Action: The API call is processed.

User Response: Read the MERVA diagnosis log to get
information about the found errors. Correct the
message and retry.

306 (ERR_MSG_SEMANTIC)

Problem Determination: A semantic error was found
in the message.

System Action: The API call is processed.

User Response: Read the MERVA diagnosis log file to
get information about the found errors. Correct the
message and retry.

406 (ERR_WRONG_PASSWD)

Problem Determination: The specified password does
not conform to your MERVA password.

System Action: The API call is not processed.

User Response: Set the password variable to your
MERVA password, then restart your application.

407 (ERR_USERID_REVOKED)

Problem Determination: The specified user ID is
revoked by the MERVA instance. You tried to log on to
MERVA with a wrong password more than five times.

System Action: The API call is not processed.

User Response: Reset the user ID to a valid user ID
with the Users program.

410 (ERR_NO_PASSWD_SET)

Problem Determination: No initial password is
defined for this user in the Users program.

System Action: The API call is not processed.

User Response: Use the MERVA Users program to
reset the password of this user to an initial value.

414 (ERR_GET_PSW)

Problem Determination: Reading the user’s locally
defined password information fails because the MERVA
instance does not have root user authority.

System Action: The API call is not processed.

User Response: Start the API program without a
password or contact your MERVA system administrator
to restart the MERVA instance with root user authority.

415 (ERR_WRONG_AIX_PSW)

Problem Determination: The specified password does
not conform to your Windows NT password.

System Action: The API call is not processed.

User Response: Set the password variable to your

146 MERVA USE & Branch for Windows NT Application Programming

Windows NT password, then restart your application.
Ensure that your Windows NT and MERVA passwords
are identical.

416 (ERR_NOTIFY_FAILED)

Problem Determination: Cannot get the MERVA
logon user ID and password.

System Action: The API call is not processed.

User Response: Check that the API program is started
from the MERVA Menu window, or that MERVA is
started correctly.

417 (ERR_NO_NOTIFY)

Problem Determination: ENMAttach has the wrong
function ID.

System Action: The API call is not processed.

User Response: Correct ENMAttach, then restart the
program.

418 (ERR_CKRIGHT_FAILED)

Problem Determination: The ENMCheckUserRight
function failed due to an internal error.

System Action: The API call is not processed.

User Response: Shut down the application program
and read the MERVA diagnosis log file to find the error
and its reason.

419 (ERR_MSG_INVALID_LENGTH)

Problem Determination: The ENMCheckSwiftMsg
function failed because the supplied message was too
long for the corresponding message type.

System Action: The API call is processed, and the API
continues with normal processing.

User Response: None.

420 (ERR_NO_MSG_TYPE)

Problem Determination: No message type
information was found in the supplied message buffer.

System Action: The API call is not processed, and the
API continues with normal processing.

User Response: If this is a problem, modify your
program so that the appropriate message type
information is provided in the message buffer.

421 (ERR_NO_DATA)

Problem Determination: The message buffer that was
prepared for the API call contains no data (that is, it
contains an empty string) or is not allocated.

System Action: The API call is not processed, and the

API continues with normal processing.

User Response: If this is a problem, modify your
program so that the message buffer is filled with the
appropriate data.

1001 (ERR_INV_HEADER)

Problem Determination: The message header is
incorrect.

System Action: The API call is not processed.

User Response: Check the format of the message to be
authenticated.

1002 (ERR_MSG_TOO_LONG)

Problem Determination: The message is too long to
add a trailer. Depending on the message type, the
maximum length of SWIFT messages is 2000 or 10000
bytes.

System Action: The API call is not processed.

User Response: Reduce the length of the message
including trailer to 2000 or 10000 bytes depending on
the message type.

1003 (ERR_KEY_NOT_FOUND)

Problem Determination: Key not found for
authentication.

System Action: The API call is not processed.

User Response: Refer to the parameter infMsg1 of
ENMAuthenticate and check whether a valid key for
the destinations exists.

1004 (NOT_TO_BE_AUTH)

Problem Determination: The message does not have
to be authenticated.

System Action: The API call is not processed.

User Response: The message type that you want to
authenticate does not have to be authenticated.

1005 (ERR_MSG_EMPTY)

Problem Determination: The message does not
contain text.

System Action: The API call is not processed.

User Response: Check the message that you want to
authenticate.

1007 (ERR_AUTH_FAILED)

Problem Determination: Authentication failed.

System Action: The API call is not processed.

Appendix A. Return Codes 147

||

|
|
|

|
|

|

||

|
|

|
|

|
|
|

||

|
|
|

|

|

|
|
|

User Response: Refer to the parameter infMsg1 of
ENMAuthenticate for more information.

1008 (ERR_NO_PAC_DEF)

Problem Determination: The FIN copy definition for
the PAC trailer was not found.

System Action: The API call is not processed.

User Response: Check the customization of your FIN
copy. Refer to the parameter infMsg1 of
ENMAuthenticate for more information.

1009 (ERR_PAC_BYPASS)

Problem Determination: The PAC trailer is empty.

System Action: The API call is processed.

User Response: None.

1010 (ERR_INVALID_OPTION)

Problem Determination: Incorrect input parameter
option.

System Action: The API call is not processed.

User Response: Check the input parameter option of
the API function call. For more information refer to the
diagnosis log.

1011 (ERR_INVALID_BUFLEN)

Problem Determination: Incorrect input parameter
Buflen.

System Action: The API call is not processed.

User Response: Check the input parameter Buflen of
the API function call. For more information refer to the
diagnosis log.

1021 (NO_FIN_MSG)

Problem Determination: The message type is not FIN.
Checksum is not mandatory.

System Action: The API call is not processed.

User Response: None.

1022 (ERR_CHKSM_FAILED)

Problem Determination: Checksum of the output
message failed.

System Action: The API call is not processed.

User Response: The check of the CHK trailer failed
because the CHK trailer is incorrect. The message
might be corrupted.

1023 (ERR_MSG_FORMAT)

Problem Determination: Format error because braces
are not in pairs or because the trailer is incorrect.

System Action: The API call is not processed.

User Response: Check the message format.

148 MERVA USE & Branch for Windows NT Application Programming

Appendix B. Message Header Checking

The API includes functions to check that the header of a message conforms to
certain basic rules of the destination network.

Depending on the value of the msgnet field (NET_SWIFT or NET_TELEX), the
rules of the respective network are applied. If the value of the msgnet field
contains NET_OWN, no header checking is performed.

The header checking performed by the API is not intended as a comprehensive
check of the header’s validity; a message passing these checks may still be rejected
by the network.

S.W.I.F.T. Rules
The following rules are checked for SWIFT message headers:
1. Each message must start with a basic header block, consisting of:

Block identifier: {1:
Application identifier: F, A, or L
Data unit identifier: two digits
SWIFT LT address: customized LT
Session number: four digits (optional)
Sequence number: six digits (optional)
Block end: }

2. If the application identifier is F, the basic header block is followed by an
application header, consisting of:

Block identifier: {2:
Direction identifier: I or O
With direction identifier I:
– Message type: three digits
– Recipient’s address:

- Bank code: four characters
- Country code: two characters
- Location code: two characters
- Logical terminal code: one alphanumeric character
- Branch code: three alphanumeric characters

– Message priority: S, U, or N

– Delivery monitoring: 1, 2, or 3

– Obsolescence period: three digits
With direction identifier O:
– Message type: three digits
– Input time: four digits
– Message input reference: 28 alphanumeric characters
– Output date: six digits
– Output time: four digits
– Message priority: S, U, or N.
Block end: }

© Copyright IBM Corp. 1999, 2001 149

Telex Rules
The fields checked for telex message headers are described in “Telex Header
(TX_HEADER)” on page 11.

150 MERVA USE & Branch for Windows NT Application Programming

Appendix C. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Deutschland
Informationssysteme GmbH
Department 3982
Pascalstrasse 100

© Copyright IBM Corp. 1999, 2001 151

70569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement
or any equivalent agreement between us.

The following paragraph does apply to the US only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v Advanced Peer-to-Peer Networking
v AIX
v APPN
v C/370
v CICS
v CICS/ESA
v CICS/MVS
v CICS/VSE
v DB2
v Distributed Relational Database Architecture
v DRDA
v eNetwork
v IBM
v IMS/ESA
v Language Environment
v MQSeries

152 MERVA USE & Branch for Windows NT Application Programming

v MVS
v MVS/ESA
v MVS/XA
v OS/2
v OS/390
v RACF
v VSE/ESA
v VTAM

Workstation (AWS) and Directory Services Application (DSA) are trademarks of
S.W.I.F.T., La Hulpe in Belgium.

Pentium is a trademark of Intel Corporation.

PC Direct is a trademark of Ziff Communications Company in the United States,
other countries, or both, and is used by IBM Corporation under license.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or
both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix C. Notices 153

154 MERVA USE & Branch for Windows NT Application Programming

Glossary of Terms and Abbreviations

This glossary defines terms as they are used in
this book. If you do not find the terms you are
looking for, refer to the IBM Dictionary of
Computing, New York: McGraw-Hill, and the
S.W.I.F.T. User Handbook.

A
ACB. Access method control block.

ACC. MERVA Link USS application control command
application. It provides a means of operating MERVA
Link USS in USS shell and MVS batch environments.

Access method control block (ACB). A control block
that links an application program to VSAM or VTAM.

ACD. MERVA Link USS application control daemon.

ACT. MERVA Link USS application control table.

address. See SWIFT address.

address expansion. The process by which the full
name of a financial institution is obtained using the
SWIFT address, telex correspondent’s address, or a
nickname.

AMPDU. Application message protocol data unit,
which is defined in the MERVA Link P1 protocol, and
consists of an envelope and its content.

answerback. In telex, the response from the dialed
correspondent to the WHO R U signal.

answerback code. A group of up to 6 letters following
or contained in the answerback. It is used to check the
answerback.

APC. Application control.

API. Application programming interface.

APPC. Advanced Program-to-Program
Communication based on SNA LU 6.2 protocols.

APPL. A VTAM definition statement used to define a
VTAM application program.

application programming interface (API). An
interface that programs can use to exchange data.

application support filter (ASF). In MERVA Link, a
user-written program that can control and modify any
data exchanged between the Application Support Layer
and the Message Transfer Layer.

application support process (ASP). An executing
instance of an application support program. Each
application support process is associated with an ASP
entry in the partner table. An ASP that handles
outgoing messages is a sending ASP; one that handles
incoming messages is a receiving ASP.

application support program (ASP). In MERVA Link,
a program that exchanges messages and reports with a
specific remote partener ASP. These two programs must
agree on which conversation protocol they are to use.

ASCII. American Standard Code for Information
Interchange. The standard code, using a coded set
consisting of 7-bit coded characters (8 bits including
parity check), used for information interchange among
data processing systems, data communication systems,
and associated equipment. The ASCII set consists of
control characters and graphic characters.

ASF. Application support filter.

ASF. (1) Application support process. (2) Application
support program.

ASPDU. Application support protocol data unit,
which is defined in the MERVA Link P2 protocol.

authentication. The SWIFT security check used to
ensure that a message has not changed during
transmission, and that it was sent by an authorized
sender.

authenticator key. A set of alphanumeric characters
used for the authentication of a message sent via the
SWIFT network.

authenticator-key file. The file that stores the keys
used during the authentication of a message. The file
contains a record for each of your financial institution’s
correspondents.

B
Back-to-Back (BTB). A MERVA Link function that
enables ASPs to exchange messages in the local MERVA
Link node without using data communication services.

bank identifier code. A 12-character code used to
identify a bank within the SWIFT network. Also called
a SWIFT address. The code consists of the following
subcodes:
v The bank code (4 characters)
v The ISO country code (2 characters)
v The location code (2 characters)
v The address extension (1 character)

© Copyright IBM Corp. 1999, 2001 155

v The branch code (3 characters) for a SWIFT user
institution, or the letters “BIC” for institutions that
are not SWIFT users.

Basic Security Manager (BSM). A component of
VSE/ESA Version 2.4 that is invoked by the System
Authorization Facility, and used to ensure signon and
transaction security.

BIC. Bank identifier code.

BIC Bankfile. A tape of bank identifier codes supplied
by S.W.I.F.T.

BIC Database Plus Tape. A tape of financial
institutions and currency codes, supplied by S.W.I.F.T.
The information is compiled from various sources and
includes national, international, and cross-border
identifiers.

BIC Directory Update Tape. A tape of bank identifier
codes and currency codes, supplied by S.W.I.F.T., with
extended information as published in the printed BIC
Directory.

body. The second part of an IM-ASPDU. It contains
the actual application data or the message text that the
IM-AMPDU transfers.

BSC. Binary synchronous control.

BSM. Basic Security Manager.

BTB. Back-to-back.

buffer. A storage area used by MERVA programs to
store a message in its internal format. A buffer has an
8-byte prefix that indicates its length.

C
CBT. SWIFT computer-based terminal.

CCSID. Coded character set identifier.

CDS. Control data set.

central service. In MERVA, a service that uses
resources that either require serialization of access, or
are only available in the MERVA nucleus.

CF message. Confirmed message. When a sending
MERVA Link system is informed of the successful
delivery of a message to the receiving application, it
routes the delivered application messages as CF
messages, that is, messages of class CF, to an ACK wait
queue or to a complete message queue.

COA. Confirm on arrival.

COD. Confirm on delivery.

coded character set identifier (CCSID). The name of a
coded set of characters and their code point
assignments.

commit. In MQSeries, to commit operations is to make
the changes on MQSeries queues permanent. After
putting one or more messages to a queue, a commit
makes them visible to other programs. After getting
one or more messages from a queue, a commit
permanently deletes them from the queue.

confirm-on-arrival (COA) report. An MQSeries report
message type created when a message is placed on that
queue. It is created by the queue manager that owns
the destination queue.

confirm-on-delivery (COD) report. An MQSeries
report message type created when an application
retrieves a message from the queue in a way that
causes the message to be deleted from the queue. It is
created by the queue manager.

control fields. In MERVA Link, fields that are part of
a MERVA message on the queue data set and of the
message in the TOF. Control fields are written to the
TOF at nesting identifier 0. Messages in SWIFT format
do not contain control fields.

correspondent. An institution to which your
institution sends and from which it receives messages.

correspondent identifier. The 11-character identifier of
the receiver of a telex message. Used as a key to
retrieve information from the Telex correspondents file.

cross-system coupling facility. See XCF.

coupling services. In a sysplex, the functions of XCF
that transfer data and status information among the
members of a group that reside in one or more of the
MVS systems in the sysplex.

couple data set. See XCF couple data set.

CTP. MERVA Link command transfer processor.

currency code file. A file containing the currency
codes, together with the name, fraction length, country
code, and country names.

D
daemon. A long-lived process that runs unattended to
perform continuous or periodic systemwide functions.

DASD. Direct access storage device.

data area. An area of a predefined length and format
on a panel in which data can be entered or displayed.
A field can consist of one or more data areas.

data element. A unit of data that, in a certain context,
is considered indivisible. In MERVA Link, a data

156 MERVA USE & Branch for Windows NT Application Programming

element consists of a 2-byte data element length field, a
2-byte data-element identifier field, and a field of
variable length containing the data element data.

datagram. In TCP/IP, the basic unit of information
passed across the Internet environment. This type of
message does not require a reply, and is the simplest
type of message that MQSeries supports.

data terminal equipment. That part of a data station
that serves as a data source, data link, or both, and
provides for the data communication control function
according to protocols.

DB2. A family of IBM licensed programs for relational
database management.

dead-letter queue. A queue to which a queue
manager or application sends messages that it cannot
deliver. Also called undelivered-message queue.

dial-up number. A series of digits required to
establish a connection with a remote correspondent via
the public telex network.

direct service. In MERVA, a service that uses resources
that are always available and that can be used by
several requesters at the same time.

display mode. The mode (PROMPT or NOPROMPT)
in which SWIFT messages are displayed. See PROMPT
mode and NOPROMPT mode.

distributed queue management (DQM). In MQSeries
message queuing, the setup and control of message
channels to queue managers on other systems.

DQM. Distributed queue management.

DTE. Data terminal equipment.

E
EBCDIC. Extended Binary Coded Decimal
Interchange Code. A coded character set consisting of
8-bit coded characters.

ECB. Event control block.

EDIFACT. Electronic Data Interchange for
Administration, Commerce and Transport (a United
Nations standard).

ESM. External security manager.

EUD. End-user driver.

exception report. An MQSeries report message type
that is created by a message channel agent when a
message is sent to another queue manager, but that
message cannot be delivered to the specified
destination queue.

external line format (ELF) messages. Messages that
are not fully tokenized, but are stored in a single field
in the TOF. Storing messages in ELF improves
performance, because no mapping is needed, and
checking is not performed.

external security manager (ESM). A security product
that is invoked by the System Authorization Facility.
RACF is an example of an ESM.

F
FDT. Field definition table.

field. In MERVA, a portion of a message used to enter
or display a particular type of data in a predefined
format. A field is located by its position in a message
and by its tag. A field is made up of one or more data
areas. See also data area.

field definition table (FDT). The field definition table
describes the characteristics of a field; for example, its
length and number of its data areas, and whether it is
mandatory. If the characteristics of a field change
depending on its use in a particular message, the
definition of the field in the FDT can be overridden by
the MCB specifications.

field group. One or several fields that are defined as
being a group. Because a field can occur more than
once in a message, field groups are used to distinguish
them. A name can be assigned to the field group
during message definition.

field group number. In the TOF, a number is assigned
to each field group in a message in ascending order
from 1 to 255. A particular field group can be accessed
using its field group number.

field tag. A character string used by MERVA to
identify a field in a network buffer. For example, for
SWIFT field 30, the field tag is :30:.

FIN. Financial application.

FIN-Copy. The MERVA component used for SWIFT
FIN-Copy support.

finite state machine. The theoretical base describing
the rules of a service request’s state and the conditions
to state transitions.

FMT/ESA. MERVA-to-MERVA Financial Message
Transfer/ESA.

form. A partially-filled message containing data that
can be copied for a new message of the same message
type.

G
GPA. General purpose application.

Glossary of Terms and Abbreviations 157

H
HFS. Hierarchical file system.

hierarchical file system (HFS). A system for
organizing files in a hierarchy, as in a UNIX system.
OS/390 UNIX System Services files are organized in an
HFS. All files are members of a directory, and each
directory is in turn a member of a directory at a higher
level in the HFS. The highest level in the hierarchy is
the root directory.

I
IAM. Interapplication messaging (a MERVA Link
message exchange protocol).

IM-ASPDU. Interapplication messaging application
support protocol data unit. It contains an application
message and consists of a heading and a body.

incore request queue. Another name for the request
queue to emphasize that the request queue is held in
memory instead of on a DASD.

InetD. Internet Daemon. It provides TCP/IP
communication services in the OS/390 USS
environment.

initiation queue. In MQSeries, a local queue on which
the queue manager puts trigger messages.

input message. A message that is input into the
SWIFT network. An input message has an input
header.

INTERCOPE TelexBox. This telex box supports
various national conventions for telex procedures and
protocols.

interservice communication. In MERVA ESA, a
facility that enables communication among services if
MERVA ESA is running in a multisystem environment.

intertask communication. A facility that enables
application programs to communicate with the MERVA
nucleus and so request a central service.

IP. Internet Protocol.

IP message. In-process message. A message that is in
the process of being transferred to another application.

ISC. Intersystem communication.

ISN. Input sequence number.

ISN acknowledgment. A collective term for the
various kinds of acknowledgments sent by the SWIFT
network.

ISO. International Organization for Standardization.

ITC. Intertask communication.

J
JCL. Job control language.

journal. A chronological list of records detailing
MERVA actions.

journal key. A key used to identify a record in the
journal.

journal service. A MERVA central service that
maintains the journal.

K
KB. Kilobyte (1024 bytes).

key. A character or set of characters used to identify
an item or group of items. For example, the user ID is
the key to identify a user file record.

key-sequenced data set (KSDS). A VSAM data set
whose records are loaded in key sequence and
controlled by an index.

keyword parameter. A parameter that consists of a
keyword, followed by one or more values.

KSDS. Key-sequenced data set.

L
LAK. Login acknowledgment message. This message
informs you that you have successfully logged in to the
SWIFT network.

large message. A message that is stored in the large
message cluster (LMC). The maximum length of a
message to be stored in the VSAM QDS is 31900 bytes.
Messages up to 2MB can be stored in the LMC. For
queue management using DB2 no distinction is made
between messages and large messages.

large queue element. A queue element that is larger
than the smaller of:

v The limiting value specified during the customization
of MERVA

v 32KB

LC message. Last confirmed control message. It
contains the message-sequence number of the
application or acknowledgment message that was last
confirmed; that is, for which the sending MERVA Link
system most recently received confirmation of a
successful delivery.

LDS. Logical data stream.

LMC. Large message cluster.

158 MERVA USE & Branch for Windows NT Application Programming

LNK. Login negative acknowledgment message. This
message indicates that the login to the SWIFT network
has failed.

local queue. In MQSeries, a queue that belongs to a
local queue manager. A local queue can contain a list of
messages waiting to be processed. Contrast with remote
queue.

local queue manager. In MQSeries, the queue
manager to which the program is connected, and that
provides message queuing services to that program.
Queue managers to which a program is not connected
are remote queue managers, even if they are running
on the same system as the program.

login. To start the connection to the SWIFT network.

LR message. Last received control message, which
contains the message-sequence number of the
application or acknowledgment message that was last
received from the partner application.

LSN. Login sequence number.

LT. See LTERM.

LTC. Logical terminal control.

LTERM. Logical terminal. Logical terminal names
have 4 characters in CICS and up to 8 characters in
IMS.

LU. A VTAM logical unit.

M
maintain system history program (MSHP). A
program used for automating and controlling various
installation, tailoring, and service activities for a VSE
system.

MCA. Message channel agent.

MCB. Message control block.

MERVA ESA. The IBM licensed program Message
Entry and Routing with Interfaces to Various
Applications for ESA.

MERVA Link. A MERVA component that can be used
to interconnect several MERVA systems.

message. A string of fields in a predefined form used
to provide or request information. See also SWIFT
financial message.

message body. The part of the message that contains
the message text.

message category. A group of messages that are
logically related within an application.

message channel. In MQSeries distributed message
queuing, a mechanism for moving messages from one
queue manager to another. A message channel
comprises two message channel agents (a sender and a
receiver) and a communication link.

message channel agent (MCA). In MQSeries, a
program that transmits prepared messages from a
transmission queue to a communication link, or from a
communication link to a destination queue.

message control block (MCB). The definition of a
message, screen panel, net format, or printer layout
made during customization of MERVA.

Message Format Service (MFS). A MERVA direct
service that formats a message according to the
medium to be used, and checks it for formal
correctness.

message header. The leading part of a message that
contains the sender and receiver of the message, the
message priority, and the type of message.

Message Integrity Protocol (MIP). In MERVA Link,
the protocol that controls the exchange of messages
between partner ASPs. This protocol ensures that any
loss of a message is detected and reported, and that no
message is duplicated despite system failures at any
point during the transfer process.

message-processing function. The various parts of
MERVA used to handle a step in the
message-processing route, together with any necessary
equipment.

message queue. See queue.

Message Queue Interface (MQI). The programming
interface provided by the MQSeries queue managers. It
provides a set of calls that let application programs
access message queuing services such as sending
messages, receiving messages, and manipulating
MQSeries objects.

Message Queue Manager (MQM). An IBM licensed
program that provides message queuing services. It is
part of the MQSeries set of products.

message reference number (MRN). A unique 16-digit
number assigned to each message for identification
purposes. The message reference number consists of an
8-digit domain identifier that is followed by an 8-digit
sequence number.

message sequence number (MSN). A sequence
number for messages transferred by MERVA Link.

message type (MT). A number, up to 7 digits long,
that identifies a message. SWIFT messages are
identified by a 3-digit number; for example SWIFT
message type MT S100.

Glossary of Terms and Abbreviations 159

MFS. Message Format Service.

MIP. Message Integrity Protocol.

MPDU. Message protocol data unit, which is defined
in P1.

MPP. In IMS, message-processing program.

MQA. MQ Attachment.

MQ Attachment (MQA). A MERVA feature that
provides message transfer between MERVA and a
user-written MQI application.

MQH. MQSeries queue handler.

MQI. Message queue interface.

MQM. Message queue manager.

MQS. MQSeries nucleus server.

MQSeries. A family of IBM licensed programs that
provides message queuing services.

MQSeries nucleus server (MQS). A MERVA
component that listens for messages on an MQI queue,
receives them, extracts a service request, and passes it
via the request queue handler to another MERVA ESA
instance for processing.

MQSeries queue handler (MQH). A MERVA
component that performs service calls to the Message
Queue Manager via the provided Message Queue
Interface.

MRN. Message reference number.

MSC. MERVA system control facility.

MSHP. Maintain system history program.

MSN. Message sequence number.

MT. Message type.

MTP. (1) Message transfer program. (2) Message
transfer process.

MTS. Message Transfer System.

MTSP. Message Transfer Service Processor.

MTT. Message type table.

multisystem application. (1) An application program
that has various functions distributed across MVS
systems in a multisystem environment. (2) In XCF, an
authorized application that uses XCF coupling services.
(3) In MERVA ESA, multiple instances of MERVA ESA
that are distributed among different MVS systems in a
multisystem environment.

multisystem environment. An environment in which
two or more MVS systems reside on one or more
processors, and programs on one system can
communicate with programs on the other systems.
With XCF, the environment in which XCF services are
available in a defined sysplex.

multisystem sysplex. A sysplex in which one or more
MVS systems can be initialized as part of the sysplex.
In a multisystem sysplex, XCF provides coupling
services on all systems in the sysplex and requires an
XCF couple data set that is shared by all systems. See
also single-system sysplex.

MVS/ESA. Multiple Virtual Storage/Enterprise
Systems Architecture.

N
namelist. An MQSeries for MVS/ESA object that
contains a list of queue names.

nested message. A message that is composed of one
or more message types.

nested message type. A message type that is
contained in another message type. In some cases, only
part of a message type (for example, only the
mandatory fields) is nested, but this “partial” nested
message type is also considered to be nested. For
example, SWIFT MT 195 could be used to request
information about a SWIFT MT 100 (customer transfer).
The SWIFT MT 100 (or at least its mandatory fields) is
then nested in SWIFT MT 195.

nesting identifier. An identifier (a number from 2 to
255) that is used to access a nested message type.

network identifier. A single character that is placed
before a message type to indicate which network is to
be used to send the message; for example, S for SWIFT

network service access point (NSAP). The endpoint
of a network connection used by the SWIFT transport
layer.

NOPROMPT mode. One of two ways to display a
message panel. NOPROMPT mode is only intended for
experienced SWIFT Link users who are familiar with
the structure of SWIFT messages. With NOPROMPT
mode, only the SWIFT header, trailer, and pre-filled
fields and their tags are displayed. Contrast with
PROMPT mode.

NSAP. Network service access point.

nucleus server. A MERVA component that processes a
service request as selected by the request queue
handler. The service a nucleus server provides and the
way it provides it is defined in the nucleus server table
(DSLNSVT).

160 MERVA USE & Branch for Windows NT Application Programming

O
object. In MQSeries, objects define the properties of
queue managers, queues, process definitions, and
namelists.

occurrence. See repeatable sequence.

option. One or more characters added to a SWIFT
field number to distinguish among different layouts for
and meanings of the same field. For example, SWIFT
field 60 can have an option F to identify a first opening
balance, or M for an intermediate opening balance.

origin identifier (origin ID). A 34-byte field of the
MERVA user file record. It indicates, in a MERVA and
SWIFT Link installation that is shared by several banks,
to which of these banks the user belongs. This lets the
user work for that bank only.

OSN. Output sequence number.

OSN acknowledgment. A collective term for the
various kinds of acknowledgments sent to the SWIFT
network.

output message. A message that has been received
from the SWIFT network. An output message has an
output header.

P
P1. In MERVA Link, a peer-to-peer protocol used by
cooperating message transfer processes (MTPs).

P2. In MERVA Link, a peer-to-peer protocol used by
cooperating application support processes (ASPs).

P3. In MERVA Link, a peer-to-peer protocol used by
cooperating command transfer processors (CTPs).

packet switched public data network (PSPDN). A
public data network established and operated by
network common carriers or telecommunication
administrations for providing packet-switched data
transmission.

panel. A formatted display on a display terminal.
Each page of a message is displayed on a separate
panel.

parallel processing. The simultaneous processing of
units of work by several servers. The units of work can
be either transactions or subdivisions of larger units of
work.

parallel sysplex. A sysplex that uses one or more
coupling facilities.

partner table (PT). In MERVA Link, the table that
defines how messages are processed. It consists of a

header and different entries, such as entries to specify
the message-processing parameters of an ASP or MTP.

PCT. Program Control Table (of CICS).

PDE. Possible duplicate emission.

PDU. Protocol data unit.

PF key. Program-function key.

positional parameter. A parameter that must appear
in a specified location relative to other parameters.

PREMIUM. The MERVA component used for SWIFT
PREMIUM support.

process definition object. An MQSeries object that
contains the definition of an MQSeries application. A
queue manager uses the definitions contained in a
process definition object when it works with trigger
messages.

program-function key. A key on a display terminal
keyboard to which a function (for example, a
command) can be assigned. This lets you execute the
function (enter the command) with a single keystroke.

PROMPT mode. One of two ways to display a
message panel. PROMPT mode is intended for SWIFT
Link users who are unfamiliar with the structure of
SWIFT messages. With PROMPT mode, all the fields
and tags are displayed for the SWIFT message.
Contrast with NOPROMPT mode.

protocol data unit (PDU). In MERVA Link a PDU
consists of a structured sequence of implicit and
explicit data elements:
v Implicit data elements contain other data elements.
v Explicit data elements cannot contain any other data

elements.

PSN. Public switched network.

PSPDN. Packet switched public data network.

PSTN. Public switched telephone network.

PT. Partner table.

PTT. A national post and telecommunication authority
(post, telegraph, telephone).

Q
QDS. Queue data set.

QSN. Queue sequence number.

queue. (1) In MERVA, a logical subdivision of the
MERVA queue data set used to store the messages
associated with a MERVA message-processing function.
A queue has the same name as the message-processing
function with which it is associated. (2) In MQSeries, an

Glossary of Terms and Abbreviations 161

object onto which message queuing applications can
put messages, and from which they can get messages.
A queue is owned and maintained by a queue
manager. See also request queue.

queue element. A message and its related control
information stored in a data record in the MERVA ESA
Queue Data Set.

queue management. A MERVA service function that
handles the storing of messages in, and the retrieval of
messages from, the queues of message-processing
functions.

queue manager. (1) An MQSeries system program that
provides queueing services to applications. It provides
an application programming interface so that programs
can access messages on the queues that the queue
manager owns. See also local queue manager and remote
queue manager. (2) The MQSeries object that defines the
attributes of a particular queue manager.

queue sequence number (QSN). A sequence number
that is assigned to the messages stored in a logical
queue by MERVA ESA queue management in
ascending order. The QSN is always unique in a queue.
It is reset to zero when the queue data set is formatted,
or when a queue management restart is carried out and
the queue is empty.

R
RACF. Resource Access Control Facility.

RBA. Relative byte address.

RC message. Recovered message; that is, an IP
message that was copied from the control queue of an
inoperable or closed ASP via the recover command.

ready queue. A MERVA queue used by SWIFT Link to
collect SWIFT messages that are ready for sending to
the SWIFT network.

remote queue. In MQSeries, a queue that belongs to a
remote queue manager. Programs can put messages on
remote queues, but they cannot get messages from
remote queues. Contrast with local queue.

remote queue manager. In MQSeries, a queue
manager is remote to a program if it is not the queue
manager to which the program is connected.

repeatable sequence. A field or a group of fields that
is contained more than once in a message. For example,
if the SWIFT fields 20, 32, and 72 form a sequence, and
if this sequence can be repeated up to 10 times in a
message, each sequence of the fields 20, 32, and 72
would be an occurrence of the repeatable sequence.

In the TOF, the occurrences of a repeatable sequence
are numbered in ascending order from 1 to 32767 and
can be referred to using the occurrence number.

A repeatable sequence in a message may itself contain
another repeatable sequence. To identify an occurrence
within such a nested repeatable sequence, more than
one occurrence number is necessary.

reply message. In MQSeries, a type of message used
for replies to request messages.

reply-to queue. In MQSeries, the name of a queue to
which the program that issued an MQPUT call wants a
reply message or report message sent.

report message. In MQSeries, a type of message that
gives information about another message. A report
message usually indicates that the original message
cannot be processed for some reason.

request message. In MQSeries, a type of message used
for requesting a reply from another program.

request queue. The queue in which a service request
is stored. It resides in main storage and consists of a set
of request queue elements that are chained in different
queues:

v Requests waiting to be processed

v Requests currently being processed

v Requests for which processing has finished

request queue handler (RQH). A MERVA ESA
component that handles the queueing and scheduling
of service requests. It controls the request processing of
a nucleus server according to rules defined in the finite
state machine.

Resource Access Control Facility (RACF). An IBM
licensed program that provides for access control by
identifying and verifying users to the system,
authorizing access to protected resources, logging
detected unauthorized attempts to enter the system,
and logging detected accesses to protected resources.

retype verification. See verification.

routing. In MERVA, the passing of messages from one
stage in a predefined processing path to the next stage.

RP. Regional processor.

RQH. Request queue handler.

RRDS. Relative record data set.

S
SAF. System Authorization Facility.

SCS. SNA character string

SCP. System control process.

162 MERVA USE & Branch for Windows NT Application Programming

SDI. Sequential data set input. A batch utility used to
import messages from a sequential data set or a tape
into MERVA ESA queues.

SDO. Sequential data set output. A batch utility used
to export messages from a MERVA ESA queue to a
sequential data set or a tape.

SDY. Sequential data set system printer. A batch
utility used to print messages from a MERVA ESA
queue.

service request. A type of request that is created and
passed to the request queue handler whenever a
nucleus server requires a service that is not currently
available.

sequence number. A number assigned to each
message exchanged between two nodes. The number is
increased by one for each successive message. It starts
from zero each time a new session is established.

sign off. To end a session with MERVA.

sign on. To start a session with MERVA.

single-system sysplex. A sysplex in which only one
MVS system can be initialized as part of the sysplex. In
a single-system sysplex, XCF provides XCF services on
the system, but does not provide signalling services
between MVS systems. A single-system sysplex requires
an XCF couple data set. See also multisystem sysplex.

small queue element. A queue element that is smaller
than the smaller of:

v The limiting value specified during the customization
of MERVA

v 32KB

SMP/E. System Modification Program Extended.

SN. Session number.

SNA. Systems network architecture.

SNA character string. In SNA, a character string
composed of EBCDIC controls, optionally mixed with
user data, that is carried within a request or response
unit.

SPA. Scratch pad area.

SQL. Structured Query Language.

SR-ASPDU. The status report application support
PDU, which is used by MERVA Link for
acknowledgment messages.

SSN. Select sequence number.

subfield. A subdivision of a field with a specific
meaning. For example, the SWIFT field 32 has the
subfields date, currency code, and amount. A field can

have several subfield layouts depending on the way the
field is used in a particular message.

SVC. (1) Switched Virtual Circuit. (2) Supervisor call
instruction.

S.W.I.F.T. (1) Society for Worldwide Interbank
Financial Telecommunication s.c. (2) The network
provided and managed by the Society for Worldwide
Interbank Financial Telecommunication s.c.

SWIFT address. Synonym for bank identifier code.

SWIFT Correspondents File. The file containing the
bank identifier code (BIC), together with the name,
postal address, and zip code of each financial
institution in the BIC Directory.

SWIFT financial message. A message in one of the
SWIFT categories 1 to 9 that you can send or receive
via the SWIFT network. See SWIFT input message and
SWIFT output message.

SWIFT header. The leading part of a message that
contains the sender and receiver of the message, the
message priority, and the type of message.

SWIFT input message. A SWIFT message with an
input header to be sent to the SWIFT network.

SWIFT link. The MERVA ESA component used to
link to the SWIFT network.

SWIFT network. Refers to the SWIFT network of the
Society for Worldwide Interbank Financial
Telecommunication (S.W.I.F.T.).

SWIFT output message. A SWIFT message with an
output header coming from the SWIFT network.

SWIFT system message. A SWIFT general purpose
application (GPA) message or a financial application
(FIN) message in SWIFT category 0.

switched virtual circuit (SVC). An X.25 circuit that is
dynamically established when needed. It is the X.25
equivalent of a switched line.

sysplex. One or more MVS systems that communicate
and cooperate via special multisystem hardware
components and software services.

System Authorization Facility (SAF). An MVS or VSE
facility through which MERVA ESA communicates
with an external security manager such as RACF (for
MVS) or the basic security manager (for VSE).

System Control Process (SCP). A MERVA Link
component that handles the transfer of MERVA ESA
commands to a partner MERVA ESA system, and the
receipt of the command response. It is associated with a
system control process entry in the partner table.

Glossary of Terms and Abbreviations 163

System Modification Program Extended (SMP/E). A
licensed program used to install software and software
changes on MVS systems.

Systems Network Architecture (SNA). The
description of the logical structure, formats, protocols,
and operating sequences for transmitting information
units through, and for controlling the configuration and
operation of, networks.

T
tag. A field identifier.

TCP/IP. Transmission Control Protocol/Internet
Protocol.

Telex Correspondents File. A file that stores data
about correspondents. When the user enters the
corresponding nickname in a Telex message, the
corresponding information in this file is automatically
retrieved and entered into the Telex header area.

telex header area. The first part of the telex message.
It contains control information for the telex network.

telex interface program (TXIP). A program that runs
on a Telex front-end computer and provides a
communication facility to connect MERVA ESA with
the Telex network.

Telex Link. The MERVA ESA component used to link
to the public telex network via a Telex substation.

Telex substation. A unit comprised of the following:

v Telex Interface Program

v A Telex front-end computer

v A Telex box

Terminal User Control Block (TUCB). A control block
containing terminal-specific and user-specific
information used for processing messages for display
devices such as screen and printers.

test key. A key added to a telex message to ensure
message integrity and authorized delivery. The test key
is an integer value of up to 16 digits, calculated
manually or by a test-key processing program using the
significant information in the message, such as
amounts, currency codes, and the message date.

test-key processing program. A program that
automatically calculates and verifies a test key. The
Telex Link supports panels for input of test-key-related
data and an interface for a test-key processing program.

TFD. Terminal feature definitions table.

TID. Terminal identification. The first 9 characters of a
bank identifier code (BIC).

TOF. Originally the abbreviation of tokenized form, the
TOF is a storage area where messages are stored so that
their fields can be accessed directly by their field names
and other index information.

TP. Transaction program.

transaction. A specific set of input data that triggers
the running of a specific process or job; for example, a
message destined for an application program.

transaction code. In IMS and CICS, an alphanumeric
code that calls an IMS message processing program or
a CICS transaction. Transaction codes have 4 characters
in CICS and up to 8 characters in IMS.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of communication protocols that
support peer-to-peer connectivity functions for both
local and wide area networks.

transmission queue. In MQSeries, a local queue on
which prepared messages destined for a remote queue
manager are temporarily stored.

trigger event. In MQSeries, an event (such as a
message arriving on a queue) that causes a queue
manager to create a trigger message on an initiation
queue.

trigger message. In MQSeries, a message that contains
information about the program that a trigger monitor is
to start.

trigger monitor. In MQSeries, a continuously-running
application that serves one or more initiation queues.
When a trigger message arrives on an initiation queue,
the trigger monitor retrieves the message. It uses the
information in the trigger message to start a process
that serves the queue on which a trigger event
occurred.

triggering. In MQSeries, a facility that allows a queue
manager to start an application automatically when
predetermined conditions are satisfied.

TUCB. Terminal User Control Block.

TXIP. Telex interface program.

U
UMR. Unique message reference.

unique message reference (UMR). An optional
feature of MERVA ESA that provides each message
with a unique identifier the first time it is placed in a
queue. It is composed of a MERVA ESA installation
name, a sequence number, and a date and time stamp.

UNIT. A group of related literals or fields of an MCB
definition, or both, enclosed by a DSLLUNIT and
DSLLUEND macroinstruction.

164 MERVA USE & Branch for Windows NT Application Programming

UNIX System Services (USS). A component of
OS/390, formerly called OpenEdition (OE), that creates
a UNIX environment that conforms to the XPG4 UNIX
1995 specifications, and provides two open systems
interfaces on the OS/390 operating system:

v An application program interface (API)

v An interactive shell interface

UN/EDIFACT. United Nations Standard for Electronic
Data Interchange for Administration, Commerce and
Transport.

USE. S.W.I.F.T. User Security Enhancements.

user file. A file containing information about all
MERVA ESA users; for example, which functions each
user is allowed to access. The user file is encrypted and
can only be accessed by authorized persons.

user identification and verification. The acts of
identifying and verifying a RACF-defined user to the
system during logon or batch job processing. RACF
identifies the user by the user ID and verifies the user
by the password or operator identification card
supplied during logon processing or the password
supplied on a batch JOB statement.

USS. UNIX System Services.

V
verification. Checking to ensure that the contents of a
message are correct. Two kinds of verification are:

v Visual verification: you read the message and
confirm that you have done so

v Retype verification: you reenter the data to be
verified

Virtual LU. An LU defined in MERVA Extended
Connectivity for communication between MERVA and
MERVA Extended Connectivity.

Virtual Storage Access Method (VSAM). An access
method for direct or sequential processing of fixed and
variable-length records on direct access devices. The
records in a VSAM data set or file can be organized in
logical sequence by a key field (key sequence), in the
physical sequence in which they are written on the data
set or file (entry sequence), or by relative-record
number.

Virtual Telecommunications Access Method (VTAM).
An IBM licensed program that controls communication
and the flow of data in an SNA network. It provides
single-domain, multiple-domain, and interconnected
network capability.

VSAM. Virtual Storage Access Method.

VTAM. Virtual Telecommunications Access Method
(IBM licensed program).

W
Windows NT service. A type of Windows NT
application that can run in the background of the
Windows NT operating system even when no user is
logged on. Typically, such a service has no user
interaction and writes its output messages to the
Windows NT event log.

X
X.25. An ISO standard for interface to packet switched
communications services.

XCF. Abbreviation for cross-system coupling facility,
which is a special logical partition that provides
high-speed caching, list processing, and locking
functions in a sysplex. XCF provides the MVS coupling
services that allow authorized programs on MVS
systems in a multisystem environment to communicate
with (send data to and receive data from) authorized
programs on other MVS systems.

XCF couple data sets. A data set that is created
through the XCF couple data set format utility and,
depending on its designated type, is shared by some or
all of the MVS systems in a sysplex. It is accessed only
by XCF and contains XCF-related data about the
sysplex, systems, applications, groups, and members.

XCF group. The set of related members defined to
SCF by a multisystem application in which members of
the group can communicate with (send data to and
receive data from) other members of the same group.
All MERVA systems working together in a sysplex
must pertain to the same XCF group.

XCF member. A specific function of a multisystem
application that is defined to XCF and assigned to a
group by the multisystem application. A member
resides on one system in a sysplex and can use XCF
services to communicate with other members of the
same group.

Glossary of Terms and Abbreviations 165

166 MERVA USE & Branch for Windows NT Application Programming

Bibliography

MERVA ESA Publications
v MERVA for ESA Version 4: Application

Programming Interface Guide, SH12-6374
v MERVA for ESA Version 4: Advanced MERVA

Link, SH12-6390
v MERVA for ESA Version 4: Concepts and

Components, SH12-6381
v MERVA for ESA Version 4: Customization Guide,

SH12-6380
v MERVA for ESA Version 4: Diagnosis Guide,

SH12-6382
v MERVA for ESA Version 4: Installation Guide,

SH12-6378
v MERVA for ESA Version 4: Licensed Program

Specifications, GH12-6373
v MERVA for ESA Version 4: Macro Reference,

SH12-6377
v MERVA for ESA Version 4: Messages and Codes,

SH12-6379
v MERVA for ESA Version 4: Operations Guide,

SH12-6375
v MERVA for ESA Version 4: System Programming

Guide, SH12-6366
v MERVA for ESA Version 4: User’s Guide,

SH12-6376

MERVA ESA Components
Publications
v MERVA Automatic Message Import/Export Facility:

User’s Guide, SH12-6389
v MERVA Connection/NT, SH12-6339
v MERVA Connection/400, SH12-6340
v MERVA Directory Services, SH12-6367
v MERVA Extended Connectivity: Installation and

User’s Guide, SH12-6157
v MERVA Message Processing Client for Windows

NT: User’s Guide, SH12-6341
v MERVA Traffic Reconciliation, SH12-6392
v MERVA USE: Administration Guide, SH12-6338
v MERVA USE & Branch for Windows NT: User’s

Guide, SH12-6334
v MERVA USE & Branch for Windows NT:

Installation and Customization Guide, SH12-6335

v MERVA USE & Branch for Windows NT:
Application Programming Guide, SH12-6336

v MERVA USE & Branch for Windows NT:
Diagnosis Guide, SH12-6337

v MERVA USE & Branch for Windows NT:
Migration Guide, SH12-6393

v MERVA USE & Branch for Windows NT:
Installation and Customization Guide, SH12-6335

v MERVA Workstation Based Functions, SH12-6383

Other IBM Publications
v DB2 Administration Guide, S10J-8157
v DB2 Building Applications for Windows and OS/2

Environment, S10J-8160
v DB2 API Reference, S10J-8167
v DB2 Troubleshooting Guide, S10J-8169
v eNetwork Personal Communications Version 4.2 for

Windows 95 and Windows NT Quick Beginnings,
GC31-8476

v eNetwork Personal Communications Version 4.2 for
Windows 95 and Windows NT Reference,
GC31-8477

v CID Enablement Guidelines, S10H-9666
v CICS-RACF Security Guide, SC33-1185
v ITSC Redbook APPC Security: MVS/ESA,

CICS/ESA, and OS/2, GG24-3960
v IMS/ESA Version 4 Data Communication

Administration Guide, SC26-3060
v MQSeries Application Programming Reference,

SC33-1673

S.W.I.F.T. Publications
The following are published by the Society for
Worldwide Interbank Financial
Telecommunication, s.c., in La Hulpe, Belgium:
v S.W.I.F.T. User Handbook

v S.W.I.F.T. Dictionary

v S.W.I.F.T. FIN Security Guide

v S.W.I.F.T. Card Readers User Guide

© Copyright IBM Corp. 1999, 2001 167

168 MERVA USE & Branch for Windows NT Application Programming

Index

A
access, API program 3
access, API queues 3
accessing information

ENMReadField 87
ENMWriteField 113

accessing message information 20
accessing messages 3
ADD_CHKSM parameter

(ENMChecksum) 132
add created message 23
add message 91
additional information field 10
additional storage 3
alarms 4, 121
API - with password 3, 26, 121
API - without password 3, 26, 121
API, overview 1
API set application name

ENMSetAppl 97
API trace handling

ENMTrace 105
ENMWriteTrace 118

application authorization 7
application name

ENMSetApl 97
assigning message queues 2
attach function 26
authenticating message 136
authorization (API) 3

B
Baudot character set 12

C
call tracing 3
change restrictions 2
character set (telex) 12
check

ENMCheck 32
ENMCheckSwiftMsg 35
ENMCheckUserRight 38
length of message 35

check message 32
check SWIFT message 35
check user rights 38
checking, message 20
checksum handling

ENMChecksum 132
CHK_CHKSM parameter

(ENMChecksum) 132
clear semaphore 43
close semaphore 45
compatibility function 21
concept, routing 1
concepts (API) 3
condition, routing 1

connection
attach 26
detach 53
disconnect 55
instance 19
set 104

connection profile
set 99

controlling resources 3
conversation security

set 100
create message function 47
create semaphore 49
creation, message 19, 47
customizing requirements 121

D
data type

field type 9
function ID 8
key type 8
message 9
message-associated field 10
network 11
PASSWD 7
PPASSWD 7
purpose group 16
PUSHORT 7
PWlen 7
queue name 8
search key 8
SWITCH 7
telex header 11
telex information 14
trace data 15
UCHAR 7
user ID 7
USHORT 7

data types 7
database, message 1
default queues 2
delete current message 51
destination network 10
detach function 53
diagnosis log file 3
disconnect function 55
dynamic load of API functions 122

E
ENMAdd 23
ENMAttach 26
ENMAuthenticate 136
ENMCheck 32
ENMChecksum 132
ENMCheckSwiftMsg 35
ENMCheckUserRight 38
ENMClear 41
ENMClearSem 43

ENMCloseSem 45
ENMCreate 47
ENMCreateSem 49
ENMD_IPC_DIR variable 121
ENMDelete 51
ENMDetach 53
ENMEndRAPI 55
ENMFirstEntry 56
ENMFree 59
ENMGetReason 61
ENMKeyNext 64
ENMKeyRead 67
ENMLastEntry 70
ENMNextEntry 73
ENMOpenSem 75
ENMPreviousEntry 77
ENMPut 80
ENMQueryQueue 83, 85
ENMReadField 87
ENMRestart RAPI 89
ENMRouteAdd 91
ENMRoutePut 94
ENMSetApl 97
ENMSetProfile 99
ENMSetSecurity 100
ENMSetSem 102
ENMSetTestEnv 101
ENMStartRAPI 104
ENMTrace 3, 105
ENMWaitSemList 107
ENMWhereIs 110
ENMWriteField 113
ENMWriteLog

ENMWriteLog 116
ENMWriteTrace 118
entities, logical 1
ENUMerated data type 9

F
field parameter

ENMReadField 87
ENMReconnectRAPI 89
ENMWriteField 113

field purpose 9
field type 9
field type parameter

ENMReadField 87
ENMWriteField 113

field values 11
free created message 41
FUNCID 8
FUNClen 8
function 94

approve user privileges 3
attach 26
clear a semaphore 43
close a semaphore 45
create a semaphore 49
create new message 47
detach 53

© Copyright IBM Corp. 1999, 2001 169

function 94 (continued)
disconnect 55
ENMAdd 23
ENMAuthenticate 136
ENMChecksum 132
ENMClear 41
ENMDelete 51
ENMFree 59
ENMPreviousEntry 77
ENMPut 80
ENMQueryQueue 83, 85
ENMReadField 87
ENMRestartRAPI 89
ENMRouteAdd 91
ENMSetAppl 97
ENMTrace 105
ENMTrace() 3
ENMWhereIs 110
ENMWriteField 113
ENMWriteTrace 118
ENMWriteTrace() 4
get reason code 61
keyread 67
maintain user privileges 3
next message 64
open a semaphore 75
read first message 56
read last message 70
read next message 73
set a connection profile 99
set a semaphore 102
set connection 104
set conversation security 100
set test environment 101
wait for list of semaphores 107

function calls 19

G
get reason code function 61
group, purpose 1
group parameters (ENMWhereIs) 110

H
handle message checksum 132
handling, trace 20
header files 7
header information 9

I
iBuflen (INT) parameter

(ENMChecksum) 132
identification (KEY) 67
identification (QNAME) 67
infMsg1 (INF_MMSG) parameter

(ENMAuthenticate) 136
input SWIFT number 10
inquiry, status 20, 83, 85, 110
instance 121

connection 26
owner 1
profile 1

instance connection 53

iOption (INT) parameter
(ENMChecksum) 132

ISN 8
ISNlen 8

K
KEY 8
key parameter (ENMWhereIs) 110
keyread function 67
keytype 67

L
language, programming 122
length definition 7
length of message, checking 35
length range 9
line parameter (ENMWriteLog) 116
line parameter (ENMWriteTrace) 118
load processing 3
loading API functions dynamically 122
lock 20
lock parameter

ENMFirstEntry 56
ENMKeyNext 64
ENMKeyRead 67
ENMLastEntry 70
ENMPreviousEntry 77

lock switch 64
logical entities 1
logical states 7
lTimeout parameter

ENMWaitSemList 107

M
maintain users function 26
message (PMSG) 64
message, space 5
message access 3
message authentication

ENMAuthenticate 136
message check

ENMCheck 32
ENMCheckSwiftMsg 35

message comment field 10
message count 83, 85
message creation 19, 47
message database 1
message length 10
message length parameter

ENMFirstEntry 56
ENMKeyNext 64
ENMNextEntry 73
ENMPreviousEntry 77

message length range 9
message lock 20
message parameter

ENMCreate 47
ENMFirstEntry 56
ENMKeyRead 67
ENMLastEntry 70
ENMNextEntry 73
ENMPreviousEntry 77

message queues 1

message reference field 9
message reference number (MRN) 8
message removal

ENMClear 41
ENMDelete 51
remove message 51

message retrieval
ENMFirstEntry 56
ENMKeyNext 64
ENMKeyRead 67
ENMLastEntry 70
ENMNextEntry 73
ENMPreviousEntry 77

message return
ENMAdd 23
ENMFree 59
ENMPut 80
ENMRoutePut 94

message routing 1
message status field 10
MRN 8
MRNlen 8
mrvprofile 1, 121
MSG 9

N
naming convention 28, 98
next message 64
Notices 151

O
open semaphore 75
overview

API 1
functional 19

P
PASSWD 7
password parameter (ENMAttach) 26
PBOOL 7
PFUNCID 8
piMsglen (PINT) parameter

(ENMChecksum) 132
PKEY 8
PMSG 9
pointer

field type 9
function ID 8
key type 8
message 9
password 7
purpose group 16
queue name 8
search key 8
SWITCH 7
user ID 7

PPASSWD 7
previous queue message 77
program

code 1
name 28, 97
users 3

programming language 122

170 MERVA USE & Branch for Windows NT Application Programming

pSemHandle parameter
ENMCreateSem 49
ENMOpenSem 75

pszApplName parameter 97
pszMsg (MMSG) parameter

(ENMAuthenticate) 136
pszMsg (MMSG) parameter

(ENMChecksum) 132
pszSemName parameter

ENMCreateSem 49
ENMOpenSem 75

pucProfileName parameter
ENMSetProfile 99

pucUserID parameter
ENMSetSecurity 100

purpose, field 9
purpose group 1
purpose group (API) 2
PUSHORT 7
pusIndex parameter

ENMWaitSemList 107
pusMsglen (USHORT) parameter

(ENMAuthenticate) 136
PWlen 7

Q
qname parameter

ENMFirstEntry 56
ENMLastEntry 70
ENMNextEntry 73

query 110
query queue 83, 85
queue 2
queue ID parameter

ENMAdd 23
ENMKeyRead 67
ENMPreviousEntry 77
ENMQueryQueue 83
ENMQueryQueueEx 85
ENMRouteAdd 91

queue status 83, 85
queues (API) 2
queues, message 1

R
range, message length 9
read field function 87
read first message 56
read last message 70
read next message 73
read previous message 77
reconnecting remote API program 89
removal, message 20
remove message 41
requirements, customizing 121
resource control 3
retrieval, message 19
return codes 94, 141

ENMAdd 23
ENMAttach 26
ENMAuthenticate 137
ENMCheck 32, 35
ENMChecksum 132
ENMCheckUserRight 38

return codes 94, 141 (continued)
ENMClear 41
ENMClearSem 43
ENMCloseSem 45
ENMCreate 47
ENMCreateSem 49
ENMDelete 51
ENMDetach 53, 61
ENMFirstEntry 56
ENMFree 59
ENMKeyNext 64
ENMKeyRead 67
ENMLastEntry 70
ENMNextEntry 73
ENMOpenSem 75
ENMPreviousEntry 77
ENMPut 80
ENMQueryQueue 83
ENMQueryQueueEx 85
ENMReadField 87
ENMRestartRAPI 89
ENMRouteAdd 91
ENMSetAppl 97
ENMSetSecurity 55, 89, 100, 104
ENMSetSem 102
ENMTrace 105
ENMWaitSemList 107
ENMWhereIs 110
ENMWriteField 113
ENMWriteLog 116
ENMWriteTrace 118

REXX function package
description 127
example 128
function calls 128
return codes 128
sample files 129

route message 91
routing 2
routing (API) 2
routing, message 20
routing concept 1
routing condition 1
routing table 1

S
sample files, contents 125
semaphore

clear 43
close 45
create 49
open 75
set 102
wait 107

SemHandle parameter
ENMCLearSem 43
ENMCLoseSem 45
ENMSetSem 102
ENMWaitSemList 107

service, triggering 21
service, user 21
set connection 104
set connection profile 99
set conversation security 100
set semaphore 102
set test environment 101

shut down 121
special values (telex) 13
special values (telexinfo) 15
status inquiry

ENMQueryQueue 83, 85
ENMWhereIs 110

status parameter (ENMTrace) 105
storage 3
store call 5
SWITCH 7
symbol definitions 7
system security (API) 2

T
table, routing 1
telex

character set 12
characters 12
header 11

telex information 14
test environment

set 101
testkey values 13
trace

data type 15
ON and OFF 7
setting on 3

trace handling
ENMTrace 105
ENMWriteTrace 118

trace handling function 3
triggering 4
triggering service 21
turn trace off 105
turn trace on 105
type of key 67

U
UCHAR 7
ucTestEnvIndicator parameter

ENMSetTestEnv 101
unload processing 3
unlock message function 59
usBuflen (USHORT) parameter

(ENMAuthenticate) 136
user audit log file 4
user ID parameter (ENMAttach) 26
user rights checking

ENMCheckUserRight 38
user service 21
Users program 7
USHORT 7
usOption (USHORT) parameter

(ENMAuthenticate) 136

V
values, field 11
variable

ENMD_IPC_DIR 121

Index 171

W
wait for semaphore 107
write application information 118
write field 113

172 MERVA USE & Branch for Windows NT Application Programming

Readers’ Comments — We’d Like to Hear from You

MERVA ESA Components
MERVA USE & Branch for Windows NT
Application Programming
Version 4 Release 1

Publication No. SH12-6336-02

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SH12-6336-02

SH12-6336-02

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH
Information Development & User Centered Design
Dept. 0446
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5648-B30

SH12-6336-02

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
M

ER
VA

E
SA

Co
m

po
ne

nt
s

M
ER

VA
U
SE

&
Br
an
ch

fo
r
W
in
do
w
s
N
T
Ap
pl
ic
at
io
n

Pr
og
ra
m
m
in
g

Ve
rs
io
n
4

R
el
ea
se

1

	Contents
	About This Book
	Who Should Read This Book
	How This Book Is Organized

	Chapter 1. Introduction to the API of MERVA
	MERVA Instances
	The MERVA Message Routing Concept
	API Queues and Their Routing
	API Concepts
	The API Message Space
	Concurrent Access
	Restricting Access to API Programs (API Queues)
	Audit and Trace Information
	Triggering an Application from MERVA
	Message Header Checking

	Chapter 2. MERVA API Data Types
	Switch (SWITCH)
	User ID (USERID)
	Password (PASSWD)
	Function ID (FUNCID)
	Queue Name (QNAME)
	Key Type (KEYTYPE)
	Search Key (KEY)
	Message (MMSG)
	Field Type (FIELDTYPE)
	Message-Associated Field (FIELD)
	Network (NETWORK)
	Telex Header (TX_HEADER)
	Telex Information (TX_INFO)
	Trace Data (TRACEDATA)
	Purpose Group (GROUP)
	Message Console Identifer (CON_MSG_ID)
	Intervention (INTERVENTION)
	Right (RIGHTS)
	Pointer to Function (PFUNC)

	Chapter 3. MERVA API Function Calls
	Functional Overview
	ENMAdd—Add Created Message to Queue
	ENMAttach—Attach to MERVA Instance
	ENMCheck—Checking a Message
	ENMCheckSwiftMsg—Checking a SWIFT Message
	ENMCheckUserRight—Checking User Rights
	ENMClear—Free Created Message
	ENMClearSem—Clear a Semaphore
	ENMCloseSem—Close a Semaphore
	ENMCreate—Create New Message
	ENMCreateSem—Create a Semaphore
	ENMDelete—Delete Current Message from Queue
	ENMDetach—Detach from MERVA Instance
	ENMEndRAPI—Disconnect from the MERVA System
	ENMFirstEntry—Read First Message of Queue
	ENMFree—Unlock Message
	ENMGetReason—Get Reason Code for Internal Error
	ENMKeyNext—Read Next Message with Key
	ENMKeyRead—Read Message from Queue by Key
	ENMLastEntry—Read Last Message of Queue
	ENMNextEntry—Read Next Message in Queue
	ENMOpenSem—Open a Semaphore
	ENMPreviousEntry—Read Previous Queue Message
	ENMPut—Return Message to Queue and Unlock
	ENMQueryQueue—Get Status of Queue
	ENMQueryQueueEx—Get Status of Queue
	ENMReadField—Read Field Associated with Message
	ENMRestartRAPI—Reconnect Remote API Program to Another MERVASystem
	ENMRouteAdd—Route and Add a Created Message
	ENMRoutePut—Route Message to Queue
	ENMSetAppl—Set Application Name
	ENMSetProfile—Set a Connection Profile
	ENMSetSecurity—Set Conversation Security Information
	ENMSetTestEnv—Set Test Environment
	ENMSetSem—Set a Semaphore
	ENMStartRAPI—Establish Connection to Another MERVA System
	ENMTrace—Turn API Trace ON or OFF
	ENMWaitSemList—Wait for a List of Semaphores
	ENMWhereIs—Query Location of Message
	ENMWriteField—Write Field Associated with Message
	ENMWriteLog—Writing Diagnosis and Console Log Entries
	ENMWriteTrace—Write Application Information to Trace File

	Chapter 4. How to Use, Build, and Load an API Program
	Preparing MERVA for an API Program
	Using an API Program
	Building an API Program
	Loading API Functions Dynamically
	Adding an API Program to the MERVA Menu window
	API Sample Programs

	Chapter 5. The REXX Function Package
	Preparing MERVA for a REXX Program
	Using the REXX Function Package
	REXX Function Calls
	REXX Return Codes
	Example
	REXX Sample Files

	Chapter 6. The SWIFT Link API
	ENMChecksum—Handle Message Checksum
	ENMAuthenticate—Authenticate Message

	Appendix A. Return Codes
	Appendix B. Message Header Checking
	S.W.I.F.T. Rules
	Telex Rules

	Appendix C. Notices
	Trademarks

	Glossary of Terms and Abbreviations
	Bibliography
	MERVA ESA Publications
	MERVA ESA ComponentsPublications
	Other IBM Publications
	S.W.I.F.T. Publications

	Index
	Readers’ Comments — We'd Like to Hear from You

