
MERVA ESA Components

MERVA Connection/NT
Version 4 Release 1

SH12-6339-02

���

MERVA ESA Components

MERVA Connection/NT
Version 4 Release 1

SH12-6339-02

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix C.
Notices” on page 53.

Third Edition, May, 2001

This edition applies to

Version 4 Release 1 of IBM MERVA ESA Components (5648-B30)

and to all subsequent releases and modifications until otherwise indicated in new editions.

Changes to this edition are marked with a vertical bar.

© Copyright International Business Machines Corporation 1997, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book v
Who Should Read This Book v
How This Book is Organized v
Conventions and Terminology Used in This Book . . v

Chapter 1. General Introduction to
MERVA Connection/NT 1
Objectives 1
Functions 1
Components 1

Chapter 2. Installing and Customizing
the Remote MERVA API Client 3
Installing the Remote MERVA API Client 3

Machine Requirements 3
Program Requirements 3
Installing MERVA Connection/NT 3

Customizing the Communications Server 4
Basic SNA Customization 4
SNA Customization for MERVA Connection/NT . 4

Customizing TCP/IP Services 5
Basic TCP/IP Customization 5
TCP/IP Customization for MERVA
Connection/NT 5

Customizing MERVA Connection/NT 5
Fix Format Application Profile 5
Variable Format Application Profile 6
Selecting the Communication Type 9

Chapter 3. Customizing the Remote
MERVA API Server 11
Machine Requirements. 11
Program Requirements 11
Customizing the Communications Server 11

Basic SNA Customization. 11
SNA Customization for the Remote MERVA API
Server 12
Customizing the Trace File for SNA 12

Customizing TCP/IP Services 12
Customizing Client Network Services 12
Customizing the MERVA Inetd Service 13
Customizing the Trace File for TCP/IP 13

Verifying the Installation 13

Chapter 4. The Remote MERVA
Application Program Interface. 15
The Structure of the Remote MERVA API on the
Client Side. 15

C Language Data Types 15
API Calls of MERVA Connection/NT 16

Starting and Ending the Conversation 16
Calls to Trigger the API Program 22
Handling Errors 29

Building API Programs 32
Compiling Your Own API Program 32
Compiling the Sample Programs 32
Resynchronization 33

Chapter 5. Security 37
Encryption of Transferred Data 37
Authentication of Transferred Data 37
User Exit Interfaces 37

User Exit Points 37
User Exit Interfaces in C Language 38

Replacing Security User Exits 42
Generating Security User Exits on the Remote
MERVA API Client 43
Generating Security User Exits on the MERVA
Server System 43

Appendix A. Diagnosis Information . . 45
Log Files on the Remote MERVA API Client . . . 45

Diagnosis Log 45
Programmer’s Log 45

Log Files on the Remote MERVA API Server System 46

Appendix B. Sample SNA Definitions
for MERVA Connection/NT 47
Customizing an APPN End Node 47
Customizing an APPC Peer-to-Peer Connection . . 50

Appendix C. Notices 53
Trademarks 54

Glossary of Terms and Abbreviations 55

Bibliography 61
IBM Publications 61

MERVA ESA Components Books 61
MERVA ESA Books 61

Further IBM Publications 61
S.W.I.F.T. Publications 61

Index 63

© Copyright IBM Corp. 1997, 2001 iii

iv MERVA Connection/NT

About This Book

Read this book to find out how to work with MERVA Connection/NT. You learn
how to install and customize MERVA Connection/NT, and how to write programs
with the Remote MERVA Application Program Interface.

Who Should Read This Book
This book is intended for application programmers and system administrators who
want to access Message Entry and Routing with Interfaces to Various Applications
USE & Branch for Windows NT (MERVA USE & Branch for Windows NT) from an
application program that runs under Windows NT.

This book also helps you install and customize MERVA Connection/NT.

It is assumed that you have prior knowledge of and experience with:
v Windows NT server or workstation
v Systems Network Architecture (SNA)
v Application Programming Interface (API) of MERVA
v Transaction Control Protocol/Internet Protocol (TCP/IP)

How This Book is Organized
The first chapter of this book provides general information about MERVA
Connection/NT by giving an overview of the product. Chapter 2 describes how to
install and customize the Remote MERVA API Client. Chapter 3 tells you how to
install and customize the Remote MERVA API Server. Chapter 4 tells you how to
work with the Remote MERVA API and how to build API programs. It also helps
you understand resynchronization. Chapter 5 covers aspects of security, such as
encryption, authentication, and user exits. The appendixes contain diagnosis
information and sample definitions.

Conventions and Terminology Used in This Book
In this book, the following naming conventions apply:
v MERVA is used when the description applies to MERVA USE & Branch for

Windows NT.
v You can use Communications Server or Personal Communications to perform

specific tasks described in this book. Both terms are used as synonyms.

© Copyright IBM Corp. 1997, 2001 v

vi MERVA Connection/NT

Chapter 1. General Introduction to MERVA Connection/NT

This chapter introduces MERVA Connection/NT and briefly describes the facilities
supported by MERVA Connection/NT.

Objectives
There is a wide range of banking applications available for the Windows NT
platform. While many of these applications create and process S.W.I.F.T. messages,
they do not provide a connection to public networks.

With SWIFT Link, MERVA provides connections to the S.W.I.F.T. network. With
MERVA Link, MERVA provides connections to other MERVA systems.

To use Windows NT applications as banking applications, you must transfer
messages that are created on your operating system to a MERVA system. Messages
that you receive from one of these networks must be transferred from a MERVA
system to your operating system.

You can achieve this by saving messages to files and transferring the files. At the
same time, however, this solution requires operator intervention and can cause
message integrity problems. To avoid these problems, you can implement a direct
connection from the application on your operating system to the MERVA system.
The MERVA system then works as if it were a component of the application.

MERVA Connection/NT is your direct connection. It is, however, not a
ready-to-use S.W.I.F.T. interface on your operating system. It does not have a user
interface.

MERVA Connection/NT offers you the Remote API for applications on Windows
NT. With the Remote API, you can create an application on Windows NT to send
messages to MERVA and receive messages from MERVA with a minimum of effort.

Functions
MERVA Connection/NT has the same functions as the MERVA API on your
operating system. Additionally, it offers you the following functions:
v Calls that help you establish an intersystem connection.
v Calls that let you use MERVA alarms.
v A real-time interface that allows you to connect to MERVA.
v A flexible user exit interface with which you can handle security aspects.
v A resynchronization mechanism ensures that the Remote MERVA API program

provides the same level of message integrity as a local API program.

Components
The following figure shows you the components and programming concepts of
MERVA Connection/NT:

© Copyright IBM Corp. 1997, 2001 1

MERVA Connection/NT has the following components:
v The Remote MERVA API Client is installed and runs in the Client Application

System. The Client Application System is your operating system Windows NT.
MERVA is not installed in the Client Application System.

v The Remote MERVA API Server is installed and runs in the MERVA Server
System. The Remote MERVA API Server is part of the MERVA system that is
installed in the MERVA Server System.

The Remote MERVA API Client has an interface with which you can call a
financial application that uses MERVA services. It sends the API call with the input
parameters to the Remote MERVA API Server on the MERVA Server System. The
Remote MERVA API Server calls the MERVA API function and passes the received
parameters. The output data and the return code of the API function are returned
to the Remote MERVA API Client. The Remote MERVA API Client returns control
to the calling program as if the API function runs locally.

Figure 1. Concept of MERVA Connection/NT

2 MERVA Connection/NT

Chapter 2. Installing and Customizing the Remote MERVA API
Client

This chapter describes how to install and customize the Remote MERVA API Client
in your operating system.

Installing the Remote MERVA API Client
The following sections describe how to install the Remote MERVA API Client of
MERVA Connection/NT.

Machine Requirements
The following requirements are necessary to install the Remote MERVA API Client:
v You can install the Remote MERVA API Client on any Windows NT system with

one megabyte or more free space on its hard disk.
v You must connect the MERVA Connection/NT Client Application System with

the MERVA Server System by a Data Communication Link. The Data
Communication Service (SNA APPC or TCP/IP) defines the type of intersystem
link that you can use, such as Token Ring, SDLC, or Twinax. You must also
install the corresponding data link adapter in your operating system.

For more detailed information refer to the corresponding documentation about
installation and customization listed in “Bibliography” on page 61.

Program Requirements
The following section shows the program requirements for MERVA
Connection/NT:
v Windows NT Version 4.0 or a subsequent release
v IBM eNetwork Personal Communications for Windows NT Version 4.2 or IBM

eNetwork Communications Server for Windows NT Version 6.0 or subsequent
releases, or Microsoft TCP/IP

v The C Compiler VisualAge® for C++ Version 3.5.4

Personal Communications or Communications Server for Windows NT is only
required if you use an SNA APPC connection for the communication between the
Remote MERVA API Client and Server. If you use a TCP/IP connection, Personal
Communications is not required. In this case, TCP/IP must be installed on the
Windows NT system.

Installing MERVA Connection/NT
To install MERVA Connection/NT:
1. Log on with a user ID that has Windows NT administration authorization.
2. Insert the CD labeled MERVA ESA Components in the CD ROM drive.
3. Select your CD ROM drive.
4. Select the MERVA_Features folder.
5. Select the ConnectionNT folder. This folder contains all dynamic link libraries,

include files, and a sample program for a first installation check.

© Copyright IBM Corp. 1997, 2001 3

6. Copy the libraries enmnrapi.dll, enmnsxit.dll, and enmratp.dll to an existing
directory. The directory must be set in the PATH environment variable, for
example, C:\WINNT.

7. Copy the include files enmradt.h, enmtapi.h, and enmrapd.h to an existing
directory. The directory must be set in the INCLUDE environment variable.

8. Select the Samples folder. This folder contains source files, module definition
files, and make files for sample API programs.

9. Copy all files to a samples directory of your own.
10. Close the Samples folder.
11. Select the Userexit folder. This folder contains source files, a module definition

file, and a make file for the generation of your own security user exits.
12. Copy all files to a user-exit directory of your own.
13. Close the Userexit folder.

Customizing the Communications Server
MERVA Connection/NT can use SNA APPC or TCP/IP services for the
communication between the Remote MERVA API Client and Server.

If you use SNA APPC services, you bind APPC sessions between the two partner
systems. To do this, install and customize the Communications Server on the
Windows NT system.

Basic SNA Customization
For a detailed description of the customization refer to the Communications Server
for Windows NT User’s Guide. For a sample of the Communications Server
customization that is independent of MERVA Connection/NT refer to
“Appendix B. Sample SNA Definitions for MERVA Connection/NT” on page 47.

SNA Customization for MERVA Connection/NT
You must add an LU 6.2 side information profile to the SNA customization. The
Remote MERVA API Client can then access this profile. The side information
profile defines a symbolic destination name for the Remote MERVA API Server in
the partner system.

The following list shows the parameters and samples of a symbolic destination:
v Symbolic destination name (MERVA)
v Local LU name (LU1)
v Fully qualified partner LU name (APPN1.LUA)
v APPC session mode name (APPCLU62)
v Partner transaction program (TP) name (ENMRAS)

The LU names and the mode name are specified in the basic SNA customization.
The partner TP name is specified by the Remote MERVA API Server. For MERVA
Connection/NT, the sample Remote MERVA API Server TP name in the MERVA
environment is ENMRAS.

If the symbolic destination with the correct parameters, except for the TP name, is
already defined, you do not have to define a symbolic destination for the Remote
MERVA API Server. You can use the existing symbolic destination to identify the
partner systems and the APPC session characteristics. If the corresponding TP

4 MERVA Connection/NT

name is specified in the application profile of MERVA Connection/NT, the TP
name in the side information profile is ignored.

Customizing TCP/IP Services
For the communication between the Remote MERVA API Client and Server,
MERVA Connection/NT can use TCP/IP services if the server supports the
TCP/IP communication protocol. The TCP/IP support for a Remote MERVA API
Server is not available by default for MERVA. You must check whether the
applicable Remote MERVA API Server supports TCP/IP.

Basic TCP/IP Customization
You must customize your operating system as a host in an IP network that is a
network of connected hosts. It uses TCP/IP communication protocols. Specific
MERVA Connection/NT requirements for the basic TCP/IP customization are not
necessary.

TCP/IP Customization for MERVA Connection/NT
TCP/IP customization for MERVA Connection/NT is not applicable. Data that is
related to the TCP/IP connection to the Remote MERVA API Server is provided in
the corresponding application profile of MERVA Connection/NT.

The TCP/IP service can obtain the partner host name if it is defined in the
corresponding host file of your operating system.

The TCP/IP service can also understand the partner host name if it is known by a
name server in the TCP/IP network.

Customizing MERVA Connection/NT
You must customize any financial application that uses the Remote MERVA API in
the Client Application System. The most important customization information is
the identification of the applicable Remote MERVA API Server.

To customize a MERVA Connection/NT application, you store the relevant data in
a MERVA Connection/NT application profile. This is a flat ASCII file that you can
create and update with any text editor.

You can use the following formats for the application profile:
v The fix format profile supports only an SNA connection between the Remote

MERVA API Client and Server.
v The variable format supports additional functions such as TCP/IP

interconnection, conversation security, and test environment.

Fix Format Application Profile
A fix format application profile contains six parameters. The parameters can be
specified in one of the following ways:
v In one line in which the parameters are separated by at least one blank
v In six separate lines
v As parameter groups from two up to five lines

The sequence of parameters is set in the following way:
1. Log level (1 to 4)

Chapter 2. Installing and Customizing the Remote MERVA API Client 5

2. Name of the programmer’s log
3. Name of the diagnosis log
4. SNA symbolic destination name of the Remote MERVA API Server
5. Name of the message integrity control file
6. System type of the Client Application System

A parameter file that starts with the log level is always interpreted as a fix format
application profile. If a parameter file does not start with the log level, it is
interpreted as a variable format application profile.

The following example shows a fix format application profile for MERVA
Connection/NT.
1
plog.log
dlog.log
MERVA
mip.ctl
PS/2

An application profile in fix format is only compatible with older versions of the
Remote MERVA API feature. New functions, such as conversation security and
TCP/IP support do not use an application profile in fix format. These functions
use an application profile in variable format to access all functions of the Remote
MERVA API feature.

Variable Format Application Profile
With the variable format application profile, you can specify environment
parameters for a remote MERVA application. The following variable formats are
valid:

Parameter Keywords
An application parameter is specified in a separate line in the format
parameter_keyword = parameter_value. Any number of blanks can
precede the parameter keyword. Any number of blanks can precede and
succeed the equal sign. The equal sign is mandatory.

Parameter Sequence
Application parameters can be specified in any sequence. If a parameter is
set twice in the profile, the second of the two parameters is valid.

Comments
Comments can be part of an application profile. Any line that does not
start with a valid parameter keyword is a comment line. An empty line is
also a comment line. The first line of a profile must, however, not start
with a digit. According to other conventions in the configuration profiles,
you should start a comment line with a hash character (#).

A parameter value can be followed by a comment. The comment must be
separated from the parameter value by at least one blank.

The following example shows a variable format application profile of the Remote
MERVA API Client for an SNA connection. A comment line shows the application
profile parameters that are not supported by a fix format application profile. To
activate the parameter, remove the hash character at the beginning of a comment
line.

6 MERVA Connection/NT

#---
MERVA Connection/NT: Client Application Profile
#---

log_level = 1 minimum logging level
#log_mode = append append new log entries
system_type = PS/2 type of local/remote system

programmer_log = plog.log name of programmer's log file
diagnosis_log = dlog.log name of diagnosis log file
control_file = mip.ctl name of MIP control file

symbolic_destination = MERVA SNA APPC SI profile for RAPI Server
#partner_tp_name = ENMRAS SNA APPC RAPI Server TP name

#partner_host_name = merva2 TCP/IP partner host name
#rapi_port_number = 7118 TCP/IP port number of RAPI Server
#tcp_nodelay = on TCP_NODELAY flag will be set

#client_user_id = mrvuser conversation security user id
#client_password = passwd conversation security user password

#test_environment = on RAPI Client test environment active

Parameters of the Variable Format Application Profile
The following section shows the parameters that apply for the Remote MERVA API
Client and the corresponding parameter keywords.

log_level
Specifies the log level parameter. The parameter value is 1, 2, 3, or 4. Log
level 4 provides the most detailed information.

log_mode
Specifies the log file mode for the programmer’s log and the diagnosis log.
The following parameter values apply:
v append

The programmer’s and diagnosis log entries are appended to existing
log files. If this parameter is not specified in the application profile, this
is the default log file mode.

v new

Existing log files are deleted and the programmer’s and diagnosis log
entries are written to an empty file.

You can also enter only the initial character a or n. A log file mode
parameter that does not start with a or n is ignored.

system_type
Identifies the type of the Client Application System. The parameter value
for MERVA Connection/NT is PS/2.

programmer_log
Specifies the name of the programmer’s log. The parameter value for
MERVA Connection/NT is a Windows NT file. The programmer’s log is
only created if this parameter is specified.

diagnosis_log
Specifies the name of the diagnosis log. The parameter value for MERVA
Connection/NT is a Windows NT file. The diagnosis log is only created if
this parameter is specified.

control_file
Specifies the name of the message integrity (MIP) control file. The

Chapter 2. Installing and Customizing the Remote MERVA API Client 7

parameter value for MERVA Connection/NT is a Windows NT file. The
MIP control file is mandatory. The Remote MERVA API Client can only be
started if this parameter is specified.

symbolic_destination
Specifies the name of an SNA APPC side information profile. This profile
contains SNA APPC related control information about the APPC partner
process in the Remote MERVA API Server. The parameter can be up to 8
characters long.

partner_tp_name
Specifies the name for the SNA APPC partner TP. The parameter value is
the TP name of the Remote MERVA API Server that is defined in the
partner system. The TP name that is specified in this parameter takes
precedence over the TP name that is specified in the side information
profile. If this parameter is not specified, the TP name of the side
information profile applies. The parameter can be up to 8 characters long.

partner_host_name or partner_host
Specifies the name or the IP address of the host to which the Remote
MERVA API Server belongs. You must specify the IP address in
dotted-decimal representation. The parameter value for MERVA
Connection/NT can be up to 16 characters long.

rapi_port_number or port_number
Specifies the TCP/IP port number for the Internet subserver that represents
the Remote MERVA API Server in the corresponding partner host system.
The maximum value of a TCP/IP port number is 65.535.

tcp_nodelay
Specifies whether the tcp_nodelay parameter must be set. Valid parameter
values are off, on, 0, and 1. If the tcp_nodelay parameter must be set, the
parameter value is 1 or on. The default parameter value is 1. This
parameter can affect the performance of the data communication.

client_user_id
Specifies the client user ID for the conversation security. The parameter
value is the conversation security user ID that is used for the conversation
with the partner system. The client user must be defined in the partner
system and must be authorized to access the Remote MERVA API
transaction program. The maximum length of this parameter is 8
characters.

The client user ID that is specified in this parameter applies only if the
user application program does not provide a user ID before the application
profile is read. You can, however, delete the user ID of the application
program with client_user_id = ″″.

client_user_password
Specifies the client user password for the conversation security. The
parameter value is the conversation security user password that is used for
the specified client user. If a user ID is not specified in the application
profile or by the application program, the Remote MERVA API Client
disregards the password. The maximum length of this parameter is 8
characters.

The client user password that is specified in this parameter applies only if
the user application program does not provide a user password before the
application profile is read.

8 MERVA Connection/NT

You can, however, delete the user ID of the application program with
client_password = ″″.

test_environment

Specifies whether the test environment is activated when the client process
starts. The parameter value is on or 1. The test environment is not
activated if this parameter is not specified or if any other parameter value
is specified.

You can use the Remote MERVA API Client function ENMSetTestEnv() to
set or reset the client process test environment in a Remote MERVA API
Client user program for specific phases of the client process.

A Remote MERVA API Client process in a test environment writes a
processing trace to the standard output device, usually to the user
terminal. You can use this trace for error analysis. The programmer’s log
and the diagnosis log also contain information for error analysis.

Selecting the Communication Type
The Remote MERVA API Client can establish a conversation with a Remote
MERVA API Server by using SNA APPC or TCP/IP services. The application
profile must contain the corresponding address information of the partner system.
The appropriate customization must apply to the applicable data communication
services.

An application profile can contain SNA APPC and TCP/IP partner information. If
the SNA symbolic destination name of the Remote MERVA API Server is available,
the Remote MERVA API Client tries to establish an APPC conversation with the
Remote MERVA API Server. In this case, TCP/IP partner information is
disregarded.

TCP/IP partner information establishes a TCP/IP connection to the Remote
MERVA API Server if the application profile does not contain an SNA symbolic
destination name.

The Remote MERVA API Client does not prefer a specific connection type and an
automatic connection type switch if SNA APPC and TCP/IP partner information is
available from the application profile.

Chapter 2. Installing and Customizing the Remote MERVA API Client 9

10 MERVA Connection/NT

Chapter 3. Customizing the Remote MERVA API Server

The Remote MERVA API Server is automatically installed when you install MERVA
USE & Branch for Windows NT. You must, however, configure the Remote MERVA
API Server program. To use the Remote MERVA API Server, the following
requirements are necessary:

Machine Requirements
A Data Communication Link must connect the MERVA Connection/NT Client
Application System and the MERVA Server System. As specified by the Data
Communication Service that is used, such as SNA APPC or TCP/IP, you can use
Token Ring, SDLC, Twinax, or other types of intersystem links. You must also
install a corresponding data link adapter in the Windows NT system.

For more detailed information refer to the MERVA USE & Branch for Windows NT
Installation and Customization Guide.

Program Requirements
The following program requirements are necessary:
v Microsoft Windows NT (refer to the MERVA USE & Branch for Windows NT

Installation and Customization Guide)
v IBM eNetwork Personal Communications for Windows NT Version 4.2 or IBM

eNetwork Communications Server for Windows NT Version 6.0 or subsequent
releases, or Microsoft TCP/IP

Personal Communications or Communications Server is only required if you use
an SNA APPC connection for the communication between the Remote MERVA API
Client and Server. If you use a TCP/IP connection, SNA services are not required.

Customizing the Communications Server
MERVA Connection/NT can use SNA APPC or TCP/IP services for the
communication between the Remote MERVA API Client and Server.

If you use TCP/IP services, you must install TCP/IP for Windows NT on your
system.

If you use SNA APPC services, you must install and customize the SNA Server for
Windows NT or the Communications Server for Windows NT in the MERVA USE
& Branch for Windows NT system to bind APPC sessions between the two partner
systems.

Basic SNA Customization
You can connect any MERVA Connection/NT system to MERVA USE & Branch for
Windows NT.

For a description of the respective customization refer to the corresponding
documentation about SNA Server for Windows NT or Communications Server for
Windows NT listed in “Bibliography” on page 61.

© Copyright IBM Corp. 1997, 2001 11

For a sample of the SNA customization that is independent of MERVA
Connection/NT refer to “Appendix B. Sample SNA Definitions for MERVA
Connection/NT” on page 47.

SNA Customization for the Remote MERVA API Server
You must add an LU 6.2 TP name profile to the SNA customization. This profile
defines the parameters of an inbound APPC transaction program. The parameters
are:
v TP name (ENMRAS)
v Full path name of the executable (enmcrtpi.exe)
v Command line parameters (tp_name instance_name [TS=trace_level

TP=trace_path])
v TP access security

If you use Conversation security, you must add an appropriate entry for the user
ID and the password.

Customizing the Trace File for SNA
You must set the trace switch (TS) and the path of the trace file (TP) with the
command line parameters provided by the transaction program, for example:
TS=3 TP=C:\MERVA\TRACE

If the trace switch is set to 0, a trace file is not created. The path name shown is
the path of the directory to which all trace files are written. Replace
C:\MERVA\TRACE with an appropriate path name. The name of the trace file is
TPI<timestamp>.LOG, for example, TPI104530.LOG.

Customizing TCP/IP Services
Before MERVA Connection/NT can use TCP/IP services for the communication
between the Remote MERVA API Client and Server, you must install TCP/IP for
Windows NT on the Remote MERVA API Server and all Remote MERVA API
Clients. On the Remote MERVA API Server, the MERVA Inetd service must be
installed and configured.

The Remote MERVA API Server must be defined as a client network service
(internet service) on the remote host. This definition maps a TCP/IP port number
to a designated service program.

The Remote MERVA API Server works as a subservice of the MERVA Inetd service.
It must be defined as a MERVA Inetd subservice on the remote host. This
definition connects the internet service name and the service program path name
for the Remote MERVA API Server.

For more information about the MERVA Inetd service, refer to the MERVA USE &
Branch for Windows NT Installation and Customization Guide.

Customizing Client Network Services
The file %SystemRoot%\system32\drivers\etc\services contains all TCP/IP
services that are available on the Remote MERVA API Server. This file maps a
service to a specific port and a transport protocol. To customize the Client Network
Services, do the following:
1. Change to the directory %SystemRoot%\system32\drivers\etc.

12 MERVA Connection/NT

2. Edit the file services and add a text line such as:
enmras 7118/tcp # MERVA Connection Remote API Server

Where:

enmras
Is a symbolic subservice name for the Remote MERVA API connection.

7118/tcp
Defines the IP port number 7118 for the connection and specifies that
the TCP protocol is required.

Note that the last line in the services file must be empty.

Customizing the MERVA Inetd Service
The file %SystemRoot%\system32\drivers\etc\enminetd.cfg contains all services
that are started with the MERVA Inetd service. To customize the MERVA Inetd
service, do the following:
1. Change to the directory %SystemRoot%\system32\drivers\etc.
2. Edit the configuration file enminetd.cfg and add a text line such as:

enmras stream tcp nowait root c:\merva\bin\enmcrtci.exe merva1 [trace-options]

Where:

enmras
Is a symbolic subservice name for the Remote MERVA API connection.
This name must be identical to the name defined in the
%SystemRoot%\system32\drivers\etc\services file.

c:\merva\bin\enmcrtci.exe
Is the Remote MERVA API Server program.

merva1
Is the MERVA instance name.

trace-options
Can be set as described in “Customizing the Trace File for TCP/IP”.

Customizing the Trace File for TCP/IP
You must set the trace switch (TS) and the path of the trace file (TP) with the
command line parameters provided by the program enmcrtci.exe defined in the
configuration file enminetd.cfg. For example:
TS=3 TP=C:\MERVA\TRACE

If the trace switch is set to 0, a trace file is not created. The path name shown is
the path of the directory to which all trace files are written. Replace
C:\MERVA\TRACE with an appropriate path name. The name of the trace file is
TCI<timestamp>.LOG.

Verifying the Installation
To verify that the installation and customization of MERVA Connection/NT is
correct, run the corresponding sample program. Before you can run the sample
program, the user ID SAMPLE with the password SAMPLE1 has to be defined in
your MERVA system. The user ID has to be approved for application programs.
The program checks that the queues API_IN and API_OUT are customized.

Chapter 3. Customizing the Remote MERVA API Server 13

To verify the installation, run the sample program SMPLN4.EXE.

This program is a compiled version of the sample source SMPLN4.C. It is included
in the directory \SAMPLES on the MERVA Connection/NT disk. SMPLN4.EXE
needs the profile SAMPLE.PRF in the current directory. For a description of how
to get this profile, refer to “Installing MERVA Connection/NT” on page 3.

14 MERVA Connection/NT

Chapter 4. The Remote MERVA Application Program Interface

The description of the Remote MERVA Application Program Interface in this
chapter is based on the description in the corresponding MERVA Application
Programming Guide.

The Structure of the Remote MERVA API on the Client Side
The Remote MERVA API program on your operating system calls functions that
connect and disconnect to and from the MERVA system. The following figure
shows you the structure of the Remote MERVA API:

�1� Before you can call the API functions, you must initialize the Remote
MERVA API Client on your operating system by calling the function
ENMSetProfile. This function tells the Remote MERVA API Client the
name of the profile. For details refer to “Customizing MERVA
Connection/NT” on page 5.

�2� After you set the profile name, you can connect to the Remote MERVA API
Server on the MERVA side. To do this, call the function ENMStartRAPI.
After this function is called, the Remote MERVA API Client is initialized,
and the network connection to the Remote MERVA API Server is
established.

After the ENMStartRAPI call, the MERVA API functions can be called as if
the program runs locally on a MERVA machine.

�3� Before you stop the program, you must release the connection to the
Remote MERVA API Server by calling the function ENMEndRAPI. You
must call this function even if an error occurs in the API program.
Otherwise, the Remote MERVA API Server does not know that you exit the
program and is not ready to receive the next connection request when the
API program is restarted.

C Language Data Types
When you compile a Remote MERVA API program locally on a MERVA machine,
the file enmoapi.h is automatically included.

When you compile a Remote MERVA API program on Windows NT, you must
include the file enmrapi.h instead of enmoapi.h. The file enmrapi.h contains the
data types and prototypes of MERVA API functions.

�1� ENMSetProfile(profile name)
�2� ENMStartRAPI(application name)

|
| API program logic with MERVA API calls
|

�3� ENMEndRAPI()

Figure 2. Remote MERVA API Program Structure

© Copyright IBM Corp. 1997, 2001 15

For the description of the API calls in this book, the following data types defined
in the included file enmrapi.h are used:

Type Definition

USHORT unsigned short

UCHAR unsigned char

PUCHAR unsigned char*

PUSHORT unsigned short*

ULONG unsigned long

PULONG unsigned long*

API Calls of MERVA Connection/NT
MERVA Connection/NT offers you more API calls than the MERVA API. The calls
are divided into the following categories:
v Calls to start and end the conversation
v Calls to enable the API program to be triggered by MERVA alarms
v Calls to handle errors

The following sections describe these calls in detail.

Starting and Ending the Conversation
To start and end the conversation between the Remote MERVA API Client and the
Remote MERVA API Server with the API program, use the following calls:

ENMSetProfile To select a profile.

ENMStartRAPI To establish a connection to MERVA.

ENMRestartRAPI To reconnect the Remote MERVA API program to
MERVA.

ENMEndRAPI To disconnect from MERVA.

ENMSetSecurity To set conversation security information.

ENMSetTestEnv To set the test environment.

Each function is described in detail in the following sections.

Note: The return code that you get depends on your MERVA Connection/NT
system.

16 MERVA Connection/NT

ENMSetProfile - Select a Profile

C Definition:
void ENMSetProfile (PUCHAR pucProfileName);

Parameter Description: The following parameter is required:
v pucProfileName(PUCHAR)

Specifies the pointer to a null-terminated string of up to 80 characters. This is
the full path name of the profile.

Note: If several API programs run concurrently, you must use a different
application name for each program.

Remarks: Specifies the name of the profile that you want to use. For a description
of the format and contents of the profile, refer to “Customizing MERVA
Connection/NT” on page 5.

C Language Example:
#include "enmrapi.h"

ENMSetProfile ("enm6r1.prf");

Chapter 4. The Remote MERVA Application Program Interface 17

ENMStartRAPI - Establish Connection to MERVA

C Definition:
USHORT ENMStartRAPI (PUCHAR pucApplicationName);

Parameter Description: The following parameters are required:
v retCode(USHORT) - output

Code Meaning

0 The function completed correctly.

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason. For details refer to
“Handling Errors” on page 29. The reason code is also written to the
diagnosis log of your operating system. For details refer to
“Appendix A. Diagnosis Information” on page 45. If it is an internal
error of the MERVA API, the reason code is 0.

v pucApplicationName(PUCHAR) - input
A pointer to a null-terminated string of up to 8 characters. The name is
registered by the Remote MERVA API Server.

Note: If several API programs run concurrently, you must use a different
application name for each program.

Remarks: This function establishes the conversation with MERVA (Remote
MERVA API Server) and initializes internal buffers and variables. After this
function is called, the program must call ENMEndRAPI before it ends.

C Language Example:
#include "enmrapi.h"

USHORT rc = 0;

if ((rc = ENMStartRAPI ("APPLID")) == 0)
puts("Conversation is up\n");

else
puts("Error in ENMStartRAPI");

18 MERVA Connection/NT

ENMRestartRAPI - Reconnect to MERVA

C Definition:
USHORT ENMRestartRAPI (PUCHAR pucApplicationName);

Parameter Description: The following parameters are required:
v retCode(USHORT) - output

Code Meaning

0 The function completed correctly.

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason. For details refer to
“Handling Errors” on page 29. The reason code is also written to the
diagnosis log of your operating system. For details refer to
“Appendix A. Diagnosis Information” on page 45. If it is an internal
error of the MERVA API, the reason code is 0.

v pucApplicationName(PUCHAR) - input
A pointer to a null-terminated string of up to 8 characters. The name is
registered by the Remote MERVA API Server.

Note: If several API programs run concurrently, you must use a different
application name for each program.

Remarks: If the connection is established with this function instead of
ENMStartRAPI, the resynchronization is provided for the following API calls:
v ENMAdd
v ENMDelete
v ENMPut
v ENMRouteAdd
v ENMRoutePut

For details refer to “Resynchronization” on page 33.

If the connection is not interrupted within the critical time period in a previous
session, this call has the same functions as ENMStartRAPI. Therefore, you can also
use it if the previous connection did not end abnormally.

C Language Example:
#include "enmrapi.h"

USHORT rc = 0;

if ((rc = ENMRestartRAPI ("APPLID")) == 0)
puts("Conversation is up\n");

else
puts("Error in ENMRestartRAPI");

Chapter 4. The Remote MERVA Application Program Interface 19

ENMEndRAPI - Disconnect from MERVA

C Definition:
USHORT ENMEndRAPI (void);

Parameter Description: The following parameter is required:
v retCode(USHORT) - output

Code Meaning

0 The function completed correctly.

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason. For details refer to
“Handling Errors” on page 29. The reason code is also written to the
diagnosis log of your operating system. For details refer to
“Appendix A. Diagnosis Information” on page 45. If it is an internal
error of the MERVA API, the reason code is 0.

Remarks: The Remote MERVA API conversation to MERVA is stopped.

C Language Example:
#include "enmrapi.h"

USHORT rc = 0;

if ((rc = ENMEndRAPI ()) == 0)
puts("Conversation successfully terminated\n");

else
puts("Error in ENMEndRAPI");

20 MERVA Connection/NT

ENMSetSecurity - Set Conversation Security Information

C Definition:
VOID ENMSetSecurity (PUCHAR pucUserID,

PUCHAR pucPassword);

Parameter Description: The following parameters are required:
v pucUserID(PUCHAR) - input

A pointer to a null-terminated string of up to 8 characters that contains the client
user ID.

v pucPassword(PUCHAR) - input
A pointer to a null-terminated string of up to 8 characters that contains the client
password.

Remarks: A MERVA application program can provide conversation security
information that is used for client authorization in the Remote MERVA API Server
system. To provide this information, use the function ENMSetSecurity(). The
parameters of this function are a client user ID and a password. Both parameters
can be empty.

Before you start ENMStartRAPI() or ENMRestartRAPI(), you must call
ENMSetSecurity().

You can also provide conversation security information with application profile
parameters. Usually, the information provided by ENMSetSecurity() takes
precedence over profile parameters. You can, however, overwrite the security
information set with ENMSetSecurity() by using application profile parameters.

C Language Example:
#include "enmrapi.h"

ENMSetSecurity ("SAMPLE1", "SAMPLEPW");

Chapter 4. The Remote MERVA Application Program Interface 21

ENMSetTestEnv - Set Test Environment

C Definition:
VOID ENMSetTestEnv (UCHAR ucTestEnvIndicator);

Parameter Description: The following parameter is required:
v ucTestEnvIndicator(UCHAR) - input

Function parameter 1 activates the test environment. Function parameter 0
deactivates the test environment.

Remarks: A MERVA application program can activate or deactivate the Remote
MERVA API Client test environment for specific sections of the application
program. To do this, call the function ENMSetTestEnv(). You can call this function
as often as you want.

The variable ENMTestEnv is part of the Remote MERVA API to test whether the
Remote MERVA API Client test environment is active or inactive. The instruction
ENMSetTestEnv(!ENMTestEnv); toggles the test environment setting from active
to inactive, or from inactive to active.

C Language Example:
#include "enmrapi.h"

#define TESTENV_ON '1'

ENMSetTestEnv (TESTENV_ON);

Calls to Trigger the API Program
If you want the API program to be triggered by MERVA alarms the semaphores of
which are located on the MERVA system, use the following calls:

ENMWaitSemList To wait for a list of semaphores.

ENMCloseSem To close a semaphore.

ENMSetSem To set a semaphore.

ENMClearSem To clear a semaphore.

ENMCreateSem To create a semaphore.

ENMOpen To open a semaphore.

Each function is described in detail in the following sections.

22 MERVA Connection/NT

ENMWaitSemList - Wait for a List of Semaphores

This function stops the current process until one of the specified semaphores is
cleared. It allows the API program to wait for up to 16 semaphores and up to 16
different MERVA alarms.

C Definition:
USHORT ENMWaitSemList(PUSHORT Index,

ULONG timeout,
ULONG SemHandle,

...,
(ULONG) 0);1

Parameter Description: The following parameters are required:
v retCode(USHORT) - output

Code Meaning

0 The function completed correctly.

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason. For details refer to
“Handling Errors” on page 29. The reason code is also written to the
diagnosis log of your operating system. For details refer to
“Appendix A. Diagnosis Information” on page 45. If it is an internal
error of the MERVA API, the reason code is 0.

6 The system does not have enough memory to complete the function.

121 No semaphore is cleared. The timeout is reached.

255 An internal semaphore error occurred. For details refer to “Handling
Errors” on page 29. The reason code is also written to the diagnosis log
of your operating system. For details refer to “Appendix A. Diagnosis
Information” on page 45. The reason code is in the form of 3xxx where
xxx denotes the error number of the server system.

v Index(PUSHORT) - output
ENMWaitSemList returns an index from 0 to 15 that tells you which of the
semaphores is cleared.

v timeout(ULONG) - input

Code Meaning

-1 Wait indefinitely for a semaphore to be cleared.

0 Return immediately.

>1 Wait the indicated number of milliseconds for a semaphore to be cleared
before resuming execution.

v SemHandle(ULONG) - input
Handles up to 16 semaphores that are created by the call ENMCreateSem or
ENMOpenSem.

v (ULONG)0 - input
Stops the list of semaphores. The parameter value must be 0 and a 4-byte value.
If the parameter is missing, ENMWaitSemList cannot recognize the end of the
semaphore list.

1. The last parameter ((ULONG)0) is not part of the C function prototype. It is only mentioned to show that the list of SemHandle
parameters must be ended by the value 0 (4 bytes).

Chapter 4. The Remote MERVA Application Program Interface 23

C Language Example:
#define TRIGGER "SAMPLE2"
#define STOP "STOP.SMP"

#include "enmrapi.h"

USHORT rc = 0;
ULONG SemTrigger;
ULONG SemStop;
USHORT Index = 0;

if ((rc = ENMCreateSem (&SemStop, STOP)) == 0)
if ((rc = ENMCreateSem (&SemTrigger, TRIGGER)) == 0)

if ((rc = ENMSetSem (SemStop)) == 0)
if ((rc = ENMSetSem(SemTrigger)) == 0)

rc = ENMWaitSemList(&Index, -1L,
SemStop,
SemTrigger,
(ULONG)0);

24 MERVA Connection/NT

ENMCloseSem - Close a Semaphore

This call closes a semaphore that is obtained with an ENMCreateSem or
ENMOpenSem call.

C Definition:
USHORT ENMCloseSem (ULONG SemHandle);

Parameter Description: The following parameters are required:
v retCode(USHORT) - output

Code Meaning

0 The function completed correctly.

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason. For details refer to
“Handling Errors” on page 29. The reason code is also written to the
diagnosis log of your operating system. For details refer to
“Appendix A. Diagnosis Information” on page 45. If it is an internal
error of the MERVA API, the reason code is 0.

6 The system does not have enough memory to complete the function.

102 A semaphore is set. Therefore, it cannot be closed.

255 An internal semaphore error occurred. For details refer to “Handling
Errors” on page 29. The reason code is also written to the diagnosis log
of your operating system. For details refer to “Appendix A. Diagnosis
Information” on page 45. The reason code is in the form of 3xxx where
xxx denotes the error number of the server system.

v SemHandle(ULONG) - input
Generated by ENMCreateSem or ENMOpenSem.

C Language Example:
#define TRIGGER "SAMPLE2"

#include "enmrapi.h"

USHORT rc = 0;
ULONG SemTrigger;

if ((rc = ENMCreateSem (&SemTrigger, TRIGGER)) == 0)
rc = ENMCloseSem (SemTrigger);

Chapter 4. The Remote MERVA Application Program Interface 25

ENMSetSem - Set a Semaphore

ENMSetSem sets a semaphore unconditionally. For MERVA, you can clear the
semaphore by raising an alarm.

C Definition:
USHORT ENMSetSem (ULONG SemHandle);

Parameter Description: The following parameters are required:
v retCode(USHORT) - output

Code Meaning

0 The function completed correctly.

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason. For details refer to
“Handling Errors” on page 29. The reason code is also written to the
diagnosis log of your operating system. For details refer to
“Appendix A. Diagnosis Information” on page 45. If it is an internal
error of the MERVA API, the reason code is 0.

6 The system does not have enough memory to complete the function.

100 The limit of open semaphores in the system is exceeded.

103 There are too many semaphore requests on the system.

255 An internal semaphore error occurred. For details refer to “Handling
Errors” on page 29. The reason code is also written to the diagnosis log
of your operating system. For details refer to “Appendix A. Diagnosis
Information” on page 45. The reason code is in the form of 3xxx where
xxx denotes the error number of the server system.

v SemHandle(ULONG) - input
Generated by ENMCreateSem or ENMOpenSem.

C Language Example:
#define TRIGGER "SAMPLE2"

#include "enmrapi.h"

USHORT rc = 0;
ULONG SemTrigger;

if ((rc = ENMCreateSem (&SemTrigger, TRIGGER)) == 0)
rc = ENMSetSem (SemTrigger);

26 MERVA Connection/NT

ENMClearSem - Clear a Semaphore

This call clears a semaphore unconditionally. If processes are blocked on the
semaphore, they are restarted.

C Definition:
USHORT ENMClearSem (ULONG SemHandle);

Parameter Description: The following parameters are required:
v retCode(USHORT) - output

Code Meaning

0 The function completed correctly.

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason. For details refer to
“Handling Errors” on page 29. The reason code is also written to the
diagnosis log of your operating system. For details refer to
“Appendix A. Diagnosis Information” on page 45. If it is an internal
error of the MERVA API, the reason code is 0.

6 The system does not have enough memory to complete the function.

101 A semaphore cannot be cleared because another process owns it.

255 An internal semaphore error occurred. For details refer to “Handling
Errors” on page 29. The reason code is also written to the diagnosis log
of your operating system. For details refer to “Appendix A. Diagnosis
Information” on page 45. The reason code is in the form of 3xxx where
xxx denotes the error number of the server system.

v SemHandle(ULONG) - input
Generated by ENMCreateSem or ENMOpenSem.

C Language Example:
#define TRIGGER "SAMPLE2"

#include "enmrapi.h"

USHORT rc = 0;
ULONG SemTrigger;

if ((rc = ENMCreateSem (&SemTrigger, TRIGGER)) == 0)
rc = ENMClearSem (SemTrigger);

Chapter 4. The Remote MERVA Application Program Interface 27

ENMCreateSem - Create a Semaphore

This call creates a semaphore on the Remote MERVA API Server.

C Definition:
USHORT ENMCreateSem (PULONG SemHandle,

PUCHAR SemName);

Parameter Description: The following parameters are required:
v retCode(USHORT) - output

Code Meaning

0 The function completed correctly.

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason. For details refer to
“Handling Errors” on page 29. The reason code is also written to the
diagnosis log of your operating system. For details refer to
“Appendix A. Diagnosis Information” on page 45. If it is an internal
error of the MERVA API, the reason code is 0.

6 The system does not have enough memory to complete the function.

87 One of the parameters is not valid.

100 The limit of open semaphores in the system is exceeded.

123 The name of the semaphore is not valid.

183 The semaphore already exists.

255 An internal semaphore error occurred. For details refer to “Handling
Errors” on page 29. The reason code is also written to the diagnosis log
of your operating system. For details refer to “Appendix A. Diagnosis
Information” on page 45. The reason code is in the form of 3xxx where
xxx denotes the error number of the server system.

v SemHandle(PULONG) - output
Address of the semaphore handle.

v SemName(PUCHAR) - input
Pointer to a null-terminated string that contains the name of the semaphore to
be created. The semaphore name is a logical name without path details.

C Language Example:
#define TRIGGER "SAMPLE2"

#include "enmrapi.h"

USHORT rc = 0;
ULONG SemTrigger;

rc = ENMCreateSem (&SemTrigger, TRIGGER);

28 MERVA Connection/NT

ENMOpenSem - Open a Semaphore

This call opens an existing semaphore created by another process with
ENMCreateSem.

C Definition:
USHORT ENMOpenSem (PULONG SemHandle,

PUCHAR SemName);

Parameter Description: The following parameters are required:
v retCode(USHORT) - output

Code Meaning

0 The function completed correctly.

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason. For details refer to
“Handling Errors”. The reason code is also written to the diagnosis log
of your operating system. For details refer to “Appendix A. Diagnosis
Information” on page 45. If it is an internal error of the MERVA API, the
reason code is 0.

100 The limit of open semaphores in the system is exceeded.

123 The name for the semaphore is not valid.

187 The semaphore does not exist.

255 An internal semaphore error occurred. For details refer to “Handling
Errors”. The reason code is also written to the diagnosis log of your
operating system. For details refer to “Appendix A. Diagnosis
Information” on page 45. The reason code is in the form of 3xxx where
xxx denotes the error number of the server system.

v SemHandle(PULONG) - output
Address of the handle of the opened semaphore.

v SemName(PUCHAR) - input
Pointer to a null-terminated string that contains the name of the semaphore to
be opened.

C Language Example:
#define TRIGGER "SAMPLE2"

#include "enmrapi.h"

USHORT rc = 0;
ULONG SemTrigger;

rc = ENMOpenSem (&SemTrigger, TRIGGER);

Handling Errors
If you want the API call to return reason codes, use the function ENMGetReason.
This function gets the reason for the internal error. It is described in the following
section.

Chapter 4. The Remote MERVA Application Program Interface 29

ENMGetReason - Get Reason Code for Internal Error

This call returns the reason code for an internal error in MERVA Connection/NT.

If an internal error occurs in MERVA Connection/NT or in the local MERVA API,
an API call returns the return code 2. If it is an error of MERVA Connection/NT,
ENMGetReason returns a specific reason code. Otherwise, the reason code is 0.

C Definition:
USHORT ENMGetReason (void);

Parameter Description: The following parameters are required:
v retCode(USHORT) - output

Code Meaning

2xxx Reason codes from 2000 to 2999 indicate communication problems.

2110 The APPC conversation cannot be established or is cancelled.

2120 The Communications Side Information object is not found.

2130 The connection to the Remote MERVA API Server program failed.

2140 Deallocation failed because the conversation has already been stopped.

2150 The conversation was interrupted while the program tried to receive
data.

2200 An empty data buffer was received.

28xx xx is a return code of the TCP/IP service programs.

29xx xx is a return code of the CPI-C call.

2999 A general communication problem occurred. For details refer to the
diagnosis log.

3xxx An internal semaphore error occurred. xxx is the error number provided
by Windows NT.

7006 The Remote MERVA API Server failed while the program tried to
allocate memory.

7012 The Remote MERVA API Server does not accept further API calls due to
a previous error.

7013 The Remote MERVA API Server received a negative return code from
user exit ENM4ExitDecrypt.

7014 The Remote MERVA API Server received a negative return code from
user exit ENM4ExitEncrypt.

7015 The Remote MERVA API Server received a negative return code from
user exit ENM4ExitMacVerify or ENM4ExitMacGen.

7016 The Remote MERVA API Server received an incorrect API request.

7018 The Remote MERVA API Server received an error while the program
converted ASCII to EBCDIC. For details refer to the diagnosis log of
MERVA.

7019 The Remote MERVA API Server received an error while the program
accessed the message integrity control file.

7030 Internal message space was not created.

30 MERVA Connection/NT

||

8002 The Remote MERVA API Client cannot open the programmer’s log file
that is specified in the profile.

8003 The Remote MERVA API Client cannot close the programmer’s log file
that is specified in the profile.

8004 The Remote MERVA API Client cannot open the diagnosis log file that is
specified in the profile.

8005 The Remote MERVA API Client cannot close the diagnosis log file that is
specified in the profile.

8006 The Remote MERVA API Client could not allocate memory.

8007 The Remote MERVA API Client cannot write to the diagnosis log file
that is specified in the profile.

8008 The Remote MERVA API Client cannot write to the programmer’s log
file that is specified in the profile.

8010 The Remote MERVA API Client failed because the profile name in
ENMSetProfile is incorrect or not specified.

8011 The Remote MERVA API Client failed because the profile specified in
ENMSetProfile does not exist.

8013 The Remote MERVA API Client received a negative return code from
user exit ENM4ExitDecrypt.

8014 The Remote MERVA API Client received a negative return code from
user exit ENM4ExitEncrypt.

8015 The Remote MERVA API Client received a negative return code from
user exit ENM4ExitMacVerify.

8016 The Remote MERVA API Client received a negative return code from
user exit ENM4ExitMacGen.

8017 The conversation has not been started with ENMStartRAPI or with
ENMStartAPPC.

8019 The Remote MERVA API Client could not access the message integrity
control file.

8020 The Remote MERVA API Client could not load the file ENMRATP.DLL.

8021 The profile does not contain information about the partner system.

C Language Example:
#include "enmrapi.h"

USHORT rc = 0;
USHORT reason = 0;

rc = ENMFree();
if (rc) {

reason = ENMGetReason();
if (reason) {
printf ("Internal error in MERVA Connection/NT occurred, reason code %d",

reason);
}

}

Chapter 4. The Remote MERVA Application Program Interface 31

Building API Programs
This section describes how to compile MERVA Connection/NT programs in the C
programming language.

Compiling Your Own API Program
To compile your API program on the Windows NT system, enter the following
commands:
1. icc /C /DWIN32 /Gd+ /Gm+ /Gs- /Gt+ <name>.c

2. ilink /NOE <name>.obj ENMNRAPI.LIB <name>.def

Note that you might have to link additional libraries to your program.

Compiling the Sample Programs
To generate the executable files for the delivered sample programs, copy the files
of the directory \SAMPLES to a directory of your choice. Note that the sample
programs use the profile SAMPLE.PRF that must be located in the same path as
the sample program. The following list shows you the contents of the samples
directory:

SMPLN1.MAK Make file to generate the sample API program
SMPLN1. To generate this program, enter:

nmake /f smpln1.mak

SMPLN1.C Sample program that is attached to MERVA, for
example, to query queue information, create
messages, or send messages.

SMPLN2.MAK Make file for SMPLN2. To generate the sample API
programs SMPLN2 and SMPLN2S, enter:

nmake /f smpln2.mak

SMPLN2.C Sample program to trigger MERVA.

SMPLN2S.C Sample program to stop SMPLN2.

SMPLN3.MAK Make file for SMPLN3. To generate the sample API
program SMPLN3, enter:

nmake /f smpln3.mak

SMPLN3.C Sample program to load telex messages through
API queues. To run the sample program SMPLN3,
you need the data file SAMPLE.DAT.

SMPLN4.MAK Make file for SMPLN4. To generate the sample API
program SMPLN4, enter:

nmake /f smpln4.mak

SMPLN4.C Sample program to verify the MERVA
Connection/NT installation.

SAMPLE.PRF File that contains a sample profile.

SMPLN4.EXE Compiled version of SMPLN4.C for immediate
use.

SMPLN4.DAT Date file that contains three telex messages for
SMPLN3.

32 MERVA Connection/NT

Resynchronization
If a network connection is interrupted, the recovery procedure ensures that the
status of a message in MERVA, such as Add, Route, or Delete is changed only
once. This affects the programs that use the Remote MERVA API and programs
that call the local MERVA API.

During normal processing, an API call is transferred from the Remote MERVA API
Client to the Remote MERVA API Server as shown in position (1) and (2) in
Figure 3. The return data from MERVA is sent back from the Remote MERVA API
Server to the Remote MERVA API Client as shown in position (3) and (4). The
return data is also sent to the calling program.

The following figure shows you an example of the processing steps:

The return code ERR_SYSTEM of the API call and the corresponding reason code
(2000 to 2999) of an additional ENMGetReason call indicates whether the network
connection is interrupted. MERVA Connection/NT does not know whether the call
completed successfully, or whether it is not executed in the MERVA system. In the
example of Figure 3, the API program does not know whether the message is
added to the MERVA queue.

With MERVA Connection/NT, the API program reestablishes the connection in the
next run by using ENMRestartRAPI. It recreates the message with the same
contents and fields, and repeats the call that failed. This mechanism is provided for
the following API calls that are important for the integrity of the message database:
v ENMAdd
v ENMDelete
v ENMPut
v ENMRouteAdd
v ENMRoutePut

How to Implement Resynchronization
When the Remote MERVA API Client receives a call from the application program,
it generates an internal unique identifier. The identifier is saved locally and sent to
the Remote MERVA API Server. The Remote MERVA API Server deletes the
identifier after the API call is executed and after the return data is sent back to the
Remote MERVA API Client.

Figure 3. Resynchronization Support

Chapter 4. The Remote MERVA Application Program Interface 33

If the network connection stops before the return data is sent back, identifier and
return data are saved. After the connection is reestablished, the same identifier
arrives with the first of the above mentioned API calls. The saved return data is
then sent back as if the call was not interrupted in the previous run.

The necessary control data is saved in files. On the Remote MERVA API Client,
you can specify the file name in the MERVA Connection/NT profile as described
in “Customizing MERVA Connection/NT” on page 5. On the Remote MERVA API
Server, the file name must be the same as the application name specified in the
ENMStartRAPI or ENMRestartRAPI call.

To ensure that resynchronization works correctly:
v Specify unique file names for the Message Integrity Control file (MIP) in the

profiles of your application programs.
v Use unique application names for the ENMStartRAPI and ENMRestartRAPI

calls if you run more than one remote API program.

Using the Resynchronization Mechanism
The following example shows you the structure of a program that issues calls in a
loop:
ENMSetProfile
ENMRestartRAPI
ENMAttach
do

ENMCreate
ENMWriteField
read message from application
ENMRouteAdd

until (no more message to send)
ENMDetach
ENMEndRAPI

If the network connection breaks down after the ENMRouteAdd call is issued, the
API program stops. When you restart the API program, the loop is entered as if
there was no interruption in the previous run.

To ensure that resynchronization works correctly:
v Use the same profile as in the previous run.
v Call ENMRestartRAPI by using the same application name.
v Call ENMCreate and ENMWriteField by using the same data, such as the

message field contents, as in the previous run.
v Call ENMRouteAdd by using the same queue name.
v After resynchronization you can continue with the loop as you do in normal

processing.

If the program runs in this way, it does not have to check the status of processing
at the time when the ENMRouteAdd call was interrupted.

Recovering after a Failed Call
If the call of ENMAdd or ENMRouteAdd fails, you usually call ENMClear to clear
the message space. For details refer to the corresponding MERVA Programming
Guide.

34 MERVA Connection/NT

If these calls fail after you reestablish the connection because of other reasons than
network problems, you might get the following return code (202) when you call
ENMClear:
ERR_NO_MSG_CREATED

You can ignore this error message because the API call was executed in the first
run.

The same applies to an ENMFree call that returns the following message (201)
after the call of ENMDelete, ENMPut, or ENMRoutePut fails:
ERR_NO_MSG_LOCKED

Using Other Methods
If you do not use the resynchronization option, call ENMStartRAPI instead of
ENMRestartRAPI. ENMStartRAPI deletes the internal control information for
resynchronization. Each API call is then considered as a new call.

MERVA Connection/NT does not save the type or input data of the API call that
fails due to the network failure. If one of the above mentioned calls fails, ensure
that the same call is repeated after reconnection to the MERVA system. If you do
not ensure this, an API call with new data could be wrongly considered as a
repeated call from a previous run. This applies only if you use ENMRestartRAPI.

MERVA Connection/NT does not recognize an inappropriate API call. If the
internal state indicates that the last API call from the previous run is executed, the
call is ignored.

Chapter 4. The Remote MERVA Application Program Interface 35

36 MERVA Connection/NT

Chapter 5. Security

Security is an important requirement of all financial institutions. The security of
message transfers is determined by:
v Encryption of transferred data
v Authentication of transferred data

MERVA Connection/NT supports encryption and authentication.

Encryption of Transferred Data
To encrypt data, you activate user exits. User exits allow you to include your own
algorithm or products that support encryption and decryption routines.

The following user exits are valid:
v ENM4ExitEncrypt for encryption
v ENM4ExitDecrypt for decryption

For detailed information on how to implement these routines, refer to “User Exit
Interfaces”.

Authentication of Transferred Data
To generate an authentication key that covers all exchanged data, you activate user
exits. User exits allow you to include your own algorithm or products that support
authentication routines.

The following user exits are valid:
v ENM4ExitMacGen for MAC generation
v ENM4ExitMacVerify for MAC verification

For detailed information on how to implement these routines, refer to “User Exit
Interfaces”.

User Exit Interfaces
API calls and user exits are different:
v For an API call, you write a program that calls the API routine provided by

MERVA Connection/NT.
v A user exit is a routine that is written by you and called by MERVA

Connection/NT. The user exit routines must contain the declaration for the
function name and formal parameter list, as described in the following sections.

User Exit Points
The following figure shows an example of an API function that is called by an API
program on your operating system. You can see who calls a user exit at which
processing step. In the figure, the following abbreviations are used for the user
exits:

ENCRYP ENM4ExitEncrypt

© Copyright IBM Corp. 1997, 2001 37

DECRYP ENM4ExitDecrypt

MACGEN ENM4ExitMacGen

MACVFY ENM4ExitMacVerify

User Exit Interfaces in C Language
The data types that are used in these routines can be different, depending on the
operating system on which they are implemented.

Figure 4. Example of an API Program That Calls an API Function

38 MERVA Connection/NT

User Exit for Encryption

C Definition:
unsigned short ENM4ExitEncrypt (unsigned char* pucApplId,

unsigned char* pucBuffer,
unsigned short usBufferLen);

Purpose of the User Exit Routine: Encrypts the passed data buffer.

Parameter Description: The following parameters are required:
v pucApplId(unsigned char*) - input

Address of a null-terminated string up to 8 characters long. The string contains
the application identifier that is passed as a parameter of the API call
ENMStartRAPI. You can use this string to provide different encryption keys for
different partner connections. You can also use this string to specify the
connections or API programs for which the information is to be encrypted.

v pucBuffer(unsigned char*) - input/output
Address of the data buffer to be encrypted.

v usBufferLen(unsigned short) - input
Length of the data buffer to be encrypted.

Chapter 5. Security 39

User Exit for Decryption

C Definition:
unsigned short ENM4ExitDecrypt (unsigned char* pucApplId,

unsigned char* pucBuffer,
unsigned short usBufferLen);

Purpose of the User Exit Routine: Decrypts the passed data buffer.

Parameter Description: The following parameters are required:
v pucApplId(unsigned char*) - input

Address of a null-terminated string up to 8 characters long. The string contains
the application identifier that is passed as a parameter of the API call
ENMStartRAPI. You can use this string to provide different encryption keys for
different partner connections. You can also use this string to specify the
connections or API programs for which the information is to be encrypted.

v pucBuffer(unsigned char*) - input, output
Address of the data buffer to be decrypted.

v usBufferLen(unsigned short) - input
Length of the data buffer to be decrypted.

40 MERVA Connection/NT

User Exit for Message Authentication Code (MAC) Generation

C Definition:
unsigned short ENM4ExitMacGen (unsigned char* pucApplId,

unsigned char* pucBuffer,
unsigned short usBufferLen,
unsigned char* pucMacBuffer);

Purpose of the User Exit Routine: Generates a MAC for the passed data buffer.

Parameter Description: The following parameters are required:
v pucApplId(unsigned char*) - input

Address of a null-terminated string up to 8 characters long. The string contains
the application identifier that is passed as a parameter of the API call
ENMStartRAPI. You can use this string to provide different MAC generation
algorithms for different partner connections. You can also use this string to
specify the connections or API programs for which a MAC is to be generated.

v pucBuffer(unsigned char*) - input
Address of the data buffer for which a MAC is to be generated.

v usBufferLen(unsigned short) - input
Length of the data buffer for which a MAC is to be generated.

v pucMacBuffer(unsigned char*) - output
Address of the area to which the generated MAC is to be copied. The address
can be up to 32 bytes long.

Chapter 5. Security 41

User Exit for MAC Verification

C Definition:
unsigned short ENM4ExitMacVerify (unsigned char* pucApplId,

unsigned char* pucBuffer,
unsigned short usBufferLen,
unsigned char pucMacBuffer);

Purpose of the User Exit Routine: Generates a MAC for the passed data buffer
and compares it with the passed MAC. If both MACs match, set the return code to
0. If the MACs do not match, set the return code to 1.

Parameter Description: The following parameters are required:
v pucApplId(unsigned char*) - input

Address of a null-terminated string up to 8 characters long. The string contains
the application identifier that is passed as a parameter of the API call
ENMStartRAPI. You can use this string to provide different MAC verification
algorithms for different partner connections. You can also use this string to
specify the connections or API programs for which a MAC is to be verified.

v pucBuffer(unsigned char*) - input
Address of the data buffer for which a MAC is to be generated and for which
the passed MAC is generated on the partner side.

v usBufferLen(unsigned short) - input
Length of the data buffer for which a MAC is to be generated.

v pucMacBuffer(unsigned char*) - input
Address of the area that holds the MAC key that is received from the partner
side. The address can be up to 32 bytes long.

Replacing Security User Exits
This section describes the provided sample security user exits. It also shows you
how to generate and use your own security user exits. To do this, you must
generate them on the Client Application System and the MERVA Server System.

The following sets of sample security user exits are provided (for details refer to
“User Exit Interfaces” on page 37):

enm4ssec These routines contain sample code for encryption and
authentication. They show you how to access the variables of the
formal parameter list in the function call. They do not provide
genuine security.

enm4snil These routines do not contain code. Use this file if you want to
avoid encryption or authentication.

In the Remote MERVA API Client, the shared library that contains the user exits is
called enmnxit.dll. If you want to add your own user exits, you must replace the
library enmnxit.dll with your own library. To do this, use enmnxit.mak.

In the Remote MERVA API Server, the dynamic link library that contains the user
exits must have the name enmcrxit.dll. The shipped version of enmcrxit.dll is a
copy of the sample library enmcrnil.dll. If you want to use enmcrsec.c of the
sample user exit routines, build enmcrxit.dll from enmcrsec.c using
enmnrsec.mak.

42 MERVA Connection/NT

Generating Security User Exits on the Remote MERVA API
Client

On the Remote MERVA API Client, you must use the user exit routines from
shared libraries. To replace the sample user exits by your own routines, use
enm4ssec.c as a skeleton. You then generate a shared library that replaces
enmnsxit.dll.

To do this, replace all occurrences of enm4snil in enmnsxit.mak with enm4ssec. To
start the compilation of the dll, enter:

nmake all /f enmnsxit.mak

This generates a new enmnsxit.dll with the user exits that are contained in
enm4ssec.c. Replace the previous version of the dll with the new one.

Generating Security User Exits on the MERVA Server System
On the Remote MERVA API Server, you must use the user exit routines from
shared libraries. If you want to replace the sample user exits with your own
routines, use enmcrsec.c as a skeleton.

The userexit subdirectory of the installed MERVA Server System contains the make
file enmnrsec.mak. To create the new dll from enmcrsec.c, enter:

nmake /f enmnrsec.mak

Replace the previous enmcrxit.dll with the new enmcrxit.dll.

If your source file name is different from enmcrsec.c, replace every occurrence of
enmcrsec within the make file enmcrsec.mak with your source file name.

Chapter 5. Security 43

44 MERVA Connection/NT

Appendix A. Diagnosis Information

The diagnosis information is written to log files on the Remote MERVA API Client
system and on the Remote MERVA API Server system.

Log Files on the Remote MERVA API Client
On the Remote MERVA API Client, the diagnosis log and the programmer’s log are
created. You can specify the names and directories of the logs in the corresponding
MERVA Connection/NT profile. For details refer to “Customizing MERVA
Connection/NT” on page 5.

Each message that is written to the logs consists of a message header and a
message body.

The following example shows a diagnosis log with API trace entries for MERVA
Connection/NT:

Diagnosis Log
The diagnosis log contains the following information:
v Error messages that help you recover from errors that occur when you use the

API calls or from errors that refer to the communication with the MERVA
system.

v Trace information when the API trace is started with the call ENMTrace. For
details refer to MERVA USE & Branch for Windows NT Application Programming
Guide.

Programmer’s Log
The programmer’s log is a debugging tool. It contains the same entries as the
diagnosis log. Additionally, it contains information that can be analyzed by your
IBM representative.

The layout of the header is:

Date In the form of YYYYMMDD, where YYYY denotes
the year, MM the month, and DD the day.

* 19990402192358ENM4RAPI ENMRestartRAPI 00000 00000
ENM9153: API function ENMRestartRAPI called.

Parameters:
App: SAMPLE3

* 19990402192357ENM4RUTL APIInit 00000 00000
ENM9108: Error in CPIC Call CMALLC RC = 19.

* 19990402192413ENM4RAPI ENMRestartRAPI
ENM9109: Error in RAPI Initialization.

* 19990402192413ENM4RAPI ENMRestartRAPI
ENM9152: API function returned with reason code 2130.

Figure 5. Diagnosis Log with API Trace Entries for MERVA Connection/NT

© Copyright IBM Corp. 1997, 2001 45

Time In the form of HHMMSS, where HH denotes the
hour, MM the minutes, and SS the seconds.

Module name A code that consists of 8 characters. It identifies the
module from which the message comes.

Function name A code that consists of 15 characters. It identifies
the function from which the message comes.

The layout of the message is:

Message The message that is to be recorded. The length of
the message can vary. For an explanation of the
message, refer to Messages and Codes. To access
Messages and Codes double-click on the Messages
and Codes icon on your desktop, or select it and
press Enter.

Note: Log entries are appended to the existing files. If MERVA Connection/NT
should create new log files, you must delete the old log files.

Log Files on the Remote MERVA API Server System
MERVA log files contain diagnosis information about the Remote MERVA API
Server program. The diagnosis log contains error and trace information. The
programmer’s log contains IBM service information.

You can view the contents of the diagnosis log file by using the function Display
Diagnosis Log of the MERVA Main Menu program.

The log files are located in the MERVA instance logging directory. For more
information refer to the MERVA USE & Branch for Windows NT Diagnosis Guide.

46 MERVA Connection/NT

Appendix B. Sample SNA Definitions for MERVA
Connection/NT

MERVA Connection/NT uses LU 6.2 sessions for the communication between the
Remote MERVA API Client and Server in the SNA Data Communication
environment. To bind the required sessions, you can customize the data
communication subsystems in the client and server systems in several ways.

The first customization example uses an APPN (R) network node. You can use this
example only if an APPN network node is available in the LAN.

The second example uses an APPC peer-to-peer connection for the communication.
You do not need a network node to use it.

The following naming conventions apply for the SNA resources in the sample
network node (MERVA Server System):

APPN1
The name of the sample network.

NNA The name of the control point. The sample token ring address of NNA is
10005aa99ff0.

The following naming conventions apply for the SNA resources in the sample end
node (Client Application System):

EN1 The control point name (CP) of the end node.

TR1 The name of the Token Ring Link Station in EN1 that provides the link to
the network node server (NNA) in example 1 or to the peer node (EN2) in
example 2 .

LU1 The name of an independent LU 6.2 in EN1.

The following naming conventions apply for the second node, the MERVA Server
System:

EN2 The control point name (CP) of the end node.

TR2 The name of the Token Ring Link Station in EN2 that provides the link to
the network node server (NNA) in example 1.

LU2 The name of an independent LU 6.2 in EN2.

ENMRAS
The name of the transaction program (MERVA Connection/NT Server) on
the server node.

Customizing an APPN End Node
For a detailed description of how to configure an end node in a two-node APPN
network, refer to the Communications Server for Windows NT User’s Guide. It is
assumed that you are familiar with this description.

To set up the local node, start the SNA Node Configuration of the
Communications Server and enter the corresponding parameters.

© Copyright IBM Corp. 1997, 2001 47

The following tables show the different APPN configuration parameters.

Table 1. Configure Node

Parameter Server Side Client Side

Basic

Fully qualified CP name APPN1.EN2 APPN1.EN1

CP alias EN2 EN1

Local node ID No changes No changes

Advanced

Registration with network node
server

Yes Yes

Registration with central
directory server

No No

All others No changes No changes

Table 2. Configure Devices (DLC:LAN)

Parameter Server Side Client Side

Adapter number 0 (Use the first available
adapter number)

0

All others No changes No changes

Table 3. Configure Connections (DLC:LAN)

Parameter Server Side Client Side

Basic

Link station name TR2 TR1

Destination address – Insert network address of
the network node¹
(10005aa99ff0)

Advanced

APPN support – –

Activate link at start Yes Yes

Link to preferred NN server Yes Yes

Adjacent Node

Adjacent CP name APPN1.NNA APPN1.NNA

Adjacent CP type Network node Network node

All others – No changes

¹ On Windows NT, the network address of a network adapter can be retrieved
with the Windows NT Diagnose program (Select Network and click Transports.

Table 4. Configure Partner LU 6.2

Parameter Server Side Client Side

Basic

Partner LU name APPN1.LU1 APPN1.LU2

48 MERVA Connection/NT

Table 4. Configure Partner LU 6.2 (continued)

Parameter Server Side Client Side

Partner LU alias LU1 LU2

Fully qualified CP name APPN1.NNA APPN1.NNA

Advanced

Conversation security support Yes Yes

All others

Table 5. Configure Modes

Parameter Server Side Client Side

Basic

Mode name APPCLU62 APPCLU62

Advanced

Maximum RU size 1 024 1 024

All others No changes No changes

Table 6. Configure Local LU 6.2

Parameter Server Side Client Side

Basic

Local LU name LU2 LU1

Local LU alias LU2 LU1

LU session limit 0 (No limit) 16

All others

Table 7. Configure CPI-C Side Information

Parameter Server Side Client Side

Basic

Symbolic destination name – MERVA

Mode name – APPCLU62

Partner LU name – APPN1.LU2

TP name – ENMRAS

Service TP – No

Security

Conversation security – Program

Security user ID – SAMPLE (Your choice)

Security password – SAMPLE1 (Provide
password)

Table 8. Configure Transaction Programs

Parameter Server Side Client Side

Basic

TP name ENMRAS –

Complete path name C:\Merva\Use_Branch\bin\enmcrtpi.exe–

Appendix B. Sample SNA Definitions for MERVA Connection/NT 49

Table 8. Configure Transaction Programs (continued)

Parameter Server Side Client Side

Program parameters ENMRAS merva1 TS=0
TP=C:\temp

–

Conversation security required Yes –

All others No changes

Advanced

Background process Yes –

Table 9. Configure User ID and Password

Parameter Server Side Client Side

Security user ID SAMPLE (Your choice) –

Security password SAMPLE1 (Applicable
password)

–

Customizing an APPC Peer-to-Peer Connection
The following tables describe a basic peer-to-peer connection between the client
and the server side of MERVA Connection/NT. If you want to use the example,
replace the network name NETNAME with your network name. You must also use
the LAN destination address of your own server.

To configure the profiles, start the SNA Node Configuration of the
Communications Server and enter the corresponding parameters.

The following tables show the different APPC peer-to-peer configuration
parameters.

Table 10. Configure Node

Parameter Server Side Client Side

Basic

Fully qualified CP name NETNAME.EN2 NETNAME.EN1

CP alias EN2 EN1

Local node ID No changes No changes

Advanced

Registration with network node
server

No No

Registration with central
directory server

No No

All others No changes No changes

Table 11. Configure Devices (DLC:LAN)

Parameter Server Side Client Side

Adapter number 0 (Use the first available
adapter number)

0 (Use the first available
adapter number)

50 MERVA Connection/NT

Table 11. Configure Devices (DLC:LAN) (continued)

Parameter Server Side Client Side

All others No changes No changes

Table 12. Configure Connections (DLC:LAN)

Parameter Server Side Client Side

Basic

Link station name – TR1

Destination address – Insert network address ¹

Advanced

APPN support – No

Adjacent Node

Adjacent CP name – NETNAME.EN2

Adjacent CP type – End node

All others – No changes

¹ On Windows NT, the network address of a network adapter can be retrieved
with the Windows NT Diagnose program (Select Network and click Transports.

Table 13. Configure Partner LU 6.2

Parameter Server Side Client Side

Basic

Partner LU name NETNAME.LU1 NETNAME.LU2

Partner LU alias LU1 LU2

Fully qualified CP name NETNAME.EN1 NETNAME.EN2

Advanced

Conversation security support Yes Yes

All others

Table 14. Configure Modes

Parameter Server Side Client Side

Basic

Mode name APPCLU62 APPCLU62

Advanced

Maximum RU size 1,024 1,024

All others No changes No changes

Table 15. Configure Local LU 6.2

Parameter Server Side Client Side

Basic

Local LU name LU2 LU1

Local LU alias LU2 LU1

LU session limit 0 (No limit) 0 (No limit)

Appendix B. Sample SNA Definitions for MERVA Connection/NT 51

Table 15. Configure Local LU 6.2 (continued)

Parameter Server Side Client Side

All others

Table 16. Configure CPI-C Side Information

Parameter Server Side Client Side

Basic

Symbolic destination name – MERVA

Mode name – APPCLU62

Partner LU name – NETNAME.LU2

TP name – ENMRAS

Service TP – No

Security

Conversation security – Program

Security user ID – SAMPLE (Your choice)

Security password – SAMPLE1

Table 17. Configure Transaction Programs

Parameter Server Side Client Side

Basic

TP name ENMRAS –

Complete path name C:\Merva\Use_Branch\bin\
enmcrtpi.exe

–

Program parameters ENMRAS merva1 TS=0
TP=C:\temp

–

Conversation security required Yes –

All others No changes

Advanced

Background process Yes –

Table 18. Configure User ID and Password

Parameter Server Side Client Side

Security user ID SAMPLE (Your choice) –

Security password SAMPLE1 –

52 MERVA Connection/NT

Appendix C. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Deutschland
Informationssysteme GmbH
Department 3982
Pascalstrasse 100

© Copyright IBM Corp. 1997, 2001 53

70569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement
or any equivalent agreement between us.

The following paragraph does apply to the US only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States,
or other countries, or both:
v APPN
v CICS/ESA
v DB2
v IBM
v IMS/ESA
v MVS/ESA
v OS/2
v RACF
v VisualAge

Workstation (AWS) and Directory Services Application (DSA) are trademarks of
S.W.I.F.T., La Hulpe in Belgium.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

54 MERVA Connection/NT

Glossary of Terms and Abbreviations

This glossary defines terms and abbreviations as
they are used in the MERVA books. If you do not
find the terms you are looking for, refer to
Dictionary of Computing, New York: McGraw-Hill,
1994, or the S.W.I.F.T. User Handbook.

A
AMPDU. Application Message Protocol Data Unit
defined in the MERVA Link P1 protocol. It consists of
an envelope and ASP-supplied information.

answerback. In telex, the response from the dialed
correspondent to the “WHO R U” signal.

AP. Application.

APC. Application Control.

APAR. Authorized Program Analysis Report.

APDU. Application Protocol Data Unit.

API. Application Programming Interface.

APPC. Advanced Program-to-Program
Communication based on LU 6.2 protocols.

Application Support (AS). Name of the upper
sublayer functionality of MERVA Link.

Application Support Layer (ASL). Contains the
Application Support functionality.

Application Support Process (ASP). Part of MERVA
Link that implements the Application Support Layer.

AS. Application Support.

ASCII. American Standard Code for Information
Interchange.

ASL. Application Support Layer.

ASP. Application Support Process.

ASPDU. Application Support Protocol Data Unit
defined in the MERVA Link P2 protocol.

association timeout. The period of time allowed for
the establishment of a MERVA Link session with the
remote partner before giving up.

authentication. The S.W.I.F.T. security check to ensure
that a message is not changed during transmission and
that a message is sent by an authorized sender.

authenticator key. A set of alphanumeric characters
used to check the authentication of a message sent via
the S.W.I.F.T. network.

authenticator-key file. A file that contains the keys to
authenticate messages. It also contains a record for each
correspondent bank.

B
Bank Identifier Code (BIC). The S.W.I.F.T. address of
a bank as assigned by S.W.I.F.T. See also S.W.I.F.T.
address.

BCR. Basic Card Reader.

BIC. Bank Identifier Code. See also S.W.I.F.T. address.

bi-directional key. A bilateral key that authenticates
messages sent to and received from a correspondent.

bilateral key. A key that is generated inside an SCR. It
authenticates financial messages interchanged with two
correspondents. A bilateral key can be bi-directional or
uni-directional.

bilateral key exchange (BKE) service. The S.W.I.F.T.
USE service in which authenticator keys are generated
in an SCR and exchanged via the S.W.I.F.T. network
instead of being exchanged by mail.

BK. Bilateral Key.

BKE. Bilateral Key Exchange.

BK ID. Bilateral Key Identifier. The BK ID has the
following format:
v The first character is either B (Bilateral) or M

(Manual).
v The second character is the BK type, as defined by

S.W.I.F.T.
v Characters 3 to 8 denote the date.
v Characters 9 to 16 denote the key check value.

blacklist. A list of USE items, such as SCRs or CVs,
that are no longer valid. For example, a stolen SCR is
blacklisted to prevent future use.

branch code. The last 3 digits of the BIC to identify a
bank.

C
CBT. S.W.I.F.T. Computer-Based Terminal.

© Copyright IBM Corp. 1997, 2001 55

certificate. A guarantee by S.W.I.F.T. that the holder of
a public key is genuine. You need a certificate for each
public key that you want to generate before you can
start bilateral key exchange.

CHK. checksum trailer.

CID. Central Institution Destination.

Communication Services (CS). With CS, you can use
Communications Server or Personal Communications.

Control Center. See MERVA Control Center.

control database. Contains MERVA-specific
configuration data, such as routing table information,
system configuration data, and user-specific
information, such as the user file with details of
MERVA users and their access rights to functions and
queues.

correspondent. An institution to which your
institution sends messages and from which messages
are received.

correspondents database. A database that contains the
S.W.I.F.T. address, nickname, descriptive name, and
address of each bank with which your bank
corresponds. The file is used to store the descriptive
names and addresses that are needed in the address
expansion process.

country code. A 2-character code that is part of the
BIC to identify countries.

CRC. Cyclic Redundancy Check.

CS. Communication Services.

CUG. Closed User Group.

CV. See certificate.

CV ID. Certificate Identity. A unique identifier of a
certificate that consists of the destination, expiring date,
and number of the certificate.

D
destination. For S.W.I.F.T., the first 8 characters of the
S.W.I.F.T. address that consists of the bank, country, and
location codes.

DTE. Data Terminal Equipment.

DTR. Data Terminal Ready.

domain. A set of workstations that share a MERVA
installation. The MERVA domain is a part of the
MERVA Message Reference Number (MRN).

E
emitting destination. The S.W.I.F.T. destination that is
shown on messages sent to S.W.I.F.T. You must specify
the emitting destination, for example, when you send a
message to S.W.I.F.T. to request the blacklisting of a
card reader.

F
FIN. Financial Application (S.W.I.F.T.).

four-eyes principle. A banking security concept in
which changes and the approval of changes must
always be done by two different people.

I
IAM. Interapplication Messaging.

ICC. Integrated Circuit Card.

IM-ASPDU. Interapplication Messaging Application
Support PDU. It contains an application message and
consists of a header and a body.

initiator. The correspondent that starts bilateral key
exchanges. See also responder.

Interapplication messaging (IAM). Interapplication
messaging is used as a MERVA Link message exchange
protocol.

ISC. Intersystem Communication.

ISN. Input Sequence Number.

ISO. International Organization for Standardization.

K
kernel. A secret value stored on a USER ICC for each
LT to define access rights to S.W.I.F.T. applications and
to generate session keys. Each USER ICC has eight
kernels.

kernel version. A pointer to the kernel that is
currently in use.

key check value. (1) Part of the BK ID. If you
encounter problems when you communicate with your
correspondent, check whether the key check value is
identical to your correspondent’s key value. (2) Part of
the secure transmission key (STK), to check whether you
have entered the remainder of the STK correctly.

KMA. Key Management Authority.

56 MERVA Connection/NT

L
LAK. Login Acknowledgment Message. This message
informs you that you have successfully logged on to
the S.W.I.F.T. network.

LNK. S.W.I.F.T. login negative acknowledgment
message. This message informs you that the login to
the S.W.I.F.T. network has failed.

local LU name. The logical unit name or workstation
identifier of the local machine.

logging database. Contains all MERVA audit logging
data.

logical unit. In SNA, a port through which the user
accesses the SNA network.

LSN. Login Sequence Number.

LT or LTERM. Logical Terminal. The S.W.I.F.T. II
equivalent of the TID (Terminal Identifier).

LU name. Name of the Logical Unit.

M
MAC. Message Authentication Code.

master logical terminal. The 9-character code assigned
by S.W.I.F.T. to uniquely identify each terminal attached
to the S.W.I.F.T. II network.

MERVA. Message Entry and Routing with Interfaces
to Various Applications.

MERVA Control Center. A program to:
v Start a MERVA instance.
v Stop a MERVA instance.
v Show the status of a MERVA instance.
v Maintain MERVA databases.

MERVA domain. See domain.

MERVA Link. The component to interconnect MERVA
systems.

MERVA Workstation. Message Entry and Routing
with Interfaces to Various Applications USE & Branch
for Windows NT.

message. A string of fields in a predefined form to
provide or request information. See also S.W.I.F.T.
message.

message buffer. The part of the queue buffer that
holds messages in network format.

message database. Contains all messages created by
the user or received by the MERVA system.

message field. A predefined part of a message,
identified either by a known offset from the start of a
message, or by a delimiter known as a scan pattern.

message header. The leading part of a message that
contains the sender and receiver of the message, the
message priority, and the type of message.

message integrity. A facility provided by MERVA
Link. It ensures that in case of an interruption during
message exchange duplicates of messages are not sent.
It also ensures that no messages are lost.

message integrity protocol. A facility used by MERVA
Link to assist the provision of message integrity.

message queue. A queue used to store messages on a
first-in, first-out basis.

message reference number (MRN). A unique 16-digit
identifier assigned by MERVA to each message for
identification purposes. The message reference number
consists of an 8-character domain identifier followed by
an 8-digit sequence number.

message separator. A predefined series of characters
used to separate message fields. For example, :32A is
the separator of the S.W.I.F.T. currency field. Also
known as a scan pattern.

message sequence number (MSN). MERVA Link
protocol element. Sequence number for messages
transferred by MERVA Link.

message transfer. The name of the lower sublayer
functionality of MERVA Link.

Message Transfer Process or Program (MTP).
Exchanges messages and reports with this partner. The
conversation protocol used by these programs must be
bilaterally agreed between two programs. The MERVA
Link Message Transfer Program supports a specific
remote partner MTP.

message type (MT). A number of up to 7 digits long,
that identifies a message. S.W.I.F.T. messages are
identified by a 3-digit number; for example, S.W.I.F.T.
message type MT S100.

MPDU. Message Protocol Data Unit defined in the
MERVA Link P1 protocol.

MRN. Message Reference Number.

msg ID. Message Identifier.

MSN. Message Sequence Number.

MTN. Message Transfer Node. The unique identifier
of a MERVA Link system. Exchanged as part of the
address information when establishing a connection
with a remote MERVA Link system.

MTP. Message Transfer Process or Program.

Glossary of Terms and Abbreviations 57

N
nested message. A message that is composed of one
or more message types. For example, SWIFT MT 195
could be used to request information about a S.W.I.F.T.
MT 100. The S.W.I.F.T. MT 100 (only mandatory fields)
is then nested in S.W.I.F.T. MT 195.

network identifier. A single character stored with the
message in the MERVA message database that shows
which network is to be used to send the message. For
example, S for S.W.I.F.T.

NCP. Network Control Program.

nickname. An abbreviation or synonym of the Bank
Identifier Code (BIC) of a financial institution with
which you frequently correspond.

NSDU. Network Service Data Unit. A logical unit of
data used at the network layer of the SWIFT Link
communications protocol.

O
OSI. Open System Interconnection.

OSN. Output Sequence Number.

P
PAC. Proprietary Authentication Code.

Partner Table (PT). In MERVA ESA, the Partner Table
defines message processing in MERVA Link. It consists
of a header and different entries, such as entries to
define the message-processing parameters of an ASP or
MTP.

PDE. Possible Duplicate Emission.

PDU. Protocol Data Unit.

Personal Identification Number (PIN). A 6-digit
confidential code number used to restrict the use of
ICCs to authorized card holders only.

personalize. To customize the information stored
about a card set. This includes unblocking the cards,
setting the PIN parameters, and for USER cards, setting
the LT access rights.

PIN. Personal Identification Number.

pre-agreement. An agreement between an institution
and its correspondents that governs the exchange of
bilateral keys.

protocol data unit (PDU). In MERVA Link, a PDU
consists of a structured sequence of implicit and
explicit data elements:
v Implicit data elements contain other data elements.

v Explicit data elements do not contain any other data
elements.

PSN. Public Switched Network (connection).

PSPDN. Packet Switched Public Data Network.

PSTN. Public Switched Telephone Network.

PT. MERVA Link Partner Table (for MERVA ESA).

PTF. Program Temporary Fix.

PTT. National Post and Telecommunication Authority
(post, telegraph, telephone).

PU. Physical Unit.

public key. A key with which an institution enciphers
a bilateral key received from a correspondent. See also
secret key.

purpose group. A logical grouping of queues
associated with a function. The function processes the
messages to all queues that belong to the purpose
group.

P1. In MERVA Link, a peer-to-peer protocol between
cooperating ASPs in remote systems.

P2. In MERVA Link, a peer-to-peer protocol between
cooperating MTPs in remote systems.

Q
queue. See message queue.

queue buffer. The internal representation of a MERVA
message when held in a queue.

queue management. A MERVA process that handles
the storing and retrieval of messages in the message
database.

R
repeatable sequence. A field or group of fields that
can be successively entered or displayed more than
once in a message.

responder. The correspondent that does not initiate a
bilateral key exchange. See also initiator.

routing. The passing of messages from one of the
processing stages in a predefined processing path to the
next stage.

routing condition. A logical test to determine the
target queues to which messages are sent. Routing
conditions are defined for source queues. A source
queue is the queue from which messages are taken for
further routing. You can check:
v The presence of a field within a message

58 MERVA Connection/NT

v The presence of data within a message field
v The value of the contents of a message field

RSA. Asymmetric cryptographic algorithm designed
by Rivest, Shamir, and Adleman.

S
scan pattern. A character string that is placed between
message fields to identify where a field begins. It is
also known as a tag.

SCR. Secure Card Reader.

SDLC. Synchronous Data Link Control.

secret key. The part of an RSA key to encipher
bilateral keys. It remains stored inside the SCR. See also
public key.

secure login and select (SLS) service. ICC-based
alternative to paper LOGIN/SELECT tables.

secure transmission key (STK). Generated by the SCR
to protect the transfer of bilateral keys over the link
between the SCR and the workstation. The STK is also
used in the workstation to store the bilateral keys
securely.

security management center (SMC). The S.W.I.F.T.
facility responsible for security administration and the
issue of ICCs to users. The SMC also acts as the
certification authority for Public RSA keys.

session key (SK). A number required for each LOGIN
and SELECT request.

SK. Session Key.

SK number. A parameter stored on an ICC. It
specifies the number of session keys that can be
generated with a USER card before the user must enter
the PIN again.

SLS. Secure Login and Select.

SMC. Security Management Center.

SNA. Systems Network Architecture.

source queue. In a routing condition, the queue from
which messages are routed to the next defined message
queue.

SSN. Select Sequence Number.

STK. Secure Transmission Key.

subfield. A subdivision of a field with a specific
meaning. For example, S.W.I.F.T. field 32 has the
subfields date, currency, and amount. A field can have
several subfield layouts depending on how the field is
used in a particular message.

S.W.I.F.T. Society for Worldwide Interbank Financial
Telecommunication, s.c. (S.W.I.F.T.).

S.W.I.F.T. II. Refers to the S.W.I.F.T. II network of the
Society for Worldwide Interbank Financial
Telecommunication, s.c. (S.W.I.F.T.).

S.W.I.F.T. address. A code used to identify a bank
within the S.W.I.F.T. network. The code is also called a
bank identifier code (BIC) or a terminal identifier. It is
assigned by S.W.I.F.T.

S.W.I.F.T. correspondents database. The database that
contains the S.W.I.F.T. address or BIC, together with the
name, postal address, and zip code of each financial
institution in the BIC directory.

S.W.I.F.T. destination address. The first 8 characters of
the S.W.I.F.T. address that consist of the bank, country,
and location codes.

S.W.I.F.T. financial message. A message in the
S.W.I.F.T. categories 1 to 9 that you can send or receive
via the S.W.I.F.T. network. See S.W.I.F.T. input message
and S.W.I.F.T. output message.

S.W.I.F.T. header. The leading part of a message that
contains the sender and receiver of the message, the
message priority, and the type of message.

S.W.I.F.T. input message. A S.W.I.F.T. message
prepared by a user to be sent to the S.W.I.F.T. network.

SWIFT Link. The MERVA component that provides
you with a link to the S.W.I.F.T. II network, enabling
you to send messages to and receive messages from the
S.W.I.F.T. network.

S.W.I.F.T. message. A message in one of the S.W.I.F.T.
categories as defined in the S.W.I.F.T. User Handbook
that can be sent or received via the S.W.I.F.T. network.
See also S.W.I.F.T. input message and S.W.I.F.T. output
message.

S.W.I.F.T. output message. A S.W.I.F.T. message from
the S.W.I.F.T. network.

S.W.I.F.T. system message. A message in S.W.I.F.T.
category 0.

systems network architecture (SNA). The description
of the logical structures, formats, protocols, and
operating sequences for transmitting information units
through networks. It also controls the configuration and
operation of networks.

T
tag. A field identifier, consisting of a 2- or 3-digit
number, or a 2-digit number followed by a letter.

target queue. In a routing condition, the message
queue to which messages are next routed.

Glossary of Terms and Abbreviations 59

TCT. Terminal Control Table.

technology flag. A parameter that is controlled by the
USOF. It tells S.W.I.F.T. which access technology, ICCs,
or paper tables are used by the LTs of a particular
destination.

TNG. Training trailer.

TPDU. Transport Protocol Data Unit. A logical unit of
data used at the Transport layer of the SWIFT Link
communications protocol.

TRN. Transaction Reference Number.

U
UKMO. User Key Management Officer.

uni-directional key. A type of bilateral key for which
different separate keys are used to authenticate
messages sent to and received from a correspondent.

USE. User Security Enhancements.

USER. SWIFT Link operator; the holder of a USER
ICC.

user file. The user file has a record for each MERVA
user, containing the user’s details. The record specifies
the functions that a user is allowed to access. The user
file can be accessed only by authorized users.

user key management officer (UKMO). The
administrator who is the holder of a UKMO ICC. The
UKMO is responsible to manage the exchange and use
of bilateral keys and other BKE-related functions.

user security officer (USOF). The administrator who
is the holder of a USOF ICC. The USOF is responsible
to control and manage ICCs, card readers, and their
related data.

USOF. User Security Officer.

W
whitelist flag. A mechanism to prevent the use of
cards that are suspected of being lost, stolen, or
otherwise compromised. If a card is lost, the USOF
increments the whitelist flag on the remaining cards,
thus rendering the whitelist flag on the lost card
incorrect.

X
X.25. ISO standard for interface to packet switched
communications services.

60 MERVA Connection/NT

Bibliography

IBM Publications
With exception of the General Information and
the Licensed Program Specifications, all MERVA
books are available as softcopy on the
v MERVA Documentation CD, SK2T-9752

MERVA ESA Components Books
v MERVA ESA Components Licensed Program

Specifications, GH12-6333
v MERVA USE & Branch for Windows NT User’s

Guide, SH12-6334
v MERVA USE & Branch for Windows NT

Installation and Customization Guide, SH12-6335
v MERVA USE & Branch for Windows NT

Application Programming Guide, SH12-6336
v MERVA USE & Branch for Windows NT

Diagnosis Guide, SH12-6337
v MERVA USE & Branch for Windows NT

Migration Guide, SH12-6393
v MERVA USE Administration Guide, SH12-6338
v MERVA Connection/NT, SH12-6339
v MERVA Connection/400, SH12-6340
v MERVA Message Processing Client for Windows

NT User’s Guide, SH12-6341
v MERVA Automatic Message Import/Export Facility

User’s Guide, SH12-6389
v MERVA Workstation Based Functions, SH12-6383
v MERVA ESA V4 Traffic Reconciliation Guide,

SH12-6392
v MERVA ESA V4 Directory Services, SH12-6367

MERVA ESA Books
v MERVA ESA V4 Licensed Program Specifications,

GH12-6373
v MERVA ESA V4 Application Programming

Interface Guide, SH12-6374
v MERVA ESA V4 Operations Guide, SH12-6375
v MERVA ESA V4 User’s Guide, SH12-6376
v MERVA ESA V4 Macro Reference, SH12-6377
v MERVA ESA V4 Installation Guide, SH12-6378
v MERVA ESA V4 Messages and Codes, SH12-6379
v MERVA ESA V4 Customization Guide, SH12-6380

v MERVA ESA V4 Concepts and Components,
SH12-6381

v MERVA ESA V4 Diagnosis Guide, SH12-6382
v MERVA ESA V4 Advanced MERVA Link,

SH12-6390
v MERVA ESA V4 System Programming Guide,

SH12-6366

Further IBM Publications
v DB2 Administration Guide, S10J-8157
v DB2 Building Applications for Windows and OS/2

Environment, S10J-8160
v DB2 API Reference, S10J-8167
v DB2 Troubleshooting Guide, S10J-8169
v eNetwork Personal Communications Version 4.2 for

Windows 95 and Windows NT Quick Beginnings,
GC31-8476

v eNetwork Personal Communications Version 4.2 for
Windows 95 and Windows NT Reference,
GC31-8477

v CID Enablement Guidelines, S10H-9666
v CICS-RACF Security Guide, SC33-1185
v ITSC Redbook APPC Security: MVS/ESA,

CICS/ESA, and OS/2, GG24-3960
v IMS/ESA Version 4 Data Communication

Administration Guide, SC26-3060

S.W.I.F.T. Publications
The following books are published by the Society
for Worldwide Interbank Financial
Telecommunication, s.c., in La Hulpe, Belgium:
v S.W.I.F.T. User Handbook

v S.W.I.F.T. Dictionary

v S.W.I.F.T. Directory

v S.W.I.F.T. FIN Security Guide

v S.W.I.F.T. Card Readers User Guide

v S.W.I.F.T. Security Features Technical

© Copyright IBM Corp. 1997, 2001 61

62 MERVA Connection/NT

Index

A
API (application programming

interface) 15
API function (C)

ENMClearSem 27
ENMCloseSem 25
ENMCreateSem 28
ENMEndRAPI 20
ENMGetReason 30
ENMOpenSem 29
ENMRestartRAPI 19
ENMSetProfile 17
ENMSetSecurity 21
ENMSetSem 26
ENMSetTestEnv 22
ENMStartRAPI 18
ENMWaitSemList 23

API program
building 32
compiling sample program 32

application profile
fix format 5
parameters 7
variable format 6

application programming interface
(API) 15

authentication 37

B
building API program 32

C
client network services, customizing 12
client_user_id 8
client_user_password 8
communication type of Remote MERVA

API Client 9
Communications Server

customizing for Remote MERVA API
Client 4

customizing for Remote MERVA API
Server 11

compiling API sample program
on MERVA Connection/NT 32

connection to MERVA
disconnecting 20
reconnecting remote program 19
starting 18

conponents of MERVA
Connection/NT 1

control_file 7

D
diagnosis information

diagnosis log 45

diagnosis information (continued)
log files on the Remote MERVA API

Client 45
log files on the Remote MERVA API

Server 46
log message layout 45
programmer’s log 45

diagnosis log 46
Remote MERVA API Client 45

diagnosis_log 7
disconnecting from MERVA (C) 20
Display Diagnosis Log function 46

E
encryption 37
ENM4ExitDecrypt 40
ENM4ExitEncrypt 39
ENM4ExitMacVerify (C) 42
ENMClearSem 27
ENMCloseSem 25
ENMCreateSem 28
ENMEndRAPI 20
ENMGetReason 30
ENMOpenSem 29
ENMRestartRAPI 19
ENMSetProfile 17
ENMSetSecurity 21
ENMSetSem 26
ENMSetTestEnv 22
ENMStartRAPI 18
ENMWaitSemList 23
error handling, getting the reason

code 30

F
failed call, recovering 34
fix format application profile 5
functions of MERVA Connection/NT 1

G
general introduction 1

I
installation, verifying 13
installing Remote MERVA API Client

installation steps 3
machine requirement 3
program requirement 3

installing Remote MERVA API Server
machine requirements 11
program requirement 11

introduction of MERVA
Connection/NT 1

L
log file

on the Remote MERVA API
Server 46

log_level 7
log_mode 7

M
MAC

user exit 41
verify user exit 42

machine requirement
Remote MERVA API Client 3

machine requirements
Remote MERVA API Server 11

MERVA Connection/NT
components 1
functions 1
installing the client 3
objectives 1

MERVA Connection/NT Client
customizing a client application 5

MERVA Inetd service, customizing 13
Message Authentication Code 41

N
Notices 53

O
objectives of MERVA Connection/NT 1

P
partner_host 8
partner_host_name 8
partner_tp_name 8
port_number 8
profile, selecting 17
program requirement

Remote MERVA API Client 3
Remote MERVA API Server 11

programmer_log 7
programmer’s log

log file contents 45
on the Remote MERVA API

Server 46
Remote MERVA API Client 45

R
rapi_port_number 8
reason code, how to get 30
reconnecting remote program

(ENMRestartRAPI) 19

© Copyright IBM Corp. 1997, 2001 63

Remote MERVA API
C language data types 15
calls 16
conversation with MERVA 16
structure 15

Remote MERVA API Client
application profile 5, 6
application profile parameters 7
communication type, selecting 9
customizing Communications

Server 4
customizing TCP/IP services 5
installation steps 3
machine requirement 3
program requirement 3

Remote MERVA API Server
customizing Communications

Server 11
customizing TCP/IP services 12
program requirement 11

Remote MERVA Application Program
Interface, client side 15

resynchronization
implementing 33
overview 33
using 34

S
sample SNA definition 47
security

overview 37
replacing security user exit 42

security information, setting 21
security user exit

on the MERVA Server System 43
on the Remote MERVA API Client 43
replacing 42
sample 43

semaphore
clearing 27
closing 25
creating 28
opening 29
setting 26
waiting for a list of semaphores 23

setting a semaphore 26
setting conversation security

information 21
setting test environment 22
SNA customization

Remote MERVA API Client 4
Remote MERVA API Server 12

SNA definitions
customizing APPC peer-to-peer

connection 50
customizing APPN end node 47
sample 47

SNA definitions for MERVA
Connection/NT

peer-to-peer configuration tables
(Windows NT) 50

symbolic_destination 8
system_type 7

T
TCP/IP customization for Remote

MERVA API Client 5
TCP/IP services

customizing for Remote MERVA API
Client 5

customizing for Remote MERVA API
Server 12

tcp_nodelay 8
test_environment 9
test environment, setting 22
trace file for TCP/IP, customizing 13

U
user exit

encrypting data 37
ENM4ExitDecrypt (C) 40
ENM4ExitEncrypt (C) 39
ENM4ExitMacGen 41
ENM4ExitMacVerify 42
exit point 37
generating authentication key 37
in C language 38
interface 37
MAC generation 41
MAC verification 42
replacing security user exit 42

V
variable format application profile 6
verifying installation 13

64 MERVA Connection/NT

Readers’ Comments — We’d Like to Hear from You

MERVA ESA Components
MERVA Connection/NT
Version 4 Release 1

Publication No. SH12-6339-02

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SH12-6339-02

SH12-6339-02

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH
Information Development & User Centered Design
Dept. 0446
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5648-B30

SH12-6339-02

	Contents
	About This Book
	Who Should Read This Book
	How This Book is Organized
	Conventions and Terminology Used in This Book

	Chapter 1. General Introduction to MERVA Connection/NT
	Objectives
	Functions
	Components

	Chapter 2. Installing and Customizing the Remote MERVA APIClient
	Installing the Remote MERVA API Client
	Machine Requirements
	Program Requirements
	Installing MERVA Connection/NT

	Customizing the Communications Server
	Basic SNA Customization
	SNA Customization for MERVA Connection/NT

	Customizing TCP/IP Services
	Basic TCP/IP Customization
	TCP/IP Customization for MERVA Connection/NT

	Customizing MERVA Connection/NT
	Fix Format Application Profile
	Variable Format Application Profile
	Parameters of the Variable Format Application Profile

	Selecting the Communication Type

	Chapter 3. Customizing the Remote MERVA API Server
	Machine Requirements
	Program Requirements
	Customizing the Communications Server
	Basic SNA Customization
	SNA Customization for the Remote MERVA API Server
	Customizing the Trace File for SNA

	Customizing TCP/IP Services
	Customizing Client Network Services
	Customizing the MERVA Inetd Service
	Customizing the Trace File for TCP/IP

	Verifying the Installation

	Chapter 4. The Remote MERVA Application Program Interface
	The Structure of the Remote MERVA API on the Client Side
	C Language Data Types
	API Calls of MERVA Connection/NT
	Starting and Ending the Conversation
	ENMSetProfile - Select a Profile
	ENMStartRAPI - Establish Connection to MERVA
	ENMRestartRAPI - Reconnect to MERVA
	ENMEndRAPI - Disconnect from MERVA
	ENMSetSecurity - Set Conversation Security Information
	ENMSetTestEnv - Set Test Environment

	Calls to Trigger the API Program
	ENMWaitSemList - Wait for a List of Semaphores
	ENMCloseSem - Close a Semaphore
	ENMSetSem - Set a Semaphore
	ENMClearSem - Clear a Semaphore
	ENMCreateSem - Create a Semaphore
	ENMOpenSem - Open a Semaphore

	Handling Errors
	ENMGetReason - Get Reason Code for Internal Error

	Building API Programs
	Compiling Your Own API Program
	Compiling the Sample Programs
	Resynchronization
	How to Implement Resynchronization
	Using the Resynchronization Mechanism
	Recovering after a Failed Call
	Using Other Methods

	Chapter 5. Security
	Encryption of Transferred Data
	Authentication of Transferred Data
	User Exit Interfaces
	User Exit Points
	User Exit Interfaces in C Language
	User Exit for Encryption
	User Exit for Decryption
	User Exit for Message Authentication Code (MAC) Generation
	User Exit for MAC Verification

	Replacing Security User Exits
	Generating Security User Exits on the Remote MERVA APIClient
	Generating Security User Exits on the MERVA Server System

	Appendix A. Diagnosis Information
	Log Files on the Remote MERVA API Client
	Diagnosis Log
	Programmer's Log

	Log Files on the Remote MERVA API Server System

	Appendix B. Sample SNA Definitions for MERVAConnection/NT
	Customizing an APPN End Node
	Customizing an APPC Peer-to-Peer Connection

	Appendix C. Notices
	Trademarks

	Glossary of Terms and Abbreviations
	Bibliography
	IBM Publications
	MERVA ESA Components Books
	MERVA ESA Books

	Further IBM Publications
	S.W.I.F.T. Publications

	Index
	Readers’ Comments — We'd Like to Hear from You

