
MERVA ESA Components

Directory Services
Version 4 Release 1

SH12-6367-00

IBM

MERVA ESA Components

Directory Services
Version 4 Release 1

SH12-6367-00

IBM

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix C.
Notices” on page 45.

First Edition, March 2000

This edition applies to Version 4 Release 1 of IBM MERVA Components (5648-B30) and to all subsequent releases
and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book v
Who Should Read This Book v
Sending Your Comments v

Chapter 1. Introducing the MERVA ESA
Directory Services 1

Chapter 2. Planning for the MERVA ESA
Directory Services 5
Hardware Requirements 5

Processors 5
Peripheral Equipment 5

Software Requirements 5

Chapter 3. Installing and Customizing
the Directory Services 7
Updating MERVA ESA 7
Updating DB2 8

Defining the Database 8
Binding the Application 9
Space You Need for Your Data Sets 9
Maintaining the Database. 10

What You Need to Define for CICS/ESA 10
Resource Definition Jobs 10
Resource Control Table Entries 10

What You Need to Define for IMS/ESA 11
How to Initialize Your Installation 11

Chapter 4. Using the MERVA Directory
Services API 13
API Data Types 13
API Functions 16

HMSAdd 17
HMSClear 20
HMSCommit 21
HMSConnect 22

HMSCreate 23
HMSDelete 24
HMSDisconnect 25
HMSGetErrorInfo 26
HMSInitApplication 27
HMSKeyRead 28
HMSKeyReadNext 30
HMSReadField 32
HMSRollback. 34
HMSUpdate 35
HMSWriteField 37

Appendix A. Error Handling 39

Appendix B. Reason Codes 41
Understanding the Message Format 41
General Error Messages 41
Reason Codes 42

Appendix C. Notices 45
Trademarks 46

Glossary of Terms and Abbreviations 49

Bibliography 61
MERVA ESA Publications. 61
Other MERVA Publications 61
S.W.I.F.T. Publications 61

Index 63

MERVA Requirement Request 65

Readers’ Comments — We’d Like to
Hear from You 67

© Copyright IBM Corp. 2000 iii

iv Directory Services

About This Book

This book relates to the IBM licensed program Message Entry and Routing with
Interfaces to Various Applications for ESA Version 4 Release 1 (abbreviated to
MERVA ESA in this book).

This book describes:
v The installation and customization of the MERVA ESA Directory Services
v The application programming interface (API) to use S.W.I.F.T. data in customer

applications
v The identification and correction of problems

Who Should Read This Book
If you need to install and customize the MERVA ESA Directory Services, write
application programs, or identify and correct problems, this book is for you.

Sending Your Comments
Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book or any other
MERVA ESA documentation:
v Send your comments by e-mail to SWSDID@DE.IBM.COM. Be sure to include

the name of the book, the part number of the book, the version of MERVA ESA,
and, if applicable, the specific location of the text you are commenting on (for
example, a page number or table number).

v Fill out one of the forms at the back of this book and return it by mail, by fax, or
by giving it to an IBM representative.

© Copyright IBM Corp. 2000 v

vi Directory Services

Chapter 1. Introducing the MERVA ESA Directory Services

The MERVA ESA Directory Services is an interface to connect customer
applications and the S.W.I.F.T. Directory Services Service Description Release 2.0,
Annex A-MT293.

This release of MERVA ESA Directory Services supports the Treasury Directory of
the S.W.I.F.T. Directory Services. It lets you collect and process information such as
standing settlement instructions (SSI) related to foreign exchange, money market,
and derivative trades.

Figure 1 shows the infrastructure of the S.W.I.F.T. Directory Services.

To exchange information between subscribers and the system an MT293
Information Service Message is used. See S.W.I.F.T. Directory Services Service
Description for details about the MT293 message structure.

MT293

Publisher S.W.I.F.T. Subscribers

Directory
Services
System MT293

MT293

MT293MT293

MERVA
Directory
Services

Application

aa a aa
aaaa

a
aa
aaa

aaaa
a
aa
aaa

a a
Central

Database

S.W.I.F.T.
Directory
Services

Application

Figure 1. S.W.I.F.T. Directory Services

© Copyright IBM Corp. 2000 1

Note: This release of MERVA ESA Directory Services supports only MT293
messages where:
v The type of data is 3000 (the last part of field 14T).

and:

v The type of operation (field 22A) is A002 and the message type (field
0105) is INFODIST. This provides an update request.
or:

v The type of operation (field 22A) is A001 and the message type (field
0105) is INFOANSW. This provides an answer to a query.

Figure 2 shows the MERVA Directory Services Application at the customer’s site.

The S.W.I.F.T. Link of MERVA ESA receives an MT293 message sequence and
stores it in the S.W.I.F.T. Link receive queue. A sequence can contain one or more
MT293 messages. Messages with ‘A001’ or ‘A002’ in field “22A” will be routed into
the MERVA queue HMSINP. The incoming message starts the transaction HMSI

Incoming MT293 ROUTING

MERVA
API queue
'HMSINP'

Routing Table
'HMSROUTT'

Msg queue
'HMSOK'

Field 22A = 'A001'
= 'A002'

HMSSTAT1
=

'OK'

HMSSTAT1
=

'ERR'

Control queue
'HMSCNT'

Incoming MT293 ROUTING

MERVA
S.W.I.F.T. Link

Receive Queue

SSI - MERVA ESA Interface 'HMSEAMDS'
Transaction ID 'HMSI'

API queue
'HMSINP'

Routing Table
'HMSROUTT'

Msg queue
'HMSOK'

Msg queue
'HMSERROR'

Control queue
'HMSCNT'

a
aaaa
a

'HMSROUTT'

Create DB
Bind Application

D
B
M
SAdministration /

Maintenance

Create DB
Bind Application

D
B
M
SAdministration /

Maintenance

DB2 Database
HMSDB

HMSCST

HMSSSI

HMSCNT

HMSLOG

MERVA Directory Services API

Customer Application

Figure 2. MERVA Directory Services Structure

2 Directory Services

connected to the program HMSEAMDS. This program creates an internal control
record for a new message or updates the record of a subsequent message in a
sequence.

The message will be moved into the MERVA queue HMSCNT, where the program
checks the completeness of a message sequence using the internal control records.
When a message sequence is complete, HMSEAMDS concatenates all messages of
the sequence to one large message.

The HMSEAMDS starts parsing this message. It collects the SSI data and checks it
against the database. It adds the SSI record to the database, or deletes the record if
the field ‘30Z0’ contains ‘NOOP’.

The program routes the message into the MERVA queue HMSOK or HMSERR,
depending on the error condition.

The process ends with the deletion of the internal control record and the commit of
the database updates.

The information content of the MT293 is now stored on the internal database and
can be used by other internal applications.

Chapter 1. Introducing the MERVA ESA Directory Services 3

4 Directory Services

Chapter 2. Planning for the MERVA ESA Directory Services

This chapter describes hardware and software requirements you need to install and
use the MERVA ESA Directory Services.

Hardware Requirements
To work with MERVA ESA Directory Services you need no additional hardware on
top of the MERVA ESA base installation. The base MERVA ESA machine
requirements are described in detail in the MERVA for ESA Installation Guide.

Processors
Any processor that supports the specified operating system environment.

Peripheral Equipment
v At least one 3270-compatible display station, for example, 3278-2 or 3279-2
v An IBM 3268 printer or any printer operating in 3270 mode or SCS mode is

optional
v A tape or cartridge drive for initial loading
v At least one direct-access storage device (DASD) for data sets and libraries; as

supported by the operating system

Software Requirements
You need the following software components for MERVA ESA Directory Services:
v Operating system:

– MVS/ESA SP Version 4 Release 2 or higher (5695-047) for JES2
– MVS/ESA SP Version 4 Release 2 or higher (5695-048) for JES3
– MVS/ESA SP Version 5 Release 1.0 (5655-068) for JES2
– MVS/ESA SP Version 5 Release 1.0 (5655-069) for JES3
– OS/390 Release 1 or higher (5645-001)

v Database:
– DB2 for OS/390 Version 5 (5655-DB)
– DB2/MVS (5655-DB2)

v IBM Language Environment for MVS/VM Version 1 Release 4 (5688-198)
v MERVA for ESA Version 3 for MVS/CICS (5655-039)
v MERVA for ESA Version 3 for MVS/IMS (5655-040)

© Copyright IBM Corp. 2000 5

6 Directory Services

Chapter 3. Installing and Customizing the Directory Services

The installation process for MERVA ESA Directory Services is described in the
Program Directory for MERVA ESA Directory Services, which is delivered together
with the machine-readable material.

To install MERVA ESA Directory Services, modify the following system areas:
v Update MERVA ESA
v Update DB2®

v Add definitions for CICS/ESA®

v Add definitions for IMS/ESA®

Updating MERVA ESA
MERVA ESA starts the program HMSEAMDS as soon as a message is routed into
a queue. To enable this program to operate, do the following:
v Update the field definition table DSLFDTT ASSEMBLE

Insert the member HMSFDTTC COPY, then compile and link the field definition
table.
The fields HMSSTAT1 and HMSKEY01 are defined in this table. The field
HMSKEY01 contains a unique key for each message, created from the fields
SW20 and SW28 of the message index. The field HMSSTAT1 holds status
information needed to route messages out of the HMSCNT queue.

v Update the function table DSLFNTT ASSEMBLE

Insert the member HMSFNTTC COPY, then compile and link the function table.
This table contains the definition and the characteristics of the queues. It defines:
– The transaction to start after a message is stored into HMSINP
– The routing for a message coming out of the HMSCNT queue
– The TOF to be used as key1 to get messages accessed by a key into the

internal TOF buffer.

For IMS only: The program HMSEAMDS supports the
[,MSGLIM=(nnnnn[,CHKP | NOCHKP])].

The first subparameter defines the number of messages that can
be processed in a single schedule before control is returned to
IMS. You can specify a number between 1 and 65535 for nnnnn.
For more details see the DSLFNT macro in the MERVA for ESA
Macro Reference.

© Copyright IBM Corp. 2000 7

Updating DB2
This section describes what you need to define, bind, and maintain the DB2
database.

Defining the Database
This version of MERVA ESA Directory Services uses the DB2 database HMSDB,
which contains the following tables.

HMSSSI stores SSI-related information.

HMSLOG logs add, delete, and update processing on SSI records.

HMSCST contains the definition of the entry parameter for the transaction
program HMSEAMDS.

HMSCNT stores control information for the transaction program
HMSEAMDS.

The following Data Definition Language (DDL) members contain the table
definitions:

1. HMSTS defines storage groups database and table space.

2. HMSTB defines tables and indexes.

3. HMSVIEW defines DB2 views.

The installation provides default values that do not require customizing. See the
“HMSCST database table” on page 9 for these default settings.

However, you can change the following parameters to fit your needs:
v MAXDAYS
v TRACELVL
v TRACEAREA
v QNAME

Important:

1. You need DB2 access authorization to create or define the tables.
2. To create the database follow the order of the DDL members in the sequence

listed.
3. With the authorization ID and the name of your DB2 table space you can use

the DLL members as input data for the DB2 Online Utility SPUFI.
4. If you change the name of the control queue (HMSCNT), change the function

table HMSFNTTC COPY and the routing table HMSROUTT ASSEMBLE
accordingly.

5. Do not change the program name HMSCAMDS.

8 Directory Services

Table 1. HMSCST Database Table

Field Description Default

PGMNAME Program ID HMSCAMDS

TRANNAME Transaction ID HMSI

HMSKEY01 Used for recovery

MAXDAYS Specifies the number of days
the program waits for
completion of a message
sequence.

5

TRACELVL 0 = no

1 = low

2 = med

3 = large

4 = max

0

TRACEAREA 0 = no

1 = HMSEAMDS

2 = database layer

4 = API

8 = parse of message

0

STATE Used for recovery

NAME Name of control queue HMSCNT

Binding the Application
Before the MERVA Directory Services can define, retrieve, and update the data in
the database, you need to bind a DB2 application plan. Use the JCL member
HMSBPLAN and the Database Request Modules (DRMs) delivered with the
product to bind the plan.

Space You Need for Your Data Sets
The number of the SSI records can vary widely.

You can use the following formula to calculate the size of the table space:

Where:
v One SSI record has the size of about 480 bytes
v One LOG record has the size of about 333 bytes
v For every SSI record written or deleted, a LOG record will be written

Specify the table space value within DDL HMSTS accordingly.

Number records per page

Number records

Size =table space X Size page

Figure 3. Size of Table Space

Chapter 3. Installing and Customizing the Directory Services 9

Maintaining the Database
The transaction program HMSEAMDS fills the tables HMSSSI and HMSLOG.
Delete or move the data out of the tables occasionally to avoid table overflow. You
can use the fields ENTRYTIME in HMSSSI and LOGTIME in HMSLOG as
criterion.

What You Need to Define for CICS/ESA
This section describes what you need to define when you work under CICS/ESA.

Resource Definition Jobs
Use the CSD utility DFHCSDUP to define the CICS/ESA resources. To run the
MERVA ESA Directory Services under CICS/ESA:
v Add HMSGROUP to the GROUPLIST used in the CICS/ESA startup job

(GRPLIST parameter of the DFHSIT macro).

Note: Ensure that the GROUPLIST also contains the CICS-specific group
DFHRMI (CICS® resource manager interface).

v Make sure that you have a group for DB2 and the CEE language environment. If
these groups are not defined in your system, use the jobs in the CICS/ESA
program directory to define them.

v Make sure that you have an entry in the ‘Resource Control Table’ to access DB2
from CICS. This entry defines the transaction needed to access a certain DB2
plan.

v HMSCSD33 for CICS/ESA 3.3.0
v HMSCSD41 for CICS/ESA 4.1.0

The Define statements are placed into the COPY books:
v HMSCDxx (definitions in HMSGROUP)
v HMSDBxx (definitions in DB2GROUP)

where xx can represent the following:
v 33: HMSCS33/HMSDB33
v 41: HMSCS41/HMSDB41

Add the following groups to the relevant GROUP LIST:
v DB2GROUP

v DFHRMI, the CICS resource manager interface

For more detailed information refer to the CICS/ESA Resource Definition (Online).

Resource Control Table Entries
Add the following COPY book to the CICS/ESA Resource Control Table
(DSNCRCTx for CICS330 or DSN2CTxx for CICS410):
v HMSCRCT (definitions of transactions and DB2 plans)

Note: CICS/ESA needs access to the DSNCRCTx/DSN2CTxx resource control
table. Therefore it must be:
v A member of an APF-authorized data set
v Added to the STEPLIB data set concatenation of the CICS/ESA startup

job

10 Directory Services

For more detailed information refer to the DB2 Administration Guide.

What You Need to Define for IMS/ESA
This section describes what you need to define when you work under IMS/ESA.
v Generate a PSB for the program HMSEAMDS
v Generate an ACB for the program HMSEAMDS
v Application definition

To introduce the SSI application to your IMS, you need an entry in the IMS
application definition (HMSIMSAP).

How to Initialize Your Installation
You have now finished your installation, but your database is still empty.
MERVA ESA must receive an MT293 message and the MERVA ESA Directory
Services API program must process the message to get the data into the database.

To request an MT293 send a query message to the S.W.I.F.T. Directory Services.

You will receive a query reply sent by the S.W.I.F.T. Directory Services, containing
the SSI information records.

See an example of an “MT293 query message” on page 12.

Chapter 3. Installing and Customizing the Directory Services 11

For a description of the MT293 specifications, refer to S.W.I.F.T. Directory Services
Service Description.

:20:999999
:28D:1/1
:14T:INFS/PAYM/3000

:12:293
:77S:0125:01.20.00
:0135:BBIC/SUBBUSZZXXX
:0130:SUBBUSZZXXX

:0185:SUBS
:0210:3000

:22A:R002

:0105:INFQURY

:0190:DEFI
:0135:BBIC/CITIUS33XXX
:0205:PAYM

:20:700
:28D:1/1
:14T:INFS/PAYM/3000

:21:999999
:12:293
:77S::0125:01.20.00
:0135:BBIC/SUBBUSZZXXX
:0130:SUBBUSZZXXX

:0210:3000
:0135:BBIC/CITIUS33XXX

:22A:A001

:0105:INFOANSW

:3000:
:3003:CORR.ITL
:3005:PAYM
:3010:ITL
:3015:BAVEITMM
:30Z0:ADDI
:30Z1:19970501
:30Z2:19970401
:3003:CORR.GBP
:3005:PAYM
:3010:GBP
:3015:BARCGB22
:30Z0:ADDI
:30Z1:19970501
:30Z2:19970401

S.W.I.F.T.

Directory
Services
System

a a aa
aaaa

a
aa
aaa

aaaa
a
aa
aaa

a a
Central

Database

MT293

MT293

SSI
Block

Information
Query
Block

Query sent to the Service

Query Reply sent to the Subscriber

Figure 4. MT293 Query Message Example

12 Directory Services

Chapter 4. Using the MERVA Directory Services API

This version of MERVA Directory Services supports the Treasury Directory. It
allows to work with Standing Settlement Instructions (SSIs) supplied by the
S.W.I.F.T. Directory Services (refer to the S.W.I.F.T. Directory Services Service
Description).

The MERVA Directory Services Application Programming Interface allows other
applications to access the directory service information (for example, SSI records).
This interface lets the program read, add, delete, and update the SSI records.

API Data Types
This chapter lists definitions and API data types the API provides to facilitate the
use of the interface.

HMS API Handle (HMSPHANDLE)

This data item must be provided with each API function call. The MERVA
Directory Services API Handle holds all information needed to control the
interface function calls. The memory is allocated inside HMSInitApplication
() and is freed with HMSDisconnect(). HMSPHANDLE is defined as:
typedef void HMSHANDLE
typedef HMSHANDLE *HMSPHANDLE

Service Type (HMSESERVICE)

The service type is an enumerated data type of valid Directory Services for
accessing a Directory Services Database Table. Only Directory Service for
SSI is available currently.
typedef enum {

ESSISERVICE,
} HMSESERVICE;

Application ID (HMSID)

The application ID data type is a character string containing the
identification to an application. The name is used for logging purposes.
The API supplies a length definition and the data type:
#define LSZID 9
typedef UCHAR HMSID[LSZID];
typedef HMSID *HMSPID;

Field Type (HMSEFIELDTYPE)

The field type is an enumerated data type of valid field names for data
associated with an information record. The API supplies the data type:
typedef enum {

EENTRYTIME
EOWNER,
ESERVICER,
EMESSAGETYPE,
ETYPEOFMARKET,
ETYPEOFDISTRBUTION,
ECONTACTPERSON,
EACKNOWLEDGEMENTIND,
EUNIQUEID,
EMARKETAREA,
ECURRENCYCODE,

© Copyright IBM Corp. 2000 13

ECORRESPONDENTBIC,
EINTERMEDIARYBIC,
ECORRESPONDENTACCOUNT,
EONLYFORNEWDEALS,
ERECONFIRMATION,
ETYPEOFOPERATION,
EEFFECTIVEDATE,
EPUBLISHDATE,
ERELATEDREFERENCE,
ETRN,

} HMSEFIELDTYPE;

The following table shows whether a field is mandatory or not when
working with the SSI Directory Services.

Table 2. Fields and Message Tags

Field Message Tag Mandatory

EOWNER :0135: N

ESERVICER :0130: Y

EMESSAGETYPE :0105: Y

ETYPEOFMARKET part of 14T Y

ETYPEOFDISTRBUTION :0185: see note

ECONTACTPERSON :0140: N

EACKNOWLEDGEMENTIND :0170: see note

EUNIQUEID :3003: Y

EMARKETAREA :3005: Y

ECURRENCYCODE :3010 Y

ECORRESPONDENTBIC :3015: Y

EINTERMEDIARYBIC :3020: N

ECORRESPONDENTACCOUNT :3030: N

EONLYFORNEWDEALS :3035: N

ERECONFIRMATION :3040: N

ETYPEOFOPERATION :22A: Y

EEFFECTIVEDATE :30Z1: Y

EPUBLISHEDDATE :30Z2: N

ERELATEDREFERENCE :21: N

ETRN :20: N

Note: This field is mandatory only when MESSAGETYPE = INFODIST.

Field (HMSUFIELD)

The field data type is a union of data fields associated with an information
record and accessible through the API. The API supplies the length
definition for the fields, the union of fields, and a pointer to the union data
type:
#define LSZENTRYTIME 27
#define LSZOWNER 22
#define LSZSERVICER 12
#define LSZMESSAGETYPE 9
#define LSZTYPEOFMARKET 5
#define LSZTYPEOFDIST 22

14 Directory Services

#define LSZCONTACTPERSON 241
#define LSZUNIQUEID 17
#define LSZMARKETAREA 5
#define LSZCURRENCYCODE 4
#define LSZCORRESPONDENTBIC 12
#define LSZINTERMEDIARYBIC 12
#define LSZCORRESPONDENTACCOUNT 41
#define LSZTYPEOFOPERATION 5
#define LSZEFFECTIVEDATE 9
#define LSZPUBLISHDATE 9
#define LSZTRN 17
#define LSZRELREF 17

typedef union {
UCHAR szEntryTime[LSZENTRYTIME];
UCHAR szOwner[LSZOWNER];
UCHAR szServicer[LSZSERVICER];
UCHAR szMessageType[LSZMESSAGETYPE];
UCHAR szTypeOfMarket[LSZTYPEOFMARKET];
UCHAR szTypeOfDistribtion[LSZTYPEOFDIST];
UCHAR szContactPerson[LSZCONTACTPERS];
UCHAR szAcknowledgementInd;
UCHAR szUniqueId[LSZUNIQUEID];
UCHAR szMarketArea[LSZMARKETAREA];
UCHAR szCurrencyCode[LSZCURRENCYCODE];
UCHAR szCorrespondentBic[LSZCORRESPONDENTBIC];
UCHAR szIntermediaryBic[LSZSSIINTERMEDIARYBIC];
UCHAR szCorrespondentAccount[LSZCORRESPONDENTACCOUNT];
UCHAR szOnlyForNewDeals;
UCHAR szReconfirmation[LSZRECONFIRMATIOM];
UCHAR szTypeOfOperation[LSZTYPEOFOPERATION];
UCHAR szEffectiveDate[LSZEFFECTIVEDATE];
UCHAR szPublishDate[LSZPUBLISHDATE];
UCHAR szTrn[LSZTRN];
UCHAR szRelatedRef[LSZRELATEDREF];

} HMSUFIELD;
typedef HMSUFIELD *HMSPFIELD

Key Type (HMSEKEYTYPE)

The key type is an enumerated data type of valid key types for searching
for an information record. The API supplies the data type:
typedef enum {

ECURRENCYKEY,
EMARKETKEY,
ECURRMARKETKEY,
ECORRESPONDENTKEY,
EUNIQUEIDKEY,
EENTRYTIMEKEY,

} HMSEKEYTYPE;

Search Key (HMSUKEY)

The search key data type is a union of key types. It is used when retrieving
an information record. The API supplies the length definitions and the data
type:
typedef union {

UCHAR szCurrencyCode[LSZCURRENCYCODE];
UCHAR szMarket[LSZMARKETARERA];
UCHAR szCorrespondentBic[LSZCORRESPONDENTBIC];
UCHAR szUniqueID[LSZCUNIQUEID];
UCHAR szEntryTime[LSZENTRYTIME];

} HMSUKEY;
typedef HMSUKEY *HMPSUKEY;

ErrRep (HMSSTERRORREPORT)

Chapter 4. Using the MERVA Directory Services API 15

The error report data type is a structure of different data items. It passes
error information to the error function provided with the
HMSInitApplication() function call.
#define LSZERRORTEXT 241
typedef struct {

HMSEERRORTYPE eType;
INT iRc;
INT iRs;
INT iLine
UCHAR szErrorInfo[LSZERRORTEXT];
UCHAR szErrorMsg[LSZERRORTEXT];

} HMSSTERRORREPORT;

where HMSEERRORTYPE is an enumeration of values that specifies the
area where the error occurred.
typedef enum {

ESQLERROR,
EOSERROR, /* Operating System error occurred */
ESYSERROR, /* MERVA Directory Service error occurred */
EUSERERROR,

} HMSEERRORTYPE;

API Functions
This section contains, in alphabetical order, descriptions of each MERVA Directory
Services API function. The description of each function has the following structure:

Purpose
A short description of the function’s purpose

Format
The syntax of the function; its name in mixed case, the number and order
of parameters

Input Parameters
A description of each input parameter of the function in the following
format:

Parameter name (data type of parameter)
Description of the parameter

Output Parameters
A list of return values valid for this function in the following format:

rc (numerical return code)
Description of the return codes

Processing (optional)
Some hints on special conditions that may occur while processing this
function

Example
An example of how to call the function

Note: The examples provided are without error handling and not related
to a specific system.

16 Directory Services

HMSAdd

Purpose
Use this function to add a created information record to the Directory Services
Database Table.

Format

Input Parameters
pvHandle (HMSPHANDLE)

Application handle to information used by the MERVA Directory Services API.

Output Parameters
rc(INT)

Possible return codes are:

0 (HMSDNOERROR)
Function completed successfully.

8 (HMSDERROR)
Function not completed successfully. See “Appendix B. Reason Codes” on
page 41 for information about the error.

Example
The following example shows you how to use the HMSAdd call to add a new SSI
information record to the MERVA ESA Directory Services Database.
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

/* - MERVA Directory Services include files - */
#include "hmscaapi.h"

/* -- */
/* - simple SSI record structure definition - */
/* used to hold information of one record */
/* (not all possible fields are used!) */

typedef struct {
char szTypeOfMarket [LSZTYPEOFMARKET]; /* part of :14T: */
char szServicer [LSZSERVICER]; /* :0130: */
char szMessageType [LSZMESSAGETYPE]; /* :0105: */
char szTypeOfDistribution [LSZTYPEOFDIST]; /* :0185: */
char cAcknowledgmentIndicator; /* :0170: */
char szUniqueId [LSZUNIQUEID]; /* :3003: */

/* identifies each corres.*/
char szMarketArea [LSZMARKETAREA]; /* :3005: */
char szCurrencyCode [LSZCURRENCYCODE]; /* :3010: */
char szCorrespondentBic [LSZCORRESPONDENTBIC]; /* :3015: */
char szTypeOfOperation [LSZTYPEOFOPERATION]; /* :30Z0: */
char szEffectiveDate [LSZEFFECTIVEDATE]; /* :30Z1: */

} MYSSIREC;

/* -- */
/* - function prototypes defined within - */
/* this module. */

int PrintError(HMSSTERRORREPORT* pError);

HMSAdd (pvHandle)

Chapter 4. Using the MERVA Directory Services API 17

/* -- */
/* - global used variables - */

static HMSHANDLE * pHandle;

#ifdef __HMSIMS__
/* Datatype IO_PCB_TYPE comes from <ims.h> */
IO_PCB_TYPE * pPCB;
#else
void * pPCB = (void*)NULL;
#endif

int main(int argc, char *argv[])
{

INT irc = 0;
HMSUKEY ssikey;
HMSUFIELD Field;
MYSSIREC aSSIRec =
{ "FXMM", "SERVICERXXX", "MESGTYPE", "TYPEOFDISTRIBUTIONXXX", 'Y',
"UNIQUEIDXXXXXXXX", "FXCH", "XXX", "CORRESPONDE", "XXZ0", "EFFEDATE"

};

irc = HMSInitApplication(&pHandle, PrintError, (void*) pPCB);
if (!irc) {

irc = HMSConnect(pHandle, "HMSEXAPI")
if (!irc) {

irc = HMSCreate(pHandle, ESSISERVICE);

strcpy(Field.szUniqueId, aSSIRecs.szUniqueId);
irc += HMSWriteField(pHandle, EUNIQUEID, &Field);
strcpy(Field.szCurrencyCode, aSSIRecs.szCurrencyCode);
irc += HMSWriteField(pHandle, ECURRENCYCODE, &Field);
strcpy(Field.szMarketArea, aSSIRecs.szMarketArea);
irc += HMSWriteField(pHandle, EMARKETAREA, &Field);
strcpy(Field.szCorrespondentBic, aSSIRecs.szCorrespondentBic);
irc += HMSWriteField(pHandle, ECORRESPONDENTBIC, &Field);
strcpy(Field.szTypeOfOperation , aSSIRecs.szTypeOfOperation);
irc += HMSWriteField(pHandle, ETYPEOFOPERATION, &Field);
strcpy(Field.szEffectiveDate , aSSIRecs.szEffectiveDate);
irc += HMSWriteField(pHandle, EEFFECTIVEDATE, &Field);
strcpy(Field.szServicer , aSSIRecs.szServicer);
irc += HMSWriteField(pHandle, ESERVICER, &Field);
strcpy(Field.szTypeOfMarket , aSSIRecs.szTypeOfMarket);
irc += HMSWriteField(pHandle, ETYPEOFMARKET, &Field);
strcpy(Field.szMessageType , aSSIRecs.szMessageType);
irc += HMSWriteField(pHandle, EMESSAGETYPE, &Field);
strcpy(Field.szTypeOfDistribution,

aSSIRecs.szTypeOfDistribution);
irc += HMSWriteField(pHandle, ETYPEOFDISTRIBUTION, &Field);
Field.cAcknowledgmentIndicator = aSSIRecs.cAcknowledgmentIndicator;
irc += HMSWriteField(pHandle, EACKNOWLEDGMENTIND, &Field);
if (!irc) {

irc = HMSAdd(pHandle);
if (irc < 8)

irc = HMSCommit(pHandle);
else

irc = HMSRollback(pHandle);
}
irc = HMSDisconnect(&pHandle);

}
}
return(irc);

}

int PrintError(HMSSTERRORREPORT* pError)

18 Directory Services

{
static char TypeText [][5] = {{"SQL"},{"OS"},{"SYS"},{"USER"}};
static char szOutputString [sizeof(HMSSTERRORREPORT)+80];

sprintf(szOutputString, "ERROR: %d Area %s\n",
(INT)pError->eType, TypeText[(INT)pError->eType]);

sprintf(szOutputString, "%src=%d, rs=%d, Line=%d\n",
szOutputString, pError->iRc, pError->iRs, pError->iLine);

sprintf(szOutputString, "%serrinfo %.80s\n",
szOutputString, pError->szErrorInfo);

sprintf(szOutputString, "%serrmesg %.80s\n",
szOutputString,pError->szErrorMsg);

printf(szOutputString);

return (0);
}

Chapter 4. Using the MERVA Directory Services API 19

HMSClear

Purpose
Use this function to free the information record space created with the HMSCreate
function.

Format

Input Parameters
pvHandle (HMSPHANDLE)

Application handle to information used by the MERVA Directory Services API.

Output Parameters
rc(INT)

Possible return codes are:

0 (HMSDNOERROR)
Function completed successfully.

8 (HMSDERROR)
Function not completed successfully. See “Appendix B. Reason Codes” on
page 41 for information about the error.

Example
The following example shows you how to use the HMSClear call to clear the
internal record buffer. The type of the record buffer is not changed.
....
int main(int argc, char *argv[])
....

irc = HMSCreate(pHandle, ESSISERVICE);
while(NotReady) {

/* insert data into SSI structure */
SetSSIData(&aSSIRecs);

/* insert data into SSI record buffer */
/* with HMSWriteField() */
SetSSIRecordBuffer(pHandle, &aSSIRecs);

/* insert data into MERVA Directory */
/* Services database; record type is */
/* set by HMSCreate to ESSISERVICES */
irc = HMSAdd(pHandle);

/* clear the MERVA Directory Services */
/* SSI record space created with */
/* HMSCreate() */
irc = HMSClear(pHandle);

/* test if all records processed */
NotReady = SetReady();

} /* end while */

.....

HMSClear (pvHandle)

20 Directory Services

HMSCommit

Purpose
Use this function to set all changes permanent.

Note: When you run your application under CICS or IMS, the CICS/IMS
transaction calls, like file operations or terminal output, are committed.

Format

Input Parameters
pvHandle (HMSPHANDLE)

Application handle to information used by the MERVA Directory Services API.

Output Parameters
rc(INT)

Possible return codes are:

0 (HMSDNOERROR)
Function completed successfully.

8 (HMSDERROR)
Function not completed successfully. See “Appendix B. Reason Codes” on
page 41 for information about the error.

Processing
This function uses:
v EXEC SQL COMMIT
v EXEC CICS SYNCPOINT under CICS

v ctdli (..., ″chkp″, ...) under IMS

Example
The following example code is an extract of the HMSAdd example. You find the
complete coding example “HMSADD” on page 17.

...
if (!irc) {

irc = HMSAdd(pHandle);
if (irc < 8)

irc = HMSCommit(pHandle);
else

irc = HMSRollback(pHandle);
}

...

HMSCommit (pvHandle)

Chapter 4. Using the MERVA Directory Services API 21

HMSConnect

Purpose
Connect the application to the MERVA Directory Services Database. pvDBHandle is
allocated by function HMSInitApplication().

Note: This function may not be used under CICS/IMS. In this case the logging
entry field is empty.

Format

Input Parameters
pvHandle (HMSPHANDLE)

Application handle to information used by the MERVA Directory Services API.

ApplicationID (HMSPID)
A string specifying the application ID used for logging. This string must end in
NULL or a zero.

Output Parameters
rc(INT)

Possible return codes are:

0 (HMSDNOERROR)
Function completed successfully.

8 (HMSDERROR)
Function not completed successfully. See “Appendix B. Reason Codes” on
page 41 for information about the error.

Example
The following example code is an extract of the HMSAdd example. You find the
complete coding example “HMSADD” on page 17.

...
irc = HMSInitApplication(&pHandle, PrintError, (void*) pPCB);
if (!irc) {

irc = HMSConnect(pHandle, "HMSEXAPI")
if (!irc) {

...
}

...
}

...

HMSConnect (pvHandle, ApplicationID)

22 Directory Services

HMSCreate

Purpose
Use this function to create a new information record for the application.

Format

Input Parameters
pvHandle (HMSPHANDLE)

Application handle to information used by the MERVA Directory Services API.

eServiceType (HMSESERVICE)
Specifies the Directory Service for which a record is created (currently
ESSISERVICE only).

Output Parameters
rc(INT)

Possible return codes are:

0 (HMSDNOERROR)
Function completed successfully.

8 (HMSDERROR)
Function not completed successfully. See “Appendix B. Reason Codes” on
page 41 for information about the error.

Processing
This function resets an internal memory buffer and prepares it to hold an
information record of the type “eService”.

The buffer write/read operation is done with HMSWriteField() and
HMSReadField().

Note: HMSWriteField() overwrites the buffer. All information fetched or created
previously will be lost.

Example
The following example code is an extract of the HMSAdd example. You find the
complete coding example “HMSADD” on page 17.

...
irc = HMSConnect(pHandle, "HMSEXAPI")
if (!irc) {

...
irc = HMSCreate(pHandle, ESSISERVICE);
strcpy(Field.szUniqueId,aSSIRecs.szUniqueId);
irc += HMSWriteField(pHandle, EUNIQUEID, &Field);

...
}

HMSCreate (pvHandle, eServiceType)

Chapter 4. Using the MERVA Directory Services API 23

HMSDelete

Purpose
Use this function to delete the currently fetched information record.

Format

Input Parameters
pvHandle (HMSPHANDLE)

Application handle to information used by the MERVA Directory Services API.

Output Parameters
rc(INT)

Possible return codes are:

0 (HMSDNOERROR)
Function completed successfully.

8 (HMSDERROR)
Function not completed successfully. See “Appendix B. Reason Codes” on
page 41 for information about the error.

Processing
HMSDelete() uses field EENTRYTIME as key. This field is set by a previous call to
HMSKeyRead(), HMSKeyReadNext(), or HMSWriteField(). HMSDelete() closes the
cursor, which is opened by a previous function call to HMSKeyRead.

Note: A function call to HMSKeyReadNext fails after function HMSDelete().
HMSAdd() and HMSUpdate() write an entry in the MERVA ESA Directory
Services Logging Database Table.

Example
The following example shows you how to use the HMSDelete call to delete an SSI
information record. All records with the UniqueId “123456” will be deleted.

int DeleteRecords(void)
{

int irc = 0;
HMSUKEY ssikey;

strcpy(ssikey.szUniqueId, "123456");

while (!irc) {

irc = HMSKeyRead(pHandle, /* can not use HMSKeyReadNext */
ESSISERVICE, /* because HMSDelete close */
EUNIQUEIDKEY, /* the cursor and ..Next needs */
&ssikey, /* an open cursor. */
NULL);

if (!irc)
irc = HMSDelete(pHandle);

} /* endwhile */
return (irc);

}

HMSDelete (pvDBHandle)

24 Directory Services

HMSDisconnect

Purpose
Use this function to disconnect the application from the MERVA Directory Services
Database. It frees the interface data structure allocated by the HMSInitApplication()
function call.

Format

Input Parameters
&pvHandle(HMSPHANDLE*)

Reference to the database information handle used by the MERVA Directory
Services API.

Output Parameters
rc(INT)

Possible return codes are:

0 (HMSDNOERROR)
Function completed successfully.

8 (HMSDERROR)
Function not completed successfully. See “Appendix B. Reason Codes” on
page 41 for information about the error.

Example
The following example code is an extract of the HMSAdd example. You find the
complete coding example “HMSADD” on page 17.
...

irc = HMSInitApplication(&pHandle, PrintError, (void*) pPCB);
if (!irc) {

...
irc = HMSConnect(pHandle, "HMSEXAPI")
if (!irc) {

...
}
irc = HMSDisconnect(&pHandle);

}
...

HMSDisconnect (&pvHandle)

Chapter 4. Using the MERVA Directory Services API 25

HMSGetErrorInfo

Purpose
Use this function to retrieve the address of the error report. This report contains
information about errors that occurred inside an HMS-API function call.

For more details on errors see “Appendix A. Error Handling” on page 39.

Format

Input Parameters
&pvHandle(HMSPHANDLE)

Application handle to information used by the MERVA ESA Directory Services
API.

Output Parameters
rc(INT)

Possible return codes are:

0 (HMSDNOERROR)
Function completed successfully.

8 (HMSDERROR)
Function not completed successfully. See “Appendix B. Reason Codes” on
page 41 for information about the error.

Example
The following example shows you how to use the HMSGetErrorInfo call to retrieve
the error structure. Because each HMS API function returns only 0 or 8, with this
function you get access to the error information.

....

irc = HMSKeyRead(pHandle,
ESSISERVICE,
EUNIQUEIDKEY,
&ssikey,
NULL);

if (irc) {
HMSPERRORREPORT pstError; /* see also HMSAdd() */

irc = HMSGetErrorInfo(pHandle, &pstError);

if (pstError->iRs == HMSDSDBCRC){
/* checksum calculation error; */
/* fetched DB record is manipulated manually; */
/* use HMSReadField() to read record field */

....

}

} else {

....

HMSGetErrorInfo(pvHandle, &pErrRep)

26 Directory Services

HMSInitApplication

Purpose
This function allocates memory to store application-relevant information used by
all application interface functions. The structure of the memory buffer is hidden.
The reference to the data buffer is assigned to the first parameter pvHandle. The
second parameter is a reference to a function that all interface functions call in case
of an error condition.

Format

Input Parameters
&pvHandle(HMSPHANDLE*)

Reference to the database information handle used by the MERVA ESA
Directory Services API.

pfError(INT(*)(HMSPERRORREPORT))
Reference to a function called inside the interface functions when an error
occurs.

Output Parameters
rc(INT)

Possible return codes are:

0 (HMSDNOERROR)
Function completed successfully.

8 (HMSDERROR)
Function not completed successfully. See “Appendix B. Reason Codes” on
page 41 for information about the error.

Processing
The function is using the C-language function malloc() to allocate the memory.

Example
The following example code is an extract of the HMSAdd example. You find the
complete coding example “HMSADD” on page 17.

...
irc = HMSInitApplication(&pHandle, PrintError, (void*) pPCB);
if (!irc) {

irc = HMSConnect(pHandle, "HMSEXAPI")
if (!irc) {

...
}

...
}

...

HMSInitApplication (&pvHandle, pfError)

Chapter 4. Using the MERVA Directory Services API 27

HMSKeyRead

Purpose
This function searches the named directory service information for the first
information record with the specified key.

Format

Input Parameters
pvHandle (HMSPHANDLE)

Application handle to information used by the MERVA Directory Services API.

eServiceType (HMSESERVICE)
Specifies the Directory Service for which a record is created (currently
ESSISERVICE only).

eKeyType (HMSEKEYTYPE)

This parameter determines the search condition used for the specified
Directory Service. When eKeyType is ECURRMARKETKEY, then puKey1
contains the currency value and puKey2 contains the market value.

puKey1 (HMSPUKEY)
This parameter contains the search argument according to the KEYTYPE.

puKey2 (HMSPUKEY)
This parameter contains a second search argument according to the KEYTYPE.

Output Parameters
rc(INT)

Possible return codes are:

0 (HMSDNOERROR)
Function completed successfully.

8 (HMSDERROR)
Function not completed successfully. See “Appendix B. Reason Codes” on
page 41 for information about the error.

Processing
When no search argument is given, the search starts at the first element of the
information records, sorted by KEYTYPE and record entry time.

HMSKeyRead (pvHandle, eServiceType, eKeyType, puKey1, puKey2)

28 Directory Services

Example
The following example code is an extract of the HMSKeyReadNext example. You
find the complete coding example “HMSKeyReadNext” on page 31.
...

HMSUKEY ssikey1;
HMSUKEY ssikey2;

strcpy(ssikey1.szCurrencyCode, "USD");
strcpy(ssikey2.szMarketArea, "FXMM");

irc = HMSKeyRead(pHandle,
ESSISERVICE,
ECURRMARKETKEY,
&ssikey1,
&ssikey2);

...

Chapter 4. Using the MERVA Directory Services API 29

HMSKeyReadNext

Purpose
This function returns the next information record matching the conditions set by a
previous HMSKeyRead function call (HMSESERVICE; HMSEKEYTYPE;
HMSPUKEYs).

Format

Input Parameters
pvHandle (HMSPHANDLE)

Application handle to information used by the MERVA Directory Services API.

Output Parameters
rc(INT)

Possible return codes are:

0 (HMSDNOERROR)
Function completed successfully.

8 (HMSDERROR)
Function not completed successfully. See “Appendix B. Reason Codes” on
page 41 for information about the error.

Processing
The function requires search conditions to be defined. Search conditions can only
be defined by a call to the HMSKeyRead function.

Note: After a call to function HMSUpdate(), HMSDelete(), or HMSAdd(), the
underlying DB2 cursor is closed. A subsequent call to HMSKeyReadNext()
fails when no call to function HMSKeyRead() is done before.

HMSKeyReadNext (pvHandle)

30 Directory Services

Example
The following example shows you how to use the HMSKeyReadNext call to
retrieve a list of SSI information records from the MERVA ESA Directory Services
database. All records with the CurrencyCode “USD” and MarketArea “FXMM”
will be retrieved.
...

HMSUKEY ssikey1;
HMSUKEY ssikey2;

strcpy(ssikey1.szCurrencyCode, "USD");
strcpy(ssikey2.szMarketArea, "FXMM");

irc = HMSKeyRead(pHandle,
ESSISERVICE,
ECURRMARKETKEY,
&ssikey1,
&ssikey2);

while (!irc) {

/* PrintRecord() uses function HMSReadField() to retrieve */
/* data of the specified fields. */

(void) PrintRecord(pHandle);

irc = HMSKeyReadNext(pHandle);

} /* end while */

....

Chapter 4. Using the MERVA Directory Services API 31

HMSReadField

Purpose
Use this function to return data associated with an information record.

Format

Input Parameters
pvHandle (HMSPHANDLE)

Application handle to information used by the MERVA Directory Services API.

FieldType(HMSUFIELDTYPE)
The field type contains the name of the field the application wants to read.

&pField(HMSPUFIELD*)
The field union contains the reference of the field the application wants to
read.

Output Parameters
rc(INT)

Possible return codes are:

0 (HMSDNOERROR)
Function completed successfully.

8 (HMSDERROR)
Function not completed successfully. See “Appendix B. Reason Codes” on
page 41 for information about the error.

Example
The following example shows you how to use the HMSReadField call to retrieve a
specified record field. In this example field “EffectiveDate” is used to find the
current SSI record.

int GetCurrent(char * pszDate) /* pszDate => current date */
{

int irc = 0;
int iFound = 0;
HMSPUFIELD pField;
HMSUFIELD ssiCurrentEffDate;
HMSUFIELD ssiCurrentEntryTime;
HMSUKEY ssikey1;
HMSUKEY ssikey2;

strcpy(ssikey1.szCurrencyCode, "USD");
strcpy(ssikey2.szMarketArea, "FXMM");
ssiCurrentEffDate.szEffectiveDate[0] = '\0';

irc = HMSKeyRead(pHandle,
ESSISERVICE,
ECURRMARKETKEY,

&ssikey1,
&ssikey2);

while (!irc) {

irc = HMSReadField(pHandle, EEFFECTIVEDATE, &pField);

if (strcmp(pszDate, pField->szEffectiveDate) >= 0) {

HMSReadField (pvHandle, FieldType, &pField)

32 Directory Services

if ((ssiCurrentEffDate.szEffectiveDate[0] == '\0') ||
(strcmp(ssiCurrentEffDate.szEffectiveDate,

pField->szEffectiveDate) == -1)) {
iFound = 1;
strcpy(ssiCurrentEffDate.szEffectiveDate,

pField->szEffectiveDate);

irc = HMSReadField(pHandle, EENTRYTIME, &pField);
strcpy(ssiCurrentEntryTime.szEntryTime,

pField->szEntryTime);
}

} /* endif */

irc = HMSKeyReadNext(pHandle);

} /* endwhile */
if (iFound) {

irc = HMSKeyRead(pHandle,
ESSISERVICE,
EENTRYTIMEKEY,
&ssiCurrentEntryTime,
NULL);

if (!irc) {
/* record found */
.....

}
}
return(irc);

}

Chapter 4. Using the MERVA Directory Services API 33

HMSRollback

Purpose
Use this function to reset all changes done to the database after the last start of the
transaction.

Format

Input Parameters
pvHandle (HMSPHANDLE)

Application handle to information used by the MERVA Directory Services API.

Output Parameters
rc(INT)

Possible return codes are:

0 (HMSDNOERROR)
Function completed successfully.

8 (HMSDERROR)
Function not completed successfully. See “Appendix B. Reason Codes” on
page 41 for information about the error.

Example
The following example code is an extract of the HMSAdd example. You find the
complete coding example “HMSADD” on page 17.

...
if (!irc) {

irc = HMSAdd(pHandle);
if (irc < 8)

irc = HMSCommit(pHandle);
else

irc = HMSRollback(pHandle);
}

...

HMSRollback (pvHandle)

34 Directory Services

HMSUpdate

Purpose
Use this function to change the currently fetched information record.

Format

Input Parameters
pvHandle (HMSPHANDLE)

Application handle to information used by the MERVA Directory Services API.

Output Parameters
rc(INT)

Possible return codes are:

0 (HMSDNOERROR)
Function completed successfully.

8 (HMSDERROR)
Function not completed successfully. See “Appendix B. Reason Codes” on
page 41 for information about the error.

Processing
All changes to the Directory Services Database must be committed. Use
HMSCommit() to confirm your changes.

You can use HMSRollback() if you want to set the state of the database content to a
previous commit point.

Example
The following example shows you how to use the HMSUpdate call to update an
SSI information record. The SSI record must be fetched before it can be updated.
The example updates all CorrespondentBic to “DEUTDEFFXXX”, where UniqueId
is “123456”. Because HMSUpdate closes the cursor, it is necessary to store the key
of the last record updated. With this key it is possible to loop through the cursor
up to the next valid record.

....

int irc = 0;
HMSUKEY ssikey;
HMSUFIELD Field;
HMSPUFIELD pField;
HMSPUFIELD pFieldKey;
CHAR szEntryTimeLast[LSZENTRYTIME] = "";

strcpy(ssikey.szUniqueId, "123456");

while (!irc) {

irc = HMSKeyRead(pHandle,
ESSISERVICE,
EUNIQUEIDKEY,
&ssikey,
NULL);

irc = HMSReadField(pHandle, EENTRYTIME, &pFieldKey);
while (!irc && /* already processed ? */

(strcmp(szEntryTimeLast, pFieldKey->szEntryTime)>= 0)){

HMSUpdate (pvHandle)

Chapter 4. Using the MERVA Directory Services API 35

irc = HMSKeyReadNext(pHandle);
irc = HMSReadField(pHandle, EENTRYTIME, &pFieldKey);

}
if (!irc) {

strcpy(szEntryTimeLast, pFieldKey->szEntryTime);
strcpy(Field.szCorrespondentBic, "DEUTDEFFXXX");
irc = HMSWriteField(pHandle, ECORRESPONDENTBIC, &Field);
irc = HMSUpdate(pHandle);

}

} /* endwhile */
....

36 Directory Services

HMSWriteField

Purpose
This function updates information associated with an information record.

Format

Input Parameters
pvHandle (HMSPHANDLE)

Application handle to information used by the MERVA Directory Services API.

FieldType(HMSEFIELDTYPE)
The field type contains the name of the field the application wants to write.

pField(HMSPUFIELD)
The field union contains the contents of the field the application wants to
write.

Output Parameters
rc(INT)

Possible return codes are:

0 (HMSDNOERROR)
Function completed successfully.

8 (HMSDERROR)
Function not completed successfully. See “Appendix B. Reason Codes” on
page 41 for information about the error.

Example
The following example code is an extract of the HMSUpdate example. You find the
complete coding example “HMSUpdate” on page 35.

...
strcpy(szEntryTimeLast, pFieldKey->szEntryTime);
strcpy(Field.szCorrespondentBic, "DEUTDEFFXXX");
irc = HMSWriteField(pHandle, ECORRESPONDENTBIC, &Field);
irc = HMSUpdate(pHandle);

...

HMSWriteField (pvHandle, FieldType, pField)

Chapter 4. Using the MERVA Directory Services API 37

38 Directory Services

Appendix A. Error Handling

The function call HMSInitApplication enables the application to define a function
which is called in case of an error condition. The parameter of this function is a
pointer to structure HMSSTERRORREPORT. This structure is described on page 15.

To avoid the use of global variables in the error handling, the function
HMSGetErrorInfo () is provided. This function allows the application to access the
error report.

The error report contains the following fields:

eType The error type. These error types are valid types:
v SQL errors
v User errors
v Operating system errors
v MERVA ESA Directory Services errors

iRc Return code. Contains the value 0 (no error) or 8 (error).

iRs Identifies the error reason. See “Appendix B. Reason Codes” on
page 41 for details.

iLine Contains the line number in the source code, where the error has
occurred.

szErrorInfo A general string containing eType, iRc, and iRs.

szErrorMsg A string containing detailed information about the error.

....
INT HMSInitApplication(..., pfErrorfkt)
{
....
pvHandle ->pfEFkt = pfErrorfkt;
....
return(rc);

}

INT HMSConnect(....)
{
....
if (rc == HMSDERROR) {

pvHandle -> pfEFkt(...);
return(HMSDERROR);

}
....
}
....

Merva Directory Services API

HMSEERRORTYPE geET;
...

INT MyErrorFunction(HMSSTERRORREPORT* pstErrorInfo)
{
/* UserInterface Windows > Win....() */
/* Batch program > printf() */
geET =pstErrorInfo ->eType
....

}

main()
{
....
rc = HMSInitApplication(pvHandle, MyErrorFunction);
....
rc = HMSConnect(....);
if (rc == HMSDNOERROR) {

....
}else {
/* error condition */

if (geET == ESQLERROR)
....

}
....

}

Customer Application Module

Figure 5. Error Handling

© Copyright IBM Corp. 2000 39

40 Directory Services

Appendix B. Reason Codes

This appendix lists error messages. You find a description of the area and the
function in which an error occurred.

Understanding the Message Format
The reason codes are shown in mixed-case letters, as displayed. A variable part of
the code is printed in lowercase italics, for example:

HMSnnnE message text variable part

The example shows a MERVA ESA program message consisting of message
number and message text.

HMS The product identifier of MERVA ESA Directory Services.

nnnx This is a message identification number of 3 digits nnn with a 1-character
action code x.

The following action codes are possible:

E Shows an error

I Shows an information message

nnnn This is a message identification number of 4 digits. No action code is
provided.

message text
This is the text of the message as it appears on the workstation or as it is
printed on a hardcopy or system printer.

The text of the message can contain variable information, for example, rc for
return code, or other information that provides more details.

When a return code or a reason code appears in a message, it is described
in the explanation given for that message, or a reference is made to the
appropriate chapter in this book.

variable
A variable can be one of the following:

d Indicates a decimal number

i Indicates an integer

s Indicates a character

General Error Messages

HMS001E SQL ERROR Function “s”; rc=“d”;
rs=“d”

Explanation: An SQL function call caused this error.

Action: The reason code contains the SQLCODE of the
SQL function. The ‘szErrorMsg’ data field of the error
report contains the explanation of the SQLCODE.

HMS002E USER ERROR Function “s”; rc=“d”;
rs=“d”

Explanation: A USER error occurred.

Action: The ‘szErrorMsg’ data field of the error report
contains the explanation of the USER error.

© Copyright IBM Corp. 2000 41

HMS003E SYS ERROR Function “s”; rc=“d”; rs=“d”

Explanation: A MERVA ESA Directory Services
System Error occurred.

Action: The ‘szErrorMsg’ data field of the error report
contains the explanation of the error. Contact your IBM
representative.

HMS004E OS ERROR Function “s”; rc=“d”; rs=“d”

Explanation: An operating system error occurred.

Action: The ‘szErrorMsg’ data field of the error report

contains the explanation of the error.

HMS005E /* Gnrl. error message */ “s”; rc=“d”;
rs=“d”

Explanation: This error is not assigned to a function
explicitly.

Action: The ‘szErrorMsg’ data field of the error report
contains the explanation of the error. Contact your IBM
representative.

Reason Codes

HMS100E The database handle is not valid.

Explanation: The handle passed to the function is not
initialized properly.

Action: Internal error. Contact your IBM
representative.

HMS101E Specified retrieve option is not defined.

Explanation: The retrieve option passed to the
HmsDBRead() is not valid. Valid options are, foe
example, EDBFIRST and EDBLAST.

Action: Internal error. Contact your IBM
representative.

HMS102E The combination of table and index is
not valid.

Explanation: The combination of table and index by
function call HmsDBRead() is not valid. The index for
the specified table is not defined.

Action: Internal error. Contact your IBM
representative.

HMS103E It is not possible to change the direction
of reading rows.

Explanation: The database cursor is open for only one
direction of reading. Therefore it is not possible to
change the direction within the cursor.

Action: Internal error. Contact your IBM
representative.

HMS104E The program tries to fetch a record but
no cursor is open.

Explanation: The program tries to fetch a record with
no cursor open. Call function HmsDBRead() with
EDBFIRST and EDBLAST, before using (EDBNEXT and
EDBPREV).

Action: Internal error. Contact your IBM
representative.

HMS105E The mandatory field “s” of the supplied
data record is empty.

Explanation: A field of a data record, defined as
mandatory, is empty.

Action: Use HmsWriteField() to set all mandatory
fields.

HMS106E The pointer to the data record is NULL.

Explanation: None.

Action: Internal error. Contact your IBM
representative.

HMS107E The pointer to IMS PCB is NULL; ctdli()
will fail.

Explanation: Error occurred during Rollback or
Commit. The pointer to IMS PCB needed for function
call ctdli() is Null.

Action: Use HMSInitApplication() to set the pointer.

HMS150E The calculated and the stored check sum
differ.

Explanation: The cycle redundancy check detected a
database record change. The record might have been
changed inside the database table directly.

Action: The record is supplied with error indication
by the API function. Check the record fields and
update the record.

HMS151E IMS: ctdli() error, stat_code=“s”.

Explanation: A call to IMS failed.

Action: Check the status code.

HMS200E The parameter “s” is empty or string is
too long.

Explanation: The content of a passed parameter is
empty or string is too long.

42 Directory Services

Action: Check the parameter of the function.

HMS201E The application handle is not valid.

Explanation: The application handle passed to the
function is not initialized properly.

Action: Use HMSInitApplication() to create a valid
handle.

HMS202E The type of record is not valid.

Explanation: The internal record buffer is not set
correctly. (A previous call to HMSKeyRead() might
have been unsuccessful.)

Action: Call HMSCreate() or HMSKeyRead() before
the function call to HMSDelete(), HMSAdd(), and
HMSUpdate().

HMS203E Passed key is not valid for specified
service.

Explanation: The parameter of type HMSKEYTYPE is
not valid.

Action: Check the value within function
HMSKeyRead().

HMS204E Specified service is not defined.

Explanation: The parameter of type HMSESERVICE is
not valid.

Action: Check the value within function
HMSKeyRead().

HMS205E Wrong type of field specified.

Explanation: The parameter of type HMSFIELDTYPE
is not valid.

Action: Check the value within function
HMSReadField() or HMSWriteField().

HMS206E Wrong type of record specified by write.

Explanation: The application tried to write a field into
the internal record buffer. The record buffer is not
initialized properly.

Action: Use the function HMSCreate() before
HMSWriteField().

HMS250E No valid record available.

Explanation: The application tried to read a field from
the internal record buffer. The record buffer is not
initialized properly. (A previous call to HMSKeyRead()
might have been unsuccessful.)

Action: A valid database record must be fetched
before. Check the return value.

HMS251E Bad table ID used by function
KeyReadNext().

Explanation: The internal database table identifier is
not valid. (The function HMSKeyread() sets this
identifier.)

Action: Internal error. Contact your IBM
representative.

HMS252E “s” EXE CICS call failed, RESP=“i”,
RESP2=“i”, RC=“i”.

Explanation: An EXEC CICS call failed.

Action: Make sure that the CICS system is started
properly.

HMS253E “s” INTFUNC=“s” false, INTRC=“s”
RC=“i”.

Explanation: The initialization of the MERVA ESA
API program failed.

Action: Make sure that the DSLAPI program is
available in one of the STEPLIBs of your startup job.

HMS254E “s” API function=“s” false, INTRC=“s”.

Explanation: A function call to the MERVA ESA API
program failed.

Action: Make sure that the DSLAPI program is
available in one of the STEPLIBs of your startup job.

HMS255E “s” API function=“s” false, INTRC=“s”,
TOFTSVRC=“i” TOFTSVRS=“i”.

Explanation: A function call to the MERVA ESA API
program failed.

Action: Make sure that the DSLAPI program is
available in one of the STEPLIBs of your startup job.

HMS256E “s” DB function =“s” failed, RC=“i”.

Explanation: An access to the database failed.

Action: See the previous SQL message.

HMS257E “s” Message is longer than “i” days in
the “s” queue, expected “i”, received
only “i” messages.

Explanation: The message sequence you received is
incomplete. The system waiting for the missing parts of
the sequence exceeded the defined time value
MAXDAYS.

Action: Try to get the missing message of the
sequence, then put the complete sequence into the
HMSINP queue.

Appendix B. Reason Codes 43

HMS258E Transaction is not startable from outside
of MERVA.

Explanation: You have tried to start the transaction
HMSI from outside of MERVA ESA. This is not
possible.

Action: None.

HMS259E Call to IMS interface failed,
function=“s”, PCB status field=“s”.

Explanation: A call to IMS failed.

Action: Check the status code of the failing IMS
function.

HMS260E Read TOF field failed, fieldname=“s”.

Explanation: Reading the field named “s” from the
MERVA ESA internal message buffer (TOF) failed.

Action: Correct the error in field “s” of the message
and restart.

HMS261I TOF data size greater than target field
length.

Explanation: The size of a TOF field is greater than
the target buffer.

HMS262E Retrieve of MERVA internal variable
failed, variable name=“s”.

Explanation: Reading the field named “s” from a
message control block (MCB) failed.

Action: Check MCB and message for a definition of
field “s”.

HMS263E “s” Function=“s” failed, iRC=“i”.

Explanation: A call to database services failed.

Action: See the previous SQL message.

HMS264E Final state machine state “i” is invalid.

Explanation: An internal error occurred. The state of
the processing sequence is unexpected.

Action: Internal error. Contact your IBM
representative.

HMS265E The value “s” is invalid for SW22, only
“A001” and “A002” will be processed.

Explanation: A message was routed into the wrong
queue.

Action: Make sure the type of operation field SW22 of
your message contains the value A001 or A002. Only
these two values are allowed.

Note: Field SW22 works in conjunction with field
SW105. See the following table for the two valid
combinations of the fields SW22 and SW105.

Field SW22 Field SW105

Combination 1 A001 INFOANSW

Combination 2 A002 INFODIST

HMS266E The value “s” is invalid for SW105, only
“INFODIST” and “INFOANSW” are
supported.

Explanation: A message was routed into the wrong
queue.

Action: Make sure the message type field SW105 in
your message contains the value INFODIST or
INFOANSW. Field SW105 works in conjunction with
field SW22. See the the table for message HMS265E for
the two valid combinations of the fields SW22 and
SW105.

HMS267E %s FETCH ‘DSLAPI’ failed.

Explanation: Load of the MERVA ESA API program
failed.

Action: Make sure that the DSLAPI program is
available in one of the STEPLIBs of your startup job.

HMS999E No message ID for supplied reason
code.

Explanation: The system could not resolve the reason
code into a message text.

Action: Internal error. Contact your IBM
representative.

44 Directory Services

Appendix C. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Deutschland
Informationssysteme GmbH
Department 3982
Pascalstrasse 100

© Copyright IBM Corp. 2000 45

70569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement
or any equivalent agreement between us.

The following paragraph does apply to the US only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States,
other countries, or both:
v AIX
v C/370
v CICS
v CICS/ESA
v CICS/MVS
v CICS/VSE
v DB2
v IBM
v IMS/ESA
v MQSeries
v MVS
v MVS/ESA
v MVS/XA
v OS/2
v OS/390
v QMF

46 Directory Services

v RACF
v S/390
v VSE/ESA
v VTAM

Workstation (AWS) and Directory Services Application (DSA) are trademarks of
S.W.I.F.T., La Hulpe in Belgium.

Pentium is a trademark of Intel Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by IBM
Corporation under license.

C-bus is a trademark of Corollary, Inc.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix C. Notices 47

48 Directory Services

Glossary of Terms and Abbreviations

This glossary defines terms as they are used in
this book. If you do not find the terms you are
looking for, refer to the IBM Dictionary of
Computing, New York: McGraw-Hill, and the
S.W.I.F.T. User Handbook.

A
ACB. Access method control block.

ACC. MERVA Link USS application control command
application. It provides a means of operating MERVA
Link USS in USS shell and MVS batch environments.

access method control block (ACB). A control block
that links an application program to VSAM or VTAM.

ACD. MERVA Link USS application control daemon.

ACT. MERVA Link USS application control table.

address. See S.W.I.F.T. address.

address expansion. The process by which the full
name of a financial institution is obtained using the
S.W.I.F.T. address, telex correspondent’s address, or a
nickname.

AMPDU. Application message protocol data unit,
which is defined in the MERVA Link P1 protocol, and
consists of an envelope and its content.

answerback. In telex, the response from the dialed
correspondent to the WHO R U signal.

answerback code. A group of up to 6 letters following
or contained in the answerback. It is used to check the
answerback.

APC. Application control.

API. Application programming interface.

APPC. Advanced Program-to-Program
Communication based on SNA LU 6.2 protocols.

APPL. A VTAM definition statement used to define a
VTAM application program.

application programming interface (API). An
interface that programs can use to exchange data.

application support filter (ASF). In MERVA Link, a
user-written program that can control and modify any
data exchanged between the Application Support Layer
and the Message Transfer Layer.

application support process (ASP). An executing
instance of an application support program. Each
application support process is associated with an ASP
entry in the partner table. An ASP that handles
outgoing messages is a sending ASP; one that handles
incoming messages is a receiving ASP.

application support program (ASP). In MERVA Link,
a program that exchanges messages and reports with a
specific remote partner ASP. These two programs must
agree on which conversation protocol they are to use.

ASCII. American Standard Code for Information
Interchange. The standard code, using a coded set
consisting of 7-bit coded characters (8 bits including
parity check), used for information interchange among
data processing systems, data communication systems,
and associated equipment. The ASCII set consists of
control characters and graphic characters.

ASF. Application support filter.

ASF. (1) Application support process. (2) Application
support program.

ASPDU. Application support protocol data unit,
which is defined in the MERVA Link P2 protocol.

authentication. The S.W.I.F.T. security check used to
ensure that a message has not changed during
transmission, and that it was sent by an authorized
sender.

authenticator key. A set of alphanumeric characters
used for the authentication of a message sent via the
S.W.I.F.T. network.

authenticator-key file. The file that stores the keys
used during the authentication of a message. The file
contains a record for each of your financial institution’s
correspondents.

B
Back-to-Back (BTB). A MERVA Link function that
enables ASPs to exchange messages in the local MERVA
Link node without using data communication services.

bank identifier code. A 12-character code used to
identify a bank within the S.W.I.F.T. network. Also
called a S.W.I.F.T. address. The code consists of the
following subcodes:
v The bank code (4 characters)
v The ISO country code (2 characters)
v The location code (2 characters)
v The address extension (1 character)

© Copyright IBM Corp. 2000 49

v The branch code (3 characters) for a S.W.I.F.T. user
institution, or the letters “BIC” for institutions that
are not S.W.I.F.T. users.

Basic Security Manager (BSM). A component of
VSE/ESA Version 2.4 that is invoked by the System
Authorization Facility, and used to ensure signon and
transaction security.

BIC. Bank identifier code.

BIC Bankfile. A tape of bank identifier codes supplied
by S.W.I.F.T.

BIC Database Plus Tape. A tape of financial
institutions and currency codes, supplied by S.W.I.F.T.
The information is compiled from various sources and
includes national, international, and cross-border
identifiers.

BIC Directory Update Tape. A tape of bank identifier
codes and currency codes, supplied by S.W.I.F.T., with
extended information as published in the printed BIC
Directory.

body. The second part of an IM-ASPDU. It contains
the actual application data or the message text that the
IM-AMPDU transfers.

BSC. Binary synchronous control.

BSM. Basic Security Manager.

BTB. Back-to-back.

buffer. A storage area used by MERVA programs to
store a message in its internal format. A buffer has an
8-byte prefix that indicates its length.

C
CBT. S.W.I.F.T. computer-based terminal.

CCSID. Coded character set identifier.

CDS. Control data set.

central service. In MERVA, a service that uses
resources that either require serialization of access, or
are only available in the MERVA nucleus.

CF message. Confirmed message. When a sending
MERVA Link system is informed of the successful
delivery of a message to the receiving application, it
routes the delivered application messages as CF
messages, that is, messages of class CF, to an ACK wait
queue or to a complete message queue.

COA. Confirm on arrival.

COD. Confirm on delivery.

coded character set identifier (CCSID). The name of a
coded set of characters and their code point
assignments.

commit. In MQSeries, to commit operations is to make
the changes on MQSeries queues permanent. After
putting one or more messages to a queue, a commit
makes them visible to other programs. After getting
one or more messages from a queue, a commit
permanently deletes them from the queue.

confirm-on-arrival (COA) report. An MQSeries report
message type created when a message is placed on that
queue. It is created by the queue manager that owns
the destination queue.

confirm-on-delivery (COD) report. An MQSeries
report message type created when an application
retrieves a message from the queue in a way that
causes the message to be deleted from the queue. It is
created by the queue manager.

control fields. In MERVA Link, fields that are part of
a MERVA message on the queue data set and of the
message in the TOF. Control fields are written to the
TOF at nesting identifier 0. Messages in S.W.I.F.T.
format do not contain control fields.

correspondent. An institution to which your
institution sends and from which it receives messages.

correspondent identifier. The 11-character identifier of
the receiver of a telex message. Used as a key to
retrieve information from the Telex correspondents file.

cross-system coupling facility. See XCF.

coupling services. In a sysplex, the functions of XCF
that transfer data and status information among the
members of a group that reside in one or more of the
MVS systems in the sysplex.

couple data set. See XCF couple data set.

CTP. MERVA Link command transfer processor.

currency code file. A file containing the currency
codes, together with the name, fraction length, country
code, and country names.

D
daemon. A long-lived process that runs unattended to
perform continuous or periodic systemwide functions.

DASD. Direct access storage device.

data area. An area of a predefined length and format
on a panel in which data can be entered or displayed.
A field can consist of one or more data areas.

data element. A unit of data that, in a certain context,
is considered indivisible. In MERVA Link, a data

50 Directory Services

element consists of a 2-byte data element length field, a
2-byte data-element identifier field, and a field of
variable length containing the data element data.

datagram. In TCP/IP, the basic unit of information
passed across the Internet environment. This type of
message does not require a reply, and is the simplest
type of message that MQSeries supports.

data terminal equipment. That part of a data station
that serves as a data source, data link, or both, and
provides for the data communication control function
according to protocols.

DB2. A family of IBM licensed programs for relational
database management.

dead-letter queue. A queue to which a queue
manager or application sends messages that it cannot
deliver. Also called undelivered-message queue.

dial-up number. A series of digits required to
establish a connection with a remote correspondent via
the public telex network.

direct service. In MERVA, a service that uses resources
that are always available and that can be used by
several requesters at the same time.

display mode. The mode (PROMPT or NOPROMPT)
in which S.W.I.F.T. messages are displayed. See
PROMPT mode and NOPROMPT mode.

distributed queue management (DQM). In MQSeries
message queuing, the setup and control of message
channels to queue managers on other systems.

DQM. Distributed queue management.

DTE. Data terminal equipment.

E
EBCDIC. Extended Binary Coded Decimal
Interchange Code. A coded character set consisting of
8-bit coded characters.

ECB. Event control block.

EDIFACT. Electronic Data Interchange for
Administration, Commerce and Transport (a United
Nations standard).

ESM. External security manager.

EUD. End-user driver.

exception report. An MQSeries report message type
that is created by a message channel agent when a
message is sent to another queue manager, but that
message cannot be delivered to the specified
destination queue.

external line format (ELF) messages. Messages that
are not fully tokenized, but are stored in a single field
in the TOF. Storing messages in ELF improves
performance, because no mapping is needed, and
checking is not performed.

external security manager (ESM). A security product
that is invoked by the System Authorization Facility.
RACF is an example of an ESM.

F
FDT. Field definition table.

field. In MERVA, a portion of a message used to enter
or display a particular type of data in a predefined
format. A field is located by its position in a message
and by its tag. A field is made up of one or more data
areas. See also data area.

field definition table (FDT). The field definition table
describes the characteristics of a field; for example, its
length and number of its data areas, and whether it is
mandatory. If the characteristics of a field change
depending on its use in a particular message, the
definition of the field in the FDT can be overridden by
the MCB specifications.

field group. One or several fields that are defined as
being a group. Because a field can occur more than
once in a message, field groups are used to distinguish
them. A name can be assigned to the field group
during message definition.

field group number. In the TOF, a number is assigned
to each field group in a message in ascending order
from 1 to 255. A particular field group can be accessed
using its field group number.

field tag. A character string used by MERVA to
identify a field in a network buffer. For example, for
S.W.I.F.T. field 30, the field tag is :30:.

FIN. Financial application.

FIN-Copy. The MERVA component used for S.W.I.F.T.
FIN-Copy support.

finite state machine. The theoretical base describing
the rules of a service request’s state and the conditions
to state transitions.

FMT/ESA. MERVA-to-MERVA Financial Message
Transfer/ESA.

form. A partially-filled message containing data that
can be copied for a new message of the same message
type.

G
GPA. General purpose application.

Glossary of Terms and Abbreviations 51

H
HFS. Hierarchical file system.

hierarchical file system (HFS). A system for
organizing files in a hierarchy, as in a UNIX system.
OS/390 UNIX System Services files are organized in an
HFS. All files are members of a directory, and each
directory is in turn a member of a directory at a higher
level in the HFS. The highest level in the hierarchy is
the root directory.

I
IAM. Interapplication messaging (a MERVA Link
message exchange protocol).

IM-ASPDU. Interapplication messaging application
support protocol data unit. It contains an application
message and consists of a heading and a body.

incore request queue. Another name for the request
queue to emphasize that the request queue is held in
memory instead of on a DASD.

InetD. Internet Daemon. It provides TCP/IP
communication services in the OS/390 USS
environment.

initiation queue. In MQSeries, a local queue on which
the queue manager puts trigger messages.

input message. A message that is input into the
S.W.I.F.T. network. An input message has an input
header.

INTERCOPE TelexBox. This telex box supports
various national conventions for telex procedures and
protocols.

interservice communication. In MERVA ESA, a
facility that enables communication among services if
MERVA ESA is running in a multisystem environment.

intertask communication. A facility that enables
application programs to communicate with the MERVA
nucleus and so request a central service.

IP. Internet Protocol.

IP message. In-process message. A message that is in
the process of being transferred to another application.

ISC. Intersystem communication.

ISN. Input sequence number.

ISN acknowledgment. A collective term for the
various kinds of acknowledgments sent by the
S.W.I.F.T. network.

ISO. International Organization for Standardization.

ITC. Intertask communication.

J
JCL. Job control language.

journal. A chronological list of records detailing
MERVA actions.

journal key. A key used to identify a record in the
journal.

journal service. A MERVA central service that
maintains the journal.

K
KB. Kilobyte (1024 bytes).

key. A character or set of characters used to identify
an item or group of items. For example, the user ID is
the key to identify a user file record.

key-sequenced data set (KSDS). A VSAM data set
whose records are loaded in key sequence and
controlled by an index.

keyword parameter. A parameter that consists of a
keyword, followed by one or more values.

KSDS. Key-sequenced data set.

L
LAK. Login acknowledgment message. This message
informs you that you have successfully logged in to the
S.W.I.F.T. network.

large message. A message that is stored in the large
message cluster (LMC). The maximum length of a
message to be stored in the VSAM QDS is 31900 bytes.
Messages up to 2 MB can be stored in the LMC. For
queue management using DB2 no distinction is made
between messages and large messages.

large queue element. A queue element that is larger
than the smaller of:

v The limiting value specified during the customization
of MERVA

v 32 KB

LC message. Last confirmed control message. It
contains the message-sequence number of the
application or acknowledgment message that was last
confirmed; that is, for which the sending MERVA Link
system most recently received confirmation of a
successful delivery.

LDS. Logical data stream.

LMC. Large message cluster.

52 Directory Services

LNK. Login negative acknowledgment message. This
message indicates that the login to the S.W.I.F.T.
network has failed.

local queue. In MQSeries, a queue that belongs to a
local queue manager. A local queue can contain a list of
messages waiting to be processed. Contrast with remote
queue.

local queue manager. In MQSeries, the queue
manager to which the program is connected, and that
provides message queuing services to that program.
Queue managers to which a program is not connected
are remote queue managers, even if they are running
on the same system as the program.

login. To start the connection to the S.W.I.F.T. network.

LR message. Last received control message, which
contains the message-sequence number of the
application or acknowledgment message that was last
received from the partner application.

LSN. Login sequence number.

LT. See LTERM.

LTC. Logical terminal control.

LTERM. Logical terminal. Logical terminal names
have 4 characters in CICS and up to 8 characters in
IMS.

LU. A VTAM logical unit.

M
maintain system history program (MSHP). A
program used for automating and controlling various
installation, tailoring, and service activities for a VSE
system.

MCA. Message channel agent.

MCB. Message control block.

MERVA ESA. The IBM licensed program Message
Entry and Routing with Interfaces to Various
Applications for ESA.

MERVA Link. A MERVA component that can be used
to interconnect several MERVA systems.

message. A string of fields in a predefined form used
to provide or request information. See also S.W.I.F.T.
financial message.

message channel. In MQSeries distributed message
queuing, a mechanism for moving messages from one
queue manager to another. A message channel
comprises two message channel agents (a sender and a
receiver) and a communication link.

message channel agent (MCA). In MQSeries, a
program that transmits prepared messages from a
transmission queue to a communication link, or from a
communication link to a destination queue.

message control block (MCB). The definition of a
message, screen panel, net format, or printer layout
made during customization of MERVA.

Message Format Service (MFS). A MERVA direct
service that formats a message according to the
medium to be used, and checks it for formal
correctness.

Message Integrity Protocol (MIP). In MERVA Link,
the protocol that controls the exchange of messages
between partner ASPs. This protocol ensures that any
loss of a message is detected and reported, and that no
message is duplicated despite system failures at any
point during the transfer process.

message-processing function. The various parts of
MERVA used to handle a step in the
message-processing route, together with any necessary
equipment.

message queue. See queue.

Message Queue Interface (MQI). The programming
interface provided by the MQSeries queue managers. It
provides a set of calls that let application programs
access message queuing services such as sending
messages, receiving messages, and manipulating
MQSeries objects.

Message Queue Manager (MQM). An IBM licensed
program that provides message queuing services. It is
part of the MQSeries set of products.

message type (MT). A number, up to 7 digits long,
that identifies a message. S.W.I.F.T. messages are
identified by a 3-digit number; for example S.W.I.F.T.
message type MT S100.

MFS. Message Format Service.

MIP. Message Integrity Protocol.

MPDU. Message protocol data unit, which is defined
in P1.

MPP. In IMS, message-processing program.

MQH. MQSeries queue handler.

MQI. Message queue interface.

MQM. Message queue manager.

MQS. MQSeries nucleus server.

MQSeries. A family of IBM licensed programs that
provides message queuing services.

Glossary of Terms and Abbreviations 53

MQSeries nucleus server (MQS). A MERVA
component that listens for messages on an MQI queue,
receives them, extracts a service request, and passes it
via the request queue handler to another MERVA ESA
instance for processing.

MQSeries queue handler (MQH). A MERVA
component that performs service calls to the Message
Queue Manager via the provided Message Queue
Interface.

MSC. MERVA system control facility.

MSHP. Maintain system history program.

MSN. Message sequence number.

MT. Message type.

MTP. (1) Message transfer program. (2) Message
transfer process.

MTS. Message Transfer System.

MTSP. Message Transfer Service Processor.

MTT. Message type table.

multisystem application. (1) An application program
that has various functions distributed across MVS
systems in a multisystem environment. (2) In XCF, an
authorized application that uses XCF coupling services.
(3) In MERVA ESA, multiple instances of MERVA ESA
that are distributed among different MVS systems in a
multisystem environment.

multisystem environment. An environment in which
two or more MVS systems reside on one or more
processors, and programs on one system can
communicate with programs on the other systems.
With XCF, the environment in which XCF services are
available in a defined sysplex.

multisystem sysplex. A sysplex in which one or more
MVS systems can be initialized as part of the sysplex.
In a multisystem sysplex, XCF provides coupling
services on all systems in the sysplex and requires an
XCF couple data set that is shared by all systems. See
also single-system sysplex.

MVS/ESA. Multiple Virtual Storage/Enterprise
Systems Architecture.

N
namelist. An MQSeries for MVS/ESA object that
contains a list of queue names.

nested message. A message that is composed of one
or more message types.

nested message type. A message type that is
contained in another message type. In some cases, only

part of a message type (for example, only the
mandatory fields) is nested, but this “partial” nested
message type is also considered to be nested. For
example, S.W.I.F.T. MT 195 could be used to request
information about a S.W.I.F.T. MT 100 (customer
transfer). The S.W.I.F.T. MT 100 (or at least its
mandatory fields) is then nested in S.W.I.F.T. MT 195.

nesting identifier. An identifier (a number from 2 to
255) that is used to access a nested message type.

network identifier. A single character that is placed
before a message type to indicate which network is to
be used to send the message; for example, S for
S.W.I.F.T.

network service access point (NSAP). The endpoint
of a network connection used by the S.W.I.F.T. transport
layer.

NOPROMPT mode. One of two ways to display a
message panel. NOPROMPT mode is only intended for
experienced SWIFT Link users who are familiar with
the structure of S.W.I.F.T. messages. With NOPROMPT
mode, only the S.W.I.F.T. header, trailer, and pre-filled
fields and their tags are displayed. Contrast with
PROMPT mode.

NSAP. Network service access point.

nucleus server. A MERVA component that processes a
service request as selected by the request queue
handler. The service a nucleus server provides and the
way it provides it is defined in the nucleus server table
(DSLNSVT).

O
object. In MQSeries, objects define the properties of
queue managers, queues, process definitions, and
namelists.

occurrence. See repeatable sequence.

option. One or more characters added to a S.W.I.F.T.
field number to distinguish among different layouts for
and meanings of the same field. For example, S.W.I.F.T.
field 60 can have an option F to identify a first opening
balance, or M for an intermediate opening balance.

origin identifier (origin ID). A 34-byte field of the
MERVA user file record. It indicates, in a MERVA and
SWIFT Link installation that is shared by several banks,
to which of these banks the user belongs. This lets the
user work for that bank only.

OSN. Output sequence number.

OSN acknowledgment. A collective term for the
various kinds of acknowledgments sent to the S.W.I.F.T.
network.

54 Directory Services

output message. A message that has been received
from the S.W.I.F.T. network. An output message has an
output header.

P
P1. In MERVA Link, a peer-to-peer protocol used by
cooperating message transfer processes (MTPs).

P2. In MERVA Link, a peer-to-peer protocol used by
cooperating application support processes (ASPs).

P3. In MERVA Link, a peer-to-peer protocol used by
cooperating command transfer processors (CTPs).

packet switched public data network (PSPDN). A
public data network established and operated by
network common carriers or telecommunication
administrations for providing packet-switched data
transmission.

panel. A formatted display on a display terminal.
Each page of a message is displayed on a separate
panel.

parallel processing. The simultaneous processing of
units of work by several servers. The units of work can
be either transactions or subdivisions of larger units of
work.

parallel sysplex. A sysplex that uses one or more
coupling facilities.

partner table (PT). In MERVA Link, the table that
defines how messages are processed. It consists of a
header and different entries, such as entries to specify
the message-processing parameters of an ASP or MTP.

PCT. Program Control Table (of CICS).

PDE. Possible duplicate emission.

PDU. Protocol data unit.

PF key. Program-function key.

positional parameter. A parameter that must appear
in a specified location relative to other parameters.

PREMIUM. The MERVA component used for
S.W.I.F.T. PREMIUM support.

process definition object. An MQSeries object that
contains the definition of an MQSeries application. A
queue manager uses the definitions contained in a
process definition object when it works with trigger
messages.

program-function key. A key on a display terminal
keyboard to which a function (for example, a
command) can be assigned. This lets you execute the
function (enter the command) with a single keystroke.

PROMPT mode. One of two ways to display a
message panel. PROMPT mode is intended for SWIFT
Link users who are unfamiliar with the structure of
S.W.I.F.T. messages. With PROMPT mode, all the fields
and tags are displayed for the S.W.I.F.T. message.
Contrast with NOPROMPT mode.

protocol data unit (PDU). In MERVA Link a PDU
consists of a structured sequence of implicit and
explicit data elements:
v Implicit data elements contain other data elements.
v Explicit data elements cannot contain any other data

elements.

PSN. Public switched network.

PSPDN. Packet switched public data network.

PSTN. Public switched telephone network.

PT. Partner table.

PTT. A national post and telecommunication authority
(post, telegraph, telephone).

Q
QDS. Queue data set.

QSN. Queue sequence number.

queue. (1) In MERVA, a logical subdivision of the
MERVA queue data set used to store the messages
associated with a MERVA message-processing function.
A queue has the same name as the message-processing
function with which it is associated. (2) In MQSeries, an
object onto which message queuing applications can
put messages, and from which they can get messages.
A queue is owned and maintained by a queue
manager. See also request queue.

queue element. A message and its related control
information stored in a data record in the MERVA ESA
Queue Data Set.

queue management. A MERVA service function that
handles the storing of messages in, and the retrieval of
messages from, the queues of message-processing
functions.

queue manager. (1) An MQSeries system program that
provides queuing services to applications. It provides
an application programming interface so that programs
can access messages on the queues that the queue
manager owns. See also local queue manager and remote
queue manager. (2) The MQSeries object that defines the
attributes of a particular queue manager.

queue sequence number (QSN). A sequence number
that is assigned to the messages stored in a logical
queue by MERVA ESA queue management in
ascending order. The QSN is always unique in a queue.

Glossary of Terms and Abbreviations 55

It is reset to zero when the queue data set is formatted,
or when a queue management restart is carried out and
the queue is empty.

R
RACF. Resource Access Control Facility.

RBA. Relative byte address.

RC message. Recovered message; that is, an IP
message that was copied from the control queue of an
inoperable or closed ASP via the recover command.

ready queue. A MERVA queue used by SWIFT Link to
collect S.W.I.F.T. messages that are ready for sending to
the S.W.I.F.T. network.

remote queue. In MQSeries, a queue that belongs to a
remote queue manager. Programs can put messages on
remote queues, but they cannot get messages from
remote queues. Contrast with local queue.

remote queue manager. In MQSeries, a queue
manager is remote to a program if it is not the queue
manager to which the program is connected.

repeatable sequence. A field or a group of fields that
is contained more than once in a message. For example,
if the S.W.I.F.T. fields 20, 32, and 72 form a sequence,
and if this sequence can be repeated up to 10 times in a
message, each sequence of the fields 20, 32, and 72
would be an occurrence of the repeatable sequence.

In the TOF, the occurrences of a repeatable sequence
are numbered in ascending order from 1 to 32767 and
can be referred to using the occurrence number.

A repeatable sequence in a message may itself contain
another repeatable sequence. To identify an occurrence
within such a nested repeatable sequence, more than
one occurrence number is necessary.

reply message. In MQSeries, a type of message used
for replies to request messages.

reply-to queue. In MQSeries, the name of a queue to
which the program that issued an MQPUT call wants a
reply message or report message sent.

report message. In MQSeries, a type of message that
gives information about another message. A report
message usually indicates that the original message
cannot be processed for some reason.

request message. In MQSeries, a type of message used
for requesting a reply from another program.

request queue. The queue in which a service request
is stored. It resides in main storage and consists of a set
of request queue elements that are chained in different
queues:

v Requests waiting to be processed

v Requests currently being processed

v Requests for which processing has finished

request queue handler (RQH). A MERVA ESA
component that handles the queueing and scheduling
of service requests. It controls the request processing of
a nucleus server according to rules defined in the finite
state machine.

Resource Access Control Facility (RACF). An IBM
licensed program that provides for access control by
identifying and verifying users to the system,
authorizing access to protected resources, logging
detected unauthorized attempts to enter the system,
and logging detected accesses to protected resources.

retype verification. See verification.

routing. In MERVA, the passing of messages from one
stage in a predefined processing path to the next stage.

RP. Regional processor.

RQH. Request queue handler.

RRDS. Relative record data set.

S
SAF. System Authorization Facility.

SCS. SNA character string.

SCP. System control process.

SDI. Sequential data set input. A batch utility used to
import messages from a sequential data set or a tape
into MERVA ESA queues.

SDO. Sequential data set output. A batch utility used
to export messages from a MERVA ESA queue to a
sequential data set or a tape.

SDY. Sequential data set system printer. A batch
utility used to print messages from a MERVA ESA
queue.

service request. A type of request that is created and
passed to the request queue handler whenever a
nucleus server requires a service that is not currently
available.

sequence number. A number assigned to each
message exchanged between two nodes. The number is
increased by one for each successive message. It starts
from zero each time a new session is established.

sign off. To end a session with MERVA.

sign on. To start a session with MERVA.

single-system sysplex. A sysplex in which only one
MVS system can be initialized as part of the sysplex. In

56 Directory Services

a single-system sysplex, XCF provides XCF services on
the system, but does not provide signaling services
between MVS systems. A single-system sysplex requires
an XCF couple data set. See also multisystem sysplex.

small queue element. A queue element that is smaller
than the smaller of:

v The limiting value specified during the customization
of MERVA

v 32 KB

SMP/E. System Modification Program Extended.

SN. Session number.

SNA. Systems Network Architecture.

SNA character string. In SNA, a character string
composed of EBCDIC controls, optionally mixed with
user data, that is carried within a request or response
unit.

SPA. Scratch pad area.

SQL. Structured Query Language.

SR-ASPDU. The status report application support
PDU, which is used by MERVA Link for
acknowledgment messages.

SSN. Select sequence number.

subfield. A subdivision of a field with a specific
meaning. For example, the S.W.I.F.T. field 32 has the
subfields date, currency code, and amount. A field can
have several subfield layouts depending on the way the
field is used in a particular message.

SVC. (1) Switched Virtual Circuit. (2) Supervisor call
instruction.

S.W.I.F.T. (1) Society for Worldwide Interbank
Financial Telecommunication s.c. (2) The network
provided and managed by the Society for Worldwide
Interbank Financial Telecommunication s.c.

S.W.I.F.T. address. Synonym for bank identifier code.

S.W.I.F.T. Correspondents File. The file containing the
bank identifier code (BIC), together with the name,
postal address, and zip code of each financial
institution in the BIC Directory.

S.W.I.F.T. financial message. A message in one of the
S.W.I.F.T. categories 1 to 9 that you can send or receive
via the S.W.I.F.T. network. See S.W.I.F.T. input message
and S.W.I.F.T. output message.

S.W.I.F.T. header. The leading part of a message that
contains the sender and receiver of the message, the
message priority, and the type of message.

S.W.I.F.T. input message. A S.W.I.F.T. message with an
input header to be sent to the S.W.I.F.T. network.

SWIFT link. The MERVA ESA component used to
link to the S.W.I.F.T. network.

S.W.I.F.T. network. Refers to the S.W.I.F.T. network of
the Society for Worldwide Interbank Financial
Telecommunication (S.W.I.F.T.).

S.W.I.F.T. output message. A S.W.I.F.T. message with
an output header coming from the S.W.I.F.T. network.

S.W.I.F.T. system message. A S.W.I.F.T. general
purpose application (GPA) message or a financial
application (FIN) message in S.W.I.F.T. category 0.

switched virtual circuit (SVC). An X.25 circuit that is
dynamically established when needed. It is the X.25
equivalent of a switched line.

sysplex. One or more MVS systems that communicate
and cooperate via special multisystem hardware
components and software services.

System Authorization Facility (SAF). An MVS or VSE
facility through which MERVA ESA communicates
with an external security manager such as RACF (for
MVS) or the basic security manager (for VSE).

System Control Process (SCP). A MERVA Link
component that handles the transfer of MERVA ESA
commands to a partner MERVA ESA system, and the
receipt of the command response. It is associated with a
system control process entry in the partner table.

System Modification Program Extended (SMP/E). A
licensed program used to install software and software
changes on MVS systems.

Systems Network Architecture (SNA). The
description of the logical structure, formats, protocols,
and operating sequences for transmitting information
units through, and for controlling the configuration and
operation of, networks.

T
tag. A field identifier.

TCP/IP. Transmission Control Protocol/Internet
Protocol.

Telex Correspondents File. A file that stores data
about correspondents. When the user enters the
corresponding nickname in a Telex message, the
corresponding information in this file is automatically
retrieved and entered into the Telex header area.

telex header area. The first part of the telex message.
It contains control information for the telex network.

telex interface program (TXIP). A program that runs
on a Telex front-end computer and provides a
communication facility to connect MERVA ESA with
the Telex network.

Glossary of Terms and Abbreviations 57

Telex Link. The MERVA ESA component used to link
to the public telex network via a Telex substation.

Telex substation. A unit comprised of the following:

v Telex Interface Program

v A Telex front-end computer

v A Telex box

Terminal User Control Block (TUCB). A control block
containing terminal-specific and user-specific
information used for processing messages for display
devices such as screen and printers.

test key. A key added to a telex message to ensure
message integrity and authorized delivery. The test key
is an integer value of up to 16 digits, calculated
manually or by a test-key processing program using the
significant information in the message, such as
amounts, currency codes, and the message date.

test-key processing program. A program that
automatically calculates and verifies a test key. The
Telex Link supports panels for input of test-key-related
data and an interface for a test-key processing program.

TFD. Terminal feature definitions table.

TID. Terminal identification. The first 9 characters of a
bank identifier code (BIC).

TOF. Originally the abbreviation of tokenized form, the
TOF is a storage area where messages are stored so that
their fields can be accessed directly by their field names
and other index information.

TP. Transaction program.

transaction. A specific set of input data that triggers
the running of a specific process or job; for example, a
message destined for an application program.

transaction code. In IMS and CICS, an alphanumeric
code that calls an IMS message processing program or
a CICS transaction. Transaction codes have 4 characters
in CICS and up to 8 characters in IMS.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of communication protocols that
support peer-to-peer connectivity functions for both
local and wide area networks.

transmission queue. In MQSeries, a local queue on
which prepared messages destined for a remote queue
manager are temporarily stored.

trigger event. In MQSeries, an event (such as a
message arriving on a queue) that causes a queue
manager to create a trigger message on an initiation
queue.

trigger message. In MQSeries, a message that contains
information about the program that a trigger monitor is
to start.

trigger monitor. In MQSeries, a continuously-running
application that serves one or more initiation queues.
When a trigger message arrives on an initiation queue,
the trigger monitor retrieves the message. It uses the
information in the trigger message to start a process
that serves the queue on which a trigger event
occurred.

triggering. In MQSeries, a facility that allows a queue
manager to start an application automatically when
predetermined conditions are satisfied.

TUCB. Terminal User Control Block.

TXIP. Telex interface program.

U
UMR. Unique message reference.

unique message reference (UMR). An optional
feature of MERVA ESA that provides each message
with a unique identifier the first time it is placed in a
queue. It is composed of a MERVA ESA installation
name, a sequence number, and a date and time stamp.

UNIT. A group of related literals or fields of an MCB
definition, or both, enclosed by a DSLLUNIT and
DSLLUEND macroinstruction.

UNIX System Services (USS). A component of
OS/390, formerly called OpenEdition (OE), that creates
a UNIX environment that conforms to the XPG4 UNIX
1995 specifications, and provides two open system
interfaces on the OS/390 operating system:

v An application program interface (API)

v An interactive shell interface

UN/EDIFACT. United Nations Standard for Electronic
Data Interchange for Administration, Commerce, and
Transport.

USE. S.W.I.F.T. User Security Enhancements.

user file. A file containing information about all
MERVA ESA users; for example, which functions each
user is allowed to access. The user file is encrypted and
can only be accessed by authorized persons.

user identification and verification. The acts of
identifying and verifying a RACF-defined user to the
system during logon or batch job processing. RACF
identifies the user by the user ID and verifies the user
by the password or operator identification card
supplied during logon processing or the password
supplied on a batch JOB statement.

USS. UNIX System Services.

58 Directory Services

V
verification. Checking to ensure that the contents of a
message are correct. Two kinds of verification are:

v Visual verification, in which you read the message
and confirm that you have done so

v Retype verification, in which you reenter the data to
be verified

Virtual LU. An LU defined in MERVA Extended
Connectivity for communication between MERVA and
MERVA Extended Connectivity.

Virtual Storage Access Method (VSAM). An access
method for direct or sequential processing of fixed and
variable-length records on direct access devices. The
records in a VSAM data set or file can be organized in
logical sequence by a key field (key sequence), in the
physical sequence in which they are written on the data
set or file (entry sequence), or by relative-record
number.

Virtual Telecommunications Access Method (VTAM).
An IBM licensed program that controls communication
and the flow of data in an SNA network. It provides
single-domain, multiple-domain, and interconnected
network capability.

VSAM. Virtual Storage Access Method.

VTAM. Virtual Telecommunications Access Method
(IBM licensed program).

X
X.25. An ISO standard for interface to packet switched
communications services.

XCF. Abbreviation for cross-system coupling facility,
which is a special logical partition that provides
high-speed caching, list processing, and locking
functions in a sysplex. XCF provides the MVS coupling
services that allow authorized programs on MVS
systems in a multisystem environment to communicate
with (send data to and receive data from) authorized
programs on other MVS systems.

XCF couple data set. A data set that is created
through the XCF couple data set format utility and,
depending on its designated type, is shared by some or
all of the MVS systems in a sysplex. It is accessed only
by XCF and contains XCF-related data about the
sysplex, systems, applications, groups, and members.

XCF group. The set of related members defined to
SCF by a multisystem application in which members of
the group can communicate with (send data to and
receive data from) other members of the same group.
All MERVA systems working together in a sysplex
must pertain to the same XCF group.

XCF member. A specific function of a multisystem
application that is defined to XCF and assigned to a
group by the multisystem application. A member
resides on one system in a sysplex and can use XCF
services to communicate with other members of the
same group.

Glossary of Terms and Abbreviations 59

60 Directory Services

Bibliography

MERVA ESA Publications
v MERVA for ESA Version 4 Application

Programming Interface Guide, SH12-6374
v MERVA for ESA Version 4 Advanced MERVA Link,

SH12-6390
v MERVA for ESA Version 4 Concepts and

Components, SH12-6381
v MERVA for ESA Version 4 Customization Guide,

SH12-6380
v MERVA for ESA Version 4 Diagnosis Guide,

SH12-6382
v MERVA for ESA Version 4 Installation Guide,

SH12-6378
v MERVA for ESA Version 4 Licensed Program

Specifications, GH12-6373
v MERVA for ESA Version 4 Macro Reference,

SH12-6377
v MERVA for ESA Version 4 Messages and Codes,

SH12-6379
v MERVA for ESA Version 4 Operations Guide,

SH12-6375
v MERVA for ESA Version 4 System Programming

Guide, SH12-6366
v MERVA for ESA Version 4 User’s Guide,

SH12-6376

Other MERVA Publications
v MERVA Directory Services, SH12-6367
v MERVA Extended Connectivity Installation and

User’s Guide, SH12-6157
v MERVA Extended Connectivity Licensed Program

Specifications, GH12-6186
v MERVA Message Processing Client for Windows

NT User’s Guide, SH12-6341
v MERVA Traffic Reconciliation, SH12-6392
v MERVA USE Administration Guide, SH12-6338
v MERVA USE & Branch for Windows NT

Installation and Customization Guide, SH12-6335
v MERVA Workstation Based Functions, SH12-6383

S.W.I.F.T. Publications
The following are published by the Society for
Worldwide Interbank Financial
Telecommunication, s.c., in La Hulpe, Belgium:
v S.W.I.F.T. User Handbook

v S.W.I.F.T. Dictionary

v S.W.I.F.T. FIN Security Guide

v S.W.I.F.T. Card Readers User Guide

© Copyright IBM Corp. 2000 61

62 Directory Services

Index

A
API 13
API data types

application ID 13
error report 16
field 14
field type 13
HMS API handle 13
key type 15
search key 15
service type 13

API function
description 16

API functions
HMSAdd 16
HMSClear 20
HMSCommit 21
HMSConnect 22
HMSCreate 23
HMSDelete 24
HMSDisconnect 25
HMSInitApplication 27
HMSKeyRead 28
HMSKeyReadNext 30
HMSReadField 32
HMSRollback 34
HMSUpdate 35
HMSWriteField 37

application
allocate memory 27
bind 9
connect 22
disconnect 25

authorization
DB2 9

C
CICS/ESA

resource control table 10
resource definition jobs 10

customizing
parameter settings 8

D
data structure

MT293 (SSI) 11
database

DB2 tables 8
definition 8
maintenance 10
reset changes 34

DDL member
HMSTB 8
HMSTS 8
HMSVIEW 8

definitions
CICS/ESA 10
IMS/ESA 11

E
equipment (machine requirements) 5
error

handling 39
reason code 41
report 39
types 39

example
MT293 (SSI) 11

H
hardware requirements 5
HMSAPPLICATIONID 13
HMSEFIELDTYPE 13
HMSESERVICE 13
HMSKEYTYPE 15
HMSPHANDLE 13
HMSSTERRORREPORT 16
HMSUKEY 15
HMUFIELD 14

I
information record

add 16
change record 35
create 23
delete 24
free space 20
next record 30
return data 32
specified key 28
update information 37

installation
initialization 11
process 7

M
mandatory fields 14
MT293 (SSI) 11

N
Notices 45

P
peripheral equipment 5
processors 5

R
reason code

general 41
HMS001E 41
HMS002E 41
HMS003E 42

reason code (continued)
HMS004E 42
HMS005E 42
HMS100E 42
HMS101E 42
HMS102E 42
HMS103E 42
HMS104E 42
HMS105E 42
HMS106E 42
HMS107E 42
HMS150E 42
HMS151E 42
HMS200E 42
HMS201E 43
HMS202E 43
HMS203E 43
HMS204E 43
HMS205E 43
HMS206E 43
HMS250E 43
HMS251E 43
HMS252E 43
HMS253E 43
HMS254E 43
HMS255E 43
HMS256E 43
HMS257E 43
HMS258E 44
HMS259E 44
HMS260E 44
HMS261I 44
HMS262E 44
HMS263E 44
HMS264E 44
HMS265E 44
HMS266E 44
HMS267E 44
HMS999E 44

reason codes 42
requirements hardware 5
requirements software 5

S
software requirements 5
space needed 9

U
update

DB2 8
MERVA ESA 7

© Copyright IBM Corp. 2000 63

64 Directory Services

MERVA Requirement Request

Use the form overleaf to send us requirement requests for the MERVA product. Fill
in the blank lines with the information that we need to evaluate and implement
your request. Provide also information about your hardware and software
environments and about the MERVA release levels used in your environment.

Provide a detailed description of your requirement. If you are requesting a new
function, describe in full what you want that function to do. If you are requesting
that a function be changed, briefly describe how the function works currently,
followed by how you are requesting that it should work.

If you are a customer, provide us with the appropriate contacts in your
organization to discuss the proposal and possible implementation alternatives.

If you are an IBM employee, include at least the name of one customer who has
this requirement. Add the name and telephone number of the appropriate contacts
in the customer’s organization to discuss the proposal and possible implementation
alternatives. If possible, send this requirement online to MERVAREQ at SDFVM1.

For comments on this book, use the form provided at the back of this publication.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

Send the fax to:

To: MERVA Development, Dept. 5640 Fax Number: +49-7031-16-4881
Attention: Gerhard Stubbe Internet address:

mervareq@de.ibm.com
IBM Deutschland Entwicklung GmbH
Schoenaicher Str. 220
D-71032 Boeblingen
Germany

© Copyright IBM Corp. 2000 65

MERVA Requirement Request

To: MERVA Development, Dept. 5640 Fax Number: +49-7031-16-4881
Attention: Gerhard Strubbe Internet address:

mervareq@de.ibm.com
IBM Deutschland Entwicklung GmbH
Schoenaicher Str. 220
D-71032 Boeblingen Germany

Page 1 of ______

Customer’s Name __

Customer’s Address __

__

__
Customer’s
Telephone/Fax __

Contact Person at __
Customer’s Location
Telephone/Fax __

MERVA
Version/Release __

Operating System __
Sub-System
Version/Release __

Hardware __

Requirement
Description __

__

__

__

__

__

__

Expected Benefits __

__

__

66 Directory Services

Readers’ Comments — We’d Like to Hear from You

MERVA ESA Components
Directory Services

Publication No. SH12-6367-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SH12-6367-00

SH12-6367-00

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH
Information Development, Dept. 0446
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Program Number: 5648-B30

Printed in Denmark by IBM Danmark A/S

SH12-6367-00

Spine information:

IBM MERVA ESA Components Directory Services
Version 4
Release 1

