
MERVA for ESA

System Programming Guide
Version 4 Release 1

SH12-6366-01

���

MERVA for ESA

System Programming Guide
Version 4 Release 1

SH12-6366-01

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix E.
Notices” on page 165.

Second Edition, May 2001

This edition applies to Version 4 Release 1 of IBM MERVA for ESA (5648-B29) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Changes to this edition are marked with a vertical bar.

© Copyright International Business Machines Corporation 1987, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book vii

Chapter 1. Types of MERVA ESA
Application Programs 1

Chapter 2. Buffer Standard of
MERVA ESA. 3

Chapter 3. Using the MERVA ESA
Communication Area (DSLCOM) 5
Filling the Fields of DSLCOM 5
The Use of the DSLCOM Fields by the MERVA ESA
Programs 9

Chapter 4. Using General Services
(DSLSRV) 13
Setup for DSLSRVP. 13
DATETIME Request 14
DEQ Request 14
DUMP Request 14
ENQ Request 14
FREEMAIN Request 14
GETMAIN Request 14
LOAD Request 15
POST Request 15
RELEASE/DELETE Request 15
SNAP Request 15
WAIT Request 15
Information Returned 16

Chapter 5. Using the Operator Message
Retrieval Program (DSLOMS) 17
Mapping the Parameter List of DSLOMSG 17
Retrieving a Message 17

Chapter 6. Using the TOF Supervisor
(DSLTSV). 19
Using the Call Interface or the TOF Supervisor
Macro DSLTSV 20
Setup for DSLTOFSV 22
Information Returned 23
Creating a New TOF 25
Writing Dynamic TOF Settings 25
Freeing the Space Allocated by the TOF Supervisor 26
Writing Data to the TOF 27
Adding Data Areas to the TOF 29
Reading Data from the TOF 31
Reading Dynamic TOF Settings. 32
Deleting Data from the TOF 33
Accessing Fields in the TOF 34
Checking Fields in the TOF 36
Expanding Fields in the TOF 37
Initializing Fields in the TOF 37

Adding a Nesting Identifier to the TOF 42
Compressing the TOF into a Buffer and Merging the
TOF from a Buffer 43
Joining the TOF into a Buffer 44

Chapter 7. Using General File Services
(DSLFLV) 47
Using the File Service Macro DSLFLV 47
Setup for DSLFLVP 47
Information Returned 48
Layouts of Buffers and Records. 48
Opening and Closing a File 49
Adding a Record 50
Deleting a Record 50
Replacing a Record 51
Getting a Record by Direct Access 51
Getting Records by Sequential Access. 52

Chapter 8. Using the Message Format
Service (DSLMFS) 55
The DSLMFS Macro 55

Invoking MFS Service Functions 55
General MFS Linkage Description 57

Calling Message Format Service Components . . 57
Calling Message Format Service Components
from MFS Components or Exits 58
Message Format Service Error Messages 58

Establishing the MFS Environment in an Application
Program 58

Storage Areas Used by the MFS Functions . . . 58
Addresses Used in the MERVA ESA
Communication Area (DSLCOM) 58
The MERVA ESA MFS Parameter List 59
Message Format Service Permanent Storage . . 60
MFS Temporary Storage 60
The Terminal User Control Block (DSLTUCB) . . 61
Return Information from Message Format Service 61

Calling Message Format Service Programs 61
DSLMINIT—Initialize MFS 61
DSLMTERM—Terminate MFS 62
DSLMTIN—Message Initialization in the TOF . . 62
Line Formatter Program 64
External Line Format for Messages 66
MFS Mapping for Screens and Printers 67
Data Areas 68

Calling MFS Internal Functions 68
DSLMXPND—Field Expansion of a Complete
Message 70

Calling MFS Data Manipulation Programs and Exits 70
DSLMCnnn—Checking the Data of a Field . . . 70
DSLMDnnn—Setting a Default for a Message
Field. 72
DSLMEnnn—Editing Program 73
DSLMXnnn—Expanding Field Contents 73

© Copyright IBM Corp. 1987, 2001 iii

DSLMSnnn—Separating a Subfield from Its Main
Field. 74
DSLMUnnn—Calling MFS User Exits. 75

Coding MFS Exit Programs 75
Coding MFS Exit Programs with a High-Level
Language Interface 75
Coding MFS Exit Programs with the DSLMMFS
Macro-Level Interface 75
MFS Entry Coding 76
Interface Conventions 78
Usage Conventions for General Purpose Registers 80
Installation of MFS Exit Programs 80

MFS Exit Program Classes 83
MFS Checking Exits (DSLMCnnn) 83
MFS Default Setting Exits (DSLMDnnn) 85
MFS Editing Exits (DSLMEnnn) 86
MFS Separation Exits (DSLMSnnn) 87
MFS Expansion Exits (DSLMXnnn) 91
Adding a User Exit to DSLMMFS 92

Chapter 9. Using the Intertask
Communication Facility (DSLNIC) . . . 99
Storage Definition 100
Starting Communication. 100
Requesting a Service 101
Requesting a Status Check 102
Terminating Communication 102

Chapter 10. Using the Queue
Management (DSLQMG) 103
Building the Parameter List for a Queue
Management Request. 103
Requesting Queue Management Services 104
Checking the Queue Status 104
Storing Messages 104

PUT without Keys and without Automatic
Delete 105
PUT without Keys and with Automatic Delete 106
MPUT with Keys and with Automatic Delete 107
ROUTE without Keys and with Automatic
Delete 107

Retrieving Messages 108
GET with Key 108
GETNEXT (Sequential Read) 109
GET with MODIF=DYNBUF 110

Deleting Messages 111
Updating Queue Elements 112
Freeing Messages 112
Setting an ECB Address for a Queue 113
Resetting an ECB Address for a Queue 113
Requesting a Queue List. 114
Extra Keys with DB2 115
DSLQMGT User Exits 116
DSLQMGD User Exits for Queue Management
Using DB2 116

Chapter 11. Using the Journal Service
(DSLJRN) 119
Defining the Parameter List 119
Using the Journal Service as Direct Service . . . 119

Writing a Journal Record Directly. 119
Retrieving a Journal Record Directly. 119

Using the Journal Service as Central Service . . . 119
Writing a Journal Record 119
Retrieving a Journal Record 120

Chapter 12. Using the Operator
Interfaces 121
Using the Operator Interface Program (DSLNMOP) 121

Defining the Parameter List 121
Using the Operator Interface as Direct Service 121
Using the Operator Interface as Central Service 122

Using the Write-to-Operator Program (DSLWTOP) 122
Defining the Parameter List 122
Using the Write-to-Operator Interface 122

Using the Write-to-Operator User Exit
(DSLWTOEX) 123

Chapter 13. Coding MERVA ESA
Applications for Automatic Start . . . 125

Chapter 14. Changing the
MERVA ESA End-User Driver
(DSLEUD) 127
Changing DSLEPTT 129
Changing End-User Command Tables 129

Display and Edit Command Table
(DSLMCMDT) 130
Session Command Table (DSLECMDT) 131
Function Command Tables 132
Command Processing Restriction of the
End-User Driver 133
Interface of an End-User Command Execution
Routine 133

Coding User Exits of DSLEUD 134
Writing a DSLEUD Function Program 135
Error Messages of DSLEUD 136
Calling the End-User Driver by an IMS/CICS
Application Program 136

IMS Rules for the Program-to-MERVA Switch 137
CICS Rules for the Program-to-MERVA Switch 138

Writing the DSLEUD SPA File Program in IMS . . 139
Using an HDAM Database as SPA File 139

Chapter 15. Application Programs
Linked to DSLNUC 141
Coding an NPT Program (DSLNPT) 142

Start Request for an NPT Program 142
Coding a Central Service Program (DSLNTR) . . 144
Creating MERVA ESA Operator Commands
(DSLNCM) 145

Rules for Defining MERVA ESA Commands 145
Using the SWIFT Link User Exits. 148

DWSDU021 148
DWSMU126 148

Chapter 16. Using the SWIFT Link
MAC Authentication Algorithm 149
Padding the Key 149

iv System Programming Guide

Appendix A. List of MERVA ESA
Tables 151
Overview of the Base Functions Tables 151

General MERVA ESA Tables 151
Message Format Service Tables 152
MERVA ESA End-User Driver Tables 152
MERVA ESA Nucleus Tables 152

Overview of the MERVA-MQI Attachment Tables 153
Overview of the SWIFT Link Tables 153
Overview of the Telex Link Tables 153
Overview of the MERVA Link Tables 154

Appendix B. Cross-References,
Macros, and Tables 155

Appendix C. Table of User Exits . . . 157

Appendix D. MERVA ESA Sample
Programs 161
Sample MFS Exits as Coding Examples. 161
Sample MFS Exits to Perform Certain Functions 161
Sample User Exit Program 162

Sample Nucleus Programs 162
Sample API Programs 163
Sample API Application for a CICS Online
Environment 163
Sample Scenarios for Using MERVA Link 163

Appendix E. Notices 165
Programming Interface Information 166
Trademarks 167

Glossary of Terms and Abbreviations 169

Bibliography. 181
MERVA ESA Publications 181
MERVA ESA Components Publications 181
Other IBM Publications 181
S.W.I.F.T. Publications 181

Index 183

MERVA Requirement Request 187

Contents v

vi System Programming Guide

About This Book

This book describes the system programming interface of the IBM licensed
program Message Entry and Routing with Interfaces to Various Applications for
ESA Version 4 (abbreviated in this book to MERVA ESA).

This book assumes you have detailed knowledge of assembler language coding
and are familiar with the layout of the MERVA ESA macros, which are described
in the MERVA for ESA Macro Reference.

This book also assumes you are familiar with MERVA for ESA Concepts and
Components, which describes the functions, services, and utilities supplied, as well
as the message concept, queues, routing, message handling, and network links.

If you are using the SWIFT Link, this book assumes that you are familiar with
SWIFT messages and SWIFT terminology as defined in the S.W.I.F.T. User
Handbook, published by the Society for Worldwide Interbank Financial
Telecommunication, s.c. in La Hulpe, Belgium.

If you are using the Telex Link, this book assumes that you are familiar with telex
terminology as defined in the documentation provided by your local PTT1.

Note: The term CICS® is used to refer to CICS/ESA®, CICS Transaction Server
(CICS TS), and CICS/VSE®. The term IMS™ is used to refer to IMS/ESA®.

1. National Post and Telecommunication Authority (post, telegraph, telephone).

© Copyright IBM Corp. 1987, 2001 vii

viii System Programming Guide

Chapter 1. Types of MERVA ESA Application Programs

General-use programming interface

MERVA ESA application programs are programs designed to operate with
MERVA ESA, using the direct or central services of MERVA ESA and its
components. There are two types of MERVA ESA application programs:
1. Programs that link to DSLNUC using one of the following:

v The MERVA ESA nucleus program table DSLNPTT. For example, the
external network programs such as the SWIFT Link Line Server program
DWSDGPA for the SWIFT network or the Telex Link program ENLSTPL use
DSLNPTT.

v The task server request table DSLNTRT. This is used by central service
programs DSLQMGT.

v The MERVA ESA operator command table DSLNCMT, these are the
command execution routines for user defined operator commands.

2. Programs that are not linked to DSLNUC. These form three groups:
v Programs working in the same region as DSLNUC (CICS only). These are

CICS transaction programs such as DSLEUD, DSLHCP, DSLCXT, and the
MERVA Link programs EKAAS10 and EKATR10.

v Programs working in a different region from DSLNUC. These are the
MERVA ESA batch programs DSLSDI, DSLSDO, and DSLSDY. In
MERVA ESA operating under IMS, there are also the message processing
programs (MPPs) DSLEUD, DSLHCP, DSLCXT, and the MERVA Link
programs EKAAS10 and EKATR10.

v Programs that are run before MERVA ESA is started. These are the
MERVA ESA utility programs such as DSLQDSUT, DSLFLUT, DSLEBSPA
(IMS only), and the SWIFT Link programs DWSCORUT, DWSCURUT, and
DWSAUTLD.

The difference between the various kinds of MERVA ESA application programs is
the way they access the services of MERVA ESA.

Programs used by a MERVA ESA application program must follow the same rules
for using the services of MERVA ESA as the calling program. This must be
considered by MERVA ESA MFS exit routines that can be called in any of the
environments described here.

A program not linked to DSLNUC has only the services of DSLMMFS, DSLOMSG,
DSLSRVP, DSLTRAP, DSLTOFSV, and DSLFLVP directly available (direct
MERVA ESA services). The services of DSLQMGT, DSLNUSR, DSLNCS,
DSLNMOP and, for the SWIFT Link, DWSAUTP are only available via the
MERVA ESA intertask communication facility DSLNIC (MERVA ESA central
services). All functions can be carried out except the initialization and termination
of the central service functions handled exclusively by DSLNUC and the programs
linked to DSLNUC.

A MERVA ESA application can process the messages of any queue defined in the
MERVA ESA function table. However, if queues are processed that are used by the
programs DSLHCP, DSLSDI, DSLSDO, DSLSDY, or by programs of the
MERVA-MQI Attachment, SWIFT Link, Telex Link, or MERVA Link, they might

© Copyright IBM Corp. 1987, 2001 1

interfere with the processing of these programs. The queues used by the latter
programs are defined in the customization parameter modules of the components:

DSLKPROC MERVA-MQI Attachment

DWSPRM SWIFT Link

DWSLTT SWIFT Link to the SWIFT network

ENLPRM Telex Link

EKAPT MERVA Link

EKASPRM FMT/ESA with MERVA Link

To see the list layout, write a sample program containing the MF=L, PS, or TS call
for the appropriate MERVA ESA macro (for example, DSLMFS).

The following chapters show how the services of MERVA ESA can be used by
user-written programs.

End of General-use programming interface

2 System Programming Guide

|

Chapter 2. Buffer Standard of MERVA ESA

General-use programming interface

Whenever a MERVA ESA program uses a buffer for input or output, the
MERVA ESA standard buffer must be used.

A program that fills data into the buffer of the caller needs to know how large the
buffer is so as not to overlay storage behind the buffer.

Also, after getting back control, the calling program wants to know how much
data is returned.

Throughout MERVA/370 V2 all data buffers had the following layout:
BUFFER DS 0H MERVA/370 V2 buffer
BUFLENG DC H'BL' buffer length BL including header of 8 bytes

DC H'0' reserved
DATALENG DC H'DL+4' data length DL contained in DATAAREA
* including 4 for the two halfwords

DC H'0' reserved
DATAAREA DS (BL-8)C data area in the length BL-8
* filled as indicated by DATALENG

Because the field BUFLENG is a halfword, the size of a MERVA/370 V2 buffer
was limited to 32767 bytes (32KB – 1 byte).

For MERVA ESA, the buffer standard is extended to support a buffer length up to
16777215 bytes (16MB – 1 byte). The maximum message length supported by
MERVA ESA is 2MB (2097152 bytes).

Throughout MERVA ESA, data buffers that are larger than 32KB have the
following layout:
BUFFER DS 0F MERVA ESA buffer
BUFLEN DS 0F four byte buffer length field

DC X'80' indication
DC AL3(BL) buffer length up to 16MB-1

DATALENG DS 0F four byte data length field if DL ≥ 32KB - 4
DC X'80' indication
DC AL3(DL+4) data length up to BL - 8

ORG DATALENG two byte data length field if DL < 32KB - 4
DC H'DL+4'
DC H'0'

DATAAREA DS (BL-8)C data area in the length BL-8
* filled as indicated by DATALENG

For values less than or equal to 32767, the first two bytes are used to store the
value, and the remaining two bytes are not used. This implies that the value of the
high-order bit (bit 0) is always zero. The format of the length field is compatible to
MERVA/370 V2.

For values above 32767, four bytes are used to store the length value. To indicate
that four bytes are used to store the length value, bit 0 (high-order bit) is set to
one.

© Copyright IBM Corp. 1987, 2001 3

MERVA ESA provides service functions to inspect or set the length values
according to the MERVA ESA buffer standard. Application programs can use these
service functions to process the length fields without having to deal with the
indicator bit or formats.

DSLAPBGB Get the buffer length

DSLAPBSB Set the buffer length

DSLAPBGD Get the actual data length

DSLAPBSD Set the actual data length

For detailed information on how to use this service, refer to MERVA for ESA
Application Programming Interface Guide

End of General-use programming interface

4 System Programming Guide

Chapter 3. Using the MERVA ESA Communication Area
(DSLCOM)

The MERVA ESA communication area (DSLCOM) is used by all MERVA ESA
programs, including user-written programs. Any user-written program must use
the DSLCOM in one of the following ways:
v If the user-written program is link-edited to a MERVA ESA program, the

user-written program must contain the following statement:
DSLCOM DSECT=YES

The DSLCOM of the MERVA ESA program is used, and the MERVA ESA
program provides for the correct contents of the DSLCOM. If the DSLCOM is
used by a program link-edited to DSLNUC, the parameter NUC=YES must be
specified with the DSLCOM macro.

v A user-written program that is not link-edited to a MERVA ESA program is
called a main MERVA ESA application. Such programs must set up the DSLCOM
themselves, and must contain the following statement:
DSLCOM DSECT=NO

A reentrant CICS transaction or another reentrant program maps the DSLCOM
within a dummy section (DSECT), while a non-reentrant program maps the
fields of DSLCOM in a control section (CSECT). A serially reusable program
must clear and initialize the DSLCOM before using it.

The following description shows how the DSLCOM fields are filled, which fields
are provided by the various MERVA ESA programs and which fields must be
provided by user-written main MERVA ESA applications, depending on the
environment.

Filling the Fields of DSLCOM
This section explains how DSLCOM fields are filled by a main MERVA ESA
program.

The first 8 bytes of DSLCOM contain the identifier. If the storage for DSLCOM is
addressed via a DSECT, the following instruction should be executed after the
GETMAIN:

MVC DSLCOM(8),=C'*DSLCOM*' LABEL

The field COMSRVPA contains the address of the MERVA ESA general service
program DSLSRVP. It is filled as follows (this address must be available before
DSLSRVP is used the first time):

MVC COMSRVPA,=V(DSLSRVP) DSLSRVP ENTRY POINT

The field COMPRMA contains the address of the MERVA ESA customizing
parameter module DSLPRM. It is filled as follows:

DSLSRV TYPE=LOAD,MODULE='DSLPRM',MF=E LOAD DSLPRM
* CHECK FOR SUCCESSFUL LOAD HERE!

MVC COMPRMA,SRVENTRY DSLPRM ENTRY POINT

© Copyright IBM Corp. 1987, 2001 5

The field COMTSVA contains the address of the MERVA ESA TOF supervisor
program DSLTOFSV. It is filled as follows:

DSLSRV TYPE=LOAD,MODULE='DSLTOFSV',MF=E LOAD DSLTOFSV
* CHECK FOR SUCCESSFUL LOAD HERE!

MVC COMTSVA,SRVENTRY DSLTOFSV ENTRY POINT

The field COMFDTA contains the address of the MERVA ESA Field Definition
Table. The name of this table is found in DSLPRM. COMFDTA is filled as follows:

LA R4,NPFDT NAME OF FDT
DSLSRV TYPE=LOAD,MODULE=(R4),MF=E LOAD FDT

* CHECK FOR SUCCESSFUL LOAD HERE!
MVC COMFDTA,SRVENTRY ENTRY POINT OF FDT

The field COMOMSGA contains the address of the MERVA ESA Operator
Messages Retrieval program DSLOMSG. It is filled as follows:

MVC COMOMSGA,=V(DSLOMSG) DSLOMSG ENTRY POINT

The field COMMSGTA contains the address of the MERVA ESA Message table.
The name of this table is found in DSLPRM. COMMSGTA is filled as follows:

LA R4,NPMSG NAME OF MSGT
DSLSRV TYPE=LOAD,MODULE=(R4),MF=E LOAD MSGT

* CHECK FOR SUCCESSFUL LOAD HERE!
MVC COMMSGTA,SRVENTRY ENTRY POINT OF MSGT

The field COMMFSA contains the address of the MERVA ESA Message Format
Services program DSLMMFS. It is filled as follows:

DSLSRV TYPE=LOAD,MODULE='DSLMMFS',MF=E LOAD DSLMMFS
* CHECK FOR SUCCESSFUL LOAD HERE!

MVC COMMFSA,SRVENTRY ENTRY POINT OF DSLMMFS

The field COMMTTA contains the address of the MERVA ESA Message Type table.
The name of this table is found in DSLPRM. COMMTTA is filled as follows:

LA R4,NPMTT NAME OF MTT
DSLSRV TYPE=LOAD,MODULE=(R4),MF=E LOAD MTT

* CHECK FOR SUCCESSFUL LOAD HERE!
MVC COMMTTA,SRVENTRY ENTRY POINT OF MTT

The field COMFNTA contains the address of the MERVA ESA Function table. The
name of this table is found in DSLPRM. COMFNTA is filled as follows:

LA R4,NPFNT NAME OF FNT
DSLSRV TYPE=LOAD,MODULE=(R4),MF=E LOAD FNT

* CHECK FOR SUCCESSFUL LOAD HERE!
MVC COMFNTA,SRVENTRY ENTRY POINT OF FNT

The field COMFLVPA contains the address of the MERVA ESA File Service
program DSLFLVP. It is filled as follows:

DSLSRV TYPE=LOAD,MODULE='DSLFLVP',MF=E LOAD DSLFLVP
* CHECK FOR SUCCESSFUL LOAD HERE!

MVC COMFLVPA,SRVENTRY ENTRY POINT OF DSLFLVP

The field COMFLTTA contains the address of the MERVA ESA File table. The
name of this table is found in DSLPRM. COMFLTTA is filled as follows:

LA R4,NPFLT NAME OF FLT
DSLSRV TYPE=LOAD,MODULE=(R4),MF=E LOAD FLT

* CHECK FOR SUCCESSFUL LOAD HERE!
MVC COMFLTA,SRVENTRY ENTRY POINT OF FLT

6 System Programming Guide

The field COMMFSMA contains the address of the error message buffer of the
MERVA ESA Message Format Service permanent storage. COMMFSMA is filled by
DSLMMFS.

The field COMTRAPA contains the address of the MERVA ESA trace program. It is
filled as follows:

MVC COMTRAPA,=V(DSLTRAP) ENTRY POINT OF DSLTRAP

The field COMTRATA contains the address of the MERVA ESA Trace table. It is
exclusively used by the DSLTRAP program.

The field COMTRAST contains the MERVA ESA trace status. It is exclusively used
by the DSLTRAP program.

The field COMTRASF contains the MERVA ESA debugging trace flags for
DSLMMFS and DSLTOFSV and are controlled by these. For details, refer to the
MERVA for ESA Diagnosis Guide.

The MERVA ESA trace parameter list starting at label COMTRAPL is filled by the
callers of the MERVA ESA trace service as needed.

The field COMNICPL contains the address of the MERVA ESA Intertask
communication parameter list. The intertask communication parameter list must
not be moved as long as the intertask communication session is allocated. It is
filled as follows:
NICPLST DSLNIC MF=L DSLNIC PARAMETER LIST

.

.
LA R15,NICPLST ADDRESS OF DSLNIC PARM LIST
ST R15,COMNICPL ..TO DSLCOM

The field COMTUCBA contains the address of the MERVA ESA MFS Terminal
User Control Block. It is filled as follows:
TUCBTUCB DSLMFS MF=TUCB TERMINAL USER CONTROL BLOCK

.

.
LA R15,TUCBTUCB ADDRESS OF TUCB
ST R15,COMTUCBA ..TO DSLCOM

The field COMMTBA contains the address of the MERVA ESA MFS Load table. It
is filled only by DSLMMFS.

The field COMERRA contains the address of the MERVA ESA End-User Driver
Error program. It is filled only by DSLEUD.

The field COMJRNPA contains the address of the MERVA ESA Journal program. It
is filled only by DSLNUC.

The field COMNCSA contains the address of the MERVA ESA Command Server
program. It is filled only by DSLNUC.

The field COMNMOPA contains the address of the MERVA ESA Nucleus Operator
Interface program. It is filled only by DSLNUC.

The field COMQMGTA contains the address of the MERVA ESA Queue
Management program. It is filled only by DSLNUC.

Chapter 3. Using the MERVA ESA Communication Area (DSLCOM) 7

The field COMTIMPA contains the address of the MERVA ESA Timer Service
program. It is filled as follows:

MVC COMTIMPA,=V(DSLTIMP) ENTRY POINT OF DSLTIMP

The field COMTIME contains the MERVA ESA startup time. It is filled only by
DSLNUC.

The fields COMSTAT0 and COMSTAT1 contain statuses of the complete
MERVA ESA. They are filled only by DSLNUC.

The field COMDSNL points to an address list that contains the address of
DWSPRM in the second fullword when DWSDGPA for the SWIFT network is
started. DWSDGPA fills it only in the DSLCOM of DSLNUC, indicating that
DWSDGPA is started.

The field COMRECON is reserved for use by MERVA ESA.

The field COMDTNL is reserved for use by the Telex Link. When the Telex Link is
started, the address of the Telex Link storage area ENLSTPST is written into this
field.

The field COMDWNN is reserved for use by national network programs.

The three fullwords following COMDWNN are reserved for use by IBM, that is,
whenever a correction of a MERVA ESA or other program is made, these fullwords
can be used by IBM. These fields must never be used by user-written programs.

The fields COMUSER1, COMUSER2, COMUSER3, and COMUSER4 are for use by
user-written programs. IBM will not use these fields.

The field COMPCBLA is used only in MERVA ESA running under IMS and
contains the address of the PCB address list that is given to a program called by
IMS in register 1. It is filled at entry to the program as follows:

ST R1,COMPCBLA IMS PCB LIST ADDRESS

The fields COMTCAA, COMCSAA, and COMTCTUA are reserved for internal use
by MERVA ESA.

The field COMCWAA is used only in MERVA ESA running under CICS by
programs running as a CICS task (DSLNUC, DSLEUD, DSLHCP, and DSLCXT).
COMCWAA contains the address of the DSLCWA, that is the area used in the
CICS common work area for MERVA ESA.

This address is filled at entry to the program as follows:
EXEC CICS ADDRESS CWA(R5)
AL R5,NPCWAOFF MERVA CWA OFFSET TO CWA ADDRESS
ST R5,COMCWAA SAVE CWA ADDRESS

The fields COMEISTG, COMEIB, and COMCOM are also used only in
MERVA ESA running under CICS by programs running as a CICS task (DSLNUC,
DSLEUD, DSLHCP, and DSLCXT). COMEISTG contains the address of the CICS
Exec Interface Storage. COMEIB contains the address of the CICS Exec Interface
Block. COMCOM is used only by DSLSRVP. COMEISTG and COMEIB are filled at
entry to the program as follows:

8 System Programming Guide

ANYPGM DFHEIENT CODEREG=(R10,R11),DATAREG=(R8),EIBREG=(R9)
ST R9,COMEIB EXEC INTERFACE BLOCK ADDR TO DSLCOM
ST R8,COMEISTG EXEC INTERFACE STORAGE ADDR TO DSLCOM

The parameter list of DSLSRVP, which follows these fields in DSLCOM, need not
be initialized. This parameter list allows all programs to use the services of
DSLSRVP.

Most MERVA ESA programs use general register 12 to address the MERVA ESA
program communication area (DSLCOM). In all MFS programs and exits, this
register is used for this purpose.

The Use of the DSLCOM Fields by the MERVA ESA Programs
Figure 1 on page 10 shows which MERVA ESA program sets which field of
DSLCOM. Fields set by MERVA programs can be referred to in user-written
programs operating in the same environment. If the user-written program is the
main program (for example, a CICS task or a batch program), Figure 1 shows
which fields of DSLCOM must be filled by the program to be able to use
MERVA ESA services.

No user-written program can act like DSLNUC. There are reserved fields in
DSLCOM that must never be filled by a user-written main program.

How to fill the DSLCOM fields is described in “Filling the Fields of DSLCOM” on
page 5.

The first column in the table shows the name of the field of DSLCOM in the order
in which they appear in the dummy or control section of DSLCOM. The other
columns show the use of the DSLCOM fields for those programs that can operate
together with user-written programs.

The following keywords are used within the table:

ALL This field is used by MERVA ESA running under both CICS and IMS.

CICS This field is used by MERVA ESA running under CICS only (MVS™ and
VSE).

IMS This field is used only by MERVA ESA running under IMS.

NO This field is not used by this program.

Chapter 3. Using the MERVA ESA Communication Area (DSLCOM) 9

Notes:

1. The DSLCOM of DSLNUC is available to programs linked to DSLNUC:
v When the parallel processing is not used, there is only one DSLCOM

available. Register 12 contains the address of this DSLCOM.
v When the parallel processing is used, each separate nucleus server task has

its own DSLCOM which is different from the DSLCOM of the nucleus server.
Register 12 contains the address of the DSLCOM of the nucleus server.

The field COMNUCOM in the DSLCOM of each server task contains the
address of the DSLCOM of the nucleus server.

2. The DSLCOM of DSLEUD is available to programs linked to DSLEUD, which
is not linked to DSLNUC. It is a CICS transaction or an IMS MPP, and uses a
screen terminal. DSLHCP is similar but uses a printer terminal, and DSLCXT
does not use a terminal.

┌──┐
│ Program DSLNUC DSLEUD DSLHCP DSLCXT DSLSDI DSLSDO DSLSDY │
├───────────┬────────┬────────┬────────┬────────┬────────┬────────┬────────┤
│ Field │ │ │ │ │ │ │ │
├───────────┼────────┼────────┼────────┼────────┼────────┼────────┼────────┤
│ COMPRM │ ALL │ ALL │ ALL │ ALL │ ALL │ ALL │ ALL │
│ COMSRVPA │ ALL │ ALL │ ALL │ ALL │ ALL │ ALL │ ALL │
│ COMTSVA │ ALL │ ALL │ ALL │ ALL │ ALL │ ALL │ ALL │
│ COMFDTA │ ALL │ ALL │ ALL │ ALL │ ALL │ ALL │ ALL │
│ COMOMSGA │ ALL │ ALL │ ALL │ ALL │ ALL │ ALL │ ALL │
│ COMMSGTA │ ALL │ ALL │ ALL │ ALL │ ALL │ ALL │ ALL │
│ COMMFSA │ ALL │ ALL │ ALL │ ALL │ ALL │ ALL │ ALL │
│ COMMTTA │ ALL │ ALL │ ALL │ ALL │ ALL │ ALL │ ALL │
├───────────┼────────┼────────┼────────┼────────┼────────┼────────┼────────┤
│ COMFNTA │ ALL │ NO │ NO │ NO │ NO │ NO │ NO │
│ COMFLVPA │ NO │ ALL │ ALL │ ALL │ NO │ NO │ ALL │
│ COMFLTTA │ NO │ ALL │ ALL │ ALL │ NO │ NO │ ALL │
│ COMMFSMA │ NO │ ALL │ NO │ NO │ NO │ NO │ NO │
│ COMTRAPA │ ALL │ ALL │ ALL │ ALL │ ALL │ ALL │ ALL │
│ COMTRAPL │ ALL │ ALL │ ALL │ ALL │ ALL │ ALL │ ALL │
│ COMNICPL │ NO │ ALL │ ALL │ ALL │ ALL │ ALL │ ALL │
│ COMTUCBA │ NO │ ALL │ ALL │ ALL │ NO │ NO │ ALL │
│ COMMTBA │ NO │ ALL │ NO │ NO │ NO │ NO │ NO │
│ COMERRA │ NO │ ALL │ NO │ NO │ NO │ NO │ NO │
├───────────┼────────┼────────┼────────┼────────┼────────┼────────┼────────┤
│ COMJRNPA │ ALL │ NO │ NO │ NO │ NO │ NO │ NO │
│ COMNCSA │ ALL │ NO │ NO │ NO │ NO │ NO │ NO │
│ COMNMOPA │ ALL │ NO │ NO │ NO │ NO │ NO │ NO │
│ COMQMGTA │ ALL │ NO │ NO │ NO │ NO │ NO │ NO │
│ COMTIMPA │ ALL │ NO │ NO │ NO │ NO │ NO │ NO │
│ COMTIME │ ALL │ NO │ NO │ NO │ NO │ NO │ NO │
│ COMSTAT0 │ ALL │ NO │ NO │ NO │ NO │ NO │ NO │
│ COMSTAT1 │ ALL │ NO │ NO │ NO │ NO │ NO │ NO │
├───────────┼────────┼────────┼────────┼────────┼────────┼────────┼────────┤
│ COMDSNL │ ALL │ NO │ NO │ NO │ NO │ NO │ NO │
│ COMRECON │ ALL │ NO │ NO │ NO │ NO │ NO │ NO │
│ COMDTNL │ ALL │ NO │ NO │ NO │ NO │ NO │ NO │
├───────────┼────────┼────────┼────────┼────────┼────────┼────────┼────────┤
│ COMPSB │ NO │ IMS │ IMS │ IMS │ NO │ NO │ NO │
│ COMPCBLA │ IMS │ IMS │ IMS │ IMS │ NO │ NO │ NO │
├───────────┼────────┼────────┼────────┼────────┼────────┼────────┼────────┤
│ COMCWAA │ CICS │ CICS │ CICS │ CICS │ NO │ NO │ NO │
│ COMEISTG │ CICS │ CICS │ CICS │ CICS │ NO │ NO │ NO │
│ COMEIB │ CICS │ CICS │ CICS │ CICS │ NO │ NO │ NO │
└───────────┴────────┴────────┴────────┴────────┴────────┴────────┴────────┘

Figure 1. The Use of DSLCOM Fields by the MERVA ESA Programs

10 System Programming Guide

3. The DSLCOM of DSLSDI, DSLSDO, and DSLSDY is an example of a program
not linked to DSLNUC and running in a region or partition other than
DSLNUC.

Chapter 3. Using the MERVA ESA Communication Area (DSLCOM) 11

12 System Programming Guide

Chapter 4. Using General Services (DSLSRV)

The MERVA ESA service program DSLSRVP provides several frequently used
system services to MERVA ESA programs. The services provided are:

DATETIME Get the actual date and time in various formats

DEQ Release exclusive control of a resource

DUMP Get a dump of the tasks storage

ENQ Request exclusive control of a resource

FREEMAIN Free main storage

GETMAIN Get main storage

LOAD Load a module into virtual storage

POST Post an event control block (ECB)

RELEASE/DELETE
Release/Delete a loaded module from virtual storage

SNAP Get a partial dump of a tasks storage

WAIT Wait on one or more events.

The advantage of using this program is that the request is independent of the
environment in which the calling program works. DSLSRVP issues the
environment-dependent request to fulfill the caller’s request.

The program is called using the calling macro DSLSRV, which is described in the
MERVA for ESA Macro Reference. DSLSRV is also used to map the parameter list.
The parameter list of DSLSRVP is contained in DSLCOM.

The calling program provides the parameters required for a specific service
request. Except for the list header, the parameter list is not cleared between
requests so that data entered in the list remains there unless it is overwritten by
the next request.

Setup for DSLSRVP
The setup for using DSLSRVP is shown below:
DSLCOM...

L R12,=A(DSLCOM)
USING DSLCOM,R12...

MVC COMSRVPA,=V(DSLSRVP)...

In this example, DSLCOM is allocated as a data area. With the USING statement,
DSLCOM (and, therefore, implicitly the parameter list for DSLSRVP) is addressed.
The address of DSLSRVP is moved into the field COMSRVPA.

© Copyright IBM Corp. 1987, 2001 13

DATETIME Request
The following is an example of a DATETIME request.

After successful completion of DSLSRVP, the requested date is found in the field
SRVDATEX, and the requested time is found in the field SRVTIMEX. Both fields
are padded with blanks if the date or time mask is shorter than 8 characters.

DEQ Request
The following is an example of a DEQ request. The specification of the QNAME
and RNAME parameters must be identical to the specification in the ENQ request.

DUMP Request
The following is an example of a DUMP request. The dump identification can
either be contained in a halfword or in a register.

ENQ Request
The following is an example of an ENQ request. The name of the resource is
specified in the field UXRESID.

FREEMAIN Request
The following is an example of a FREEMAIN request.

GETMAIN Request
The following is an example of a GETMAIN request.

After successful completion of DSLSRVP, the address of the obtained storage is
found in the field SRVSADDR.

DSLSRV TYPE=DATETIME,DATMASK='DD',TIMMASK='HHMM'

LA R3,L'UXRESID LENGTH OF RESOURCE IDENTIFIER
DSLSRV TYPE=DEQ,QNAME='DSLQUEUE',RNAME=UXRESID,SIZE=(R3)

UXRESID DC CL24'RESOURCE IDENTIFIER'

DSLSRV TYPE=DUMP,DUMPID=99
or

LA R8,SRVDN13 DUMP ID
DSLSRV TYPE=DUMP,DUMPID=(R8)

LA R3,L'UXRESID LENGTH OF RESOURCE IDENTIFIER
DSLSRV TYPE=ENQ,QNAME='DSLQUEUE',RNAME=UXRESID,SIZE=(R3)

UXRESID DC CL24'RESOURCE IDENTIFIER'

L R2,EUDSTORA
DSLSRV TYPE=FREEMAIN,ADSTOR=(R2)

LH R4,=LAREA LENGTH OF THE STORAGE
DSLSRV TYPE=GETMAIN,SIZE=(R4),INCHAR=3F
L R3,SRVSADDR GET STORAGE ADDRESS

14 System Programming Guide

The following is an example of a GETMAIN request to acquire storage above the
16MB line.

The following is an example of a GETMAIN request to acquire CICS shared
storage above the 16MB line. For non-CICS environment, this call is identical to a
TYPE=GETMAINA call.

LOAD Request
The following is an example of a LOAD request.

After successful completion of DSLSRVP, the load address of the loaded module is
found in the field SRVMADDR, and its entry point is found in the field
SRVENTRY. This latter field must be used when the module loaded is being given
control with a BALR instruction.

POST Request
The following is an example of a POST request. This request can only be used to
post an ECB in the same region or partition.

RELEASE/DELETE Request
The following are examples for a DELETE and a RELEASE request. The request
types DELETE and RELEASE are synonymous.

SNAP Request
The following is an example for obtaining a dump of main storage with specified
starting point and length.

WAIT Request
The following is an example of a WAIT request. The WAIT can be issued for an
ECB list or for a single ECB.

L R4,=F'250000' LENGTH OF STORAGE
DSLSRV TYPE=GETMAINA,SIZE=(R4)
L R3,SRVSADDR GET STORAGE ADDRESS

L R4,=F'250000' LENGTH OF STORAGE
DSLSRV TYPE=GETMAINS,SIZE=(R4)
L R3,SRVSADDR GET STORAGE ADDRESS

DSLSRV TYPE=LOAD,MODULE='DSLAPI'
L R15,SRVENTRY GET ENTRY POINT ADDRESS

DSLSRV TYPE=POST,ECB=(R9)

DSLSRV TYPE=DELETE,MODULE='DWSPRM'
or

DSLSRV TYPE=RELEASE,MODULE='DSLMMFS'

L R5,STORADDR BEGIN OF STORAGE FOR SNAP
L R6,STORLENG LENGTH OF STORAGE FOR SNAP
DSLSRV TYPE=SNAP,ADSTOR=(R5),SIZE=(R6)

Chapter 4. Using General Services (DSLSRV) 15

Information Returned
Some service requests return data to the calling program. They are found in
specific fields of the parameter list. The following table shows which service
request provides data in which field.

Request Fields

ALL SRVRC SRVRSNCD

DATETIME SRVDATE SRVTIME SRVDATEX SRVTIMEX

GETMAIN SRVSADDR SRVSIZE

LOAD SRVMADDR SRVSIZE SRVENTRY SRVSADDR

'SRV' is the prefix used in the DSLSRV macro mapping the parameter list.

The following table shows which fields contains data for the calling program.

Field Request Data Returned Format of Data

SRVDATE
SRVDATEX
SRVENTRY
SRVMADDR
SRVRC
SRVRSNCD
SRVSADDR
SRVSIZE
SRVSIZE
SRVTIME
SRVTIMEX

DATETIME
DATETIME
LOAD
LOAD
ALL
ALL
GETMAIN
LOAD
GETMAIN
DATETIME
DATETIME

Date packed decimal
Date zoned
Address of entry point
Address of load point
Return code
Reason code
Address of storage area
Size of load module
Actual size
Time packed decimal
Time zoned

0CYYDDDF
depends on mask
fullword
fullword
halfword
halfword
fullword
fullword
fullword
0HHMMSSF
depends on mask

DSLSRV TYPE=WAIT,ECBLIST=(R3)
or

DSLSRV TYPE=WAIT,ECB=(R5)

16 System Programming Guide

Chapter 5. Using the Operator Message Retrieval Program
(DSLOMS)

The DSLOMS macro serves two purposes:
1. It maps the parameter list of DSLOMSG and generates a

parameter/substitution list for DSLOMSG.
2. It calls the message program DSLOMSG.

Further details of the DSLOMS macro are given in the MERVA for ESA Macro
Reference.

Mapping the Parameter List of DSLOMSG
A main purpose of mapping the parameter list of DSLOMSG is defining the
substitution parameters for the messages retrieved from the message table, for
example, DSLMSGT.

Defining a halfword reason code, an 8-byte name with trailing blank omission, and
a 20-byte text without trailing blank omission requires the following DSLOMS
macro:
OMSPL DSLOMS (REASON,H),(NAME,8C,S),(TEXT,20C),MF=L

Retrieving a Message
When calling DSLOMSG for retrieval of a message, DSLCOM must be addressable
and the address of DSLOMSG must be available in the field COMOMSGA. The
following example assumes that the field COMMSGTA contains the address of the
message table (such as DSLMSGT), and the message USR001I requires the reason
code as substitution item. With the DSLOMS parameter list, the message USR001I
can look as follows (coded in DSLMSGT):
USR001I DSLMSG 'User program failed, reason is @0'

@0 is the substitution item which refers to the field REASON in the DSLOMS
parameter list here.

Calling DSLOMSG looks as follows:
MVC REASON,USERREAS REASON CODE FOR MESSAGE
DSLOMS MSGID='USR001I',BUF=MSGBUFFR, GET.. *
TABLE=COMMSGTA,MF=(E,OMSPL) ..THE MESSAGE

DSLOMSG replaces the substitution item @0 in the message USR001I with the
value found in the DSLOMS parameter list field REASON. This includes the
conversion from the binary value to printable.

© Copyright IBM Corp. 1987, 2001 17

18 System Programming Guide

Chapter 6. Using the TOF Supervisor (DSLTSV)

This chapter describes the services that you can request from the TOF Supervisor,
DSLTOFSV, and gives examples of how you can specify your requests using the
TOF Supervisor macro, DSLTSV. The information required to use the call interface
is supplied with the description of the DSLTSV macro. For complete information
on the DSLTSV macro parameters, and the contents of the parameters to be
supplied in the TOF parameter list for the call interface, refer to the MERVA for
ESA Macro Reference.

The tokenized form (TOF) contains the data and all the fields required for
processing MERVA ESA messages. It can be accessed only via the TOF Supervisor.
You can use the TOF for your own programs or user exits.

The following services of DSLTOFSV are available:
v Creating a new TOF
v Writing data to the TOF
v Adding data areas to the TOF
v Reading data from the TOF
v Deleting data from the TOF
v Accessing fields in the TOF
v Checking fields in the TOF
v Expanding fields in the TOF
v Initializing fields in the TOF
v Adding a nesting identifier to the TOF
v Compressing the TOF into a buffer, or merging the TOF with another TOF, or

both
v Joining a split TOF into a single TOF
v Freeing the data part of a split TOF.

You request these services by calling the TOF Supervisor DSLTOFSV. If you use the
macro DSLTSV, it handles the layout of the DSLTSV parameter list and puts each
parameter in the correct position when setting up the call.

To use the call interface, you must supply TSVPARMS with enough information
before executing the call. Most parameters of TSVPARMS remain unchanged unless
you change them explicitly, for example, addresses of valid buffers required by
DSLTOFSV: TOF (TSVPADDR), TOF working buffer (TSVPWORK), MFS
permanent storage (TSVPENVR), and the MERVA ESA communication area
(TSVPDSLC). These addresses should be set once before the first call to DSLTOFSV.
All buffers supplied must have the standard MERVA ESA buffer layout.

In general, if data is read, written, or changed in the TOF then this data is assigned
to a field, the reference of which must be supplied. You can process data either for
a main field or a subfield when not mentioned otherwise. If you want to process a
subfield you must supply the name of the subfield in the field reference.
DSLTOFSV finds the name of the main field from the FDT and invokes the
separation routine assigned.

© Copyright IBM Corp. 1987, 2001 19

Using the Call Interface or the TOF Supervisor Macro DSLTSV
To use the call interface, use the instruction:
[label] CALL DSLTOFSV,(ATSVPARM)

ATSVPARM is the address of the parameter list TSVPARMS, shown here:
TSVPARMS DSECT TOF PARAMETER LIST
TSVPRC DC AL2(0) RETURNCODE
TSVPRSC DC AL2(0) REASONCODE
TSVPFTYP DC CL4' ' FUNCTION FOR TOF REQUEST

ADDA = ADD DATA AREA
ADNI = ADD NESTING ID
CHK = CHECK
COMP = COMPRESS
DELE = DELETE
EXPA = EXPAND
FREE = Free TOF's Data Part
INIT = INIT
JOIN = JOIN Index and Data TOF
READ = READ
WRT = WRITE
TNEW = MAKE A NEW TOF
MERG = MERGE TWO TOFS
SHOT = DIAGNOSTICS

TSVPCURR DS 0CL15 CURRENT TOF POSITION
TSVPCUNI DC AL1(0) NESTING IDENTIFIER
TSVPCUFG DC AL1(0) FIELD GROUP INDEX
TSVPCURS DC AL2(0) REPEATABLE SEQUENCE INDEX
TSVPCUFN DC CL8' ' FIELD NAME
TSVPCUDA DC AL2(0) DATA AREA INDEX
TSVPCUOM DC CL1' ' OPTION FIELD MODIFIER

DC CL1' ' RESERVED
TSVPNEXT DS 0CL15 NEXT TOF POSITION
TSVPNENI DC AL1(0) NESTING IDENTIFIER
TSVPNEFG DC AL1(0) FIELD GROUP INDEX
TSVPNERS DC AL2(0) REPEATABLE SEQUENCE INDEX
TSVPNEFN DC CL8' ' FIELD NAME
TSVPNEDA DC AL2(0) DATA AREA INDEX
TSVPNEOM DC CL1' ' OPTION FIELD MODIFIER
* BLANK = AS IS
* D = DATA AREA
* O = OPTION
* A = AFTER
* B = BEFORE
TSVPMODS DS 0CL5 MODIFIER GROUP
TSVPMONI DC CL1' ' NI MODIFIER
* BLANK = AS IS
* N = NEXT NI
* F = FIRST NI
* L = LAST NI
* P = PRECEDING NI
TSVPMOFG DC CL1' ' FIELD GROUP MODIFIER
* BLANK = AS IS
TSVPMORS DC CL1' ' REPEATABLE SEQUENCE MODIF.
* BLANK = AS IS
* N = NEXT RS
* F = FIRST RS
* L = LAST RS
* X = RS EXTENSION SUPPLIED
TSVPMOFN DC CL1' ' FIELD MODIFIER
* BLANK = AS IS
* N = NEXT FN
* F = FIRST FN
* L = LAST FN
* E = FIRST FN EQUAL

20 System Programming Guide

* A = NEXT AFTER FN
* V = VERY FIRST FN
* S = NEXT FD WITHIN RS
TSVPMODA DC CL1' ' DA MODIFIER
* BLANK = AS IS
* N = NEXT DA
* F = FIRST DA
* L = LAST DA
TSVPNIRZ DC AL1(0) 0=NI AS IS / 1=NI MODIFIED T 0
TSVPFCMO DC CL4' ' FUNCTION MODIFIER
* *** READ ****
* BLANK = NO EDIT, NO CHECK
* EDIT = EDIT, NO CHECK
* CHK = NO EDIT, BUT CHECK
* EDCH = EDIT AND CHECK
* OPTL = READ OPT. LIST
* INFO = READ TOF INFORMATION
* *** WRITE ****
* DEED = DEEDIT, NO CHECK
* CHK = NO EDIT, BUT CHECK
* DECH = DEEDIT AND CHECK
* IGN = IGNORE DATA FOR WRITE
* SVAL = Set TOF increase values
* *** DEL ****
* DLNI = DELETE NI
* DLRS = DELETE RS OCC.
* DLFN = DELETE FIELD
* DLDA = DELETE DA OR OF
* DLAF = DELETE ALL FIELDS
* DLAX = DELETE ALL NI ¬= 0
* DLAD = DELETE ALL DA OF FN
* DLGR = DELETE DA>DA OF FLDREF
* *** CHECK ****
* DATA = CHECK DATA AREA
TSVPNIEX DC AL1(0) NI OF EXIT FIELD
TSVPMFSR DC AL2(0) MFS REASON CODE OR CHECK INFO
TSVPADDR DC AL4(0) POINTER TO TOF
TSVPWORK DC AL4(0) PTR TO WORK. BUFFER FOR TOF
TSVPENVR DC AL4(0) ENVIRONM. FOR CHECK./SEP.
TSVPBUFF DC AL4(0) POINTER TO INTERFACE BUFFER
TSVPDSLC DC AL4(0) POINTER TO DSLCOM
TSVPDATL DC AL2(0) LENGTH OF DA IN TSVPBUFF
TSVPFS DC XL1'00' STATUS OF A FIELD
TSVPFSMF EQU X'80' MFS CHECKING ERROR OCCURRED
TSVPFSEM EQU X'40' DATA AREA EMPTY
TSVPFSRX EQU X'20' TOO MANY OCCURRENCES
TSVPFSDX EQU X'10' TOO MANY COMPONENTS
TSVPFSLS EQU X'08' FIELD LENGTH TOO SMALL
TSVPFSLG EQU X'04' FIELD LENGTH TOO GREAT
TSVPFSLF EQU X'02' FIELD LENGTH NOT FIXED
TSVPFSMN EQU X'01' FIELD MANDATORY

DC XL1'00' RESERVED
TSVPRSXA DC AL4(0) POINTER TO RS EXTENSION

If you request services for a field in a nested repeatable sequence, you must supply
the repeatable sequence occurrence parameters using an RS Extension Parameter
List:
TSVPRSXT DS 0F RS EXTENSION / BUFFER FORMAT

DC AL2(TSVPRSXL,0,0,0)
TSVPRSXK DC AL2(0) NUMBER OF FOLLOWING ENTRIES
* RS EXTENSION LIST ENTRY (6 BYTE/ENTRY)
TSVPRSXC DC AL2(0) CURRENT RS INDEX ON LEVEL
TSVPRSXN DC AL2(0) NEXT RS INDEX ON LEVEL
TSVPRSXM DC CL1' ' MODIFIER FOR RS INDEX ON LEVEL

DC CL1' ' RESERVED
ORG TSVPRSXC

Chapter 6. Using the TOF Supervisor (DSLTSV) 21

TSVPRSXX DC &RSEXTC.XL6'00' DECLARE EXTENSION AREA
* DEFAULT IS RSEXT=3
TSVPRSXL EQU *-TSVPRSXT LENGTH OF RS EXTENSION AREA

The address of the RS Extension Parameter List is supplied in TSVPRSXA, and
TSVPMORS must be set to 'X' to indicate that an RS Extension Parameter List is
supplied.

Setup for DSLTOFSV
You communicate with DSLTOFSV via the parameter list (TSVPARMS) and the
repeatable sequence extension parameter list (RSEXT) if a field in a nested
repeatable sequence is to be accessed. TSVPBUFF is a TOF input/output buffer
referenced by TSVPARMS.

To make use of the dynamic space allocation of the TOF you must either define the
increase value of the TOF in the DSLPARM, or set the increase value using the
following TOF request:
TYPE=WRITE,FMODIF=SVAL,FDNAM='*DSLTOF$'.

If the dynamic TOF is enabled, a TOF full condition results in the allocation of
internally requested storage. From now on the TOF is split into an index part (the
TOF space supplied by the caller) and a data part (internally requested). These two
areas are linked by a pointer in the TOF header of the caller’s supplied TOF.

Notes:

1. The TOF supervisor only requests more storage if the reorganization did not
return enough free space to fulfill the request.

2. When you use the dynamic TOF, the following rules apply:
v Do not relocate the TOF buffer in storage.
v Issue a TOF free request before releasing the storage of the TOF.

The dynamic TOF is fully transparent if you use the call interface.

If you require TOF services as an MFS exit program (user exit), you must supply
OPT=EXTTS with the DSLMFS MF=START call when you start your MFS exit (see
“Coding MFS Exit Programs” on page 75). Then MFS provides your program with
a prefilled TOF parameter list. The generated parameter list starts with the label
'MFSTSVL' and uses the prefix 'TS$'. For example, a DSLTSV TYPE=READ macro
can look like the following example:
DSLTSV TYPE=READ,BUFFER=INFBUF,FDNAM='DSLMSG', *

NESTID=0,FDGPIND=1,RSINDEX=1,DAINDEX=1, *
PREFIX=TS$,MF=(E,MFSTSVL)

If you use DSLTOFSV directly, you must supply the TOF parameter list and
temporary storage used by DSLTOFSV modules.

To generate TSVPARMS, either supply directly a DSECT according to the
DSLTOFSV calling parameter list and enter the addresses for the buffers required
by DSLTOFSV, or use the following macro:
[label] DSLTSV MF=L[,DSECT=YES|NO,PREFIX=...]

You must also provide the temporary storage of DSLTOFSV (TS). The temporary
storage TS is used as working buffer by DSLTOFSV. The length of this buffer
should be 2KB. Either create a buffer using general services DSLSRVP and supply

22 System Programming Guide

the address with the WORK parameter in a DSLTSV macro, or in the parameter
TSVPWORK of TSVPARMS, or use the following macro:
[label] DSLTSV MF=TS[,PREFIX=...]

This call creates a buffer addressable with the name TSVTSBEG for “begin of
temporary storage.”

Note: If the parameter PREFIX is omitted in a DSLTSV macro then the default
prefix 'TSV' is taken. Throughout this description the default prefix is
assumed. If you supply a different prefix, you must replace 'TSV' in all
parameters with your prefix.

Information Returned
You get return information from DSLTOFSV in register 15, and in the TSVPARMS
fields TSVPRC, TSVPRSC, TSVPCURR, TSVPNIEX, TSVPMFSR, TSVPDATL, and
TSVPFS.

Register 15 and TSVPRC contain the return code; TSVPRSC contains the reason
code. For a description of the return and reason codes, refer to MERVA for ESA
Messages and Codes.

The return code can be 0, 4, or 8.
v Return code 0 means that your request has been completed successfully.
v For return code 4, the reason code in TSVPRSC gives additional information,

TSVPRSC=TOFRFDNF after a 'READ' request, which means that the field to be
read was not found in the TOF.
The following general reason codes referring to errors in the TOF parameter list
can be returned:
TOFRRTYP = incorrect contents of modifiers (TSVPMODS)
TOFRFTYP = incorrect function type (TSVPFTYP)
TOFRFMOD = incorrect function modifier (TSVPFCMO)
TOFRINIT = TOF not correctly initialized
TOFRNOBU = no valid buffer for data transfer (TSVPBUFF)
TOFREXBU = no valid RS Extension parameter list supplied (TSVPRSXA)
TOFRXBUF = RS Extension Parameter List too small
TOFRFNRV = field name supplied is reserved (TSVPNEFN).

The following field names are reserved:
– TOFDUMMY
– DSLRSBEG
– DSLRSEND
– *DSLTOF$.

The following general reason codes indicate errors depending on the definition
of modifiers supplied in TSVPMODS:
TOFRFDNF = field required for change not found
TOFRNEST = nesting identifier not available
TOFROCCU = occurrence not found
TOFRRSEQ = field is not in repeatable sequence (RS-modifiers)
TOFRDAIN = data area index required for change not found
TOFRCMOD = 'illogical' combination in list of modifiers
TOFRNIFG = nesting identifier changed by modification.

If a routine was invoked by DSLTOFSV via MFS and the routine was not
processed successfully, the following reason codes can be returned:

Chapter 6. Using the TOF Supervisor (DSLTSV) 23

TOFRCHEC = checking routine failed
TOFREDIT = editing routine failed
TOFRDFLT = default setting routine failed
TOFREXPA = expansion routine failed.

v Return code 8 shows a severe error. The following general reason codes can be
returned:
TOFRSMAL = TOF buffer supplied is smaller than minimum size
TOFRDAMD = TOF supplied is damaged
TOFRWSMA = TOF working buffer supplied too small
TOFRWBMI = TOF working buffer supplied is smaller than

minimum size.

TSVPCURR contains the field reference of the field accessed if the DSLTOFSV
request could be executed successfully, otherwise the field reference of the last
successful call is retained.

TSVPNIEX is filled when an exit field to a nesting identifier is accessed or read
with the value of the nesting identifier this exit field points to, otherwise it is set to
0.

TSVPMFSR is filled with the MFS reason code returned if MFS internally called by
DSLTOFSV fails, for example, when DSLTOFSV called a checking routine via MFS
required for checking of data and MFS returned a checking error. Then, DSLTOFSV
returns a DSLTOFSV reason code and supplies the MFS reason code with
TSVPMFSR in addition.

TSVPDATL is set by DSLTOFSV when data is transferred from or to the TOF by
request types 'READ', 'WRITE', or 'ADDDA' and contains the net length of the data
in the buffer referenced by TSVPBUFF.

TSVPFS contains the status of a field. The following status bits are set according to
status conditions recognized while executing checking or read requests:
v TSVPFSMF is set when a checking routine called via MFS returned a nonzero

return code.
v TSVPFSEM is set when a data area to be read is empty.
v TSVPFSRX is set when DSLTOFSV basic checking found too many occurrences

of a field.
v TSVPFSDX is set when DSLTOFSV basic checking found too many data areas of

a field.
v TSVPFSLS is set when DSLTOFSV basic checking found that the length of data

of a field was smaller than specified in the FDT or MCB.
v TSVPFSLG is set when DSLTOFSV basic checking found that the length of data

of a field was greater than specified in the FDT or MCB.
v TSVPFSLF is set when DSLTOFSV basic checking found that the length of data

of a field does not match the fixed length specification in the FDT or MCB.
v TSVPFSMN is set when the data to be read by a 'READ' request is mandatory.

TSVPBUFF (shown below) is the info buffer for a READ (info) for WRITE (sval)
request for the reserved field *DSLTOF$. The data is prefixed with the standard
MERVA ESA buffer.
TOFINFO DS 0F TOF info structure for *DSLTOF$
TINFXTEN DS F TOF Extension value
TINFMSZ DS F TOF Maximum Size

24 System Programming Guide

TINFJBSZ DS F TOF Join Buff Size
TINFFMT DS F TOF Format 1 (single) or 2 (split)
TINFDAA DS F TOF Data Address

Creating a New TOF
Before you can start to use TOF services successfully you must supply a valid TOF
buffer. If MFS does not supply a valid TOF, you must provide the address of a
buffer with standard MERVA ESA layout and code the DSLTSV TYPE=TOFNEW
macro (TSVPFTYP='TNEW' for calling interface).

This instruction causes DSLTOFSV to initialize the buffer according to the TOF
requirements and provides the nesting identifier with NESTID=0 ready for use.
The new TOF data area is initially cleared to X'58'.

Note: The dynamic TOF definitions (TOFSIZE,MAXBUF) are read from the
DSLPARM and saved as the dynamic TOF settings. You can change these
settings by a WRITE dynamic TOF settings request.

If the return code from TOF initializing was zero, you can start to use the TOF.
Below is an example of initializing the TOF:

DSLTSV TYPE=TOFNEW, REQUEST TYPE = TOFNEW *
TOF=TOFBUF, TOFBUF CONTAINS BUFFER ADDRESS *
MF=(E,TSVPARMS)

LTR R15,R15 OK?
BNZ ERROR
... PERFORM DSLTOFSV REQUESTS AS
... REQUIRED BY YOUR PROGRAM
...

ERROR ...

Note: The length of the buffer supplied must be at least 200 bytes and cannot
exceed 2097144 bytes. If a buffer is supplied containing a TOF, the TOF is
cleared.

Writing Dynamic TOF Settings
The dynamic TOF settings can be changed at any time. The DSLPARM settings are
system-wide settings. An application might want to override them, for example,
the application in the installation that works with large messages. You need to
change the settings if you do not want the defaults taken from the DSLPARM at
the initialization of the TOF (following the TOFNEW request).

To change the settings of a dynamic TOF, send the TOFINFO data in a buffer
referenced by TSVPBUFF and communicated to DSLTOFSV by the parameter
BUFFER either in this or in a previous DSLTSV macro.

The following WRITE SVAL request disables the dynamic TOF functions. This
means that you get a ″TOF full″ return code if all the space you have initialized
with the TOFNEW request is filled.

Below is an example of writing the dynamic TOF settings:
... PROVIDE THE DATA TO BE
... WRITTEN IN THE BUFFER 'SVALBUF'
DSLTSV TYPE=WRITE, REQUEST TYPE = WRITE *

BUFFER=SVALBUF, SVALBUF REFERS TO THE SETTINGS *
, CONTAINING THE DATA *
NESTID=0, NESTING IDENTIFIER = 0 *

Chapter 6. Using the TOF Supervisor (DSLTSV) 25

FDGPIND=0, FIELD GROUP = 0 *
FDNAM='*DSLTOF$', FIELD NAME = '*DSLTOF$' *
DAINDEX=0, DATA AREA INDEX = 0 *
OPTION=NO, DATA AREA TO BE WRITTEN *
FMODIF=SVAL, OVERWRITE SETTING VALUES *
MF=(E,TSVPARMS)

LTR R15,R15 OK?
BNZ ERROR
... CONTINUE NORMAL
... PROGRAM PROCESSING
...

ERROR ...
...
DS 0F

SVALBUF DC H'28',H'0' Buffer Length
DC H'24',H'0' Data Area Length

TOFINFO DS 0F TOF info structure for DSLTOF$ *
TINFXTEN DC F'0' TOF Extension value *
TINFMSZ DC F'0' TOF Maximum Size *
TINFJBSZ DC F'0' TOF Join Buff Size *
TINFFMT DC F'0' TOF Format 1 or 2 *
TINFDAA DC F'0' TOF Data Address *

The key parameters are:

TOFINFO The following fullwords describe the structure used for the
dynamic TOF setting.

TINFXTEN This defines the increase value if the TOF must be extended. A
zero value indicates NO dynamic TOF space allocation.

TINFMSZ The dynamic allocation stops if this value is reached as a sum of
the Index plus Data Part space.

TINFJBSZ Not used on SVAL request. On READ INFO it returns the smallest
buffer size needed to JOIN the Index and Data TOF part.

TINFFMT Not used on SVAL request. On READ INFO it indicates the TOF
format:

1 The TOF uses only the original user-supplied area (single
TOF)

2 An additional area has been allocated by the TOF
Supervisor to hold the Data part of the TOF (split TOF).

TINFDAA Not used on SVAL request. On READ INFO it passes the address
of internally requested space for the data part of the TOF.

Freeing the Space Allocated by the TOF Supervisor
If you used the dynamic TOF service the TOF supervisor might have allocated
additional space for the data part of the TOF. You must issue a FREE request
before you free or reuse the space you have initialized by the TOFNEW request.

The TOF supervisor checks if additional space was allocated and returns the area
to the operating system.

Below is an example of freeing the dynamic TOF space:
...
...
DSLTSV TYPE=FREE, REQUEST TYPE = FREE *

MF=(E,TSVPARMS)
LTR R15,R15 OK?

26 System Programming Guide

BNZ ERROR
... CONTINUE NORMAL
... PROGRAM PROCESSING
...

ERROR ...
...

Writing Data to the TOF
To write data to a TOF, send it in the buffer referenced by TSVPBUFF and
communicated to DSLTOFSV by the parameter BUFFER either in this or a previous
DSLTSV macro.

If the field reference of the data to be written is not in the “current” parameters of
TSVPARMS (retained from a previous successful TOF service) then you must
provide the field reference with the “next” or “modifier” parameters or both. The
field reference is evaluated starting from the “current” position (TSVPCURR). This
is overwritten by the “next” position parameters (TSVPNEXT) specified. This
“actual” position is further changed by the modifiers specified (TSVPMODS)
yielding the final field reference.

Note: If any of the parameters: field group (FG), repeatable sequence occurrence
(RS), or data area index (DA) of the field reference contains a value of 0, this
is replaced by a value of 1.

If data is written to a field that is not in the TOF, the field is implicitly initialized.
For example, a field descriptor is created in the TOF using only the options
specified in the FDT for this field. Options specified in an MCB are not included.

If the field that is implicitly initialized has a default setting routine assigned in the
FDT, this routine is called by DSLTOFSV. This routine can imply additional
DSLTOFSV requests. Data returned by this routine is ignored in the actual
“WRITE” request, and the original data is written.

If the field name FN supplied refers to a subfield, the corresponding main field is
initialized, but no default setting routine is called.

Note: A field can be written only on a nesting identifier introduced in the TOF. If
the nesting identifier specified in the field reference is missing, it must be
introduced first using DSLTSV TYPE=ADDNI instructions to add the nesting
identifiers required. If the data area index or option to be written is found in
the TOF, the data found is replaced, otherwise the data is added to the field.

If the repeatable sequence was initialized using a repeatable sequence extension
parameter list (RSEXT) and the actual “WRITE” request supplies an RSEXT, a field
that is part of a repeatable sequence cannot be implicitly initialized.

If the return code from the 'WRITE' request is not 0, checking of the reason code
can be necessary. The following more specific reason codes are to be expected:
TOFRFULL = TOF is full, not enough space available
TOFRNEST = nesting identifier not available.

Below is an example of writing data to the TOF:
... PROVIDE THE DATA TO BE
... WRITTEN IN THE BUFFER 'MYBUF'
DSLTSV TYPE=WRITE, REQUEST TYPE = WRITE *

BUFFER=MYBUF, MYBUF REFERS TO THE BUFFER *

Chapter 6. Using the TOF Supervisor (DSLTSV) 27

, CONTAINING THE DATA *
NESTID=0, NESTING IDENTIFIER = 0 * [1]
FDGPIND=1, FIELD GROUP = 1 *
FDNAM='MYNAME', FIELD NAME = 'MYNAME' *
DAINDEX=3, DATA AREA INDEX = 3 * [2]
OPTION=NO, DATA AREA TO BE WRITTEN *
FMODIF=DECHECK, DATA ARE TO BE CHECKED AND * [3]
, DE-EDITED *
MF=(E,TSVPARMS)

LTR R15,R15 OK?
BNZ ERROR
... CONTINUE NORMAL
... PROGRAM PROCESSING
...

ERROR ...

Notes:

1. NESTID=0

With this parameter the DSLTSV parameter list field TSVPNENI is set to 0.

2. DAINDEX=3

With this parameter the DSLTSV parameter list field TSVPNEDA is set to
3. If there is no data area in the TOF for the field referenced, then the data
is written as data area index DA=1.

3. FMODIF=DECHECK

With this parameter the DSLTSV parameter list field TSVPFCMO is set to
'DECH'. TOF Supervisor tries first to de-edit and then to check the data to
be written to the TOF. Editing and checking are independent functions. If
de-editing was successful then the changed data is taken, otherwise the
original data is processed further. If the field referenced has no editing
routine assigned, the de-edit request is ignored. If the field has no checking
routine assigned, the DSLTOFSV basic checking is carried out. The
following checks are performed against the definition in the field
descriptor:
v Number of data areas
v Repeatable sequence occurrence number
v Minimum and maximum field length.

If de-editing or checking fails, return and reason codes are supplied, but
the data is written.

Note: In this example the parameter RSINDEX is not explicitly set. If it was set in
the same TOF parameter list with a DSLTSV macro before, that value is still
in effect. If the values of both TSVPCURS and TSVPNERS are 0, then RS=1
is used as default by DSLTOFSV.

Below is an example of writing data to the TOF using a nested RS Extension
Parameter List:

... PROVIDE THE DATA TO BE

... WRITTEN IN THE BUFFER 'MYBUF'
DSLTSV TYPE=WRITE, REQUEST TYPE = WRITE *

BUFFER=MYBUF, MYBUF REFERS TO THE BUFFER *
, CONTAINING THE DATA *
NESTID=1, NESTING IDENTIFIER = 1 * [1]
FDGPIND=1, FIELD GROUP = 1 *
FDNAM='MYNAME', FIELD NAME = 'MYNAME' *
DAINDEX=3, DATA AREA INDEX = 3 *
OPTION=NO, DATA AREA TO BE WRITTEN *

28 System Programming Guide

MODIF=RSEXT, RS EXTENSION TO BE USED * [2]
RSINDEX=(3,LASTRS,2), SUPPLY OCC PARAMETERS * [3]
MF=(E,TSVPARMS)

LTR R15,R15 OK?
BNZ ERROR
... CONTINUE NORMAL
... PROGRAM PROCESSING
...

ERROR ...

Notes:

1. NESTID=1

With this parameter the DSLTSV parameter list field TSVPNENI is set to 1.

2. MODIF=RSEXT

With this parameter the DSLTSV parameter list field TSVPMORS is set to
'X'. This modifier indicates to the TOF Supervisor that the parameters,
specifying the repeatable sequence occurrences (occurrence number or
modifier) are supplied with an RS Extension Parameter List.

3. RSINDEX=(3,LASTRS,2)

With this parameter a list of parameters is provided, which sets the
occurrence number or occurrence modifier of each repeatable sequence
level in the RS Extension Parameter List.

In this example the field is part of a repeatable sequence that is nested in
two other repeatable sequences. The occurrence number of the first, outer
repeatable sequence is set to 3, the modifier of the next nested repeatable
sequence is set to 'L', and the occurrence number of the innermost
repeatable sequence is set to 2. The second occurrence of the innermost
repeatable sequence is addressed. This is nested in the last occurrence of
the middle repeatable sequence, which is nested in the third occurrence of
the outermost repeatable sequence.

Adding Data Areas to the TOF
To add a data area, you can use the following two instructions: DSLTSV
TYPE=WRITE or DSLTSV TYPE=ADDDA. If you want to append the data area to
a sequence of data areas, then you use the 'WRITE' request and specify
DAINDEX=32767 to make sure that no data area is overwritten in the TOF.

If you want to insert a data area before or after an existing data area, you must use
the 'ADDDA' request.

Note: The 'ADDDA' request can be used only for adding data to a field already
initialized in the TOF.

If the return code from the 'ADDDA' request has not been zero, checking of the
reason code can be required. The following more specific reason codes are to be
expected:
TOFRFULL = TOF is full, not enough space available
TOFRNEST = Nesting identifier not available
TOFROCCU = Occurrence not found
TOFRFDNF = Field not found.

Below is an example of adding a data area to the TOF:

Chapter 6. Using the TOF Supervisor (DSLTSV) 29

... PROVIDE THE DATA TO BE

... ADDED IN THE BUFFER 'MYBUF'
DSLTSV TYPE=ADDDA, REQUEST TYPE = ADDDA *

BUFFER=MYBUF, MYBUF REFERS TO THE BUFFER *
, CONTAINING THE DATA *
FDGPIND=1, FIELD GROUP = 1 *
FDNAM='MYNAME', FIELD NAME = 'MYNAME' *
DAINDEX=1, DATA AREA INDEX = 1 * [1]
MODIF=(NEXTNI,NEXTDA), POSITION MODIFIED * [2]
OPTION=BEFORE, DA INSERTED BEFORE * [3]
FMODIF=CHECK, DATA ARE TO BE CHECKED * [4]
MF=(E,TSVPARMS)

LTR R15,R15 OK?
BNZ ERROR
... CONTINUE NORMAL
... PROGRAM PROCESSING
...

ERROR ...

Notes:

1. DAINDEX=1

With this parameter the DSLTSV parameter list field TSVPNEDA is set to
1. The data area index in the “actual” position is set to DA=1.

2. MODIF=(NEXTNI,NEXTDA)

With this parameter the “actual” position evaluated from the current
(TSVPCURR) and next (TSVPNEXT) parameters is verified in the TOF. If
the field referenced by the “actual” position is not found in the TOF, the
change cannot be carried out according to the specified MODIF parameter,
and a return and reason code is supplied. Otherwise the “actual” position
is changed first, with the field name of the first field on the next logical
nesting identifier (NEXTNI). FG, RS, and DA are set to 1, irrespective of
the values set in the 'next' parameter.

If either the next nesting identifier is not yet introduced to the TOF or no
field has been initialized on this nesting identifier, DSLTOFSV stops
processing and returns the reason code TOFRNEST (nesting identifier not
available). The second modifier (NEXTDA) changes DA to DA+1, so that
the data area index in the final field reference is DA=2.

If further processing does not detect an error, the reason code TOFRNIFG
is returned, indicating that a modifier changed the “actual” nesting
identifier. If you expect this to happen, ignore this reason code in the
processing of your program.

Note: In this example the macro parameter DAINDEX=1 does not affect
positioning because the modifier NEXTNI sets the data area index.

3. OPTION=BEFORE

If the reference of the data area evaluated after changing the “actual”
position is in the TOF, the data supplied is inserted as data area DA=2
before the previous DA=2 for the field referenced.

4. FMODIF=CHECK

With this parameter, the DSLTSV parameter list field TSVPFCMO is set to
'CHEK'. The TOF Supervisor tries to check the data before writing it to the
TOF. If the field has no checking routine assigned, the DSLTOFSV basic
checking is performed. If checking fails, return and reason codes are
supplied, but the data is inserted.

30 System Programming Guide

Note: In this example the parameter NESTID is not explicitly set. TSVPNIRZ is
defaulted to 0. If TSVPNENI is still 0, then the nesting identifier NI specified
in TSVPCUNI is not changed.

Reading Data from the TOF
To read data from the TOF, use the DSLTSV TYPE=READ macro. You can read one
of the following, depending on the option modifier OPTION and the function
modifier FMODIF:
v A data area
v An option
v The option list
v The field descriptor
v The maximum nesting level of repeatable sequences initialized in the TOF.

If you read a field descriptor (DSLTSV TYPE=READ,FMODIF=FDSCRPT) the result
obtained in the buffer referenced by TSVPBUFF depends on whether a main field
or a subfield is referenced:
v If a main field, the descriptor, as stored in the TOF, is received according to the

TOFFDE DSECT, described in “Initializing Fields in the TOF” on page 37.
v If a subfield, a field descriptor of a subfield is received.

This is indicated by the reason code TOFRSUBF in the field TSVPMFSR of the TOF
parameter list (TOF return and reason code = 0). The DSECT of the field descriptor
of a subfield is obtained by the DSLDSFDT macro (DSECT SUBFDS). For more
information refer to the MERVA for ESA Macro Reference.

If you read the maximum nesting level of repeatable sequences (MAXLEV)
(DSLTSV TYPE=READ,FMODIF=INFO,FDNAM=DSLRSLEV), the result is returned
in the first fullword of the buffer referenced by TSVPBUFF. To scan through the
TOF, for example by using the modifier NEXTFD, you must provide a repeatable
sequence extension parameter list large enough to save all parameters necessary to
access a field of the innermost nested repeatable sequence. The buffer size of the rs
extension buffer (BL) to be allocated can be calculated as follows: BL = MAXLEV *
6 + 2 + 8 (Buffer Header).

If the field referenced was initialized in the TOF, but no data area is available for
this field, then a default setting routine is called by DSLTOFSV (if assigned). The
data returned by the default setting routine is supplied in the buffer referenced by
TSVPBUFF and written to the TOF as first data area of the field referenced. If the
field name supplied refers to a subfield, the default setting routine assigned to the
subfield is called. The data returned is written as first data area to the main field;
an assigned separation routine is not called.

Note: A default setting routine is called only once for subfields of the same main
field. The default setting routine is called only when the first subfield is
read. Additional default setting routines specified for other subfields of the
same main field are not called.

If the return code from the 'READ' request is not zero, check the reason code. The
following more specific reason codes can occur:
TOFRFULL = TOF is full, not enough space available, if a default

setting routine was invoked and supplied data to be
written to the TOF

TOFRFDNF = Field not found

Chapter 6. Using the TOF Supervisor (DSLTSV) 31

TOFROCCU = Occurrence not found
TOFRDAIN = Data area index too high, not in TOF
TOFRNOPT = Field has no option defined
TOFROPTN = Option not found
TOFRBUFU = Buffer too small to return all data.

Below is an example of reading the option list of a field:
DSLTSV TYPE=READ, REQUEST TYPE = READ *

BUFFER=MYBUF, MYBUF REFERS TO THE BUFFER *
, AIMED TO RECEIVE THE DATA *
NESTID=1, NESTING IDENTIFIER = 1 * [1]
FDGPIND=5, FIELD GROUP = 5 * [2]
RSINDEX=1,
FDNAM='MYNAME', FIELD NAME = 'MYNAME' *
FMODIF=OPTLIST, OPTION LIST TO BE READ * [3]
MF=(E,TSVPARMS)

LTR R15,R15 OK?
BNZ ERROR
... CONTINUE NORMAL
... PROGRAM PROCESSING
...

ERROR ...

Notes:

1. NESTID=1

This parameter sets the DSLTSV parameter list field TSVPNENI to 1. The
nesting identifier in the “actual” position is set to NI=1.

2. FDGPIND=5

This parameter sets the DSLTSV parameter list field TSVPNEFG to 5. The
field group in the ″actual″ position is set to FG=5.

3. FMODIF=OPTLIST

This parameter sets the DSLTSV parameter list field TSVPFCMO to 'OPTL'.
Assuming the field referenced is in the TOF, DSLTOFSV returns the reason
code TOFRNOPT if the field has no option defined and TOFRMISS when
the option list is missing. Otherwise the option list is returned in the buffer
referenced by 'MYBUF'. The first byte of the option list contains the length
of the option literals followed by the list of option literals.

Note: If the option modifier OPTION was not specified explicitly, any
specified value is ignored when reading the option list.

Reading Dynamic TOF Settings
The dynamic TOF settings can be read at any time. The TOFINFO data structure is
returned in a buffer referenced by TSVPBUFF.

The following READ INFO request returns the dynamic TOF information.

Below is an example of reading the dynamic TOF settings:
...
...
DSLTSV TYPE=READ, REQUEST TYPE = WRITE *

BUFFER=INFOBUF, INFOBUF REFERS TO THE SETTINGS *
, CONTAINING THE DATA *
NESTID=0, NESTING IDENTIFIER = 0 *
FDGPIND=0, FIELD GROUP = 0 *
FDNAM='*DSLTOF$', FIELD NAME = '*DSLTOF$' *

32 System Programming Guide

DAINDEX=0, DATA AREA INDEX = 0 *
OPTION=NO, DATA AREA TO BE WRITTEN *
FMODIF=INFO, OVERWRITE SETTING VALUES *
MF=(E,TSVPARMS)

LTR R15,R15 OK?
BNZ ERROR
... CONTINUE NORMAL
... PROGRAM PROCESSING
...

ERROR ...
...
DS 0F

INFOBUF DC H'28',H'0' Buffer Length
DC H'24',H'0' Data Area Length

TOFINFO DS 0F TOF info structure for DSLTOF$ [1]
TINFXTEN DC F'0' TOF Extension value [2]
TINFMSZ DC F'0' TOF Maximum Size [3]
TINFJBSZ DC F'0' TOF Join Buff Size [4]
TINFFMT DC F'0' TOF Format 1 or 2 [5]
TINFDAA DC F'0' TOF Data Address [6]

The key parameters are:

TOFINFO The following fullwords describe the structure used for the
dynamic TOF settings.

TINFXTEN This defines the increase value if the TOF must be extended. A
zero value indicates NO dynamic TOF space allocation.

TINFMSZ The dynamic allocation stops if this value is reached as a sum of
the Index plus Data Part space.

TINFJBSZ This value is the smallest buffer size needed to JOIN the Index and
Data TOF part.

TINFFMT Indicates the TOF format:

1 The TOF uses only the original user-supplied area (single
TOF)

2 An additional area has been allocated by the TOF
Supervisor to hold the Data part of the TOF (split TOF).

TINFDAA Passes the address of internally requested space for the TOF’s data
part.

Deleting Data from the TOF
To remove data from the TOF, use the DSLTSV TYPE=DELETE macro. You can
delete all fields in the TOF, a nested message, an occurrence, a field, data areas or
the option of a field depending on the option modifier OPTION and function
modifier FMODIF.

Note: You must specify a function modifier; no default is assumed for the part of
the TOF to be deleted.

If the return code from the 'DELETE' request is not zero, check the reason code.
The following more specific reason codes can occur:
TOFRFDNF = Field not found
TOFROCCU = Occurrence not found
TOFRDAIN = Data area index too high, not in TOF
TOFRRSEQ = Field is not in repeatable sequence (FMODIF=DELRS).

Below is an example of deleting a nesting identifier:

Chapter 6. Using the TOF Supervisor (DSLTSV) 33

DSLTSV TYPE=DELETE, REQUEST TYPE = DELETE *
NESTID=1, NESTING IDENTIFIER = 1 * [1]
FDGPIND=0, FIELD GROUP = 0 * [2]
FDNAM='MYNAME', FIELD NAME = 'MYNAME' *
FMODIF=DELNI, DELETE NI * [3]
MF=(E,TSVPARMS)

LTR R15,R15 OK?
BNZ ERROR
... CONTINUE NORMAL
... PROGRAM PROCESSING
...

ERROR ...

Notes:

1. NESTID=1

This parameter sets the DSLTSV parameter list field TSVPNENI to 1. The
nesting identifier in the “actual” position is set to NI=1.

2. FDGPIND=0

This parameter sets the DSLTSV parameter list field TSVPNEFG to 0. The
field group as specified in TSVPCUFG is kept in the “actual” position.

3. FMODIF=DELNI

This parameter sets the DSLTSV parameter list field TSVPFCMO to 'DLNI'.
When executing the request, the field reference is evaluated as usual, but
only the nesting identifier is used. If the nesting identifier required (NI=1
in this example) is not in the TOF, the reason code TOFRNEST is returned.
Otherwise, the exit to this nesting identifier is removed in the exit field on
NI=0, and all fields on the nesting identifier NI=1 and on nesting
identifiers logically added to this nesting identifier are deleted.

Note: If this request executes successfully, the complete field reference is
saved in TSVPCURR, although only the nesting identifier is checked.
This position is not valid because the nesting identifier specified is
no longer available.

Accessing Fields in the TOF
To access a field in the TOF, use the DSLTSV TYPE=ACCESS macro.

This request type is useful when you want to make sure that a field you would
like to read, change, or check is really in the TOF.

Note: With this request the presence of a field in the TOF verified using the
parameters nesting identifier NI, field group FG, repeatable sequence
occurrence RS, and field name FN. The data area index DA supplied need
not be in the TOF.

If the return code from the 'ACCESS' request is not 0, check the reason code. The
following more specific reason codes can occur:
TOFRFDNF = Field not found
TOFROCCU = Occurrence not found.

Below is an example of accessing fields in the TOF sequentially:
DSLTSV TYPE=ACCESS, REQUEST TYPE = ACCESS *

NESTID=0, NESTING IDENTIFIER = 0 * [1]
FDGPIND=0, FIELD GROUP = 0 * [2]

34 System Programming Guide

RSINDEX=0, REP. SEQ. OCC. = 0 * [3]
FDNAM=' ', FIELD NAME = ' ' * [4]
MODIF=FIRSTNI, POSITION MODIFIED * [5]
MF=(E,TSVPARMS)

LTR R15,R15 OK?
BNZ ERROR

LOOP DSLTSV TYPE=ACCESS, REQUEST TYPE = ACCESS *
MODIF=NEXTFD, POSITION MODIFIED * [6]
MF=(E,TSVPARMS)

CLC TSVPRSC,TOFRFDNF FIELD NOT FOUND [7]
BE CONT
... PROCESS FIELD REFERENCE
... RETURNED IN TSVPCURR
B LOOP

CONT ... CONTINUE NORMAL
... PROGRAM PROCESSING
...

ERROR ...

'READ', 'WRITE' and 'CHECK' requests can be processed similarly.

Notes:

1. NESTID=0

This parameter sets the DSLTSV parameter list field TSVPNENI to 0 and
TSVPNIRZ to 1. The nesting identifier in the “actual” position is set to 0.

2. FDGPIND=0

This parameter sets the DSLTSV parameter list field TSVPNEFG to 0. The
field group as specified in TSVPCUFG is kept in the “actual” position.

3. RSINDEX=0

This parameter sets the DSLTSV parameter list field TSVPNERS to 0. The
repeatable sequence occurrence as specified in TSVPCURS is kept in the
“actual” position.

4. FDNAM=' '

This parameter sets the DSLTSV parameter list field TSVPNEFN to blanks.
The field name as specified in TSVPCUFN is kept in the “actual” position.

5. MODIF=FIRSTNI

With this parameter the “actual” position evaluated from the current
(TSVPCURR) and next (TSVPNEXT) parameters is changed with the first
nesting identifier (NI=0), the first field group index and the name of the
first field of this nesting identifier (NI=0). RS and DA are set to 1 in the
field reference.

Note: With this modifier you access the first field in the TOF.

6. MODIF=NEXTFD

With this parameter the “actual” position evaluated from the current
(TSVPCURR) and next (TSVPNEXT) parameters is changed with the field
reference of the field following the field at the “actual” position.

Note: In the preceding DSLTSV macro the 'next' parameters (NI, FG, RS,
FN) were set to values that do not overwrite the current position
parameters returned. This is a prerequisite to use the NEXTFD
parameter effectively in a loop.

Chapter 6. Using the TOF Supervisor (DSLTSV) 35

In contrast to MODIF=NEXTFN, the fields in repeatable sequences are
accessed sequentially for all occurrences of this repeatable sequence
initialized in the TOF.

7. CLC TSVPRSC,TOFRFDNF

The reason code TOFRFDNF is expected when the last field in the TOF
was read and the next field is not found. All other reason codes to be
expected can either be ignored or referred to general errors that would
have occurred with the first DSLTSV macro, and should be dealt with after
this instruction.

Checking Fields in the TOF
To check a field in the TOF, use the DSLTSV TYPE=CHECK macro. You can check
the complete field or a single data area when supplying the function modifier
FMODIF=DATA.

With this request, the referenced field is accessed by DSLTOFSV. Assuming the
field is found in the TOF, the checking routine supplied for this field in the FDT or
MCB is called. If no checking routine was assigned to this field, the DSLTOFSV
basic checking is performed.

The result of checking is returned in TOF return and reason code. If a checking
routine called via MFS returns an error, the bit TSVPFSMF is set, and the reason
code supplied in TSVPMFSR. DSLTOFSV basic checking sets the status bits in
TSVPFS and supplies an error message in MFS permanent storage.

If the return code from the 'CHECK' request is not 0, check the reason code. The
following more specific reason codes can occur:
TOFRFDNF = Field not found
TOFROCCU = Occurrence not found
TOFRCHEC = The checking routine called failed
TOFRLMIN = Field length error detected by DSLTOFSV basic checking
TOFRLMAX = Field length error detected by DSLTOFSV basic checking
TOFRLFIX = Field length error detected by DSLTOFSV basic checking
TOFRAREA = Too many data areas detected by DSLTOFSV basic checking
TOFROCCR = Too many occurrences detected by DSLTOFSV basic checking
TOFRCONT = Contents error communicated by the SWIFT Link checking routine.

Below is an example of checking a field in the TOF:
DSLTSV TYPE=CHECK, REQUEST TYPE = CHECK *

NESTID=1, NESTING IDENTIFIER = 1 *
FDGPIND=1, FIELD GROUP = 1 *
RSINDEX=1, REP. SEQ. OCC. = 1 *
FDNAM='MYNAME', FIELD NAME = 'MYNAME' *
MODIF=NEXTFN, POSITION MODIFIED * [1]
MF=(E,TSVPARMS)

LTR R15,R15 OK?
BNZ ERROR
... CONTINUE NORMAL
... PROGRAM PROCESSING
...

ERROR ...

Notes:

1. MODIF=NEXTFN

36 System Programming Guide

With this parameter, the “actual” position evaluated from the current
(TSVPCURR) and next (TSVPNEXT) parameters is changed with the next
field name of the nesting identifier of the “actual” position (NI=1). RS and
DA are set to 1 in the field reference.

Note: To carry out the change, the “actual” position achieved after
evaluating the current and next parameters must be a valid position
in the TOF.

Expanding Fields in the TOF
To expand a field in the TOF, use the DSLTSV TYPE=EXPAND macro.

With this request, first the field referenced is accessed by DSLTOFSV. Assuming the
field is found in the TOF, then the expansion routine supplied for this field in the
FDT or MCB is called. If no expansion routine was assigned to this field, then
DSLTOFSV returns with return and reason code zero and saves the field reference
in TSVPCURR.

If the return code from the 'EXPAND' request is not zero, check the reason code.
The following more specific reason codes can occur:
TOFRFDNF = Field not found
TOFROCCU = Occurrence not found
TOFREXPA = The expansion routine called failed.

Below is an example of expanding a field in the TOF:
DSLTSV TYPE=EXPAND, REQUEST TYPE = EXPAND *

NESTID=1, NESTING IDENTIFIER = 1 *
FDGPIND=1, FIELD GROUP = 1 *
RSINDEX=1, REP. SEQ. OCC. = 1 *
FDNAM='MYNAME', FIELD NAME = 'MYNAME' *
MF=(E,TSVPARMS) *

LTR R15,R15 OK?
BNZ ERROR
... CONTINUE NORMAL
... PROGRAM PROCESSING
...

ERROR ...

Initializing Fields in the TOF
To initialize a field in the TOF, use the DSLTSV TYPE=INIT macro.

This request type is useful when you want to change the information from the
field descriptor entry in the FDT with information supplied by an MCB entry. The
field is initialized with a field descriptor containing the information from the FDT
merged with the information from the MCB entry supplied. If the field has a
default setting routine assigned, this default setting routine is called by DSLTOFSV.

If the return code from the 'INIT' request is not 0, check the reason code. The
following more specific reason codes can occur:
TOFRFINI = Field already initialized
TOFRSUBF = Subfield cannot be initialized
TOFRXFNI = Field with rs extension does not fit to rs extension

structure initialized in TOF
TOFRFULL = Not enough space in TOF
TOFRINNI = Nesting identifier not allowed for initialization
TOFRIMCB = MCB supplied is incorrect
TOFRDFLT = Default setting routine called failed.

Chapter 6. Using the TOF Supervisor (DSLTSV) 37

To initialize a field, an MCB entry must be supplied in the buffer referenced by
TSVPBUFF. You must supply the data required according to the DSECT shown
below. You can map this structure in your program by using a DSLDSMCB macro
and use the MFLDDS DSECT to supply the data.
MFLDDS DSECT
MFDLNGTH DS AL2 MFLD ENTRY LENGTH [1]
MFDIDENT DS X IDENTIFIER
MFDID EQU X'20' MFLD ID

DS X RESERVED
MFDNAME DS CL8 FIELD NAME [2]
MFDCHKN DS AL2 CHECK ROUTINE NUMBER [3]
MFDEDTN DS AL2 EDIT ROUTINE NUMBER [3]
MFDDEFN DS AL2 DEFAULT ROUTINE NUMBER [3]
MFDEXPN DS AL2 EXPANSION ROUTINE NUMBER [3]
MFDMASK DS XL1 MASK (NEGATIVE OF FIELD OPTIONS)
MFDOPT DS XL1 FIELD OPTIONS [4]
MFDQUEUY EQU X'40' QUEUE=YES
MFDOPTYS EQU X'20' OPTION=YES
MFDMANDY EQU X'10' MAND=YES
MFDRSEXT EQU X'01' MFD RS EXTENSION AVAILABLE
MFDLTHFL DS XL1 TYPE OF LENGTH SPECIFICATION [5]
MFDLTHFX EQU X'08' FIXED LENGTH SPECIFIED
MFDLTHVR EQU X'04' VARIABLE LENGTH SPECIFIED
MFDLTHUN EQU X'02' UNLIMITED LENGTH SPECIFIED
MFDSPEC DS XL1 OCCURRENCE INDICATORS [6]
MFDSCHK EQU X'80' CHECKING ROUTINE SPECIFIED
MFDSEDT EQU X'40' EDIT ROUTINE SPECIFIED
MFDSDEF EQU X'20' DEFAULT ROUTINE SPECIFIED
MFDSEXP EQU X'10' EXPANSION ROUTINE SPECIFIED
MFDSLTH EQU X'08' LENGTH SPECIFIED
MFDSQ EQU X'04' QUEUE SPECIFIED
MFDSOPT EQU X'02' OPTION SPECIFIED
MFDSMAND EQU X'01' MAND SPECIFIED
MFDLTH1 DS AL2 MINIMUM LENGTH [7]
MFDLTH2 DS AL2 MAXIMUM LENGTH [8]
MFDDAMAX DS AL2 MAX NUM OF DATA AREAS IN FIELD [9]
MFDRSMAX DS AL2 MAX NUM OF OCCURRENCES IN REP. SEQ. [10]
MFDRSMIN DS AL2 MIN NUM OF OCCURRENCES IN REP. SEQ. [10]
MFDGRPNO DS XL1 GROUP NUMBER TO WHICH FIELD BELONGS
MFDOPTSN DS AL1 NUMBER OF OPTIONS SPECIFIED [11]
MFDLEN EQU *-MFLDDS BASIC MFLD LENGTH
MFDLITL DS AL1 LENGTH OF OPTION LITERAL [12]
MFDLIT DS CLX LIST OF OPTION LITERALS [13]
MFDRSXLL DS AL2(MFDRSXEN-MFDRSXLL) LENGTH OF MFD RS EXTENSION [14]
MFDRSXNN DS AL2 NUMBER OF MAX/MIN PAIRS
MFDRSXGN DS AL2 STATIC RS GROUP NUMBER
MFDRSXA1 DS AL2 MAX OCC INDEX IN FIRST REP SEQ
MFDRSXI1 DS AL2 MIN OCC INDEX IN FIRST REP SEQ
* VARIABLE NUMBER OF RS INDEX FIELDS - GENERATED AS SPECIFIED
MFDRSXA9 DS AL2 MAX OCC INDEX IN NESTED REP SEQS
MFDRSXI9 DS AL2 MIN OCC INDEX IN NESTED REP SEQS
MFDRSXEN DS 0C

ORG MFDRSXLL

Notes:

1. MFDLNGTH

The parameter contains the total length of the MCB entry.

2. MFDNAME

The parameter contains the name of the field to be initialized. The contents
of the parameter is compared with the name of the field in the field
reference.

38 System Programming Guide

3. MFDCHKN, MFDEDTN, MFDDEFN, MFDEXPN

These parameters contain the numbers of the routines to be assigned to the
field. If you specify these parameters, the corresponding occurrence
indicator must be set.

4. MFDOPT

This parameter assigns which options of the field are set. If specified, the
corresponding occurrence indicator must be set.

The option MFDRSEXT indicates that an extension buffer is supplied. This
passes the information to initialize a field in a nested repeatable sequence.
The sequence of fields initialized in a nested repeatable sequence is critical
and is done preferably using the DSLLDEV TYPE=MESSAGE part of an
MCB.

5. MFDLTHFL

This parameter specifies the type of the field length.

6. MFDSPEC

If you want to define or change a routine number, a field option, or a
length parameter, then the corresponding indicator must be set. Only those
parameters with set indicator are considered when the field descriptor is
created in the TOF.

7. MFDLTH1

This parameter specifies the minimum length of the data areas of the field
to be initialized.

8. MFDLTH2

This parameter specifies the maximum length of the data areas of the field
to be initialized.

9. MFDDAMAX

This parameter specifies the maximum number of the data areas of the
field to be initialized.

10. MFDRSMAX, MFDRSMIN

These parameters specify the maximum and minimum number of the
occurrences of a field belonging to a repeatable sequence. They must be the
same for all fields belonging to this repeatable sequence.

11. MFDOPTSN

This parameter specifies the number of option literals to be assigned to the
field to be initialized. If MFDOPTSN=0, any option list supplied is ignored.

12. MFDLITL

This parameter specifies the length of one option literal. This length is
required to interpret the option list correctly, and is part of the option list.

13. MFDLIT

This parameter specifies the list of the option literals.

14. MFDRSXLL

This parameter marks the start of the buffer that supplies the information
needed to initialize fields in nested repeatable sequences.

Chapter 6. Using the TOF Supervisor (DSLTSV) 39

The contents of the field descriptor created in the TOF can be received in the buffer
referenced by TSVPBUFF using the DSLTSV TYPE=READ,FMODIF=FDSCRPT
macro. The information is supplied according to the DSECT shown below.

Note: If you apply the DSLTSV TYPE=READ,FMODIF=FDSCRPT macro on a
subfield, the descriptor for the subfield from the FDT is received.

TOFFDE DSECT
TOFFTLEN DS AL2 ENTRY LENGTH EXCLUDING LENGTH FIELD [1]
TOFFCHKN DS AL2 CHECK ROUTINE NUMBER [2]
TOFFEDTN DS AL2 EDIT ROUTINE NUMBER [2]
TOFFDEFN DS AL2 DEFAULT ROUTINE NUMBER [2]
TOFFEXPN DS AL2 EXPANSION ROUTINE NUMBER [2]
TOFFSEPN DS AL2 SEPARATION ROUTINE NUMBER [2]
TOFFMASK DS AL1 MASK (NEGATIVE OF FIELD OPTIONS)
TOFFOPT DS AL1 FIELD OPTIONS [3]
TOFPERMY EQU X'80' PERM=YES
TOFQUEUY EQU X'40' QUEUE=YES
TOFOPTYS EQU X'20' OPTION=YES
TOFMANDY EQU X'10' MAND=YES
TOFPADYS EQU X'08' PAD SPECIFIED
TOFIN1ST EQU X'04' INIT=FIRST
TOFCHSPR EQU X'02' CHECKING DONE IN SEPARATION ROUTINE
TOFFRSXT EQU X'01' RS EXTENSION AVAILABLE
TOFLTHFL DS AL1 TYPE OF LENGTH SPECIFICATION [4]
TOFLTHFX EQU X'08' FIXED LENGTH SPECIFIED
TOFLTHVR EQU X'04' VARIABLE LENGTH SPECIFIED
TOFLTHUN EQU X'02' UNLIMITED LENGTH SPECIFIED

DS X RESERVED
TOFLTH1 DS AL2 MINIMUM LENGTH [5]
TOFLTH2 DS AL2 MAXIMUM LENGTH [6]
TOFDAMAX DS AL2 MAX NUM OF DATA AREAS IN FIELD [7]
TOFRSMAX DS AL2 MAX NUM OF OCCURRENCES IN FIELD [8]
TOFPAD DS CL1 PADDING CHARACTER
TOFOPTSN DS AL1 NUMBER OF OPTIONS SPECIFIED [9]
TOFRSMIN DS AL2 MIN NUM OF OCCURRENCES IN FIELD [8]
TOFLITL DS AL1 LENGTH OF OPTION LITERAL [10]
TOFLIT DS CLX LIST OF OPTION LITERALS [11]
TOFRSXLL DS AL2(TOFRSXEN-TOFRSXLL) LENGTH OF TOF RS EXTENSION [12]
TOFRSXNN DS AL2 NUMBER OF MAX/MIN PAIRS
TOFRSXGN DS AL2 STATIC RS GROUP NUMBER
TOFRSXA1 DS AL2 MAX OCC INDEX IN FIRST REP SEQ
TOFRSXI1 DS AL2 MIN OCC INDEX IN FIRST REP SEQ
* VARIABLE NUMBER OF RS INDEX FIELDS - GENERATED AS SPECIFIED
TOFRSXA9 DS AL2 MAX OCC INDEX IN NESTED REP SEQS
TOFRSXI9 DS AL2 MIN OCC INDEX IN NESTED REP SEQS
TOFRSXEN DS 0C

Notes:

1. TOFFTLEN

This parameter contains the length of the field descriptor entry except for
the length of TOFFTLEN.

2. TOFFCHKN, TOFFEDTN, TOFFDEFN, TOFFEXPN

These parameters contain the numbers of the routines assigned to the field.

3. TOFFOPT

This parameter contains the options assigned to the field.

4. TOFLTHFL

This parameter contains the type of the field length specified.

5. TOFLTH1

40 System Programming Guide

This parameter contains the minimum length of the data areas specified. It
is checked by TOF basic checking for fixed length and variable length
fields.

6. TOFLTH2

This parameter contains the maximum length of the data areas specified. It
is checked by TOF basic checking for fixed length and variable length
fields.

7. TOFDAMAX

This parameter contains the maximum number of data areas specified for
this field. It is checked by TOF basic checking.

8. TOFRSMAX, TOFRSMIN

These parameters contain the maximum and minimum number of the
occurrences specified for this field. They are checked by TOF basic
checking.

9. TOFOPTSN

This parameter contains the number of option literals assigned to the field.

10. TOFLITL

This parameter specifies the length of one option literal. It is part of the
option list and only present if the field has an option list assigned.

11. TOFLIT

This parameter contains the list of the option literals. It is part of the
option list and only present if the field has an option list assigned.

12. TOFRSXLL

The start of the buffer that supplies the information needed to initialize
fields in nested repeatable sequences.

Below is an example of initializing a field in the TOF:
... PROVIDE MCB ENTRY IN BUFFER
... REFERENCED BY TSVPBUFF
DSLTSV TYPE=INIT, REQUEST TYPE = INIT *

NESTID=1, NESTING IDENTIFIER = 1 * [1]
FDGPIND=1, FIELD GROUP = 1 * [2]
RSINDEX=3, REP. SEQ. OCC. = 3 * [3]
FDNAM='MYNAME', FIELD NAME = 'MYNAME' * [4]
MF=(E,TSVPARMS)

LTR R15,R15 OK?
BNZ ERROR
... CONTINUE NORMAL
... PROGRAM PROCESSING
...

ERROR ...

Notes:

1. NESTID=1

This parameter sets the DSLTSV parameter list field TSVPNENI to 1. The
nesting identifier in the “actual” position is set to NI=1.

2. FDGPIND=1

This parameter sets the DSLTSV parameter list field TSVPNEFG to 1. The
field group in the “actual” position is set to FG=1.

Chapter 6. Using the TOF Supervisor (DSLTSV) 41

3. RSINDEX=3

This parameter sets the DSLTSV parameter list field TSVPNERS to 3. The
repeatable sequence occurrence in the “actual” position is set to RS=3.

Note: Because of this specification the field is initialized at least for 3
empty occurrences. If other fields of the same repeatable sequence
were already initialized for more occurrences, this field is initialized
for as many occurrences as are present.

4. FDNAM='MYNAME'

This parameter sets the DSLTSV parameter list field TSVPNEFN to
'MYNAME '. The field name in the “actual” position TSVPCUFN is set to
'MYNAME '.

Note: If 'MYNAME ' is the name of a subfield according to the FDT, then
the request is rejected.

Adding a Nesting Identifier to the TOF
To add a nesting identifier to the TOF, specify an exit field on the preceding
identifier that is not already an exit field for a nesting identifier.

You can either use a field already used in the TOF or specify a field only used as
an exit field. The exit field must at least be initialized before the 'ADDNI' request
can be successfully executed.

Note: The reference of the exit field accessed in a DSLTSV TYPE=ADDNI
instruction is evaluated differently from normal processing. Positioning is
done using only the “current” position (TSVPCURR) and the modifiers
(TSVPMODS). The name of the exit field, however, must be supplied in the
next parameter TSVPNEFN.

If the return code from the 'ADDNI' request is not 0, check the reason code. The
following more specific reason codes can occur:
TOFRFULL TOF is full, not enough space available
TOFRNEST No further nesting identifier available, maximum number=255

for NI already in TOF
TOFRFINI Field already initialized, not available as exit field
TOFROCCU Occurrence not found
TOFRFDNF Field not found.

Below is an example of adding a nesting identifier to the TOF:
... PROVIDE IDENTIFIER FOR [1]
... NESTING IDENTIFIER
... IN THE BUFFER 'MYBUF'
DSLTSV TYPE=WRITE, REQUEST TYPE = WRITE * [2]

BUFFER=MYBUF, MYBUF REFERS TO THE BUFFER *
, CONTAINING THE DATA *
NESTID=0, NESTING IDENTIFIER = 0 * [3]
FDGPIND=1, FIELD GROUP = 1 * [3]
FDNAM='MYEXIT', FIELD NAME = 'MYEXIT' *
OPTION=NO, DATA AREA TO BE WRITTEN *
MF=(E,TSVPARMS)

LTR R15,R15 OK?
BNZ ERROR1
DSLTSV TYPE=ADDNI, REQUEST TYPE = ADDNI * [4]

FDGPIND=1, FIELD GROUP = 1 * [5]
FDNAM='MYEXIT', FIELD NAME = 'MYEXIT' * [6]
DAINDEX=1, DATA AREA INDEX = 1 *

42 System Programming Guide

MF=(E,TSVPARMS)
LTR R15,R15 OK?
BNZ ERROR2
... CONTINUE NORMAL
... PROGRAM PROCESSING
...

ERROR1 ...
...

ERROR2 ...

Notes:

1. Provides an indication of the data for the nesting identifier.

It is useful to supply an indicator of the type of information to be stored
on the new nesting identifier. In the SWIFT Link the message type is
supplied.

2. TYPE=WRITE

With this request the nesting identifier indicator is written to the exit field
'MYEXIT' and this field is initialized if it was not in the TOF before.

3. NESTID=0 and FDGPIND=1

The exit field is written on nesting identifier 0 and field group 1.

4. TYPE=ADDNI

This parameter specifies a new nesting identifier of the TOF.

Note: The nesting identifier is not NI=1 if NI=1 was introduced before. It
is set to the highest nesting identifier at that time in the TOF + 1.
This value is returned in the parameter TSVPNIEX of the TOF
parameter list when the exit field is read or accessed.

5. FDGPIND=1

This parameter sets the DSLTSV parameter list field TSVPNEFG to 1. The
parameter is not used for evaluating the field reference.

6. FDNAM='MYEXIT'

With the preceding DSLTSV TYPE=WRITE instruction, this field was
written to the TOF. Because no modifiers are specified in this DSLTSV
macro and the field reference was saved from the preceding request, the
exit field will be found.

Note: To make sure that the exit field required is in the TOF, either use a
sequence of DSLTSV TYPE=WRITE or DSLTSV TYPE=ACCESS
before using the DSLTSV TYPE=ADDNI macros.

Compressing the TOF into a Buffer and Merging the TOF from a Buffer
If you want to remove the free space in the TOF, you can compress the TOF into
the buffer referenced by TSVPBUFF using the DSLTSV TYPE=COMPRESS macro.

Note: You lose the fields with the OPTION QUEUE=NO in the FDT or MCB.

If you want to get free space in a TOF supplied in the buffer referenced by
TSVPBUFF, you can merge the TOF supplied with an empty TOF using the
DSLTSV TYPE=MERGE macro.

Chapter 6. Using the TOF Supervisor (DSLTSV) 43

Note: The MERGE request adds the fields from the TOF referenced by TSVPBUFF
to the TOF referenced by TSVPADDR. If a field already exists, it is
overwritten.

If the return code from the 'COMPRESS' or 'MERGE' request is not zero, checking
of the reason code is required. The following more specific reason codes can occur:
TOFRBUFU Buffer too small for compressed TOF
TOFRCOEM TOF to be compressed is empty
TOFRFULL TOF too small to receive the TOF supplied.

Below is an example of compressing and merging a TOF:
DSLTSV TYPE=COMPRESS REQUEST TYPE = COMPRESS *

BUFFER=MYBUF, MYBUF REFERS TO THE BUFFER * [1]
, TO RECEIVE THE COMP. TOF *
MF=(E,TSVPARMS)

LTR R15,R15 OK?
BNZ ERROR1
DSLTSV TYPE=TOFNEW, REQUEST TYPE = TOFNEW * [2]

MF=(E,TSVPARMS)
LTR R15,R15 OK?
BNZ ERROR2
DSLTSV TYPE=MERGE, REQUEST TYPE = MERGE * [3]

MF=(E,TSVPARMS)
LTR R15,R15 OK?
BNZ ERROR3
... CONTINUE NORMAL
... PROGRAM PROCESSING
...

ERROR1 ...
ERROR2 ...
ERROR3 ...

Notes:

1. BUFFER=MYBUF

With this parameter the buffer referenced by MYBUF is used to receive the
compressed TOF.

Note: Supply a buffer large enough to contain a TOF.

2. TYPE=TOFNEW

With this DSLTSV macro the original TOF referenced by TSVPADDR is
emptied.

3. TYPE=MERGE

With this DSLTSV macro the empty TOF is merged with the compressed
TOF referenced by MYBUF.

Joining the TOF into a Buffer
If you want to join a split TOF, you can join the TOF into the buffer referenced by
TSVPBUFF using the DSLTSV TYPE=JOIN macro.

Note: In contrast with the 'COMPRESS' request, the 'JOIN' request does not cause
the fields with OPTION QUEUE=NO to be lost.

If the return code from the 'JOIN' request is not zero, checking of the reason code
is required. The following more specific reason codes can occur:

44 System Programming Guide

TOFRBUFU buffer too small for compressed TOF
TOFRCOEM TOF to be joined is empty.

Below is an example of joining a split TOF:
DSLTSV TYPE=JOIN REQUEST TYPE = JOIN * [1]

BUFFER=MYBUF, MYBUF REFERS TO THE BUFFER * [2]
, TO RECEIVE THE COMP. TOF *
MF=(E,TSVPARMS)

LTR R15,R15 OK?
BNZ ERROR1
... CONTINUE NORMAL
... PROGRAM PROCESSING
...

ERROR1 ...

Notes:

1. TYPE=JOIN

With this DSLTSV macro the empty TOF is merged with the compressed
TOF referenced by MYBUF.

2. BUFFER=MYBUF

With this parameter the buffer referenced by MYBUF is used to receive the
compressed TOF.

Note: Supply a buffer large enough to contain a TOF. The required length
can be obtained by reading the dynamic TOF settings field
TINFJBSZ, as described in “Reading Dynamic TOF Settings” on
page 32.

Chapter 6. Using the TOF Supervisor (DSLTSV) 45

46 System Programming Guide

Chapter 7. Using General File Services (DSLFLV)

MERVA ESA provides general file services that enable you to access files from
programs running in a MERVA ESA environment. You can use these services to
access the SWIFT Correspondents File, the SWIFT Currency Code File, the
MERVA ESA Nicknames File, or the Telex Correspondents File.

The following general file services are available:
v Open a file
v Close a file
v Add a record
v Delete a record
v Replace a record
v Get a record by direct access
v Get records by sequential access.

You can request these services by calling the File Service Program DSLFLVP. You
use the File Service Macro DSLFLV to call this program.

Requesting general file services requires that the files you refer to are defined in
the MERVA ESA file table (DSLFLTT). The files must also be defined to VSAM,
and to CICS file control (CICS installations) or DL/I (IMS installations). DSLFLVP
translates requests to access a file into VSAM macros and CICS file control
commands (CICS installations), or DL/I calls (IMS installations). For the caller of
DSLFLVP, there is no difference between CICS and IMS. This is convenient when
writing programs for both systems. Also, in CICS installations, batch processing of
files is often simplified if you use DSLFLVP instead of calling VSAM directly.

Note: DSLFLVP is DC-system dependent, that is, CICS and IMS environments use
different DSLFLVP modules. The module must be loaded from the
appropriate load library for your system.

How to define a file in the MERVA ESA file table is described in MERVA for ESA
Customization Guide.

Using the File Service Macro DSLFLV
The macro DSLFLV is used to call the program DSLFLVP. In the following, the
services that you can request from DSLFLVP are described, and examples of how
you can specify your requests by DSLFLV macros. For complete information on the
DSLFLV macro parameters, refer to MERVA for ESA Macro Reference.

Setup for DSLFLVP
If you set up your own MERVA ESA environment and you want to use the
services of DSLFLVP, then the DSLCOM area must be addressable and the
following fields of DSLCOM must be filled (see “Filling the Fields of DSLCOM” on
page 5 for more information):
v COMSRVPA
v COMOMSGA

© Copyright IBM Corp. 1987, 2001 47

v COMMSGTA
v COMFLVPA
v COMFLTTA
v COMEIB (CICS only)
v COMEISTG (CICS only)
v COMPCBLA (IMS only).

You communicate with DSLFLVP via the parameter list (PL) and the request
control block (RCB), which are both generated by means of a DSLFLV MF=L
macro. Also a temporary storage of at least 3072 bytes length is required.

The example below shows how to define the PL, the RCB and the temporary
storage for DSLFLVP:

DSLFLV MF=L PL AND RCB OF DSLFLVP [1]
VTS DS CL3072 TEMPORARY STORAGE OF DSLFLVP

Note:

1. The label is omitted, so a default label is generated depending on the
PREFIX parameter. As the PREFIX parameter is also omitted, the label
default is FLVL, FLV being the default for the prefix parameter. All fields
of the PL and the RCB have also the default prefix FLV.

Information Returned
You receive return information in register 15 and in the RCB.

Register 15 always contains the return code. Unless the return code is 16, you get
additional return information in the following RCB fields:

FLVRC Return code

FLVRSN Reason code

FLVOMBUF Unless the return code is zero: a diagnostic message that can be
printed or displayed.

Return code 16 means that register 1 or at least one of the fields FLVRCBA,
FLVTSA, FLVCOMA, or COMOMSGA is hexadecimal zero. You can avoid this
error by a correct programming setup.

For a detailed description of return codes, reason codes, and diagnostic messages,
refer to MERVA for ESA Messages and Codes.

Layouts of Buffers and Records
When you add a record to a file or replace a record in a file, you must provide the
new record in a buffer. Figure 2 on page 49 shows the required buffer layout. The
same layout is supplied by DSLFLVP when you get a record from a file. The offset
of the record within the buffer is always 4. In the first halfword of the buffer, you
store the buffer length. DSLFLVP checks this value against the record length
defined in the file table when you request a record.

48 System Programming Guide

DSLFLVP does not restrict the record layout. However, if you use MFS services for
mapping record data to screen/printer devices, your records must have the layout
shown in Figure 3. Remember that you get this layout automatically if you provide
new record data in the TOF area and use MFS line-formatter services to map them
into the buffer.

Opening and Closing a File
In IMS batch or message processing programs (BMP and MPP) and in CICS tasks,
requests for opening or closing files are not required. If you code such requests,
they are ignored and the return code is zero.

In batch programs of CICS installations, you must open and close each file you
access. Begin your sequence of DSLFLV macros with DSLFLV TYPE=OPEN, and
end it with DSLFLV TYPE=CLOSE. Specify the file name by the parameter DAT.

When you open the file, you must show which request types will follow by
specifying or omitting the option GET in the option list (parameter OPT). If the
option GET is specified, only GET and GETNEXT request types are subsequently
allowed. If GET is omitted, any request type is allowed. If you want to have
several regions (MVS) or partitions (VSE) access the same file concurrently, only
one of them is allowed to open the file without GET, but all can open it with GET.
A batch program that opens a file without the option GET cannot run while the
region or partition of MERVA ESA running under CICS has the file opened.

Below is an example of opening and closing a file. The file is opened for all request
types.

... PROVIDE FILE NAME IN VDAT

...
DSLFLV TYPE=OPEN, REQUEST TYPE: OPEN *

DAT=VDAT, FILE NAME: VDAT *
TS=VTS, TEMPORARY STORAGE: VTS *
MF=E

LTR R15,R15 OK?
BNZ ERROR1
... ACCESS THE FILE USING
... ...DSLFLV MACRO INSTRUCTIONS TYPE=
... ...ADD/DELETE/REPLACE/GET/GETNEXT
...
DSLFLV TYPE=CLOSE, REQUEST TYPE: CLOSE *

DAT=VDAT, FILE NAME: VDAT *
TS=VTS, TEMPORARY STORAGE: VTS *
MF=E

LTR 15,15 OK?

Figure 2. Buffer Layout When Using DSLFLVP

Figure 3. Buffer/Record Layout When Using DSLFLVP and MFS Services

Chapter 7. Using General File Services (DSLFLV) 49

BNZ ERROR2
...

ERROR1 ...
ERROR2 ...

...
VDAT DS CL8 FILE NAME

Adding a Record
To add a record to a file, code a DSLFLV TYPE=ADD macro. Specify the file name
by the parameter DAT, and the address of the record buffer by the parameter BUF.
Below is an example of adding a record to a file. The record provided in VBUF is
added.

... PROVIDE FILE NAME IN VDAT

... PROVIDE NEW RECORD IN VBUF

...
DSLFLV TYPE=ADD, REQUEST TYPE: ADD *

DAT=VDAT, FILE NAME: VDAT *
BUF=VBUF, RECORD BUFFER: VBUF *
TS=VTS, TEMPORARY STORAGE: VTS *
MF=E

LTR R15,R15 OK?
BZ OK
CLI 1+FLVRSN,FLVRDUP RECORD DUPLICATED?
BE DUP
B ERROR

OK ...
DUP ...
ERROR ...

...
VDAT DS CL8 FILE NAME
VBUF DS ... RECORD BUFFER

Deleting a Record
To delete a record from a file, code a DSLFLV TYPE=DELETE macro. Specify the
file name by the parameter DAT, and the address of your search argument by the
parameter ARG. The record where the search field content is equal to your search
argument is deleted.

Below is an example of deleting a record from a file. The record whose search field
is equal to the content of VARG is deleted.

... PROVIDE FILE NAME IN VDAT

... PROVIDE SEARCH ARGUMENT IN VARG

...
DSLFLV TYPE=DELETE, REQUEST TYPE: DELETE *

DAT=VDAT, FILE NAME: VDAT *
ARG=VARG, SEARCH ARGUMENT: VARG *
TS=VTS, TEMPORARY STORAGE: VTS *
MF=E

LTR R15,R15 OK?
BZ OK
CLI 1+FLVRSN,FLVRNOF RECORD NOT FOUND?
BE NOF
B ERROR

OK ...
NOF ...
ERROR ...

...
VDAT DS CL8 FILE NAME
VARG DS ... SEARCH ARGUMENT

50 System Programming Guide

Replacing a Record
To replace a record in a file, code a DSLFLV TYPE=REPLACE macro. Specify the
file name by the parameter DAT, and the address of the record buffer by the
parameter BUF. The new record provided in the record buffer will replace the
record in the file where the search field content is equal to the search field content
of the new record.

Below is an example of replacing a record in a file. The new record provided in
VBUF replaces the record in the file where the search field content is equal to the
search field content of the new record.

... PROVIDE FILE NAME IN VDAT

... PROVIDE NEW RECORD IN VBUF

...
DSLFLV TYPE=REPLACE, REQUEST TYPE: REPLACE *

DAT=VDAT, FILE NAME: VDAT *
BUF=VBUF, RECORD BUFFER: VBUF *
TS=VTS, TEMPORARY STORAGE: VTS *
MF=E

LTR R15,R15 OK?
BZ OK
CLI 1+FLVRSN,FLVRNOF RECORD NOT FOUND?
BE NOF
B ERROR

OK ...
NOF ...
ERROR ...

...
VDAT DS CL8 FILE NAME
VBUF DS ... RECORD BUFFER

Getting a Record by Direct Access
To get a record from a file by direct access, code a DSLFLV TYPE=GET macro.
Specify the file name by the parameter DAT, the address of your search argument
by the parameter ARG, and the address of the record buffer by the parameter BUF.

Show your search condition by specifying one of the following options in the
option list (parameter OPT):

EQ Get the record where the search field content is equal to the search
argument. EQ is the default if none of the options EQ, GT, or
GTEQ is specified.

GT Get the first record where the search field content is greater than
the search argument.

GTEQ Get the record where the search field content is equal to the search
argument. If this record does not exist, get the first one where the
search field content is greater than the search argument.

Note: You never get the initialization record that was written to the file by
DSLFLUT. With search conditions GT/GTEQ you always get the first record
that meets your search condition.

Below is an example of getting a record directly from a file. You get the record
where the search field content is equal to the content of VARG.

... PROVIDE FILE NAME IN VDAT

... PROVIDE SEARCH ARGUMENT IN VARG

...

Chapter 7. Using General File Services (DSLFLV) 51

DSLFLV TYPE=GET, REQUEST TYPE: GET *
DAT=VDAT, FILE NAME: VDAT *
BUF=VBUF, RECORD BUFFER: VBUF *
ARG=VARG, SEARCH ARGUMENT: VARG *
TS=VTS, TEMPORARY STORAGE: VTS *
MF=E

LTR R15,R15 OK?
BZ OK
CLI 1+FLVRSN,FLVRNOF RECORD NOT FOUND?
BE NOF
B ERROR

OK ...
NOF ...
ERROR ...

...
VDAT DS CL8 FILE NAME
VBUF DS ... RECORD BUFFER
VARG DS ... SEARCH ARGUMENT

Getting Records by Sequential Access
To get records by sequential access, code DSLFLV TYPE=GET to get the first
record, and code a loop with DSLFLV TYPE=GETNEXT to get the next records. For
TYPE=GET, specify GETNEXT in the option list (parameter OPT). This shows that
requests of type GETNEXT will follow. For both macros, specify the file name by
the parameter DAT, and the address of the record buffer by the parameter BUF.

Below is an example of how to get all records from a file sequentially.
... PROVIDE FILE NAME IN VDAT
XC VARG,VARG ZERO THE SEARCH ARGUMENT
...
DSLFLV TYPE=GET, REQUEST TYPE: GET * [1]

OPT=(GT,GETNEXT), OPTION LIST: GT, GETNEXT FOLLOWS *
DAT=VDAT, FILE NAME: VDAT *
BUF=VBUF, RECORD BUFFER: VBUF *
ARG=VARG, SEARCH ARGUMENT: VARG *
TS=VTS, TEMPORARY STORAGE: VTS *
MF=E

LTR R15,R15 OK?
BZ LOOP
CLI 1+FLVRSN,FLVRNOF RECORD NOT FOUND? [2]
BE NOF
B ERROR

LOOP DS 0H DO UNTIL RETURN CODE IS NOT ZERO
...
... PROCESS THE RECORD DATA
...
DSLFLV TYPE=GETNEXT, REQUEST TYPE: GETNEXT * [3]

DAT=VDAT, FILE NAME: VDAT *
BUF=VBUF, RECORD BUFFER: VBUF *
TS=VTS, TEMPORARY STORAGE: VTS *
MF=E

LTR R15,R15
BZ LOOP ENDDO
CLI 1+FLVRSN,FLVREOF END OF FILE? [4]
BE EOF
B ERROR

EOF ...
NOF ...
ERROR ...

...
VDAT DS CL8 FILE NAME
VBUF DS ... RECORD BUFFER
VARG DS ... SEARCH ARGUMENT

52 System Programming Guide

Notes:

1. This DSLFLV macro gets the record with the lowest search field content if
a record is in the file at all.

2. The reason code FLVRNOF (“not found”) is returned if the file is empty.

Note: There is always the initialization record with a search field of
hexadecimal zero that is loaded by the File Batch Utility Program
DSLFLUT when the file is initialized. You cannot get this record.
When only this record is in the file, you still get the reason code
FLVRNOF.

3. This DSLFLV macro gets the records after the first one sequentially until
the last record in a loop.

4. The reason code FLVREOF (“end of file”) is returned when there are no
more records in the file.

Chapter 7. Using General File Services (DSLFLV) 53

54 System Programming Guide

Chapter 8. Using the Message Format Service (DSLMFS)

The MERVA ESA Message Format Service (DSLMMFS) is called by the various
MERVA ESA modules to transform a message according to the requirements of the
internal or external medium with which the MERVA ESA module is working. A
“medium” in this context is the tokenized form (TOF), a MERVA ESA message
queue, a terminal screen, a line printer, a hard-copy printer, or a line buffer.
Whenever the message passes from one medium to another, the physical
characteristics of each medium must be considered in the transformation of the
message.

The medium-oriented tasks of the Message Format Service are controlled by the
MCB defined for the message currently being processed.

In the following descriptions no distinction is made about which MERVA ESA
component really invokes Message Format Service for a given function; when
referring to the module or modules invoking MFS, only the terms “caller” or
“calling module” are used.

Whenever you call Message Format Service by the macro DSLMFS, the MFS
interface program DSLMMFS is also called.

See the MERVA for ESA Macro Reference for more information about the
MERVA ESA Message Format Service and the macro DSLMFS.

The DSLMFS Macro
This macro is used in three forms to:
v Map the Message Format Service (MFS) storage areas and control blocks
v Invoke Message Format Service mapping functions, exit programs or general

functions
v Build general entry and exit coding for Message Format Service programs and

user exits.

The different forms with their operands and parameters are described in the
following.

Invoking MFS Service Functions
There are three classes of MFS service calls:
v Message Format Service general service calls
v Message Format Service mapping functions
v Message Format Service exit program calls.

The linkage calls for the different Message Format Service mapping functions and
services are described. The functions are divided into several classes specified by
the TYPE and MEDIUM parameter. The parameters used for these calls are
described later. With some of these parameters certain restrictions apply when
using special type/medium combinations. These restrictions are explained in the
description of the corresponding parameters. The following gives a definition of all

© Copyright IBM Corp. 1987, 2001 55

combinations of TYPE/MEDIUM supported by MERVA ESA Message Format
Service. The first component in the definition item is the TYPE code; the second is
the MEDIUM code.

MFS General Functions:
INIT MFS Initialize Message Format Service

TERM MFS Terminate Message Format Service

ERRMSG MFS Build and issue MFS error messages

GETDEV MFS Get an MCB device description

GETMTT MFS Get a message type table entry

GETPFK MFS Get a program function key table

COMMAND MFS Execute a screen command.

MFS Message-Processing Functions:

INIT MESSAGE Initialize a message or nesting identifier in the TOF

GET QUEUE Move a message from queue buffer into the TOF

PUT QUEUE Move a message from the TOF into a queue buffer

CHECK MESSAGE Check the contents of a message

EXPAND MESSAGE Expand fields in a message.

MFS Mapping Functions:

INIT LDS Initialize the Logical Data Stream (LDS)

GET SCREEN Format screen input data for an LDS

PUT SCREEN Format LDS for a screen device

PUT SYSOUT Format LDS for the system printer

PUT HARDCOPY Format LDS for a hardcopy printer

GET LDS Map LDS into TOF

PUT LDS Build LDS from TOF data

GET NET Map a network buffer into the TOF

PUT NET Build a network buffer from TOF data

GET ELFORM Map an external line format to the tokenized
format

PUT ELFORM Map a tokenized format to the external line format.

MFS Screen Supporting Functions:

GET NOPR Map NOPROMPT network buffer into TOF

PUT NOPR Build a NOPROMPT network buffer.

MFS Exit Programs:

CHECK FIELD Check a message field

DEFAULT FIELD Default setting for a field

EDIT FIELD Edit field data

56 System Programming Guide

EXPAND FIELD Expand a message (address) field

SEPR FIELD Separate and process subfield data

USER MFS Call a MFS user exit.

General MFS Linkage Description
The MERVA ESA Message Format Service (MFS) is provided as a distributed
service for message generation, display, mapping, and data manipulation. The
Message Format Service functions and services are defined in the Message Format
Service program table DSLMPTT. From this table the interface and selection
module DSLMMFS retrieves the necessary linkage information according to the
request type and medium. For high-level language user exits the required language
environment is also defined in the DSLMPTT.

All Message Format Service components are reentrant. It is possible for different
applications to use only one copy of the module DSLMMFS by loading it into
virtual storage prior to the first request for an MFS function.

Calling Message Format Service Components
Depending on the type of MFS request, the MFS main routine DSLMMFS selects
the component servicing the specific request. A component, in this context, is either
a separate program or an entry to a program. The latter allows a routine used for
different purposes to have common processing paths. (Refer to “Coding MFS Exit
Programs” on page 75.)

After the component has been selected, the linkage is resolved and the module is,
if necessary, loaded into virtual storage. Whether a program is to be loaded at
execution time or is link-edited to the module DSLMMFS is specified by the
component’s entry in the Message Format Service program table DSLMPTT.

When a high-level language user exit is to be executed, DSLMMFS transfers
control to the MERVA ESA exit manager DSLXMGR which in turn prepares the
language environment and calls the user exit program.

The size of the temporary working storage is retrieved from the program header,
that has the same structure in all Message Format Service components. This
storage is acquired and is cleared to X'00'. For the definition of this storage area
refer to Message Format Service Exits and User Exits, “Coding MFS Exit
Programs” on page 75.

Before returning to the calling program, this storage area is released.

The address of the temporary working storage is passed in the Message Format
Service permanent storage (MFSPTSA) to the MFS component. On return from the
MFS component, the calling program should inspect the return code and the
reason code. Depending on the reason code, an appropriate error message is
selected and written to the TOF field DSLERR.

Since the temporary working storage is released, it is not possible to use it for
passing parameters, results, or data to the calling program. For this purpose
buffers and data areas must be provided by the calling program and their
addresses passed in the MFS parameter list to the MFS component.

Chapter 8. Using the Message Format Service (DSLMFS) 57

Calling Message Format Service Components from MFS
Components or Exits

In any MFS component, another MFS component can be called as described above.
To achieve this, a copy of the Message Format Service parameter list with the
initial parameter values is provided in the temporary working storage. This
parameter list can be changed by an “internal” Message Format Service request.
All storage areas or buffers provided by the caller of a Message Format Service
component are, therefore, also available to “internally” called Message Format
Service components.

The nesting depth is limited only by the storage available for running application
programs. When writing Message Format Service components, you must make
sure that endless recursion does not occur.

Message Format Service Error Messages
This component evaluates the reason code and possibly generates an error
message. The error message is stored in the MFS permanent storage and in the
TOF field DSLERR, when the option ERRMSG is requested in the parameter list.

Network-Dependent Error Messages
The first three letters of the message identifications are taken from the internal
environment information. This means that DSLMMFS prepares network-dependent
error messages; that is, DSL3... for MERVA ESA programs, DWS3... for the SWIFT
Link, and ENL3 ... for the Telex Link.

Support for Languages other than US English for Error
Messages
The language identification for the current session is used for preparing the error
message. This language identification can be switched by the form command.

Establishing the MFS Environment in an Application Program
An application program using the Message Format Service must provide storage
areas and addresses of the MERVA ESA service modules. The required addresses
must be available before the first Message Format Service request.

Storage Areas Used by the MFS Functions
For correct execution of all Message Format Service functions, an application
program must define storage areas and insert the addresses of control blocks and
service modules. These addresses are passed to Message Format Service using the
appropriate parameters in the DSLMFS macros for the Message Format Service
request. A detailed description of the macro DSLMFS and its parameters can be
found in the MERVA for ESA Macro Reference. A description of the parameters for
each type of storage area or control block follows.

Addresses Used in the MERVA ESA Communication Area
(DSLCOM)

Calling DSLMMFS requires some fields of DSLCOM being filled to make the
MERVA ESA services available. The same addresses can then be used in Message
Format Service programs and exits.

The DSLCOM fields must be initialized again when, for example, a conversational
transaction running in an IMS Message Processing Region is scheduled again
because these fields are empty.

58 System Programming Guide

See “Filling the Fields of DSLCOM” on page 5 for more information on how to fill
these fields.

The following fields of DSLCOM must be filled before calling DSLMMFS:
v COMPRMA
v COMSRVPA
v COMTSVA
v COMFDTA
v COMOMSGA
v COMMSGTA
v COMMFSA
v COMMTTA
v COMTRAPA
v COMTUCBA (only when screen or printer mapping is requested).

Programs using Message Format Service in a CICS installation must also provide
the fields:
v COMEIB
v COMEISTG.

Programs using the DSLMFS TYPE=EXPAND function for MERVA ESA general
file accesses must also provide the fields required for DSLFLVP:
v COMFLVPA
v COMFLTTA
v COMPCBLA for IMS installations only.

DSLMMFS supplies the following fields in DSLCOM after the DSLMFS
TYPE=INIT call:
v COMMFSMA
v COMMTBA.

The MERVA ESA MFS Parameter List
The application program must allocate storage for the Message Format Service
parameter list, which is used for all Message Format Service requests.

This is done by using the following macro:
DSLMFS TYPE=MAP,MF=L

In this DSLMFS macro, both the label and the PREFIX parameter are omitted.
Therefore a label MFSL is generated, and all field names of the parameter list start
with the prefix default MFS.

If several Message Format Service parameter lists are required, they are allocated
by additional macros, all specifying a different PREFIX parameter (for example,
PREFIX=MF2).

The address of the Message Format Service parameter list is passed to MFS by:
DSLMFS TYPE=...,MF=(E,MFSL)

The name MFSL for the parameter list in the second subparameter of the MF
parameter must be changed when another MFS parameter list is used, that is, to

Chapter 8. Using the Message Format Service (DSLMFS) 59

the PREFIX parameter value of the definition of this parameter list definition
concatenated with L. A PREFIX=MF2 parameter results in a parameter list name
MF2L.

Message Format Service Permanent Storage
Each application program must allocate MFS permanent storage which is used for
all MFS requests.

This storage contains address fields, buffers, and values used for:
v Linking to MFS functional modules and exits
v Storage maintenance
v Loading MCBs and passing descriptor addresses to the requesting program
v Building informational and error messages for all Message Format Service

programs and user exits
v Holding status information for Message Format Service screen formatting

programs that are called several times when a message is processed
v Internal save area.

Message Format Service permanent storage is allocated by:
DSLMFS TYPE=MAP,MF=PS

Programs using screen and printer services must allocate the amount of Message
Format Service (MFS) permanent storage specified by the MFSSTOR parameter in
the MERVA ESA customizing parameter module DSLPRM. The length of the
required area is in field NPMFSPS.

L R2,NPMFSPS GET REQUIRED LENGTH
DSLSRV TYPE=GETMAINA,SIZE=(R2)
L R2,SRVSADDR ADDRESS OF STORAGE
USING MFSPS,R2

The first halfword of the MFS permanent storage must be set to the length of this
storage before the DSLMFS TYPE=INIT call.

MFS Temporary Storage
Each application program must also allocate Message Format Service temporary
storage, which is used by the MFS interface module DSLMMFS during the linkage
to Message Format Service programs. The size of the MFS temporary storage pool
is specified in the MFSSTOR parameter in the MERVA ESA customizing parameter
module DSLPRM. The length of the required area is in field NPMFSTS.

For nested MFS calls the temporary storage pool is reused; the temporary storage
areas are chained and used as a stack. If the temporary storage pool is too small or
exhausted, the MFS interface program allocates additional storage dynamically.

The temporary storage contains a save area for the status of the interface register at
linkage time to the Message Format Service program, TOF supervisor and internal
Message Format Service parameter lists, and the TOF supervisor work buffer.

For debugging purposes a trace area is provided that contains status information.

Message Format Service temporary storage is allocated by:

60 System Programming Guide

L R3,NPMFSTS GET REQUIRED LENGTH
DSLSRV TYPE=GETMAINA,SIZE=(R3)
L R3,SRVSADDR ADDRESS OF STORAGE
USING MFSTS,R3

Note: The first halfword of the MFS temporary storage must be set to the length of
this storage in front of the DSLMFS TYPE=INIT call. When DSLSRV service
was used to allocate the storage area the length field is already set.

The addresses of the permanent and temporary storage areas are passed to MFS
by:

DSLMFS TYPE=...,PS=MFSPS,TS=MFSTS

The Terminal User Control Block (DSLTUCB)
The Terminal User Control Block (TUCB) contains terminal-dependent and
user-dependent information mostly used by MERVA ESA transactions invoking
Message Format Service. For example, MERVA ESA End-User Driver, and
MERVA ESA Hard Copy Printer.

DSLMFS TYPE=MAP,MF=TUCB

Return Information from Message Format Service
On return from a Message Format Service request, a return code in general register
15, together with a reason code in the parameter list field MFSLREAS, shows the
completion status. The return and reason codes are explained in the MERVA for
ESA Messages and Codes.

RC Reason Meaning and Action

0 — Successfully completed; continue.

4 ANY Warning, error message in DSLERR and MFSPEMSB.

8 ANY Incomplete: error message in TOF field DSLERR.
The program can continue or end with this
error message.

12 ANY TOF error : error message in MFSPS (MSFPEMSB).
The program should take a dump and end
with this error message.

16 ANY MFS storage areas or the content of general
registers are not usable.
The program should end with a dump.

Calling Message Format Service Programs

DSLMINIT—Initialize MFS
This MFS program is called by the macro DSLMFS where the following parameters
are specified:
[name] DSLMFS TYPE=INIT,MEDIUM=MFS, *

MF=...., *
PS=...., *

Chapter 8. Using the Message Format Service (DSLMFS) 61

TS=...., *
TOF=...., *
...
...

This request must precede any other Message Format Service request.

All parameters shown here must be specified.

This request initializes the Message Format Service parameter list with the
addresses of storage areas and buffers required when calling Message Format
Service programs. These addresses are used by each following Message Format
Service request unless they are redefined in an appropriate DSLMFS macro.

In addition, the MFS permanent storage is cleared to X'00' and the address fields
are initialized.

DSLMTERM—Terminate MFS
This MFS program is called using the macro DSLMFS where the following
parameters are specified:
[name] DSLMFS TYPE=TERM,MEDIUM=MFS, *

MF=....

This call must be the last MFS request in a processing cycle, for example, in a
batch application or a session with a conversational transaction.

It releases all MCBs loaded during the session and, therefore, listed in the MCB
load table and the MCB load table itself, when the load table has been acquired
dynamically by DSLMMFS. When the high-level language interface was initialized
before it is terminated by this call.

DSLMTIN—Message Initialization in the TOF
To initialize DSLMTIN:
v Initialize a new message in the TOF
v Move message from MERVA ESA queue buffer into the TOF
v Move message from TOF to MERVA ESA queue buffer.

Message Initialization
The module initializes the TOF for a new message. The message description of the
MCB for the message for which the TOF is to be initialized is used for the
initialization of the field descriptors. The TOF can be initialized for only one
message type at a time, that is, if a message contains nested message types or
different nesting level indicators, DSLMTIN must be called separately for each
message type or nesting level indicator.

When a message is initialized, the old message fields in the TOF are deleted,
unless OPT=CONT is specified. With OPT=CLEARPERM, the permanent fields can
also be deleted from the TOF.

The MSGID provided by the caller is written to the appropriate nesting level
indicator (exit field), as defined in the MTT entry.

On completion of DSLMTIN, the TOF is ready to accept data for this message type.

62 System Programming Guide

This Message Format Service routine is called using the macro DSLMFS where the
following parameters are specified:
[name] DSLMFS TYPE=INIT,MEDIUM=MSG, *

MF=...., *
TOF=...., *
MSGID=..., *
FLD=..., *
OPT=...

This Message Format Service program initializes the TOF for a message type to be
created or for a message type on a new nesting identifier.

The message type is specified in the 8-byte MSGID field setup by the calling
program.

OPT=(NXTID) specifies that a nesting identifier is logically added to a message in
the TOF. The FLD= parameter specifies the exit field name to be used for the new
nesting identifier.

OPT=(CONT) specifies either that a nesting identifier is added to a new exit field,
or that additional information is put on an existing nesting level in the TOF (old
data remains in the TOF).

From MERVA ESA Queue to TOF
This component transfers a message from the queue buffer to the TOF. If the queue
buffer contains UMR data, it is written into the TOF with field name DSLUMR.

On completion, all QUEUE=YES fields of the message are back in the TOF in
exactly the format they had before they were moved into the queue buffer.

All QUEUE=NO fields on TOF level 0 that were in the TOF before the transfer are
unchanged.

In MERVA ESA, the queue buffer may be larger than 32KB.

From TOF to MERVA ESA Queue
This component maps a message, without its QUEUE=NO fields (if any), from the
TOF into the queue format. If the TOF contains a UMR field DSLUMR, this UMR
information is transferred into the queue buffer.

On completion, the message is in the queue data buffer, and it can be presented to
the MERVA ESA queue management program for storage in the queue data set.
The message in the TOF remains unchanged.

In MERVA ESA, the queue buffer may be larger than 32KB. The dynamic buffer
option may be used to map large messages from the TOF into the MERVA ESA
queue format. When a message is too large to fit into the provided output buffer,
the service program acquires a buffer large enough to hold the message and passes
this buffer to the caller. This service is called using the following technique:

L R4,BUFADDR Get current buffer address
DSLMFS TYPE=PUT,MEDIUM=QUEUE,MF=(E,MFSL), *

OUTBUF=(R4),OPT=DYNBUF
C R4,MFSLOBUF New buffer returned?
BE LABEL ..No, use current buffer
DSLSRV TYPE=FREEMAIN,ADSTOR=(R4),SIZE=0 Free current buffer
L R4,MFSLOBUF Get new dynamic buffer address
ST R4,BUFADDR Save new buffer address for future

LABEL DS 0H

Chapter 8. Using the Message Format Service (DSLMFS) 63

Line Formatter Program
The Message Format Service line formatter program (DSLMLFP) is used to map a
message from a line or network buffer into the TOF or vice versa. The functions
GET and PUT are supported by the line formatter program.

The operation of DSLMLFP is controlled by the line format description in the MCB
for the message being processed. The line formatter program is invoked when an
MFS service for MEDIUM=NET is requested.

An auxiliary function for the line formatting process is the message type
determination routine. There is a specific message type determination routine for
each network. These routines are invoked by the MERVA ESA message type
determination routine.

Mapping from TOF to Line Buffer
PUT is specified when data is to be mapped from the TOF into a network buffer
according to message and line format identifications. One or more message
identifications (MCBs) can be used to process a message. This depends on the exit
statements in the MCB definition and the initialization of the message. The starting
message identification used by the formatting program is either the message
identification parameter or the actual message identification of the first nesting
identifier initialized in the TOF. The information is used to determine an MCB and
a line (net) device description within this MCB.

The mapping is done by processing an MCB net device description item by item.
An item to be mapped can be a tag, a separator, or a data component. Conditions
are evaluated accordingly.

The data contained in the various TOF fields is read and transferred to the line
buffer. DSLMLFP adds control characters as defined in the MCB. The message does
not contain any frame control characters required for its transmission over a
network. These characters are added by the appropriate network link program.

This MFS program is called using the macro DSLMFS where the following
parameters are specified:
[name] DSLMFS TYPE=PUT,MEDIUM=NET, *

MF=...., *
TOF=...., *
MSGID=..., *
OUTBUF=...

This MFS program transfers a message contained in the TOF to an output buffer
and converts it into the network format as defined in the DSLLDEV TYPE=NET
section of the MCB describing the message.

The output buffer receives only the nonempty fields of the message together with
the field tags and separators defined in the corresponding DSLLNFLD macros of
the DSLLDEV TYPE=NET descriptor in the MCB.

In MERVA ESA, the network buffer may be larger than 32KB. The dynamic buffer
option may be used to map large messages from the TOF into the MERVA ESA
line format. When a message is too large to fit into the provided output buffer, the
service program acquires a buffer large enough to hold the message and passes
this buffer to the caller. This service is called using the following technique:

64 System Programming Guide

L R4,BUFADDR Get current buffer address
DSLMFS TYPE=PUT,MEDIUM=NET,MF=(E,MFSL), *

OUTBUF=(R4),OPT=DYNBUF
C R4,MFSLOBUF New buffer returned?
BE LABEL ..No, use current buffer
DSLSRV TYPE=FREEMAIN,ADSTOR=(R4),SIZE=0 Free current buffer
L R4,MFSLOBUF Get new dynamic buffer address
ST R4,BUFADDR Save new buffer address for future

LABEL DS 0H

Mapping from Line Buffer to TOF
The input data is mapped into TOF according to an MCB device type net
description. The assignment of data in the buffer to TOF fields is made according
to field tags. Tags can also be connected to exit points in MCBs; these exit points
define inclusion of other MCBs. The line formatter program scans the buffer
contents and tries to find a matching tag in the MCB definition. If a tag is not
found, the component is mapped as an additional data area of the previous field.
In MERVA ESA, the network buffer may be larger than 32KB.

Note: This Message Format Service program is also called internally by the
Message Format Service screen formatting services when mapping a
message in NOPROMPT mode. Tags included by editing on the screen in
NOPROMPT mode that do not match the message structure as defined in
the MCB can cause wrong assignments of data to data areas or fields.

The determination of message IDs at the beginning or at exit points is done by
specific exit programs.

This Message Format Service program is called using the macro DSLMFS where
the following parameters are specified:
[name] DSLMFS TYPE=GET,MEDIUM=NET, *

MF=...., *
TOF=...., *
MSGID=..., *
INBUF=..., *
OPT= (CHECK | CLRPERM | CONT)

It is used to transfer a message contained in a line buffer to the TOF as defined in
the DSLLDEV TYPE=NET section of the MCB describing the message.

The input buffer remains unchanged after the mapping process.

Normally, if an old message was contained in the TOF, it is deleted before the
message in the line buffer is mapped from the line buffer to the TOF. If
OPT=CONT is specified in the call, the old message is kept in the TOF and the
new message added to the existing one (on a separate nesting level indicator, for
example). Internal TOF fields are only deleted from the TOF if OPT=CLRPERM is
specified in the call.

To determine the message type to be processed, either message determination is
done by a message determination program in the MFS user exit 054 or, if provided,
the 8-byte MSGID field is used for formatting.

If the message type cannot be determined or if the message type set up by the
determination algorithm cannot be found in the message type table, or if no
appropriate MCB or DSLLDEV TYPE=NET,ID=... can be loaded, a default message

Chapter 8. Using the Message Format Service (DSLMFS) 65

type 0DSL is initialized and the complete buffer is transferred to the TOF field
DSLLFBUF. This message is accepted by other Message Format Service and
MERVA ESA message-processing stages.

With OPT=CHECK, the complete message in the TOF is checked for syntactic and
semantic errors. A possible error indication (reason code) is returned to the calling
program together with a return code (RC=4).

Update Functions
The line formatting program can be called with OPT=CONT to add input data to
an existing TOF (defined, for example, in a separate MCB and for a different
nesting level indicator).

External Line Format for Messages
The external line format for messages is supported through a simplified tokenized
format by mapping the line format into one or more data areas of a single field.
The field name is DSLELF.

As the message in external format is stored as one or more data areas in the TOF,
the standard TOF processing can be applied to the message in this format. Screen
display and printing in noprompt format is standardly supported. There is no
limitation in adding system information to fields in the TOF.

The system field DSLTYPE contains the message identifier and the line format
identification when the message in external line format has been created using the
MFS mapping services.

The external line format can be stored exclusively or together with the fully
tokenized format of the message. In the latter case the message is effectively stored
twice. All fields or message parts are available to an application in the appropriate
format without mapping. Synchronization of both formats in the TOF is the
responsibility of the application using the TOF.

Support of messages in external line format allows a much faster processing of
messages because the mapping step can be skipped. But this means that messages
must be syntactically correct when delivered by an application program in this
form.

The Message Format Service formatting program (DSLMLEF) is used to map a
message from or to the external line format in the TOF. The message is mapped
within the TOF; an optional line format may be generated in an intermediate
buffer. The functions GET and PUT are supported. The line formatter program is
invoked when an MFS service for MEDIUM=ELFORM is requested.

Mapping from Tokenized Format to External Line Format
PUT is specified when data is to be mapped from a tokenized format to the
external line format.

DSLMLEF is called using the macro DSLMFS with the following parameters:
[name] DSLMFS TYPE=PUT,MEDIUM=ELFORM, *

MF=...., *
TOF=...., *
MSGID=..., *
OUTBUF=..., *
OPT= (CONT)

66 System Programming Guide

This MFS program converts a message contained in the TOF in tokenized format
into external line format.

Mapping from External Line Format to Tokenized Format
GET is specified when data is to be mapped from the external line format to the
tokenized form.

DSLMLEF is called using the macro DSLMFS with the following parameters:
[name] DSLMFS TYPE=GET,MEDIUM=ELFORM, *

MF=...., *
TOF=...., *
MSGID=..., *
OUTBUF=..., *
OPT= (CONT)

This call is used to convert a message in the TOF in external line format to a
message in tokenized format. The option CONT specifies that the original format,
either the external or the tokenized format, is not overwritten, but stays in the TOF.
Using this option, both formats can be generated in the same TOF.

MFS Mapping for Screens and Printers
You can use the DSLMFS macro to map data from a TOF to a display device
output buffer, or from a screen input buffer to a TOF.
(1) DSLMFS TYPE=INIT,MEDIUM=LDS

(2) DSLMFS TYPE=PUT,MEDIUM=LDS
/* BUILDS THE LDS FOR A COMPLETE

PRINTER PAGE*/

(3) DSLMFS TYPE=PUT,MEDIUM=HARDCOPY
Print the segment in buffer

IF MFS REASON CODE=MFSRESRE (407)
/* MORE SEGMENTS AVAILABLE */

THEN CONTINUE WITH (3)
UNTIL REASON CODE=0
/* THEN ALL SEGMENTS OF THE

PAGE ARE PRINTED */

DSLMFS MEDIUM=MFS,TYPE=COMMAND
/* EXECUTE PAGE+1 */

IF MFS RETURN CODE=0
/* THEN CONTINUE WITH (2)
/* BUILD THE LDS FOR THE NEXT PAGE */

IF MFS REASON CODE=MFSRENAC (419)
THEN NO ACTION

/* END OF MESSAGE */

GET NEXT MESSAGE, CONTINUE WITH (1)

To prepare data for a display device, a program must carry out two steps:
1. Create a page of data as a logical data stream:

DSLMFS MEDIUM=LDS,TYPE=PUT,...

2. Transform the logical page into a device-specific physical data stream in the
I/O buffer:
DSLMFS MEDIUM=device,TYPE=PUT,...

To receive data from an input buffer, the steps are reversed:
1. Get the physical data stream from the I/O buffer to update the LDS:

Chapter 8. Using the Message Format Service (DSLMFS) 67

DSLMFS MEDIUM=SCREEN,TYPE=GET,...

2. Transfer the data to the TOF via the LDS:
DSLMFS MEDIUM=LDS,TYPE=GET,...

When a complete page has been sent or received, call the MFS command
interpreter to request next page positioning. The command interpreter return code
shows if there are no more pages in the message:
DSLMFS MEDIUM=MFS,TYPE=COMMAND,...

Data Areas
All executions of the DSLMFS macro require MFS permanent and temporary
storage. To use screen and printer mapping, the caller must also provide the
following data areas:
v DSLCOM, where the field COMTUCBA must contain the address of a valid

TUCB.
v A TUCB, where device data must be complete and the field TUCBLDSA must

contain the address of the LDS buffer. If the retype feature is in use, the field
TUCBRKYA must contain the address of the retype buffer.

v An LDS buffer, where the size is normally equal to the field NPNICBUF in
DSLPRM.

v An MFS edit buffer, where the size is normally equal to the size of the I/O
buffer.

v A device I/O buffer, where the size is dependent on the device type. If the
Terminal Feature Definitions table has been established, the I/O buffer size may
be taken from the field TFDBUFSZ.

v A retype buffer, where the size is equal to the field NPMFSRK in DSLPRM.
v A TOF storage area.

MFS Message Mapping for a Logical Data Stream
The DSLMFS macro is used to transform data from the TOF to a logical data
stream (LDS), or from a screen via an LDS to a TOF.

The LDS is always associated with a data buffer. For output, the MFS edit buffer is
required. For input, the screen I/O buffer is used.

The macro transforms one page of data, depending on the device specification in
the TUCB.

This form of the DSLMFS macro is also used to initialize the LDS work areas.

Calling MFS Internal Functions
This MFS program is called by the macro DSLMFS where the following parameters
are specified:
[name] DSLMFS TYPE=CHECK,MEDIUM=MSG, *

MF=.... *
[,TOF=....]

All fields of a message in the TOF are checked for errors of syntax and semantics,
according to the checking routine supplied with the CHECK operand in the field
specifications defined in the appropriate entries in the DSLFDTT or in the message
description (DSLLDEV TYPE=MESSAGE) of the appropriate MCB or MCBs.

68 System Programming Guide

If no checking routine is specified a basic checking for the message fields is carried
out according to the characteristics defined in the DSLLFLD macros or the
DSLLMFLD macro instructions of the DSLLDEV TYPE=MESSAGE section of the
MCB. The checking of the field contents is always carried out by DSLMCHE when
a message is completely mapped to the TOF.

Checking is done in a sequence of processing steps:
1. Checking for permitted message type and message nesting as specified in the

MERVA ESA Message Type Table.
2. Checking the contents of each field in the message.

Calling of the Message Format Service field checking programs (DSLMCnnn) to
check the field contents according to special, message-dependent criteria. “nnn”
is specified by CHECK=nnn parameter of the DSLLFLD macro or the
DSLLMFLD macro in the DSLLDEV TYPE=MESSAGE section of the MCB. If
no checking routine is supplied, a standard checking of the field characteristics
is carried out by the TOF supervisor DSLTOFSV. The following features are
checked if applicable:
v Checking for missing fields. Mandatory fields are defined by the

MAND=YES parameter of the DSLLFLD macro or the DSLLMFLD macro in
the DSLLDEV TYPE=MESSAGE section of the MCB.

v Checking of the number of data areas against the definition of the
DAMAX=nnn parameter of the DSLLFLD macro in the FDT or the
DSLLMFLD macro in the DSLLDEV TYPE=MESSAGE section of the MCB.

v Checking of the number of occurrences of a field within a repeatable
sequence against what is defined in the REPSEQ= parameter in the
DSLLUNIT macro of the DSLLDEV TYPE=MESSAGE section in the MCB.

v Checking of the data length against what is defined by the LENGTH
parameter of the DSLLFLD macro in the FDT or the DSLLMFLD macro
instruction in the DSLLDEV TYPE=MESSAGE section of the MCB.

v Checking of the option against what is defined by the
OPTION=YES,OPTLIST=(...) parameters of the DSLLFLD macro instruction
in the FDT or the DSLLMFLD macro in the DSLLDEV TYPE=MESSAGE
section of the MCB.

3. Calling of a message-type-specific exit, specified in the Message Type Table
(DSLMTT TYPE=ENTRY,CHECK=...).

4. Calling of the MFS user exit DSLMU009 to check the message according to
specifications of the user, for example by calling one or more Message Format
Service checking programs DSLMCnnn that check more than a single field and,
therefore, cannot be referred to as described here.

The result of the check is provided as follows:
v The returned reason code is set accordingly.
v If OPT=ERRMSG is specified, a general error message is written to the TOF field

DSLERR.
v Error messages (DSLERR) in the message are recorded in the field DSLMSG.

These error messages show the specific errors found for the fields checked and
can be viewed during processing of messages on a terminal screen using the
show 0err command. Normally these error messages are network-dependent.

Note: The field DSLMSG is written to the TOF using the function modifier
FMODIF=IGNORE. For example, identical error messages are recorded
only once and editing of these error messages via an editing routine
(FMODIF=DEEDIT) is not possible.

Chapter 8. Using the Message Format Service (DSLMFS) 69

DSLMXPND—Field Expansion of a Complete Message
All fields of a message are checked if an expansion exit is specified by the
EXPAND parameter of the DSLLFLD macro instruction in the FDT or the
DSLLMFLD macro in the DSLLDEV TYPE=MESSAGE section of the MCB.

Expansion can be invoked by MERVA ESA during processing of messages on
terminal screens (DSLEUD), or during processing of the checking and expansion
transaction DSLCXT, depending on the specification of the EXPAND and EXPNAM
parameters of the DSLFNT macro. You can invoke expansion from your application
program using the DSLMFS TYPE=EXPAND call.

MERVA ESA provides the following expansion exits:

DWSMX001 SWIFT Address Expansion

DWSMX002 Initialization of nested SWIFT messages

DWSMX003 Automatic generation of SWIFT field options.

Expansion is invoked by the following DSLMFS macro:
[name] DSLMFS TYPE=EXPAND,MEDIUM=MSG, *

MF=.... *
[,TOF=....]

Calling MFS Data Manipulation Programs and Exits

Note: The nnn used in the exit and program names refers to the MODNUM used
to call the program or exit.

DSLMCnnn—Checking the Data of a Field
This type of exit is used to check the content of the field for completeness and
whether the data fulfills user-defined specifications.

The program is called by the macro DSLMFS where the following parameters are
specified:
[name] DSLMFS TYPE=CHECK,MEDIUM=FIELD, *

MF=...., *
MODNUM=nnn, *
INBUF=..., *
FLD=.... *
[,TOF=....]

A field in the TOF is checked using the user-written field-checking module
DSLMCnnn, where nnn is specified by the parameter MODNUM. For the internal
use of this Message Format Service request, refer also to the description of:
v The specification of DSLTSV TYPE=WRITE|READ|ADDDA,

FMODIF=CHECK|DECHECK|EDITCHK
v CHECK=nnn parameter of the DSLLFLD macro (FDT)
v CHECK=nnn parameter of the DSLLMFLD macro, DSLLDEV TYPE=MESSAGE

(MCB).

For the special conventions to be considered for this type of Message Format
Service exit, refer to “Coding MFS Exit Programs” on page 75.

The following standard checking routines are provided by MERVA ESA:

70 System Programming Guide

MODNUM
ALPHA alphabetic character set (nnn=901)
NUMERIC character set 0-9 (nnn=902)
ANUM alphameric character set (nnn=903)
HEX hexadecimal character set (nnn=911)
YYMMDD for dates in the form of year month day (nnn=904)
YYDDD for dates in the form of year day (nnn=905)
MMDD for dates in the form of month day (nnn=906)
DD for dates in the form of day (nnn=907)
HHMM for times in the form of hours minutes (nnn=908)
HH for times in the form of hours (nnn=909)
MM for times in the form of minutes (nnn=910)
LABEL alphanumeric with first character alphabetic (nnn=912)
EDIFACTA UN EDI character set A (nnn=913)
YYYYMMDD for dates in the form of 4-digit year month day (nnn=914)
YYYYDDD for dates in the form of 4-digit year day (nnn=915)

SWIFT Field Checking
The following standard checking routines are provided by MERVA ESA SWIFT
Link:
v CHECK=1004 Standard Checking.

This provides checking equivalent to the checks made by the SWIFT network.
v CHECK=1001 Extended Checking.

This provides checking that is equivalent to the checks made by the SWIFT
network (exactly the same as CHECK=1004), and in addition for INPUT
messages that are not nested, the following extra checks are made:

Field 18
The number matches the number of occurrences.

Field 22
The first subfield (CODES) is checked for a valid code word. This code
word is dependent on the message type.

Note: The check is only made for messages for which the S.W.I.F.T. User
Handbook states: The following code words must be used.

Field 23
All code words in the field are checked. If the field contains two or more
code words the presence of a slash to separate the code words is
verified. The code words are dependent on the message type.

Note: The check is only made for messages for which the S.W.I.F.T. User
Handbook states: The following code words must be used.

Field 26 Option F Message Type 305
The field is checked for a valid code word.

Field 26 Option H Message Type 516
The field is checked for a valid code word.

Field 26 Options I and L
The field is checked for a valid code word.

Field 37 Options A, B, C, D, E, and F
The Interest Payment subfield is checked for valid code words. The code
words are dependent on the message type.

Field 41 Options A and D
The last line of the field is checked for a valid code word.

Chapter 8. Using the Message Format Service (DSLMFS) 71

Field 49
The field is checked for a valid code word.

Field 61
When the sixth subfield (Code for type of transaction), has the option S
for a SWIFT message, then the message type is checked against the
message type table.

Field 68 Options B and C
Checks that currencies in the second data area are the same. Checks
code words for option C.

Field 83 Option R
The field is checked for a valid code word.

Field 189
Checks ALL and numbers not both used.

DSLMDnnn—Setting a Default for a Message Field
This Message Format Service exit is called by the macro DSLMFS where the
following parameters are specified:
[name] DSLMFS TYPE=DEFAULT, *

MF=...., *
MODNUM=nnn, *
OUTBUF=..., *
FLD=.... *
[,TOF=....]

Default values are provided for a field in the TOF using the user-written exit
program DSLMDnnn, where nnn is specified by the parameter MODNUM. For the
internal use of this Message Format Service request, refer also to the description of:
v DEFAULT=nnn parameter of the DSLLFLD macro (FDT)
v DEFAULT=nnn parameter of the DSLLMFLD macro of

DSLLDEV TYPE=MESSAGE.

This class of programs is called under the following circumstances:
v During message initialization (DSLMTIN).
v Implicitly by a DSLTSV TYPE=READ macro, when the affected field is empty

and the first data area is accessed.
v Implicitly by a DSLTSV TYPE=READ macro, when the affected field is empty

and the first subfield is accessed.
v Implicitly by a DSLTSV TYPE=WRITE macro, when the affected field is not yet

in the TOF.

Note: Data returned to the TOF supervisor by the default-setting exit, however,
can be overwritten by the subsequent processing of the WRITE request.

For the special conventions to be considered for this type of Message Format
Service exit, refer to “Coding MFS Exit Programs” on page 75.

The following standard default setting routines are provided by MERVA ESA:
MODNUM

YYMMDD for dates in the form of year month day (nnn=904)
YYDDD for dates in the form of year day (nnn=905)
MMDD for dates in the form of month day (nnn=906)
DD for dates in the form of day (nnn=907)
HHMM for times in the form of hours minutes (nnn=908)

72 System Programming Guide

HH for times in the form of hours (nnn=909)
MM for times in the form of minutes (nnn=910)
YYYYMMDD for dates in the form of 4-digit year month day (nnn=914)
YYYYDDD for dates in the form of 4-digit year day (nnn=915)

DSLMEnnn—Editing Program
This Message Format Service exit is called by the macro DSLMFS where the
following parameters are specified:
[name] DSLMFS TYPE=EDIT, *

MF=...., *
MODNUM=nnn, *
OUTBUF=..., *
INBUF=.... *
[,OPT=DEEDIT] *
[,TOF=....]

A data component is transformed from an internal data format to an external data
format or vice versa (OPT=DEEDIT), using the user-written exit program
DSLMEnnn, where nnn is specified by the parameter MODNUM. For the internal
use of this Message Format Service request, refer also to the description of:
v DSLTSV function with types WRITE, READ, or ADDDA together with function

modifiers (FMODIF) EDIT, DEEDIT, DECHECK, or EDITCHK
v EDIT=nnn parameter of the DSLLFLD macro (FDT)
v EDIT=nnn parameter of the DSLLMFLD macro (MCB).

Note: Editing of data is called in the Message Format Service net, screen and print
formatting service routines. For the special conventions to be considered for
this type of Message Format Service exit, refer to “Coding MFS Exit
Programs” on page 75.

The following editing routines for amounts are supplied with MERVA ESA:
1. nnn=901 for amount editing using points and decimal comma (European

format, 1.000.000,00). The mnemonic AMOUNT can be used instead of 901.
2. nnn=902 for amount editing using commas and decimal point (American

format, 1,000,000.00).

DSLMXnnn—Expanding Field Contents
This Message Format Service exit is called by the macro DSLMFS where the
following parameters are specified (see also “DSLMXPND—Field Expansion of a
Complete Message” on page 70):
[name] DSLMFS TYPE=EXPAND,MEDIUM=FIELD, *

MF=...., *
MODNUM=nnn, *
INBUF=..., *
OUTBUF=..., *
FLD=.... *
[,TOF=....]

For the internal use of this Message Format Service request, refer also to the
description of:
v DSLTSV TYPE=EXPAND
v EXPAND=nnn parameter of the DSLLFLD macro (FDT)
v EXPAND=nnn parameter of the DSLLMFLD macro (MCB).

Chapter 8. Using the Message Format Service (DSLMFS) 73

A field can be changed according to an user-written exit program DSLMXnnn,
where nnn is specified by the parameter MODNUM.

DSLMSnnn—Separating a Subfield from Its Main Field
This Message Format Service exit is called by the macro DSLMFS where the
following parameters are specified:
[name] DSLMFS TYPE=SEPR,MEDIUM=DATA, *

MF=...., *
MODNUM=nnn, *
INBUF=..., *
OUTBUF=..., *
FLD=.... *
[,TOF=....]

A subfield is separated from the main field in the TOF using the user-written exit
program DSLMSnnn, where nnn is specified by the parameter MODNUM. This
type of Message Format Service exit routine is called internally by DSLTOFSV
whenever an access to a subfield of a main field is made using an DSLTSV
TYPE=READ|WRITE|ADDDA|DELETE macro. The number of the exit program
is defined by the parameter SEPR of the DSLLFLD macro.

For special conventions to be considered for this type of Message Format Service
exit, refer to “Coding MFS Exit Programs” on page 75.

The following standard separation routines are provided by MERVA ESA:

nnn=901 Separation for fixed structures, subfield is optional, trailing
hexadecimal zeros are stripped.

nnn=902 Separation of system fields (see “System Field Separation Routine”
on page 88).

nnn=903 Reads the function explanation from DSLFNTT for a given function
name.

nnn=904 Reads the message description from DSLMTTT for a given
message type.

nnn=905 Separation for fixed structures, subfield is mandatory, trailing
hexadecimal zeros are stripped.

nnn=906 Reserves space in the TOF for special subfields.

nnn=907 Converts a SWIFT II message acknowledgment to SWIFT I format.

nnn=908 Separation for fixed structures, subfield is optional, trailing
hexadecimal zeros are not stripped.

nnn=909 Separation for fixed structures, subfield is mandatory, trailing
hexadecimal zeros are not stripped.

nnn=910 Extracts the SWIFT NAK code and creates an explanatory text for
it.

nnn=911 Reads the penultimate data area.

nnn=912 Splits EDIFACT field into data areas of length 75.

nnn=913 System fields used by the diagnosis information panel DSL0NIC;
this panel displays the status of the inter- and intraregion
communication.

74 System Programming Guide

nnn=914 Reads an existing UMR or creates a new UMR for a message when
reading fields DSLUMRGT or DSLUMRNW.

nnn=915 Creates a 4-digit year from a 2-digit year input field.

nnn=916 Extracts data areas backward. Read with DAINDEX=1 reads the
last data area of the mainfield, read with DAINDEX=2 reads the
penultimate data area, and so on.

nnn=999 Default separation routine for fields with prefix $$$. This
separation routine can be used to test new subfields, without the
need to define the subfield in the field definition table DSLFDTT.

nnn=1001 Separation of SWIFT fields.

nnn=2001 Separation of EDIFACT subfields.

DSLMUnnn—Calling MFS User Exits
A user exit is called by the macro DSLMFS, where the following parameters are
specified:
DSLMFS TYPE=USER,MODNUM=nnn

Coding MFS Exit Programs
The following types of MFS exits are available:
v DSLMCnnn (checking)
v DSLMDnnn (default setting)
v DSLMEnnn (editing)
v DSLMSnnn (separation)
v DSLMUnnn (user)
v DSLMXnnn (expansion)

MFS exit programs can be coded with the following interfaces:
v High-level language interface
v DSLMMFS macro-level interface.

The interface used depends on the setting for the LANG parameter in the MFS
program table (refer to the description of the macro DSLMPT in the MERVA for
ESA Macro Reference).

Coding MFS Exit Programs with a High-Level Language
Interface

MERVA ESA provides an MFS exit interface that allows exit routines to be written
in any of the high-level languages supported by the MERVA ESA API: C, COBOL,
and PL/I. Your exit routine can invoke MERVA ESA services using API calls. For
more information about this interface, refer to the MERVA for ESA Application
Programming Interface Guide.

Coding MFS Exit Programs with the DSLMMFS Macro-Level
Interface

User-written Message Format Service exits can access the following MERVA ESA
services:
v MFS services (DSLMFS)
v TOF services (DSLTSV)

Chapter 8. Using the Message Format Service (DSLMFS) 75

v General services (DSLSRV)
v File services (DSLFLV)
v Trace services (DSLTRA).

All other MERVA ESA direct or central services can be accessed as well, but
should be chosen with consideration of performance aspects, for example,
journaling or queue accesses.

The machine readable material supplied with MERVA ESA contains the following
sample MFS exit programs:
v Checking Exit DSLMC899
v Default Setting Exit DSLMD899
v Editing Exit DSLME899
v Separation Exit DSLMS899
v User Exit DSLMU099 (for CICS only).

For MERVA ESA running under MVS, these sample programs are in the library
with the low level qualifier ADSLSAM0 in the data-set name.

These samples explain the interface and make the setup for that interface. The User
Exit DSLMU099 shows CICS how to use the CICS Exec Interface. User exits can be
called both in the batch environment or under control of CICS. Therefore they
must check for CICS environment before using CICS commands or macros. The
following two instructions check for a CICS environment:
TM MFSLWORK,MFSLCECI CICS ENVIRONMENT
BZ MFSGOODNO,NO CICS CALLS

MFS Entry Coding

Building General Entry and Exit Code for MFS Programs
A Message Format Service exit must be started with a DSLMFS macro with the
following parameters:
extname DSLMFS MF=START,TYPE=type,MODNUM=nnn,OPT=(optlist)

See the MERVA for ESA Macro Reference for a complete description of all
parameters.

The label extname is the external name of the Message Format Service exit. This
name is specified in the Message Format Service program table DSLMPTT, together
with an exit type and a module number. When defining external program or
program entry names, care should be taken to avoid conflicting references during
link-editing of the module DSLMMFS. In particular, the use of the same names for
MCBs and programs must be avoided.

The keyword specified with the parameter TYPE refers to the type of Message
Format Service exit. The following types are supported:
v MFS
v CHECK
v DEFAULT
v EDIT
v EXPAND
v SEPR

76 System Programming Guide

v USER.

The number of the program is specified by the parameter MODNUM as a
five-digit number from 1 to 32767.

If the label is omitted, a name in the form DSLMfnnn is built, where:
v “f” is determined from the keyword specified for the parameter TYPE.
v “nnn” are the last three digits of the number specified for the parameter

MODNUM.

Example:
DSLMC001 for TYPE=CHECK,MODNUM=1001
DSLMD904 for TYPE=DEFAULT,MODNUM=904
DSLME901 for TYPE=EDIT,MODNUM=901
DSLMX001 for TYPE=EXPAND,MODNUM=1001
DSLMS901 for TYPE=SEPR,MODNUM=901
DSLMU003 for TYPE=USER,MODNUM=3

The DSLMFS MF=START macro results in the generation of:
v DSECTs for MERVA ESA and Message Format Service storage available for the

MFS exit. These are:

DSLCOM The MERVA ESA communication area.

MFSL The MFS parameter list passed to the MFS exit.

MFSPS MFS permanent storage containing status information for the
MFS session.

MFSTS The basic MFS temporary working storage containing register
save areas; if OPT=EXTTS is specified an MFS parameter list and
a parameter list for internal TOF supervisor calls are generated.
Message Format Service exit programs that use neither TOF
supervisor services nor Message Format Service services can
save storage space by omitting this parameter. The temporary
storage is allocated dynamically during program linkage by the
MFS interface. This storage area can be extended by data areas
required by the Message Format Service exit.

v DSECTs of the MFS buffer prefix, MFS module header, and of the Message Type
Table entry.

v Register Equates.
v Program entry code that carries out the MFS linkage and housekeeping

functions:
– When OPT=EXICAL is specified entry code for CICS dependent modules is

generated. These programs can use the EXEC CICS interface, and they must
be processed with the CICS language translator before assembly.

– Setup of program save areas and save area chaining.
– Initializing the program base register 10. When OPT=BASE11 is specified

register 11 is setup as second base register.
– Initializing the registers for MERVA ESA and MFS storage DSECTs.
– When internal TOF supervisor and Message Format Service parameter lists

are available these parameter lists are initialized.
– Initializing the MFS debugging area (MFSTDEB) is done in the interface

program DSLMMFS.

Chapter 8. Using the Message Format Service (DSLMFS) 77

Note: The generation of storage DSECTs is suppressed when OPT=NOMAPS is
specified. OPT=NOPRINT generates a 'PRINT NOGEN' statement, which
results in a smaller assembly listing of the program.

To define additional entry points in a Message Format Service exit program the
DSLMFS MF=ENTRY macro must be coded:
entname DSLMFS MF=ENTRY,TYPE=type,MODNUM=nnn

The label entname is the entry name within the Message Format Service exit. This
name is specified in the Message Format Service program table DSLMPTT together
with the external name given in the DSLMFS MF=START macro, an exit type, and
a module number.

The entry name does not appear in the linkage editor listing for the DSLMMFS
module. It is an internal name connected to an exit type and module number via
the Message Format Service program table.

Interface Conventions
v MFSLIBUF contains the address of a buffer that contains the input data for the

Message Format Service exit depending on the type of exit. The buffer has the
usual MERVA ESA buffer and data length fields.

v MFSLOBUF contains the address of a buffer where the output data of the
Message Format Service exit depending on the type of exit must be provided.
The buffer has the usual MERVA ESA buffer and data length fields.

v MFSLFLD contains the address of the field reference and shows the Message
Format Service exit for which field it is called. The field reference has the
following layout (use a DSLMFS MF=FLDREF macro to map it):
FLDFLDRF DC 0CL16' ' BASIC FIELD REFERENCE
FLDNI DC AL1(0) FIELD NESTING INDICATOR
FLDFG DC AL1(0) FIELD GROUP INDEX
FLDRS DC Y(0) FIELD REPEATABLE SEQ INDEX
FLDNAME DC CL8' ' FIELD NAME
FLDDA DC Y(0) FIELD DATA AREA INDEX
FLDOPT DC CL1'D' FIELD OPTION INDICATOR
FLDSTAT DC XL1'00' FIELD STATUS
FLDSTEX EQU X'80' 1ST EXTENSION EXISTS
FLDSTEM EQU X'40' DATA AREA EMPTY
FLDINIT EQU X'20' TOF REQUEST TYPE WAS INIT
FLDCHEK EQU X'08' TOF CHECKING REQUIRED
FLDSTX2 EQU X'04' 2ND EXTENSION EXISTS
FLDEXT DS 0C OPTIONAL FIELD REFERENCE EXTENSIONS
* THE EXTENSIONS MAY BE THERE OR NOT, DEPENDING ON THE BIT-SETTINGS
* IN BYTE FLDSTAT, BUT IF BOTH EXTENSIONS ARE THERE THEY ARE ALWAYS
* IN THE FOLLOWING SEQUENCE:
* 1ST EXT (BIT FLDSTEX) FOR SUBFIELDS
FLDNAME0 DC CL8' ' FIELD MASTER NAME
FLDOFF DC Y(0) OFFSET OF SUBFIELD
FLDLEN DC Y(0) LENGTH OF SUBFIELD
FLDLENM DC Y(0) MAXIMUM LENGTH OF SUBFIELD
*
* 2ND EXT (BIT FLDSTX2) FOR NESTED RS
FLDRSXNN DS AL2 NO OF RS INDICES USED (FOLLOWING)
FLDRSXO1 DS AL2 OCC INDEX IN FIRST REP SEQ
* VARIABLE NUMBER OF OCC INDEX FIELDS - GENERATED AS SPECIFIED
FLDRSXO9 DS AL2 OCC INDEX IN NESTED REP SEQS

v MFSLMSG contains the address of a message identification. This parameter is
used if a message is initialized, if a message is mapped in a predefined format,
or if the message type of a message must be determined.

78 System Programming Guide

v The possible error status must be set in the reason code field before returning to
the caller of the Message Format Service exit routine. An MFS reason code is
inserted in the Message Format Service parameter list by the following
instruction:

MVC MFSLREAS,=Y(MFSRE...) error reason code

To use the symbolic names for Message Format Service reason codes, include the
copy book DSLMREAS in the exit program by specifying OPT=REASON in the
DSLMFS MF=START macro.

The MFS reason codes from 1 to 99 are reserved for TOF supervisor errors. The
reason codes from 100 to 499 are used by MERVA ESA Message Format
Services. The reason codes from 900 to 999 are general reason codes for severe
errors. The reason code range 500 to 899 can be used concurrently by special
applications or user programs.

The SWIFT Link, for example, uses these reason codes. The resulting error
messages are built by using the program prefix of the generating MFS exit
program; for the SWIFT Link this prefix is “DWS”.

A user program can issue a reason code xxx, where xxx is a number between 500
and 899. When the name of the user-exit program starts with “DSL”, an error
message DSL3xxx must be defined in the operator message table to indicate the
cause of the error.

Note: The MFS reason code is only processed if an MFS return code not equal
to 0 is also supplied. Use one of the program return points, or supply the
return code with register 15 (R15).

v The following program return points are available for returning to the caller of
the Message Format Service exit routine:
- MFSGOOD Function successfully completed. (RC = 0)
- MFSERWNG Function partially or not completed. (RC = 4)
- MFSERROR Function erroneously completed. (RC = 8)
- MFSERINV Function call invalid, stop processing. (RC = 12)
- MFSERINS Processing environment invalid. (RC = 16)
- MFSEXIT Common Return Point when register 15 was already

set to the appropriate return code. At entry to
the user code in an Message Format Service exit
routine, R14 contains the address of the Common
Return Point MFSEXIT.

The normal return codes to be given by an MFS exit program are 0 and 4. The
other return codes should be used carefully, and only if required to terminate
the MERVA ESA transaction or application program. At these return points, the
MFS return code is set, and the exit returns to the MFS interface.

v The MFS exit can request CICS services using CICS commands.
This must be indicated by specifying OPT=EXICAL in the DSLMFS MFS=START
macro. This bit must be tested before issuing any EXEC CICS calls:
TM MFSLWORK,MFSLCECI
BNO BATCH
EXEC CICS ...

When an MFS exit is called in a batch environment, CICS services are not
available. An example for a program executing in batch environment is DSLSDY.
This program uses the MFS Display and Print Services, which in turn calls the
MFS edit and checking exits, and user exits: for example, the user exit
DSLMU003 that can modify the top and bottom frames.

Chapter 8. Using the Message Format Service (DSLMFS) 79

Usage Conventions for General Purpose Registers
In all MFS programs and exits, some general purpose registers are used for special
purposes. This permits general program entry and return; it also allows special
actions to be taken when calling another MFS exit, or when requesting a TOF
supervisor service.

The following registers are initialized at program entry, and to ensure program
integrity should only be used for the purposes described in the following:

The names R0 to R15 are provided for registers 0 to 15 by using EQU statements.

R5 Points to MFS permanent storage.

R6 Points to the temporary working storage for the MFS exit program.

R7 Points to the parameter list of the MFS exit.

R9 Points to the CICS EXEC interface block DFHEIB that is used to
transfer the results of a CICS request, when OPT=EXICAL is
specified.

R10 Is the first base register.

R11 Is optionally the second program base register. This register can be
requested by specifying OPT=BASE11 in the DSLMFS
TYPE=START macro.

R12 Points to the MERVA ESA communication area DSLCOM.

R13 Points to the save area of the MFS exit that is used for internal
requests for services by MERVA ESA, CICS or IMS, or the
operating system. If it has been used for other purposes, it must be
reset using the instruction:
LA R13,MFSSAVE

At return from user code and entry to the common MFS return
point the register 13 must point to this internal save area.

Installation of MFS Exit Programs
The macro DSLMPT is used to generate the MFS exit program definition in the
MFS program table (DSLMPTT).

This table is exclusively used by the module DSLMMFS to set up:
v The linkage to MFS programs
v User exits
v Field checking exits
v Default setting exits
v Editing exits
v Field component separation exits
v Field expansion exits.

Additionally, table entries for prelinkage of frequently used MCBs and PF key
tables can be defined.

To define additional Message Format Service user exits, or entry points in these
exit programs, the DSLMPT TYPE=ENTRY macro must be coded:
DSLMPT MF=ENTRY,NAME=(extname,entname),NUMBER=nnn,TYPE=c

80 System Programming Guide

When the external name and entry name are identical, only one name need to be
coded.

All programs are identified by module numbers from 1 to 32767 for each class of
modules and exits. These numbers are used to build internal names and as
reference in the MERVA ESA FDT and MCB Definition macros DSLLFLD,
DSLLSUBF, and DSLLMFLD. External program names and entry names in more
complex modules can be used and specified in the appropriate entries.
MERVA ESA assigns number ranges for all exit classes to the Base Functions, to all
external network links, such as the SWIFT Link, and to user coded Message
Format Service exit programs.

Figure 4 shows the ranges of numbers used by the various components. max means
the maximum number 32767.

MERVA ESA provides a facility to install MFS exit programs without modifying
the MFS program table and re-linking DSLMMFS. For MERVA ESA running under
MVS, you must use SMP/E to re-link DSLMMFS.

This can be a problem in an installation, where an application programming
department is responsible for modifying the MFS user exits, but a system
programming department is responsible for the installation of programs using
SMP/E.

A user-defined exit program is loaded, when the MFS program table DSLMPTT
contains an entry for this type class, specifying NUMBER=ALL. For example, the
following entry is defined in the MERVA ESA MFS program table copy book
DSLMPTTC:
DSLMPT NAME=DSLMCXXX,NUMBER=ALL,TYPE=C,LINK=NO

This defines that for all calls to a checking exit (TYPE=C), MFS should build the
program name of the exit and load it dynamically from the load library
(LINK=NO). The name of the exit is built by concatenating the first five characters
of the name parameter (here: DSLMC) and the last three digits of the requested
exit number.

This is done only if the requested number is not explicitly defined in the MFS
program table.

┌──────────┬──────────┬───────────┬───────────┬───────────┬───────────┬───────────┬───────────┬────────────┐
│ │ User │ MERVA │ SWIFT │ EDIFACT │ Telex │ Reserved │ National │ Reserved │
│ │ │ Base │ Link │ │ Link │ │ Networks │ │
├──────────┼──────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼────────────┤
│Check │ 1─899 │ 900 ─ 999 │ 1000─1999 │ 2000─2999 │ 3000─3999 │ 4000─8999 │ 9000─9999 │ 10000─max │
├──────────┼──────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼────────────┤
│Default │ 1─899 │ 900 ─ 999 │ 1000─1999 │ 2000─2999 │ 3000─3999 │ 4000─8999 │ 9000─9999 │ 10000─max │
├──────────┼──────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼────────────┤
│Edit │ 1─899 │ 900 ─ 999 │ 1000─1999 │ 2000─2999 │ 3000─3999 │ 4000─8999 │ 9000─9999 │ 10000─max │
├──────────┼──────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼────────────┤
│Expand │ 1─899 │ 900 ─ 999 │ 1000─1999 │ 2000─2999 │ 3000─3999 │ 4000─8999 │ 9000─9999 │ 10000─max │
├──────────┼──────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼────────────┤
│Separation│ 1─899 │ 900 ─ 999 │ 1000─1999 │ 2000─2999 │ 3000─3999 │ 4000─8999 │ 9000─9999 │ 10000─max │
├──────────┼──────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┼────────────┤
│User │1000-1999 │ 1 ─ 99 │ 100─ 199 │ 200─ 299 │ 300─ 399 │ 400─899 │ 900─999 │ 2000-max │
└──────────┴──────────┴───────────┴───────────┴───────────┴───────────┴───────────┴───────────┴────────────┘

Figure 4. Overview of Program Number Ranges

Chapter 8. Using the Message Format Service (DSLMFS) 81

For example, if CHECK=23 is coded in the field definition table DSLFDTT for a
field, and the field should be checked, MFS tries to load the module DSLMC023.

Note: For CHECK=1023, for example, this module is also called, because only the
last three digits of the exit number are used.

In the MERVA ESA MFS program table, the following entries with NUMBER=ALL
are defined:

DSLMCnnn Checking exits

DSLMDnnn Default setting exits

DSLMEnnn Editing exits.

There is no such definition for expansion, separation and user exits in the copy
book DSLMPTTC of the MFS program table. This means that these exits are called
only, if the requested number is explicitly defined in the MFS program table.

MERVA Link: MFS Program Table Modification
The MERVA Link control MCBs, the sample MERVA Link MFS User Exit, and the
sample MERVA Link MFS editing exits for information displayed by the MERVA
System Control Facility must be specified in the DSLMPTT. The DSLMPTT entries
to be added for MERVA Link are shown below. The copy book EKAMPTTC of the
MERVA ESA macro library contains the macro instructions to generate these
DSLMPTT entries.

* MERVA LINK MESSAGE CONTROL BLOCKS *

DSLMPT NAME=EKAMCTL,TYPE=M
DSLMPT NAME=EKAACMM,TYPE=M
DSLMPT NAME=EKAAC00,TYPE=M
DSLMPT NAME=EKAAC01,TYPE=M
DSLMPT NAME=EKAAC02,TYPE=M
DSLMPT NAME=EKAAC03,TYPE=M
DSLMPT NAME=EKAAC04,TYPE=M

* MERVA LINK SAMPLE MFS USER EXIT *

DSLMPT NAME=EKAMU010,NUMBER=7010,TYPE=U

* MERVA LINK MFS EDITING EXITS *

DSLMPT NAME=EKAME010,NUMBER=7010,TYPE=E
DSLMPT NAME=EKAME011,NUMBER=7011,TYPE=E
DSLMPT NAME=EKAME012,NUMBER=7012,TYPE=E
DSLMPT NAME=EKAME015,NUMBER=7015,TYPE=E

MERVA Link assumes that you do not yet have MFS exits with numbers 7010 to
7015. If you do, you must modify the MERVA Link sample number in the
applicable DSLMPTT entry, and in the sample partner table or the following MCBs:
v EKAAC00
v EKAAC01
v EKAAC02
v EKAAC03
v EKAAC04
v EKADEMO
v EKAMCTL

82 System Programming Guide

The editing exit number is specified in the screen definition of these MCBs. The
user exit number is specified in the MFSEXIT parameter of the EKAPT TYPE=ASP
macro of the sample partner table.

How to Process the Changed DSLMPTT
1. Edit the appropriate copy book of DSLMPTT and insert the definition for the

new user exit.
2. Assemble DSLMPTT.
3. Link-edit DSLMMFS.

Step 2 and 3 are part of the MERVA ESA system generation. See the DSLGEN
macro in the MERVA for ESA Installation Guide.

MFS Exit Program Classes
The purpose of and specific considerations for each type of exit are described in
the following.

MFS Checking Exits (DSLMCnnn)

Checking Concept
A checking routine must be invoked when a field or subfield is accessed that is
specified with the parameter CHECK in the Field Definition Table or in the MCB
definition. For subfields only, checking can be carried out in the separation routine
if so specified. The checking routine checks the contents of a field and returns the
result of the checking operation in the form of an MFS reason code. This reason
code is processed further by the MFS programs. For example, an error or
information message is generated, or, for screen processing, the field in error is
highlighted. The error message is displayed on the screen or printer. MERVA ESA
application programs include the reason code in character format (length 4) in the
subfield MSGTRERR of the message trace field MSGTRACE, where it can be
inspected during message routing.

In MERVA ESA there are different types of checking:

Data Checking
A specific component, data area, subfield, or option of a message field is
checked.

Field Checking
All components, data areas, and options of a message field are checked.

Character Set Checking
This is a special form of data checking. Input data is checked by a
user-written checking program or by a MERVA ESA-provided character set
checking routine. MERVA ESA supports the following character sets:

ALPHA Alphabetic character set

NUMERIC Numeric character set

ANUM Alphanumeric character set

HEX Hexadecimal character set

EDIFACTA UN EDI character set.

Chapter 8. Using the Message Format Service (DSLMFS) 83

Message Checking
The MERVA ESA message checking program checks the contents of the
TOF field-by-field. If there are errors, a list of error messages is produced
for display on the screen or printer.

A message-type-specific user exit and the checking user exit 9 is called at
the end of message checking to change the checking results or to do
additional message checking as required by the user.

Page Checking
Page checking is carried out by the screen and printer page formatting
program (DSLMPBLD).

During creation of a page following a scroll command containing the
parameter CHECK, each data component presented on the medium is
checked. The component is checked to determine whether it is mandatory,
and whether the contents of the data component are incorrect. For a
missing mandatory field, a question mark is presented on the screen. If an
error is found or mandatory fields are missing, the field on the screen is
highlighted, and the cursor is positioned on it. The page is presented again
to the user, accompanied by an error message for the first field in error.

The indication of missing mandatory fields is suppressed when the page is
presented the first time for a data-entry function.

Special Conventions for Checking Routines
The standard field reference is passed in the parameter list referenced by
MFSLFLD; see “Interface Conventions” on page 78. The basic field reference
consists of the field name, the field qualifiers, an option modifier, and a field
status. The field name can be a subfield name; in this case the field reference is
extended by the subfield features including the main field name.

The field status is used to pass information from the TOF Supervisor DSLTOFSV to
the checking routine and vice versa. The following status bits should be considered
by the checking routine:
v FLDSTEX. This bit is set by DSLTOFSV to indicate that the field reference is

extended (subfield).
v FLDSTEM. This bit is set by DSLTOFSV to indicate that the data area to be

checked was not in the TOF. In addition the buffer referenced by MFSLIBUF
contains no data.

v FLDCHEK. This bit is set by the checking routine to indicate to DSLTOFSV that
standard checking of the field characteristics is required.

The checking routine is called either for field checking or data area checking; field
checking is indicated by the data area index FLDDA = 0. In the case of data area
checking, the specific data area index is supplied, and the input buffer contains the
data of the component.

If data area checking is required for page checking, there are two ways for a
checking routine to indicate that a question mark is to be presented on a screen:
1. Using the information passed in FLDSTEM (the component is empty), the

checking routine supplies a reason code in the range 101 - 199. Then
DSLTOFSV provides the question mark.

2. The checking routine found the input buffer to be empty and sets the bit
FLDCHEK. Then DSLTOFSV provides the question mark for the first data area
if the corresponding field is mandatory according to the specification in the
Field Definition Table (FDT) or message control block (MCB).

84 System Programming Guide

MERVA ESA supplies a sample checking exit DSLMC899 in the machine readable
material.

MFS Default Setting Exits (DSLMDnnn)

Default Setting Concept
A default setting routine is used to initialize a field automatically when a new
message is generated. For example the address of the sender or the current date
can be filled by a user- or installation-specific default setting routine. This data
does not have to be entered manually by a user. The default setting routine is
invoked when the DEFAULT parameter for a field is specified in the Field
Definition Table or Message Control Block and you use one of the following
functions:
v DSLMFS TYPE=INIT,MEDIUM=MSG for initialization of all fields of a message.

A subfield is never initialized; therefore a default setting routine defined on a
subfield is not called during message initialization. When subfield data must be
initialized, this must be done on a field level default setting routine that can set
a default data area containing all its subfields.

v DSLTSV TYPE=INIT,FDNAM=.... for initialization of one field.
v Implicitly when using DSLTSV TYPE=READ,FDNAM=....,DAINDEX=1, and

when the field is empty. The FDNAM parameter specifies a main field or a
subfield. The default setting routine is called for only the first empty subfield of
a field.

v Implicitly when using DSLTSV TYPE=WRITE,FDNAM=.... and the field is not
yet in the TOF. In this case, the default data is overwritten by the subsequent
write.

Special Conventions for Default Setting Routines
When a default setting routine gets control, the field MFSLOBUF contains the
address of a buffer. A default setting routine provides the data for the TOF field in
either of the following ways:
v Move the default data to the output buffer pointed to by the address in

MFSLOBUF, and use the exit point MFSGOOD for returning to the calling
program. The TOF supervisor program then writes the data to the TOF field.
The data is ignored when the routine was called from an implicit DSLTSV
TYPE=WRITE request.

v Write the default data directly to the TOF field using a DSLTSV TYPE=WRITE
macro. Set the reason code MFSRENM5 (105) when called for a field
initialization, set the reason code MFSRENM7 (107) when called for an implicit
field read or write. Use the exit point MFSERWNG (return code 4) for returning
to the calling program. In this case the TOF supervisor program does not write
data from the output buffer to the TOF field. Using this technique, the default
setting routine can also provide data for other TOF fields or other data areas but
the first one.

v Indication of the type of default setting required.
– Option supplied in the MFS parameter list. For an implicit call from a

DSLTSV TYPE=READ request the bit MFSLO2RD; for an implicit call from a
DSLTSV TYPE=WRITE request the bit MFSLO2WR; and for an explicit call
from a DSLTSV TYPE=INIT no bit is set.

– Field status bit FLDINIT in the field reference. This bit is set by the TOF
Supervisor DSLTOFSV to indicate to the default setting routine that it is
called from a DSLTSV TYPE=INIT request.

Chapter 8. Using the Message Format Service (DSLMFS) 85

MERVA ESA supplies a sample default setting exit DSLMD899 in the machine
readable material.

MFS Editing Exits (DSLMEnnn)

Editing Concept
These programs enable the formatting of data for a network line, and the display
of data on a screen or printer terminal, in a form different from the one contained
in the TOF. This function can be called as follows:
v Using DSLTSV with one of the types READ, WRITE, or ADDDA together with

one of the field modifiers (FMODIF) EDIT, DEEDIT, DECHECK, or EDITCHK.
v DSLMFS TYPE=EDIT,MF=(E,...)

An edit routine can be used to modify the screen attributes of a field on the screen.
The current attributes of the field are stored in field MFSPUCOM when the edit
routine is called. These attributes can be changed by the program. The sample edit
routine DSLME899 in the sample library shows a coding example.

Special Conventions for Editing Routines
v MFSLIBUF points to the data to be translated (ML00LL00 data). ML contains the

total buffer length and LL contains the actual data length + 4.
v MFSLOBUF points to the output buffer for translated data (ML00LL00 data). LL

must be set to the actual data length + 4 after translation, but must not exceed
ML - 4.

v The exit program must provide a working buffer in its temporary working
storage (MFSTS) for intermediate results. This is necessary for the possible call
coded as MFSLIBUF=MFSLOBUF.

v MFSLO2DE shows that de-editing must be done. For example, translating user
input data into internal TOF format.

v MFSLO1RT shows that a retype-verification check must be done. This special
function is necessary to allow a retype verification for fields that are edited.
Normally the MERVA ESA screen services compare the fields to be checked
literally. When editing is specified for a field, the internal representation of the
data is different from the form the end-user sees.
When the edit routine is called with option 'RETYPE' (MFSLO1RT), it may
perform its own compare operation. For example, the edit routine may decide
that the two amount fields '1000,' and '1.000,00' are equal, even when they are
not physically equal. The edit routine is called by the MERVA ESA MFS screen
services; a special reason code indicates that the edit routine expects the retype
check to be performed by the MFS screen services. All edit routines that handle
retype verification fields must support the RETYPE option, otherwise
unpredictable results can occur (see coding example below).
Refer to DSLBM05 in “Appendix D. MERVA ESA Sample Programs” on page 161
for an example of an MFS retype edit exit.

Coding Example
The following code for retype checking should be added to all user edit exits that
work on fields used also for retype editing. The calling interface for edit with
option RETYPE is as follows:

Input MFSLO1RT for OPTION=RETYPE is set. MFSLIBUF contains
original field data from message. MFSLOBUF contains retyped
input data from screen.

Output MFS return and reason code:

86 System Programming Guide

0 / 0 Retype check OK (fields are equal)

4 / MFSRERCH
Retype check failed (fields are not equal)

4 / MFSRENM1
Retype check not performed (check should be done by
MFS screen services).

MERVA ESA supplies a sample editing exit with the name DSLME899.

MFS Separation Exits (DSLMSnnn)

Separation Concept
A separation routine must be invoked when a subfield or system field is accessed
that has specified the parameter SEPR in the Field Definition Table.

The separation routines are invoked to separate the data for a subfield from a
field’s data area; or, in the case of write, to insert data of a subfield into the
appropriate position of a field’s data area; or, in the case of delete, to remove the
subfield data from a field or a field’s data area. Therefore, separation can be
understood as special field editing, which is different from screen (presentation
medium) editing.

MERVA ESA provides means for defining structures; that is, a field can be
separated into different sets of subfields. In MERVA ESA this is completely under
control of the separation routine. The separation routine decides whether a
requested subfield belongs to the current structure or not.

Subfields are processed by the following programs:
v Screen, printer, and line formatting programs (according to MCB definition)
v Routing Scanner (according to routing table definition)
v MFS checking, editing, default setting or separation exits
v Queue management (key definition in function table)
v External Network Programs.

Separation is transparent to an application. For example, the application has no
need to know whether it accesses a subfield or a main field. The transformation
into a separation read/write/delete request is done by the TOF supervisor.

Chapter 8. Using the Message Format Service (DSLMFS) 87

General Separation Routine for Optional Subfields: A general separation
module is provided by MERVA ESA. This routine can separate fields with a fixed
subfield layout, so that, a subfield has always the same offset and length within
the main field. In this case, subfields can be omitted at the end of the main field.
The name of this routine is DSLMS901 and it can be used for optional subfields.
This routine cannot set the mandatory indicator. The definition for this routine in
the Field Definition Table entry is SEPR=STANDARD.

General Separation Routine for Mandatory Subfields: A general separation
module is provided by MERVA ESA. This routine can separate fields with a fixed
subfield layout, that is, a subfield always has the same offset and length within the
main field. In this case, subfields can be omitted at the end of the main field. The
name of this routine is DSLMS905 and it must be used for mandatory subfields as
it sets the mandatory indicator in screen panels. The definition for this routine in
the Field Definition Table entry is SEPR=905.

System Field Separation Routine: System fields contain user session dependent
information, which is not in the TOF. This information is normally stored in a
control block of the MERVA ESA application. The fields can be displayed on
screen or printer, or mapped into a line buffer, by specifying the field’s name in a
device description of an MCB, and can also control the conditional processing of
MCBs.

The extraction process is carried out via the environment definition. When a
subfield is specified in the Field Definition Table entry with SEPR=SYSTEM, then
the system field separation routine DSLMS902 is called.

System Field Table: The following fields are supported by the system field
separation routine DSLMS902:

Table 1. System Field Table
Name Function Origin
DSLACCD Current data area index TUCB
DSLACCDA Data area index field FLDREF
DSLACCFG Field group index field FLDREF
DSLACCN Current nesting identifier TUCB
DSLACCNI Access nesting identifier FLDREF
DSLACCO Current rep. seq. occurrence index TUCB
DSLACCRS Occurrence number field FLDREF
DSLACCRn Occurrence on nested rep. seq. n; n between

1 and 9
TUCB

DSLACTA Active occurrence indicator TUCB
DSLACTD Actual data area nnn TUCB
DSLACTF Actual field name cccccccc TUCB
DSLACTG Actual group number nnn TUCB
DSLACTI Actual option indication D/O TUCB
DSLACTL Actual line number TUCB
DSLACTM Current message identifier TUCB
DSLACTN Actual nesting identifier TUCB
DSLACTO Actual occurrence number nnn TUCB
DSLACTP Actual page number TUCB
DSLACTR Current repeatable sequence index TUCB
DSLACTS Actual scroll mode TUCB
DSLAID PF key value for AID=DA PF Key Set
DSLBLANK Blank filler
DSLCOLN Number of presentation columns TUCB

88 System Programming Guide

Table 1. System Field Table (continued)
Name Function Origin
DSLCOMP Actual Compression TUCB
DSLCOMPL Line Compression YES/NO TUCB
DSLCOMPU Unit Compression YES/NO TUCB
DSLCOND Nesting identifier information
DSLCOPR MERVA ESA copyright information line
DSLCOPYQ Copy queue name TUCB
DSLCOVID Cover MCB name from function table TUCB
DSLCURS Actual cursor position TUCB
DSLDATE Date in format YYMMMDD DSLSRVP
DSLDATE0 Date in format YY/MM/DD DSLSRVP
DSLDATE1 Date in format YYMMDD DSLSRVP
DSLDATE2 Date in format YYYYMMDD DSLSRVP
DSLDATE3 Date in format YYYYDDD DSLSRVP
DSLDATE4 Date in format YYYYMMMDD DSLSRVP
DSLDATE5 Date in format YYYY/MM/DD DSLSRVP
DSLDST Originid TUCB
DSLEFAUT aut command is allowed TUCB
DSLEFCPC Copy queue is defined (YES/NO) TUCB
DSLEFDEL delete command allowed TUCB
DSLEFEXP Expansion is active TUCB
DSLEFFQU Function with a queue TUCB
DSLEFHCO Hardcopy print queue available TUCB
DSLEFKEY KEY1,KEY2,KEY1+KEY2 allowed TUCB
DSLEFK1C get key1 command allowed TUCB
DSLEFK2C get key2 command allowed TUCB
DSLEFMTG Message type generation allowed TUCB
DSLEFNOP NOPROMPT is allowed TUCB
DSLEFNPD NOPROMPT display allowed only TUCB
DSLEFOKC ok command allowed TUCB
DSLEFPRT Function is protected TUCB
DSLEFREK RETYPE function TUCB
DSLEFROU route command allowed TUCB
DSLENV MFS environment information TUCB
DSLEXAFO EXAFO=YES/NO specified (Automatic Force) DSLPRM
DSLEXJRN Journal display allowed DSLPRM
DSLEXQUE EXQUE=YES/NO specified (Queue Test commands) DSLPRM
DSLEXSEC EXSEC=YES/NO specified (Password Check

bypassed)
DSLPRM

DSLEXUID EXUID=YES/NO specified (Sign-on bypassed) DSLPRM
DSLEXUSR EXUSR=YES/NO specified (Origin ID Check in

USR)
DSLPRM

DSLFPGM Name of Function Program TUCB
DSLFRMID Line format identification for NOPROMPT TUCB
DSLFUAPL User Application Field in FNT TUCB
DSLFUN Current Function TUCB
DSLFUNS Allowed functions User record
DSLHCOF Associated hard copy function TUCB
DSLHEX00 X'00' filler
DSLHOOK Field for cursor select
DSLID MERVA ESA identification DSLPRM
DSLKFDL1 Name of key field 1 in FNT. TUCB
DSLKFDL2 Name of key field 2 in FNT. TUCB
DSLLANID Language identifier for user TUCB
DSLLFMT Line format used last TUCB

Chapter 8. Using the Message Format Service (DSLMFS) 89

Table 1. System Field Table (continued)
Name Function Origin
DSLLINE Top Line in message TUCB
DSLLTERM Logical Terminal Name TUCB
DSLMIDB Message id for bottom frame TUCB
DSLMIDM Message id for msg area TUCB
DSLMIDT Message id for top frame TUCB
DSLMORE Last/more indicator TUCB
DSLMSTAT Message status MSG/ FUN TUCB
DSLNAME UMR MERVA ESA identification DSLPRM
DSLNUMR UMR status NO/YES/IMM DSLPRM
DSLNXTF Next function TUCB
DSLOPID Master Operator ID DSLPRM
DSLOPMAS Master Operator YES/NO DSLPRM /

User record
DSLOTRMF Online Trace for MFS ON/OFF TUCB
DSLOTRPG Processing Trace INT/EXT TUCB
DSLOTRQE Queue Trace OFF/SML/LRG TUCB
DSLOTRRT Routing Trace OFF/ALL/WNG/SEV TUCB
DSLOTRTO Online Trace for TOF ON/OFF TUCB
DSLPFKEX Previous PF key definition for nn PF Key Set
DSLPFKEY Current PF key definition for nn PF Key Set
DSLPFKL Current PF key information line PF Key Set
DSLPFKLX Previous PF key information line PF Key Set
DSLPFKY PF Key Table Name in FNT TUCB
DSLPFSET Name of Current PF key Set TUCB
DSLPWC Password during sign-on TUCB
DSLPWN1 New password during sign-on
DSLPWN2 Check new passw. at sign-on
DSLRECON RECON=YES/NO specified (traffic

reconciliation)
DSLPRM

DSLROUTN Routing Module Name in FNT TUCB
DSLROWN Number of presentation rows TUCB
DSLTERMT Terminal type TUCB/Term table
DSLTHDS2 Header display (MODE in FNT) TUCB
DSLTIME Time in format HH:MM:SS DSLSRVP
DSLTIME1 Time in format HHMMSS DSLSRVP
DSLTRACE Trace info in DSLCOM
DSLUNAME User Name User record
DSLUSER User identification TUCB
DSLUSFPW USFPW=YES/NO specified (Prompt for Password

in USR)
DSLPRM

DSLUSGRP USGRP=YES/NO specified (Categorize users
into groups)

DSLPRM

DSLUTYP User/operator type User Record
DSLWNDOW Frame or window ident. TUCB

Function Name Separation Routine: The separation routine DSLMS903 generates
an explanatory text for a queue or function name. This text is displayed on the
user function selection panel. For example, 'USR' is translated to “User-File
Maintenance.”

Name Function Origin

DSLFEXP Explanation of functions Function Table DSLFNTT

90 System Programming Guide

Message Identification Separation Routine: The separation routine DSLMS904
generates an explanatory text for a message identification. This text is displayed on
the top of each message panel. For example 'S100' is translated to “Customer
Transfer.”

Name Function Origin

DSLMIDN Explanation of message types Message Type Table DSLMTTT

Reserve TOF Space Separation Routine: The separation routine DSLMS906
reserves space in the TOF of the maximum size of the subfield as defined with the
LENGTH operand in the FDT. This space is reserved with the first DSLTSV
TYPE=WRITE request for this field.

Note: Once this space is reserved the subfield can be written even when the TOF
is full. You should be careful in applying this separation routine as the TOF
space available for other fields is reduced.

MERVA ESA supplies the sample separation routine DSLMS899 in the machine
readable material.

Special Conventions for Separation Routines
v MFSLO2RD indicates that separation for a READ of a subfield must be done.
v MFSLO2WR indicates that separation for a WRITE or ADDDA of a subfield

must be done.
v MFSLO2DL indicates that separation for a DELETE of a subfield must be done.

The input and output buffer contents depend on the request type (option). The
supported request types are read, write, add, and delete a subfield. Buffer
requirements for write and add are similar.

MFS Expansion Exits (DSLMXnnn)

Expansion Concept
An expansion routine is invoked by the TOF supervisor program, when a field
expand request is issued, and the field is specified with the parameter
EXPAND=nnn in the Field Definition Table or in the MCB definition. The
expansion routine evaluates the contents of the field and decides whether
additional data must be written into TOF. This type of Message Format Service exit
is used to expand a code name, such as a SWIFT address, into a correspondent
name. The information might be displayed on screen and printer devices, or used
during routing. MERVA ESA provides for expansion of all message fields in the
end-user driver DSLEUD and in the checking and expansion transaction DSLCXT
depending on the specification of the EXPAND and EXPNAM parameters of the
DSLFNT macro.

Figure 5. Description of the Buffer Contents

Chapter 8. Using the Message Format Service (DSLMFS) 91

Special Conventions for Expansion Routines
The standard field reference, as passed in the parameter list, contains the field
name and the field qualifiers of the field to be expanded. The field name is always
a main field name, never a subfield name.

The exit must evaluate the field to be expanded by reading the data area or areas.
For example, the expansion operation for the SWIFT Link address expansion
consists of an access to a file using MERVA ESA file services (DSLFLV) and of
writing the data obtained from there into TOF. Writing to the TOF must be done
by the expansion exit routine.

Adding a User Exit to DSLMMFS
The MFS user exits called by MERVA ESA allow for additional processing steps at
specific points during the processing of a message.

Additional MFS user exits can be specified in the MERVA ESA user-written
application programs.

Sample user exits are provided with the distributed material. The interface for MFS
user exits in MERVA ESA provides the message in TOF format and the terminal
user control block (TUCB); also a user exit communication field is provided by
MFS. The TOF contains all message dependent information that can be accessed or
changed or both by any of the MFS user exits. The TUCB contains information
about the status of the message in process, the message processing function, and
the general user information. All this information can be used, but only some of
the information in the TUCB can be changed by the user exits. This information
can be obtained by a DSLTSV TYPE=READ,FDNAM=DSLccccc and changed by a
DSLTSV TYPE=WRITE,FDNAM=DSLccccc request. For a summary of the system
fields DSLccccc available see “System Field Table” on page 88.

All user exits (except for DSLMU054) reside in the MERVA ESA load library and
are dynamically loaded when the user exit is called by a program.

MERVA ESA provides the following MFS user exits available for modifications:

DSLMU001
Message Initialization User Exit.

This exit is called by DSLMTIN. The TOF for a new message is initialized.
Additional defaults can be set into message fields in the TOF, or additional
fields may be initialized using the TOF Supervisor request TYPE=INIT.

Note: This user exit is also called for function panels with a DSLLDEV
TYPE=MSG definition in the MCB, for example, USR, AUT.

DSLMU003
Panel Frame User Exit.

The purpose of the MFS User Exit DSLMU003 is to change the TOF using the
TOF supervisor program. This influences the page build-up. Its conditions are
described in the MCBs.

The MFS parameter list contains pointers to the external areas:
v TOF
v MFS permanent storage
v MFS temporary storage

92 System Programming Guide

This exit is called twice:
1. Before the page build-up process is started, this cycle is indicated by the

field MFSPUCOM containing 0. The size of the windows on the top and
bottom of the panel can be determined by this user exit.

2. After the page build-up process has been completed, this cycle is indicated
by the field MFSPUCOM containing 4. Now the data to be displayed on
the top and bottom window can be changed if they are dependent from the
contents of the message window. Data in the message window cannot be
changed by the user exit at this time.

DSLMU004
Command Modification User Exit. This exit is called by DSLEFUN.

A command received via the command line is read from the TOF into the
command buffer. While reading the command from the TOF, it is erased from
the TOF. The input buffer parameter points to the command buffer. The
contents of this buffer can be changed by the user exit, or the command
execution can be suppressed by passing return code 4 and reason code
MFSRECSU (113) to the caller of the exit.

The format of the command buffer is:
0 4 8 Offset in buffer
TL00|AL00|DATA TL=total length

AL=actual data length + 4

Refer to DSLBM02 and DSLBM04 in “Appendix D. MERVA ESA Sample
Programs” on page 161 for examples of MFS user exit 4.

DSLMU005
Changing command parameters.

This exit is called by DSLEFUN. The command input is contained in the parser
buffer.

Access to the parser buffer:
v The field COMTUCBA contains the address of the control block TUCB
v The field TUCBCMPA in TUCB contains the address of the parser buffer
v The DSECT of the parser buffer can be generated with the macro DSLNPA

MF=L.

The parser buffer contains the command code and the field NPACTIND
contains the command table index:
1. Screen Command
2. Session Command
3. Function Command.

The contents of this buffer (command parameters) can be changed by the user
exit, or the command execution can be suppressed by passing return code 4
and reason code MFSRECSU (113) to the caller of the exit.

DSLMU006
User Exit for Help Functions.

The help function is MCB driven and can be extended via user-written MCBs.
This exit is called by DSLMPCMD after a help command was received.

Interface: The MFS parameter list field MFSLMSG points to an 8-byte area that
contains an MCB name or a message identification. This panel is displayed as
help information. The user can supply additional HELP information through

Chapter 8. Using the Message Format Service (DSLMFS) 93

the user exit by writing this information into the TOF, or change the help panel
message identification by changing the 8-byte message identification area.

DSLMU008
Change message data.

The input data has been transferred from screen to TOF and the fields residing
on the current page have been checked.

DSLMU008 is called on termination of an input page (PROMPT mode).

Interface: Checking return and reason codes are passed to DSLMU008 in the
MFS permanent storage field MFSPUCOM. MFSPUCOM is a 4-byte field, the
first 2 bytes contain the return code, and the second 2 bytes contain the reason
code.

DSLMU009
Additional message checking.

The complete message has been checked. DSLMCHE is called, for example, by
DSLEMSG, if a message is completed by a user command or by EOM; or by
DSLMLFP when called with option CHECK (for example, on each ENTER in
NOPROMPT processing).

Interface: Checking return and reason codes are passed to DSLMU009 in the
MFS permanent storage field MFSPUCOM. MFSPUCOM is a 4-byte field, the
first 2-bytes contain the return code, and the second 2-bytes contain the reason
code.

When the exit wants to indicate a checking error, the first two bytes of
MFSPUCOM should be set to four, as the return code and the second two
bytes of MFSPUCOM must be set to MFSREEM0 (checking error found). The
error message is be written to the TOF field DSLMSG.

Refer to DSLBM01 in “Appendix D. MERVA ESA Sample Programs” on
page 161 for an example of MFS user exit 9.

DSLMU010
Exit for message completion.

This exit is called by DSLEMSG. A message has been completed by a user
command. The command could be a session command that implies end of
message, that is, return to function selection (RET) or sign-off (SOF). Message
processing commands that cause the calling of the user exit are EOM
(end-of-message), ROUTE, REQUEUE, DELETE, OK, and HARDCOPY.

The message is in the TOF (but not yet in the queue) and, except for DELETE
and HARDCOPY, completely checked. In DSLMU010, additional processing
steps, such as accounting and journaling can be performed.

Interface: The TOF address can be obtained from the MFS parameter list; the
TUCB address can be obtained from the MERVA ESA communication area
DSLCOM.

The command that started the exit DSLMU010 is contained in the parser buffer
(see DSLMU005).

The field NPACTINT contains one of the following command table indices:

01 Stands for screen commands.

02 Stands for session commands. For example, sof, return, hco.

03 Stands for function program commands. For example, eom, route,
requeue, delete, ok.

94 System Programming Guide

Note: The command code (field NPATOCM) with the command table index
gives the exact definition of the command. The command code in all
three command tables need not be unique, it is unique just within one
table.

DSLMU011
Skip Message exit.

This exit is called by DSLEMSG after a message has been read from a queue.
The exit can set the MFS reason code MFSRESKM if the actual message must
be skipped (it is not presented on the screen), if the user has no allowance to
process that message. The next message is then automatically read from the
queue.

Refer to DSLBM03 in “Appendix D. MERVA ESA Sample Programs” on
page 161 for an example of MFS user exit 11.

DSLMU020
Exit in DSLSDI.

The exit is called by DSLSDI after a message has been formatted into the TOF.
The message may be modified before it is stored into the queue data set. The
user exit may decide to skip the message indicated by return code 4 and MFS
reason code MFSRESKM.

Before calling this exit, field MFSPUCOM is loaded with the actual function
table entry address.

DSLMU021
Exit in DSLSDY.

The exit is called by DSLSDY after a message has been moved into the TOF.
The message may be modified, before it is printed. The user exit may decide to
skip the message indicated by return code 4 and MFS reason code
MFSRESKM.

DSLMU022
Exit in DSLSDO.

The exit is called by DSLSDO when a message is in the TOF before it has been
formatted and written to the sequential data set. The message may be
modified, before it is written to the output data set. The user exit may decide
to skip the message indicated by return code 4 and one of the MFS reason
codes MFSRESKP, MFSRESKR, or MFSRESKM. MFSRESKP does not purge the
message (it is written to the end of the queue); MFSRESKM purges the
message, and MFSRESKR routes the message.

Before calling this exit, field MFSPUCOM is loaded with the actual function
table entry address.

DSLMU023
Exit in DSLCXT.

The exit is called by DSLCXT after a message has been moved into the TOF.
The message may be modified, before it is checked or expanded. The user exit
may decide to skip the message indicated by return code 4 and MFS reason
codes MFSRESKM or MFSRESKP. MFSRESKM skips and purges the message;
MFSRESKP skips the message and leaves it in the queue. A reason code
MFSRECSU can be given to stop the processing of DSLCXT. The message in
process is freed and stays in the queue.

DSLMU024
Exit in DSLHCP.

Chapter 8. Using the Message Format Service (DSLMFS) 95

The exit is called by DSLHCP after a message has been moved into the TOF.
The message may be modified, before it is printed. The user exit may decide to
skip the message indicated by return code 4 and MFS reason code MFSRESKM
or MFSRESKP. MFSRESKM means that the message is not printed, and purged
from the queue. MFSRESKP means that the message is not printed and stays in
the queue.

DSLMU027
Exit in DSLHCP.

This exit can manipulate the output device, the output data stream, or both.
The exit is called at three different processing stages in DSLHCP message
printing. The different stages are indicated in the field MFSPUCOM:
v Call before the first output segment is prepared. Additional initialization of

the output device may be performed, for example, sending a FORMFEED to
the printer, or modifying the device characteristic. The terminal user control
block (TUCB) contains the logical terminal name and the device
characteristic.
For IMS only: the name of the logical terminal can be changed because this
exit is called before the IMS CHANGE call. The name of the logical terminal
is in the field TUCBLTN. MFSPUCOM contains 0.

v Call when an output segment for a message is prepared. The output
segment may be modified or routed to an additional destination, for
example a spooling system. The field MFSLIBUF contains the address of the
I/O-segment buffer. This can occur several times in a message. MFSPUCOM
contains 4.

v Call when an output segment for a warning panel is prepared. The output
segment may be modified or routed to an additional destination, for
example a spooling system. The field MFSLIBUF contains the address of the
I/O-segment buffer. The printing of the warning panel can be suppressed by
issuing MFS reason code MFSRESKP (111) and return code 4. MFSPUCOM
contains 8.

v Call after the last output segment has been sent. Additional termination
steps on the output device may be performed. MFSPUCOM contains 12.

DSLMU054
Message Type and Network Determination.

This exit is called by DSLMLFP when transforming a message from the net
format to the TOF.

The input to this program consists of:
1. The MFS parameter list containing the address of the message buffer, and

the address of the message identification contains the network identifier in
the first byte.

2. MFSPUCOM in the MFS permanent storage, which contains the address of
the current position in the message buffer.

If user-supplied message types and networks are to be supported, the
appropriate program selection must be coded in DSLMU054. Otherwise a
network-dependent program is selected for the evaluation of the message
header. In register 15, a return code is issued:
v 0 means that the header was evaluated. The exit returns a valid 8-byte

message identification in the area pointed to by the field MFSLFLD.
v 4 means that the evaluation was not successful. The default message

identification 0DSL will be used.

96 System Programming Guide

This user exit is linked to DSLMMFS. If DSLMU054 is changed, DSLMMFS
must be link-edited.

DSLMU090
MFS termination exit.

This exit is called by DSLMMFS when a termination of MFS is requested. The
exit may process any cleanup needed for other user exits which have been
called earlier.

DSLMU099
Sample User Exit.

This user exit is not used by MERVA ESA or the SWIFT Link. It shows:
v The setup for a user exit
v How the CICS commands are used in a user exit (CICS only).

DSLMU240
Exit in DSLCESI. DSLCESI is called by DSLCEST.

This exit is called by DSLCESI (EDIFACT to SWIFT conversion). At this point a
SWIFT message has been extracted from the EDIFACT message and has been
formatted in the TOF. The message may be modified before it is stored in the
queue data set. The user exit may decide to skip the message (only if this is
the first part of the EDIFACT message) indicated by return code 4 and MFS
reason code MFSRESKM.

Before calling this exit, field MFSPUCOM is loaded with the address of the
queue name.

DSLMU241
Exit in DSLCSEI. DSLCSEI is called by DSLCSET and DSLSDO.

This exit is called by DSLCSEI (SWIFT to EDIFACT conversion). At this point a
SWIFT message has been read from the queue and has been formatted in the
TOF. The next step is the concatenation of the message to the EDIFACT
message. The message may be modified before it is concatenated. The user exit
may decide to skip the message indicated by return code 4 and one of the MFS
reason codes MFSRESKP, MFSRESKR, or MFSRESKM.

MFSRESKP does not purge the group of SWIFT messages that is part of the
EDIFACT message (the group is written to the end of the queue). MFSRESKM
purges the group of SWIFT messages that is part of the EDIFACT message.
MFSRESKR routes the group of SWIFT messages that is part of the EDIFACT
message.

Before calling this exit, field MFSPUCOM is loaded with the address of the
queue name.

DSLMU242
Exit in DSLCES2. DSLCES2 is called by DSLCEST and DSLSDI.

This exit is called by DSLCES2 (EDIFACT to SWIFT conversion). The exit must
extract the SWIFT fields from the EDIFACT message (MFSLIBUF) and pass the
data back to DSLCES2 (MFSLOBUF).

DWSMU126
Exit in DWSDGPA.

This exit is called by DWSDGPA (SWIFT general purpose application). At this
point the message is read from the ready queue and moved into the TOF. In
the subsequent steps the message is prepared for sending to the SWIFT
network.

Chapter 8. Using the Message Format Service (DSLMFS) 97

This exit can inspect the message in the TOF and modify it. The address of the
TOF is contained in the field MFSLTOF. No other information is available in
this exit but the TOF.

If this exit decides that the message must be sent, it must give a return code
of 0.

If this exit decides to skip a message, it must give a return code of 4 and a
reason code, for example, MFSRESKM (112). Then the message DWS689I is
written to the MSGACK field in the TOF and routing is invoked. The message
DWS689I can be found during routing. It contains the reason code set by this
exit. Processing of DWSDGPA continues with the next message in the ready
queue.

98 System Programming Guide

Chapter 9. Using the Intertask Communication Facility
(DSLNIC)

The intertask communication facility is used by application programs that are not
linked to the MERVA ESA nucleus DSLNUC.

Through DSLNIC, programs can communicate with the task servers of
MERVA ESA to use the central services of MERVA ESA, such as the queue
services, operator-command services, user-file services, write-to-operator services,
authentication service of the SWIFT Link, and other services defined in the
MERVA ESA task-server request table DSLNTRT (see also “Chapter 1. Types of
MERVA ESA Application Programs” on page 1).

The communication between the task servers and applications is carried out by the
DSLNICT program, which is invoked via the DSLNIC macro. The methods of
communication are:
v Interregion
v Intraregion (CICS only)
v Via CICS temporary storage queues (CICS only)
v Via APPC/MVS (MVS only)
v Via MQSeries® for MVS/ESA™

The method of communication is determined by the customization parameter ITC
in DSLPRM and by the environment where the requestor is executing.

For transactions running under IMS or batch programs under MVS, the
communication is normally via interregion communication. This communication
method uses the MERVA ESA SVC DSLNICPM and requires the requestor and the
MERVA ESA nucleus to execute on the same MVS image. Alternatively, the
MERVA ESA intertask communication via APPC/MVS or MQSeries for MVS/ESA
is available. These methods allow you to run the MERVA ESA nucleus and the
requestor application on different MVS images. The servers used for the intertask
communication are the DSLNTSA (APPC/MVS) and DSLNTSM (MQSeries for
MVS/ESA) programs, respectively. These programs under direct control of
DSLNUC.

For batch programs under VSE, interregion communication via XPCC is used.

For transactions running under CICS, the communication method is intraregion,
using direct buffer transfers in storage to move the data. This method prevents the
use of the CICS storage protection facility for MERVA ESA transactions.

If MERVA ESA is not available in the same region or partition, DSLNICT invokes
the interregion communication when CINTER=YES is specified in DSLPRM.

It is possible to select the intertask communication via CICS temporary storage
queues. This method allows the use of the CICS storage protection facility for
MERVA ESA transactions and user programs using MERVA ESA services.

For details of the DSLNIC macro, see the MERVA for ESA Macro Reference.

© Copyright IBM Corp. 1987, 2001 99

In the following paragraphs, the intertask communication is described as it
proceeds for the requesting MERVA ESA application (called the “requestor”).
Coding examples show how to use the DSLNIC macro.

Storage Definition
If you set up your own MERVA ESA environment and you want to use the
services of DSLNICT, then you must provide the following fields of DSLCOM (see
“Filling the Fields of DSLCOM” on page 5 for more information on how to fill
these fields):
v COMPRMA
v COMSRVPA
v In a CICS task also provide the fields:

– COMCWAA
– COMEIB
– COMEISTG.

The data-area definitions for a requestor must include the definition of a parameter
list for DSLNICT using the macro:

NICPLST is the parameter-list name used in the examples below (it can be any
other name, however). The parameter list is required when a DSLNIC MF=E macro
instruction is used. It contains data needed during communication with DSLNTS.

All buffers used for intertask communication follow the rules shown in “Chapter 2.
Buffer Standard of MERVA ESA” on page 3.

Starting Communication
Before making a request, you must establish the communication with DSLNTS by
allocating an intertask communication block (ICB):

DSLNIC TYPE=ALLOC,MF=(E,NICPLST)

TYPE=ALLOC causes DSLNICT or DSLNICP to search for a free ICB, set it to “in
use” status, and store its address in the DSLNIC parameter list of the requestor.

Note: General register 13 must point to a save area of 18 fullwords defined in the
storage of the requestor, because DSLNICT uses MVS linkage conventions
with save area chaining. In the MF=(E,NICPLST) parameter, E shows that
DSLNICT is to be called, and NICPLST is the label of the DSLNIC MF=L
parameter list. After a successful TYPE=ALLOC, the address of this
parameter list must not be changed for subsequent DSLNIC TYPE=REQ or
FREE requests.

If, after return from DSLNICT, the return code in general register 15 is 0 (or
(decimal) 16 after the shutdown command), the ALLOC request was successful.

The requestor can now issue requests for MERVA ESA queue management,
journal, user file, write-to-operator, command, or SWIFT Link authentication
services; or check the status of MERVA ESA.

NICPLST DSLNIC MF=L

100 System Programming Guide

Requesting a Service
A MERVA ESA central service request is set up by preparing the data needed for
its execution (a parameter list or data buffer or both); and then initiate the service
request:

TYPE=REQ sets up a central-service request.

Specify the name of the program that will execute the central service request (for a
queue request, the name is DSLQMGT). This name must also be contained in the
MERVA ESA task-server request table DSLNTRT.

Other valid names can be DSLNCS for the operator command service, DSLNUSR
for the user file service, DSLJRNP for the journal service, DSLNMOP for writing
messages to the MERVA ESA operators, and DWSAUTP for the SWIFT Link
authentication service.

In the PL parameter, R5 (general register 5) contains the address of the queue
parameter list. R6 (register 6) contains the address of the queue data buffer. Other
requests can use only PL or only BUF. For the area not needed, the parameter can
be omitted or coded with PL=0 or BUF=0.

The storage areas addressed with both PL and BUF follow the rules shown in
“Chapter 2. Buffer Standard of MERVA ESA” on page 3. The first length field is
needed by DSLNICT to determine if this area is large enough for the data returned
from the servicing module. This length field is never changed. The second length
field shows the actual data length to be transferred. If an area is required to pass
information in one direction only, the actual length field can contain zero to avoid
unnecessary data transfers. For a DSLQMGT TYPE=GET, the buffer is empty when
the request is set up, then the actual length can be zero; but when the request is
serviced by DSLQMGT and the response is returned, the actual length is no longer
zero, and the retrieved message is transferred to the requestor.

The description of the DSLNIC macro in the MERVA for ESA Macro Reference lists
whether PL and BUF must be specified for the known central services.

The MF parameter is the same as that in the TYPE=ALLOC macro instruction
described here.

If the request setup is not successful, an appropriate return code is given by
DSLNICT. If the request setup is successful, DSLNICT issues a WAIT for the
completion of the service request.

After completion of the WAIT, DSLNICT checks if the request was serviced (as far
as the intertask communication is concerned), and the appropriate return code is
set.

If the request was serviced, DSLNICT moves all data back to the requester.

If, after return from DSLNICT, the return code in general register 15 is 0 (or
(decimal) 16 after the shutdown command), the intertask communication was
successful; with all other return codes the central service was not processed.

DSLNIC TYPE=REQ,NAME=DSLQMGT, *
PL=(R5),BUF=(R6),MF=(E,NICPLST)

Chapter 9. Using the Intertask Communication Facility (DSLNIC) 101

After successful intertask communication, the requester must check the return code
of the servicing module. If a MERVA ESA command request is serviced, the return
code of the command server is always zero. If a command is in error, this is
indicated by an error response that is returned in the same response area of the
buffer as the good responses.

MERVA ESA supports dynamic buffers for the central service request. This request
allows you to retrieve large messages up to 2MB without knowing the length of
the message in advance. TYPE=REQDYN is used to set up a central service request
with dynamic buffers. The interface is the same as for the central service request
with static buffers.

The TYPE=REQDYN returns a larger buffer when the data to be transferred does
not fit into the provided buffer. It is the responsibility of the application program
to check whether a larger buffer was returned and to release the storage of this
buffer after use.

Requesting a Status Check
A MERVA ESA status check is requested by repeating the ALLOC request:

As there is already an ICB address in the DSLNIC parameter list, only the
MERVA ESA status is checked.

For requests, DSLNICT indicates, with return codes, whether MERVA ESA is being
shut down or terminated, or whether it has been restarted. Then the requester can
decide either to continue or to terminate, depending on the DSLNICT return code.

Terminating Communication
In the termination routines, the requester must free the allocated ICB:

This request can be issued regardless of the status of MERVA ESA, because
DSLNICT itself checks whether it can free the ICB or not. Therefore, the requester
need not check the return code of the FREE request.

If a requester terminates without freeing its ICB, that ICB cannot be used by
another program until MERVA ESA is restarted.

DSLNIC TYPE=REQDYN,NAME=DSLQMGT, *
PL=(R5),BUF=(R6),MF=(E,NICPLST)

C R6,NICBUF New buffer returned?
BE LABEL ..No, use old buffer
DSLSRV TYPE=FREEMAIN,ADSTOR=(R6),SIZE=0 Release old buffer
L R6,NICBUF Get address of new dynamic buffer
ST R6,MYBUF Save new buffer address for future

LABEL DS 0H

DSLNIC TYPE=ALLOC,MF=(E,NICPLST)

DSLNIC TYPE=FREE,MF=(E,NICPLST)

102 System Programming Guide

Chapter 10. Using the Queue Management (DSLQMG)

The queues of all message-processing functions are collected in the queue data set
which is held in a VSAM cluster and, if your system has been customized for large
messages, in the large message cluster, or in a DB2® data base. If you do not use
QDS on DB2, it is recommended that you customize the system for large message
support.

There is no difference in using the queue management macro and API calls for
QDS on DB2.

MERVA ESA queue management supervises and controls the activities concerned
with the storage and retrieval of the messages in these data sets. It considers the
queue data set and the large message cluster to be a unit and checks their integrity.

For a detailed description of MERVA ESA queue management services, refer to the
MERVA for ESA Concepts and Components.

Keep the following rules in mind when you use the queue management macro:
v Only registers 2 through 11 can be specified if you are using register notation.
v When a queue management call is completed, the contents of registers 0, 1, and

14 are unpredictable. The content of register 15 is unpredictable for callers of a
central service. For programs linked to DSLNUC, register 15 contains the return
code of DSLQMGT.

v Return codes are in any case returned in the parameter list in the field
QPLRETCD.

v You can overwrite parameter-list fields by specifying MF=(E,addr) and the
appropriate parameters.

v A parameter-list field is not changed if the appropriate parameter is not
specified in an MF=(E,addr), except for the MODIF parameter.

Building the Parameter List for a Queue Management Request
Use a DSLQMG MF=L macro to map the queue-parameter list for a queue
management request. This macro reserves space for the queue-parameter list and
assigns a symbolic name to each of the queue-parameter list fields. It also lists the
DSLQMGT request types and return codes. With the parameter EXT=YES, the
queue-parameter list extension is mapped also. This extension provides space for
the result of a DSLQMG TYPE=ROUTE if more than 3 target queues have been set.

You can enter values in the queue parameter list either directly, using the symbolic
field names assigned by the MF=L form of DSLQMG, or via the macro DSLQMG
MF=(E,xxxx),..., where xxxx stands for the label of the queue-parameter list.

The two length fields at the beginning of the queue-parameter list must contain the
appropriate values. This allows DSLQMGT to recognize whether the extension is
used, and it allows the MERVA ESA intertask communication to transfer the
queue-parameter list to DSLQMGT and back to the requestor.

© Copyright IBM Corp. 1987, 2001 103

Requesting Queue Management Services
Use a DSLQMG MF=L macro to define the queue-parameter list. Then invoke
queue management using a DSLQMG MF=E macro to prepare the
queue-parameter list for the request.

The parameter EP=DSLQMGT of the DSLQMG macro is reserved for programs
linked to DSLNUC. Use the MERVA ESA intertask-communication macro DSLNIC
for programs that are not linked to DSLNUC.

DSLQMGT only returns information after a successful DSLNIC
TYPE=REQ,NAME=DSLQMGT call. The field QPLRETCD in the queue-parameter
list contains binary zeros or one of the return codes listed in the queue-parameter
list. The queue management return codes are also listed and explained in MERVA
for ESA Messages and Codes.

Checking the Queue Status
In the following, the individual queue management requests, together with
appropriate examples of their use, are discussed.

Use a DSLQMG TYPE=TEST macro to check the queue status. An example is
shown below:

DSLQMG TYPE=TEST, *
QUEUE=QUENAME, QUEUE NAME *
MF=(E,QPL) QUEUE PARAMETER LIST USED

DSLNIC TYPE=REQ,.. CALL INTERTASK COMMUNICATION
...

QUENAME DS CL8 QUEUE NAME FIELD

QUENAME is an 8-byte field containing the queue name that must be available in
the MERVA ESA function table.

QPL is the label of the DSLQMG MF=L macro that defines the queue parameter
list for this program.

On return, the fields of the queue-parameter list listed as shown in the following
will have these contents:

QPLNQE The number of messages in the queue

QPLQSN The last queue sequence number used in the queue

QPLTRESH The threshold number of messages specified in the appropriate
function-table entry

QPLRETCD The information code indicating whether this threshold has been
reached.

Storing Messages
Messages are stored in up to twelve queues using DSLQMG. Use DSLQMG
TYPE=PUT, TYPE=MPUT, or TYPE=ROUTE macros to store messages in queues.
You can store messages in various ways:
v In one specific queue (PUT)
v In one, two, or three known queues (MPUT)
v In one to twelve queues determined by MERVA ESA routing (ROUTE).

104 System Programming Guide

These types can be changed by using keys or automatic delete, or both.

A queue element can be identified by one or two keys (KEY1 and KEY2) as
described in the DSLQMG programming notes for key 1 and key 2 parameters in
the MERVA for ESA Macro Reference.

There are four ways to store a message with a key in a queue:
1. DSLQMGT retrieves the keys from the message. The message must be in the

MERVA ESA queue format, and the TOF field names must be defined in the
KEY1 and KEY2 parameters of the appropriate function-table entry. The
KEY=(0,0) parameter must be specified in the DSLQMG macro, or the two key
fields in the QPL must be cleared to binary zeros before the DSLNIC or
DSLQMG call.

2. Use the KEY parameter in the macro call KEY=(KEY1,KEY2). KEY1 and KEY2
must be fields of 24 bytes each. If the key is shorter, it must be padded with
binary zeros or blanks. DSLQMGT takes from each key only the length
specified in the function-table entry for each queue.

3. Use the DSLQMG macro without the KEY parameter. The KEY parameter can
be omitted if values for KEY1 and KEY2 are stored in the fields QPLKEY1 and
QPLKEY2 of the QPL.

4. Use the user exit of DSLQMGT for supplying keys independently of the items
1 to 3. The name of the exit program is DSLQKEY, and the material distributed
contains a sample that explains the interface and makes the setup for that
interface. In this user exit, any keys can be provided in the actual queue
parameter list (for each queue of an MPUT or ROUTE) after inspecting the
queue parameter list and the message in the data buffer. If the user exit does
not provide keys, and also no keys have been provided by the requestor of the
queue management service, DSLQMGT tries to get the keys in the way
described under 1.

No matter which way is chosen for providing the keys, DSLQMGT will only use
the keys when they are defined for the particular queue in the associated function
table entry.

Automatic deletion of a message must be used if a message is:
v Retrieved from a queue (original queue)
v Updated and stored in another queue using the PUT, MPUT, or ROUTE request
v Deleted in the original queue.

Automatic deletion can be done even after a break-down of MERVA ESA in a
restart of DSLQMGT. The information needed for automatic deletion is therefore
also called “back-chaining information for restart.” The automatic deletion is
provided by DSLQMGT if the input-queue name and the input-queue sequence
number are specified with the RES and QSN parameters, respectively.

The programs delivered with MERVA ESA and the SWIFT Link use automatic
deletion whenever it is appropriate.

Some coding examples follow.

PUT without Keys and without Automatic Delete
In the example below, a message is stored in a specific queue without a key:

Chapter 10. Using the Queue Management (DSLQMG) 105

.

.

.
L R7,QUEBUFA QUEUE BUFFER ADDRESS
DSLQMG TYPE=PUT, PUT TO QUEUE *

DATA=(R7), DATA FROM QUEUE BUFFER *
QUEUE=QUENAME, QUEUE NAME FIELD *
KEY=(0,0), NO KEYS FROM THIS PROGRAM *
RES=0, NO AUTOMATIC DELETE *
QSN=0, NO AUTOMATIC DELETE *
MF=(E,QPL) QUEUE PARAMETER LIST USED

DSLNIC TYPE=REQ,... USE INTERTASK COMMUNICATION
.
.
.

QUENAME DS CL8 QUEUE NAME FIELD

Register 7 (R7) points to the queue buffer with the message. This message must be
produced by the following call if the message is written to a queue that is
processed by one of the MERVA ESA and the SWIFT Link programs:
DSLMFS TYPE=PUT,MEDIUM=QUEUE,...

If the message is processed by a user-written program, you can use any format
after you have specified the buffer-length and message-length fields. The message
contained in this buffer is written to the queue, with the queue name contained in
the field QUENAME. The parameters QSN=0 and RES=0 prevent automatic
deletion of the original message if this message was retrieved from a MERVA ESA
queue.

After the DSLQMG macro is invoked, a DSLNIC TYPE=REQ,... macro is used to
execute the MERVA ESA queue management request as a central service. The
DSLQMGT return codes must be checked when DSLNICT shows successful
completion of the intertask communication. If the caller is linked to DSLNUC, you
must code the EP parameter of the DSLQMG macro instead of the DSLNIC macro.

PUT without Keys and with Automatic Delete
In the example below, a message is stored in a specific queue without keys and
with automatic deletion:

L R7,QUEBUFA QUEUE BUFFER ADDRESS
DSLQMG TYPE=PUT, PUT TO QUEUE *

DATA=(R7), DATA FROM QUEUE BUFFER *
QUEUE=QUENAME, QUEUE NAME *
KEY=(0,0), NO KEYS FROM THIS PROGRAM *
QSN=INPQSN, INPUT QUEUE SEQUENCE NUMBER *
RES=INPQNAME, INPUT QUEUE NAME FOR AUTOM.DELETE *
MF=(E,QPL) QUEUE PARAMETER LIST USED

DSLNIC TYPE=REQ,... USE INTERTASK COMMUNICATION
.
.
.

QUENAME DS CL8 QUEUE NAME FIELD
INPQNAME DS CL8 INPUT QUEUE NAME FIELD
INPQSN DS CL4 INPUT QUEUE SEQUENCE NUMBER FIELD

Register 7 (R7) points to the queue buffer where the message is stored. The
message is written to the queue specified in the 8-byte field QUENAME. The
message was retrieved from the queue with the name saved in the field
INPQNAME and with the QSN saved in the field INPQSN. It was updated and is
now to be stored in the next queue, and automatic deletion is established with the
RES and QSN parameters.

106 System Programming Guide

MPUT with Keys and with Automatic Delete
In the example below, a DSLQMG macro specifies a message to be stored in one or
more queues with keys and with automatic deletion of the original message:

L R7,QUEBUFA QUEUE BUFFER ADDRESS
DSLQMG TYPE=MPUT, MESSAGE TO UP TO 3 QUEUES*

DATA=(R7), DATA FROM QUEUE BUFFER *
QUEUE=(QUENAME1,QUENAME2,QUENAME3), QUEUE NAMES *
KEY=(KEY1,KEY2), KEYS *
QSN=INPQSN, INPUT QSN FOR AUTOM.DELET*
RES=INPQNAME, INPUT QUEUE NAME FOR A.D.*
MF=(E,QPL) QUEUE PARAMETER LIST USED

.

.

.
QUENAME1 DS CL8 FIRST QUEUE NAME FIELD
QUENAME2 DS CL8 SECOND QUEUE NAME FIELD
QUENAME3 DS CL8 THIRD QUEUE NAME FIELD
INPQNAME DS CL8 INPUT QUEUE NAME FIELD
INPQSN DS CL4 INPUT QUEUE SEQUENCE NUMBER FIELD
KEY1 DS CL24 KEY 1 FIELD
KEY2 DS CL24 KEY 2 FIELD

The message that is contained in the queue buffer pointed to by R7 is stored in the
queues specified by the queue name fields QUENAME1, QUENAME2 and
QUENAME3. If the MERVA ESA application supplies only one or two queue
names, the fields QUENAME2 or QUENAME3 must be filled with binary zeros
and the message is stored in one or two queues only.

In addition, automatic deletion is established to show that this message was
retrieved from the original queue where DSLQMGT is to delete it directly after the
MPUT. After the retrieval from the original queue, the QSN was saved in INPQSN,
and the original queue name was saved in INPQNAME.

The fields KEY1 and KEY2 contain the keys supplied by the requesting program
padded to 24 bytes with binary zeros or blanks.

ROUTE without Keys and with Automatic Delete
The DSLQMG macro causes MERVA ESA routing to be called by DSLQMGT. The
message is stored in one to twelve queues, and automatic deletion is requested.
The keys depend on the function-table entry specifications of the resulting queues:

L R7,QUEBUFA QUEUE BUFFER ADDRESS
DSLQMG TYPE=ROUTE, LET DSLQMGT ROUTE *

DATA=(R7), DATA FROM QUEUE BUFFER *
QUEUE=INPQNAME, ROUTE FROM THIS QUEUE *
KEY=(0,0), KEYS BY DSLQMGT *
QSN=INPQSN, INPUT QSN FOR AUTOM.DELET*
RES=INPQNAME, INPUT QUEUE NAME FOR A.D.*
MF=(E,EUDQPL)

.

.

.
INPQNAME DS CL8 INPUT QUEUE NAME FIELD
INPQSN DS CL4 INPUT QUEUE SEQUENCE NUMBER FIELD

The message contained in the queue buffer pointed to by R7 is stored into the
queues that result from the routing call using the input queue function defined by
QUEUE=.

Chapter 10. Using the Queue Management (DSLQMG) 107

In addition, automatic deletion is requested from the original queue directly after
the ROUTE. After the retrieval from the original queue, the QSN was saved in
INPQSN and the original queue name was saved in INPQNAME. For a
TYPE=ROUTE call, the QUEUE and RES parameters must specify the same input
queue name if both are used.

The routing result is made available to the requestor of the queue management
service in the three queue-name fields QPLNAM1, QPLNAM2, and QPLNAM3 of
the QPL for the first three queues, and in the queue-parameter list extension for up
to twelve queues. The routing result may be received without performing the PUT
and DELETE functions, by specifying MODIF=RTNONLY. In this case, the routing
criteria from the function table or the routing module, or both are analyzed and
the target queue names are placed in the queue parameter list, but the PUT and
DELETE functions are not performed.

Retrieving Messages
There are several ways to retrieve messages from specific queues: direct retrieval is
carried out using a key or queue sequence number; sequential retrieval is carried
out by obtaining one message after the other.

Note: Only one of the two possible keys is verified. If both keys are specified, only
KEY1 is used by DSLQMGT. Use the MODIF parameter of the DSLQMG
macro to request functional variations of direct or sequential retrieval.

The message retrieval methods are:
1. GET with key
2. GET with QSN
3. GETNEXT (sequential get)
4. GET or GETNEXT with MODIF=WRITEBCK (flag the message as being read if

it is read another time)
5. GET or GETNEXT with MODIF=FREE (do not change the “in service”

indicator)
6. GET or GETNEXT with MODIF=IGNINS (ignore the “in service” indicator)
7. GET or GETNEXT with MODIF=IGNHOLD (ignore the “hold” indicator)
8. GET or GETNEXT with MODIF=DYNBUF (allocate a larger message buffer if

required).

The values of the MODIF parameter can be combined, for example,
MODIF=(IGNINS,IGNHOLD).

The following coding examples show the retrieval methods.

GET with Key
This method is used to retrieve a specific message (previously stored with key)
from a specific queue. The DSLQMG macro below shows how to directly retrieve a
message by its key:

L R7,QUEBUFA BUFFER TO STORE THE MESSAGE
DSLQMG TYPE=GET, RETRIEVE DIRECTLY *

DATA=(R7), BUFFER FOR DATA *
QUEUE=QUENAME, QUEUE NAME FIELD *
KEY=(KEY1,0), RETRIEVE WITH FIRST KEY *
QSN=0, DO NOT USE QUEUE SEQUENCE NUMBER *
MF=(E,QPL) QUEUE PARAMETER LIST USED

108 System Programming Guide

.

.

.
MVC INPQSN,QPLQSN SAVE QSN FOR ROUTE OR PUT
MVC INPQNAME,QUENAME SAVE QUEUE NAME FOR ROUTE OR PUT
.
.
.

QUENAME DS CL8 QUEUE NAME FIELD
INPQNAME DS CL8 INPUT QUEUE NAME FIELD
INPQSN DS CL4 INPUT QUEUE SEQUENCE NUMBER FIELD
KEY1 DS CL24 KEY 1 FIELD

If the message is found in the queue with the specified key, it is returned to the
storage area pointed to by R7.

The queue-parameter list contains the queue-sequence number of the message just
read in the field QPLQSN; if the queue also uses the second key, it is contained in
the QPLKEY2 field. The message is flagged “in service” in the queue from which it
was retrieved. It cannot be retrieved by another GET/GETNEXT request until a
DSLQMGT request with TYPE=FREE is issued, or a retrieve request with
MODIF=IGNINS.

The two MVC instructions show how to save the QSN and queue name for other
DSLQMGT requests that use the QSN for direct access (FREE, REPLACE, and
DELETE) or the QSN and the queue name for automatic delete (PUT, MPUT and
ROUTE).

GETNEXT (Sequential Read)
This method is used to retrieve the next message from the queue specified in the
QUENAME field and return it to the storage area provided by the data parameter.
Messages are stored in a queue, and a unique queue sequence number is assigned
to each message in ascending order. For the message specified in the call or
contained in the field QPLQSN, the next message is either:
v The message that has the next highest sequence number and that is not in

service (if MODIF=IGNINS is not specified)
v The message with the next highest sequence number (if MODIF=IGNINS is

specified).

When QPLQSN contains zero, the message with the lowest sequence number is
retrieved.

The DSLQMG macro below shows how to retrieve messages sequentially:
L R7,QUEBUFA ADDRESS OF QUEUE BUFFER
DSLQMG TYPE=GETNEXT, RETRIEVE NEXT AVAILABLE MESSAGE *

DATA=(R7), BUFFER FOR DATA *
QUEUE=QUENAME, QUEUE NAME FIELD *
QSN=0, GET FIRST AVAILABLE MESSAGE *
KEY=(0,0), DO NOT USE KEYS *
MF=(E,QPL) QUEUE PARAMETER LIST USED

.

.

.
MVC INPQSN,QPLQSN SAVE QSN FOR ROUTE OR PUT
MVC INPQNAME,QUENAME SAVE QUEUE NAME FOR ROUTE OR PUT
.
.
.

Chapter 10. Using the Queue Management (DSLQMG) 109

QUENAME DS CL8 QUEUE NAME FIELD
INPQNAME DS CL8 INPUT QUEUE NAME FIELD
INPQSN DS CL4 INPUT QUEUE SEQUENCE NUMBER FIELD

After successful completion of the queue management request, the message in the
queue buffer is ready for processing. In its fields QPLKEY1 and QPLKEY2, the
QPL contains the key(s) of the message just read; the queue sequence number is in
the QPLQSN field. The message is flagged as being in service in the queue from
which it was retrieved. It cannot be retrieved by another GET/GETNEXT request
until a DSLQMGT request with TYPE=FREE is issued, or a retrieve request with
MODIF=IGNINS.

The two MVC instructions show how to save the QSN and queue name for other
DSLQMGT requests that use the QSN for direct access (FREE, REPLACE, and
DELETE) or the QSN and the queue name for automatic deletion (PUT, MPUT and
ROUTE).

If you want sequential reading with MODIF=IGNINS, the returned QSN value,
rather than QSN=0, must be used in a later GETNEXT request. This permits
sequential reading of a complete queue without previously deleting or freeing the
messages.

GET with MODIF=DYNBUF
This method is used to retrieve a message of unknown length into a buffer. If the
buffer provided by the calling program is too small, MERVA ESA allocates a buffer
large enough for the message. The message can be retrieved either with key or
sequentially.

The handling of the allocated buffer in the calling program differs dependent on
whether or not the calling program is link-edited to DSLNUC. The following two
examples show the required coding.

The DSLQMG macro below shows how to directly retrieve a message by its key.
The GET request is a central service request of a program not link-edited to
DSLNUC.

L R7,QUEBUFA BUFFER TO STORE THE MESSAGE
DSLQMG TYPE=GET, RETRIEVE DIRECTLY *

DATA=(R7), BUFFER FOR DATA *
QUEUE=QUENAME, QUEUE NAME FIELD *
KEY=(KEY1,0), RETRIEVE WITH FIRST KEY *
QSN=0, DO NOT USE QUEUE SEQUENCE NUMBER *
MODIF=DYNBUF, REQUEST DYNAMIC BUFFER *
MF=(E,QPL) QUEUE PARAMETER LIST USED

DSLNIC TYPE=REQDYN,... CENTRAL SERVICE AND DYNAMIC BUFFER
C R7,NICBUF NEW BUFFER RETURNED?
BE LABEL ..NO, USE CURRENT BUFFER
DSLSRV TYPE=FREEMAIN,ADSTOR=(R7),SIZE=0 FREE CURRENT BUFFER
L R7,NICBUF GET NEW DYNAMIC BUFFER ADDRESS
ST R7,QUEBUFA SAVE NEW BUFFER ADDRESS FOR FUTURE

LABEL DS 0H
.
.
.
MVC INPQSN,QPLQSN SAVE QSN FOR ROUTE OR PUT
MVC INPQNAME,QUENAME SAVE QUEUE NAME FOR ROUTE OR PUT
.
.
.

QUENAME DS CL8 QUEUE NAME FIELD

110 System Programming Guide

INPQNAME DS CL8 INPUT QUEUE NAME FIELD
INPQSN DS CL4 INPUT QUEUE SEQUENCE NUMBER FIELD
KEY1 DS CL24 KEY 1 FIELD

If the message is found in the queue with the specified key, it is returned to the
storage area pointed to by R7.

If DSLNICT allocated a new buffer, its address is returned in the field NICBUF of
the DSLNIC parameter list. In this case the current buffer is freed and the address
of the new buffer is saved in the field QUEBUFA for further processing. At the end
of the program the storage of the new buffer whose address is in field QUEBUFA
must be freed.

The DSLQMG macro below shows how to retrieve messages sequentially. The
GETNEXT request is a direct service request of a program link-edited to DSLNUC.

L R7,QUEBUFA ADDRESS OF QUEUE BUFFER
DSLQMG TYPE=GETNEXT, RETRIEVE NEXT AVAILABLE MESSAGE *

DATA=(R7), BUFFER FOR DATA *
QUEUE=QUENAME, QUEUE NAME FIELD *
QSN=0, GET FIRST AVAILABLE MESSAGE *
KEY=(0,0), DO NOT USE KEYS *
MODIF=DYNBUF, REQUEST DYNAMIC BUFFER *
EP=DSLQMGT, DIRECT SERVICE REQUEST *
MF=(E,QPL) QUEUE PARAMETER LIST USED

C R7,QPLAD NEW BUFFER RETURNED?
BE LABEL ..NO, USE CURRENT BUFFER
DSLSRV TYPE=FREEMAIN,ADSTOR=(R7),SIZE=0 FREE CURRENT BUFFER
L R7,QPLAD GET NEW DYNAMIC BUFFER ADDRESS
ST R7,QUEBUFA SAVE BUFFER ADDRESS FOR FUTURE

LABEL DS 0H
.
.
.
MVC INPQSN,QPLQSN SAVE QSN FOR ROUTE OR PUT
MVC INPQNAME,QUENAME SAVE QUEUE NAME FOR ROUTE OR PUT
.
.
.

QUENAME DS CL8 QUEUE NAME FIELD
INPQNAME DS CL8 INPUT QUEUE NAME FIELD
INPQSN DS CL4 INPUT QUEUE SEQUENCE NUMBER FIELD

The next message from the queue specified in the QUENAME field that is not
flagged as being in service is returned to the storage area pointed to by R7.

If DSLQMGT allocated a new buffer, its address is returned in the field QPLAD of
the DSLQMGT parameter list. This buffer is now the user’s buffer. At the end of
the program the storage of this buffer allocated by DSLQMGT must be freed by
the calling program.

Deleting Messages
Queue management permits the deletion of a message from a queue. The
TYPE=DELETE keyword is used.

Message deletion consists of freeing the queue-key table entry for that message
and removing the message from the queue data set. Messages must be deleted
directly with their queue sequence numbers. Though the message deletion is also
allowed by specifying key 1 or key 2, this method is not recommended, as the keys
in a queue need not be unique, but the QSN is unique.

Chapter 10. Using the Queue Management (DSLQMG) 111

To empty a queue, you must delete one message after the other until you get the
“queue empty” return code. The DELETE function with queue-sequence number
causes a specific message to be removed from a specific queue. The message to be
removed is identified by its QSN. The DSLQMG macro is used as shown in the
following example:

DSLQMG TYPE=DELETE, DELETE A MESSAGE *
QUEUE=QUENAME, QUEUE NAME FIELD *
QSN=INPQSN, QSN FROM GET OR GETNEXT *
KEY=(0,0), DO NOT USE KEYS *
MF=(E,QPL) QUEUE PARAMETER LIST USED

.

.

.
QUENAME DS CL8 QUEUE NAME FIELD
INPQSN DS CL4 INPUT QUEUE SEQUENCE NUMBER FIELD

The field QPLQSN remains unchanged after completion of the DSLQMGT request.
Sequential deletion of a logical queue can be done as follows:
v Issue a GETNEXT request with QSN=0 and MODIF=(IGNINS,IGNHOLD) to get

the message with the lowest QSN in the queue (if you start DELETE with
QSN=0, you may have many unsuccessful tries before you find the first
message).

v Issue DELETE requests, increasing the QSN by one each time. In this way you
delete all messages until the queue is empty.

Updating Queue Elements
The REPLACE function is used to write an updated queue element back to its
queue with the same QSN so that the sequence of messages is not changed in the
queue. The queue element to be updated must be identified by its QSN, as the
QSN is always unique. Though the REPLACE function is also allowed by
specifying key 1 or key 2, this method is not recommended as the keys in a queue
need not be unique, but the QSN must be.

The length of the message can be changed. REPLACE does not change the in
service indicator.

The DSLQMG macro is used as shown below:
DSLQMG TYPE=REPLACE, REPLACE A MESSAGE IN ITS QUEUE *

DATA=(R7), ADDRESS OF UPDATED MESSAGE *
QUEUE=QUENAME, QUEUE NAME FIELD *
QSN=INPQSN, USE QSN FROM GET OR GETNEXT *
KEY=(0,0), DO NOT USE KEYS *
MF=(E,QPL) QUEUE PARAMETER LIST USED

.

.

.
QUENAME DS CL8 QUEUE NAME FIELD
INPQSN DS CL4 INPUT QUEUE SEQUENCE NUMBER FIELD

Freeing Messages
To free a specific message in a specific queue (that is, to change its status from in
service to not in service), use the DSLQMG macro with TYPE=FREE.

The queue element to be freed must be identified by its QSN, as the QSN is always
unique. Though the FREE function is also allowed by specifying key 1 or key 2,
this method is not recommended as the keys in a queue need not be unique.

112 System Programming Guide

The FREE function switches off the in service indicator, thus enabling a waiting
message-processing function to access this message. If the message was already
flagged as being not in service, the FREE request shown below has no effect:

DSLQMG TYPE=FREE, FREE A MESSAGE *
QUEUE=QUENAME, QUEUE NAME FIELD *
QSN=INPQSN, QSN FROM GET OR GETNEXT *
KEY=(0,0), DO NOT USE KEYS *
MF=(E,QPL) QUEUE PARAMETER LIST USED

.

.

.
QUENAME DS CL8 QUEUE NAME FIELD
INPQSN DS CL4 INPUT QUEUE SEQUENCE NUMBER FIELD

Setting an ECB Address for a Queue
Programs linked to DSLNUC can be informed when a message is stored in a
specific queue. To do this, an event control block (ECB) address is stored into the
appropriate function table entry. DSLQMGT checks with each PUT, MPUT,
ROUTE, and FREE request for an ECB address, and posts the ECB if an address is
found.

To set an ECB address for a queue in its function table entry, a program linked to
DSLNPTT must use the DSLQMG macro with TYPE=SET. Take care that, when
posting is no longer needed, you use the TYPE=RESET to remove the ECB address.
Also take care that you do not try to post more than one program from the same
function table entry, that is, more than one program uses the TYPE=SET for the
same queue name.

The DSLQMG macro is used as shown below:
DSLQMG TYPE=SET, SET AN ECB ADDRESS *

QUEUE=QUENAME, QUEUE NAME FIELD *
ECB=USERECB, LABEL OF USER ECB *
EP=DSLQMGT, CALL DSLQMGT DIRECTLY *
MF=(E,QPL) QUEUE PARAMETER LIST USED

...
QUENAME DS CL8 QUEUE NAME FIELD
USERECB DC F'0' USER ECB

Note: The ECB is posted depending on the environment. The DSLSRVP parameter
list in DSLCOM defines the post bit and the offset in the ECB. The test for
the ECB being posted, and clearing the post bit is shown below:

TM USERECB+SRVPOFFS,SRVPOST ECB POSTED?
BO YES YES, PROCESS THE QUEUE
BZ NO NO, NOTHING TO DO
...

YES DS 0H ECB IS POSTED
NI USERECB+SRVPOFFS,255|SRVPOST CLEAR POST BIT
...
...

NO DS 0H ECB IS NOT POSTED
...

Resetting an ECB Address for a Queue
When a DSLQMG TYPE=SET macro was used to set an ECB address in the
function table entry of a queue, this ECB address must be removed when posting
is no longer needed. Otherwise unpredictable results can occur.

Chapter 10. Using the Queue Management (DSLQMG) 113

To reset an ECB address for a queue in its function table entry, use the DSLQMG
macro with TYPE=RESET.

The DSLQMG macro is used as shown below:
DSLQMG TYPE=RESET, RESET AN ECB ADDRESS *

QUEUE=QUENAME, QUEUE NAME FIELD *
EP=DSLQMGT, CALL DSLQMGT DIRECTLY *
MF=(E,QPL) QUEUE PARAMETER LIST USED

.

.

.
QUENAME DS CL8 QUEUE NAME FIELD

Requesting a Queue List
Use the DSLQMG TYPE=LIST macro to request a list of the messages that are
currently in a queue. The request must specify:
v Where to start in the queue
v Which messages to select
v How many list items to return.

To define the starting position, use the parameter QSN= to indicate the queue
sequence number of the message where the list should begin. If the QSN is not
found, the next highest QSN is used. When QSN=0 is specified, the list starts at
the beginning of the queue.

You can also use the list modifier LMOD=FIRST to force the list processing to start
with the first message in the queue.

Use the KEY= parameter to select only messages that contain a given value in the
key fields. You can use either a specific or a generic key value. You can specify Key
1, Key 2, or both. When KEY=(0,0) is specified, all messages are eligible for the list
response. Use the list modifier LMOD=BUSY to select only messages that are
in-service.

The LNQE= parameter indicates the number of list items to be returned. The
response buffer must be big enough to hold the requested items. Calculate the
required buffer size as follows:

Buffer size = (Key 1 length + Key 2 length + 13) * LNQE + 108

Use the macro DSLQMG MF=LIST to map the list response buffer, and ensure that
the field QKLBUFLL contains the correct buffer length. The example below shows
how to request information about the first 25 messages in a queue:

L R7,QUEBUFA RESPONSE BUFFER ADDRESS
DSLQMG TYPE=LIST, REQUEST QUEUE LIST *

QUEUE=QUENAME, QUEUE NAME FIELD *
DATA=(R7), BUFFER FOR LIST RESPONSE *
QSN=0, NO STARTING QSN *
KEY=(0,0), NO KEY FIELD SELECTION *
LNQE=25, RETURN 25 LIST ITEMS *
MF=(E,QPL) QUEUE PARAMETER LIST USED

DSLNIC TYPE=REQ,...
...

QUENAME DS CL8 QUEUE NAME FIELD

The list response buffer returns one list item for each message, with the following
fields:

114 System Programming Guide

QKLQEQSN Queue sequence number

QKLQERBN Relative block number where the message resides in the queue
data set

QKLQESTA In-service status of the message

QKLQEKEY Values of Key 1 and Key 2 for the message.

The length of the list item returned varies as the length of the keys vary from
queue to queue. You find the lengths of Key 1 and Key 2 in the response fields
QKLKLEN1 and QKLKLEN2 respectively. The total length of a list item is found in
the field QKLQELEN. Other information about the queue is also returned:

QKLNAME Queue name

QKLNQE Number of messages currently in the queue

QKLTRESH Queue threshold value

QKLNSO Number of users currently signed on to the queue

QKLQSNF First QSN currently in the queue

QKLQSNL Last QSN currently in the queue

QKLQSNH Highest QSN assigned in this queue

QKLKFLD1 Name of Key 1 field

QKLKFLD2 Name of Key 2 field

QKLCOUNT Number of message elements is this response.

To continue the list, save the QSN of the last list item in the response and use this
value plus one (+1) in the QSN= parameter of the next TYPE=LIST request. When
the end of the queue is reached, the LISTEND reason code is returned in the field
QPLRTNRS of the queue parameter list.

Extra Keys with DB2
With queue management using DB2, you can specify that additional keys should
be stored for messages. To do this, specify XKEYS=YES for the corrsponding
function in the function table DSLFNTT, and define the extra keys in the DB2 table
DSLTQXDEF, as shown in the example below:

--
QUEUE KEYNO ACTIVE KEYFIELD STARTPOS LENGTH KEYDESC
--
L1DE0 3 Y DSLEXIT 1 8 MERVA MESSAGE TYPE
L1DE0 4 Y SWBH 1 48 SWIFT BASIC HEADER
L1DE0 5 Y SWBHLT 1 48 LT ADDRESS
L1DE0 6 Y SWAH 1 48 SWIFT APPL. HEADER
L1DE0 7 Y SWAHID 1 48 INPUT / OUTPUT
L1DE0 8 Y SWAHMT 1 48 MESSAGE TYPE
L1DE0 9 Y SW103 1 48 SERVICE CODE
L1DE0 10 Y SW108 1 48 MUR
L1DE0 11 Y SW20 1 48 TRANSACTION REF. NO.
L1DE0 12 Y SW32 1 48 SW32
L1DE0 13 Y SW32DATE 1 48 VALUE DATE
L1DE0 14 Y SW32CUR 1 48 CURRENCY
L1DE0 15 Y SW32AMNT 1 48 AMOUNT
L1DE0 16 Y SW50 1 48 ORDERING CUSTOMER
L1DE0 17 Y SW59 1 48 BENEFICIARY CUSTOMER

Chapter 10. Using the Queue Management (DSLQMG) 115

Afterwards, whenever a message in that queue is inserted, updated, or deleted,
MERVA ESA maintains these extra keys. For example, when an MT100 message is
inserted into L1DE0, the following extra key values could be stored:

DSLQMGT User Exits
There are four user exits available in MERVA ESA queue management. The
material distributed with MERVA ESA contains samples that explain the interface
and how to use it.

DSLQKEY This exit allows keys to be supplied for a new message in a queue.

DSLQPUT This exit allows you to access every message immediately before it
is written to a queue. The QDS block may be written to a user data
set.

DSLQTRA This exit is called in DSLQMGT for each request that processes a
message. The same information is prepared for DSLQTRA as for
the queue trace (as for QTRACE=LARGE in DSLPRM), but, the
queue trace need not be active. DSLQTRA can inspect the journal
buffer for the queue trace and perform additional processing. If the
queue trace is active, DSLQTRA can decide if this particular record
is written to the MERVA ESA journal or not after DSLQTRA has
completed its processing.

DSLQUMR This exit allows you to record the unique message reference (UMR)
when it is assigned.

DSLQMGD User Exits for Queue Management Using DB2
There are three user exits available in MERVA ESA queue management using DB2.
The material distributed with MERVA ESA contains samples that explain the
interface and how to use it.

DSLQKEY This exit allows keys to be supplied for a new message in a queue.

DSLQTRAB This exit is called in DSLQMGD for each request that processes a
message. The same information is prepared for DSLQTRAB as for
the queue trace (as for QTRACE=LARGE in DSLPRM), but the
queue trace need not be active. DSLQTRAB can inspect the journal
buffer for the queue trace and perform additional processing. If the
queue trace is active, DSLQTRAB can decide if this particular
record is written to the MERVA ESA journal or not after
DSLQTRAB has completed its processing.

--
QUEUE QSN KEYNO KEYFIELD ST. LEN. KEYDESC KEYVALUE
--
L1DE0 270 3 DSLEXIT 1 8 MERVA MESSAGE TYPE S100
L1DE0 270 4 SWBH 1 48 SWIFT BASIC HEADER F01VNDEBET2A...
L1DE0 270 5 SWBHLT 1 48 LT ADDRESS VNDEBET2AXXX
L1DE0 270 6 SWAH 1 48 SWIFT APPL. HEADER I100VNDOBET2...
L1DE0 270 7 SWAHID 1 48 INPUT / OUTPUT I
L1DE0 270 8 SWAHMT 1 48 MESSAGE TYPE 100
L1DE0 270 10 SW108 1 48 MUR MUR12345
L1DE0 270 11 SW20 1 48 TRANSACTION REF. NO. TRN12345
L1DE0 270 12 SW32 1 48 990707USD12,34
L1DE0 270 13 SW32DATE 1 48 VALUE DATE 990707
L1DE0 270 14 SW32CUR 1 48 CURRENCY USD
L1DE0 270 15 SW32AMNT 1 48 AMOUNT 12,34
L1DE0 270 16 SW50 1 48 ORDERING CUSTOMER ADAM AMEISE
L1DE0 270 17 SW59 1 48 BENEFICIARY CUSTOMER /1234567890

116 System Programming Guide

DSLQUMR This exit allows you to record the unique message reference (UMR)
when it is assigned.

Chapter 10. Using the Queue Management (DSLQMG) 117

118 System Programming Guide

Chapter 11. Using the Journal Service (DSLJRN)

Depending on the calling program, the MERVA ESA journal service can be used
as:
v Direct service
v Central service.

See also “Chapter 1. Types of MERVA ESA Application Programs” on page 1. The
DSLJRN macro is described in MERVA for ESA Macro Reference.

Defining the Parameter List
Regardless of the way the journal service is used, the parameter list for journal
program DSLJRNP is defined with the following macro:

The buffer used for journal requests follows the rules shown in “Chapter 2. Buffer
Standard of MERVA ESA” on page 3.

Using the Journal Service as Direct Service

Writing a Journal Record Directly
When DSLJRNP is used directly, a record is written to the journal using the
following macro:

Retrieving a Journal Record Directly
When DSLJRNP is used directly, a record is read from the journal using the
following macros:

Only records from the current journal data set can be retrieved. If MERVA ESA has
switched from journal A to journal B, the journal A is no longer accessible for
retrieving records.

Using the Journal Service as Central Service
The MERVA ESA journal program DSLJRNP is also implemented as a central
service.

Writing a Journal Record
A record is written to the journal using the following macros:

The DSLNIC macro must be followed by a check of the return codes.

JRNPL DSLJRN MF=L

DSLJRN TYPE=PUT,MF=(E,JRNPL),DATA=...,JID=..., *
EP=DSLJRNP

DSLJRN TYPE=GET,MF=(E,JRNPL),DATA=...,UKEY=..., *
EP=DSLJRNP

DSLJRN TYPE=PUT,MF=(E,JRNPL),DATA=...,JID=...
DSLNIC TYPE=REQ,NAME=DSLJRNP,PL=...,BUF=...

© Copyright IBM Corp. 1987, 2001 119

Retrieving a Journal Record
A record is read from the journal using the following macros:

The DSLNIC macro must be followed by a check of the return codes.

DSLJRN TYPE=GET,MF=(E,JRNPL),DATA=...,UKEY=...
DSLNIC TYPE=REQ,NAME=DSLJRNP,PL=...,BUF=...

120 System Programming Guide

Chapter 12. Using the Operator Interfaces

MERVA ESA provides the following types of operator interfaces:
v The operator interface program (DSLNMOP)
v The write-to-operator program (DSLWTOP)
v The write-to-operator user exit (DSLWTOEX).

For details on the macros DSLNMO and DSLWTO refer to the MERVA for ESA
Macro Reference.

Using the Operator Interface Program (DSLNMOP)
The MERVA ESA operator Interface DSLNMOP is used by programs linked to
DSLNUC to present unsolicited operator messages to the MERVA ESA operators,
and, optionally, to add them to the MERVA ESA journal or write them to the
operating system console or both. The MERVA ESA operators can see the
messages with the dm command.

Depending on the calling program, the MERVA ESA Operator interface can be
used as:
v Direct service
v Central service

(See also Chapter 1. Types of MERVA ESA Application Programs.)

Defining the Parameter List
Regardless of the way the operator interface is used, the parameter list for
DSLNMOP is defined with the following macro:

The buffer used for the operator interface follows the rules shown in “Chapter 2.
Buffer Standard of MERVA ESA” on page 3.

Using the Operator Interface as Direct Service
As a direct service, presentation for the dm command, the journal and the
operating system console can be used.

The operator message can be prepared using the facilities of DSLOMSG. The
DSLNMO macro must be coded as follows:

TYPE=PUTJC Presents the operator message for the dm command, the journal
and the operating system console.

TYPE=PUTJ Presents the operator message for the dm command and the
journal.

TYPE=PUTC Presents the operator message for the dm command and the
operating system console.

NMOPL DSLNMO MF=L

DSLNMO TYPE=PUTJC,MF=(E,NMOPL),FROM=MSGBUF, *
EP=DSLNMOP

© Copyright IBM Corp. 1987, 2001 121

TYPE=PUT Presents the operator message for the dm command only.

MSGBUF Is the buffer with the operator message.

Using the Operator Interface as Central Service
As a central service, presentation for the dm command, the journal and the
operating system console can be used. The presentation for the operating system
console is only recommended for MERVA ESA applications running in the same
region as DSLNUC, that is, in MERVA ESA running under CICS for CICS tasks, as
the presentation for the operating system console is done in the region of
DSLNUC. This can cause confusion if the MERVA ESA application is running in a
region other than DSLNUC. DSLNMOP does not, however, reject such a request.

The operator message can be prepared using the facilities of DSLOMSG.

The two length fields at the beginning of the DSLNMO parameter list must be
filled for the intertask communication.

The DSLNMO macro must be coded as follows:

The DSLNIC macro must be followed by a check of the return codes.

For the types PUTJC, PUTJ, PUTC, and PUT the same functions are carried out as
for using DSLNMOP as direct service.

Using the Write-to-Operator Program (DSLWTOP)
The MERVA ESA Write-to-Operator program DSLWTOP is used by programs not
linked to DSLNUC to present unsolicited operator messages on the operating
system console, and, if MERVA ESA is ready, also to the MERVA ESA operators
(for the dm command) and the MERVA ESA journal. For the last two functions,
DSLWTOP uses DSLNMOP (DSLNMO TYPE=PUTJ) and the MERVA ESA
intertask communication (DSLNIC TYPE=REQ). For this purpose, the field
COMNICPL must be filled (see “Filling the Fields of DSLCOM” on page 5 for how
to fill this field). When the field COMNICPL is not filled, the unsolicited operator
messages are only written to the operating system console.

The MERVA ESA Write-to-Operator interface is a direct service for programs that
are not linked to DSLNUC. Programs linked to DSLNUC must use DSLNMOP.

Defining the Parameter List
The parameter list for DSLWTOP is defined with the following macro:

The buffer used for DSLWTOP interface follows the rules shown in “Chapter 2.
Buffer Standard of MERVA ESA” on page 3.

Using the Write-to-Operator Interface
The operator message can be prepared using the facilities of DSLOMSG. The
DSLWTO macro must be coded as follows:

DSLNMO TYPE=PUTJC,MF=(E,NMOPL),FROM=MSGBUF
DSLNIC TYPE=REQ,NAME=DSLNMOP,PL=NICPLST,BUF=MSGBUF,...

WTOPL DSLWTO MF=L

122 System Programming Guide

MSGBUF is the buffer with the operator message.

Using the Write-to-Operator User Exit (DSLWTOEX)
MERVA ESA provides a user exit for the two operating console interfaces,
DSLNMOP and DSLWTOP, which is given control before a WTO message is given
to the MVS system console. This exit is not used in VSE. The exit DSLWTOEX
allows a MERVA ESA installation to set the routing and descriptor codes for the
WTO message. The material distributed with MERVA ESA contains a sample that
explains the interface and makes the setup for that interface, and also the routing
and descriptor codes available in MVS. The message for the operating system
console is available for inspection to set the routing and descriptor codes
depending on the message. The exit can leave the routing and descriptor codes
unchanged (return code = 0 in register 15) or provide them in the work field for
insertion in the WTO message (return code 4 in register 15).

DSLWTO MF=(E,WTOPL),FROM=MSGBUF

Chapter 12. Using the Operator Interfaces 123

124 System Programming Guide

Chapter 13. Coding MERVA ESA Applications for Automatic
Start

User-written applications defined as transactions can be started automatically if
they are associated with a MERVA ESA function. To associate a transaction with a
function, use the DSLFNT parameters TRAN and LTERM to specify a transaction
code and a logical terminal name (if applicable) in the function-table entry of the
associated function. If the TRAN parameter value is specified as an entry in the
transaction table DSLTXTT, the specifications made there are used to start the
transaction. If the function is in NOHOLD status, or, in IMS, if the function is in
ACTIVATED status and the parameter IGNACT (ignore activated) is specified, the
specified transaction is started automatically whenever a message is written to the
queue of that function.

It is also possible to delay the start of the transactions for a specific time period or
until a batch of messages has accumulated. You can use this feature to reduce the
initialization overhead of transactions. How to do this is explained in the
descriptions of the DSLFNT and DSLTXT macros in the MERVA for ESA Macro
Reference.

Examples of automatically started transactions are the MERVA ESA hard-copy
printer program DSLHCP, and the MERVA ESA checking and expansion program
DSLCXT.

Automatically started transactions differ from those started off-line only in the way
by which they determine which MERVA ESA queue to process.

When executing the PUT, MPUT, ROUTE, FREE, or START request, MERVA ESA
queue management checks the appropriate function-table entry for a transaction
name. MERVA ESA then looks up the transaction name in the transaction table to
determine which method to use to start the transaction. If the transaction is not
specified, or if no method is specified for the transaction, it is started according to
the local DC-environment where MERVA ESA is running.

In MERVA ESA running under CICS, the transaction is started using the command
EXEC CICS START together with the logical terminal name, if it is available.

In MERVA ESA IMS, the transaction is started using:
v A CHANGE call to specify the transaction name
v An INSERT call to enter the data into the IMS message queue
v A PURGE call to show the end of the message.

The transaction to be started automatically must be a nonconversational IMS
transaction.

For MVS, the transaction can also be started using the external CICS interface or
using APPC/MVS services. These methods allow CICS or IMS transactions to be
started from within MERVA ESA when it is running as a native batch program.

The data delivered with the EXEC CICS START command or the IMS INSERT is
contained in the MERVA ESA terminal/user control block (TUCB) which is
defined with the following macro:

© Copyright IBM Corp. 1987, 2001 125

DSLMFS TYPE=MAP,MF=TUCB

Under CICS, this data area must be defined in transaction storage; under IMS, it
can be defined in the working storage of the program.

To retrieve the TUCB under CICS, an EXEC CICS RETRIEVE command is used:
EXEC CICS RETRIEVE INTO(TUCBAREA) LENGTH(TUCBLL)

In this example, TUCBAREA is the label of the TUCB as defined in the example,
and TUCBLL is the length of the TUCB.

To retrieve the TUCB under IMS, a GET UNIQUE call is used:

When the transaction is started using APPC/MVS, the area retrieved with the GET
UNIQUE call contains a prefix area before the TUCB. This prefix area contains
another 4-byte length field, the transaction code of 1 to 8 characters, and a blank.
The real TUCB immediately follows this prefix area, and begins with another
length field. An application program using this interface must handle the TUCB
appropriately.

After successful retrieval of the TUCB, a copy of the MERVA ESA function-table
entry is available with information such as the function (queue) name, the queue
sequence number of the new queue element (only for PUT, MPUT and ROUTE),
the transaction code, the logical terminal name, and format specifications. This
information enables the MERVA ESA application to access the MERVA ESA queue
and to use the MERVA ESA services to process the message as needed.

As additional information, the byte TUCQUEST of the TUCB contains the bit
TUCSTART, which shows if the transaction was started by the MERVA ESA
operator command sf (start function) instead of by a message written to the
MERVA ESA queue.

CICS transactions can always process a MERVA ESA queue until it is empty.

IMS transaction should, however, only process one message (or as many as
indicated in the field FNTMLIM), and should then insert the TUCB in their own
IMS message queue and give back control to IMS. IMS will give them control
again later but is able to process other transactions in the meantime.

.

.

.
USRGU00 DS 0H

.
LA R1,USRGUPL ADDR OF GET UNIQUE PARM LIST
L R15,=V(ASMTDLI) ADDR OF IMS INTERFACE
BALR R14,R15 GET UNIQUE CALL
L R2,USRGUPL+8 PCB ADDR
CLC 10(2,R2),=C'QC' QUEUE EMPTY ?
BE USRTRM00 ..YES, TERMINATE
CLC 10(2,R2),=C' ' CALL SUCCESSFUL ?
BNE USRDUMP0 ..NO, PRODUCE DUMP
.
.
.

126 System Programming Guide

Chapter 14. Changing the MERVA ESA End-User Driver
(DSLEUD)

Figure 6 on page 128 gives an overview of the MERVA ESA End-User Driver
(DSLEUD). All function programs of DSLEUD are defined in the End-User-Driver
program table DSLEPTT, except DSLEERR, DSLEU001, DSLEU002, and DSLEU003
and DSLEU004. Programs loaded by DSLEUD are not shown in the overview.

DSLEPTT describes the function programs and their command tables.

Changing DSLEUD means:
v Changing DSLEPTT
v Changing user commands
v Coding DSLEUD user-exit routines
v Adding a new function program

© Copyright IBM Corp. 1987, 2001 127

The following notes refer to Figure 6.

Notes:

1. DSLEERR is the error message routine of DSLEUD.
It is called using the macro DSLEEMSG. DSLEERR uses DSLOMSG to create
the error messages. The error messages of the End-User Driver are defined in
the copy member DSLEMSC, which is used in the message table DSLMSGT.

2. DSLEPTT is the program table of DSLEUD that defines the function programs
and their command tables.

3. End-User-Driver User-Exits are:
DSLEU001 called at sign-on time.
DSLEU002 called at every screen input time after sign-on.

Figure 6. Overview of the End-User Driver

128 System Programming Guide

DSLEU003 called at sign-off time.
DSLEU004 called for password validation in USR function.

4. DSLEFUN is the function selection program of DSLEUD, and the only
purpose of this entry of DSLEPTT is to define the display and edit commands
in the command table DSLMCMDT. The display and edit commands are
executed by MERVA ESA Message Format Service programs.

5. DSLEFUN is the function selection program of DSLEUD, and its command
table DSLECMDT defines the user session commands.

6. DSLEMSG is the message processing program of DSLEUD, and its command
table DSLEMCMT defines the user message selection and message processing
commands.

7. DSLEUSR processes the User File maintenance, and its command table
DSLEUCMT defines the User File maintenance commands.

8. DSLEFLM is the general file maintenance program of DSLEUD, and its
command table DSLEFCMT defines the file maintenance commands.

9. DSLECMD is the operator command program of DSLEUD and its command
table DSLECCMT defines the MERVA ESA queue commands. All other
commands are the MERVA ESA and SWIFT Link operator commands that are
passed to the MERVA ESA command server (DSLNCS, linked to DSLNUC).

10. DWSEAUT is the SWIFT Link Authenticator Key-File Maintenance program of
DSLEUD, and its command table DWSECMDT defines the authenticator-key
file maintenance commands.

11. EKAEMSC is the MERVA ESA System Control program. Its command table
EKAMSCMT defines the MERVA Link control commands.

12. A user-written program is added to the End-User Driver via DSLEPTT, and it
can have an own user command table.

Changing DSLEPTT
Changing the user program table means:
1. Adding a user-written function program.
2. Changing the name of an existing command table. This can be useful if the

name of the commands are changed in a MERVA ESA installation, and the
source code of the command table is to be kept for maintenance purposes.

3. Deleting function programs which are not used in a MERVA ESA installation,
for example, the general file maintenance program DSLEFLM, or the
authenticator-key file maintenance program if these services are not used, for
example, if these files are maintained with the batch utilities only.

Changing End-User Command Tables

General-use programming interface

The MERVA ESA user has commands for various purposes. There are three groups
of commands defined in separate command tables:
v Display and edit command table DSLMCMDT
v Session command table DSLECMDT
v Function command tables:

– Message selection/processing commands DSLEMCMT
– User file maintenance commands DSLEUCMT

Chapter 14. Changing the MERVA ESA End-User Driver (DSLEUD) 129

– Authenticator-key file maintenance commands DWSECMDT (SWIFT Link)
– General file maintenance commands DSLEFCMT
– Queue commands DSLECCMT
– MERVA ESA System Control commands EKAMSCMT.

The customizing of these command tables is discussed in the following.

End of General-use programming interface

Display and Edit Command Table (DSLMCMDT)

General-use programming interface

The display and edit command table contains the definition of the display and edit
commands.

Note: The display and edit command table allows the user to define synonyms,
translations and abbreviations for display and edit command codes.
Abbreviated display and edit command names can be defined for the
existing commands, such as LIN for LINE. Both must have the same display
and edit command code 03.

New display and edit commands can be defined, if the user writes a program to
execute these commands. Figure 7 contains an example of a display and edit
command table.

Notes:

DSLMCMDT DSLNCM TYPE=INITIAL [1]
*
SHOW DSLNCM 01,(8)
END DSLNCM 02
LINE DSLNCM 03,(5),(5) [2]
LIN DSLNCM 03,(5),(5),DESC=LINE [3]
PAGE DSLNCM 04,(5),(5)
PAG DSLNCM 04,(5),(5),DESC=PAGE
OCC DSLNCM 05,(8)
HELP DSLNCM 06,(8)
FORM DSLNCM 07,(8)
NOPROMPT DSLNCM 08
NOP DSLNCM 08,DESC=NOPROMPT
PROMPT DSLNCM 09,(5),(5)
PRO DSLNCM 09,(5),(5),DESC=PROMPT
PFKEYS DSLNCM 10,(8)
SOCC DSLNCM 11,(5),(5)
DOCC DSLNCM 12
ERASE DSLNCM 13,(8)
FIND DSLNCM 14,(24)
INSERT DSLNCM 15,(8)
SREP DSLNCM 16,(5),(5)
UL DSLNCM 17,(8)
*
NEWCMD DSLNCM 91,NAME=NEWCMDEX [4]
NC DSLNCM 91,NAME=NEWCMDEX,DESC=NEWCMD [5]
*

DSLNCM TYPE=FINAL [6]
END

Figure 7. Display and Edit Command Table

130 System Programming Guide

1. DSLNCM TYPE=INITIAL

This must be the first macro, and it assigns the label DSLMCMDT to the
display and edit command table.

2. LINE DSLNCM 03,(5),(5)

The name of this display and edit command is LINE, and it is assigned the
command code '03'. Two optional parameters with maximum length of 5
each are specified.

3. LIN

The program accepts the input of LIN as an abbreviated command name
for LINE. The DESC parameter is specified to indicate to MERVA ESA the
full command name for command responses and checking for allowed
commands from the user profile.

All commands (including abbreviated command names) must be unique
names.

4. NEWCMD DSLNCM 91,NAME=NEWCMDEX

A new display and edit command NEWCMD (code = 91) is defined; no
parameter is defined. The command is executed by the user-written routine
NEWCMDEX.

This and all other command execution routines must give back control to
DSLEUD after having executed the command.

5. NC

The abbreviation of NEWCMD is NC. The same command code and
execution routine are defined. DESC=NEWCMD specifies that, in
command responses, the full command word 'NEWCMD' is shown.

6. DSLNCM TYPE=FINAL

This must be the last macro and is followed by the Assembler END
statement.

Note: If no command execution module is defined for a display and edit
command, a DSLMFS TYPE=COMMAND service is called for execution.

End of General-use programming interface

How to Process the Changed Display and Edit Command Table

General-use programming interface

After modification, the display and edit command table DSLMCMDT must be
assembled and DSLEUD must be link-edited.

End of General-use programming interface

Session Command Table (DSLECMDT)

General-use programming interface

The following is an example of a Session Command Table:
DSLECMDT DSLNCM TYPE=INITIAL [1]
SIGNOFF DSLNCM 04,NAME=0 [2]
SOF DSLNCM 04,NAME=0,DESC=SIGNOFF [3]

Chapter 14. Changing the MERVA ESA End-User Driver (DSLEUD) 131

RETURN DSLNCM 08,(8),NAME=0
RET DSLNCM 08,(8),NAME=0,DESC=RETURN
HARDCOPY DSLNCM 16,NAME=0
HCO DSLNCM 16,NAME=0,DESC=HARDCOPY
RETRIEVE DSLNCM 24,NAME=0
RET1 DSLNCM 24,SYN='?',NAME=0,DESC=RETRIEVE [4]
REPEAT DSLNCM 28,NAME=0
REP1 DSLNCM 28,SYN='=',NAME=0,DESC=REPEAT

DSLNCM TYPE=FINAL
END

Notes:

1. DSLNCM TYPE=INITIAL

This must be the first macro and assigns the label DSLECMDT to the
display and edit command table.

2. SIGNOFF DSLNCM 04,NAME=0

This macro assigns command code 04 to the session command SIGNOFF.
NAME=0 need not be specified as NAME=0 is the default.

3. SOF DSLNCM 04,NAME=0,DESC=SIGNOFF

This macro defines an abbreviation SOF for the session command
SIGNOFF. DESC=SIGNOFF specifies that SIGNOFF is displayed as
command name after executing 'SOF'.

4. RET1 DSLNCM 24,SYN='?',NAME=0,DESC=RETRIEVE

This macro defines a synonym '?' for the session command RETRIEVE.
DESC=RETRIEVE specifies that RETRIEVE is displayed as command name
after executing '?'.

Note: SYN='?' must be specified because '?' is a special sign not allowed as
an Assembler label.

Note: The command codes specified for the session commands are multiples of 4.
This is required by the command processing program which is used as the
default for session commands. If you supply additional session commands
executed by your own program, you are free to interpret other command
codes.

End of General-use programming interface

Function Command Tables

General-use programming interface

The function command tables can be customized by defining new command names
and adding new commands, as described for the screen and session command
tables.

End of General-use programming interface

132 System Programming Guide

Command Processing Restriction of the End-User Driver

General-use programming interface

For command processing, the End-User Driver uses the three command tables in a
fixed order:
1. First, the display and edit command table (DSLMCMDT)
2. Second, the session command table (DSLECMDT)
3. Third (optional), the command table of a function program.

Throughout these tables, all command names, abbreviations and synonyms must
be unique. When the MERVA ESA operator command processing function is
active, the command table of DSLNUC (DSLNCMT) is included in the
consideration of unique names. As only the command table of one DSLEUD
function program is used at one time, it is possible to use the same command
names in the command tables of different function programs.

Commands must have names that are different from the function names defined in
the table DSLFNTT, which is described in MERVA for ESA Customization Guide. This
is because input in the command line of a panel used for function selection is
checked for being a function name before it is checked for being a command, so a
command with the same name as a function would not be available.

End of General-use programming interface

Interface of an End-User Command Execution Routine

General-use programming interface

A command execution routine linked to DSLEUD has the following information in
the general registers when it receives control:

Register 0: Undefined.

Register 1: Address of the DSLEUD Interface Area. This area
can be mapped by a DSLECOFN macro.

Registers 2 to 12: Undefined.

Register 13: Address of the save area of DSLEUD. In this save
area the command execution routine must save the
DSLEUD registers according to MVS linkage
conventions.

Register 14: Return address to DSLEUD.

Register 15: Entry-point address of the command-execution
routine.

A command-execution routine must work in the following way:
v The DSLEUD registers must be saved and registers set up following MVS

linkage conventions.
v The working storage required must be specified in the DSLEUD interface area.
v The DSLCOM must be addressed from the field FNCOM. The terminal user

control block (TUCB) must be addressed from the field COMTUCBA. The

Chapter 14. Changing the MERVA ESA End-User Driver (DSLEUD) 133

MERVA ESA parsing parameter list must be addressed from the field
TUCBCMPA. The MERVA ESA parsing parameter list is mapped by the
DSLNPA MF=L macro.

v The command input in the DSLNPA parameter list must be checked for validity;
that is, the command must have been entered properly with all its required
parameters.

v Command-execution processing must be done. The command response is either
an operator message in the field FNMSLN (length including 4) and FNMSGT
(message text), or a message identification (which must be known to DSLEUD)
in the field FNMSID. All these fields are defined in the DSLEUD interface area.
The response-message skeleton can be retrieved from the message table
DSLMSGT using the DSLOMS macro that calls the DSLOMSG program. The
addresses of DSLOMSG and DSLMSGT are contained in the fields COMOMSGA
and COMMSGTA of DSLCOM.

v The command execution routine can set on the bit FNCCEX to show to DSLEUD
that it wants to have control when the next input from the screen terminal is
available, no matter what the end user has entered. This function is required
when the present command wants an immediate answer from the user for a
specific action, and an action must also be taken when the answer is not given
(confirmation of the deletion of a record during an on-line file maintenance
function).
The command execution routine can set on the bit FNCEXI to show to DSLEUD
that there is still a command to be executed when control is returned to
DSLEUD. DSLEUD then processes the command passed. This facility can be
used when one possible action to be taken can be processed by a command
defined in one of the command tables.

v Return to DSLEUD. A command-execution routine must always return to
DSLEUD after a command is executed and the response prepared.

When you return to DSLEUD, the general registers must contain the following
information:

Registers 0 to 14: Contents are the same as when control was
received from DSLEUD.

Register 15: A return code of zero.

End of General-use programming interface

Coding User Exits of DSLEUD

General-use programming interface

The following user exits are available for DSLEUD: DSLEU001, DSLEU002,
DSLEU003, and DSLEU004.

The machine-readable material supplied with MERVA ESA contains samples of
these user exits that explain the interface and make the setup for that interface. The
user only needs to add his additional code in the samples.

The DSLCOM of DSLEUD allows for accessing other control blocks, for example,
the address of the Terminal User Control Block (TUCB) is found in the field
COMTUCBA. The TUCB supplies additional information for the user exit. The
layout of the TUCB can be obtained by means of a DSLMFS MF=TUCB macro.

134 System Programming Guide

The DSLEUD user exits are not allowed to use Message Format Service, TOF
services, or MERVA ESA queue management services. If you want to use such
services, you must use one of the DSLMUnnn user exits.

The user exits of DSLEUD can have a permanent storage area throughout a user
session. Its size is defined in DSLPRM with the USERSTO parameter of the
DSLPARM macro. This permanent storage can also be accessed by all user function
programs.
v DSLEU001 is called at sign-on time. It allows the use of an external security

manager such as RACF® for sign-on, starting user applications, and so on. It has
access to the sign-on data in the interface buffer where the items user
identification, password, selected function and new password are already
expanded to 8 bytes.

v DSLEU002 is called whenever screen input is entered after having signed on.
This makes it possible to check, for example, the availability of user applications.

v DSLEU003 is called at sign-off time. It allows for stopping user applications.
v DSLEU004 is called when the password is checked at the entry to the User File

Maintenance. When customized appropriately, it checks the password against an
external security manager such as RACF. This is described in MERVA for ESA
Customization Guide.

End of General-use programming interface

Writing a DSLEUD Function Program

General-use programming interface

The machine-readable material supplied with MERVA ESA contains a sample of a
DSLEUD function program with the name DSLEFUPR. This sample explains the
interface and makes the setup for that interface. Additional code can then be
added to the sample.

The DSLCOM of DSLEUD allows for accessing other control blocks; for example,
the address of the Terminal User Control Block (TUCB) is found in the field
COMTUCBA. The TUCB supplies additional information for the user exit. The
layout of the TUCB can be seen in the expansion of the DSLMFS MF=TUCB macro.

The DSLEUD function programs are allowed to use all MERVA ESA services such
as Message Format Service, TOF services or MERVA ESA queue management
services.

The function program is called for:
1. Initialization.

This call is used to show to DSLEUD how much storage the function program
needs. The program can have permanent storage (in the scratchpad area SPA)
and temporary storage. The temporary storage is cleared after return to
DSLEUD. The contents of the permanent storage are held throughout user
session. The temporary storage is limited to 32760 bytes. The size of permanent
storage depends on the amount of storage defined for buffers in the module
DSLPRM, which is described in MERVA for ESA Customization Guide. The
maximum is 4096 bytes. If the storage definitions exceed the maximum, the
programmer is informed by an error message.

2. Processing. The program can do its function.

Chapter 14. Changing the MERVA ESA End-User Driver (DSLEUD) 135

3. Termination. The program must terminate, that is, release all resources.

End of General-use programming interface

Error Messages of DSLEUD

General-use programming interface

Error messages of DSLEUD are defined in the MERVA ESA message table
(DSLMSGT) in the copy member DSLEMSC. For the DSLEUD user exits and user
written function programs new error messages can be necessary.

End of General-use programming interface

Calling the End-User Driver by an IMS/CICS Application Program

General-use programming interface

You can start MERVA ESA by calling it from a user-written application program.

An IMS/CICS application program can call the End-User Driver (DSLEUD) to
install MERVA ESA into your application flow. This is referred to as
program-to-MERVA switch.

The program-to-MERVA switch must be defined specifying parameter
PGCALL=YES of the DSLPARM macro.

Note: The password checking within MERVA ESA must be suppressed specifying
parameter EXSEC=YES or EXSEC=(YES,NOCHECK) of the DSLPARM
macro. The End-User Driver then assumes that all password security checks
are done before it is called. For more information about the DSLPARM
macro, refer to the MERVA for ESA Macro Reference.

The program-to-MERVA switch can force the End-User Driver to return into a
predefined next transaction when the MERVA ESA session is signed off. This

136 System Programming Guide

depends on a particular field within the message buffer sent to the End-User
Driver at start time. The message buffer, sent to the next application program when
the End-User Driver terminates, starts with a MERVA ESA message identified by
DSLnnnn. This MERVA ESA message indicates normal session end (=DSL1000) or
an error (DSL1nnn). The next transaction program must verify the status.

End of General-use programming interface

IMS Rules for the Program-to-MERVA Switch

General-use programming interface

You must consider the IMS rules for program-to-program switches as described in
IMS/ESA Application Programming: Transaction Manager where passing the
conversation to another conversational program is discussed.

The following shows the image of the message buffer that is needed to start an
end-user driver session under IMS.

Note: This is different from the standard MERVA ESA buffer structure.

You must use the following IMS commands to start the End-User Driver by its
predefined transaction name:

CHNG Using alternate PCB to change TRAN name

ISRT Inserting the scratchpad area (SPA)

ISRT Inserting the message buffer to start the End-User Driver.

The “next” application program (started by the End-User Driver) has the usual
IMS program initialization: Get Unique (GU) of SPA followed by a Get Next (GN)
message. To verify that the program was started by EUD, check the MERVA ESA
message “DSLnnnn” at the beginning of the buffer.

Notes:

1. The MERVA ESA End-User Driver needs the SPA in the length of 320 bytes.
The started “next” transaction receives this area.

2. Before the SPA is inserted, your program must modify the SPA as follows:
v It must override the transaction name in the SPA by the transaction name

used in the CHNG command.

Chapter 14. Changing the MERVA ESA End-User Driver (DSLEUD) 137

v Unless EXSEC=(YES,NOCHECK) is specified in the MERVA ESA
customization parameter module DSLPRM, it must write at least one
character not equal to X'00' to the user work area of the SPA. The user work
area is the area following the transaction name up to the end of the SPA.

3. Even if the message buffer is to contain only the UID, at least one blank
following the UID must be contained in the message buffer.

End of General-use programming interface

CICS Rules for the Program-to-MERVA Switch

General-use programming interface

The MERVA ESA nucleus must be started before a program-to-MERVA switch can
take place. The MERVA ESA nucleus can be started automatically during CICS
startup or manually.

The following shows the image of the message buffer that is needed to start an
end-user driver session under CICS.

Note: This is different from the standard MERVA ESA buffer structure.

The following CICS command must be used to start the End-User Driver by its
predefined transaction name; aaa is the message buffer to start the End-User
Driver.
EXEC CICS START TRANSID(xxx) TERMID(EIBTRMID) FROM(aaa)

LENGTH(nn)

The End-User Driver uses the same technique to start the “next” transaction
program (when requested). The started program must use the following command
to get the message from the End-User Driver:
EXEC CICS RETRIEVE

To verify that the program was started by EUD, check the MERVA ESA message
“DSLnnnn” at the beginning of the buffer.

End of General-use programming interface

138 System Programming Guide

Writing the DSLEUD SPA File Program in IMS
In MERVA ESA for IMS, the storage used by DSLEUD for each end-user
transaction is saved in the MERVA ESA SPA file between conversation steps. Only
a SPA of 320 bytes is given to IMS. In MERVA ESA, the program DSLEOSPA saves
the transaction storage in a SPA file (BDAM). The macro DSLEISPA describes and
establishes the interface between DSLEUD and DSLEOSPA. Using the DSLEISPA
macro, you can write your own SPA file program.

The SPA consists of four buffers in MERVA ESA. The fourth buffer is optional and
allocated dynamically with a maximum size specified in the MAXBUF parameter
of DSLPRM.

In considering the logical terminal name and the user ID, DSLEOSPA performs two
functions:
1. If the command field in the interface area contains the four characters 'ISRT',

the four SPA buffers of this user are saved in the SPA file.
2. If the command field in the interface area contains the four characters 'GU ',

the four SPA buffers of this user are got from the SPA file.

The IMS SPA of 320 bytes is processed by DSLEUD.

Before the MERVA ESA sign-on, the logical terminal name is used rather than the
user identifier.

The DSLEISPA macro defines the following:
v The layout of the interface area
v The register contents on entry to DSLEOSPA
v The field contents of the interface area on entry to DSLEOSPA
v The possible return and reason codes of DSLEOSPA.

Using an HDAM Database as SPA File
DSLEOSPA, a DSLEUD exit program, manages the SPA file of MERVA ESA as a
BDAM file. An alternative exit program, DSLEOSPB, is provided to manage this
SPA data in an IMS HDAM database. The installation steps to activate this
alternative method are described in the MERVA for ESA Installation Guide in the
chapter on the SPA File.

HDAM Database Structure

Segments: The SPA data for each end-user is held in one database record. The
database record key is the logical terminal name.

The four parts (buffers) of the SPA data are stored in four segment types defined
as children of the root segment. The first part of the End-User Driver permanent
storage is stored in the root.

The segments are:

SPA1 Fixed length, the root segment. The first four words in the segment
contain the length of the four SPA parts stored in this database
record. The next 8 bytes contain the key, the logical terminal name.
The remainder of the segment contains the first part of the
End-User Driver permanent storage.

Chapter 14. Changing the MERVA ESA End-User Driver (DSLEUD) 139

SPA2 Variable length, contains the remainder of the End-User Driver
permanent storage. As many SPA2 segments are written, chained
using twin-forward pointers, as are necessary to hold this
permanent storage.

SPA3 Variable length, contains the TOF. As many SPA3 segments are
written, chained using twin-forward pointers, as are necessary to
hold the TOF.

SPA4 Variable length, contains the Logical Data Stream. As many SPA4
segments are written, chained using twin-forward pointers, as are
necessary to hold the LDS.

SPA5 Variable length, contains the dynamic TOF extension, if any. As
many SPA5 segments are written, chained using twin-forward
pointers, as are necessary to hold this data.

The sizes of segments are defined by the database definition (DBD). They are also
defined in DSLEOSPB. The size or name of segments cannot be changed.

The segment sizes have been chosen assuming a VSAM control interval size of
16384 bytes. This size is efficient on both 3380 and 3390 devices. The sizes are
defined as follows:
v SPA1: 4068 bytes
v SPA2: 4084 bytes
v SPA3: 4084 bytes
v SPA4: 4084 bytes
v SPA5: 16366 bytes

These sizes are the amount of application data stored in each segment. For
variable-length segments, the size includes the 2-byte segment length field.

The maximum overall segment size, including segment code, delete byte, and
pointers is 4090 bytes for all segments except for SPA5, which has an overall length
of 16372.

Pointers: Database records are always accessed in hierarchical sequential
sequence, so it is not necessary to have backward pointers.

Because the standard IMS randomizer might generate the same RAP number for
different keys, the root segment must have a physical twin-forward pointer. The
root segment also has a physical child-first pointer to each of the child segments,
SEG2 to SEG5. Each of the child segments can have an unlimited number of twin
segments, so these segments have physical twin-forward pointers.

Including the segment code and delete bytes, the segment prefix sizes are:
v SEG1: SC + Del + PTF + 4 x PCFs = 22
v SEG2 - SEG5: SC + Del + PTF = 6

Refer to the IMS/ESA Administration Guide: Database Manager if you need more
information about these calculations.

140 System Programming Guide

Chapter 15. Application Programs Linked to DSLNUC

General-use programming interface

There are three types of application programs linked to DSLNUC:
v Nucleus programs (NPT programs) defined in the DSLNPTT
v Central services defined in the DSLNTRT
v Command execution routines defined in the DSLNCMT.

When one of these programs gets control, all MERVA ESA resources are directly
available, and there is no distinction between direct and central services.

These resources are made available by DSLNUC via addresses in DSLCOM. This
allows for loading program parts that also use these services.

Programs linked to DSLNUC use a DSLCOM provided by DSLNUC. The address
of the DSLCOM is in general register 12. The application program linked to
DSLNUC must not change general register 12 or use it for any other purpose. All
fields of DSLCOM are filled by DSLNUC, except the fields COMUSER1,
COMUSER2, COMUSER3, and COMUSER4. These are for free use for user-written
MERVA ESA applications.

A program linked to DSLNUC can request a MERVA ESA termination by setting
the bit COMSTCAN in the DSLCOM.

When a program linked to DSLNUC wants to use the fields of DSLCOM, it must
define a DSECT of DSLCOM with the following macro:
DSLCOM DSECT=YES,NUC=YES

A program linked to DSLNUC can run as a separate task when using parallel
processing. The definitions in the nucleus server table DSLNSVT determine
whether a program runs under direct control of DSLNUC or as a separate task.
Each nucleus server running as a subtask has its own DSLCOM. The DSLCOM of
DSLNUC can be accessed via the address in field COMNUCOM.

The calling interface for programs linked to DSLNUC is standardized. Such a
program must be defined with LANG=HLL in the DSLNPT or DSLNCM
definition. When the program gets control the following information is contained
in the general registers.

Register 0: Input/output parameter as described below.

Register 1: Input parameter as described below.

Registers 2 to 11:
Undefined.

Register 12: Address of the DSLCOM area provided for the server.

Register 13: Address of the save area. The program must save the registers
according to MVS linkage conventions.

Register 14: Return address.

Register 15: Entry point address of the program.

© Copyright IBM Corp. 1987, 2001 141

On return, the general registers must contain the following information:

Register 0: Unchanged, if not otherwise stated.

Registers 1 to 14:
The content must be the same as when control was received.

Register 15: Contains a return code that shows the result of the processing as
described below.

Coding an NPT Program (DSLNPT)
Application programs of this type are linked to DSLNUC via DSLNPTT. These
programs are event driven; they start processing only when specific events occur
(for example, DSLNTS is given control when other MERVA ESA applications
request MERVA ESA central services). In the following description, all parameter
references refer to the DSLNPT macro defining the discussed program.

The programs named in DSLNPTT are called for initialization, processing, and
termination. Each of these steps is discussed in the following.

The following interface description applies to programs defined with LANG=HLL
in the DSLNPT. When the program gets control, general register 1 contains the
address of the parameter list, which consists of six address fields.

Parameter 1: Reserved.

Parameter 2: Address of the DSLNPT entry of the NPT program. This entry
must not be modified.

Parameter 3: Address of a 4-byte field containing the request code. The request
codes can be the start request, the stop request, or a processing
(event) request. The code for each type is defined in the DSLNPT
entry.

Parameter 4: Address of the posted ECB for an event request, or 0 for other
requests. This address is filled for an event request only.

Parameter 5: Address of a field to contain the returned ECB list address. This
field must be filled by the application when a start request is
processed. The area NPTECBA in the DSLNPT entry of the
program can be used to return the list of ECB addresses.

Parameter 6: Address of the server table (DSLNSV) entry of the NPT program.
This entry must not be modified.

Start Request for an NPT Program
A MERVA ESA start command is issued for the program. The request code field
contains the value defined for the STRTREQ parameter as defined in the DSLNPT
macro for the program. The program acquires main storage, opens data sets, and
loads modules, as necessary for its execution.

Because CICS does not provide a fresh copy of the program when it is restarted,
you must establish reusability. On return to the caller, the output field that is
pointed to by parameter 5 must contain the address of a list of ECB addresses. The
maximum number of ECB addresses is determined by the ECB parameter of the
DSLNPT macro.

Incorrect ECB addresses can cause an abnormal end of MERVA ESA or give
unpredictable results. Therefore, do one of the following:

142 System Programming Guide

v Set address fields that are not used to 0.
v Mark the last entry in the address list by setting the high-order bit.

The return code in general register 15 indicates the action to be taken:

0 Program initialization was successful. The program is set active in
the DSLNPT entry. The ECB address list returned is saved in the
DSLNPT entry and is also added to the multiple wait list of the
server.

not 0 The program initialization was not successful. An ECB list is not
returned. The status of the program in DSLNPT remains inactive.
The program frees the resources acquired up to that point in
initialization where the error was met. (The program should have
processed its end routines as far as possible before returning
indicating an initialization failure.)

Note: No MERVA ESA operator commands must be issued by the program during
initialization, because the start command is being processed at this time.

Event Request for an NPT Program
One or more of the program’s ECBs are posted. The request code field contains the
value defined for the ECBREQ parameter as defined in the DSLNPT macro for the
program. The program does the processing necessary for this event. The address of
the ECB found posted is passed as the fourth parameter. Other ECBs from that
program can also be posted. The program determines which event to process first,
whether to process more than one event, or whether to ignore events. The time
used for processing should be carefully calculated, since this time can be needed
by other DSLNPT programs. The post bit in the ECB or ECBs must be cleared to
prevent loops. The return code indicates which action should be taken. This return
code is saved in the DSLNPT entry and is shown in a display program (dp)
command:

0 Processing was successful.

4 The request type is invalid. There is a discrepancy between the
program coding and the ECBREQ parameter. The program must,
however, clear the post bit in its ECBs to prevent a loop. DSLNUC
issues message DSL381I.

>4 An error occurred during processing. Any value greater than 4 can
be given for error identification. The program must carry out its
own termination as it is not called for termination by DSLNUC. If
required, the program should take a dump as DSLNUC does not
provide a dump. The status of the program in the DSLNPT entry is
changed to INACTIVE and DSLNUC issues the DSL382I message.
MERVA ESA remains active.

The program can request a MERVA ESA termination by setting the bit
COMSTCAN in the DSLCOM.

Stop Request for an NPT Program
A MERVA ESA stop command is issued for the program. The program frees all
main storage, closes all its open data sets, and deletes all loaded modules to free
resources.

When the program gets control for termination, the request code field contains the
value defined for the STOPREQ parameter as defined in the DSLNPT macro for
the program. The return code indicates which action should be taken. The program

Chapter 15. Application Programs Linked to DSLNUC 143

is set to inactive status regardless of the return code, and its ECB addresses are
removed from the DSLNUC multiple wait list. If the return code is:

0 Program termination was successful. DSLNCMD issues the
DSL061I message.

not 0 Program termination was not successful. DSLNCMD issues the
DSL068I message.

Note: No MERVA ESA operator commands must be issued by the program during
termination.

Coding a Central Service Program (DSLNTR)
User-written central service programs can be added to MERVA ESA.

A MERVA ESA central service program is a program that is accessed either
directly by the programs linked to DSLNUC or indirectly by programs not linked
to DSLNUC.

All MERVA ESA central service programs are defined in the MERVA ESA task
server request table DSLNTRT.

If a central service program needs to be initialized before being able to execute a
service request, or a termination needs to be called to keep data intact for the next
startup of MERVA ESA, then the initialization or termination must be done either
automatically with the DSLNPT or via the MERVA ESA start and stop commands.
This can be done by defining the central service program in the DSLNPT or
another program that calls the central service program for initialization and
termination. An example of such a central service program is the authenticator-key
file program DWSAUTP. The initialization and termination call is done by
DWSAUTIN or by the SWIFT Link service program for the SWIFT network
DWSDGPA.

Alternatively, the initialization can be carried out automatically when the first
central service request is executed. However, a termination cannot be invoked this
way.

In MERVA ESA running under CICS, the programs contained in the DSLNTRT
must be reusable as CICS does not provide a fresh copy of the program if it is
started again.

When a central service program gets control, it gets the following information in
the general registers:

Register 0: If called by a MERVA ESA task server, general register 0 contains
the data buffer address.

The data buffer address corresponds to the address of the data
delivered with BUF= parameter of the DSLNIC TYPE=REQ macro.

If called directly by a requestor, general register 0 contains the
value 0. In this case, the data buffer address is contained in the
parameter list of the central service.

Register 1: Parameter list address.

144 System Programming Guide

The parameter list address corresponds to the address of the
parameter list specified by the PL= parameter of the DSLNIC
TYPE=REQ macro.

Both the parameter list and the data buffer follow the rules for MERVA ESA
buffers described in “Chapter 2. Buffer Standard of MERVA ESA” on page 3. Both
addresses are always available as the MERVA ESA nucleus task server always
passes both buffer addresses, even if one of them is not used by the central service
program. The buffer length fields in these buffers must be set.

The central service program can work in these two areas only with the restriction
of the buffer length in the first length field.

Note: A central service program must support a buffer size that is larger than
32KB, even if the actual data that is moved is smaller than 32KB.

On return, the general registers must contain the following information:

Register 0: Data buffer address, or 0 if the buffer was not used.

If the data buffer address stored in this register is not the same as
it was when receiving control, the new address is considered to be
that of a new dynamic buffer created by the central service
program on behalf of the caller.

Register 15: If called with a buffer address in general register 0, the return code
should be passed in the parameter list of the central service only.
General register 15 should be set to 0.

If called with a value of 0 in general register 0, the return code of
the central service should be passed in the parameter list and in
general register 15.

Creating MERVA ESA Operator Commands (DSLNCM)
MERVA ESA, SWIFT Link and Telex Link provide a set of operator commands and
associated command execution routines linked to DSLNUC via the operator
command table DSLNCMT.

The following chapter is intended for the user who wants to add commands and
the appropriate command execution routines to MERVA ESA.

Rules for Defining MERVA ESA Commands
MERVA ESA operator commands are defined in the DSLNCMT command table.
These commands are evaluated by DSLNCS. This evaluation includes validity
checks of the command, whether the processing module is available, and whether
the mandatory parameters have been specified. Command execution routines are
linked to DSLNUC via DSLNCMT. Keep the following rules in mind when you
define new commands:
v Use the DSLNCM macro to define commands. DSLNCM is described in the

MERVA for ESA Macro Reference.
v All MERVA ESA commands are checked by the operator-command parsing

program DSLNPAR, which allows commands to be abbreviated to a minimum
of four characters without special definition.
Shorter commands are allowed, but abbreviations of less than four characters
must be specified separately in DSLNCMT, for example:

Chapter 15. Application Programs Linked to DSLNUC 145

T for TERMINAT

You can define a new abbreviation for an existing command. New abbreviations
must be unique and must not conflict with existing commands or abbreviations
within DSLNCMT.

If an abbreviation is not unique, it is substituted for the command defined first
in the command table.

When abbreviations are used, the DESC= parameter of the DSLNCM macro
allows for giving the full command name in the command response.

v The name of the command-execution routine must be specified for each new
command in the DSLNCMT command table. This routine can process one or
more commands. If several commands are processed by one command-execution
routine, the command code for each command must be unique. Several
definitions of the command word for the same command should have the same
command code.
The command-execution routine can be a valid external reference in another
program (if it shares storage areas with that program), or it can be a separate
program.
All command responses should be defined in the MERVA ESA message table
DSLMSGT.

The following is an interface description for command-execution routines for the
command tables DSLNCMT.

After command input is processed by DSLNPAR, it is available in the parameter
list of DSLNPAR. This parameter list can be mapped using the DSLNPA MF=L
macro. The command code is contained in the field NPATOCM, and the parameter
tokens are in the field NPATOKS, which follows field NPATOCM. Each token
consists of a 1-byte length field that contains the actual parameter length, followed
by the token in the length defined in the command table (the length can be 1 to 24
bytes as defined by the DSLNCM macro). If a parameter was omitted, the
associated token is filled with blanks.

Numeric parameters are right-justified; other parameters start at the leftmost byte
in the token field.

The calling interface for command execution routines linked to DSLNUC is
described in the following. This interface is used when LANG=HLL is specified in
the DSLNCM macro. LANG=HLL should be specified for all user-written
command execution routines linked to DSLNUC. The parameter addresses are
passed in a list of addresses pointed to by general register 1. Register 1 points to a
list of four fullwords, containing the following addresses:
v Reserved address field pointing to a DSLCOM. The command execution routine

should use the DSLCOM address in general register 12.
v Address of the MERVA ESA parsing parameter list, mapped by or acquired with

a DSLNPA MF=L macro.
v Address of the MERVA ESA command and response buffer, mapped by or

acquired with a DSLNMO MF=BUF macro.
v Address of the 248-bytes continuation information; this area is either set to X'00'

when no continuation information is available, or it contains a 2-byte length
field, the 8-byte program name, the 2-byte command code, followed by up to
236 bytes of user information from the previous command execution.

146 System Programming Guide

A command-execution routine must work in the following way:
v The registers must be saved and registers set up following MVS linkage

conventions.
v The command input in the DSLNPA parameter list must be checked for validity;

that is, the command must have been entered properly with all its required
parameters.

v Command-execution processing must be done and the command response must
be built in the DSLNMO command and response buffer. The response-message
skeleton can be retrieved from the message table DSLMSGT using the DSLOMS
macro that calls the DSLOMSG program. The addresses of DSLOMSG and
DSLMSGT are contained in the fields COMOMSGA and COMMSGTA of
DSLCOM.
If command execution involves other programs and other actions, only
indicators and data can be prepared for these programs. To transfer control to
the next program, an appropriate ECB can be posted, which is contained in the
multiple wait list of DSLNUC.
The continuation information must be returned in the 256-byte area, the address
of which was passed as the fourth parameter in the calling parameter list.

v Set the appropriate return code for DSLNCS and return to DSLNCS. A
command-execution routine must always return to DSLNCS after a command is
executed and the response prepared.

On return to DSLNCS, the general register 15 must contain the return code to
indicate what action DSLNCS should take:

0 Command execution has been successful; command and response
must be written to the journal and must be returned to the
operator or to the program that issued the command.

4 Same as 0, but used to show that no record is to be written to the
journal. This can be used for error responses or information
messages not requiring journaling.

8 The command is not known to the command-execution routine (for
example, an unknown command code), no response is provided,
and DSLNCS responds with the message “DSL084I Command not
known.”

12 The command parameters were invalid; no response is provided.
DSLNCS responds with the message “DSL085I Command
parameters invalid.”

>12 Will cause DSLNCS to respond with the message “DSL089I
Command execution module return code too high.”

You can find coding examples for the definition of commands in DSLNCMT.

Note: The coding rules of commands in DSLNCMT and in the end-user driver
command tables differ slightly.

Adding an Operator Command
To add a new command, the following steps are required:
1. Code a DSLNCM macro in DSLNCMT to define the command.
2. Code and assemble the command-execution routine.
3. Assemble DSLNCMT.
4. Link-edit DSLNUC.

Chapter 15. Application Programs Linked to DSLNUC 147

5. Define a command response by coding a DSLMSG macro. This macro can be
inserted in a copy member created by the user and included to DSLMSGT via
the DSLGEN process or manually.

6. Assemble and link-edit DSLMSGT.

Using the SWIFT Link User Exits

DWSDU021
DWSDU021 is the user exit for the SWIFT network. The material distributed with
SWIFT Link contains a sample setup and an explanation of the sample.

When MERVA ESA is customized to run multiple SWIFT Link servers, the user
exit must be coded reentrant. The provided sample in the source library is coded
reentrant and can be used as a skeleton.

The second calling parameter is a 72-byte save area. If more working storage is
needed, the storage must be obtained dynamically.

DWSDU021 is called by DWSDGPAS after a message is completely prepared for
sending to the SWIFT network and before the message is:
v Given to DWSNAEVV for sending
v Put to the MERVA ESA journal.

All SWIFT messages including login, select, quit, logout and abort are presented.
Depending on the events on the SWIFT line, the message may not be sent to the
SWIFT network after having called DWSDU021.

DWSMU126
Refer on page 97 for a description of SWIFT Link user exit DWSMU126.

End of General-use programming interface

148 System Programming Guide

Chapter 16. Using the SWIFT Link MAC Authentication
Algorithm

General-use programming interface

The MAC authenticator is calculated by calling the program DWSMAC with
register 1 pointing to the following 5-word parameter list:
1. Address of a 16-byte area containing a full key (see “Padding the Key”).
2. Address of a 2-byte area containing the key length, which must always be 16.
3. Address of the first byte of data in the message buffer.
4. Address of a 2-byte area containing the length of the data in the message

buffer.
5. Address of the 8-byte area to which DWSMAC is to return the authentication

result.

Register 13 must point to a 72-byte save area.

Below is an example of an excerpt from a SWIFT message that shows data in the
message buffer. The first byte of data in the message buffer is CRLF, and the data
length is 2+9+2+9+2+1=25 bytes.

SWIFT = ...{4:CRLF:20:TRN 1CRLF:20:TRN 2CRLF-}...
| |
|<--------Data Length-------->|

Below is an example of calling DWSMAC from an Assembler program:
LA R1,AUTMACPL R1 PTS TO PARM LIST
L R15,=V(DWSMAC)
BALR R14,R15
.....

AUTMACPL DS 0D DWSMAC PARAMETER LIST
DC A(AUTMACKY) ADDR OF KEY
DC A(AUTMACKL) ADDR OF KEY LENGTH

AUTMACDT DS A ADDR OF DATA COMPONENT
DC A(AUTMACDL) ADDR OF DATA LENGTH
DC X'80'
DC AL3(AUTMACAT) ADDR OF AUTHENTICATION RESULT

AUTMACKY DS CL16 KEY FOR DWSMAC
AUTMACKL DC H'16' KEY IS ALWAYS 16 BYTES
AUTMACDL DS H DATA LENGTH
AUTMACAT DS CL8 AUTHENTICATION RESULT

Padding the Key
The program DWSMAC expects a full 16-byte key. If you are using a key that is
not 16 bytes long you must pad it to 16 bytes. The padding routine is described in
the S.W.I.F.T. publication S.S.I. SA2 Algorithm, and is described in the following:
1. If the number of bytes is lower than 8, add 'F0' until the number of bytes is a

power of 2.
2. Repeat the padded key of (1) until the number of bytes is 16.
3. Add 00000000000000000123456789ABCDEF modulo 16 to the resulting key of

(2).

End of General-use programming interface

© Copyright IBM Corp. 1987, 2001 149

150 System Programming Guide

Appendix A. List of MERVA ESA Tables

Overview of the Base Functions Tables
The Base Functions tables contain the definition of the environment in which
MERVA ESA runs. Using tables in this way, Base Functions can be adapted to
work in different environments merely by specifying different tables.

Sample tables for an installation are shipped together with the MERVA ESA
machine readable material. Some of the tables must be adapted for a particular
installation of MERVA ESA and the SWIFT Link (for example, the function table
and the routing tables); others need not or should not be changed as they already
contain information necessary for the correct processing of MERVA ESA and the
SWIFT Link (for example, the message type table and the Field Definition Table
contain the information for correct processing of SWIFT messages).

General MERVA ESA Tables
DSLFNTT Function Table

Defines the organization of a bank (MERVA ESA installation) in
MERVA ESA terms (queues and functions).

xxxxxxx Routing Tables

The names of the routing tables are defined by the particular
installation of MERVA ESA. The routing tables control the flow of
messages between the functions (queues) defined in the
MERVA ESA function table. All routing tables supplied refer to
one of the following:
v Routing of SWIFT messages
v Routing of Telex messages
v Routing of MERVA Link messages.

DSLMPFxx Program Function Key Tables

The Program Function Key Tables define which functions the
program functions keys have for users working at screen terminals.
The MERVA ESA sample PF Key Table is DSLMPF00. The PF Key
Table, ENLMPF00 is supplied for the Telex Link functions.

DSLFLTT File Table for General File Services

Defines the MERVA ESA general files, for example the
MERVA ESA Nicknames File, the SWIFT Correspondents File, and
the Telex Correspondents File.

DSLTFDT Terminal Feature Definition Table

Defines the page sizes and other features of screen (IMS only) and
printer terminals (CICS and IMS).

DSLFDTT Field Definition Table

Defines all fields used in messages (for example, SWIFT messages).

DSLMSGT Message Table

Defines all information and error messages for operators and users.

© Copyright IBM Corp. 1987, 2001 151

DSLTXTT Transaction Table

Defines extended information for transaction codes specified in
function table entries.

Message Format Service Tables
DSLMPTT MERVA ESA Message Format Service Program Table

Defines all MERVA ESA Message Format Services and program
exits available for the formatting of messages.

DSLMTTT MERVA ESA Message Type Table

Connects the symbolic identification of a message with the
description of the structure and the fields of a message (Message
Control Block).

MERVA ESA End-User Driver Tables
DSLEPTT End-User Driver Program Table

Defines the connection between message processing functions and
MERVA ESA function programs.

DSLMCMDT Display and Edit Command Table

Defines the display and edit commands for the MERVA ESA users.

DSLECMDT Session Command Table

Defines the session commands for the MERVA ESA users.

DSLEMCMT Message Selection/Processing Command Table

Defines the message selection and message processing commands
for the MERVA ESA users.

DSLEUCMT User File Maintenance Command Table

Defines the user file maintenance commands for the MERVA ESA
users.

DSLEFCMT General File Maintenance Command Table

Defines the general file maintenance commands for the
MERVA ESA users.

DSLECCMT Queue Utility and Test Command Table

Defines the optional queue utility and test commands for the test
period of MERVA ESA.

MERVA ESA Nucleus Tables
DSLNPTT MERVA ESA nucleus program table

Defines all programs linked to the MERVA ESA Nucleus program
DSLNUC in a MERVA ESA installation, such as the operating
console interface or external network interfaces.

DSLNTRT MERVA ESA task server request table

Defines all MERVA ESA central service programs available in a
MERVA ESA installation, such as user file access or MERVA ESA
queue management services.

152 System Programming Guide

DSLNCMT MERVA ESA operator command table

Defines all MERVA ESA operator commands, the parameters
required, and the names of the command execution routine.

DSLNSVT MERVA ESA nucleus server table

Defines the MERVA ESA nucleus servers, and whether these
servers run as separate tasks or under direct control of DSLNUC.

Overview of the MERVA-MQI Attachment Tables
DSLKPROC MERVA-MQI Attachment Process Table

Defines the characteristics of the cooperating message transfer
between MERVA ESA and the MQSeries.

Overview of the SWIFT Link Tables
The SWIFT Link tables contain the definition of the environment in which the
SWIFT Link runs. Using tables in this way, the SWIFT Link can be adapted to
work in different environments by specifying different tables. All tables are
discussed in this manual. The SWIFT Link tables are:

DWSLTT SWIFT Link Logical Terminal Table

Defines the names of the destinations agreed on with SWIFT for
the communication with the SWIFT network.

DWSECMDT Authenticator Key File Maintenance Command Table

Defines the authenticator key file maintenance commands for the
SWIFT users.

DWSLINx SWIFT Link Line Definition

Defines a communication line to the SWIFT network.

DWSMCCRT Currency Codes Table

Defines all valid currency codes known to SWIFT and the
maximum number of numeric characters allowed in the fraction
part of an AMOUNT.

DWSRxxxx Routing Tables

DWSLxxxx Defines the flow of messages between functions (queues) defined
for the SWIFT Link in the MERVA ESA function table.

DWSCIT Defines the Central Institutes participating in the SWIFT
PREMIUM and FIN-Copy services.

Overview of the Telex Link Tables
ENLRxxxx Routing Tables

Defines the flow of messages between functions (queues) defined
for the Telex Link in the MERVA ESA function table.

ENLTKRQT Test-key Requirement Table

Defines the test-key requirements dependent on the message type
of the processed telex message.

Appendix A. List of MERVA ESA Tables 153

Overview of the MERVA Link Tables
EKAPT MERVA Link Partner Table

Defines the characteristics of the cooperating message transfer
among partner applications.

154 System Programming Guide

Appendix B. Cross-References, Macros, and Tables
Base Functions: Macros and
Tables

Macro Table

Name

Nucleus Program DSLNPT DSLNPTT

Task Server Request DSLNTR DSLNTRT

Nucleus Command DSLNCM DSLNCMT

Nucleus Server DSLNSV DSLNSVT

MFS Program DSLMPT DSLMPTT

MFS Message Type DSLMTT DSLMTTT

Message (Operator and User) DSLMSG DSLMSGT

Function DSLFNT DSLFNTT

DSLEUD program DSLEPT DSLEPTT

File DSLFLT DSLFLTT

Field Definition DSLLFDT
DSLLFLD
DSLLSUBF

DSLFDTT

Display and Edit Command DSLNCM DSLMCMDT

Session Command DSLNCM DSLECMDT

Program Function Key DSLMPFK DSLMPFxx

Routing DSLROUTE

Terminal Feature Definition DSLTFD DSLTFDT

Transaction DSLTXT DSLTXTT

MERVA-MQI Attachment:
Macros and Tables

Macro Table

Name

Process DSLKPROC DSLKPROC

SWIFT Link: Macros and
Tables

Macro Table

Name

Currency Codes DWSCUR DWSMCCRT

Logical Terminal DWSLT DWSLTT

Central Institutes DWSCI DWSCIT

Telex Link: Macros and
Tables

Macro Table

Name

Test-Key Requirement ENLTKREQ ENLTKRQT

© Copyright IBM Corp. 1987, 2001 155

MERVA Link: Macros and
Tables

Macro Table

Name

Partner EKAPT EKAPT

156 System Programming Guide

Appendix C. Table of User Exits

The MERVA ESA source library contains the following user exits. More
information about the function and the interface can be found in the module
header of each user exit.

Table 2. Table of User Exits

Name Place Purpose Parameters

DSLEU001 DSLEUD Check user ID and
password during sign on,
for example, with RACF
in MVS

DSLCOM, TUCB

DSLEU002 DSLEUD Check availability of user
applications

DSLCOM, TUCB

DSLEU003 DSLEUD To stop user applications DSLCOM, TUCB

DSLEU004 DSLEUSR Check the user ID and
password at entry to User
File maintenance

DSLUSR parameter list,
User File record,
password unscramble
routine

DSLJR001 DSLJRNP To support an additional
user journal file

Open, close, put (record
buffer, journal record)

DSLKQ001 DSLKQS Provide data for an MQI
datagram, request, or
reply message

TOF, DSLAPI INTWSTOR,
MFS parameter list

DSLKQ002 DSLKQR Get data from a received
MQI datagram, request,
or reply message

TOF, DSLAPI INTWSTOR,
MFS parameter list

DSLKQ100 DSLKQS
DSLKQR

Telex message data in an
MQI datagram, request,
or reply message

TOF, DSLAPI INTWSTOR,
MFS parameter list

DSLMU001 After TOF initialization in
MTIN

TOF processing TOF address

DSLMU003 Entry of DSLMPBLD TOF preprocessing TUCB TOF

DSLMU004 Before DSLNPAR in EUD Command translation Command from
DSLCMDL

DSLMU005 After DSLNPAR in EUD Command translation Parsed data

DSLMU006 In DSLMPCMD Help
process

TOF preparation for Help Access to TOF services

DSLMU008 End of DSLMPUTF TOF processing TOF

DSLMU009 DSLMCHE Reason code processing Reason code

DSLMU010 DSLEMSG Message completion DSLCOM, TUCB

DSLMU011 DSLEMSG After queue access DSLCOM, TUCB

DSLMU020 DSLSDI Before put to queue DSLCOM, TOF, message
in line format

DSLMU021 DSLSDY Message is in TOF, before
printing

DSLCOM, TUCB, TOF

© Copyright IBM Corp. 1987, 2001 157

Table 2. Table of User Exits (continued)

Name Place Purpose Parameters

DSLMU022 DSLSDO Message is in TOF, before
formatting for sequential
data set

DSLCOM, TOF

DSLMU023 DSLCXT Before checking and
expansion

DSLCOM, TUCB, TOF

DSLMU024 DSLHCP Message is in TOF, before
printing

DSLCOM, TUCB, TOF

DSLMU027 DSLHCP Printer buffer DSLCOM, TUCB, TOF

DSLMU054 DSLMLFP Message type
determination

Pointer to message

DSLMU090 DSLMMFS MFS Termination
processing

DSLMU240 DSLCESI EDIFACT to SWIFT
conversion, before SWIFT
message put in queue

DSLCOM, TOF, MFS
parameter list

DSLMU241 DSLCSEI SWIFT to EDIFACT
conversion, before SWIFT
message concatenated to
EDIFACT message

DSLCOM, TOF, MFS
parameter list

DSLMU242 DSLCES2 EDIFACT to SWIFT
conversion, to extract
SWIFT field information
from EDIFACT message

DSLCOM, MFS parameter
list

DSLNU003 DSLNUSR Check user ID and
password during sign-on,
for example, with RACF
in MVS

User File record,
parameter list, password
unscramble routine

DSLNU004 DSLNUSR To support additional
User File checking
(authorization)

Parameter list, User File
records

DSLNU005 DSLNUSR Check the password of a
user (USR function)

Parameter list, User File
record, active user entry,
password unscramble
routine

DSLQKEY DSLQMGT
DSLQMGD

Set the keys for a new
message in a queue

Queue parameter list and
data buffer (TOF)

DSLQPUT DSLQMGT Access every message
immediately before it is
written to a queue

Queue parameter list and
data buffer (TOF)

DSLQTRA DSLQMGT Inspect Queue Trace Queue parameter list and
data buffer (TOF) and
queue trace buffer.

DSLQTRAB DSLQMGD Inspect Queue Trace (QDS
on DB2)

Queue parameter list,
DSLQMDIO return info,
data buffer (TOF) and
queue trace buffer.

DSLQUMR DSLQMGT
DSLQMGD

Capture UMR data when
it is assigned to a message

Queue parameter list and
data buffer (TOF)

158 System Programming Guide

Table 2. Table of User Exits (continued)

Name Place Purpose Parameters

DSLWTOEX DSLNMOP DSLWTOP Set routing and descriptor
codes for WTOs issued by
MERVA ESA

Operator message and
default routing and
descriptor codes

DWSDU021 DWSDGPA Exit gets control when
message is ready to be
sent to SWIFT

SWIFT message in TOF
and buffer

DWSLOG2 DWSDGPA Login Authorization for
SWIFT network

Logical Terminal Table
Entry (Login Sequence
Number)

DWSMU126 DWSDGPA Modify message for
SWIFT network

Message in TOF

DWSMU141 DWSMCCUR Check currency codes Currency code

ENLMC095 Checking exit sample Telex character set
checking

MFS parameter list

ENLMU398 Sample exit Automatic Test-key
calculation

EKAME010 EKAAC01
EKAAC02
EKAAC04

Determine ASP list line
color, Y2K support

Fields EKADA, EKAPTDT

EKAME011 EKAAC03 Determine SCP list line
color, Y2K support

Field EKADA

EKAME012 EKAAC00 Determine CMD response
color

Field EKADA

EKAME015 EKADEMO
EKAMCTL

Y2K support Date field

EKAMU000 EKAAS10
EKAAR10

Call FMT/ESA with
MERVA Link

EKAXCPL, TOF

EKAMU010 EKAAS10
EKAAR10

Control message
processing

EKAXCPL, TOF

EKAMU033 EKAAS10
EKAAR10

Former PS/2 based Telex
and USE message
processing

EKAXCPL, TOF

EKAMU034 EKAAS10
EKAAR10

Telex message key
processing

EKAXCPL, TOF

EKAMU045 EKAAS10
EKAAR10

ASP specific
customization of
FMT/ESA with MERVA
Link

EKAXCPL, TOF

EKAMU133 EKAAS10
EKAAR10

Workstation based Telex
and USE message
processing

EKAXCPL, TOF

Appendix C. Table of User Exits 159

|
|

|
|
|
|

160 System Programming Guide

Appendix D. MERVA ESA Sample Programs

The MERVA ESA sample library contains the following types of sample programs:
v Sample MFS exits to demonstrate how to code MFS exits
v Sample MFS exits to perform certain useful functions
v A sample user exit program
v Sample nucleus programs
v Sample API programs
v A sample API application for a CICS online environment
v Sample scenarios for using MERVA Link

The location of the MERVA ESA sample library depends on your operating
system:
v In MVS, the MERVA ESA sample library is a partitioned data set with the low

level qualifier SDSLSAM0.
v In VSE, the MERVA ESA sample programs are part of the source library.

Sample MFS Exits as Coding Examples
These sample exits are written in Assembler language.

DSLMC899 MFS field checking exit.

DSLMD899 MFS default setting exit.

DSLME899 MFS editing exit. This exit contains an example on how to change
screen attributes.

DSLMS899 MFS separation exit.

DSLMU099 MFS user exit with EXEC CICS calls.

Sample MFS Exits to Perform Certain Functions
These sample exits are written in Assembler language.

DSLBM01A MFS User Exit DSLMU009.

This user exit checks that a SWIFT Link authenticator record exists
for the correspondent during data entry of SWIFT messages. This
exit requires authentication (DWSAUTP) to be running.

DSLBM02A MFS User Exit DSLMU004.

This user exit rejects a user’s attempt to authorize a message (that
is, to issue the ok command) if that user entered or verified the
message. This can be done much more easily with the DSLFNT
FOUREYE parameter, which is described in the MERVA for ESA
Macro Reference.

DSLBM03A MFS User Exit DSLMU011.

This user exit skips messages in a queue that a user has already
processed. It can stop users from verifying messages that they

© Copyright IBM Corp. 1987, 2001 161

entered. This can be done much more easily with the DSLFNT
FOUREYE parameter, which is described in the MERVA for ESA
Macro Reference.

DSLBM04A MFS User Exit DSLMU004.

This user exit is used to segregate commands depending on data in
user file. The user data area 1 in a user-file record contains a list of
commands with a restricted parameter. Each command is separated
by a comma, and there must not be blanks before or after the
comma. For example:
DQ T1P,DF D1

The user data area 1 is displayed on the user file maintenance
panel after the User Data label. The following table shows the
result of each command entered:

Command Result
DQ DQ T1P is executed
DQ D1 Error: invalid parameter
DQ T1 Error: invalid parameter
DQ T1P DQ T1P is executed
DQ T1PR0 DQ T1PR0 is executed
DF DF D1 is executed
DF D Error: invalid parameter
DF D1 DF D1 is executed
DF T1 Error: invalid parameter
DF D1PR0 DF D1PR0 is executed

DSLBM05A MFS Retype Edit Exit.

This user exit is a retype edit routine for field SWIHADDR, the
correspondent address in a SWIFT message type. If the retyped
address is exactly the same as the original address, it is accepted. If
the original address has a branch code of XXX, and the retyped
address is of length 8, and has the same bank, country, and
location code as the original address, then it is accepted. Otherwise
the retyped address is rejected.

Note: Subfield SWIHADDR in the DSLFDTT must have EDIT=1.

DSLBM06A MFS User Exit DSLMU009.

This user exit checks the length of a SWIFT message. When the
message is too long to be sent to the SWIFT network an error
message is issued.

Sample User Exit Program
DSLBN01A is a sample program for DSLNUSR user exit DSLNU003. This user exit
shows how to make an expiry date check on the sign-on password.

Sample Nucleus Programs
DSLBN10A A sample central service that can be used to start or stop another

nucleus program.

DSLBN11A A sample nucleus program that illustrates how to implement a
timer-controlled monitor program. It periodically executes a start
function command. This command can easily be replaced by other
MERVA ESA operator commands.

162 System Programming Guide

Sample API Programs
The sample library contains sample programs that illustrate the use of DSLAPI
functions. These programs have names of the form DSLBAnnx, where nn is the
sample program number, and x indicates the programming language:

A Assembler

B COBOL

C C/370

P PL/I

Two types of sample API programs are provided:
v Batch API programs, each of which is provided in a COBOL, PL/I, C/370™, and

an Assembler version:

DSLBA01x CMD MERVA command service

DSLBA02x Export a SWIFT message from MERVA ESA

DSLBA03x Import a SWIFT message from MERVA ESA

DSLBA04x SAVE and REEN services

DSLBA05x User File services.
v A transaction for automatic start, which is provided in a COBOL, PL/I, and

C/370 version:

DSLBA06x Queue Management services.

For more information, refer to the MERVA for ESA Application Programming Interface
Guide.

Sample API Application for a CICS Online Environment
There is a sample API application written in COBOL and in PL/I in the sample
library. For CICS screen display services, some BMS maps are provided. For more
information, refer to the MERVA for ESA Application Programming Interface Guide.

Sample Scenarios for Using MERVA Link
These are described in MERVA for ESA Customization Guide.

Appendix D. MERVA ESA Sample Programs 163

164 System Programming Guide

Appendix E. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Deutschland
Informationssysteme GmbH
Department 3982
Pascalstrasse 100

© Copyright IBM Corp. 1987, 2001 165

70569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement
or any equivalent agreement between us.

The following paragraph does apply to the US only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Programming Interface Information
This book is intended to help the customer to understand MERVA. This book
primarily documents Product-Sensitive Programming Interface and Associated
Guidance Information provided by MERVA.

General-Use Programming Interface allow the customer to write programs that
obtain the services of MERVA.

However, this book also documents Product-Sensitive Programming Interface and
Associated Guidance Information.

Product-Sensitive programming interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of this IBM software product. Use of such interfaces creates dependencies
on the detailed design or implementation of the IBM software product.
Product-Sensitive programming interfaces should be used only for these
specialized purposes. Because of their dependencies on detailed design and
implementation, it is to be expected that programs written to such interfaces may
need to be changed in order to run with new product releases or versions, or as a
result of service.

166 System Programming Guide

Product-Sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section by the following marking:

General-use programming interface

Product-Sensitive Programming Interface and Associated Guidance Information...

End of General-use programming interface

Trademarks
The following terms are trademarks of the IBM Corporation in the United States,
other countries, or both:
v Advanced Peer-to-Peer Networking
v AIX
v APPN
v C/370
v CICS
v CICS/ESA
v CICS/MVS
v CICS/VSE
v DB2
v Distributed Relational Database Architecture
v DRDA
v eNetwork
v IBM
v IMS/ESA
v Language Environment
v MQSeries
v MVS
v MVS/ESA
v MVS/XA
v OS/2
v OS/390
v RACF
v VSE/ESA
v VTAM

Workstation (AWS) and Directory Services Application (DSA) are trademarks of
S.W.I.F.T., La Hulpe in Belgium.

Pentium is a trademark of Intel Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by IBM
Corporation under license.

C-bus is a trademark of Corollary, Inc.

Appendix E. Notices 167

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks or
registered trademarks of Microsoft Corporation in the United States, other
countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

168 System Programming Guide

Glossary of Terms and Abbreviations

This glossary defines terms as they are used in
this book. If you do not find the terms you are
looking for, refer to the IBM Dictionary of
Computing, New York: McGraw-Hill, and the
S.W.I.F.T. User Handbook.

A
ACB. Access method control block.

ACC. MERVA Link USS application control command
application. It provides a means of operating MERVA
Link USS in USS shell and MVS batch environments.

Access method control block (ACB). A control block
that links an application program to VSAM or VTAM.

ACD. MERVA Link USS application control daemon.

ACT. MERVA Link USS application control table.

address. See SWIFT address.

address expansion. The process by which the full
name of a financial institution is obtained using the
SWIFT address, telex correspondent’s address, or a
nickname.

AMPDU. Application message protocol data unit,
which is defined in the MERVA Link P1 protocol, and
consists of an envelope and its content.

answerback. In telex, the response from the dialed
correspondent to the WHO R U signal.

answerback code. A group of up to 6 letters following
or contained in the answerback. It is used to check the
answerback.

APC. Application control.

API. Application programming interface.

APPC. Advanced Program-to-Program
Communication based on SNA LU 6.2 protocols.

APPL. A VTAM definition statement used to define a
VTAM application program.

application programming interface (API). An
interface that programs can use to exchange data.

application support filter (ASF). In MERVA Link, a
user-written program that can control and modify any
data exchanged between the Application Support Layer
and the Message Transfer Layer.

application support process (ASP). An executing
instance of an application support program. Each
application support process is associated with an ASP
entry in the partner table. An ASP that handles
outgoing messages is a sending ASP; one that handles
incoming messages is a receiving ASP.

application support program (ASP). In MERVA Link,
a program that exchanges messages and reports with a
specific remote partener ASP. These two programs must
agree on which conversation protocol they are to use.

ASCII. American Standard Code for Information
Interchange. The standard code, using a coded set
consisting of 7-bit coded characters (8 bits including
parity check), used for information interchange among
data processing systems, data communication systems,
and associated equipment. The ASCII set consists of
control characters and graphic characters.

ASF. Application support filter.

ASF. (1) Application support process. (2) Application
support program.

ASPDU. Application support protocol data unit,
which is defined in the MERVA Link P2 protocol.

authentication. The SWIFT security check used to
ensure that a message has not changed during
transmission, and that it was sent by an authorized
sender.

authenticator key. A set of alphanumeric characters
used for the authentication of a message sent via the
SWIFT network.

authenticator-key file. The file that stores the keys
used during the authentication of a message. The file
contains a record for each of your financial institution’s
correspondents.

B
Back-to-Back (BTB). A MERVA Link function that
enables ASPs to exchange messages in the local MERVA
Link node without using data communication services.

bank identifier code. A 12-character code used to
identify a bank within the SWIFT network. Also called
a SWIFT address. The code consists of the following
subcodes:
v The bank code (4 characters)
v The ISO country code (2 characters)
v The location code (2 characters)
v The address extension (1 character)

© Copyright IBM Corp. 1987, 2001 169

v The branch code (3 characters) for a SWIFT user
institution, or the letters “BIC” for institutions that
are not SWIFT users.

Basic Security Manager (BSM). A component of
VSE/ESA Version 2.4 that is invoked by the System
Authorization Facility, and used to ensure signon and
transaction security.

BIC. Bank identifier code.

BIC Bankfile. A tape of bank identifier codes supplied
by S.W.I.F.T.

BIC Database Plus Tape. A tape of financial
institutions and currency codes, supplied by S.W.I.F.T.
The information is compiled from various sources and
includes national, international, and cross-border
identifiers.

BIC Directory Update Tape. A tape of bank identifier
codes and currency codes, supplied by S.W.I.F.T., with
extended information as published in the printed BIC
Directory.

body. The second part of an IM-ASPDU. It contains
the actual application data or the message text that the
IM-AMPDU transfers.

BSC. Binary synchronous control.

BSM. Basic Security Manager.

BTB. Back-to-back.

buffer. A storage area used by MERVA programs to
store a message in its internal format. A buffer has an
8-byte prefix that indicates its length.

C
CBT. SWIFT computer-based terminal.

CCSID. Coded character set identifier.

CDS. Control data set.

central service. In MERVA, a service that uses
resources that either require serialization of access, or
are only available in the MERVA nucleus.

CF message. Confirmed message. When a sending
MERVA Link system is informed of the successful
delivery of a message to the receiving application, it
routes the delivered application messages as CF
messages, that is, messages of class CF, to an ACK wait
queue or to a complete message queue.

COA. Confirm on arrival.

COD. Confirm on delivery.

coded character set identifier (CCSID). The name of a
coded set of characters and their code point
assignments.

commit. In MQSeries, to commit operations is to make
the changes on MQSeries queues permanent. After
putting one or more messages to a queue, a commit
makes them visible to other programs. After getting
one or more messages from a queue, a commit
permanently deletes them from the queue.

confirm-on-arrival (COA) report. An MQSeries report
message type created when a message is placed on that
queue. It is created by the queue manager that owns
the destination queue.

confirm-on-delivery (COD) report. An MQSeries
report message type created when an application
retrieves a message from the queue in a way that
causes the message to be deleted from the queue. It is
created by the queue manager.

control fields. In MERVA Link, fields that are part of
a MERVA message on the queue data set and of the
message in the TOF. Control fields are written to the
TOF at nesting identifier 0. Messages in SWIFT format
do not contain control fields.

correspondent. An institution to which your
institution sends and from which it receives messages.

correspondent identifier. The 11-character identifier of
the receiver of a telex message. Used as a key to
retrieve information from the Telex correspondents file.

cross-system coupling facility. See XCF.

coupling services. In a sysplex, the functions of XCF
that transfer data and status information among the
members of a group that reside in one or more of the
MVS systems in the sysplex.

couple data set. See XCF couple data set.

CTP. MERVA Link command transfer processor.

currency code file. A file containing the currency
codes, together with the name, fraction length, country
code, and country names.

D
daemon. A long-lived process that runs unattended to
perform continuous or periodic systemwide functions.

DASD. Direct access storage device.

data area. An area of a predefined length and format
on a panel in which data can be entered or displayed.
A field can consist of one or more data areas.

data element. A unit of data that, in a certain context,
is considered indivisible. In MERVA Link, a data

170 System Programming Guide

element consists of a 2-byte data element length field, a
2-byte data-element identifier field, and a field of
variable length containing the data element data.

datagram. In TCP/IP, the basic unit of information
passed across the Internet environment. This type of
message does not require a reply, and is the simplest
type of message that MQSeries supports.

data terminal equipment. That part of a data station
that serves as a data source, data link, or both, and
provides for the data communication control function
according to protocols.

DB2. A family of IBM licensed programs for relational
database management.

dead-letter queue. A queue to which a queue
manager or application sends messages that it cannot
deliver. Also called undelivered-message queue.

dial-up number. A series of digits required to
establish a connection with a remote correspondent via
the public telex network.

direct service. In MERVA, a service that uses resources
that are always available and that can be used by
several requesters at the same time.

display mode. The mode (PROMPT or NOPROMPT)
in which SWIFT messages are displayed. See PROMPT
mode and NOPROMPT mode.

distributed queue management (DQM). In MQSeries
message queuing, the setup and control of message
channels to queue managers on other systems.

DQM. Distributed queue management.

DTE. Data terminal equipment.

E
EBCDIC. Extended Binary Coded Decimal
Interchange Code. A coded character set consisting of
8-bit coded characters.

ECB. Event control block.

EDIFACT. Electronic Data Interchange for
Administration, Commerce and Transport (a United
Nations standard).

ESM. External security manager.

EUD. End-user driver.

exception report. An MQSeries report message type
that is created by a message channel agent when a
message is sent to another queue manager, but that
message cannot be delivered to the specified
destination queue.

external line format (ELF) messages. Messages that
are not fully tokenized, but are stored in a single field
in the TOF. Storing messages in ELF improves
performance, because no mapping is needed, and
checking is not performed.

external security manager (ESM). A security product
that is invoked by the System Authorization Facility.
RACF is an example of an ESM.

F
FDT. Field definition table.

field. In MERVA, a portion of a message used to enter
or display a particular type of data in a predefined
format. A field is located by its position in a message
and by its tag. A field is made up of one or more data
areas. See also data area.

field definition table (FDT). The field definition table
describes the characteristics of a field; for example, its
length and number of its data areas, and whether it is
mandatory. If the characteristics of a field change
depending on its use in a particular message, the
definition of the field in the FDT can be overridden by
the MCB specifications.

field group. One or several fields that are defined as
being a group. Because a field can occur more than
once in a message, field groups are used to distinguish
them. A name can be assigned to the field group
during message definition.

field group number. In the TOF, a number is assigned
to each field group in a message in ascending order
from 1 to 255. A particular field group can be accessed
using its field group number.

field tag. A character string used by MERVA to
identify a field in a network buffer. For example, for
SWIFT field 30, the field tag is :30:.

FIN. Financial application.

FIN-Copy. The MERVA component used for SWIFT
FIN-Copy support.

finite state machine. The theoretical base describing
the rules of a service request’s state and the conditions
to state transitions.

FMT/ESA. MERVA-to-MERVA Financial Message
Transfer/ESA.

form. A partially-filled message containing data that
can be copied for a new message of the same message
type.

G
GPA. General purpose application.

Glossary of Terms and Abbreviations 171

H
HFS. Hierarchical file system.

hierarchical file system (HFS). A system for
organizing files in a hierarchy, as in a UNIX system.
OS/390 UNIX System Services files are organized in an
HFS. All files are members of a directory, and each
directory is in turn a member of a directory at a higher
level in the HFS. The highest level in the hierarchy is
the root directory.

I
IAM. Interapplication messaging (a MERVA Link
message exchange protocol).

IM-ASPDU. Interapplication messaging application
support protocol data unit. It contains an application
message and consists of a heading and a body.

incore request queue. Another name for the request
queue to emphasize that the request queue is held in
memory instead of on a DASD.

InetD. Internet Daemon. It provides TCP/IP
communication services in the OS/390 USS
environment.

initiation queue. In MQSeries, a local queue on which
the queue manager puts trigger messages.

input message. A message that is input into the
SWIFT network. An input message has an input
header.

INTERCOPE TelexBox. This telex box supports
various national conventions for telex procedures and
protocols.

interservice communication. In MERVA ESA, a
facility that enables communication among services if
MERVA ESA is running in a multisystem environment.

intertask communication. A facility that enables
application programs to communicate with the MERVA
nucleus and so request a central service.

IP. Internet Protocol.

IP message. In-process message. A message that is in
the process of being transferred to another application.

ISC. Intersystem communication.

ISN. Input sequence number.

ISN acknowledgment. A collective term for the
various kinds of acknowledgments sent by the SWIFT
network.

ISO. International Organization for Standardization.

ITC. Intertask communication.

J
JCL. Job control language.

journal. A chronological list of records detailing
MERVA actions.

journal key. A key used to identify a record in the
journal.

journal service. A MERVA central service that
maintains the journal.

K
KB. Kilobyte (1024 bytes).

key. A character or set of characters used to identify
an item or group of items. For example, the user ID is
the key to identify a user file record.

key-sequenced data set (KSDS). A VSAM data set
whose records are loaded in key sequence and
controlled by an index.

keyword parameter. A parameter that consists of a
keyword, followed by one or more values.

KSDS. Key-sequenced data set.

L
LAK. Login acknowledgment message. This message
informs you that you have successfully logged in to the
SWIFT network.

large message. A message that is stored in the large
message cluster (LMC). The maximum length of a
message to be stored in the VSAM QDS is 31900 bytes.
Messages up to 2MB can be stored in the LMC. For
queue management using DB2 no distinction is made
between messages and large messages.

large queue element. A queue element that is larger
than the smaller of:

v The limiting value specified during the customization
of MERVA

v 32KB

LC message. Last confirmed control message. It
contains the message-sequence number of the
application or acknowledgment message that was last
confirmed; that is, for which the sending MERVA Link
system most recently received confirmation of a
successful delivery.

LDS. Logical data stream.

LMC. Large message cluster.

172 System Programming Guide

LNK. Login negative acknowledgment message. This
message indicates that the login to the SWIFT network
has failed.

local queue. In MQSeries, a queue that belongs to a
local queue manager. A local queue can contain a list of
messages waiting to be processed. Contrast with remote
queue.

local queue manager. In MQSeries, the queue
manager to which the program is connected, and that
provides message queuing services to that program.
Queue managers to which a program is not connected
are remote queue managers, even if they are running
on the same system as the program.

login. To start the connection to the SWIFT network.

LR message. Last received control message, which
contains the message-sequence number of the
application or acknowledgment message that was last
received from the partner application.

LSN. Login sequence number.

LT. See LTERM.

LTC. Logical terminal control.

LTERM. Logical terminal. Logical terminal names
have 4 characters in CICS and up to 8 characters in
IMS.

LU. A VTAM logical unit.

M
maintain system history program (MSHP). A
program used for automating and controlling various
installation, tailoring, and service activities for a VSE
system.

MCA. Message channel agent.

MCB. Message control block.

MERVA ESA. The IBM licensed program Message
Entry and Routing with Interfaces to Various
Applications for ESA.

MERVA Link. A MERVA component that can be used
to interconnect several MERVA systems.

message. A string of fields in a predefined form used
to provide or request information. See also SWIFT
financial message.

message body. The part of the message that contains
the message text.

message category. A group of messages that are
logically related within an application.

message channel. In MQSeries distributed message
queuing, a mechanism for moving messages from one
queue manager to another. A message channel
comprises two message channel agents (a sender and a
receiver) and a communication link.

message channel agent (MCA). In MQSeries, a
program that transmits prepared messages from a
transmission queue to a communication link, or from a
communication link to a destination queue.

message control block (MCB). The definition of a
message, screen panel, net format, or printer layout
made during customization of MERVA.

Message Format Service (MFS). A MERVA direct
service that formats a message according to the
medium to be used, and checks it for formal
correctness.

message header. The leading part of a message that
contains the sender and receiver of the message, the
message priority, and the type of message.

Message Integrity Protocol (MIP). In MERVA Link,
the protocol that controls the exchange of messages
between partner ASPs. This protocol ensures that any
loss of a message is detected and reported, and that no
message is duplicated despite system failures at any
point during the transfer process.

message-processing function. The various parts of
MERVA used to handle a step in the
message-processing route, together with any necessary
equipment.

message queue. See queue.

Message Queue Interface (MQI). The programming
interface provided by the MQSeries queue managers. It
provides a set of calls that let application programs
access message queuing services such as sending
messages, receiving messages, and manipulating
MQSeries objects.

Message Queue Manager (MQM). An IBM licensed
program that provides message queuing services. It is
part of the MQSeries set of products.

message reference number (MRN). A unique 16-digit
number assigned to each message for identification
purposes. The message reference number consists of an
8-digit domain identifier that is followed by an 8-digit
sequence number.

message sequence number (MSN). A sequence
number for messages transferred by MERVA Link.

message type (MT). A number, up to 7 digits long,
that identifies a message. SWIFT messages are
identified by a 3-digit number; for example SWIFT
message type MT S100.

Glossary of Terms and Abbreviations 173

MFS. Message Format Service.

MIP. Message Integrity Protocol.

MPDU. Message protocol data unit, which is defined
in P1.

MPP. In IMS, message-processing program.

MQA. MQ Attachment.

MQ Attachment (MQA). A MERVA feature that
provides message transfer between MERVA and a
user-written MQI application.

MQH. MQSeries queue handler.

MQI. Message queue interface.

MQM. Message queue manager.

MQS. MQSeries nucleus server.

MQSeries. A family of IBM licensed programs that
provides message queuing services.

MQSeries nucleus server (MQS). A MERVA
component that listens for messages on an MQI queue,
receives them, extracts a service request, and passes it
via the request queue handler to another MERVA ESA
instance for processing.

MQSeries queue handler (MQH). A MERVA
component that performs service calls to the Message
Queue Manager via the provided Message Queue
Interface.

MRN. Message reference number.

MSC. MERVA system control facility.

MSHP. Maintain system history program.

MSN. Message sequence number.

MT. Message type.

MTP. (1) Message transfer program. (2) Message
transfer process.

MTS. Message Transfer System.

MTSP. Message Transfer Service Processor.

MTT. Message type table.

multisystem application. (1) An application program
that has various functions distributed across MVS
systems in a multisystem environment. (2) In XCF, an
authorized application that uses XCF coupling services.
(3) In MERVA ESA, multiple instances of MERVA ESA
that are distributed among different MVS systems in a
multisystem environment.

multisystem environment. An environment in which
two or more MVS systems reside on one or more
processors, and programs on one system can
communicate with programs on the other systems.
With XCF, the environment in which XCF services are
available in a defined sysplex.

multisystem sysplex. A sysplex in which one or more
MVS systems can be initialized as part of the sysplex.
In a multisystem sysplex, XCF provides coupling
services on all systems in the sysplex and requires an
XCF couple data set that is shared by all systems. See
also single-system sysplex.

MVS/ESA. Multiple Virtual Storage/Enterprise
Systems Architecture.

N
namelist. An MQSeries for MVS/ESA object that
contains a list of queue names.

nested message. A message that is composed of one
or more message types.

nested message type. A message type that is
contained in another message type. In some cases, only
part of a message type (for example, only the
mandatory fields) is nested, but this “partial” nested
message type is also considered to be nested. For
example, SWIFT MT 195 could be used to request
information about a SWIFT MT 100 (customer transfer).
The SWIFT MT 100 (or at least its mandatory fields) is
then nested in SWIFT MT 195.

nesting identifier. An identifier (a number from 2 to
255) that is used to access a nested message type.

network identifier. A single character that is placed
before a message type to indicate which network is to
be used to send the message; for example, S for SWIFT

network service access point (NSAP). The endpoint
of a network connection used by the SWIFT transport
layer.

NOPROMPT mode. One of two ways to display a
message panel. NOPROMPT mode is only intended for
experienced SWIFT Link users who are familiar with
the structure of SWIFT messages. With NOPROMPT
mode, only the SWIFT header, trailer, and pre-filled
fields and their tags are displayed. Contrast with
PROMPT mode.

NSAP. Network service access point.

nucleus server. A MERVA component that processes a
service request as selected by the request queue
handler. The service a nucleus server provides and the
way it provides it is defined in the nucleus server table
(DSLNSVT).

174 System Programming Guide

O
object. In MQSeries, objects define the properties of
queue managers, queues, process definitions, and
namelists.

occurrence. See repeatable sequence.

option. One or more characters added to a SWIFT
field number to distinguish among different layouts for
and meanings of the same field. For example, SWIFT
field 60 can have an option F to identify a first opening
balance, or M for an intermediate opening balance.

origin identifier (origin ID). A 34-byte field of the
MERVA user file record. It indicates, in a MERVA and
SWIFT Link installation that is shared by several banks,
to which of these banks the user belongs. This lets the
user work for that bank only.

OSN. Output sequence number.

OSN acknowledgment. A collective term for the
various kinds of acknowledgments sent to the SWIFT
network.

output message. A message that has been received
from the SWIFT network. An output message has an
output header.

P
P1. In MERVA Link, a peer-to-peer protocol used by
cooperating message transfer processes (MTPs).

P2. In MERVA Link, a peer-to-peer protocol used by
cooperating application support processes (ASPs).

P3. In MERVA Link, a peer-to-peer protocol used by
cooperating command transfer processors (CTPs).

packet switched public data network (PSPDN). A
public data network established and operated by
network common carriers or telecommunication
administrations for providing packet-switched data
transmission.

panel. A formatted display on a display terminal.
Each page of a message is displayed on a separate
panel.

parallel processing. The simultaneous processing of
units of work by several servers. The units of work can
be either transactions or subdivisions of larger units of
work.

parallel sysplex. A sysplex that uses one or more
coupling facilities.

partner table (PT). In MERVA Link, the table that
defines how messages are processed. It consists of a

header and different entries, such as entries to specify
the message-processing parameters of an ASP or MTP.

PCT. Program Control Table (of CICS).

PDE. Possible duplicate emission.

PDU. Protocol data unit.

PF key. Program-function key.

positional parameter. A parameter that must appear
in a specified location relative to other parameters.

PREMIUM. The MERVA component used for SWIFT
PREMIUM support.

process definition object. An MQSeries object that
contains the definition of an MQSeries application. A
queue manager uses the definitions contained in a
process definition object when it works with trigger
messages.

program-function key. A key on a display terminal
keyboard to which a function (for example, a
command) can be assigned. This lets you execute the
function (enter the command) with a single keystroke.

PROMPT mode. One of two ways to display a
message panel. PROMPT mode is intended for SWIFT
Link users who are unfamiliar with the structure of
SWIFT messages. With PROMPT mode, all the fields
and tags are displayed for the SWIFT message.
Contrast with NOPROMPT mode.

protocol data unit (PDU). In MERVA Link a PDU
consists of a structured sequence of implicit and
explicit data elements:
v Implicit data elements contain other data elements.
v Explicit data elements cannot contain any other data

elements.

PSN. Public switched network.

PSPDN. Packet switched public data network.

PSTN. Public switched telephone network.

PT. Partner table.

PTT. A national post and telecommunication authority
(post, telegraph, telephone).

Q
QDS. Queue data set.

QSN. Queue sequence number.

queue. (1) In MERVA, a logical subdivision of the
MERVA queue data set used to store the messages
associated with a MERVA message-processing function.
A queue has the same name as the message-processing
function with which it is associated. (2) In MQSeries, an

Glossary of Terms and Abbreviations 175

object onto which message queuing applications can
put messages, and from which they can get messages.
A queue is owned and maintained by a queue
manager. See also request queue.

queue element. A message and its related control
information stored in a data record in the MERVA ESA
Queue Data Set.

queue management. A MERVA service function that
handles the storing of messages in, and the retrieval of
messages from, the queues of message-processing
functions.

queue manager. (1) An MQSeries system program that
provides queueing services to applications. It provides
an application programming interface so that programs
can access messages on the queues that the queue
manager owns. See also local queue manager and remote
queue manager. (2) The MQSeries object that defines the
attributes of a particular queue manager.

queue sequence number (QSN). A sequence number
that is assigned to the messages stored in a logical
queue by MERVA ESA queue management in
ascending order. The QSN is always unique in a queue.
It is reset to zero when the queue data set is formatted,
or when a queue management restart is carried out and
the queue is empty.

R
RACF. Resource Access Control Facility.

RBA. Relative byte address.

RC message. Recovered message; that is, an IP
message that was copied from the control queue of an
inoperable or closed ASP via the recover command.

ready queue. A MERVA queue used by SWIFT Link to
collect SWIFT messages that are ready for sending to
the SWIFT network.

remote queue. In MQSeries, a queue that belongs to a
remote queue manager. Programs can put messages on
remote queues, but they cannot get messages from
remote queues. Contrast with local queue.

remote queue manager. In MQSeries, a queue
manager is remote to a program if it is not the queue
manager to which the program is connected.

repeatable sequence. A field or a group of fields that
is contained more than once in a message. For example,
if the SWIFT fields 20, 32, and 72 form a sequence, and
if this sequence can be repeated up to 10 times in a
message, each sequence of the fields 20, 32, and 72
would be an occurrence of the repeatable sequence.

In the TOF, the occurrences of a repeatable sequence
are numbered in ascending order from 1 to 32767 and
can be referred to using the occurrence number.

A repeatable sequence in a message may itself contain
another repeatable sequence. To identify an occurrence
within such a nested repeatable sequence, more than
one occurrence number is necessary.

reply message. In MQSeries, a type of message used
for replies to request messages.

reply-to queue. In MQSeries, the name of a queue to
which the program that issued an MQPUT call wants a
reply message or report message sent.

report message. In MQSeries, a type of message that
gives information about another message. A report
message usually indicates that the original message
cannot be processed for some reason.

request message. In MQSeries, a type of message used
for requesting a reply from another program.

request queue. The queue in which a service request
is stored. It resides in main storage and consists of a set
of request queue elements that are chained in different
queues:

v Requests waiting to be processed

v Requests currently being processed

v Requests for which processing has finished

request queue handler (RQH). A MERVA ESA
component that handles the queueing and scheduling
of service requests. It controls the request processing of
a nucleus server according to rules defined in the finite
state machine.

Resource Access Control Facility (RACF). An IBM
licensed program that provides for access control by
identifying and verifying users to the system,
authorizing access to protected resources, logging
detected unauthorized attempts to enter the system,
and logging detected accesses to protected resources.

retype verification. See verification.

routing. In MERVA, the passing of messages from one
stage in a predefined processing path to the next stage.

RP. Regional processor.

RQH. Request queue handler.

RRDS. Relative record data set.

S
SAF. System Authorization Facility.

SCS. SNA character string

SCP. System control process.

176 System Programming Guide

SDI. Sequential data set input. A batch utility used to
import messages from a sequential data set or a tape
into MERVA ESA queues.

SDO. Sequential data set output. A batch utility used
to export messages from a MERVA ESA queue to a
sequential data set or a tape.

SDY. Sequential data set system printer. A batch
utility used to print messages from a MERVA ESA
queue.

service request. A type of request that is created and
passed to the request queue handler whenever a
nucleus server requires a service that is not currently
available.

sequence number. A number assigned to each
message exchanged between two nodes. The number is
increased by one for each successive message. It starts
from zero each time a new session is established.

sign off. To end a session with MERVA.

sign on. To start a session with MERVA.

single-system sysplex. A sysplex in which only one
MVS system can be initialized as part of the sysplex. In
a single-system sysplex, XCF provides XCF services on
the system, but does not provide signalling services
between MVS systems. A single-system sysplex requires
an XCF couple data set. See also multisystem sysplex.

small queue element. A queue element that is smaller
than the smaller of:

v The limiting value specified during the customization
of MERVA

v 32KB

SMP/E. System Modification Program Extended.

SN. Session number.

SNA. Systems network architecture.

SNA character string. In SNA, a character string
composed of EBCDIC controls, optionally mixed with
user data, that is carried within a request or response
unit.

SPA. Scratch pad area.

SQL. Structured Query Language.

SR-ASPDU. The status report application support
PDU, which is used by MERVA Link for
acknowledgment messages.

SSN. Select sequence number.

subfield. A subdivision of a field with a specific
meaning. For example, the SWIFT field 32 has the
subfields date, currency code, and amount. A field can

have several subfield layouts depending on the way the
field is used in a particular message.

SVC. (1) Switched Virtual Circuit. (2) Supervisor call
instruction.

S.W.I.F.T. (1) Society for Worldwide Interbank
Financial Telecommunication s.c. (2) The network
provided and managed by the Society for Worldwide
Interbank Financial Telecommunication s.c.

SWIFT address. Synonym for bank identifier code.

SWIFT Correspondents File. The file containing the
bank identifier code (BIC), together with the name,
postal address, and zip code of each financial
institution in the BIC Directory.

SWIFT financial message. A message in one of the
SWIFT categories 1 to 9 that you can send or receive
via the SWIFT network. See SWIFT input message and
SWIFT output message.

SWIFT header. The leading part of a message that
contains the sender and receiver of the message, the
message priority, and the type of message.

SWIFT input message. A SWIFT message with an
input header to be sent to the SWIFT network.

SWIFT link. The MERVA ESA component used to
link to the SWIFT network.

SWIFT network. Refers to the SWIFT network of the
Society for Worldwide Interbank Financial
Telecommunication (S.W.I.F.T.).

SWIFT output message. A SWIFT message with an
output header coming from the SWIFT network.

SWIFT system message. A SWIFT general purpose
application (GPA) message or a financial application
(FIN) message in SWIFT category 0.

switched virtual circuit (SVC). An X.25 circuit that is
dynamically established when needed. It is the X.25
equivalent of a switched line.

sysplex. One or more MVS systems that communicate
and cooperate via special multisystem hardware
components and software services.

System Authorization Facility (SAF). An MVS or VSE
facility through which MERVA ESA communicates
with an external security manager such as RACF (for
MVS) or the basic security manager (for VSE).

System Control Process (SCP). A MERVA Link
component that handles the transfer of MERVA ESA
commands to a partner MERVA ESA system, and the
receipt of the command response. It is associated with a
system control process entry in the partner table.

Glossary of Terms and Abbreviations 177

System Modification Program Extended (SMP/E). A
licensed program used to install software and software
changes on MVS systems.

Systems Network Architecture (SNA). The
description of the logical structure, formats, protocols,
and operating sequences for transmitting information
units through, and for controlling the configuration and
operation of, networks.

T
tag. A field identifier.

TCP/IP. Transmission Control Protocol/Internet
Protocol.

Telex Correspondents File. A file that stores data
about correspondents. When the user enters the
corresponding nickname in a Telex message, the
corresponding information in this file is automatically
retrieved and entered into the Telex header area.

telex header area. The first part of the telex message.
It contains control information for the telex network.

telex interface program (TXIP). A program that runs
on a Telex front-end computer and provides a
communication facility to connect MERVA ESA with
the Telex network.

Telex Link. The MERVA ESA component used to link
to the public telex network via a Telex substation.

Telex substation. A unit comprised of the following:

v Telex Interface Program

v A Telex front-end computer

v A Telex box

Terminal User Control Block (TUCB). A control block
containing terminal-specific and user-specific
information used for processing messages for display
devices such as screen and printers.

test key. A key added to a telex message to ensure
message integrity and authorized delivery. The test key
is an integer value of up to 16 digits, calculated
manually or by a test-key processing program using the
significant information in the message, such as
amounts, currency codes, and the message date.

test-key processing program. A program that
automatically calculates and verifies a test key. The
Telex Link supports panels for input of test-key-related
data and an interface for a test-key processing program.

TFD. Terminal feature definitions table.

TID. Terminal identification. The first 9 characters of a
bank identifier code (BIC).

TOF. Originally the abbreviation of tokenized form, the
TOF is a storage area where messages are stored so that
their fields can be accessed directly by their field names
and other index information.

TP. Transaction program.

transaction. A specific set of input data that triggers
the running of a specific process or job; for example, a
message destined for an application program.

transaction code. In IMS and CICS, an alphanumeric
code that calls an IMS message processing program or
a CICS transaction. Transaction codes have 4 characters
in CICS and up to 8 characters in IMS.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of communication protocols that
support peer-to-peer connectivity functions for both
local and wide area networks.

transmission queue. In MQSeries, a local queue on
which prepared messages destined for a remote queue
manager are temporarily stored.

trigger event. In MQSeries, an event (such as a
message arriving on a queue) that causes a queue
manager to create a trigger message on an initiation
queue.

trigger message. In MQSeries, a message that contains
information about the program that a trigger monitor is
to start.

trigger monitor. In MQSeries, a continuously-running
application that serves one or more initiation queues.
When a trigger message arrives on an initiation queue,
the trigger monitor retrieves the message. It uses the
information in the trigger message to start a process
that serves the queue on which a trigger event
occurred.

triggering. In MQSeries, a facility that allows a queue
manager to start an application automatically when
predetermined conditions are satisfied.

TUCB. Terminal User Control Block.

TXIP. Telex interface program.

U
UMR. Unique message reference.

unique message reference (UMR). An optional
feature of MERVA ESA that provides each message
with a unique identifier the first time it is placed in a
queue. It is composed of a MERVA ESA installation
name, a sequence number, and a date and time stamp.

UNIT. A group of related literals or fields of an MCB
definition, or both, enclosed by a DSLLUNIT and
DSLLUEND macroinstruction.

178 System Programming Guide

UNIX System Services (USS). A component of
OS/390, formerly called OpenEdition (OE), that creates
a UNIX environment that conforms to the XPG4 UNIX
1995 specifications, and provides two open systems
interfaces on the OS/390 operating system:

v An application program interface (API)

v An interactive shell interface

UN/EDIFACT. United Nations Standard for Electronic
Data Interchange for Administration, Commerce and
Transport.

USE. S.W.I.F.T. User Security Enhancements.

user file. A file containing information about all
MERVA ESA users; for example, which functions each
user is allowed to access. The user file is encrypted and
can only be accessed by authorized persons.

user identification and verification. The acts of
identifying and verifying a RACF-defined user to the
system during logon or batch job processing. RACF
identifies the user by the user ID and verifies the user
by the password or operator identification card
supplied during logon processing or the password
supplied on a batch JOB statement.

USS. UNIX System Services.

V
verification. Checking to ensure that the contents of a
message are correct. Two kinds of verification are:

v Visual verification: you read the message and
confirm that you have done so

v Retype verification: you reenter the data to be
verified

Virtual LU. An LU defined in MERVA Extended
Connectivity for communication between MERVA and
MERVA Extended Connectivity.

Virtual Storage Access Method (VSAM). An access
method for direct or sequential processing of fixed and
variable-length records on direct access devices. The
records in a VSAM data set or file can be organized in
logical sequence by a key field (key sequence), in the
physical sequence in which they are written on the data
set or file (entry sequence), or by relative-record
number.

Virtual Telecommunications Access Method (VTAM).
An IBM licensed program that controls communication
and the flow of data in an SNA network. It provides
single-domain, multiple-domain, and interconnected
network capability.

VSAM. Virtual Storage Access Method.

VTAM. Virtual Telecommunications Access Method
(IBM licensed program).

W
Windows NT service. A type of Windows NT
application that can run in the background of the
Windows NT operating system even when no user is
logged on. Typically, such a service has no user
interaction and writes its output messages to the
Windows NT event log.

X
X.25. An ISO standard for interface to packet switched
communications services.

XCF. Abbreviation for cross-system coupling facility,
which is a special logical partition that provides
high-speed caching, list processing, and locking
functions in a sysplex. XCF provides the MVS coupling
services that allow authorized programs on MVS
systems in a multisystem environment to communicate
with (send data to and receive data from) authorized
programs on other MVS systems.

XCF couple data sets. A data set that is created
through the XCF couple data set format utility and,
depending on its designated type, is shared by some or
all of the MVS systems in a sysplex. It is accessed only
by XCF and contains XCF-related data about the
sysplex, systems, applications, groups, and members.

XCF group. The set of related members defined to
SCF by a multisystem application in which members of
the group can communicate with (send data to and
receive data from) other members of the same group.
All MERVA systems working together in a sysplex
must pertain to the same XCF group.

XCF member. A specific function of a multisystem
application that is defined to XCF and assigned to a
group by the multisystem application. A member
resides on one system in a sysplex and can use XCF
services to communicate with other members of the
same group.

Glossary of Terms and Abbreviations 179

180 System Programming Guide

Bibliography

MERVA ESA Publications
v MERVA for ESA Version 4: Application

Programming Interface Guide, SH12-6374
v MERVA for ESA Version 4: Advanced MERVA

Link, SH12-6390
v MERVA for ESA Version 4: Concepts and

Components, SH12-6381
v MERVA for ESA Version 4: Customization Guide,

SH12-6380
v MERVA for ESA Version 4: Diagnosis Guide,

SH12-6382
v MERVA for ESA Version 4: Installation Guide,

SH12-6378
v MERVA for ESA Version 4: Licensed Program

Specifications, GH12-6373
v MERVA for ESA Version 4: Macro Reference,

SH12-6377
v MERVA for ESA Version 4: Messages and Codes,

SH12-6379
v MERVA for ESA Version 4: Operations Guide,

SH12-6375
v MERVA for ESA Version 4: System Programming

Guide, SH12-6366
v MERVA for ESA Version 4: User’s Guide,

SH12-6376

MERVA ESA Components
Publications
v MERVA Automatic Message Import/Export Facility:

User’s Guide, SH12-6389
v MERVA Connection/NT, SH12-6339
v MERVA Connection/400, SH12-6340
v MERVA Directory Services, SH12-6367
v MERVA Extended Connectivity: Installation and

User’s Guide, SH12-6157
v MERVA Message Processing Client for Windows

NT: User’s Guide, SH12-6341
v MERVA-MQI Attachment User’s Guide,

SH12-6714
v MERVA Traffic Reconciliation, SH12-6392
v MERVA USE: Administration Guide, SH12-6338
v MERVA USE & Branch for Windows NT: User’s

Guide, SH12-6334

v MERVA USE & Branch for Windows NT:
Installation and Customization Guide, SH12-6335

v MERVA USE & Branch for Windows NT:
Application Programming Guide, SH12-6336

v MERVA USE & Branch for Windows NT:
Diagnosis Guide, SH12-6337

v MERVA USE & Branch for Windows NT:
Migration Guide, SH12-6393

v MERVA USE & Branch for Windows NT:
Installation and Customization Guide, SH12-6335

v MERVA Workstation Based Functions, SH12-6383

Other IBM Publications
v High Level Assembler Language Reference,

SC26-4940
v IMS/ESA Version 5 Administration Guide:

Database Manager, SC26-8012
v IMS/ESA Version 5 Application Programming:

Transaction Manager, SC26-8017

S.W.I.F.T. Publications
The following are published by the Society for
Worldwide Interbank Financial
Telecommunication, s.c., in La Hulpe, Belgium:
v S.W.I.F.T. User Handbook

v S.W.I.F.T. Dictionary

v S.W.I.F.T. FIN Security Guide

v S.W.I.F.T. Card Readers User Guide

© Copyright IBM Corp. 1987, 2001 181

182 System Programming Guide

Index

A
access, sequential 35
adding commands 147
additional checking 94
algorithm 149
ALLOC (status check) 102
application programs 1

initializing (DSLNUC) 142
MFS environment 58

authentication
algorithm 149
DWSMAC 149

automatic
deletion (DSLQMGT) 105
start 125

B
Base Functions tables 151
basic field reference 84
buffer

contents 91
standard 3

C
calling

components (MFS) 57, 58
exits (MFS) 58
interface (DSLTSV) 20
programs 61

Central Institutes
SWIFT Link 153

central services
DSLJRNP 119
DSLWTOP 122
operator interfaces 121
parameter list 103
queue management 103
queue status 104
request 101

CHANGE call (IMS) 125
change message data 94
character set checking 83
checking exits (MFS)

calling 68, 70
coding 75
concept 83
convention 84
high-level language 75
number range 81
sample 161
standard IBM provided 70
SWIFT IBM provided 71

CICS
intertask communication 99
service requests 80

CICS switch rules 138
command

execution routine 133

command (continued)
modification 93
parameters exit 93
rules 145

command tables
display and edit 152
general file maintenance 152
message selection command 152
session command 152
user file maintenance 152

communication
address (MFS) 58
area (DSLCOM) 5

compressing (TOF) 43
concepts

editing 86
expansion 91

conventions, interface 78
copy book codes 79

D
data areas

MFS 68
TOF 29

data checking 83
data manipulation (MFS) 70
database

SPA DB 139
DATETIME request 13
DB2

extra keys 115
default exits (MFS)

calling 72
coding 75
concept 85
convention 85
high-level language 75
number range 81
sample 161
standard IBM provided 72

default setting
routing 31

defining commands 145
delete

messages (DSLQMG) 111
records 50

DELETE request 15, 33
DEQ request 14
display command table 130
dm command 122
DSECT (MCB) 38
DSLCES2

exit 97
DSLCESI

exit 97
DSLCOM

communication area 5
field usage 9
fields 5
macro 5

DSLCOM (continued)
setting up 141

DSLCSEI
exit 97

DSLCWA (work area) 8
DSLCXT

checking/expansion 70, 91
exit 95
transaction program 1

DSLEBSPA (utility program) 1
DSLECMDT

command table 131
overview 152

DSLEFCMT (overview) 152
DSLEISPA macro 139
DSLEMCMT (command table) 152
DSLEPTT

changing 129
overview 152
user program table 129

DSLERR
error message 61
TOF field 57

DSLEUCMT
command table 152
end-user driver 127

DSLEUD
end-user driver 127
error messages 136
program 1

DSLFDTT
overview 151

DSLFLTT
overview 151

DSLFLUT (utility program) 1
DSLFLV

file services 47
record access 51
sequential access 52

DSLFLVP (setup) 47
DSLFNTT

overview 151
DSLHCP

exit 95, 96
program 1

DSLJRN (journal service) 119
DSLKPROC macro 153
DSLLMFLD (MFS field) 69
DSLMCCRT (overview) 153
DSLMCHE (internal functions) 68
DSLMCMDT

display/edit command table 130
overview 152

DSLMCnnn
data check 70
exit check 83
field check 83

DSLMDnnn (setting exits) 85
DSLMEnnn (editing exits) 73, 86
DSLMFS macro 55, 70
DSLMINIT (initialize) 61

© Copyright IBM Corp. 1987, 2001 183

DSLMLFP (line format) 64
DSLMMFS

MFS interface program 55
user exit 92

DSLMPFxx
overview 151

DSLMPT macro 80
DSLMPTT

overview 152
program table 80, 152

DSLMREAS (reason codes) 79
DSLMS903

separation routine 90
DSLMSGT

overview 151
DSLMSGT (addresses) 147
DSLMSnnn (separation exits) 74, 87
DSLMTERM (termination) 62
DSLMTIN (message initialization) 62
DSLMU001 (message initialization) 92
DSLMU003 (panel frame) 92
DSLMU004 (command modification) 93
DSLMU005 (command parameters) 93
DSLMU006 (help functions) 93
DSLMU008 (change message) 94
DSLMU009 (message checking) 94
DSLMU010 (message completion) 94
DSLMU011 (skip message exit) 95
DSLMU020 (DSLSDI exit) 95
DSLMU021 (DSLSDO exit) 95
DSLMU023

DSLCXT exit 95
DSLHCP exit 95

DSLMU027 (DSLHCP exit) 96
DSLMU054 (message type) 96
DSLMU090 (termination exit) 97
DSLMU099 (sample exit) 97
DSLMU126 (DWSDGPA exit) 97
DSLMU240 (DSLCESI exit) 97
DSLMU241 (DSLCSEI exit) 97
DSLMU242 (DSLCES2 exit) 97
DSLMUnnn (user exits) 75
DSLMXnnn (field expansion) 73
DSLMXPND (field expansion) 70
DSLNCM macro 145
DSLNCMT (operator command

table) 145, 153
DSLNIC (communication facility) 99
DSLNMOP

operator interface program 121
parameter list 121

DSLNPT macro 142
DSLNPTT (nucleus program table) 141,

152
DSLNSVT (nucleus server table) 153
DSLNTR macro 144
DSLNTRT (task server request

table) 152
DSLNUC (nucleus) 1, 141
DSLOMS macro 17
DSLOMSG

addresses 147
message program 17
program 134

DSLQDSUT (utility program) 1
DSLQMG 107
DSLQMG macro 103, 104

DSLQMGT 107
user exits 115

DSLSDI exit 95
DSLSDO exit 95
DSLSRV macro 13
DSLSRVP

coding example 13
service program 13
setup 13

DSLTOFSV
return information 23
setup 22

DSLTOFXV (reason codes) 23
DSLTSV macro

call interface 20
expand a field 37
tokenized form 19

DSLTUCB (control block) 61
DSLTXTT

overview 152
DSLWTO (user exit) 123
DSLWTOEX (WTO user exit) 121, 123
DSLWTOP (WTO program) 121, 122
DSSLTT (overview) 153
DUMP request 14
DWSCIT (Central Institutes table) 153
DWSDGPA

exit 97
DWSDU021 (user exit) 148
DWSECMDT

end-user driver 127
overview 153

DWSLINx (overview) 153
DWSMAC program 149
DWSRxxx (routing tables) 153

E
ECB address 113
edit command table 130
editing exits (MFS)

calling 73
coding 75
concept 86
convention 86
high-level language 75
number range 81
sample 161
standard IBM provided 73

EKAAS10 (program) 1
EKAPT macro 154
EKATR10 (program) 1
end-user driver

command table 129
error messages 128, 136
expansion 91
function program (DSLEUD) 135
IMS/CICS program 136
terminal user control block 61
user exits 134

ENLRxxx (overview) 153
ENLTKRQT (test-key req. table) 153
ENQ request 14
entry code (MFS) 76
error messages

DSLERR 61
DSLEUD 136

error messages (continued)
field check (MFS) 83
language support 58
MFS 56, 58
MFSPEMSB 61

EUD (DSLEUD) 127
expansion exits (MFS)

calling 70, 73
coding 75
concept 91
convention 92
high-level language 75
number range 81
SWIFT IBM provided 70

external line format
tokenized format 67

F
feature definition table 151
field check (MFS) 83
field checking 83
field contents expansion 73
field data, checking 70
field defaults (DSLMDnnn) 72
field descriptor (TOF) 40
field expansion (DSLMXPND) 70
field initializing (TOF) 37
field reference 84
field usage (DSLCOM) 9
FREE function (DSLQMG) 112
free space (TOF) 43
freeing messages (DSLQMG) 112
FREEMAIN request 14
function

command table 132
program (DSLEUD) 135

G
general file services

adding records 50
buffer layout 48
closing files 49
deleting records 50
opening files 49
record access 51
record layout 48
replacing record 51
returned information 48
sequential record access 52

general purpose registers 80
general tables 151
GETMAIN request 14
GETNEXT (sequential read) 109

H
help

function exit 93
TOF 157

184 System Programming Guide

I
identification, message 64
identity keys (DSLQMG) 105
IMS

service requests 80
switch rules 137

initializing fields (TOF) 37
INSERT call (IMS) 125
interface conventions (MFS) 78
interregion communication 99
intertask communication

service request 101
status check 102
storage definition 100
terminating communication 102

intraregion communication 99

J
joining (TOF) 44
journal record (DSLJRNP) 119
journal service (DSLJRN) 119

L
language

MFS 58
support 58

layout, general file services 48
line formatter program 64
linkage description (MFS) 57
list of tables 151
LOAD request 15
logical data stream (MFS) 68
logical terminal table 153

M
mandatory fields 84
mandatory subfields (MFS) 88
mapping

external line format 66, 67
functions (MFS) 56
messages 64
TOF 65

merging (TOF) 43
MERVA Link

macro cross reference 156
tables overview 154

MERVA-MQI Attachment
macro cross reference 155
tables overview 153

message
checking (MFS) 84
completion exit 94
deleting 111
identification 64, 91
initialization 62, 92
mapping (MFS) 68
processing 56
retrieval 17, 108
storage (DSLQMG) 104, 107
transfer 63
type determination 96

Message Format Service 75

Message Format Service (continued)
calling components 57
calling programs 61
checking 70
CICS services 79
classes 55
communication addresses 58
control block 61
data manipulation programs 70
default 85
DSLERR 57
DSLMCnnn 70, 83
DSLMDnnn 72, 85
DSLMEnnn 73, 86
DSLMMFS 55
DSLMPTT 80
DSLMSnnn 74, 87
DSLMTERM 62
DSLMTIN 62
DSLMXnnn 73
DSLMXPND 70
entry coding 76
error messages 56, 58
exit check 83
exit program classes 83
exit program installation 80
exit programs 56, 75
exits 70
expansion 91
external line format 66
field contents 73
field expansion 70
function name 90
general entry code 76
general exit code 76
general functions 56
general purpose registers 80
initializing 61
interface conventions 78
internal functions 68
language support 58
line formatter program 64
linkage description 57
mandatory subfields 88
mapping functions 56
message checking 84
message field defaults 72
message initialization 62
message-processing functions 56
network dependent 58
page check 84
parameter list 59
permanent storage 60
return information 61
sample user exits 161
screen support 56
service functions 55
special conventions 85
storage areas 58
subfield separation 74
system field table 88
system fields 88
tables (overview) 152
temporary storage 60
termination call 62
TOF space 91

MFS 55

MFS termination exit 97
MFSPEMSB (error message) 61
MPUT (DSLQMGT) 107

N
nesting identifier 34, 42
network

dependent (MFS) 58
determination 96

Notices 165
nucleus tables 152

O
operator

interfaces 121
operator messages (DSLOMSG) 122
operator messages (DSLWTOP) 122

optional subfields 88
overview

MERVA Link tables 154
MERVA-MQI Attachment tables 153
tables 151

P
page checking 84
panel

frame 92
permanent storage (MFS) 60
POST request 15
printer

mapping (MFS) 67
processing (DSLNPT) 143
program function keys 151
program samples 161
program table

nucleus 1
PURGE call (IMS) 125
PUT (DSLQMGT) 105

Q
queue elements, updating 112
queue list request 114
queue management

DSLQMG 103
ECB address 113
freeing messages 112
GET with key (DSLQMG) 108
GET with MODIF=DYNBUF

(DSLQMG) 110
GETNEXT 109
retrieving messages 108
sequence number (QSN) 104

queue status 104

R
reason codes 36, 79
records

access (DSLFLV) 51
deleting 50
replacing 51

Index 185

RELEASE request 15
REPLACE function 112
replacing records 51
reserve space 91
restrictions (DSLMCMDT) 133
retrieving messages 17, 108
returned information 16
ROUTE without keys and with automatic

delete 107
routines

checking 70
expansion 91
function name separation 90
separation 87
setting 85

routing tables
SWIFT Link 153
Telex Link 153

S
sample programs

API 161
MERVA Link 161
MFS exits 161
Telex Link 161

screen
command 129
mapping (MFS) 67
support (MFS) 56

separation exits (MFS)
calling 74
coding 75
concept 87
convention 91
high-level language 75
number range 81
sample 161
standard IBM provided 74

sequential access 35
sequential read (DSLQMG) 109
service functions (MFS) 55
service requests 80, 101, 104
session command table 131
setting routines 85
skip message exit 95
SNAP request 15
SPA DB 139
space, reserve TOF 91
special conventions (MFS) 85
standard

buffer 3
field reference 84

start, automatic 125
start command (CICS) 125
status check (ALLOC) 102
stop command 143
storage

areas (MFS) 58
definition 100

subfields
optional (MFS) 88
separation 74

SWIFT Link
Central Institutes table 153
central services 103, 119
direct service 119

SWIFT Link (continued)
FIN-Copy service 153
general file services 47
information returned 48
journal services 119
macro cross reference 155
operator interfaces 121
PREMIUM service 153
record layout 48
return data 16
service program 13
system services 13
table overview 153
user exit 148

switch rules (CICS) 138
switch rules (IMS) 137
system field table 88
system fields (MFS) 88
system services 13

T
tables

display command 130
edit command 130
end-user driver 152
function command 132
list 151
logical terminal table 153
nucleus tables 152
overview 151
session command 131
SWIFT Link overview 153
task server request table 152
user exits 157

Telex Link
macro cross reference 155
tables overview 153
test-key requirement table 153

temporary storage (MFS) 60
terminal feature definition 151
termination call 62
TOF

accessing fields 34
data areas 29
reading data 31
reason codes 23

TOFRFDNF (reason code) 36
tokenized form

accessing fields 34
browsing 31
checking fields 36, 69
compressing 43
creating 25
data areas 29, 33
deleting data areas 33
DSLTOFSV (setup) 22
DSLTSV 19, 20
exit program (MFS) 22
expanding fields 37
field descriptor 40
Free dynamic TOF space 26
information returned 23
initializing fields 37
joining 44
line buffer 65
mapping messages 64

tokenized form (continued)
merging 43
message initialization 62
reading data 31
reading dynamic TOF settings 32
reason codes 24
removing data 33
reserve space 91
return codes 24
TSVPARMS 19
writing data 27
writing dynamic TOF settings 25

Tokenized Form
services 19

tokenized format
external line format 66

TSVPARMS (parameters) 19
TSVPMODS (modifiers) 23

U
UMR (unique message reference) 63, 90,

116, 117, 158
unique message reference (UMR) 63, 90,

116, 117, 158
updating queue elements 112
user exits

DSLQMGT 115
DSLWTO 123
DSLWTOEX 123
EUD 128
MFS 75, 92
samples 161
tables 157

user exits (MFS)
adding 92
calling 75
coding 75
high-level language 75
number range 81
sample 161
standard IBM provided 92

user program table 129
user session command 129

W
WAIT request 15
WTO (user exit) 123

186 System Programming Guide

MERVA Requirement Request

Use the form overleaf to send us requirement requests for the MERVA product. Fill
in the blank lines with the information that we need to evaluate and implement
your request. Provide also information about your hardware and software
environments and about the MERVA release levels used in your environment.

Provide a detailed description of your requirement. If you are requesting a new
function, describe in full what you want that function to do. If you are requesting
that a function be changed, briefly describe how the function works currently,
followed by how you are requesting that it should work.

If you are a customer, provide us with the appropriate contacts in your
organization to discuss the proposal and possible implementation alternatives.

If you are an IBM employee, include at least the name of one customer who has
this requirement. Add the name and telephone number of the appropriate contacts
in the customer’s organization to discuss the proposal and possible implementation
alternatives. If possible, send this requirement online to MERVAREQ at SDFVM1.

For comments on this book, use the form provided at the back of this publication.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

Send the fax to:

To: MERVA Development, Dept. 5640 Fax Number: +49-7031-16-4881
Attention: Gerhard Stubbe Internet address:

mervareq@de.ibm.com
IBM Deutschland Entwicklung GmbH
Schoenaicher Str. 220
D-71032 Boeblingen
Germany

© Copyright IBM Corp. 1987, 2001 187

MERVA Requirement Request

To: MERVA Development, Dept. 5640 Fax Number: +49-7031-16-4881
Attention: Gerhard Strubbe Internet address:

mervareq@de.ibm.com
IBM Deutschland Entwicklung GmbH
Schoenaicher Str. 220
D-71032 Boeblingen Germany

Page 1 of ______

Customer’s Name __

Customer’s Address __

__

__
Customer’s
Telephone/Fax __

Contact Person at __
Customer’s Location
Telephone/Fax __

MERVA
Version/Release __

Operating System __
Sub-System
Version/Release __

Hardware __

Requirement
Description __

__

__

__

__

__

__

Expected Benefits __

__

__

188 System Programming Guide

Readers’ Comments — We’d Like to Hear from You

MERVA for ESA
System Programming Guide
Version 4 Release 1

Publication No. SH12-6366-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SH12-6366-01

SH12-6366-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH
Information Development, Dept. 0446
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5648-B29

SH12-6366-01

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
M

ER
VA

fo
r

E
SA

Sy
st

em
Pr

og
ra

m
m

in
g

G
ui

de
Ve

rs
io

n
4

R
el

ea
se

1

	Contents
	About This Book
	Chapter 1. Types of MERVA ESA Application Programs
	Chapter 2. Buffer Standard of MERVA ESA
	Chapter 3. Using the MERVA ESA Communication Area (DSLCOM)
	Filling the Fields of DSLCOM
	The Use of the DSLCOM Fields by the MERVA ESA Programs

	Chapter 4. Using General Services (DSLSRV)
	Setup for DSLSRVP
	DATETIME Request
	DEQ Request
	DUMP Request
	ENQ Request
	FREEMAIN Request
	GETMAIN Request
	LOAD Request
	POST Request
	RELEASE/DELETE Request
	SNAP Request
	WAIT Request
	Information Returned

	Chapter 5. Using the Operator Message Retrieval Program (DSLOMS)
	Mapping the Parameter List of DSLOMSG
	Retrieving a Message

	Chapter 6. Using the TOF Supervisor (DSLTSV)
	Using the Call Interface or the TOF Supervisor Macro DSLTSV
	Setup for DSLTOFSV
	Information Returned
	Creating a New TOF
	Writing Dynamic TOF Settings
	Freeing the Space Allocated by the TOF Supervisor
	Writing Data to the TOF
	Adding Data Areas to the TOF
	Reading Data from the TOF
	Reading Dynamic TOF Settings
	Deleting Data from the TOF
	Accessing Fields in the TOF
	Checking Fields in the TOF
	Expanding Fields in the TOF
	Initializing Fields in the TOF
	Adding a Nesting Identifier to the TOF
	Compressing the TOF into a Buffer and Merging the TOF from a Buffer
	Joining the TOF into a Buffer

	Chapter 7. Using General File Services (DSLFLV)
	Using the File Service Macro DSLFLV
	Setup for DSLFLVP
	Information Returned
	Layouts of Buffers and Records
	Opening and Closing a File
	Adding a Record
	Deleting a Record
	Replacing a Record
	Getting a Record by Direct Access
	Getting Records by Sequential Access

	Chapter 8. Using the Message Format Service (DSLMFS)
	The DSLMFS Macro
	Invoking MFS Service Functions
	MFS General Functions:

	General MFS Linkage Description
	Calling Message Format Service Components
	Calling Message Format Service Components from MFS Components or Exits
	Message Format Service Error Messages
	Network-Dependent Error Messages
	Support for Languages other than US English for Error Messages

	Establishing the MFS Environment in an Application Program
	Storage Areas Used by the MFS Functions
	Addresses Used in the MERVA ESA Communication Area (DSLCOM)
	The MERVA ESA MFS Parameter List
	Message Format Service Permanent Storage
	MFS Temporary Storage
	The Terminal User Control Block (DSLTUCB)
	Return Information from Message Format Service

	Calling Message Format Service Programs
	DSLMINIT—Initialize MFS
	DSLMTERM—Terminate MFS
	DSLMTIN—Message Initialization in the TOF
	Message Initialization
	From MERVA ESA Queue to TOF
	From TOF to MERVA ESA Queue

	Line Formatter Program
	Mapping from TOF to Line Buffer
	Mapping from Line Buffer to TOF
	Update Functions

	External Line Format for Messages
	Mapping from Tokenized Format to External Line Format
	Mapping from External Line Format to Tokenized Format

	MFS Mapping for Screens and Printers
	Data Areas
	MFS Message Mapping for a Logical Data Stream

	Calling MFS Internal Functions
	DSLMXPND—Field Expansion of a Complete Message

	Calling MFS Data Manipulation Programs and Exits
	DSLMCnnn—Checking the Data of a Field
	SWIFT Field Checking

	DSLMDnnn—Setting a Default for a Message Field
	DSLMEnnn—Editing Program
	DSLMXnnn—Expanding Field Contents
	DSLMSnnn—Separating a Subfield from Its Main Field
	DSLMUnnn—Calling MFS User Exits

	Coding MFS Exit Programs
	Coding MFS Exit Programs with a High-Level Language Interface
	Coding MFS Exit Programs with the DSLMMFS Macro-Level Interface
	MFS Entry Coding
	Building General Entry and Exit Code for MFS Programs

	Interface Conventions
	Usage Conventions for General Purpose Registers
	Installation of MFS Exit Programs
	MERVA Link: MFS Program Table Modification
	How to Process the Changed DSLMPTT

	MFS Exit Program Classes
	MFS Checking Exits (DSLMCnnn)
	Checking Concept
	Special Conventions for Checking Routines

	MFS Default Setting Exits (DSLMDnnn)
	Default Setting Concept
	Special Conventions for Default Setting Routines

	MFS Editing Exits (DSLMEnnn)
	Editing Concept
	Special Conventions for Editing Routines
	Coding Example

	MFS Separation Exits (DSLMSnnn)
	Separation Concept
	Special Conventions for Separation Routines

	MFS Expansion Exits (DSLMXnnn)
	Expansion Concept
	Special Conventions for Expansion Routines

	Adding a User Exit to DSLMMFS

	Chapter 9. Using the Intertask Communication Facility (DSLNIC)
	Storage Definition
	Starting Communication
	Requesting a Service
	Requesting a Status Check
	Terminating Communication

	Chapter 10. Using the Queue Management (DSLQMG)
	Building the Parameter List for a Queue Management Request
	Requesting Queue Management Services
	Checking the Queue Status
	Storing Messages
	PUT without Keys and without Automatic Delete
	PUT without Keys and with Automatic Delete
	MPUT with Keys and with Automatic Delete
	ROUTE without Keys and with Automatic Delete

	Retrieving Messages
	GET with Key
	GETNEXT (Sequential Read)
	GET with MODIF=DYNBUF

	Deleting Messages
	Updating Queue Elements
	Freeing Messages
	Setting an ECB Address for a Queue
	Resetting an ECB Address for a Queue
	Requesting a Queue List
	Extra Keys with DB2
	DSLQMGT User Exits
	DSLQMGD User Exits for Queue Management Using DB2

	Chapter 11. Using the Journal Service (DSLJRN)
	Defining the Parameter List
	Using the Journal Service as Direct Service
	Writing a Journal Record Directly
	Retrieving a Journal Record Directly

	Using the Journal Service as Central Service
	Writing a Journal Record
	Retrieving a Journal Record

	Chapter 12. Using the Operator Interfaces
	Using the Operator Interface Program (DSLNMOP)
	Defining the Parameter List
	Using the Operator Interface as Direct Service
	Using the Operator Interface as Central Service

	Using the Write-to-Operator Program (DSLWTOP)
	Defining the Parameter List
	Using the Write-to-Operator Interface

	Using the Write-to-Operator User Exit (DSLWTOEX)

	Chapter 13. Coding MERVA ESA Applications for Automatic Start
	Chapter 14. Changing the MERVA ESA End-User Driver (DSLEUD)
	Changing DSLEPTT
	Changing End-User Command Tables
	Display and Edit Command Table (DSLMCMDT)
	How to Process the Changed Display and Edit Command Table

	Session Command Table (DSLECMDT)
	Function Command Tables
	Command Processing Restriction of the End-User Driver
	Interface of an End-User Command Execution Routine

	Coding User Exits of DSLEUD
	Writing a DSLEUD Function Program
	Error Messages of DSLEUD
	Calling the End-User Driver by an IMS/CICS Application Program
	IMS Rules for the Program-to-MERVA Switch
	CICS Rules for the Program-to-MERVA Switch

	Writing the DSLEUD SPA File Program in IMS
	Using an HDAM Database as SPA File
	HDAM Database Structure

	Chapter 15. Application Programs Linked to DSLNUC
	Coding an NPT Program (DSLNPT)
	Start Request for an NPT Program
	Event Request for an NPT Program
	Stop Request for an NPT Program

	Coding a Central Service Program (DSLNTR)
	Creating MERVA ESA Operator Commands (DSLNCM)
	Rules for Defining MERVA ESA Commands
	Adding an Operator Command

	Using the SWIFT Link User Exits
	DWSDU021
	DWSMU126

	Chapter 16. Using the SWIFT Link MAC Authentication Algorithm
	Padding the Key

	Appendix A. List of MERVA ESA Tables
	Overview of the Base Functions Tables
	General MERVA ESA Tables
	Message Format Service Tables
	MERVA ESA End-User Driver Tables
	MERVA ESA Nucleus Tables

	Overview of the MERVA-MQI Attachment Tables
	Overview of the SWIFT Link Tables
	Overview of the Telex Link Tables
	Overview of the MERVA Link Tables

	Appendix B. Cross-References, Macros, and Tables
	Appendix C. Table of User Exits
	Appendix D. MERVA ESA Sample Programs
	Sample MFS Exits as Coding Examples
	Sample MFS Exits to Perform Certain Functions
	Sample User Exit Program
	Sample Nucleus Programs
	Sample API Programs
	Sample API Application for a CICS Online Environment
	Sample Scenarios for Using MERVA Link

	Appendix E. Notices
	Programming Interface Information
	Trademarks

	Glossary of Terms and Abbreviations
	Bibliography
	MERVA ESA Publications
	MERVA ESA Components Publications
	Other IBM Publications
	S.W.I.F.T. Publications

	Index
	MERVA Requirement Request
	Readers’ Comments — We'd Like to Hear from You

