
MERVA ESA Components

MERVA Connection/400
Version 4 Release 1

SH12-6340-01

���

MERVA ESA Components

MERVA Connection/400
Version 4 Release 1

SH12-6340-01

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Appendix E.
Notices” on page 95.

Second Edition, December 1999

This edition applies to

Version 4 Release 1 of IBM MERVA ESA Components (5648-B30)

and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1997, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book v
Who Should Read This Book v
How This Book is Organized v
Conventions and Terminology Used in This Book . . v

Chapter 1. General Introduction to
MERVA Connection/400 1
Objectives 1
Functions 1
Components 2

Chapter 2. Installing and Customizing
the Remote MERVA API Client 3
Installing the Remote MERVA API Client 3

Machine Requirements 3
Program Requirements 3

Installing MERVA Connection/400 3
Customizing MERVA Connection/400 4

Changing Profile Settings 4
Required Libraries 5
Network Definitions 5

Chapter 3. Customizing the Remote
MERVA API Server 7
Program Requirements 7
Customizing the Communications Server 7
Basic SNA Customization 7
SNA Customization for the Remote MERVA API
Server 7
Customizing the Trace File for SNA 8
Verifying the Installation 8

Chapter 4. The Application Programming
Interface 9
Structure of the MERVA API Program on the Client
Side 9
C Language Data Types 9
Additional Functions 10
Starting and Ending the Conversation 10

ENMSetProfile - Select a Profile. 11
ENMStartRAPI - Establish Connection to MERVA 12
ENMRestartRAPI - Reconnect Remote API
Program to MERVA 13
ENMEndRAPI - Disconnect from MERVA . . . 14

Handling Errors 15
ENMGetReason 16

Building API Programs 18
Building ILE C/400 Language Programs. . . . 18
RPG/ILE Language Program 19

Resynchronization 19

Chapter 5. API for RPG/ILE 23
Establishing a Session to MERVA 23

STRTAPPC 24
RSTRTAPC 25
ENDAPPC. 26
SETPROF 27

Connecting to MERVA. 28
ATTACH 29
CLEAR 30
CREATE 31
DETACH 32

Adding, Changing, and Deleting Messages in
MERVA Queues 33

ADDMSG 34
DELETMSG 35
PUTMSG 36
ROUTEADD 37
ROUTEPUT 38

Reading, Getting, and Releasing Messages in
MERVA Queues 39

FIRSTMSG 40
FREEMSG 42
KEYNEXT 43
KEYREAD. 44
LASTMSG 46
NEXTMSG 48
PREVMSG. 50

Handling the Internal Message Buffer of MERVA
Connection/400 52

PUTBUFF 53
GETREST 55

Handling Single Message Fields 57
READFLD 58
WRITFLD 60

Miscellaneous Calls. 61
QUERYQU 62
TRACE 63
WHEREIS 64
WRTTRACE 65

Functions Triggered by MERVA Alarms 66
CLRSEM 67
CLSSEM 68
CRTSEM 69
OPNSEM 70
SETSEM 71
WTSEMLST 72

Error Handling 74
REASON 75

Chapter 6. Security 77
Encryption of Transferred Information 77
Authentication of Transferred Information 77
User Exit Interfaces 77

User Exit Points 77
User Exit Interfaces in C/ILE Language 78

User Exit for Encryption 80
User Exit for Decryption 81

© Copyright IBM Corp. 1997, 1999 iii

User Exit for Message Authentication Code
(MAC) Generation 82
User Exit for MAC Verification 83

Replacing Security User Exits 84
Generating and Activating Security User Exits on
the AS/400 84
Generating and Activating Security User Exits on
the MERVA Server System 84

Appendix A. Diagnosis Information . . 85
Log Files on the Remote MERVA API Client
(AS/400) 85

Diagnosis Log 85
Programmer’s Log 85
Log Message Layout 85

Log Files on the Remote MERVA API Server System 86

Appendix B. Sample Network
Definitions for the AS/400 87
Communication Side Information (MERVA) . . . 87
Device Definition (MERVA) 87
Controller Definition (MERVA) 87
Mode Description for QPCSUPP 88

Appendix C. Sample Network
Definitions for Windows NT. 89

Customizing an APPN End Node 89

Appendix D. Sample Security User
Exits. 93
Module ENM4SNIL - Empty Functions 93
Module ENM4SSEC - Sample Functions 93
Module ENM4SRPG - Calling Programs With One
Entry Point 93
User Exits as Single Programs on the AS/400 . . . 93

Appendix E. Notices 95
Trademarks 96

Glossary of Terms and Abbreviations 99

Bibliography. 105
IBM Publications 105

MERVA ESA Components Books 105
MERVA ESA Books 105

Further IBM Publications 105
S.W.I.F.T. Publications 105

Index 107

iv MERVA Connection/400

About This Book

Read this book to find out how to work with MERVA Connection/400. You learn
how to install and customize MERVA Connection/400, and how to write programs
with the Remote MERVA Application Program Interface.

Who Should Read This Book
This book is intended for application programmers and system administrators who
want to access the Message Entry and Routing with Interfaces to Various
Applications USE & Branch for Windows NT (MERVA USE & Branch for Windows
NT) from an application program that runs under AS/400 (R).

This book also helps you install and customize MERVA Connection/400.

It is assumed that you have prior knowledge of and experience with:
v AS/400
v Operating System/400 (R) (OS/400) (R)
v Windows NT
v Systems Network Architecture (SNA)
v Application Programming Interface (API) of MERVA

How This Book is Organized
The first chapter of this book provides general information about MERVA
Connection/400 by giving an overview of the product. Chapter 2 describes how to
install MERVA Connection/400. Chapter 3 tells you how to define and customize
the network. Chapter 4 tells you how to work with the API and how to build API
programs. It also helps you understand resynchronization. Chapter 5 shows you
the API for RPG/ILE. Chapter 6 covers aspects of security, such as encryption,
authentication, and user exits. The appendixes contain diagnosis information and
several samples.

Conventions and Terminology Used in This Book
In this book, the following naming conventions apply:
v MERVA is used when the description applies to MERVA USE & Branch for

Windows NT.

© Copyright IBM Corp. 1997, 1999 v

vi MERVA Connection/400

Chapter 1. General Introduction to MERVA Connection/400

This chapter introduces MERVA Connection/400 and briefly describes the facilities
supported by MERVA Connection/400.

Objectives
There is a wide range of banking applications available for the AS/400 platform.
While many of these applications create and process S.W.I.F.T. messages, they do
not provide a connection to public networks.

With SWIFT Link, MERVA provides connections to the S.W.I.F.T. network. With
MERVA Link, MERVA provides connections to other MERVA systems. MERVA also
provides an application program interface (API) to access specific MERVA services.

To use AS/400 applications as banking applications, you must transfer messages
that are created on the AS/400 to MERVA. Messages that you receive from one of
these networks must be transferred from MERVA to the AS/400.

You can achieve this by saving messages to files and transferring the files. At the
same time, however, this solution requires operator intervention and can cause
message integrity problems. To avoid these problems, you can implement a direct
connection from the application on the AS/400 to MERVA. The MERVA system
then works as if it were a component of the application.

MERVA Connection/400 is your direct connection. It is, however, not a
ready-to-use S.W.I.F.T. interface on the AS/400. It does not have a user interface.

MERVA Connection/400 provides you with an interface for application programs
on your operating system. It is called the Remote MERVA API. By using the
Remote MERVA API, you can create an application on the AS/400 to send
messages to MERVA and receive messages from MERVA with a minimum of effort.

Functions
MERVA Connection/400 has the same functions as the MERVA API on the MERVA
system. Additionally, it offers you the following functions:
v Calls that help you establish an intersystem connection.
v A real-time interface that allows you to connect to MERVA.
v A C/ILE-Language interface that guarantees easy portability of MERVA API

programs between Windows NT and AS/400.
v An interface for RPG/ILE and other ILE languages.
v Code conversion from EBCDIC to ASCII, and from ASCII to EBCDIC formats.
v A flexible user exit interface with which you can handle security aspects.
v A resynchronization mechanism ensures that the Remote MERVA API program

on the AS/400 provides the same level of message integrity as a local API
program.

© Copyright IBM Corp. 1997, 1999 1

Components
The following figure shows you the components and programming concepts of
MERVA Connection/400:

MERVA Connection/400 has the following components:
v The Remote MERVA API Client is installed and runs in the Client Application

System. The Client Application System is the AS/400. MERVA is not installed in
the Client Application System.

v The Remote MERVA API Server is installed and runs in the MERVA Server
System. The MERVA Server System is a Windows NT system. The Remote
MERVA API Server is part of the MERVA system that is installed in the MERVA
Server System.

The Remote MERVA API Client has an interface with which you can call a
financial application on the AS/400. It sends the API call with the input
parameters to the Remote MERVA API Server on the MERVA Server System. The
Remote MERVA API Server calls the MERVA API function and passes the received
parameters. The output data and the return code of the API function are returned
to the Remote MERVA API Client. The Remote MERVA API Client returns control
to the calling program as if the API function runs locally.

Figure 1. Concept of MERVA Connection/400

2 MERVA Connection/400

Chapter 2. Installing and Customizing the Remote MERVA API
Client

This chapter describes how to install and customize the Remote MERVA API Client
of MERVA Connection/400 in your operating system.

Installing the Remote MERVA API Client
The following sections describe how to install the Remote MERVA API Client of
MERVA Connection/400.

Machine Requirements
The following requirements are necessary to install the Remote MERVA API Client:
v You can install the Remote MERVA API Client on any OS/400 system.
v You must connect the Client Application System of MERVA Connection/400 to

the MERVA Server System with a Data Communication Link. The Data
Communication Service (SNA APPC) defines the type of intersystem link that
you can use, such as token ring, SDLC, or Twinax.

Program Requirements
The following section shows the program requirements for MERVA
Connection/400:
v OS/400 Version 3.1, including the latest available Corrective Service Diskette

(CSD) level, or a subsequent release.
v A compiler for one of the following languages:

– IBM C/ILE
– IBM RPG/ILE
– IBM COBOL/ILE

Installing MERVA Connection/400
The MERVA Connection/400 installation tape contains the objects ENMRAPI.SAVF
and ENMRSMP.SAVF. The files contain the following libraries:

ENMRAPI A library saved with the command SAVLIB that contains the
programs of MERVA Connection/400 and the compiled sample
user exits.

ENMRSMP A library saved with the command SAVLIB that contains the
compiled sample programs and the following files:

APILOG Diagnosis and programmer’s logging members

DATA Message members used by C/ILE sample
programs

INI Sample profiles (for details refer to “Customizing
MERVA Connection/400” on page 4)

MIP Message integrity control file members

QRPGLESRC Source of sample API programs in RPG/ILE
language

© Copyright IBM Corp. 1997, 1999 3

QSECSRC Source of sample security user exits in C/ILE
language

RSAMPLE1 Messages used by RPG sample program

MERVA Sample Communication Side Information for
MERVA (for details refer to “Customizing MERVA
Connection/400”)

To restore the libraries ENMRAPI and ENMRSMP from the save files, enter the
command RSTLIB in the command line.

Customizing MERVA Connection/400
To customize MERVA Connection/400 in the Client Application System, you have
to change the information in the MERVA Connection/400 profile and libraries. You
must do this in the search list of the job that runs the API program.

Changing Profile Settings
The profile of MERVA Connection/400 contains information about logging,
network partner, and internal customization parameters. You can have several
profiles. To define the profile that is to be used by the calling program, use the API
call ENMSetProfile. For a description of this call refer to “Structure of the MERVA
API Program on the Client Side” on page 9.

Each profile is a member of a source physical file.

The following table shows you the format of a MERVA Connection/400 profile.
The sample profiles are ENMRSMP/INI(API).

Table 1. MERVA Connection/400 Profile

Line Information Sample

1 Logging level (1..4) 1

2 Name of programmer’s log ENMRSMP/APILOG(PLOG)

3 Name of diagnosis log ENMRSMP/APILOG(DIAG)

4 Name of CSI¹ object MERVA

5 Name of message integrity² control file ENMRSMP/MIP

6 System type (AS400) AS400

Note:

¹ Communication Side Information - object in CPI Communications containing
initialization parameters. These are, for example:

v The name of the partner program (such as the Remote MERVA API Server) with which a
program can establish a conversation.

v The name of the logical unit (LU) at the partner program’s node that CPI
Communications needs to establish a conversation.

The system-recognized identifier on the AS/400 for the object type is *CSI.

² The message integrity control file is used by the internal integrity processing of MERVA
Connection/400, described in Figure 4 on page 20.

4 MERVA Connection/400

Note: Concurrently running jobs must refer to different profiles, even if they call
the same API program. You must specify different logging files in each
profile (lines 2 and 3 of the profile) and different message integrity control
file names (line 5 of the profile).

Required Libraries
The following libraries must be in the search list of the job that runs the API
program:

QSYS2 CPI-C programs used by MERVA Connection/400

ENMRAPI MERVA Connection/400 programs

ENMRSMP MERVA CSI object.

Network Definitions
The connection between the AS/400 and the Windows NT system must be an LU
6.2 session.

To use the CPI Communications interface, you must define communications side
information (CSI). For samples of CSI, mode, device, and controller definitions
refer to “Appendix B. Sample Network Definitions for the AS/400” on page 87. The
library ENMRSMP that is supplied with MERVA Connection/400 contains a
sample for CSI objects.

For the APPC connection, you must define controller, device, and mode
description. For samples refer to “Appendix B. Sample Network Definitions for the
AS/400” on page 87.

You can also define only the LU 6.2 session on the Windows NT system and
establish the session to the AS/400 from this session. For example, you can define
a 5250 emulation and start it. The QLUS system job of the AS/400 creates the
necessary descriptions automatically if the parameter AUTOCRTCTL is set to YES
in the line description.

Chapter 2. Installing and Customizing the Remote MERVA API Client 5

6 MERVA Connection/400

Chapter 3. Customizing the Remote MERVA API Server

The Remote MERVA API Server is automatically installed when you install MERVA
USE & Branch for Windows NT. You must, however, configure the Remote MERVA
API Server program.

To use the Remote MERVA API Server, the following requirements are necessary:

Program Requirements
The following program requirements are necessary:
v Microsoft Windows NT (refer to the MERVA USE & Branch for Windows NT

Installation and Customization Guide)
v IBM eNetwork Personal Communications for Windows NT Version 4.2 or IBM

eNetwork Communications Server for Windows NT Version 6.0, or subsequent
releases

Customizing the Communications Server
MERVA Connection/400 can use SNA APPC services for the communication
between the Remote MERVA API Client and Server.

You must install and customize Personal Communications for Windows NT in the
server system to bind APPC sessions between the two partner systems.

Basic SNA Customization
You can connect any MERVA Connection/400 system to MERVA USE & Branch for
Windows NT.

For a description of the respective customization, refer to the corresponding
documentation about Communications Server for Windows NT listed in
“Bibliography” on page 105.

For a sample of the SNA customization that is independent of MERVA
Connection/400, refer to “Appendix C. Sample Network Definitions for Windows
NT” on page 89.

SNA Customization for the Remote MERVA API Server
You must add an LU 6.2 TP name profile to the SNA customization. This profile
defines the parameters of an inbound APPC transaction program. The parameters
are:
v TP name (ENMRAS)
v Full path name of the executable (enmcrtpi.exe)
v Command line parameters (tp_name instance_name [TS=trace_level

TP=trace_path])
v TP access security

If you use Conversation security, you must add an appropriate entry for the user
ID and the password.

© Copyright IBM Corp. 1997, 1999 7

Customizing the Trace File for SNA
You must set the trace switch (TS) and the path of the trace file (TP) with the
command line parameters provided by the transaction program, for example:
TS=3 TP=C:\MERVA\TRACE

If the trace switch is set to 0, a trace file is not created. The path name shown is
the path of the directory to which all trace files are written. Replace
C:\MERVA\TRACE with an appropriate path name. The name of the trace file is
TPI<timestamp>.LOG, for example, TPI104530.LOG.

Verifying the Installation
To verify that the installation and customization of MERVA Connection/400 is
correct, run the sample program SAMPLE4. Before you can run the sample
program, the user ID SAMPLE with the password SAMPLE1 has to be defined in
MERVA. The user ID has to be approved for application programs. The program
checks that the queues API_IN and API_OUT are customized.

For a detailed description of the prerequisites for SAMPLE1, SAMPLE2,
SAMPLE2S, and SAMPLE3, refer to the MERVA USE & Branch for Windows NT
Application Programming Guide.

8 MERVA Connection/400

Chapter 4. The Application Programming Interface

The following description of the API is based on the description in the MERVA
USE & Branch for Windows NT Application Programming Guide.

Structure of the MERVA API Program on the Client Side
The MERVA API program on the AS/400 must call functions that connect and
disconnect to and from the MERVA system. The following figure shows the
structure of the Remote MERVA API:

�1� Before you can call the API functions, you must start the Remote MERVA
API Client on the AS/400 by calling the function ENMSetProfile. This
function tells the Remote MERVA API Client the name of the profile. For a
description of the profile refer to “Changing Profile Settings” on page 4.

�2� After the profile name is set, you can connect to the Remote MERVA API
Server on MERVA. To do this, call the function ENMStartRAPI. After this
function is called, the Remote MERVA API Client is started, and the
network connection to the Remote MERVA API Server is established.

With the call ENMStartRAPI, you can call the API functions as if the
program runs locally on MERVA.

�3� Before you stop the program, you must release the connection to the
Remote MERVA API Server by calling the function ENMEndRAPI. You
must call this function even if an error occurs in the API program.
Otherwise, the Remote MERVA API Server does not know that you stop
the program. The Remote MERVA API Server does then not receive the
next connection request after the API program is restarted.

C Language Data Types
The file enm4rapi.h contains the data types and prototypes of the MERVA API
functions. When you compile a MERVA API program locally on Windows NT, the
file enmcapi.h is automatically included. When you compile a MERVA
Connection/400 API program on the AS/400, you must include the file enm4rapi.h
instead of enmcapi.h.

The meaning of the data types that are used to describe the API calls of this book
are shown in the following table:

�1� ENMSetProfile(profile name)
�2� ENMStartRAPI(application name)

|
| API program logic with MERVA API calls
|

�3� ENMEndRAPI()

Figure 2. Remote MERVA API Program Structure

© Copyright IBM Corp. 1997, 1999 9

Type Definition

USHORT unsigned short

UCHAR unsigned char

PUCHAR unsigned char*

PUSHORT unsigned short*

ULONG unsigned long

PULONG unsigned long*

Additional Functions
MERVA Connection/400 provides more API calls than the MERVA API.

The calls contain the following categories:
v Functions to start and end the conversation
v Functions for error handling

Starting and Ending the Conversation
To start and end the conversation between the Remote MERVA API Client and the
Remote MERVA API Server with the API program, use the following functions:

ENMSetProfile Select a Profile

ENMStartRAPI Establish connection to MERVA

ENMRestartRAPI Reconnect Remote API program to MERVA

ENMEndRAPI Disconnect from MERVA

Each function is described in detail in the following sections.

10 MERVA Connection/400

ENMSetProfile - Select a Profile
Specifies the name of the profile that you want to use. For details refer to
“Changing Profile Settings” on page 4.

C Definition

void ENMSetProfile (PUCHAR pucProfileName);

Parameter Description
The following parameters are required:
v pucProfileName(PUCHAR)

Pointer to a null-terminated string up to 80 characters.

Note: If several API programs run concurrently, you must use a different name
for each program. For example, you can use the transaction code as a
unique name.

Remarks
For a description of the format and contents of the profile, refer to “Changing
Profile Settings” on page 4.

C Language Example

#include "enm4rapi.h"

ENMSetProfile ("ENMRSMP/INI(API)");

Chapter 4. The Application Programming Interface 11

ENMStartRAPI - Establish Connection to MERVA

C Definition

USHORT ENMStartRAPI (PUCHAR pucApplicationName);

Parameter Description
The following parameters are required:
v retCode(USHORT) - output

Code Meaning

0 The function completed correctly.

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason. For details refer to
“Handling Errors” on page 15. The reason code is also written to the
diagnosis log of the AS/400. For details refer to “Appendix A. Diagnosis
Information” on page 85. If it is an internal error of the MERVA API, the
reason code is 0.

v pucApplicationName(PUCHAR) - input
A pointer to a null-terminated string of up to 8 characters. The name is
registered by the Remote MERVA API Server.

Note: If several API programs run concurrently, you must use a different name
for each program. For example, you can use the transaction code as a
unique name.

Remarks
This call establishes the APPC conversation with MERVA (Remote MERVA API
Server) and initializes internal buffers and variables. After this function is called,
the program must call ENMEndRAPI before it ends.

C Language Example

#include "enm4rapi.h"

USHORT rc = 0;

if ((rc = ENMStartRAPI ("APPLID")) == 0)
puts("APPC Conversation is up\n");

else
puts("Error in ENMStartRAPI");

12 MERVA Connection/400

ENMRestartRAPI - Reconnect Remote API Program to MERVA

C Definition

USHORT ENMRestartRAPI (PUCHAR pucApplicationName);

Parameter Description
The following parameters are required:
v retCode(USHORT) - output

Code Meaning

0 The function completed correctly.

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason. For details refer to
“Handling Errors” on page 15. The reason code is also written to the
diagnosis log of the AS/400. For details refer to “Appendix A. Diagnosis
Information” on page 85. If it is an internal error of the MERVA API, the
reason code is 0.

v pucApplicationName(PUCHAR) - input
A pointer to a null-terminated string of up to 8 characters. This name is
registered by the Remote MERVA API Server.

Note: If several API programs run concurrently, you must use a different name
for each program. For example, you can use the transaction code as a
unique name.

Remarks
If the connection is established with this call instead of ENMStartRAPI,
resynchronization is provided for the following API calls:
v ENMAdd
v ENMDelete
v ENMPut
v ENMRouteAdd
v ENMRoutePut

For details refer to Figure 4 on page 20.

If the connection is not interrupted within the critical time period in a previous
session, this call has the same functions as ENMStartRAPI. Therefore, you can use
ENMRestartRAPI if the previous connection did not end abnormally.

C Language Example

#include "enm4rapi.h"

USHORT rc = 0;

if ((rc = ENMRestartRAPI ("APPLID")) == 0)
puts("APPC Conversation is up\n");

else
puts("Error in ENMRestartRAPI");

Chapter 4. The Application Programming Interface 13

ENMEndRAPI - Disconnect from MERVA

C Definition

USHORT ENMEndRAPI (void);

Parameter Description
The following parameter is required:

retCode(USHORT) - output

Code Meaning

0 The function completed correctly.

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason. For details refer to
“Handling Errors” on page 15. The reason code is also written to the
diagnosis log of the AS/400. For details refer to “Appendix A. Diagnosis
Information” on page 85. If it is an internal error of the MERVA API, the
reason code is 0.

Remarks
The APPC conversation to MERVA is stopped.

C Language Example

#include "enm4rapi.h"

USHORT rc = 0;

if ((rc = ENMEndRAPI ()) == 0)
puts("APPC Conversation successfully terminated\n");

else
puts("Error in ENMEndRAPI");

14 MERVA Connection/400

Handling Errors
If you want the API call to return reason codes, use the function ENMGetReason.

Chapter 4. The Application Programming Interface 15

ENMGetReason
This call returns the reason code for an internal error in MERVA Connection/400.

If an internal error occurs in MERVA Connection/400 or in the local MERVA API,
an API call returns the return code 2. If it is an error of MERVA Connection/400,
ENMGetReason returns a more specific reason code. Otherwise, the reason code is
0.

C Definition

USHORT ENMGetReason (void);

Parameter Description
The following parameter is required:

retCode(USHORT) - output

Code Meaning

2xxx Reason codes from 2000 to 2999 indicate communication problems.

2110 The APPC connection cannot be established or is canceled.

2120 The communications side information object is not found.

2130 The connection to the Remote MERVA API Server program failed.

2140 Deallocation failed because the conversation has been stopped already.

2150 The conversation was interrupted while the program tried to receive data.

2200 An empty data buffer was received.

29xx xx is a return code of the CPI-C call.

2999 A general communication problem occurred. For details refer to the
diagnosis log.

3xxx An internal semaphore error occurred. xxx is the error number provided by
Windows NT.

7006 The Remote MERVA API Server failed while the program allocated
memory.

7012 The Remote MERVA API Server does not accept further API calls due to a
previous error.

7013 The Remote MERVA API Server received a negative return code from user
exit ENM4ExitDecrypt.

7014 The Remote MERVA API Server received a negative return code from user
exit ENM4ExitEncrypt.

7015 The Remote MERVA API Server received a negative return code from user
exit ENM4ExitMacVerify or ENM4ExitMacGen.

7016 The Remote MERVA API Server received an incorrect API request.

7018 The Remote MERVA API Server received an error while the program
converted ASCII to EBCDIC. For details refer to the diagnosis log of
MERVA.

7019 The Remote MERVA API Server received an error while the program
accessed the message integrity control file.

7030 Internal message space was not created.

16 MERVA Connection/400

8002 The Remote MERVA API Client cannot open the programmer’s log file that
is specified in the profile.

8003 The Remote MERVA API Client cannot close the programmer’s log file that
is specified in the profile.

8004 The Remote MERVA API Client cannot open the diagnosis log file that is
specified in the profile.

8005 The Remote MERVA API Client cannot close the diagnosis log file that is
specified in the profile.

8006 The Remote MERVA API Client cannot allocate memory.

8007 The Remote MERVA API Client cannot write to the diagnosis log file that
is specified in the profile.

8008 The Remote MERVA API Client cannot write to the programmer’s log file
that is specified in the profile.

8010 The Remote MERVA API Client failed because the profile name in
ENMSetProfile is incorrect or not specified.

8011 The Remote MERVA API Client failed because the profile that is specified
in ENMSetProfile does not exist.

8013 The Remote MERVA API Client received a negative return code from user
exit ENM4ExitDecrypt.

8014 The Remote MERVA API Client received a negative return code from user
exit ENM4ExitEncrypt.

8015 The Remote MERVA API Client received a negative return code from user
exit ENM4ExitMacVerify.

8016 The Remote MERVA API Client received a negative return code from user
exit ENM4ExitMacGen.

8017 Conversation has not been started with ENMStartRAPI.

8019 The Remote MERVA API Client could not access the message integrity
control file.

C Language Example

#include "enm4rapi.h"

USHORT rc = 0;
USHORT reason = 0;

rc = ENMFree();
if (rc) {

reason = ENMGetReason();
if (reason) {
printf ("Internal error in Connection/400 occurred, reason code %d",

reason);
}

}

Chapter 4. The Application Programming Interface 17

Building API Programs
This section describes how to compile MERVA Connection/400 programs in C and
RPG programming languages.

The following figure gives you an overview of the MERVA Connection/400 API
program.

Building ILE C/400 Language Programs
To build ILE C/400 (R) language programs:
v Compile your program to create modules.
v Bind your program.

Compiling your API Program with the CRTCMOD Command
To compile your program, use the command CRTCMOD. The following example
shows you how to do this.
CRTCMOD MODULE (MYAPILIB/api_in_c)

SRCFILE (MYAPILIB/QCLESRC)
SRCMBR (api_in_c)
TEXT ('ILE C/400 API program for MERVA')

Connecting your API Program to MERVA Connection/400
Programs
The entry points for the API program on the AS/400 are located in the program
ENMRAPI/ENM4RAPI. The program ENM4RAPI uses functions of the following
programs:
v ENMRAPI/ENM4RUTL
v ENMRAPI/ENM4RPRF
v ENMRAPI/ENM4SNIL

To use the API, you must bind your compiled module to the modules that are
delivered with MERVA Connection/400. To do this, use the command CRTPGM.
The following example shows you how to do this.
CRTPGM PGM (MYAPILIB/api_in_c)

MODULE (
MYAPILIB/api_in_c
ENMRAPI/ENM4RAPI
ENMRAPI/ENM4RUTL
ENMRAPI/ENM4RPRF
ENMRAPI/ENM4SNIL
)

You can then call the API program api_in_c with the command CALL.

Figure 3. The MERVA Connection/400 API Program

18 MERVA Connection/400

RPG/ILE Language Program
To build RPG/ILE language programs:
v Compile your program to create modules.
v Bind your program.

Compiling your API Program with the CRTRPGMOD Command
To compile your program, use the command CRTRPGMOD. The following
example shows you how to do this.
CRTRPGMOD MODULE (MYAPILIB/ApiInRPG)

SRCFILE (MYAPILIB/QRPGLESRC)
SRCMBR (ApiInRPG)
TEXT ('RPG/ILE API program for MERVA')

The entry points for RPG/ILE language calls are located in the program
ENMRAPI/ENM4RRPG. ENM4RRPG uses the same entry points of ENM4RAPI
as an API program written in C language. The program ENM4RAPI uses functions
of the following programs:
v ENMRAPI/ENM4RUTL
v ENMRAPI/ENM4RPRF
v ENMRAPI/ENM4SNIL

To use the API, you must bind your compiled module to the modules that are
delivered with MERVA Connection/400. To do this, use the command CRTPGM.
The following example shows you how to do this.
CRTPGM PGM (MYAPILIB/api_in_rpg)

MODULE (
MYAPILIB/api_in_rpg
ENMRAPI/ENM4RRPG
ENMRAPI/ENM4RAPI
ENMRAPI/ENM4RUTL
ENMRAPI/ENM4RPRF
ENMRAPI/ENM4SNIL
)

You can then call the API program api_in_rpg with the command CALL.

“Chapter 5. API for RPG/ILE” on page 23 shows you how to call the entry points
for API calls in RPG/ILE.

Resynchronization
If a network connection is interrupted, the recovery procedure ensures that the
status of a message in MERVA, such as Add, Route, or Delete is changed only
once. This affects programs that use the Remote MERVA API and programs that
call the local MERVA API.

During normal processing, an API call is transferred from the Remote MERVA API
Client to the Remote MERVA API Server as shown in position (1) and (2) in
Figure 4 on page 20. The return data from MERVA is sent back from the Remote
MERVA API Server to the Remote MERVA API Client as shown in position (3) and
(4). The return data is also sent to the calling program.

The following figure shows you an example of the processing steps:

Chapter 4. The Application Programming Interface 19

The return code ERR_SYSTEM of the API call and the corresponding reason code
(2000 to 2999) of an additional ENMGetReason call indicate whether the network
connection is interrupted. MERVA Connection/400 does not know whether the call
completed successfully, or whether it is not executed in the MERVA system. In the
example of Figure 4, the API program does not know whether the message is
added to the MERVA queue.

With MERVA Connection/400, the API program reestablishes the connection in the
next run by using ENMRestartRAPI. It recreates the message with the same
contents and fields, and repeats the call that failed.

Regarding to the example shown in Figure 4, the API program recreates the
specific message and calls ENMAdd to add the message to the MERVA queue.

MERVA Connection/400 stores the previous state of the API call. If the call is
completed in the previous run, the Remote MERVA API Server returns the return
code that is created in the previous run. If the call is not completed, it is executed
after restart.

An internal integrity logic of MERVA Connection/400 ensures that this procedure
is carried out. Control files on the AS/400 or the MERVA side contain internal
control information. Each application has a control file. The name of the control file
is identical with the application name that is passed with the call
ENMSetProfile/SETPROF. In this profile, you can define where the integrity
control information is to be saved. For more information about the profile, refer to
“Changing Profile Settings” on page 4.

Resynchronization is supported for the following API functions:
v ENMAdd
v ENMDelete
v ENMPut
v ENMRouteAdd
v ENMRoutePut

Note: If the call of ENMAdd or ENMRouteAdd fails, call ENMClear to clear the
message space. For details refer to the MERVA USE & Branch for Windows NT
Application Programming Guide. If the call of ENMAdd or ENMRouteAdd
fails after you reestablish the connection with ENMRestartRAPI, ENMClear
returns the error message ERR_NO_MSG_CREATED. You can ignore this

Figure 4. Resynchronization Support

20 MERVA Connection/400

message. The same applies to the call ENMFree that returns the error
message ERR_NO_MSG_LOCKED after the call ENMDelete, ENMPut, or
ENMRoutePut fails.

MERVA Connection/400 does not save type or input data of the API call that failed
due to the network failure. Therefore, the API program on the AS/400 must ensure
that the same call is repeated after reconnecting to MERVA.

You can use the function ENMRestartRAPI to establish the connection in the same
way as ENMStartRAPI, regardless of whether a network failure occurred in the
previous run of the API program. In ENMStartRAPI, the information about the
previous state is deleted. This is different from ENMRestartRAPI. In
ENMRestartRAPI, the information about the previous state is not deleted. It is
used if a recovery is necessary.

Note: When you use ENMRestartRAPI, you must repeat the previous API calls if
they are abended by a network failure in the previous run. MERVA
Connection/400 does not recognize an incorrect API call.

The call is not executed if the internal state signifies that the last API call from the
previous run has been executed, but only the return code had not been passed to
the calling API program.

Chapter 4. The Application Programming Interface 21

22 MERVA Connection/400

Chapter 5. API for RPG/ILE

This chapter describes API calls that use C/ILE API. For details refer to “Chapter 4.
The Application Programming Interface” on page 9. For a description of the return
codes, refer to “Appendix A. Diagnosis Information” on page 85. The API trace is
written for internally called functions, not for the interface that is described in this
chapter.

For formal parameters the following rules apply:
v All parameters must be passed by reference.
v The data type string(n+1) is a character buffer that ends with a binary zero. n is

the maximum character of the string. The binary zero is not included.

Note: If the string does not end with a zero, the buffer have the minimum
character length n+1. The string must also be padded with blanks. The
called function stops the string with zero.

Each function is described in detail in the following sections.

Establishing a Session to MERVA
You can use the following functions to handle the session with MERVA.

© Copyright IBM Corp. 1997, 1999 23

STRTAPPC
This function calls ENMStartRAPI.

ENMStartRAPI starts the APPC conversation to MERVA and initializes internal
buffers and variables. After this function is called, the program must call
ENDAPPC before it ends.

C Definition

VOID STRTAPPC(UCHAR * ApplicationName,
USHORT * RetVal);

Parameters

Name Type I/O Comments

ApplicationName string(8+1) I Unique name of the application
attaching to MERVA. See the
description of the ENMStartRAPI call
for more information.

RetVal integer(2) O 2 bytes, return code from API call.

For the values refer to
ENMStartRAPI.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)

C CALLB 'STRTAPPC'
C PARM 'APPL' APPLN 10
C PARM RETVAL

24 MERVA Connection/400

RSTRTAPC
This function calls ENMRestartRAPI.

ENMRestartRAPI starts the APPC conversation to MERVA and initializes internal
buffers and variables. After this function is called, the program must call
ENDAPPC before it ends.

C Definition

VOID RSTRTAPC(UCHAR * ApplicationName,
USHORT * RetVal);

Parameters

Name Type I/O Comments

ApplicationName string(8+1) I Unique name of the application
attaching to MERVA. See the
description of the ENMRestartRAPI
call for more information.

RetVal integer(2) O 2 bytes, return code from API call.

For the values refer to
ENMRestartRAPI.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)

C CALLB 'RSTRTAPC'
C PARM 'APPL' APPLN 10
C PARM RETVAL

Chapter 5. API for RPG/ILE 25

ENDAPPC
This function calls ENMEndRAPI.

ENMEndRAPI stops the conversation between the Remote MERVA API Client and
the Remote MERVA API Server that is started by a STRTAPPC call. Another API
program with the same application name can then connect to MERVA. The
application name is passed by the STRTAPPC call.

C Definition

VOID ENDAPPC(USHORT * RetVal);

Parameters

Name Type I/O Comments

RetVal integer(2) O 2 bytes, return code from API call.

For the values refer to ENMEndRAPI.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)

C CALLB 'ENDAPPC'
C PARM RETVAL

26 MERVA Connection/400

SETPROF
This function calls ENMSetProfile.

ENMSetProfile specifies the name of the profile that is to be used. For details refer
to “Changing Profile Settings” on page 4.

C Definition

VOID SETPROF(UCHAR * ProfileName);

Parameters

Name Type I/O Comments

ProfileName string(80+1) I For example, ENMRSMP/INI(API)

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)
D DSPRF DS
D PRFNAM 1 20 INZ('ENMRSMP/INI(API)')
D TERM 21 22B 0 INZ(0)

C RESETPRFNAM
C CALLB 'SETPROF'
C PARM DSPRF
C PARM RETVAL

Chapter 5. API for RPG/ILE 27

Connecting to MERVA
The following functions start and stop the connection to MERVA.

28 MERVA Connection/400

ATTACH
This function calls ENMAttach.

ENMAttach connects the application program to MERVA. It prepares the interface
data structures to pass messages from MERVA to the application, and to pass
messages from the application to MERVA.

C Definition

VOID ATTACH(UCHAR * UserID,
UCHAR * Password,
UCHAR * FunctionID,
USHORT * RetVal);

Parameters

Name Type I/O Comments

UserID string(8+1) I User ID defined in MERVA.

Password string(8+1) I Password defined in MERVA.

FunctionID string(3+1) I Must be API.

RetVal integer(2) O 2 bytes, return code from API call.

For the values refer to ENMAttach.

Processing
The function checks with your user ID, password, and function ID whether the
program is authorized to connect to MERVA.

Remarks
A MERVA API program that runs on the AS/400 is not identified by its program
name but by the application name that is passed with the call STRTAPPC. This is
different from a local MERVA API program that runs on the local Windows NT
system.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)

C CALLB 'ATTACH'
C PARM 'USER1' USERID 9
C PARM 'MERVA2' PASSWD 9
C PARM 'API' FUNCID 4
C PARM RETVAL

Chapter 5. API for RPG/ILE 29

CLEAR
This function calls ENMClear.

ENMClear deletes a message space that is created with the function CREATE.

C Definition

VOID CLEAR(USHORT * RetVal);

Parameters

Name Type I/O Comments

RetVal integer(2) O 2 bytes, return code from API call.

For the values refer to ENMClear.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)

C CALLB 'CLEAR'
C PARM RETVAL

30 MERVA Connection/400

CREATE
This function calls ENMCreate.

ENMCreate prepares a new, empty message for the application.

C Definition

VOID CREATE(USHORT * RetVal);

Parameters

Name Type I/O Comments

RetVal integer(2) O 2 bytes, return code from API call.

For the values refer to ENMCreate.

Processing
This function requests a message reference number (MRN) from MERVA to
identify the new message. A READFLD call can set a reference to the MRN. For
further processing of the message, use the call ADDMSG or ROUTEADD.

A created message is locked immediately. Use a CLEAR call to free the API
message space. FREE can only be used to unlock a message that is already located
in a MERVA queue.

Remarks
A pointer to the API internal message buffer is not returned because the message
buffer address must be passed for each call that processes the message contents
(for example, ADDMSG or ROUTEMSG).

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)

C CALLB 'CREATE'
C PARM RETVAL

Chapter 5. API for RPG/ILE 31

DETACH
This function calls ENMDetach.

ENMDetach disconnects the API program from MERVA.

C Definition

VOID DETACH(USHORT * RetVal);

Parameters

Name Type I/O Comments

RetVal integer(2) O 2 bytes, return code from API call.

For the values refer to ENMDetach.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)

C CALLB 'DETACH'
C PARM RETVAL

32 MERVA Connection/400

Adding, Changing, and Deleting Messages in MERVA Queues
The following functions allow you to handle messages in MERVA message queues.

Chapter 5. API for RPG/ILE 33

ADDMSG
This function calls ENMAdd.

ENMAdd adds a message that is created with the call CREATE to a MERVA
queue. The name of the queue that is passed with the call must belong to the API
purpose group. This call has the same functions as ENMAdd.

C Definition

VOID ADDMSG(QNAME QueueId,
UCHAR * MsgBuf,
USHORT * MsgLen,
USHORT * RetVal);

Parameters

Name Type I/O Comments

QueueID string(8+1) I Name of queue, null terminated.

MsgBuf character buffer I Text of message to add.

MsgLen integer(2) I Length of message buffer

RetVal integer(2) O 2 bytes, return code from API call.

Code Meaning

1001 No internal message space is
available. You must call
function CREATE or one of
the functions which get
messages before calling
ADDMSG.

Others For the values refer to
ENMAdd.

Remarks
If the internal buffer of MERVA Connection/400 is filled with the call PUTBUFF,
pass the value 0 for MsgLen. ADDMSG does not refer to the parameter MsgBuf.
Therefore, you can pass a null pointer.

If the message contains several binary zeros but does not end with the first binary
zero, you must specify the message length in the field MSG_LEN before
ADDMSG is called.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)
D DSLEN DS
D LENGTH 1 2B 0
D DSMSG DS
D MSGSTR 1 256

C Z-ADD 255 LENGTH
C CALLB 'ADDMSG'
C PARM 'API_IN' QUEUE 9
C PARM DSMSG
C PARM DSLEN
C PARM RETVAL

34 MERVA Connection/400

DELETMSG
This function calls ENMDelete.

ENMDelete deletes the currently locked message from the MERVA queue.

C Definition

VOID DELETMSG(USHORT * RetVal);

Parameters

Name Type I/O Comments

RetVal integer(2) O 2 bytes, return code from API call.

For the values refer to ENMDelete.

Remarks
With DELETMSG, you can delete messages that are locked by the calls
FIRSTMSG, KEYNEXT, KEYREAD, LASTMSG, NEXTMSG, or PREVMSG from
the MERVA queue.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)

C CALLB 'DELETMSG'
C PARM RETVAL

Chapter 5. API for RPG/ILE 35

PUTMSG
This function calls ENMPut.

ENMPut returns a message to the previous position in the queue from which it
was retrieved. The message is then unlocked.

C Definition

VOID PUTMSG(UCHAR * MsgBuf,
USHORT * MsgLen,
USHORT * RetVal);

Parameters

Name Type I/O Comments

MsgBuf character buffer I Text of message to add.

MsgLen integer(2) I Length of message buffer.

RetVal integer(2) O 2 bytes, return code from API call.

Code Meaning

1001 No internal message space is
available. You must call
function CREATE or one of
the functions which get
messages before calling
PUTMSG.

Others For the values refer to
ENMRouteAdd.

Remarks
If the internal buffer of MERVA Connection/400 is filled with the call PUTBUFF,
pass the value 0 for MsgLen. PUTMSG does not refer to the parameter MsgBuf.
Therefore, you can pass a null pointer.

If the message contains several binary zeros but does not end with the first binary
zero, you must specify the message length in the field MSG_LEN before PUTMSG
is called.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)
D DSLEN DS
D LENGTH 1 2B 0
D DSMSG DS
D MSGSTR 1 256

C Z-ADD 255 LENGTH
C CALLB 'PUTMSG'
C PARM DSMSG
C PARM DSLEN
C PARM RETVAL

36 MERVA Connection/400

ROUTEADD
This function calls ENMRouteAdd.

ENMRouteAdd adds a previously created message to the specified queue. The
message is then routed immediately according to the routing conditions specified
with the MERVA customization.

C Definition

VOID ROUTEADD(QNAME QueueId,
UCHAR * MsgBuf,
USHORT * MsgLen,
USHORT * RetVal);

Parameters

Name Type I/O Comments

QueueId string(8+1) I Name of queue, null terminated.

MsgBuf character buffer I Text of message to add.

MsgLen integer(2) I Length of message buffer.

RetVal integer(2) O 2 bytes, return code from API call.

Code Meaning

1001 No internal message space is
available. You must call
function CREATE or one of
the functions which get
messages before calling
ROUTEADD.

Others For the values refer to
ENMRouteAdd.

Remarks
If the internal buffer of MERVA Connection/400 is filled with the call PUTBUFF,
pass the value 0 for MsgLen. ROUTEADD does not refer to the parameter
MsgBuf. Therefore, you can pass a null pointer.

If the message contains several binary zeros but does not end with the first binary
zero, you must specify the message length in the field MSG_LEN before
ROUTEADD is called.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)
D DSLEN DS
D LENGTH 1 2B 0
D DSMSG DS
D MSGSTR 1 256

C Z-ADD 255 LENGTH
C CALLB 'ROUTEADD'
C PARM 'API_IN' QUEUE 9
C PARM DSMSG
C PARM DSLEN
C PARM RETVAL

Chapter 5. API for RPG/ILE 37

ROUTEPUT
This function calls ENMRoutePut.

ENMRoutePut returns a previously retrieved message to the queue from which it
was retrieved. The message is then routed immediately according to the routing
conditions specified with the MERVA customization.

C Definition

VOID ROUTEPUT(UCHAR * MsgBuf,
USHORT * MsgLen,
USHORT * RetVal);

Parameters

Name Type I/O Comments

MsgBuf character buffer I Text of message to add.

MsgLen integer(2) I Length of message buffer.

RetVal integer(2) O 2 bytes, return code from API call.

Code Meaning

1001 No internal message space is
available. You must call
function CREATE or one of
the functions which get
messages before calling
ROUTEPUT.

Others For the values refer to
ENMRouteAdd.

Remarks
If the internal buffer of MERVA Connection/400 is filled with the call PUTBUFF,
pass the value 0 for MsgLen. ROUTEPUT does not refer to the parameter
MsgBuf. Therefore, you can pass a null pointer.

If the message contains several binary zeros but does not end with the first binary
zero, you must specify the message length in the field MSG_LEN before
ROUTEPUT is called.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)
D DSLEN DS
D LENGTH 1 2B 0
D DSMSG DS
D MSGSTR 1 256

C Z-ADD 255 LENGTH
C CALLB 'ROUTEPUT'
C PARM DSMSG
C PARM DSLEN
C PARM RETVAL

38 MERVA Connection/400

Reading, Getting, and Releasing Messages in MERVA Queues
Use the following functions to lock and unlock messages in MERVA queues.

Chapter 5. API for RPG/ILE 39

FIRSTMSG
This function calls ENMFirstEntry.

ENMFirstEntry gets the oldest message from a MERVA API queue.

C Definition

VOID FIRSTMSG(QNAME QueueId,
SWITCH * Lock,
UCHAR * MsgBuf,
USHORT * MsgLen,
USHORT * RetVal);

Parameters

Name Type I/O Comments

QueueID string(8+1) I Name of queue from which to get the
message, null terminated.

Lock integer(2) I Value 1 = Lock message. Value 0 = Do
not lock message.

MsgBuf character buffer O Message retrieved.

MsgLen integer(2) I,O Input: Length of buffer. Output:Length
of message.

RetVal integer(2) O 2 bytes, return code from API call.

For the values refer to
ENMFirstEntry.

Processing
With the calls FIRSTMSG, NEXTMSG, PREVMSG, and LASTMSG, the system
sets a position pointer for each queue. An application can then switch queues and
resume at the point from which it switched the queue.

If the message is read with the lock value set to 1, other programs cannot change
the message. FREEMSG, ROUTEADD, and ROUTEPUT unlock the message.

Remarks
If the message exceeds the maximum length that is specified with the parameter
MsgLen, only the maximum length of bytes is copied to MsgBuf. The complete
length of the message, however, is returned in MsgLen. The API program can then
check whether the message is retrieved completely. You can read the complete
message with one or more calls of the function GETREST. For details refer to
“Handling the Internal Message Buffer of MERVA Connection/400” on page 52.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)
D DSLEN DS
D LENGTH 1 2B 0
D DSMSG DS
D MSGSTR 1 256
D DSLOCK DS
D LOCK 1 2B 0
D DSMRN DS
D MRNBUF 1 20

C Z-ADD 255 LENGTH

40 MERVA Connection/400

C CALLB 'FIRSTMSG'
C PARM 'API_OUT' QUEUE 9
C PARM LOCK
C PARM DSMSG
C PARM DSLEN
C PARM RETVAL

Chapter 5. API for RPG/ILE 41

FREEMSG
This function calls ENMFree.

ENMFree unlocks a previously locked message.

C Definition

VOID FREEMSG(USHORT * RetVal);

Parameters

Name Type I/O Comments

RetVal integer(2) O 2 bytes, return code from API call.

For the values refer to ENMFree.

Remarks
With FREEMSG, you can release messages that are previously locked by the calls
FIRSTMSG, KEYNEXT, KEYREAD, LASTMSG, NEXTMSG, or PREVMSG.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)

C CALLB 'FREEMSG'
C PARM RETVAL

42 MERVA Connection/400

KEYNEXT
This function calls ENMKeyNext.

Use this function if KEYREAD has returned a message that matches the specified
criteria, such as queue name and key (MRN or ISN). KEYNEXT returns other
messages that match the same criteria.

C Definition

VOID KEYNEXT(SWITCH * Lock,
UCHAR * MsgBuf,
USHORT * MsgLen,
USHORT * RetVal);

Parameters

Name Type I/O Comments

Lock integer(2) I Value 1 = Lock message. Value 0 = Do
not lock message.

MsgBuf character buffer O Message retrieved.

MsgLen integer(2) I,O Input: Length of buffer. Output:
Length of message.

RetVal integer(2) O 2 bytes, return code from API call.

For the values refer to ENMKeyNext.

Processing
If the message is read with the lock value set to 1, other programs cannot change
the message. FREEMSG, ROUTEADD, and ROUTEPUT unlock the message.

Remarks
If the message exceeds the maximum length that is specified with the parameter
MsgLen, only the maximum length of bytes is copied to MsgBuf. The complete
length of the message, however, is returned in MsgLen. The API program can then
check whether the message is retrieved completely. You can read the complete
message with one or more calls of the function GETREST. For details refer to
“Handling the Internal Message Buffer of MERVA Connection/400” on page 52.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)
D DSLEN DS
D LENGTH 1 2B 0
D DSMSG DS
D MSGSTR 1 256
D DSLOCK DS
D LOCK 1 2B 0

C Z-ADD 255 LENGTH
C CALLB 'KEYNEXT'
C PARM DSLOCK
C PARM DSMSG
C PARM DSLEN
C PARM RETVAL

Chapter 5. API for RPG/ILE 43

KEYREAD
This function calls ENMKeyRead.

ENMKeyRead searches for the first message with the specified key in the specified
queue.

C Definition

VOID KEYREAD(QNAME QueueId,
KEYTYPE * KeyType,
KEY * Key,
SWITCH * Lock,
UCHAR * MsgBuf,
USHORT * MsgLen,
USHORT * RetVal);

Parameters

Name Type I/O Comments

QueueID string(8+1) I Name of queue, null terminated.

KeyType integer(2) I Value 0 = ISN. Value 1 = MRN.

Key string(6+1 or 16+1) I Value of key, length of buffer must be
6+1 for ISN and 16+1 for MRN. It is
null terminated by the called function.

Lock integer(2) I Value 1 = Lock message. Value 0 = Do
not lock message.

MsgBuf character buffer O Message retrieved.

MsgLen integer(2) I,O Input: Length of buffer. Output:
Length of message.

RetVal integer(2) O 2 bytes, return code from API call.

For the values refer to ENMKeyRead.

Processing
If the message is read with the lock value set to 1, other programs cannot change
the message. FREEMSG, ROUTEADD, and ROUTEPUT unlock the message. If
the function is called more than once with the same key and queue name, the
same message is returned. To retrieve further messages that match the specified
criteria, call KEYNEXT.

Remarks
If the message exceeds the maximum length that is specified with the parameter
MsgLen, only the maximum length of bytes is copied to MsgBuf. The complete
length of the message, however, is returned in MsgLen. The API program can then
check whether the message is retrieved completely. You can read the complete
message with one or more calls of the function GETREST. For details refer to
“Handling the Internal Message Buffer of MERVA Connection/400” on page 52.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)
D DSLEN DS
D LENGTH 1 2B 0
D DSMSG DS
D MSGSTR 1 256
D DSKEY DS

44 MERVA Connection/400

D KEYSTR 1 20 INZ('R03D501100000178')
D DSKTYP DS
D KEYTYP 1 2B 0

C RESETDSKEY
C Z-ADD 1 KEYTYP
C Z-ADD 0 LOCK
C Z-ADD 255 LENGTH
C CALLB 'KEYREAD'
C PARM 'API_OUT' QUEUE 9
C PARM DSKTYP
C PARM DSKEY
C PARM DSLOCK
C PARM DSMSG
C PARM DSLEN
C PARM RETVAL

Chapter 5. API for RPG/ILE 45

LASTMSG
This function calls ENMLastEntry.

ENMLastEntry retrieves the message that was most recently added to the specified
queue.

C Definition

VOID LASTMSG(QNAME QueueId,
SWITCH * Lock,
UCHAR * MsgBuf,
USHORT * MsgLen,
USHORT * RetVal);

Parameters

Name Type I/O Comments

QueueID string(8+1) I Name of queue, null terminated.

Lock integer(2) I Value 1 = Lock message. Value 0 = Do
not lock message.

MsgBuf character buffer O Message retrieved

MsgLen integer(2) I,O Input: Length of buffer. Output:
Length of message.

RetVal integer(2) O 2 bytes, return code from API call.

For the values refer to ENMLastEntry.

Processing
With the calls FIRSTMSG, NEXTMSG, PREVMSG, and LASTMSG, the system
sets a position pointer for each queue. An application can then switch queues and
resume at the point from which it switched the queue.

If the message is read with the lock value set to 1, other programs cannot change
the message. FREEMSG, ROUTEADD, and ROUTEPUT unlock the message.

Remarks
If the message exceeds the maximum length that is specified with the parameter
MsgLen, only the maximum length of bytes is copied to MsgBuf. The complete
length of the message, however, is returned in MsgLen. The API program can then
check whether the message is retrieved completely. You can read the complete
message with one or more calls of the function GETREST. For details refer to
“Handling the Internal Message Buffer of MERVA Connection/400” on page 52.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)
D DSLEN DS
D LENGTH 1 2B 0
D DSMSG DS
D MSGSTR 1 256
D DSLOCK DS
D LOCK 1 2B 0
D DSMRN DS
D MRNBUF 1 20

C Z-ADD 255 LENGTH
C CALLB 'LASTMSG'

46 MERVA Connection/400

C PARM 'API_OUT' QUEUE 9
C PARM LOCK
C PARM DSMSG
C PARM DSLEN
C PARM RETVAL

Chapter 5. API for RPG/ILE 47

NEXTMSG
This function calls ENMNextEntry.

ENMNextEntry returns the message that is next to the current position in the
message queue sorted by time. If the application accesses the queue for the first
time, the function returns the oldest message.

C Definition

VOID NEXTMSG(QNAME QueueId,
SWITCH * Lock,
UCHAR * MsgBuf,
USHORT * MsgLen,
USHORT * RetVal);

Parameters

Name Type I/O Comments

QueueID string(8+1) I Name of queue, null terminated.

Lock integer(2) I Value 1 = Lock message. Value 0 = Do
not lock message.

MsgBuf character buffer O Message retrieved

MsgLen integer(2) I,O Input: Length of buffer. Output:
Length of message.

RetVal integer(2) O 2 bytes, return code from API call.

For the values refer to
ENMNextEntry.

Processing
With the calls FIRSTMSG, NEXTMSG, PREVMSG, and LASTMSG, the system
sets a position pointer for each queue. An application can then switch queues and
resume at the point from which it switched the queue.

If the message is read with the lock value set to 1, other programs cannot change
the message. FREEMSG, ROUTEADD, and ROUTEPUT unlock the message.

Remarks
If the message exceeds the maximum length that is specified with the parameter
MsgLen, only the maximum length of bytes is copied to MsgBuf. The complete
length of the message, however, is returned in MsgLen. The API program can then
check whether the message is retrieved completely. You can read the complete
message with one or more calls of the function GETREST. For details refer to
“Handling the Internal Message Buffer of MERVA Connection/400” on page 52.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)
D DSLEN DS
D LENGTH 1 2B 0
D DSMSG DS
D MSGSTR 1 256
D DSLOCK DS
D LOCK 1 2B 0
D DSMRN DS
D MRNBUF 1 20

48 MERVA Connection/400

C Z-ADD 255 LENGTH
C CALLB 'NEXTMSG'
C PARM 'API_OUT' QUEUE 9
C PARM LOCK
C PARM DSMSG
C PARM DSLEN
C PARM RETVAL

Chapter 5. API for RPG/ILE 49

PREVMSG
This function calls ENMPreviousEntry.

ENMPreviousEntry returns the message that precedes the current position in the
message queue sorted by time. If the application accesses the queue for the first
time, the function returns the oldest message.

C Definition

VOID PREVMSG(QNAME QueueId,
SWITCH * Lock,
UCHAR * MsgBuf,
USHORT * MsgLen,
USHORT * RetVal);

Parameters

Name Type I/O Comments

QueueID string(8+1) I Name of queue, null terminated.

Lock integer(2) I Value 1 = Lock message. Value 0 = Do
not lock message.

MsgBuf character buffer O Message retrieved

MsgLen integer(2) I,O Input: Length of buffer. Output:
Length of message.

RetVal integer(2) O 2 bytes, return code from API call.

For the values refer to
ENMPreviousEntry.

Processing
With the calls FIRSTMSG, NEXTMSG, PREVMSG, and LASTMSG, the system
gets a position pointer for each queue. An application can then switch queues and
resume at the point from which it switched the queue.

If the message is read with the lock value set to 1, other programs cannot change
the message. FREEMSG, ROUTEADD, and ROUTEPUT unlock the message.

Remarks
If the message exceeds the maximum length that is specified with the parameter
MsgLen, only the maximum length of bytes is copied to MsgBuf. The complete
length of the message, however, is returned in MsgLen. The API program can then
check whether the message is retrieved completely. You can read the complete
message with one or more calls of the function GETREST. For details refer to
“Handling the Internal Message Buffer of MERVA Connection/400” on page 52.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)
D DSLEN DS
D LENGTH 1 2B 0
D DSMSG DS
D MSGSTR 1 256
D DSLOCK DS
D LOCK 1 2B 0
D DSMRN DS
D MRNBUF 1 20

50 MERVA Connection/400

C Z-ADD 255 LENGTH
C CALLB 'PREVMSG'
C PARM 'API_OUT' QUEUE 9
C PARM LOCK
C PARM DSMSG
C PARM DSLEN
C PARM RETVAL

Chapter 5. API for RPG/ILE 51

Handling the Internal Message Buffer of MERVA Connection/400
Messages in MERVA queues can be up to 28000 bytes long. In RPG/ILE, you can
specify a maximum buffer size of 9999 characters. Therefore, an RPG/ILE API
program cannot handle larger messages with the usual API calls to retrieve
messages from and write messages to MERVA queues. To handle large messages,
MERVA Connection/400 provides the following calls to write and read the internal
message buffer of MERVA in more than one step.

52 MERVA Connection/400

PUTBUFF
Writes data to the internal message buffer of MERVA Connection/400.

With this call you can handle large messages in spite of the limited data buffer size
of 9999 bytes in RPG/ILE.

C Definition

VOID PUTBUFF(UCHAR * MsgBuf,
USHORT * MsgLen,
USHORT * RetVal);

Parameters

Name Type I/O Comments

MsgBuf character buffer I Data buffer to write.

MsgLen integer(2) I Length of data to write on input,
length of data written on output.

RetVal integer(2) O 2 bytes, return code from API call.

Code Meaning

1001 No internal message space is
available. You must call
function CREATE or one of
the functions which get
messages before calling
PUTBUFF.

1002 Message has been truncated,
internal message space too
small.

Remarks
When the function PUTBUFF is called for the first time, the internal buffer is
written. It starts with offset 0. The offset is held internally in MERVA
Connection/400. After the first call, the value of the internal offset is identical to
the buffer length passed. Each time, you call PUTBUFF, the passed buffer is
appended at the position that is specified with the internal offset.

When CREATE, FIRSTMSG, NEXTMSG, LASTMSG, PREVMSG, KEYREAD, or
KEYNEXT is called, the internal offset is reset to 0.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)
D DSLEN DS
D LEN 1 2B 0 INZ(255)
D LENNUL 1 2B 0 INZ(0)
D DSMSG DS
D BUF1 1 255
D BUF2 256 510
D BUF3 511 765

C RESETDSLEN
C CALLB 'PUTBUFF'
C PARM BUF1
C PARM LEN

Chapter 5. API for RPG/ILE 53

C PARM RETVAL
C CALLB 'PUTBUFF'
C PARM BUF2
C PARM LEN
C PARM RETVAL
C CALLB 'PUTBUFF'
C PARM BUF3
C PARM LEN
C PARM RETVAL
C CALLB 'ADDMSG'
C PARM 'API_IN' QUEUE 9
C PARM DSMSG
C PARM LENNUL
C PARM RETVAL

54 MERVA Connection/400

GETREST
Reads data from the internal message buffer of MERVA Connection/400.

With this call you can handle large messages in spite of the limited data buffer size
of 9999 bytes in RPG/ILE.

C Definition

VOID GETREST(UCHAR * MsgBuf,
USHORT * MsgLen,
USHORT * RetVal);

Parameters

Name Type I/O Comments

MsgBuf character buffer I Data buffer to write retrieved data to.

MsgLen integer(2) I,O Length of buffer on input, length of
remaining message part in internal
message space when entering the
function on output.

RetVal integer(2) O 2 bytes, return code from API call.

Code Meaning

1001 No internal message space is
available. You must call one
of the functions which get
messages before calling
GETREST.

Remarks
If FIRSTMSG, NEXTMSG, LASTMSG, PREVMSG, KEYREAD, or KEYNEXT
returns a message length that exceeds the buffer that is specified in the call, only
the first part of the retrieved message is written to the buffer. You can read the rest
of the message data with one or more calls of GETREST. An internal offset
address is stored in MERVA Connection/400.

After one of the previously listed calls, it is set to the buffer length already read.
After each call of GETREST, it is incremented by the value of MsgLen specified in
the call. GETREST returns the remaining number of bytes in MsgLen.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)
D DSLEN DS
D LEN 1 2B 0 INZ(255)
D LENNUL 1 2B 0 INZ(0)
D DSMSG DS
D BUF1 1 255
D BUF2 256 510
D BUF3 511 765

C RESETDSLEN
C CALLB 'FIRSTMSG'
C PARM 'API_OUT' QUEUE 9
C PARM LOCK
C PARM BUF1
C PARM LEN

Chapter 5. API for RPG/ILE 55

C PARM RETVAL
* assumed that the value 765 has been returned in DSLEN
C CALLB 'GETREST'
C PARM BUF2
C PARM LEN
C PARM RETVAL
C CALLB 'GETREST'
C PARM BUF3
C PARM LEN
C PARM RETVAL

56 MERVA Connection/400

Handling Single Message Fields
The following functions allow you to work with single message fields.

Chapter 5. API for RPG/ILE 57

READFLD
This function calls ENMReadField.

ENMReadField returns the contents of a field associated with the previously
retrieved message or generated by a CREATE call.

C Definition

VOID READFLD(FIELDTYPE * FieldType,
PFIELD Field,
USHORT * RetVal);

Parameters

Name Type I/O Comments

FieldType integer(2) I Specifies the field type.

Field integer or char I Type depends on specified field.

RetVal integer(2) O 2 bytes, return code from API call.

For the values refer to
ENMReadField.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)
D DSMRN DS
D MRNBUF 1 17
D DSNETW DS
D NETWID 1 2B 0
D DSFLTY DS
D FLDTYP 1 2B 0

C Z-ADD 0 FLDTYP
C CALLB 'READFLD'
C PARM FLDTY
C PARM DSMRN
C PARM RETVAL
C Z-ADD2 FLDTYP
C CALLB 'READFLD'
C PARM FLDTY
C PARM DSNETW

The following example shows you a sample definition of a telex header structure.

D DSTXHD DS
D KEYCAL 1 2 INZ('N ')
D KEYRC 3 4 INZ(' ')
D KEYVAL 5 20 INZ(' ')
D KEYCM1 21 57 INZ(' ')
D KEYCM2 58 93 INZ(' ')
D SNADR0 94 129 INZ('SENDERBANK ')
D SNADR1 130 165 INZ(' ')
D SNADR2 166 201 INZ(' ')
D SNADR3 202 237 INZ(' ')
D DATE 238 244 INZ(' ')
D TOID 245 256 INZ(' ')
D RCADR0 257 292 INZ('RECEIVERBANK ')
D RCADR1 293 328 INZ(' ')
D RCADR2 329 364 INZ(' ')
D RCADR3 365 400 INZ(' ')

58 MERVA Connection/400

D LINE 401 403 INZ(' ')
D DLUP1 404 424 INZ('049-1234-54321 ')
D ANSBK1 425 445 INZ(' ')
D DLUP2 446 466 INZ(' ')
D ANSBK2 467 487 INZ(' ')
D TYPE 488 489 INZ('N ')
D TIMTIM 490 494 INZ(' ')
D TIMDAT 495 501 INZ(' ')
D REFTXT 502 518 INZ(' ')
D NOTE 519 583 INZ(' ')

Chapter 5. API for RPG/ILE 59

WRITFLD
This function calls ENMWriteField.

ENMWriteField updates the contents of a field associated with the previously
retrieved message or generated by a CREATE call.

C Definition
VOID WRITFLD(FIELDTYPE * FieldType,

PFIELD Field,
USHORT * RetVal);

Parameters

Name Type I/O Comments

FieldType integer(2) I Specifies field type.

Field integer or char I Type depends on specified field.

RetVal integer(2) O 2 bytes, return code from API call.

For the values refer to
ENMWriteField.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)
D DSACK DS
D ACK1 1 4
D ACK2 5 128
D DSNETW DS
D NETWID 1 2B 0
D DSFLTY DS
D FLDTYP 1 2B 0

* ------------- Write Network ID for SWIFT
C Z-ADD 2 FLDTYP
C Z-ADD 2 NETWID
C CALLB 'WRITFLD'
C PARM DSFLTY
C PARM DSNETW
C PARM RETVAL
* ------------- Write "ACK" to MSGACK field
C Z-ADD 5 FLDTYP
C MOVE 'ACK ' ACK1
C CALLB 'WRITFLD'
C PARM DSFLTY
C PARM DSACK
C PARM RETVAL

60 MERVA Connection/400

Miscellaneous Calls
The following functions allow you to handle miscellaneous calls.

Chapter 5. API for RPG/ILE 61

QUERYQU
This function calls ENMQueryQueue.

ENMQueryQueue returns the number of messages in the specified queue at the
time of the call.

C Definition

VOID QUERYQU(UCHAR * QueueId,
USHORT * MessageCount,
USHORT * RetVal);

Parameters

Name Type I/O Comments

QueueID string(8+1) I Name of queue, null terminated.

MsgCount integer(2) O Returns the number of messages in
the specified queue.

RetVal integer(2) O 2 bytes, return code from API call.

For the values refer to
ENMQueryQueue.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)
D DSCNT DS
D COUNT 1 2B 0

C CALLB 'QUERYQU'
C PARM 'API_OUT' QUEUE 9
C PARM DSCNT
C PARM RETVAL

62 MERVA Connection/400

TRACE
This function calls ENMTrace.

ENMTrace turns the MERVA API trace on or off. When the API trace is switched
on, API calls are written to the diagnosis logs of the Windows NT system. In
addition, the parameters (for buffers, only the first characters) are written to the
diagnosis log.

C Definition

VOID TRACE(SWITCH * Status,
USHORT * RetVal);

Parameters

Name Type I/O Comments

Status integer(2) I Value 1 = ON. Value 0 = OFF.

RetVal integer(2) O 2 bytes, return code from API call.

For the values refer to ENMTrace.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)
D DSSWIT DS
D ONOFF 1 2B 0 INZ(1)

C CALLB 'TRACE'
C PARM DSSWIT
C PARM RETVAL

Chapter 5. API for RPG/ILE 63

WHEREIS
This function calls ENMWhereIs.

ENMWhereIs returns the number of the purpose group in which the message with
a specified key is located. An application can, for example, check whether a
message is already sent to the S.W.I.F.T. network or waits to be sent.

C Definition

VOID WHEREIS(KEYTYPE * KeyType,
KEY * Key,
PGROUP Group,
USHORT * RetVal);

Parameters

Name Type I/O Comments

KeyType integer (2) I Value 0 = ISN, value 1 = MRN

Key string(6+1 or 16+1) I Value of key, length of buffer must be
6+1 for ISN and 16+1 for MRN; it is
null terminated by the called function.

Group integer(2) O The meaning of the values is listed in
the MERVA USE & Branch for Windows
NT Application Programming Guide.

RetVal integer(2) O 2 bytes, return code from API call.

For the values refer to ENMWhereIs.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)
D DSKEY DS
D KEYSTR 1 17
D DSKTYP DS
D KEYTYP 1 2B 0
D DSGRUP DS
D GROUP 1 2B 0

C CALLB 'WHEREIS'
C PARM DSKTYP
C PARM DSKEY
C PARM DSGRUP
C PARM RETVAL

64 MERVA Connection/400

WRTTRACE
This function calls ENMWriteTrace.

ENMWriteTrace writes a string that is defined by the API program to the
diagnosis log in MERVA.

C Definition

VOID WRTTRACE(UCHAR * Userinfo,
USHORT * RetVal);

Parameters

Name Type I/O Comments

UserInfo string(240+1) I Text to be written to the diagnosis log
in MERVA.

RetVal integer(2) O 2 bytes, return code from API call.

For the values refer to
ENMWriteTrace.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)
D DSTRAC DS
D TRACE 1 241 INZ('TRACE TEXT ...')

C RESETTRACE
C CALLB 'WRTTRACE'
C PARM DSTRAC
C PARM RETVAL

Chapter 5. API for RPG/ILE 65

Functions Triggered by MERVA Alarms
The following functions handle semaphores.

66 MERVA Connection/400

CLRSEM
This function calls ENMClearSem.

ENMClearSem clears a semaphore unconditionally. Processes that are blocked on
the semaphore, are restarted.

C Definition

VOID CLRSEM(ULONG * SemHandle,
USHORT * RetVal);

Parameters

Name Type I/O Comments

SemHandle integer(4) I 4 bytes, generated by CRTSEM or
OPNSEM.

RetVal integer(2) O 2 bytes, return code from API call.

For the values refer to ENMClearSem.

Remarks
For return values, see the description of the call ENMClearSem.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)
D DSSH1 DS
D SH1 1 4B 0

C CALLB 'CLRSEM'
C PARM DSSH1
C PARM RETVAL

Chapter 5. API for RPG/ILE 67

CLSSEM
This function calls ENMCloseSem.

ENMCloseSem closes a handle of a semaphore, obtained with a CRTSEM or
OPNSEM call.

C Definition

VOID CLSSEM(ULONG * SemHandle,
USHORT * RetVal);

Parameters

Name Type I/O Comments

SemHandle integer(4) I 4 bytes, generated by CRTSEM or
OPNSEM.

RetVal integer(2) O 2 bytes, return code from API call.

For the values refer to
ENMCloseSem.

Remarks
For return values, see the description of the call ENMCloseSem.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)
D DSSH1 DS
D SH1 1 4B 0

C CALLB 'CLSSEM'
C PARM DSSH1
C PARM RETVAL

68 MERVA Connection/400

CRTSEM
This function calls ENMCreateSem.

ENMCreateSem creates a semaphore with which API programs can synchronize
their access to resources or wait for MERVA alarms.

C Definition

VOID CRTSEM(ULONG * SemHandle,
UCHAR * SemName,
USHORT * RetVal);

Parameters

Name Type I/O Comments

SemHandle integer(4) O Length 4 bytes.

SemName string(80+1) I This is a null-terminated string
containing the name with which the
semaphore is to be created.

RetVal integer(2) O 2 bytes, return code from API call.

For the values refer to
ENMCreateSem.

Remarks
For return values, see the description of the call ENMCreateSem.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)
D DSSAMP DS
D SMSAMP 1 12 INZ('\SEM\SAMPLE2')
D T3 13 14B 0 INZ(0)
D DSSH2 DS
D SH2 1 4B 0

C RESETDSSAMP
C CALLB 'CRTSEM'
C PARM DSSH2
C PARM DSSAMP
C PARM RETVAL

Chapter 5. API for RPG/ILE 69

OPNSEM
This function calls ENMOpenSem.

ENMOpenSem opens an existing semaphore that was created by another process
with CRTSEM. The other process can run on the Windows NT system.

C Definition

VOID OPNSEM(ULONG * SemHandle,
UCHAR * SemName,
USHORT * RetVal);

Parameters

Name Type I/O Comments

SemHandle integer(4) O Length 4 bytes.

SemName string(80+1) I This is a null-terminated string
containing the name with which the
semaphore was created.

RetVal integer(2) O 2 bytes, return code from API call.

For the values refer to
ENMOpenSem.

Remarks
For return values, see the description of the call ENMOpenSem.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)
D DSSAMP DS
D SMSAMP 1 12 INZ('\SEM\SAMPLE2')
D T3 13 14B 0 INZ(0)
D DSSH2 DS
D SH2 1 4B 0

C RESETDSSAMP
C CALLB 'OPNSEM'
C PARM DSSH2
C PARM DSSAMP
C PARM RETVAL

70 MERVA Connection/400

SETSEM
This function calls ENMSetSem.

ENMSetSem sets a semaphore unconditionally, regardless of whether the
semaphore is already set. In MERVA, the semaphore can be cleared by a MERVA
alarm.

C Definition

VOID SETSEM(ULONG * SemHandle,
USHORT * RetVal);

Parameters

Name Type I/O Comments

SemHandle integer(4) I 4 bytes, generated by CRTSEM or
OPNSEM.

RetVal integer(2) O 2 bytes, return code from API call.

For the values refer to ENMSetSem.

Remarks
For return values, see the description of the call ENMSetSem.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)
D DSSH1 DS
D SH1 1 4B 0

C CALLB 'SETSEM'
C PARM DSSH1
C PARM RETVAL

Chapter 5. API for RPG/ILE 71

WTSEMLST
This function calls ENMWaitSemList.

ENMWaitSemList blocks the current process until one of the specified semaphores
is cleared. It allows the API program to wait for a list of up to 16 semaphores and
thus for up to 16 different MERVA alarms.

C Definition

VOID WTSEMLST(USHORT * Index,
ULONG * Timeout,
USHORT * RetVal,
ULONG * SemHandle,

...,
(ULONG) 0);1

Parameters

Name Type I/O Comments

Index integer(2) O Index of semaphore that has been
cleared. 2

Timeout integer(4) I Action taken when none of the
semaphores satisfies the wait request
(see table below).

RetVal integer(2) O 2 bytes, return code from API call.

For the values refer to
ENMWaitSemList.

Semhandle integer(4) I Up to 16 SemHandles, generated by
CRTSEM or OPNSEM.

0 integer(4) I Terminates list of semaphore handles.

Table 2. Possible Values for Parameter Timeouts and Their Meaning

Value Effect

-1 Wait indefinitely for a semaphore to be cleared.

0 Return immediately.

>0 Wait the indicated number of milliseconds for a semaphore to be cleared
before resuming execution.

Remarks
For return values, see the description of the call ENMWaitSemList.

RPG/ILE Language Example

D DSRET DS
D RETVAL 1 2B 0 INZ(0)
D DSSH1 DS
D SH1 1 4B 0

1. The last parameter ((ULONG)0) is not part of the C function prototype. It is shows that the list of SemHandle parameters must be
terminated by the value 0 (4 bytes).

2. If the first semaphore of the input list is cleared, the index value is 0. For succeeding semaphores, the value is 1 to 15.

72 MERVA Connection/400

D DSSH2 DS
D SH2 1 4B 0
D DSSH3 DS
D SH3 1 4B 0
D DSTIM DS
D TIMOUT 1 4B 0 INZ(-1)
D DSIDX DS
D INDEX 1 2B 0 INZ(1)

*
* ... create semhandles SH1/2 with OPNSEM or CRTSEM
*

C Z-ADD 0 SH3
C Z-ADD -1 TIMOUT
C CALLB 'WTSEMLST'
C PARM DSIDX
C PARM DSTIM
C PARM RETVAL
C PARM DSSH1
C PARM DSSH2
C PARM DSSH3

Chapter 5. API for RPG/ILE 73

Error Handling
The following function handles errors.

74 MERVA Connection/400

REASON
This function calls ENMGetReason.

ENMGetReason returns a reason code for an internal error in MERVA
Connection/400.

For a description of the values refer to the function ENMGetReason in “Handling
Errors” on page 15.

C Definition

VOID REASON(USHORT * RetVal);

Parameters

Name Type I/O Comments

RetVal integer(2) O 2 bytes, return code from API call.

Chapter 5. API for RPG/ILE 75

76 MERVA Connection/400

Chapter 6. Security

Security is an important requirement of all financial institutions. The security of
message transfers is determined by:
v Encryption of transferred data
v Authentication of transferred data

MERVA Connection/400 supports encryption and authentication.

Encryption of Transferred Information
To encrypt data, you activate user exits. User exits allow you to include your own
algorithm or products that support encryption and decryption routines.

The following user exits are valid:
v ENM4ExitEncrypt for encryption
v ENM4ExitDecrypt for decryption.

For detailed information on how to implement these routines, refer to “User Exit
Interfaces”.

Authentication of Transferred Information
To generate an authentication key that covers all exchanged data, you activate user
exits. User exits allow you to include your own algorithm or products that support
authentication routines.

The following user exits are valid:
v ENM4ExitMacGen for MAC generation
v ENM4ExitMacVerify for MAC verification.

For detailed information on how to implement these routines, refer to “User Exit
Interfaces”.

User Exit Interfaces
API calls and user exits are different:
v For an API call, you write a program that calls the API routine provided by

MERVA Connection/400.
v A user exit is a routine that is written by you and called by MERVA

Connection/400. The user exit routines must contain the declaration for the
function name and formal parameter list, as described in the following sections.

User Exit Points
The following figure shows you an example of an API function that is is called by
an API program on your operating system. You can see who calls a user exit at
which processing step. In the figure, the following abbreviations are used for the
user exits:

ENCRYP ENM4ExitEncrypt

DECRYP ENM4ExitDecrypt

© Copyright IBM Corp. 1997, 1999 77

MACGEN ENM4ExitMacGen

MACVFY ENM4ExitMacVerify

User Exit Interfaces in C/ILE Language
The data types that are used in these routines can be different depending on the
operating system on which they are implemented. For detailed information refer to
“Appendix D. Sample Security User Exits” on page 93.

The following description of the user exit interface uses the sample program
ENM4SSEC. The source and a compiled version of this program are delivered
with MERVA Connection/400. To use the sample for your implementation of the
user exits, do the following on the different operating systems:

AS/400 Link ENM4SSEC instead of ENM4SNIL as shown in “Generating
and Activating Security User Exits on the AS/400” on page 84.

Figure 5. User Exit Points

78 MERVA Connection/400

Windows NT Copy ENM4SSEC.DLL to ENM4SXIT.DLL. In the delivered code,
ENM4SXIT.DLL is a copy of ENM4SNIL.DLL in which all user
exits are coded as empty functions.

Chapter 6. Security 79

User Exit for Encryption

C Definition

unsigned short ENM4ExitEncrypt (unsigned char* pucApplId,
unsigned char* pucBuffer,
unsigned short usBufferLen);

Purpose of the User Exit Routine
Encrypts the passed data buffer.

Parameter Description
The following parameters are required:
v pucApplId(unsigned char*)

Address of a null-terminated string up to 8 characters long. The string contains
the application identifier that is a parameter of the API call ENMStartRAPI. You
can use this string to specify different encryption keys for different partner
connections. You can also specify the connections or API programs for which the
information is to be encrypted.

v pucBuffer(unsigned char*)
Address of the data buffer to be encrypted.

v usBufferLen(unsigned short)
Length of the data buffer to be encrypted.

80 MERVA Connection/400

User Exit for Decryption

C Definition

unsigned short ENM4ExitDecrypt (unsigned char* pucApplId,
unsigned char* pucBuffer,
unsigned short usBufferLen);

Purpose of the User Exit Routine
Decrypts the passed data buffer.

Parameter Description
The following parameters are required:
v pucApplId(unsigned char*)

Address of a null-terminated string up to 8 characters long. The string contains
the application identifier that is a parameter of the API call ENMStartRAPI. You
can use this string to specify different decryption keys for different partner
connections. You can also specify the connections or API programs for which the
information is to be decrypted.

v pucBuffer(unsigned char*)
Address of the data buffer to be decrypted.

v usBufferLen(unsigned short)
Length of the data buffer to be decrypted.

Chapter 6. Security 81

User Exit for Message Authentication Code (MAC) Generation

C Definition

unsigned short ENM4ExitMacGen (unsigned char* pucApplId,
unsigned char* pucBuffer,
unsigned short usBufferLen,
unsigned char* pucMacBuffer);

Purpose of the User Exit Routine
Generates a (MAC) for the passed data buffer.

Parameter Description
The following parameters are required:
v pucApplId(unsigned char*)

Address of a null-terminated string up to 8 characters long. The string contains
the application identifier that is a parameter of the API call ENMStartRAPI. You
can use this string to specify different MAC generation algorithms for different
partner connections. You can also specify the connections or API programs for
which a MAC is to be generated.

v pucBuffer(unsigned char*)
Address of the data buffer for which a MAC is to be generated.

v usBufferLen(unsigned short)
Length of the data buffer for which a MAC is to be generated.

v pucMacBuffer(unsigned char*)
Address of the area to which the generated MAC is to be copied. The address
can be up to 32 bytes long.

82 MERVA Connection/400

User Exit for MAC Verification

C Definition

unsigned short ENM4ExitMacVerify (unsigned char* pucApplId,
unsigned char* pucBuffer,
unsigned short usBufferLen,
unsigned char pucMacBuffer);

Purpose of the User Exit Routine
Generates a MAC for the passed data buffer and compares it with the passed
MAC. If both MACs match, set the return code to 0. If they do not match, set the
return code to 1.

Parameter Description
The following parameters are required:
v pucApplId(unsigned char*)

Address of a null-terminated string up to 8 characters long. The string contains
the application identifier that is a parameter of the API call ENMStartRAPI. You
can use this string to specify different MAC verification algorithms for different
partner connections. You can also specify the connections or API programs for
which a MAC is to be verified.

v pucBuffer(unsigned char*)
Address of the data buffer for which a MAC is to be generated and for which
the passed MAC is generated on the partner side.

v usBufferLen(unsigned short)
Length of the data buffer for which a MAC is to be generated.

v pucMacBuffer(unsigned char*)
Address of the area that holds the MAC key from the partner side. The address
can be up to 32 bytes long.

Chapter 6. Security 83

Replacing Security User Exits
This section describes how to generate and activate your own security user exits
on AS/400 and Windows NT.

Generating and Activating Security User Exits on the AS/400
To access sample security exits on the AS/400, link ENM4SSEC instead of
ENM4SNIL. For a detailed description refer to “User Exit Interfaces” on page 77.
To replace the sample user exits by your own routines, use the module
ENM4SSEC as a skeleton and compile it with the CRTCMOD command.

The following example shows you how to do this.
CRTCMOD PGM (MYAPILIB/ENM4SSEC)

SRCFILE (MYAPILIB/QCLESRC)
SRCMBR (ENM4SSEC)
TEXT ('ILE C/400 Security User Exit')

To bind the modules, use the the CRTPGM command as shown in the following
example.
CRTPGM PGM (MYAPILIB/ENM4SSEC)

MODULE (MYAPILIB/ENM4SSEC
ENMRAPI/ENM4RAPI
ENMRAPI/ENM4RUTL
ENMRAPI/ENM4RPRF
ENMRAPI/ENM4SNIL)

If your module has a different name, replace ENM4SSEC.

Generating and Activating Security User Exits on the MERVA
Server System

To access the sample security user exits on the Remote MERVA API Server on
Windows NT, you must use the user exit routines from the shared library
enmcrxit.dll. To replace the sample user exits by your own routines, use the file
enmcrsec.c as a skeleton.

The subdirectory userexit of the installed MERVA Server System contains the make
file enmnrsec.mak. To create the new dll from enmcrsec.c, use the following
command:
nmake /f enmnrsec.mak

Then, replace the previous enmcrxit.dll with the new enmcrxit.dll.

If your source file name is different from enmcrsec.c, replace every occurrence of
enmcrsec in the make file enmnrsec.mak with your source file name.

84 MERVA Connection/400

Appendix A. Diagnosis Information

The diagnosis information is written to the log files on the AS/400 or the Windows
NT system.

Log Files on the Remote MERVA API Client (AS/400)
On the AS/400, two log files are created. You can define the file names and the
logging level in the MERVA Connection/400 profile.

For a description of the profile contents refer to “Changing Profile Settings” on
page 4.

Diagnosis Log
The diagnosis log contains the following information:
v Error messages that help you recover from errors that occur when you use the

API calls or from errors that refer to the communication with Windows NT.
v Trace information when the API trace is started with the call ENMTrace. For

details refer to the MERVA USE & Branch for Windows NT Application
Programming Guide.

Programmer’s Log
The programmer’s log is a debugging tool. It contains the same entries as the
diagnosis log. Additionally, it contains information that can be analyzed by your
IBM representative.

The logging level in the MERVA Connection/400 profile specifies the amount of
log information. The following logging levels are valid:
v Level 1: No data is written to the log.
v Level 2 and 3: No data is written to the log.
v Level 4: Records the activities of MERVA Connection/400 in detail. Use this level

for debugging or demonstration purposes, for example, for the MERVA
Connection/400 installation verification.

Log Message Layout
The log message consists of the message header and the message body. The
following figure shows you an example of a diagnosis log:

© Copyright IBM Corp. 1997, 1999 85

The layout of the message header is:

Date In the form of YYYYMMDD, where YYYY denotes
the year, MM the month, and DD the day.

Time In the form of HHMMSS, where HH denotes the
hour, MM the minutes, and SS the seconds.

Module name A code that consists of 8 characters. It identifies the
module from which the message comes.

Function name A code that consists of 15 characters. It identifies
the function from which the message comes.

The layout of the message body is:

Message The message that is to be recorded. The length of the message can
vary. For an explanation of the message, refer to the MERVA USE &
Branch for Windows NT Application Programming Guide.

Note: The logs are not deleted automatically.

Log Files on the Remote MERVA API Server System
MERVA log files contain diagnosis information about the Remote MERVA API
Server program. The diagnosis log contains error and trace information. The
programmer’s log contains IBM service information.

You can view the contents of the diagnosis log file by using the function Display
Diagnosis Log of the MERVA menu program.

The log files are located in the MERVA instance logging directory. For more
information about the MERVA instance, refer to the MERVA USE & Branch for
Windows NT Application Programming Guide.

* 19990402192358ENM4RAPI ENMRestartRAPI 00000 00000
ENM9153: API function ENMRestartRAPI called.

Parameters:
App: SAMPLE3

* 19990402192357ENM4RUTL APIInit 00000 00000
ENM9108: Error in CPIC Call CMALLC RC = 19.

* 19990402192413ENM4RAPI ENMRestartRAPI
ENM9109: Error in APPC Initialization.

* 19990402192413ENM4RAPI ENMRestartRAPI
ENM9152: API function returned with reason code 2130.

Figure 6. Example of Diagnosis Log

86 MERVA Connection/400

Appendix B. Sample Network Definitions for the AS/400

This appendix shows you sample network definitions for the AS/400.

Communication Side Information (MERVA)
Side information : MERVA
Library : ENMRSMP
Remote location : CPNAME
Transaction program : ENMRAS
Device : *LOC
Local location : *LOC
Mode : *NETATR
Remote network identifier : NETNAME <= adapt to your needs
Text : Connection to MERVA Remote API server

Device Definition (MERVA)
Device description : DEVD MERVA
Option : OPTION *ALL
Category of device : *APPC
Remote location : RMTLOCNAME CPNAME
Online at IPL : ONLINE *NO
Local location : LCLLOCNAME AS400LU
Remote network identifier : RMTNETID *NETATR
Attached controller : CTL MERVA
Message queue : MSGQ QSYSOPR

Library : *LIBL
Local location address : LOCADR 00
APPN-capable : APPN *YES
Single session : SNGSSN

Single session capable : *NO
Text : TEXT AUTOMATICALLY CREATED BY QLUS

-------------------------Mode--------------------------
*NETATR

Controller Definition (MERVA)
Controller description : CTLD MERVA
Option : OPTION *ALL
Category of controller : *APPC
Link type : LINKTYPE *LAN
Online at IPL : ONLINE *YES
Active switched line : TOK1
Character code : CODE *EBCDIC
Maximum frame size : MAXFRAME 16393
Remote network identifier : RMTNETID NETNAME
Remote control point : RMTCPNAME CPNAME
Initial connection : INLCNN *DIAL
Switched disconnect : SWTDSC *NO
Data link role : ROLE *NEG
LAN remote adapter address : ADPTADR FFFFFFFFFFFF
LAN DSAP : DSAP 04
LAN SSAP : SSAP 04
Text : TEXT MERVA connection
Switched line list : SWTLINLST

--------------------Switched Lines---------------------
TOK1

© Copyright IBM Corp. 1997, 1999 87

-------------------Attached Devices--------------------
MERVA

APPN-capable : APPN *YES
APPN CP session support : CPSSN *YES
APPN node type : NODETYPE *CALC
APPN transmission group number . . : TMSGRPNBR *CALC
APPN minimum switched status . . . : MINSWTSTS *VRYONPND
Model controller description . . . : MDLCTL *NO
Control owner : CTLOWN *USER

LAN frame retry : LANFRMRTY 10
LAN connection retry : LANCNNRTY 10
LAN response timer : LANRSPTMR 10
LAN connection timer : LANCNNTMR 70
LAN acknowledgement timer : LANACKTMR 1
LAN inactivity timer : LANINACTMR 100
LAN acknowledgement frequency . . : LANACKFRQ 1
LAN max outstanding frames : LANMAXOUT 2
LAN access priority : LANACCPTY 0
LAN window step : LANWDWSTP *NONE
Recovery limits : CMNRCYLMT

Count limit : 2
Time interval : 5

Mode Description for QPCSUPP
Mode description : MODD QPCSUPP
Class-of-service : COS #CONNECT
Maximum sessions : MAXSSN 64
Maximum conversations : MAXCNV 64
Locally controlled sessions . . . : LCLCTLSSN 0
Pre-established sessions : PREESTSSN 0
Inbound pacing value : INPACING 7
Outbound pacing value : OUTPACING 7
Maximum length of request unit . . : MAXLENRU *CALC
Text : TEXT AS/400 PC Support mode entry

Note: Client Access/400 is not prerequisite for MERVA Connection/400. If Client
Access/400 is installed, you can use the mode controller and device
description that is configured for Client Access/400 also for MERVA
Connection/400.

88 MERVA Connection/400

Appendix C. Sample Network Definitions for Windows NT

MERVA Connection/400 uses LU 6.2 sessions for the communication between the
Remote MERVA API Client and Server in the SNA Data Communication
environment.

This appendix shows a sample network definition for Windows NT.

The naming conventions for the SNA resources in the sample network node
(MERVA Server System) are:

APPN1
The name of the sample network.

ENA The control point name.

LUA The name of an independent LU 6.2 in ENA.

ENMRAS
The name of the transaction program (MERVA Connection/NT Server) on
the server node.

ASS400LU
The name of the partner LU (AS400).

Customizing an APPN End Node
For a detailed description on how to configure an end node in a two-node APPN
(R) network, refer to the Communications Server for Windows NT User’s Guide. It is
assumed that you are familiar with this description.

To set up the local node, start the SNA Node Configuration of the
Communications Server and enter the corresponding parameters.

The following tables show the different APPN configuration parameters.

Table 3. Configure Node

Parameter Value

Basic

Fully qualified CP name APPN, ENA

CP alias ENA

Local node ID No changes

Advanced

Registration with network node server Yes

Registration with central directory server Yes

All others No changes

© Copyright IBM Corp. 1997, 1999 89

Table 4. Configure Devices (DLC:LAN)

Parameter Value

Adapter number 0 (Use the first available adapter number)

All others No changes

Table 5. Configure Connections (DLC:LAN)

Parameter Value

Basic

Link station name LINK0000

Destination address 4000400D6000

Advanced

APPN support Yes

Activate link at start Yes

Link to preferred NN server -

Adjacent Node

Adjacent CP name -

Adjacent CP type APPN node

All others No changes

Table 6. Configure Partner LU 6.2

Parameter Value

Basic

Partner LU name APPN1, AS400LU

Partner LU alias AS400LU

Fully qualified CP name -

Advanced

Conversation security support Yes

All others No changes

Table 7. Configure Modes

Parameter Value

Basic

Mode name APPCLU62

Advanced

Maximum RU size 1,024

All others No changes

90 MERVA Connection/400

Table 8. Configure Local LU 6.2

Parameter Value

Local LU name LUA

Local LU alias LUA

LU session limit 0 (no limit)

All others No changes

Table 9. Configure Transaction Programs

Parameter Value

Basic

TP name ENMRAS

Complete path name c:\MERVA\USE_Branch\bin\enmcrtpi.exe

Program parameters ENMRAS merva1 TS=0 TP=C:\temp

Conversation security required Yes

All others No changes

Advanced

Background process Yes

Table 10. Configure User ID Password

Parameter Value

Security user ID SAMPLE (or defined by you)

Security password SAMPLE1 (corresponding password)

Appendix C. Sample Network Definitions for Windows NT 91

92 MERVA Connection/400

Appendix D. Sample Security User Exits

This appendix describes several sample security user exits that you can use.

Module ENM4SNIL - Empty Functions
The MERVA Connection/400 version supplied to you contains the module
ENM4SNIL. Note that data that is transferred between the MERVA Server and the
AS/400 is not encrypted. An authentication key is not built or transferred. You can
use this program as a skeleton for your code.

Module ENM4SSEC - Sample Functions
The module ENM4SSEC shows you how to code your security functions. It
includes basic encryption and authentication routines. Note that these routines do
not provide genuine security.

Module ENM4SRPG - Calling Programs With One Entry Point
The module ENM4SRPG shows you how to call a single program for each security
user exit. You can write the user exits in the RPG language.

User Exits as Single Programs on the AS/400
The following examples show you how to code your security functions. Basic
encryption and authentication routines are included. Note that they do not provide
genuine security.
v ENM4SMG – MAC Generation
v ENM4SMV – MAC Verification
v ENM4SEN – Encryption
v ENM4SDE – Decryption

© Copyright IBM Corp. 1997, 1999 93

94 MERVA Connection/400

Appendix E. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Deutschland
Informationssysteme GmbH
Department 3982
Pascalstrasse 100

© Copyright IBM Corp. 1997, 1999 95

70569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement
or any equivalent agreement between us.

The following paragraph does apply to the US only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States,
or other countries, or both:
v AIX
v AIX/6000
v AS/400
v C/2
v C/400
v C/ILE
v COBOL/400
v DATABASE 2
v DB2
v IBM
v MERVA
v Operating System/2
v OS/2
v OS/400
v Personal System/2
v PS/2
v RISC System/6000
v RPG/400

96 MERVA Connection/400

v RPG/ILE
v RS/6000
v SAA
v Systems Application Architecture

Workstation (AWS) and Directory Services Application (DSA) are trademarks of
S.W.I.F.T., La Hulpe in Belgium.

Pentium is a trademark of Intel Corporation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Microsoft, Windows, and the Windows 95 logo are trademarks or registered
trademarks of Microsoft Corporation.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix E. Notices 97

98 MERVA Connection/400

Glossary of Terms and Abbreviations

This glossary defines terms and abbreviations as
they are used in the MERVA books. If you do not
find the terms you are looking for, refer to
Dictionary of Computing, New York: McGraw-Hill,
1994, or the S.W.I.F.T. User Handbook.

A
AMPDU. Application Message Protocol Data Unit
defined in the MERVA Link P1 protocol. It consists of
an envelope and ASP-supplied information.

answerback. In telex, the response from the dialed
correspondent to the “WHO R U” signal.

AP. Application.

APC. Application Control.

APAR. Authorized Program Analysis Report.

APDU. Application Protocol Data Unit.

API. Application Programming Interface.

APPC. Advanced Program-to-Program
Communication based on LU 6.2 protocols.

Application Support (AS). Name of the upper
sublayer functionality of MERVA Link.

Application Support Layer (ASL). Contains the
Application Support functionality.

Application Support Process (ASP). Part of MERVA
Link that implements the Application Support Layer.

AS. Application Support.

ASCII. American Standard Code for Information
Interchange.

ASL. Application Support Layer.

ASP. Application Support Process.

ASPDU. Application Support Protocol Data Unit
defined in the MERVA Link P2 protocol.

association timeout. The period of time allowed for
the establishment of a MERVA Link session with the
remote partner before giving up.

authentication. The S.W.I.F.T. security check to ensure
that a message is not changed during transmission and
that a message is sent by an authorized sender.

authenticator key. A set of alphanumeric characters
used to check the authentication of a message sent via
the S.W.I.F.T. network.

authenticator-key file. A file that contains the keys to
authenticate messages. It also contains a record for each
correspondent bank.

B
Bank Identifier Code (BIC). The S.W.I.F.T. address of
a bank as assigned by S.W.I.F.T. See also S.W.I.F.T.
address.

BCR. Basic Card Reader.

BIC. Bank Identifier Code. See also S.W.I.F.T. address.

bi-directional key. A bilateral key that authenticates
messages sent to and received from a correspondent.

bilateral key. A key that is generated inside an SCR. It
authenticates financial messages interchanged with two
correspondents. A bilateral key can be bi-directional or
uni-directional.

bilateral key exchange (BKE) service. The S.W.I.F.T.
USE service in which authenticator keys are generated
in an SCR and exchanged via the S.W.I.F.T. network
instead of being exchanged by mail.

BK. Bilateral Key.

BKE. Bilateral Key Exchange.

BK ID. Bilateral Key Identifier. The BK ID has the
following format:
v The first character is either B (Bilateral) or M

(Manual).
v The second character is the BK type, as defined by

S.W.I.F.T.
v Characters 3 to 8 denote the date.
v Characters 9 to 16 denote the key check value.

blacklist. A list of USE items, such as SCRs or CVs,
that are no longer valid. For example, a stolen SCR is
blacklisted to prevent future use.

branch code. The last 3 digits of the BIC to identify a
bank.

C
CBT. S.W.I.F.T. Computer-Based Terminal.

© Copyright IBM Corp. 1997, 1999 99

certificate. A guarantee by S.W.I.F.T. that the holder of
a public key is genuine. You need a certificate for each
public key that you want to generate before you can
start bilateral key exchange.

CHK. checksum trailer.

CID. Central Institution Destination.

Communication Services (CS). With CS, you can use
Communications Server or Personal Communications.

Control Center. See MERVA Control Center.

control database. Contains MERVA-specific
configuration data, such as routing table information,
system configuration data, and user-specific
information, such as the user file with details of
MERVA users and their access rights to functions and
queues.

correspondent. An institution to which your
institution sends messages and from which messages
are received.

correspondents database. A database that contains the
S.W.I.F.T. address, nickname, descriptive name, and
address of each bank with which your bank
corresponds. The file is used to store the descriptive
names and addresses that are needed in the address
expansion process.

country code. A 2-character code that is part of the
BIC to identify countries.

CRC. Cyclic Redundancy Check.

CS. Communication Services.

CUG. Closed User Group.

CV. See certificate.

CV ID. Certificate Identity. A unique identifier of a
certificate that consists of the destination, expiring date,
and number of the certificate.

D
destination. For S.W.I.F.T., the first 8 characters of the
S.W.I.F.T. address that consists of the bank, country, and
location codes.

DTE. Data Terminal Equipment.

DTR. Data Terminal Ready.

domain. A set of workstations that share a MERVA
installation. The MERVA domain is a part of the
MERVA Message Reference Number (MRN).

E
emitting destination. The S.W.I.F.T. destination that is
shown on messages sent to S.W.I.F.T. You must specify
the emitting destination, for example, when you send a
message to S.W.I.F.T. to request the blacklisting of a
card reader.

F
FIN. Financial Application (S.W.I.F.T.).

four-eyes principle. A banking security concept in
which changes and the approval of changes must
always be done by two different people.

I
IAM. Interapplication Messaging.

ICC. Integrated Circuit Card.

IM-ASPDU. Interapplication Messaging Application
Support PDU. It contains an application message and
consists of a header and a body.

initiator. The correspondent that starts bilateral key
exchanges. See also responder.

Interapplication messaging (IAM). Interapplication
messaging is used as a MERVA Link message exchange
protocol.

ISC. Intersystem Communication.

ISN. Input Sequence Number.

ISO. International Organization for Standardization.

K
kernel. A secret value stored on a USER ICC for each
LT to define access rights to S.W.I.F.T. applications and
to generate session keys. Each USER ICC has eight
kernels.

kernel version. A pointer to the kernel that is
currently in use.

key check value. (1) Part of the BK ID. If you
encounter problems when you communicate with your
correspondent, check whether the key check value is
identical to your correspondent’s key value. (2) Part of
the secure transmission key (STK), to check whether you
have entered the remainder of the STK correctly.

KMA. Key Management Authority.

100 MERVA Connection/400

L
LAK. Login Acknowledgment Message. This message
informs you that you have successfully logged on to
the S.W.I.F.T. network.

LNK. S.W.I.F.T. login negative acknowledgment
message. This message informs you that the login to
the S.W.I.F.T. network has failed.

local LU name. The logical unit name or workstation
identifier of the local machine.

logging database. Contains all MERVA audit logging
data.

logical unit. In SNA, a port through which the user
accesses the SNA network.

LSN. Login Sequence Number.

LT or LTERM. Logical Terminal. The S.W.I.F.T. II
equivalent of the TID (Terminal Identifier).

LU name. Name of the Logical Unit.

M
MAC. Message Authentication Code.

master logical terminal. The 9-character code assigned
by S.W.I.F.T. to uniquely identify each terminal attached
to the S.W.I.F.T. II network.

MERVA. Message Entry and Routing with Interfaces
to Various Applications.

MERVA Control Center. A program to:
v Start a MERVA instance.
v Stop a MERVA instance.
v Show the status of a MERVA instance.
v Maintain MERVA databases.

MERVA domain. See domain.

MERVA Link. The component to interconnect MERVA
systems.

MERVA Workstation. Message Entry and Routing
with Interfaces to Various Applications USE & Branch
for Windows NT.

message. A string of fields in a predefined form to
provide or request information. See also S.W.I.F.T.
message.

message buffer. The part of the queue buffer that
holds messages in network format.

message database. Contains all messages created by
the user or received by the MERVA system.

message field. A predefined part of a message,
identified either by a known offset from the start of a
message, or by a delimiter known as a scan pattern.

message header. The leading part of a message that
contains the sender and receiver of the message, the
message priority, and the type of message.

message integrity. A facility provided by MERVA
Link. It ensures that in case of an interruption during
message exchange duplicates of messages are not sent.
It also ensures that no messages are lost.

message integrity protocol. A facility used by MERVA
Link to assist the provision of message integrity.

message queue. A queue used to store messages on a
first-in, first-out basis.

message reference number (MRN). A unique 16-digit
identifier assigned by MERVA to each message for
identification purposes. The message reference number
consists of an 8-character domain identifier followed by
an 8-digit sequence number.

message separator. A predefined series of characters
used to separate message fields. For example, :32A is
the separator of the S.W.I.F.T. currency field. Also
known as a scan pattern.

message sequence number (MSN). MERVA Link
protocol element. Sequence number for messages
transferred by MERVA Link.

message transfer. The name of the lower sublayer
functionality of MERVA Link.

Message Transfer Process or Program (MTP).
Exchanges messages and reports with this partner. The
conversation protocol used by these programs must be
bilaterally agreed between two programs. The MERVA
Link Message Transfer Program supports a specific
remote partner MTP.

message type (MT). A number of up to 7 digits long,
that identifies a message. S.W.I.F.T. messages are
identified by a 3-digit number; for example, S.W.I.F.T.
message type MT S100.

MPDU. Message Protocol Data Unit defined in the
MERVA Link P1 protocol.

MRN. Message Reference Number.

msg ID. Message Identifier.

MSN. Message Sequence Number.

MTN. Message Transfer Node. The unique identifier
of a MERVA Link system. Exchanged as part of the
address information when establishing a connection
with a remote MERVA Link system.

MTP. Message Transfer Process or Program.

Glossary of Terms and Abbreviations 101

N
nested message. A message that is composed of one
or more message types. For example, SWIFT MT 195
could be used to request information about a S.W.I.F.T.
MT 100. The S.W.I.F.T. MT 100 (only mandatory fields)
is then nested in S.W.I.F.T. MT 195.

network identifier. A single character stored with the
message in the MERVA message database that shows
which network is to be used to send the message. For
example, S for S.W.I.F.T.

NCP. Network Control Program.

nickname. An abbreviation or synonym of the Bank
Identifier Code (BIC) of a financial institution with
which you frequently correspond.

NSDU. Network Service Data Unit. A logical unit of
data used at the network layer of the SWIFT Link
communications protocol.

O
OSI. Open System Interconnection.

OSN. Output Sequence Number.

P
PAC. Proprietary Authentication Code.

Partner Table (PT). In MERVA ESA, the Partner Table
defines message processing in MERVA Link. It consists
of a header and different entries, such as entries to
define the message-processing parameters of an ASP or
MTP.

PDE. Possible Duplicate Emission.

PDU. Protocol Data Unit.

Personal Identification Number (PIN). A 6-digit
confidential code number used to restrict the use of
ICCs to authorized card holders only.

personalize. To customize the information stored
about a card set. This includes unblocking the cards,
setting the PIN parameters, and for USER cards, setting
the LT access rights.

PIN. Personal Identification Number.

pre-agreement. An agreement between an institution
and its correspondents that governs the exchange of
bilateral keys.

protocol data unit (PDU). In MERVA Link, a PDU
consists of a structured sequence of implicit and
explicit data elements:
v Implicit data elements contain other data elements.

v Explicit data elements do not contain any other data
elements.

PSN. Public Switched Network (connection).

PSPDN. Packet Switched Public Data Network.

PSTN. Public Switched Telephone Network.

PT. MERVA Link Partner Table (for MERVA ESA).

PTF. Program Temporary Fix.

PTT. National Post and Telecommunication Authority
(post, telegraph, telephone).

PU. Physical Unit.

public key. A key with which an institution enciphers
a bilateral key received from a correspondent. See also
secret key.

purpose group. A logical grouping of queues
associated with a function. The function processes the
messages to all queues that belong to the purpose
group.

P1. In MERVA Link, a peer-to-peer protocol between
cooperating ASPs in remote systems.

P2. In MERVA Link, a peer-to-peer protocol between
cooperating MTPs in remote systems.

Q
queue. See message queue.

queue buffer. The internal representation of a MERVA
message when held in a queue.

queue management. A MERVA process that handles
the storing and retrieval of messages in the message
database.

R
repeatable sequence. A field or group of fields that
can be successively entered or displayed more than
once in a message.

responder. The correspondent that does not initiate a
bilateral key exchange. See also initiator.

routing. The passing of messages from one of the
processing stages in a predefined processing path to the
next stage.

routing condition. A logical test to determine the
target queues to which messages are sent. Routing
conditions are defined for source queues. A source
queue is the queue from which messages are taken for
further routing. You can check:
v The presence of a field within a message

102 MERVA Connection/400

v The presence of data within a message field
v The value of the contents of a message field

RSA. Asymmetric cryptographic algorithm designed
by Rivest, Shamir, and Adleman.

S
scan pattern. A character string that is placed between
message fields to identify where a field begins. It is
also known as a tag.

SCR. Secure Card Reader.

SDLC. Synchronous Data Link Control.

secret key. The part of an RSA key to encipher
bilateral keys. It remains stored inside the SCR. See also
public key.

secure login and select (SLS) service. ICC-based
alternative to paper LOGIN/SELECT tables.

secure transmission key (STK). Generated by the SCR
to protect the transfer of bilateral keys over the link
between the SCR and the workstation. The STK is also
used in the workstation to store the bilateral keys
securely.

security management center (SMC). The S.W.I.F.T.
facility responsible for security administration and the
issue of ICCs to users. The SMC also acts as the
certification authority for Public RSA keys.

session key (SK). A number required for each LOGIN
and SELECT request.

SK. Session Key.

SK number. A parameter stored on an ICC. It
specifies the number of session keys that can be
generated with a USER card before the user must enter
the PIN again.

SLS. Secure Login and Select.

SMC. Security Management Center.

SNA. Systems Network Architecture.

source queue. In a routing condition, the queue from
which messages are routed to the next defined message
queue.

SSN. Select Sequence Number.

STK. Secure Transmission Key.

subfield. A subdivision of a field with a specific
meaning. For example, S.W.I.F.T. field 32 has the
subfields date, currency, and amount. A field can have
several subfield layouts depending on how the field is
used in a particular message.

S.W.I.F.T. Society for Worldwide Interbank Financial
Telecommunication, s.c. (S.W.I.F.T.).

S.W.I.F.T. II. Refers to the S.W.I.F.T. II network of the
Society for Worldwide Interbank Financial
Telecommunication, s.c. (S.W.I.F.T.).

S.W.I.F.T. address. A code used to identify a bank
within the S.W.I.F.T. network. The code is also called a
bank identifier code (BIC) or a terminal identifier. It is
assigned by S.W.I.F.T.

S.W.I.F.T. correspondents database. The database that
contains the S.W.I.F.T. address or BIC, together with the
name, postal address, and zip code of each financial
institution in the BIC directory.

S.W.I.F.T. destination address. The first 8 characters of
the S.W.I.F.T. address that consist of the bank, country,
and location codes.

S.W.I.F.T. financial message. A message in the
S.W.I.F.T. categories 1 to 9 that you can send or receive
via the S.W.I.F.T. network. See S.W.I.F.T. input message
and S.W.I.F.T. output message.

S.W.I.F.T. header. The leading part of a message that
contains the sender and receiver of the message, the
message priority, and the type of message.

S.W.I.F.T. input message. A S.W.I.F.T. message
prepared by a user to be sent to the S.W.I.F.T. network.

SWIFT Link. The MERVA component that provides
you with a link to the S.W.I.F.T. II network, enabling
you to send messages to and receive messages from the
S.W.I.F.T. network.

S.W.I.F.T. message. A message in one of the S.W.I.F.T.
categories as defined in the S.W.I.F.T. User Handbook
that can be sent or received via the S.W.I.F.T. network.
See also S.W.I.F.T. input message and S.W.I.F.T. output
message.

S.W.I.F.T. output message. A S.W.I.F.T. message from
the S.W.I.F.T. network.

S.W.I.F.T. system message. A message in S.W.I.F.T.
category 0.

systems network architecture (SNA). The description
of the logical structures, formats, protocols, and
operating sequences for transmitting information units
through networks. It also controls the configuration and
operation of networks.

T
tag. A field identifier, consisting of a 2- or 3-digit
number, or a 2-digit number followed by a letter.

target queue. In a routing condition, the message
queue to which messages are next routed.

Glossary of Terms and Abbreviations 103

TCT. Terminal Control Table.

technology flag. A parameter that is controlled by the
USOF. It tells S.W.I.F.T. which access technology, ICCs,
or paper tables are used by the LTs of a particular
destination.

TNG. Training trailer.

TPDU. Transport Protocol Data Unit. A logical unit of
data used at the Transport layer of the SWIFT Link
communications protocol.

TRN. Transaction Reference Number.

U
UKMO. User Key Management Officer.

uni-directional key. A type of bilateral key for which
different separate keys are used to authenticate
messages sent to and received from a correspondent.

USE. User Security Enhancements.

USER. SWIFT Link operator; the holder of a USER
ICC.

user file. The user file has a record for each MERVA
user, containing the user’s details. The record specifies
the functions that a user is allowed to access. The user
file can be accessed only by authorized users.

user key management officer (UKMO). The
administrator who is the holder of a UKMO ICC. The
UKMO is responsible to manage the exchange and use
of bilateral keys and other BKE-related functions.

user security officer (USOF). The administrator who
is the holder of a USOF ICC. The USOF is responsible
to control and manage ICCs, card readers, and their
related data.

USOF. User Security Officer.

W
whitelist flag. A mechanism to prevent the use of
cards that are suspected of being lost, stolen, or
otherwise compromised. If a card is lost, the USOF
increments the whitelist flag on the remaining cards,
thus rendering the whitelist flag on the lost card
incorrect.

X
X.25. ISO standard for interface to packet switched
communications services.

104 MERVA Connection/400

Bibliography

IBM Publications
With exception of the General Information and
the Licensed Program Specifications, all MERVA
books are available as softcopy on the
v MERVA Documentation CD, SK2T-9752

MERVA ESA Components Books
v MERVA ESA Components Licensed Program

Specifications, GH12-6333
v MERVA USE & Branch for Windows NT User’s

Guide, SH12-6334
v MERVA USE & Branch for Windows NT

Installation and Customization Guide, SH12-6335
v MERVA USE & Branch for Windows NT

Application Programming Guide, SH12-6336
v MERVA USE & Branch for Windows NT

Diagnosis Guide, SH12-6337
v MERVA USE & Branch for Windows NT

Migration Guide, SH12-6393
v MERVA USE Administration Guide, SH12-6338
v MERVA Connection/NT, SH12-6339
v MERVA Connection/400, SH12-6340
v MERVA Message Processing Client for Windows

NT User’s Guide, SH12-6341
v MERVA Automatic Message Import/Export Facility

User’s Guide, SH12-6389
v MERVA Workstation Based Functions, SH12-6383
v MERVA ESA V4 Traffic Reconciliation Guide,

SH12-6392
v MERVA ESA V4 Directory Services, SH12-6367

MERVA ESA Books
v MERVA ESA V4 Licensed Program Specifications,

GH12-6373
v MERVA ESA V4 Application Programming

Interface Guide, SH12-6374
v MERVA ESA V4 Operations Guide, SH12-6375
v MERVA ESA V4 User’s Guide, SH12-6376
v MERVA ESA V4 Macro Reference, SH12-6377
v MERVA ESA V4 Installation Guide, SH12-6378
v MERVA ESA V4 Messages and Codes, SH12-6379
v MERVA ESA V4 Customization Guide, SH12-6380

v MERVA ESA V4 Concepts and Components,
SH12-6381

v MERVA ESA V4 Diagnosis Guide, SH12-6382
v MERVA ESA V4 Advanced MERVA Link,

SH12-6390
v MERVA ESA V4 System Programming Guide,

SH12-6366

Further IBM Publications
v DB2 Administration Guide, S10J-8157
v DB2 Building Applications for Windows and OS/2

Environment, S10J-8160
v DB2 API Reference, S10J-8167
v DB2 Troubleshooting Guide, S10J-8169
v eNetwork Personal Communications Version 4.2 for

Windows 95 and Windows NT Quick Beginnings,
GC31-8476

v eNetwork Personal Communications Version 4.2 for
Windows 95 and Windows NT Reference,
GC31-8477

v CID Enablement Guidelines, S10H-9666
v CICS-RACF Security Guide, SC33-1185
v ITSC Redbook APPC Security: MVS/ESA,

CICS/ESA, and OS/2, GG24-3960
v IMS/ESA Version 4 Data Communication

Administration Guide, SC26-3060

S.W.I.F.T. Publications
The following books are published by the Society
for Worldwide Interbank Financial
Telecommunication, s.c., in La Hulpe, Belgium:
v S.W.I.F.T. User Handbook

v S.W.I.F.T. Dictionary

v S.W.I.F.T. Directory

v S.W.I.F.T. FIN Security Guide

v S.W.I.F.T. Card Readers User Guide

v S.W.I.F.T. Security Features Technical

© Copyright IBM Corp. 1997, 1999 105

106 MERVA Connection/400

Index

A
activating security user exits 84
ADDMSG 34
alarm 66
API

building ILE C/400 language
program 18

building RPG/ILE language
program 19

C language data types 9
functions 10
program, building 18
purpose group 34
RPG/ILE 23
structure 9
trace, turning on or off 63

API function (C)
ENMEndRAPI 14
ENMGetReason 16
ENMRestartRAPI 13
ENMSetProfile 11
ENMStartRAPI 12

API function (RPG/ILE)
ADDMSG 34
ATTACH 29
CLEAR 30
CLRSEM 67
CLSSEM 68
CREATE 31
CRTSEM 69
DELETMSG 35
DETACH 32
ENDAPPC 26
FIRSTMSG 40
FREEMSG 42
GETREST 55
KEYNEXT 43
KEYREAD 44
LASTMSG 46
NEXTMSG 48
OPNSEM 70
PREVMSG 50
PUTBUFF 53
PUTMSG 36
QUERYQU 62
READFLD 58
REASON 75
ROUTEADD 37
ROUTEPUT 38
RSTRTAPPC 25
SETPROF 27
SETSEM 71
STRTAPPC 24
TRACE 63
WHEREIS 64
WRITEFLD 60
WRTTRACE 65
WTSEMLST 72

application programming interface 9
ATTACH 29
attaching application program 29

authentication 77

B
buffer of message, size 52

C
C/ILE language 3
changing profile settings 4
CLEAR 30
clearing message space 30
closing a semaphore 68
CLRSEM 67
CLSSEM 68
COBOL/ILE, language 3
communication side information

initialization parameters 4
sample (MERVA2) 87

components of MERVA
Connection/400 2

connection to MERVA
disconnecting 14, 32
ending (RPG/ILE) 26
reconnecting remote program 13
restarting (RPG/ILE) 25
starting 12
starting with STRTAPPC

(RPG/ILE) 24
connection types 3
controller definition, sample 87
conversation with MERVA 10
CREATE 31
creating a semaphore 69
creating message space 31
CRTCMOD 18
CRTRPGMOD 19
CRTSEM 69
customizing MERVA Connection/400 4

D
decryption

user exit 81
defining

communication side information 87
controller 87
device 87
mode 88

deleting message space 30
DETACH 32
device definition, sample 87
diagnosis information

diagnosis log 85
log files on the Remote MERVA API

Client 85
log message layout 85
programmer’s log 85

diagnosis log
on the Remote MERVA API Server for

MERVA 86

diagnosis log (continued)
Remote MERVA API Client 85
writing string 65
writing with trace turned on 63

disconnecting from
MERVA 14
MERVA (RPG/ILE) 32

E
encryption

user exit 80
ENDAPPC 26
ENM4ExitDecrypt 81
ENM4ExitEncrypt 80
ENM4ExitMacVerify (C) 83
ENMEndRAPI 14
ENMGetReason 16
ENMRestartRAPI 13
ENMSetProfile 11
ENMStartRAPI 12
EPM, binding program into

environment 18
error handling 16, 75
establishing a session to MERVA

RPG/ILE 23

F
FIRSTMSG 40
FREEMSG 42
functions of MERVA Connection/400 1

G
general introduction of MERVA

Connection/400 1
generating security user exit

on the MERVA Server System 84
GETREST 55

I
ILE C/400 language program,

building 18
installation, verifying 8
installing MERVA Connection/400 3

program requirements 3
installing the Remote MERVA API

Client 3
installing the Remote MERVA API Client

of MERVA Connection/400
machine requirements 3

internal message buffer
maximum size (RPG/ILE) 52
reading data 55
storing data 53

introduction of MERVA
Connection/400 1

K
KEYNEXT 43
KEYREAD 44

© Copyright IBM Corp. 1997, 1999 107

L
LASTMSG 46
log file

on the Remote MERVA API Server for
MERVA 86

log message layout 85

M
MAC

user exit 82
verifying user exit 83

machine requirements 3
MERVA Connection/400

components 2
connection types 3
customizing 4
functions 1
installing 3
network definition 4
objectives 1
profile settings 4

MERVA queue
getting a message 39
getting oldest message 40
reading a message 39
releasing a message 39

message
checking the queue 64
retrieving most recent 46
returning next 48
returning next match 43
returning previous 50
searching first match 44
unlocking 42

Message Authentication Code 82
message buffer, size 52
message field

handling 57
returning contents 58
writing 60

message space
creating 31
deleting 30

mode description, sample 88

N
network definition

AS/400 5
sample for AS/400 87
sample for Windows NT 89

NEXTMSG 48
Notices 95

O
objectives of MERVA Connection/400 1
opening existing semaphore 70
OPNSEM 70

P
PREVMSG 50
process, restarting 67

profile
changing settings 4
selecting 11
specifying (RPG/ILE) 27

program requirements 3
programmer’s log

log file contents 85
Remote MERVA API Client 85

programmer’s log
Display Diagnosis Log function 86

purpose group
API 34
returning number 64

PUTBUFF 53
PUTMSG 36

Q
QUERYQU 62
queue

adding a message 34, 37
deleting locked message 35
getting a message 39
getting oldest message 40
reading a message 39
releasing a message 39
retrieving most recent message 46
returning a message 36
returning first matching message 44
returning next message 48
returning number of messages 62
returning previous message 50
returning previously retrieved

message 38

R
READFLD 58
REASON 75
reason code

how to get 16
returning 75

reconnecting remote program 13
Remote MERVA API Client

installing 3
resynchronization 19
ROUTEADD 37
ROUTEPUT 38
routing

previously created message 37
previously retrieved message 38

RPG/ILE, API 23
RPG/ILE, language 3
RPG/ILE language program,

building 19
RSTRTAPPC 25

S
sample security user exit 93
SDLC 3
security

overview 77
security user exit

activating on AS/400 84
generating on AS/400 84

security user exit (continued)
generating on the MERVA Server

System 84
replacing 84
sample 84, 93

semaphore 66
blocking process 72
clearing unconditionally 67
closing 68
creating 69
opening existing semaphore 70
setting unconditionally 71

session to MERVA
RPG/ILE 23

SETPROF 27
SETSEM 71
setting a semaphore unconditionally 71
size of message buffer (RPG/ILE) 52
STRTAPPC 24

T
token ring 3
TRACE 63
trace, turning on or off 63
Twinax 3

U
unlocking a locked message 42
updating message field 60
user exit

encrypting data 77
ENM4ExitDecrypt (C) 81
ENM4ExitEncrypt (C) 80
ENM4ExitMacGen 82
ENM4ExitMacVerify 83
exit point 77
generating authentication key 77
interface in C language 78
introduction to interfaces 77
MAC generation 82
MAC verification 83
replacing security user exit 84
sample security user exit 93

V
verifying installation 8

W
WHEREIS 64
WRITEFLD 60
WRTTRACE 65
WTSEMLST 72

108 MERVA Connection/400

Readers’ Comments — We’d Like to Hear from You

MERVA ESA Components
MERVA Connection/400
Version 4 Release 1

Publication No. SH12-6340-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SH12-6340-01

SH12-6340-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH
Information Development & User Centered Design
Dept. 0446
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in Denmark by IBM Danmark A/S

SH12-6340-01

	Contents
	About This Book
	Who Should Read This Book
	How This Book is Organized
	Conventions and Terminology Used in This Book

	Chapter 1. General Introduction to MERVA Connection/400
	Objectives
	Functions
	Components

	Chapter 2. Installing and Customizing the Remote MERVA APIClient
	Installing the Remote MERVA API Client
	Machine Requirements
	Program Requirements

	Installing MERVA Connection/400
	Customizing MERVA Connection/400
	Changing Profile Settings
	Required Libraries
	Network Definitions

	Chapter 3. Customizing the Remote MERVA API Server
	Program Requirements
	Customizing the Communications Server
	Basic SNA Customization
	SNA Customization for the Remote MERVA API Server
	Customizing the Trace File for SNA
	Verifying the Installation

	Chapter 4. The Application Programming Interface
	Structure of the MERVA API Program on the Client Side
	C Language Data Types
	Additional Functions
	Starting and Ending the Conversation
	ENMSetProfile - Select a Profile
	ENMStartRAPI - Establish Connection to MERVA
	ENMRestartRAPI - Reconnect Remote API Program to MERVA
	ENMEndRAPI - Disconnect from MERVA

	Handling Errors
	ENMGetReason

	Building API Programs
	Building ILE C/400 Language Programs
	Compiling your API Program with the CRTCMOD Command
	Connecting your API Program to MERVA Connection/400Programs

	RPG/ILE Language Program
	Compiling your API Program with the CRTRPGMOD Command

	Resynchronization

	Chapter 5. API for RPG/ILE
	Establishing a Session to MERVA
	STRTAPPC
	RSTRTAPC
	ENDAPPC
	SETPROF

	Connecting to MERVA
	ATTACH
	CLEAR
	CREATE
	DETACH

	Adding, Changing, and Deleting Messages in MERVA Queues
	ADDMSG
	DELETMSG
	PUTMSG
	ROUTEADD
	ROUTEPUT

	Reading, Getting, and Releasing Messages in MERVA Queues
	FIRSTMSG
	FREEMSG
	KEYNEXT
	KEYREAD
	LASTMSG
	NEXTMSG
	PREVMSG

	Handling the Internal Message Buffer of MERVA Connection/400
	PUTBUFF
	GETREST

	Handling Single Message Fields
	READFLD
	WRITFLD

	Miscellaneous Calls
	QUERYQU
	TRACE
	WHEREIS
	WRTTRACE

	Functions Triggered by MERVA Alarms
	CLRSEM
	CLSSEM
	CRTSEM
	OPNSEM
	SETSEM
	WTSEMLST

	Error Handling
	REASON

	Chapter 6. Security
	Encryption of Transferred Information
	Authentication of Transferred Information
	User Exit Interfaces
	User Exit Points

	User Exit Interfaces in C/ILE Language
	User Exit for Encryption
	User Exit for Decryption
	User Exit for Message Authentication Code (MAC) Generation
	User Exit for MAC Verification

	Replacing Security User Exits
	Generating and Activating Security User Exits on the AS/400
	Generating and Activating Security User Exits on the MERVAServer System

	Appendix A. Diagnosis Information
	Log Files on the Remote MERVA API Client (AS/400)
	Diagnosis Log
	Programmer’s Log
	Log Message Layout

	Log Files on the Remote MERVA API Server System

	Appendix B. Sample Network Definitions for the AS/400
	Communication Side Information (MERVA)
	Device Definition (MERVA)
	Controller Definition (MERVA)
	Mode Description for QPCSUPP

	Appendix C. Sample Network Definitions for Windows NT
	Customizing an APPN End Node

	Appendix D. Sample Security User Exits
	Module ENM4SNIL - Empty Functions
	Module ENM4SSEC - Sample Functions
	Module ENM4SRPG - Calling Programs With One Entry Point
	User Exits as Single Programs on the AS/400

	Appendix E. Notices
	Trademarks

	Glossary of Terms and Abbreviations
	Bibliography
	IBM Publications
	MERVA ESA Components Books
	MERVA ESA Books

	Further IBM Publications
	S.W.I.F.T. Publications

	Index
	Readers’ Comments — We'd Like to Hear from You

