
MERVA for ESA

Concepts and Components
Version 4 Release 1

SH12-6381-01

���

MERVA for ESA

Concepts and Components
Version 4 Release 1

SH12-6381-01

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix H.
Notices” on page 215.

Second Edition, May 2001

This edition applies to Version 4 Release 1 of IBM MERVA for ESA (5648-B29) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Changes to this edition are marked with a vertical bar.

© Copyright International Business Machines Corporation 1987, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book vii
Prerequisites for Using This Book vii

Summary of Changes ix

Part 1. MERVA ESA Concepts 1

Chapter 1. Introducing MERVA ESA . . 3

Chapter 2. Messages 5
The Message Structure 5
Message Formats 7
Defining Messages 8

Chapter 3. Functions and Queues . . . 11
Functions 11
Queues 12
Routing. 13

Chapter 4. Message Processing 15
End-User Interface 15
MERVA Message Processing Client Server 16
Hardcopy Print 16
Sequential Data Set Batch Interfaces 16
User-Written Programs 17

Chapter 5. Communication Links . . . 19
SWIFT Link 19
Telex Link 20

Telex Link via a Workstation. 20
Telex Link via a Fault-Tolerant System 20

MERVA Link 21
MERVA Link ESA 21
MERVA Link USS 21

MERVA-MQI Attachment. 21

Chapter 6. Control and Services 23
Central Services 23
Direct Services 23
Use of the Services 24

Part 2. MERVA ESA Components 25

Chapter 7. Control Facilities 27
The MERVA ESA Nucleus (DSLNUC) 27

Components of DSLNUC 27
Nucleus Server Shell 30
General Request Queue Handler (DSLNRQH)
Functions 32
MERVA ESA Operator Functions 33

CICS Master Operator Program (DSLCMO). . . 34
CICS Automatic Start Program (DSLCAS) . . . 34

The Operator Interface Program (DSLNMOP) . . 34
The Write-to-Operator Program (DSLWTOP) . . 35

MERVA ESA Functions Using a Security Manager 35
User-Written Application Programs 36

Application Programs Link-Edited to DSLNUC 36
Intertask Communication 37

DSLNICT—Intertask Communication Interface 40
DSLNICTA—Intertask Communication Interface
for APPC/MVS 40
DSLNICTM—Intertask Communication Interface
for MQSeries 41
DSLNICTQ—Intertask Communication Interface
for CICS TS 41
DSLNICP—Interregion Communication Program
for VSE. 42
DSLNICPM—Interregion Communication
Program for MVS 42
DSLXSVCX—Interregion and Sysplex
Communication Program for MVS. 43
DSLNICQ—Interface to DSLNTSQ 44
DSLNTS—Task Server 44
DSLNTSA—Task Server for APPC/MVS. . . . 45
DSLNTSAB—Batch Task Server Interface for
APPC/MVS 45
DSLNTSM—Task Server for MQSeries 45
DSLNTSQ—Task Server for a CICS TS Queue . . 45

Interservice Communication 45
DSLNMQS—MERVA ESA MQSeries Nucleus
Server 46
Remote Failure Notification 48

MQSeries Queue Handler 49
DSLNRTCP—Remote Task Communication. . . . 50

The Receiving Task 50
The Instructing Task 50

DSLISYNP—Synchronization Point Program . . . 51
DSLTIMP—Timer Program 51
DSLCNTP—Message Counter Program 51

Chapter 8. Message Services 53
Field Definition Table 53
Message Type Table 54
Message Control Blocks 54
Terminal Feature Definition Table 55
Function Table 55
Program Function Key Tables 55
TOF Services 56
Message Format Services 57

DSLMMFS—MFS Interface 59
DSLMPTT—MFS Program Table 60
DSLMTIN—Message Initialization and
Formatting 60
DSLMLFP—Line Formatter 61
DSLMLEF—External Line Format Program . . . 63
DSLMPxxx—Print and Edit Services 64
DSLMNOP—NOPROMPT Mapping 65

© Copyright IBM Corp. 1987, 2001 iii

||

DSLMCHE—MFS Checking Interface 65
DSLMXPND—MFS Expansion Interface 66
MFS Exits 66

Chapter 9. Queue Services (VSAM) . . 69
Definition of Queues 70
Queue Data Set (QDS) 71
Queue Management Program DSLQMGT 72

Initialization of DSLQMGT 73
Termination of DSLQMGT 74
Servicing Message Queue Requests 75
Unique Message Reference 81
Queue Trace 83
User Exits in DSLQMGT 83

Large Message Cluster (LMC) 84
Large Message Service Program DSLQLRG . . . 84

Routing. 84
Definition of Routing Tables 85
Routing Scanner Program DSLRTNSC 86
Routing Trace. 87
Special TOF Fields for Routing Decisions . . . 88

Chapter 10. Queue Services (DB2) . . . 91
Definition of Queues 91
DB2 Objects 91
Queue Management Program DSLQMGD 92

Initialization of DSLQMGD for Central
Processing 92
Termination of DSLQMGD for Central Processing 92
Servicing Queue Requests 93
Unique Message Reference 93
Commit 93
Queue Trace 93
User Exits in DSLQMGD 93

Queue Management I/O Programs for DB2 . . . 94
Routing. 94
Extra Keys. 94

Chapter 11. Message Processing . . . 95
End-User Driver DSLEUD 95

Initialization of DSLEUD 96
Processing of DSLEUD 97
Termination of DSLEUD 99
Function Programs of DSLEUD. 99
DSLEUD User Exits 102

MERVA Message Processing Client/Server . . . 102
MERVA ESA Permissions for MERVA Message
Processing Client Users 103
CICS LU 6.2 Transactions 103
APPC/MVS LU 6.2 Transactions 103
TCP/IP Listener Program DSLAFATM 104

Hardcopy Printer Program DSLHCP 104
Transaction for Message Checking and Expansion
DSLCXT 105
Sequential Data Set (SDS) Batch Programs 106

SDS Input Program DSLSDI 107
SDS Input Program DSLSDIR 108
SDS Load Program DSLSDLR 109
SDS Output Program DSLSDO 110
SDS Output Program DSLSDOR 111

SDS Unload Program DSLSDUR 112
System Printer Program DSLSDY 113
System Printer Program DSLSDYR 113

Converting Messages to Other Formats 114
Converting EDIFACT FINPAY Messages into
MT121 Messages, and Vice Versa 114
Converting EDIFACT Messages into SWIFT
MT105 or MT106 Messages 115
Converting SWIFT MT105 or MT106 Messages
into EDIFACT Messages 118

User-Written Application Programs 120

Chapter 12. Communication Links . . 121
SWIFT Link 121

Overview of the SWIFT Link 121
Logical Terminal Table DWSLTT 124
General Purpose Application Program
DWSDGPA 125
Connection to the SWIFT X.25 Network . . . 125
Load Session Keys Program DWSDLSK . . . 129

Telex Link 131
Telex Link via Fault-Tolerant System 131

The MERVA Link 134
MERVA Link ESA 134
MERVA Link USS 146

MERVA-MQI Attachment 152
Functions of MERVA-MQI Attachment 152
Activating MERVA-MQI Attachment 153
Components of MERVA-MQI Attachment . . . 154

Chapter 13. File, System, and
Operator Services 161
Journal Service 161
User File Service 163
Authentication Service of SWIFT Link 166

Maintenance of the Authenticator-Key File . . 166
Authentication of SWIFT Messages 167

General File Service 168
File Service Program DSLFLVP 169

System Services 169
Operator Command Service 170
Operator and Diagnostic Message Services . . . 171

The Message Table DSLMSGT 171
The Message Retrieval Program DSLOMSG . . 171
Issuing Operator and Diagnostic Messages . . 171

Chapter 14. MERVA ESA Data Sets
and Utilities 173
Data Sets 173

Journal Data Sets 173
Queue Data Sets 173
Large Message Cluster 174
User File 174
Nicknames File 174
Message Counter Log Data Set 174
SPA File 175
Authenticator-Key File 175
SWIFT Correspondents File. 175
SWIFT Currency Code File 176
Telex Correspondents File 176

iv Concepts and Components

Utilities 176
Queue Data Set Utility 177
Large Message Cluster (LMC) Maintenance
Utility 179
General File Utility 179
Message Counter Report Utility 179
SPA File Initialization Program 180
Authenticator-Key File Utility 180
SWIFT Correspondents File Utility 181
SWIFT Currency Code File Utility 182

Part 3. Appendixes 183

Appendix A. Journal Record Layouts 185

Appendix B. Layout of the
MERVA ESA Nicknames File. 195

Appendix C. Layout of the Currency
Code File 197

Appendix D. Layout of the SWIFT
Correspondents File 199

Appendix E. Layout of the Telex
Correspondents File 201

Appendix F. Layout of the DB2 Tables 203
Table DSLTQUEL (Queue Element Table) 203

Table DSLTQXDEF (Extra-Key Definition Table) 204
Table DSLTQXKEY (Queue Extra-Key Table) . . . 205
Table DSLTQBUSY (Busy Table) 205
Table DSLTQMSG (Message Table) 206
Table DSLTQFUN (Function Control Table) . . . 206
Table DSLTQSTAT (MERVA Status Table) 206

Appendix G. Layout of the Routing
Trace Entries 209
Routing Trace Header 209
Routing Trace DEFINE Entry 209
Routing Trace TEST Entry 210
Routing Trace SET Entry. 211
Routing Trace DROP Entry 211
Routing Trace FINAL Entries 212

Appendix H. Notices 215
Programming Interface Information 216
Trademarks 217

Glossary of Terms and Abbreviations 219

Bibliography. 231
MERVA ESA Publications 231
MERVA ESA Components Publications 231
Other IBM Publications 231
S.W.I.F.T. Publications 231

Index 233

MERVA Requirement Request 241

Contents v

vi Concepts and Components

About This Book

This book introduces the concepts and components of the IBM licensed program
Message Entry and Routing with Interfaces to Various Applications for ESA
Version 4 Release 1 (abbreviated to MERVA ESA in this book). It provides a
general description of the functions, services, and utilities supplied.

This book is aimed at readers who want to obtain a general understanding of the
MERVA ESA concepts of messages, queues, routing, message handling, and
network links. You should read this book before starting to install or customize
MERVA ESA.

Note: The term CICS is used to refer to CICS/ESA®, CICS Transaction Server
(CICS TS), and CICS/VSE®. The term IMS is used to refer to IMS/VS and
IMS/ESA®.

Prerequisites for Using This Book
If you want to use SWIFT Link, you should be familiar with the contents of the
S.W.I.F.T. User Handbook, which is published by the Society for Worldwide
Interbank Financial Telecommunication, s.c., in La Hulpe, Belgium.

If you are using Telex Link, this book assumes that you are familiar with telex
terminology as defined in the documentation provided by your local PTT1.

1. National Post and Telecommunication Authority (post, telegraph, telephone).

© Copyright IBM Corp. 1987, 2001 vii

|

viii Concepts and Components

Summary of Changes

This edition reflects the following changes:

FMT/ESA can now use MERVA-MQI Attachment
Financial Message Transfer/ESA (FMT/ESA) can now use MERVA-MQI
Attachment as well as MERVA Link ESA to transfer SWIFT messages
between two MERVA ESA systems (see “Financial Message Transfer/ESA
(FMT/ESA)” on page 143).

© Copyright IBM Corp. 1987, 2001 ix

|

|

|

|
|
|
|
|

x Concepts and Components

Part 1. MERVA ESA Concepts

© Copyright IBM Corp. 1987, 2001 1

|

2 Concepts and Components

Chapter 1. Introducing MERVA ESA

MERVA ESA is a message processing and message communication system that can be
used in any business. It enables you to exchange messages within your business
using internal networks, or with places outside your business using external
networks.

A message is a set of information that is given from a sender to a receiver. The
message contents and formats are agreed upon by the sender and the receiver. For
example, the message may start with information about the sender, the receiver,
and the message format. If an external network is used, the contents and the
format can also be influenced by this network.

A predefined message format eases readability. For example, in international
business relations a formatted message can be understood by people speaking
different languages. Formatted messages can also be processed by application
programs. This allows the processing of a large number of messages without
manual intervention.

Message processing can consist of the following steps:
v Creating the message, either by a person or an application program
v Some intermediate processing steps, such as verification or authorization
v Sending to the receiver
v Confirming the receipt of the message
v Some processing after the message is sent
v Receiving the confirmation

Processing of received messages can consist of the following steps:
v Receiving the message
v Confirming the receipt to the sender
v Some intermediate processing steps
v Some manual or automatic processing

MERVA ESA lets you create messages either automatically (using application
programs) or manually (at data-entry terminals). Additional processing steps can
also be done either by application programs or at data-entry terminals. You can
configure MERVA ESA so that it checks messages for formal correctness, or so that
it prints messages on terminal or line printers.

To ensure safe message storage, MERVA ESA provides a queuing system that:
v Allows step-by-step message processing
v Routes messages from one processing step to the next
v Automatically invokes application programs if required by the next processing

step
v Prevents losing or duplicating messages

MERVA ESA provides several ways for you to distribute messages:
v Use the queuing system to distribute messages within a single MERVA ESA

installation.

© Copyright IBM Corp. 1987, 2001 3

v Use MERVA Link to distribute messages between several MERVA installations.
These can be within your own business (for example, among branch offices), or
among several businesses that have agreed to share a private network.

v Exchange SWIFT messages among applications running in different
MERVA ESA installations without using the SWIFT network. This is done by
using the MERVA-to-MERVA Financial Message Transfer/ESA (FMT/ESA)
together with MERVA Link or MERVA-MQI Attachment.

v Use SWIFT Link to connect to the SWIFT network using any number of
communication lines. Use MERVA Extended Connectivity for communication
lines that use X.25.

v Use Telex Link when exchanging messages with your branch offices or with
your business partners via the public telex network.

v Use MERVA-MQI Attachment to exchange SWIFT, telex, or user-defined
messages between MERVA ESA and other MERVA or non-MERVA installations
where MQSeries® is available.

v Add other network connections.

MERVA ESA helps you with message presentation as follows:
v All SWIFT message formats are available for the lines to the SWIFT network and

for display on screen terminals and printers.
v A free-format telex message is available for the public telex network. Information

can be added to a SWIFT message for sending it via the public telex network.
These messages can be formatted for the telex lines and for display on screen
terminals and printers.

v The format definitions supplied with MERVA ESA can be modified, for example,
to suit specific application programs.

v New messages can be defined, for example, for messages exchanged within a
business or with business partners on “private” networks.

MERVA ESA also provides for:
v Defining what each user is allowed to do in MERVA ESA
v Journaling MERVA ESA activities
v Customizing MERVA ESA according to your environment

4 Concepts and Components

|
|
|
|

Chapter 2. Messages

This chapter explains the MERVA ESA message concept.

A message contains information that is given from a sender to a receiver.
MERVA ESA assumes that messages have a defined structure. The structure allows
the messages to be described to MERVA ESA and processed with the functions
available in MERVA ESA. For this purpose, the structure is defined as a sequence
of fields.

Different structures can be defined for different business purposes, and each
structure is given an identifier called the message type.

A simple structure can contain fields for the:
v Sender of the message
v Receiver of the message
v Message type
v Fields of the message text

The MERVA ESA message concept is derived from the complex structure of SWIFT
messages. All kinds of messages similar to SWIFT messages can be described and
processed by MERVA ESA functions. Telex messages are an example of more
simple messages. Messages used within your business or with your business
partners can be as complex as required.

The Message Structure
The purpose of a message determines its structure. The structure of a message is
the fields the message contains. The MERVA ESA message structure is shown in
Figure 1 on page 6.

© Copyright IBM Corp. 1987, 2001 5

MERVA ESA supports the following messages:
v For SWIFT messages, S.W.I.F.T. has defined different structures identified by

message types and a given sequence of fields.
v For telex messages, MERVA ESA has defined the structure of outgoing telex

messages. However, incoming telex messages may not adhere to this structure
and are treated as one field consisting of several lines.

v Messages used within your business or with business partners are defined by
you and your business partners.

Message fields have the following attributes in MERVA ESA:
v They are separated from each other by field separators. In MERVA ESA, the field

separators must be defined in the message description, for example, SWIFT and
telex messages use the Carriage Return/Line Feed characters (hexadecimal
0D25) as field separators.

v They can have an identifier to recognize them in the sequence of fields in a
message. This identifier is the field tag. If a field tag is used, the length and
contents of the field can be variable. If field tags are not used, the field must
have a fixed length or be ended by a field separator, and the field must always
be in the same place in the message.
A field tag can include an option to indicate variable field contents, for example,
the SWIFT field 32 (Amount).

v Individual fields can have the following attributes:
– A length. The length can be fixed or variable, and has a minimum and

maximum value.

Figure 1. The MERVA ESA Message Structure

6 Concepts and Components

– A data type, which can be numeric, alphabetic, or other.
– Mandatory or optional fields. Optional fields need a field tag to indicate their

presence or absence.
– Different format options. Based on the format option, a field can appear

within the same message type in different formats.
– A number of data lines. These are called data areas in MERVA ESA and are

identified by a data area index.
v Fields can be divided into subfields with either a fixed or variable structure.
v Fields can be combined into sequences that can be repeated. These sequences are

called repeatable sequences. Each repetition of the field sequence is called an
occurrence. MERVA ESA allows for the definition of several repeatable sequences
in a message, and the definition of another repeatable sequence within a
repeatable sequence. The latter is called a nested repeatable sequence.

v The format specifications of several message types can be combined within one
message. For example, SWIFT messages provide for queries about other SWIFT
messages. The query is a message type that can include a copy of the message
that is the subject of the query.

Message Formats
Messages can be of either of the following formats:

Internal The internal formats are:

Tokenized form (TOF)
To handle the complexity of SWIFT messages,
MERVA ESA has introduced an internal format in a
specialized message buffer called tokenized form (TOF). In
this buffer, the message fields are stored individually and
accessed using MERVA ESA services. A compressed
version of the TOF format is used to store messages in the
MERVA ESA queues (queue format).

The MERVA ESA message buffer and tokenized field
buffer are shown in Figure 2 on page 8.

Chapter 2. Messages 7

External line format (ELF)
A message can be stored in external line format in a
MERVA ESA queue. The message is not tokenized, but is
stored in the external line format as data of a specific field.
This format is more compact than the usual tokenized
format and the processing of these messages can be faster.
SWIFT Link supports this external line format.

Some restrictions apply when the external line format is
used, for example, the messages cannot be checked for
contents or formatting errors.

External An external message format is needed for the presentation of
messages on:
v Display stations
v Hardcopy printers
v System printers (line printers)
v Lines to external networks
v Sequential data sets
v Application program buffers

The transformation from the internal to the required external formats and the
reverse is performed by MERVA ESA.

Defining Messages
Defining messages in MERVA ESA consists of:

Figure 2. The MERVA ESA Message Format

8 Concepts and Components

v Defining the fields of a message, and their attributes in the MERVA ESA field
definition table (FDT)

v Defining the message formats:
– The sequence of the fields for the TOF format
– The presentation of the fields for the external message formats (there can be

several different formats for display stations, printers, and external networks
for the same message type)

The internal and external formats are defined in MERVA ESA message control
blocks (MCBs)

Chapter 2. Messages 9

10 Concepts and Components

Chapter 3. Functions and Queues

The MERVA ESA message processing concept consists of:
v Message-processing steps called functions

v Intermediate storing of messages between processing steps in queues

v Message flow between steps called routing

Functions, queues, and routing reflect the organization of your business. They are
explained in more detail in the following.

Functions
MERVA ESA message-processing takes place in individual steps, for example,
preparing a message for sending to the SWIFT network can involve:
v Creating the message by a person or an application program
v Verifying the message
v Authorizing the message
v Sending the message to the SWIFT network
v Processing the acknowledgment received from the SWIFT network

A sample message processing flow is shown in Figure 3.

Each step is called a message-processing function in MERVA ESA. There are
similar message-processing functions for receiving messages. These functions are
performed by persons or application programs, and your business defines the
person or program responsible for each message-processing step.

Figure 3. Sample Message Processing Flow

© Copyright IBM Corp. 1987, 2001 11

Other MERVA ESA functions that are not directly part of message processing must
also be assigned to persons or programs, for example, online file maintenance.

All the functions needed in a MERVA ESA installation are defined in the
MERVA ESA function table (FNT).

Queues
A message-processing function is usually associated with a MERVA ESA queue.
The queues allow:
v The safe storing of messages between processing steps (this means that the steps

need not be done immediately one after the other)
v Asynchronous message processing of steps working at different speeds (for

example, several users can create messages while one user verifies or authorizes
them)

A single message-processing step could involve:
1. Getting the message from the associated queue
2. Processing the message
3. Routing the message to the queue of the next message-processing step

Messages can be retrieved from the queue either sequentially in the order stored,
or directly using a key.

When the next processing step of a message is to be performed by an application
program, MERVA ESA can invoke the program automatically.

Figure 4. Interapplication Messaging in MERVA ESA

12 Concepts and Components

All function queues are contained in the MERVA ESA queue data set, and
MERVA ESA ensures that messages are not duplicated or lost.

MERVA ESA programs usually expect the MERVA ESA TOF format when
retrieving messages from queues, and provide the same format when storing
messages in queues. To save storage space, the TOF format is compressed. This
compressed message format is called the queue format.

Some MERVA ESA programs store and retrieve information in a format different
from the MERVA ESA queue format. This information can not be processed by the
other MERVA ESA programs, that is, this information can not be shown on display
stations or hardcopy printers.

Routing
Routing determines the flow or path of messages from one message-processing
function to the next. That means, after a message has been processed by a function,
routing does the following:
v Determines the next message-processing step or function
v Stores the message in the queue for the next function
v If the message was retrieved from a queue, deletes it from this queue

The next step or function can be:
v Fixed.

Messages processed by a given function are stored in the same queue for the
same next processing step.

v The result of a routing criteria evaluation.
In this case, the messages processed by a function can be stored in different
queues for the next function, and they can be stored in up to twelve queues
simultaneously (for example, for the next processing function, a print function,
and for keeping copies of the messages for other purposes).
The routing criteria are defined in routing modules that allow inspection of the
contents of the message. This requires the message being in the MERVA ESA
queue format. These routing modules are created during the customization of
MERVA ESA.
Each message-processing function can use a different routing module, or similar
message-processing functions can use the same routing module.

v The result of a decision of a person using a display station and a MERVA ESA
command to route the message.
In this case the messages processed by a function can be stored in different
queues. The decision made by the person can be controlled by a routing module.

Routing determines the path of a message through the MERVA ESA
message-processing functions from the creation by a person or an application
program until processing is complete. Finally, the message leaves MERVA ESA
when it is deleted, for example, either after having been saved in a database, after
printing, or when it is not needed anymore. A message does not leave
MERVA ESA when it is sent to an external network, as there is still a copy of the
message in a MERVA ESA queue.

Chapter 3. Functions and Queues 13

14 Concepts and Components

Chapter 4. Message Processing

The term message processing refers to message creation, intermediate processing
steps, and finally message deletion. When processing messages, the following
interfaces are used:
v Host-based display stations for end users can be used for message creation,

intermediate steps, and message deletion.
v MERVA Message Processing Client workstations can be used for message

creation, manipulation, and deletion.
v Hardcopy and system printers. Usually messages are deleted after printing.
v Lines to external networks, such as SWIFT and telex. Sending messages is

considered as an intermediate step (as the messages remain in a MERVA ESA
queue), receiving messages is message creation.

v Sequential data sets. Input from sequential data sets is message creation, output
to sequential data sets optionally deletes the messages.

v Application programs. Input from application programs is message creation,
output to application programs can be an intermediate step (if the messages are
routed after this step) or deletion (if the messages are deleted after this step).

Each interface requires a specific presentation format of a message. A message, for
example, created by a user at a display station, shows the individual fields with
explanatory text like field names, heading information, and diagnosis messages.
On an external network line, however, the same message can be just one string of
data. For each message type, all of its formats are defined in one MERVA ESA
message control block (MCB).

End-User Interface
The end-user interface (DSLEUD) processes messages on a display station and
performs the following functions:
v Message-processing functions for message creation, intermediate steps, and

message deletion. The end-user interface performs the necessary accesses to
MERVA ESA queues, checks the message contents, and invokes routing.

v Online file maintenance functions for the:
– User file
– General files, such as a private nickname file, the SWIFT currency code file, or

the Telex correspondents file (an installation can define and add its own
correspondent file, for example, for a national clearing network, under control
of the MERVA ESA General File Program)

– Authenticator-key file

The end-user interface performs the necessary accesses to these files.
v Operator functions for controlling MERVA ESA and the external network links.

The user communicates with the end-user interface by means of commands. You
can add your own functions and commands to the end-user interface.

© Copyright IBM Corp. 1987, 2001 15

MERVA Message Processing Client Server
The MERVA Message Processing Client Server supports online users at MERVA
Message Processing Client workstations. Workstation users can, depending on
permissions defined in MERVA ESA:
v Sign on and sign off to MERVA ESA
v Create messages
v Inspect, authenticate, and correct messages
v Route messages
v Delete messages

Hardcopy Print
The hardcopy printer program (DSLHCP) reads messages from a MERVA ESA
queue, transforms them into the printing format, and prints them on a hardcopy
(terminal) printer. The messages can be deleted or kept in the MERVA ESA queue
after printing.

Sequential Data Set Batch Interfaces
MERVA ESA provides the following batch interfaces for sequential data sets (SDS):
v Input (DSLSDI and DSLSDIR)

A batch of messages is read from a sequential data set, transformed into
MERVA ESA TOF format, and put or routed to the relevant queue(s). The
format of the messages in the sequential data set can be:
– An external network format
– The MERVA ESA queue format
– A format defined by your installation

Batch input can be used to transfer messages from another database or computer
system into MERVA ESA for further processing.

v Load (DSLSDLR)
A batch of messages is read from a sequential data set, transformed into
MERVA ESA TOF format, and put back to the relevant queues. The format of
the messages in the sequential data set can be:
– An external network format
– The MERVA ESA queue format

Batch load can be used to restore messages into MERVA ESA preserving the
queue name, QSN, key values, and the write back indicator.

v Output (DSLSDO and DSLSDOR)
A batch of messages is read from a MERVA ESA queue, transformed into the
external format, and written to a sequential data set. The format of the messages
in the sequential data set can be:
– An external network format
– The MERVA ESA queue format
– A format defined by your installation

The messages can be deleted or kept in the MERVA ESA queue after the
sequential data set is complete.

16 Concepts and Components

Batch output can be used to transfer messages from MERVA ESA to another
database or computer system for further processing.

v Unload (DSLSDUR)
A batch of messages is read from all or specified MERVA ESA queues,
transformed into the external format, and written to a sequential data set. The
format of the messages in the sequential data set can be:
– An external network format
– The MERVA ESA queue format (recommended)

Batch unload can be used to back up messages to a data set preserving the
queue name, QSN, key values, and the write back indicator.

v System printer (DSLSDY and DSLSDYR)
A batch of messages is read from a MERVA ESA queue, transformed into the
printing format, and printed on a system printer. The messages can be deleted
or kept in the MERVA ESA queue after printing.

User-Written Programs
MERVA ESA functionality can be extended with user-written programs:
v The external interfaces supplied by MERVA ESA can be adapted to specific

needs by user exit programs.
v User-written application programs can create messages, process intermediate

steps, or further process messages and finally delete them from MERVA ESA
queues.

v User-written application programs can work as administrative or maintenance
functions that do not process messages.

v Interfaces to other external networks can be added to MERVA ESA.

Chapter 4. Message Processing 17

18 Concepts and Components

Chapter 5. Communication Links

MERVA ESA provides the following communication links:
v SWIFT Link for the SWIFT network
v Telex Link
v MERVA Link ESA
v MERVA Link USS
v MERVA-MQI Attachment

SWIFT Link
SWIFT Link provides:
v Connection to the SWIFT network on one or more lines. MERVA ESA supports

communication lines to SWIFT using X.25 as defined by S.W.I.F.T.
For X.25 lines to SWIFT, MERVA ESA uses the product MERVA Extended
Connectivity running on a 37xx communication controller. Connection between
MERVA ESA SWIFT Link and MERVA Extended Connectivity is implemented
by standard SNA sessions. MERVA Extended Connectivity controls the X.25
communication lines to SWIFT; for each communication line up to 10 switched
virtual circuits (SVC) are supported. It is possible to connect several
MERVA ESA installations to a single MERVA Extended Connectivity running on
a 37xx communication controller. One MERVA ESA installation may use up to
30 lines, connections to MERVA Extended Connectivity products running on
different communication controllers.

v A set of operator commands for communication with the SWIFT network. With
these commands, events like login, logout, select, quit and so on are solicited by
a MERVA ESA operator. SWIFT Link performs all the actions required by the
protocol of the SWIFT network.
For login and select, the Secure Login/Select (SLS) functions of the SWIFT User
Security Enhancements (USE) are supported.

v To increase the throughput, MERVA ESA allows the customization and use of
multiple SWIFT Link servers in parallel. SWIFT Link servers run independently
of each other, but use the same MERVA ESA resources like queue data set and
journal. Each SWIFT Link server has its own logical terminal table, defining the
set of logical terminals processed by the server. The operator commands must be
prefixed by a specific SWIFT Link routing command code to identify the
requested SWIFT Link server.
This concept of parallel SWIFT Link servers is useful in specific cases only. The
installation should use multiple lines and several logical terminals each with a
relatively high message volume. Otherwise the required overhead negates the
possible performance improvement. The MERVA ESA nucleus should run as a
native batch job in its own region to get full control over the available resources.
When running the nucleus in a CICS region, the use of parallel SWIFT Link
servers is not recommended.

v Field definitions for all SWIFT message fields.
v MCBs for all SWIFT messages:

– The format for the SWIFT network
– The formats for display stations, hardcopy printers, system printers, and

sequential data sets

© Copyright IBM Corp. 1987, 2001 19

v Formal checking for all SWIFT message fields.
v The SWIFT Correspondents File, created from the SWIFT Bank Identifier Code

(BIC) Directory update tape, and used for expanding SWIFT addresses. That is,
for display stations and printers, the SWIFT bank identifier codes are expanded
to the full name of the correspondent.

v The SWIFT currency code file, created from the SWIFT bank identifier code
(BIC) directory update tape, and used for checking of currency code fields of
SWIFT messages.

v The aAuthenticator-key file for authentication of sent and received messages.
This file is maintained with:
– The bilateral key exchange (BKE) functions of the SWIFT user security

enhancements (USE)
– A utility program
– A MERVA ESA end user function

Messages sent to the SWIFT network are made available in MERVA ESA queues
for further processing, together with the acknowledgments received from SWIFT.

Messages received from the SWIFT network are made available in MERVA ESA
queues for further processing, together with the authentication result.

Telex Link
Telex Link lets you use the following Telex interface programs (TXIPs) as interfaces
to the public telex network:
v On a PC, Telex Plus/22

v On a fault-tolerant system, Headoffice Telex2

Telex Link provides:
v Field definitions for free-format and formatted telex messages
v MCBs for the telex messages:

– The format for the telex network
– The formats for display stations, hardcopy printers, system printers, and

sequential data sets
v The Telex Correspondents File is created online using the MERVA ESA end-user

interface, and is used for expanding telex correspondents addresses. That is, for
display stations and printers, short (abbreviated) forms of the correspondents
addresses are expanded to their full addresses.

v Interface to a test-key calculation program.

Telex Link via a Workstation
Telex Link via a workstation uses MERVA Link to connect MERVA ESA and
MERVA USE & Branch.

Telex Link via a Fault-Tolerant System
Telex Link via a fault-tolerant system provides:
v Communication with the Telex Interface Program. The connection with the telex

interface program is a VTAM® connection under control of CICS or IMS. telex
interface program communicates with the public telex network.

2. “Telex Plus/2” and “Headoffice Telex” are IBM vendor logo products from Intercope, and must be ordered directly from Intercope.

20 Concepts and Components

v Telex Link performs all actions required by the protocol with the telex interface
program. Messages received from the telex interface program are made available
in MERVA ESA queues for further processing.

v Messages that are sent to the telex interface program are made available in
MERVA ESA queues for further processing when the telex interface program
acknowledges the successful transmission via the public telex network.

MERVA Link
MERVA Link of MERVA ESA has two subcomponents:
v MERVA Link ESA is associated with a particular MERVA ESA installation and

executes in a CICS or IMS environment.
v MERVA Link USS is not associated with a particular MERVA ESA installation

and executes in an OS/390® UNIX System Services (USS) environment.

MERVA Link ESA
MERVA Link ESA allows communication between several MERVA installations and
with a MERVA Link USS gateway using Systems Network Architecture (SNA)
connections. MERVA Link ESA uses a special Message Integrity Protocol (MIP) to
ensure that no message is delivered twice to the receiving application.

MERVA Link ESA provides a partner table to define:
v MERVA ESA installations that communicate with each other
v Rules and communication protocols between two partners, for example, message

text encryption and authentication
v Formats of messages exchanged between two partners (either external network

formats or the MERVA ESA queue format)

Under normal circumstances, MERVA Link ESA works automatically without
operator intervention. The MERVA System Control Facility (MSC) is provided to
supervise processing or to restart processing after failures.

MERVA Link USS
MERVA Link USS provides a gateway function to route MERVA Link conversations
from an SNA APPC to a TCP/IP network, and vice versa. A MERVA installation
that supports only TCP/IP connections can use the services of a MERVA Link USS
gateway to communicate with MERVA Link ESA (that supports only SNA APPC
connections).

A MERVA Link USS installation is a MERVA Link node of its own. It is not
associated with a particular MERVA installation, and cannot deliver messages to a
MERVA messaging application. It can, however, provide network routing services
to all nodes in a network of interconnected MERVA systems.

Under normal circumstances, MERVA Link USS works automatically without
operator intervention. The MERVA Link USS Application Control facility (ACC) is
provided in the OS/390 UNIX System Services environment to supervize
processing and to assist in problem analysis.

MERVA-MQI Attachment
MERVA-MQI Attachment enables communication between MERVA ESA and
MQSeries for MVS/ESA™ or MQSeries for VSE/ESA™.

Chapter 5. Communication Links 21

When sending and receiving messages, MERVA-MQI Attachment uses the facilities
of MQSeries to ensure the integrity of the data transfer.

MERVA-MQI Attachment provides a process table to define the characteristics of
one or more send processes and receive processes. The message format can be
either an external network format or the MERVA ESA queue format.

MERVA-MQI Attachment works automatically without operator intervention. If
required, standard MERVA ESA operator commands can be issued to control the
processing of MERVA-MQI Attachment.

22 Concepts and Components

Chapter 6. Control and Services

MERVA ESA provides services to all its components. These services fall into two
categories:
v Central services
v Direct services

These services are explained in the following.

Central Services
Some MERVA ESA resources must be controlled by the MERVA ESA nucleus for
two reasons:

Integrity For example, access to the same message in a queue from two
programs or signon with the same user identification from two
display stations must be prevented.

Timing For example, when a quick reaction time is necessary, the resources
must be immediately available for a processing program. This
means that these resources must not be used by other programs at
this time.

The services that access resources controlled by the nucleus are called central
services. The central services are:

DSLQMGT Queue management service used to access messages in the
MERVA ESA queues

DSLNUSR User file service used to access records of the MERVA ESA user
file

DSLNCS Operator command service used to execute MERVA ESA operator
commands

DSLNMOP Operator message service used to issue unsolicited messages to the
MERVA ESA operators

DSLJRNP Journal service used to put a record into or to get a record from
the MERVA ESA journal

DSLNRTCP Remote task communication (MVS only) used to communicate
with remote tasks

DWSAUTP Authentication service used to:
v Access the records of the authenticator-key file
v Authenticate SWIFT messages

Direct Services
Other MERVA ESA resources are available at any time. The services accessing
these resources are called direct services. Direct services are:
v Message format services (MFS) for the transformation of messages from the

MERVA ESA internal tokenized format (TOF) to an external format and reverse,
and for formal message checking

v TOF services, for access to the message fields in the MERVA ESA TOF

© Copyright IBM Corp. 1987, 2001 23

v Service to retrieve information or diagnostic messages for operators and end
users from a table of message texts

v Write-to-operator service for issuing messages to the MERVA ESA operators
v System service that allows programs to request services from the operating

system or from CICS (such services are, for example, loading modules, obtaining
main storage, and getting various formats of the system date and time)

v General file service that let programs access the MERVA ESA general files

Under MVS™, with queue management using DB2®, batch and API programs can
call queue management services directly.

Use of the Services
How to use the MERVA ESA services depends on the relation of the calling
program to the MERVA ESA nucleus:
v If the calling program is included in the MERVA ESA nucleus, it can use all

services directly. Such programs, for example, are the:
– Communication part of SWIFT Link
– Communication part of Telex Link via a fault-tolerant system
– User-written programs included in the nucleus

v Calling programs that are not included in the MERVA ESA nucleus must request
the central services via the MERVA ESA intertask communication. Such
programs, for example, are the:
– End-user driver
– Hardcopy print program
– SDS batch programs
– MERVA Link
– User-written programs not included in the nucleus

All MERVA ESA services are described in detail in “Part 2. MERVA ESA
Components” on page 25.

24 Concepts and Components

Part 2. MERVA ESA Components

© Copyright IBM Corp. 1987, 2001 25

26 Concepts and Components

Chapter 7. Control Facilities

Controlling MERVA ESA has the following aspects:
v Operating MERVA ESA:

– Starting and stopping MERVA ESA
– Supervising the processing of MERVA ESA

The operator functions of the MERVA ESA nucleus DSLNUC provide for this
type of control

v Controlling the programs defined in the MERVA ESA nucleus program table
(DSLNPTT), including the MERVA ESA intertask communication for accessing
the central services

v The timer service of the MERVA ESA nucleus

The MERVA ESA Nucleus (DSLNUC)
DSLNUC is the main program of MERVA ESA. To start, stop, and run
MERVA ESA means to start, stop, and run DSLNUC.

The major functions of the MERVA ESA nucleus (DSLNUC) and its components
are:
v Initializing MERVA ESA
v Processing of MERVA ESA
v Terminating, normally and abnormally, MERVA ESA

The MERVA ESA nucleus can run in different ways, depending on the system
environment:
v Under CICS, DSLNUC is started as a CICS transaction using:

– DSLCMO (master operator program)
– DSLCAS (automatic start program)

v Under IMS, DSLNUC can be started as an IMS batch message processing
program (BMP).

v Under MVS, DSLNUC can be started as a native batch program. In this case the
services of CICS and IMS are not available directly. The connection to the
transactions running under CICS and IMS is nevertheless possible. Transactions
under CICS are started using the External CICS Interface (EXCI), transactions
under IMS are started using APPC/MVS.

Refer to the MERVA for ESA Operations Guide for details about how to start
DSLNUC.

Components of DSLNUC
The main program DSLNUC and the services it provides are table driven. There
are three types of services, each type being defined by a separate table:

nucleus program table (DSLNPTT)
DSLNPTT defines the programs that are controlled by external resources
and external or internal events. The external resources can be
communication lines, or a system operator console. The events can be

© Copyright IBM Corp. 1987, 2001 27

created outside of MERVA ESA, for example, an interrupt for a
communication line, or can be internal events, for example, when a
message is stored in a MERVA ESA queue. The programs currently used in
MERVA ESA are:
v The remote task communication program DSLNRTCP (MVS only)
v The operator interface program DSLNMOP for the operating system

console
v The task servers for the MERVA ESA intertask communication:

– DSLNTS is the traditional method using CICS memory copy, MVS
SVC, or VSE XPCC

– DSLNTSQ using CICS temporary storage queues
– DSLNTSA using APPC/MVS as communication vehicle
– DSLNTSM using MQSeries queues

v The program DWSDGPA for connecting to the SWIFT network (several
SWIFT Link servers can be used running under one MERVA ESA
nucleus)

v The program DWSAUTIN for initializing the SWIFT authentication
v The program DWSDLSK for loading pregenerated session keys for the

SWIFT Secure Login/Select (SLS) into MERVA ESA queues
v The station program ENLSTP of the Telex Link via a fault-tolerant

system
v The synchronization point program DSLISYNP to be used under IMS

and CICS
v The message counter program DSLCNTP

Other programs can be coded by a system programmer and added by the
system administrator.

nucleus task server request table (DSLNTRT)
DSLNTRT defines the programs that provide central services to other
MERVA ESA programs and applications. A central service is executed
when its service is required by another program. The central services are
described in “Central Services” on page 23.

nucleus command table (DSLNCMT)
DSLNCMT defines the command codes and the execution programs for
MERVA ESA nucleus. Whenever an operator or an application program
enters a command, the table is scanned to find the service program
belonging to that command code.

The main program DSLNUC, the tables described above, and the execution
programs defined for each individual service are link-edited together and build the
nucleus load module DSLNUC.

An overview of the nucleus structure is shown in Figure 5 on page 29.

28 Concepts and Components

All nucleus services run in one address space. MERVA ESA allows selected
services to be run as a separate task. This is defined in the nucleus server table
(DSLNSVT). When there are no definitions in the nucleus server table, or all
services are defined as running under direct control of DSLNUC, they are
processed directly and synchronously under DSLNUC, thus, there is no parallel
processing.

In MERVA ESA, a service can be defined to be processed in parallel. In this case, a
service is executed under control of a nucleus server shell program that runs as a
separate MVS subtask (DSLNSHEL) or as a CICS task (DSLNSHEC) in the same
address space as the main task DSLNUC.

Figure 5. The MERVA ESA Components: Nucleus Main Structure

Chapter 7. Control Facilities 29

When multiple processors can be used, the service programs will be executed in
parallel. When only one processor is available the above concept has the advantage
that an overlap of multiple I/O operations is possible with the execution of one
service.

The communication between services running as subtasks is performed by the
request queue handler. The communication between services running in different
MERVA ESA instances is performed by the MERVA ESA MQSeries nucleus server
using the interservice communication facility. For more information, refer to
“Interservice Communication” on page 45.

Nucleus Server Shell
The nucleus server shell is the interface between the nucleus and the services
performed by the nucleus servers running as separate tasks such as:
v Central services
v Task servers
v Network drivers

Figure 6. DSLNUC with Parallel Servers

30 Concepts and Components

It consists of the nucleus server shell main module and the processors for the
following events:
v Request Ready
v Service Processed
v Posted Program
v Request Processed

There are two types of nucleus server shells:
v DSLNSHEL, which runs as an MVS subtask invoked by DSLNUC via an

ATTACH macro
v DSLNSHEC, which runs as a CICS task invoked by DSLNUC via the CICS

START service

The nucleus server shell and the services it invokes is called a nucleus server. The
services a nucleus server has to perform must be specified in the nucleus server
table (DSLNSVT). Once a nucleus server is attached and initialized, it begins
handling the following events:

nucleus server termination
This event is signaled by the nucleus when it is normally or abnormally
terminated.

timer expiration
This event is signaled when a timer that was set by a program linked to
DSLNUC expires or is canceled.

request ready
A nucleus server starts performing a service when it receives a service
request from the request queue handler, signaled as a Request Ready
event. This means, DSLNUC or another nucleus server has added a service
request to the request queue for this nucleus server. The service request is
obtained from the request queue for this nucleus server and analyzed.
Depending on the service request contents, the appropriate service is then
invoked. This can be:
v A start (initialization) or stop (termination) request for a program
v The execution of a central service such as a queue management or a

journal service
v The execution of a command service
v A nucleus task service

Any invoked service in turn can subsequently invoke also one or more
other services. If the invoked service decides to process the request
asynchronously, control is returned immediately to the nucleus server shell
to allow processing of other requests.

On synchronous request processing, the invoked service returns control to
the nucleus server shell if all subsequent services have finished. In this
case the request postprocessor is invoked.

The request postprocessor notifies the request queue handler that the
obtained service request has finished, and the service processed event is
signaled to the nucleus server that obtained and processed the service.

posted program
This event is signaled when an ECB is posted for an application program
link-edited to DSLNUC. These programs are defined in the nucleus

Chapter 7. Control Facilities 31

program table. In the entry for such a program, the number of ECBs
associated with the program is also defined. The program is invoked with
the address of the posted ECB and processes the application depending on
the ECB function.

service processed
This event is signaled by the nucleus server shell after completion of the
service request it has obtained. If such an event is detected, the request
processed event is signaled to the nucleus server that created the service
request that was just processed.

request processed
This signal is awaited by the nucleus server shell of the program that
created and added a service request onto the request queue of a nucleus
server that was processed asynchronously. The added service request is
deleted from the request queue. The request postprocessor is then invoked.

The request postprocessor notifies the request queue handler that the
obtained service request has finished, and the service processed event is
signaled to the nucleus server that obtained and processed the service.

A service request can be created and added to the request queue by any
application program link-edited to DSLNUC or by any central service executed
under the DSLNUC maintask or under a nucleus server subtask. All information or
references to information is stored in it so that services running under DSLNUC or
another nucleus server can access that information. Note that the nucleus server
that created a service request must also delete it from the request queue.

General Request Queue Handler (DSLNRQH) Functions
The request queue handler is the common component to queue and schedule
service requests created by a nucleus server or the nucleus.

If a service is needed by the nucleus or a nucleus server that is not available there,
a service request is created. The service request is set up in the form of a request
control element and handed over to the request queue handler by calling the ADD
queuing function. The request queue handler then selects the request queue for the
nucleus server that provides the requested service, fetches an element from the free
element pool, inserts the service request, chains it to the queue of waiting requests,
and signals the request ready event.

Each time the nucleus or a nucleus server detects a request ready event, a new
service request is ready for processing. It is handed over by the request queue
handler when the OBTAIN queuing function is called. The request is then moved
from the queue of waiting requests to the queue of active requests. The request
contents is analyzed and the appropriate service is executed.

When the service request has finished processing, it is signaled to the request
queue handler by calling the NOTIFY queuing function. The request is then moved
from the queue of active requests to the queue of finished requests.

The service that created a service request must also delete it again. This is signaled
to the request queue handler by calling the DELETE queuing function. The request
is then moved from the queue of finished requests into the free element pool.

32 Concepts and Components

The above sequence is controlled by the request queue handler following the rules
of a finite state machine:

MERVA ESA Operator Functions
The MERVA ESA operator functions are:
v Starting MERVA ESA:

– Under CICS, MERVA ESA is started by the programs DSLCMO or DSLCAS
(see “CICS Master Operator Program (DSLCMO)” on page 34 or “CICS
Automatic Start Program (DSLCAS)” on page 34).

– Under IMS, DSLNUC is started as an IMS BMP, either submitting a job to
MVS or using an MVS start command for a cataloged procedure.

– Under MVS, DSLNUC can be started as a native batch program. This works
for both CICS and IMS installations.

v Processing of MERVA ESA operator commands. The operators can enter the
MERVA ESA operator commands as follows:
– Using the operating system console. The MERVA ESA operator interface

program DSLNMOP must be started for this purpose. Under VSE, the
program DSLCMO is used for the communication with the operating system
console.

– Using a display station and the MERVA ESA end-user driver (see “Operator
Command Program DSLECMD” on page 99 and “MERVA System Control
Facility Program EKAEMSC” on page 101 for more information).

All operator commands of the base functions of MERVA ESA, SWIFT Link and
Telex Link via a fault-tolerant system are defined in the nucleus command table
DSLNCMT. User-written operator commands must also be added to this table.

v Processing unsolicited operator messages. The MERVA ESA operator interface
program DSLNMOP and the MERVA ESA write-to-operator program DSLWTOP
are used (see “The Operator Interface Program (DSLNMOP)” on page 34, and
“The Write-to-Operator Program (DSLWTOP)” on page 35).

Starting MERVA ESA and entering MERVA ESA operator commands are described
in detail in the MERVA for ESA Operations Guide.

Figure 7. Request Queue Handler (DSLNRQH) Finite State Machine Diagram

Chapter 7. Control Facilities 33

CICS Master Operator Program (DSLCMO)
The master operator program (DSLCMO) is a task under CICS in both MVS and
VSE and is used for:
v Starting MERVA ESA from a display station
v Starting MERVA ESA from the VSE system console
v Entering MERVA ESA operator commands at the VSE system console

To start the program DSLCMO, the operator enters the transaction code DSL (or
another transaction name defined in CICS for the program DSLCMO) at a CICS
display station, which can also be the operating system console under VSE.

DSLCMO accepts the attempt to start MERVA ESA (or for VSE, to enter a
MERVA ESA operator command) only if the following items match:
v The identifier contained in the MERVA ESA customizing parameters (DSLPRM)
v The operator identification from the CICS signon

DSLCMO issues a CICS start command with the transaction code DSLN for
DSLNUC. DSLNUC informs DSLCMO whether the startup was successful or not.

Under VSE, an operator command is given to DSLNMOP for command execution.
DSLNMOP in turn gives the command response back to DSLCMO.

CICS Automatic Start Program (DSLCAS)
MERVA ESA can be started automatically during the CICS startup by using the
program DSLCAS as described in the MERVA for ESA Operations Guide.

DSLCAS issues a CICS start command with the transaction code DSLN for
DSLNUC. DSLNUC informs DSLCAS whether the startup was successful or not.

The Operator Interface Program (DSLNMOP)
The MERVA ESA operator interface program (DSLNMOP) operates under the
MERVA ESA nucleus DSLNUC and has the following functions:
v Processing MERVA ESA operator commands issued from the operating system

console.
For this purpose, DSLNMOP is defined in the MERVA ESA nucleus program
table (DSLNPTT) with the descriptive name CONSOLE. Processing of
MERVA ESA operator commands from the system console is only possible if
DSLNMOP, that is, CONSOLE, is active in DSLNPTT. The communication with
the MERVA ESA operator is done as follows:
– Under MVS, DSLNMOP issues an MVS WTOR macro with the message:

DSL001A Enter a MERVA command

The MVS reply command is used to enter the MERVA ESA command.
DSLNMOP processes the command, displays the response and another
message DSL001A at the operating system console to allow more command
input.

– Under VSE, DSLNMOP gets the command input from DSLCMO. DSLNMOP
processes the command and returns the response to DSLCMO.

v Displaying unsolicited operator messages.
Unsolicited operator messages are messages issued by a MERVA ESA program
at the operating system console to inform the MERVA ESA operators about how
MERVA ESA is running.

34 Concepts and Components

Unsolicited operator messages can be issued by:
– Programs linked to the MERVA ESA nucleus, using DSLNMOP directly.
– Programs not linked to the MERVA ESA nucleus, using DSLNMOP as a

central service. The message is issued at the operating system console for the
region or partition in which DSLNUC operates.

Unsolicited operator messages are written to:
– Under VSE, the VSE system console using a VSE PUT macro
– Under MVS, the MVS system console using an MVS WTO macro

DSLNMOP makes the unsolicited operator messages available for the
MERVA ESA dm (display message) command and the MERVA ESA journal.
This technique enables an operator to monitor the processing of, for example,
the MERVA ESA batch programs DSLSDI, DSLSDO, and DSLSDY from a
MERVA ESA display station, and to see their action in the MERVA ESA journal.

The number of unsolicited operator messages saved for the dm command can be
specified in the MERVA ESA customizing parameters (DSLPRM).

Under MVS, for modification of routing and descriptor codes, DSLNMOP calls the
user exit DSLWTOEX before using the WTO macro. Refer to the MERVA for ESA
Customization Guide for more information on this user exit.

The Write-to-Operator Program (DSLWTOP)
The MERVA ESA write-to-operator program, called DSLWTOP, issues unsolicited
operator messages at the operating system console. DSLWTOP is used by programs
operating in a region or partition other than DSLNUC. The message is issued at
the operating system console for the region or partition in which the program
operates:
v Under VSE, a PUT macro is used to write the message to the console.
v Under MVS, a WTO macro is used to issue the message at the console.

DSLWTOP calls the user exit DSLWTOEX for modification of routing and
descriptor codes before using the WTO macro. Refer to the MERVA for ESA
Customization Guide for more information on this user exit.

If the MERVA ESA intertask communication is established for the program calling
DSLWTOP, the unsolicited operator messages are made available for the
MERVA ESA dm (display message) command and the MERVA ESA journal using
DSLNMOP as a central service.

MERVA ESA Functions Using a Security Manager
MERVA ESA can use the services of a security manager to control the following
functions:
v Signon to MERVA ESA
v Signon to the user file maintenance function within MERVA ESA

The security manager can be an external security manager (ESM) or the basic
security manager (BSM) introduced with VSE/ESA Version 2.4. The security
manager must comply to the System Authorization Facility (SAF). Under MVS,
RACF® is an example for an SAF compliant ESM.

The following scenario illustrates how a security manager can control a signon for
MERVA ESA:

Chapter 7. Control Facilities 35

v A signon to CICS or IMS is made entering the user ID and password. The user
ID and the password are recorded by the security manager.

v Entering the transaction code DSLP starts the MERVA ESA end user driver.
v If the user is authorized, the MERVA ESA function selection panel is displayed.

Otherwise, the MERVA ESA signon is rejected and the MERVA ESA signoff
panel is displayed with an error message.
A user is authorized to sign on to MERVA ESA if a MERVA ESA user file record
exists for the user ID entered at CICS or IMS signon.

v When the user file maintenance function is selected from the MERVA ESA
function selection panel, a password must be entered. It is checked against the
security manager that the password is identical to the password entered at CICS
or IMS signon.

v When the MERVA ESA user file is empty, the user ID defined in DSLPRM must
be used. If the user is authorized, the MERVA ESA user file maintenance panel
is displayed. Otherwise, the MERVA ESA signon is rejected and the
MERVA ESA signoff panel is displayed with an error message.
In the MERVA ESA customization the user must be authorized by setting its
user ID to a security manager recorded user ID that is entered at CICS or IMS
signon.

User-Written Application Programs
MERVA ESA applications are programs that use the MERVA ESA API or
MERVA ESA macros to request services from MERVA ESA. These programs can
be written in Assembler language, high-level languages such as COBOL, PL/I, or
C/370, or in REXX. The MERVA ESA API is described in MERVA for ESA
Application Programming Interface Guide.

The application programs can run as CICS transactions or IMS MPPs. In this case
they can be started in various ways:
v From a CICS or IMS terminal by a user
v By MERVA ESA automatically, triggered by a queue event
v By a MERVA ESA operator

The application programs can also be run as batch programs running in the same
MVS or VSE as the MERVA ESA nucleus.

In MERVA ESA it is possible to run MERVA ESA application programs in an MVS
image different from the one where MERVA ESA is running, when both systems
are connected via APPC/MVS or MQSeries. In this case the intertask
communication using one of these services can be used for communication
between the MERVA ESA nucleus and the application programs.

An application program coded as a CICS or IMS transaction, as an APPC/MVS
transaction program, or as a batch program, accesses the MERVA ESA central
services via the MERVA ESA intertask communication.

There is a specific class of MERVA ESA applications that is different from the
applications described above and for which certain restrictions apply. This type of
applications is described in the next section.

Application Programs Link-Edited to DSLNUC
Application programs that are linked to DSLNUC must be coded in Assembler
language. They start to operate only when specific events occur. For example, the

36 Concepts and Components

IBM-supplied communication network link SWIFT Link is implemented as this
type of application. An appropriate entry in the nucleus program table (DSLNPTT)
link-edits an application program to DSLNUC. See the MERVA for ESA
Customization Guide for the description of the interface for such application
programs. User-written programs should only be implemented under the direct
control of the nucleus, if one of the following requirements apply:
v The program is running permanently (for example, a SWIFT Link program

serving the line to the SWIFT network), and needs information permanently in
storage.

v The program needs intervention by operator commands; for example, if it needs
the MERVA ESA operator functions.

v The program supplies services that are used as central services.

Programs for which none of the above requirements applies should be written as
separate applications running as transaction or batch programs using the
MERVA ESA API.

An application program link-edited to DSLNUC has three distinct processing steps:
1. Initialization

A MERVA ESA start command is entered for the program. The program obtains
main storage, opens data sets, and loads modules for its processing part. Upon
return, the program gives the addresses of its event control blocks (ECBs) to
DSLNUC. MERVA ESA programs can also be started automatically at
MERVA ESA startup.

2. Processing

One or more of the program’’s ECBs are posted. The program processes the
task associated with the posted ECB.

3. Termination.
A MERVA ESA stop command is entered for the program. The program frees
all acquired storage, closes its data sets, and deletes all loaded modules so as
not to occupy resources needed by other programs. DSLNUC discards the ECB
addresses of the program.

An application program controlled by a DSLNPTT entry can run as a subtask. In
this case the program must be defined in the nucleus server table as well. All
programs that use the same resources or call each other directly must be defined in
DSLNSVT to run under the same nucleus server shell.

The sample program DSLBN11A is an example for a nucleus application program.
When installed, this sample program can be started and stopped under operator
control. It executes MERVA ESA commands repeatedly after a specified time
interval. The program source code can be found in the MERVA ESA sample
library.

Intertask Communication

Product-Sensitive Programming Interface

The intertask communication facility lets application programs communicate with
DSLNUC to request a central service. Intertask communication consists of two
parts:

Chapter 7. Control Facilities 37

v The requester’s side. This is the application program requesting a service from
MERVA ESA. The interface program DSLNICT is used to request a service via
intertask communication.

v The server’s side or DSLNUC. This part is processed by one of the task servers
of DSLNUC. A task server can run under direct control of DSLNUC or as a
subtask under control of a nucleus server shell. It is given control by DSLNUC
or the nucleus server shell whenever a requester posts one of the ECBs provided
for the intertask communication.

For the communication between the requester’s and server’s sides, several
MERVA ESA interface programs are used, depending on the type of intertask
communication.

There are several methods for conducting MERVA ESA intertask communication.
The value of the ITC parameter in the customization module DSLPRM determines
which method is used:
v Requesters running in the same partition or region as DSLNUC use CICS

intraregion communication. This is possible only when MERVA ESA is running
under CICS and the application programs are CICS transactions.
The intraregion communication requires a DSLNPTT entry of TYPE=INTRA.
This entry specifies the task server DSLNTS as executing program, and defines
the server event control blocks (ECBs) for intraregion communication. The
intraregion communication control blocks (ICBs) are allocated in an appendix of
the DSLNPTT. Actually, the ECB specification determines the number of ICBs
allocated in the system, that is the maximum number of parallel communication
sessions. For performance reasons, DSLNTS uses a single ECB to handle all
allocated ICBs. The data exchange is done directly between the buffers of the
requester and the server.
If necessary, DSLNTS dynamically allocates larger buffers to store the data
provided by the requester or server. DSLNICT allocates larger buffers if the data
does not fit into the provided buffers and the dynamic buffer option is specified.
The maximum size of a buffer is specified in the MAXBUF parameter of the
customization module DSLPRM.
The control blocks are anchored in the CICS CWA. The direct memory transfer
method requires that the application programs run in the same key as DSLNUC
(CICSKEY) and cannot use the transaction isolation and storage protection
feature of CICS.

v Programs running under CICS and requiring CICS storage protection use CICS
temporary storage queue communication. The method of communication is
through a CICS temporary storage queue and a separate interface program
DSLNICQ, which runs with affinity to DSLNUC. The application program itself
can run isolated from DSLNUC.

v For requesters running on the same system as DSLNUC but in a partition or
region where DSLNUC does not run, an interregion communication takes place.
This facility can be used by your application programs that are running in
another region or partition:
– Batch programs
– CICS transactions running in a CICS region that is not the CICS region where

DSLNUC is started
– Programs running in an IMS MPP region
– Programs running in an APPC/MVS region

38 Concepts and Components

The interregion communication requires a DSLNPTT entry of TYPE=INTER. This
entry specifies the task server DSLNTS as executing program, and defines the
server event control blocks (ECBs) for interregion communication.

v If requesters and the server run on different systems, two methods for intertask
communication are available:
1. APPC/MVS communication can be used by applications running on any

machine within an SNA network connected to an MVS where MERVA ESA
is running, provided that the appropriate environment such as load libraries
and files are available there.
When this service is used MERVA ESA registers with APPC/MVS to serve
the inbound requests from MERVA ESA clients. MERVA ESA nucleus works
as an APPC/MVS server as described in MVS/ESA SP V5 Writing Servers for
APPC/MVS. A NOSCHED LU must be defined, which is used by the
MERVA ESA intertask communication.
It is important that MERVA ESA runs in an address space that allows to
register as a server for the NOSCHED LU. Where this is not possible, for
example, when the MERVA ESA nucleus runs in an IMS BMP, a separate
batch program performing the MERVA ESA APPC/MVS server functions
must be started.
The batch program DSLNTSAB works as a switch between the APPC/MVS
server functions and the traditional interregion communication via SVC.

2. MQSeries communication can be used by applications running on any
machine connected to an MVS where MERVA ESA is running, provided that
MQSeries is installed and the appropriate environment such as load libraries
and files are available there.

When the allocation request does not work for one of the new intertask
communication methods, MERVA ESA tries to communicate via the traditional
intra- or interregion communication method. Therefore, it is recommended that
you install the MERVA ESA SVC, because this enables interregion communication
for MVS.

The following service programs are used to perform the MERVA ESA intertask
communication:

DSLNICT Interface program for the requester

DSLNICTA Subprogram for APPC/MVS method

DSLNICTM Subprogram for MQSeries method

DSLNICTQ Subprogram for CICS TS queue method

DSLNICP Interregion communication program for VSE (XPCC)

DSLNICPM Interregion communication program for MVS (SVC)

DSLXSVCX Interregion and sysplex communication program for MVS

DSLNICQ Interface to DSLNTSQ for CICS TS queue method

DSLNTS Task server program (inter- and intraregion)

DSLNTSA Task server program for APPC/MVS method

DSLNTSAB APPC/MVS server interface running in a separate address space

DSLNTSM Task server program for MQSeries method

DSLNTSQ Task server program for CICS TS queue method

Chapter 7. Control Facilities 39

DSLNICT—Intertask Communication Interface
Intertask communication is called with the nucleus intertask communication macro
DSLNIC, which invokes the intertask communication interface DSLNICT.
DSLNICT decides which type of intertask communication is used. For:
v APPC/MVS, the subprogram DSLNICTA is used (see “DSLNICTA—Intertask

Communication Interface for APPC/MVS”)
v MQSeries, the subprogram DSLNICTM is used (see “DSLNICTM—Intertask

Communication Interface for MQSeries” on page 41)
v CICS TS queue, the subprogram DSLNICTQ is used (see “DSLNICTQ—Intertask

Communication Interface for CICS TS” on page 41)

DSLNICT carries out all functions required to exchange information between the
requesting task and the MERVA ESA task server. These functions are:
v Allocate an intertask communication block (ICB). This function must be called

before a service can be requested. The DSLNIC parameter list contains the
information about the ICB. For all subsequent DSLNIC requests, the same
parameter list must be used.

v Request a service. This function consists of several steps, executed by DSLNICT:
– Moving the data to the server’s side
– Waiting for completion of the service request
– Checking if the request is serviced, or if MERVA ESA has been terminated

during the wait
– Moving data to the requester’s storage

v Free an intertask communication block (ICB). This function must be called when
the application program terminates. If the application fails to free the ICB, some
resources might be blocked. After the free call, no further service requests are
allowed.

Data exchange consists of one or two data buffers whose maximum lengths are
defined in the customizing parameters (DSLPRM). A service request can require
one of the two buffers, or both. DSLNICT allocates larger buffers dynamically if
the data does not fit into the provided buffers and the dynamic buffer option is
specified.

If the requester and the server operate in different MVS regions or VSE partitions,
some of the functions carried out are transferred to the interregion communication
program (DSLNICP or DSLNICPM).

DSLNICTA—Intertask Communication Interface for APPC/MVS
If the method of the intertask communication is via APPC/MVS, this subprogram
is called by DSLNICT.

DSLNICTA carries out all functions required to exchange information between the
requesting task and the MERVA ESA task server. These functions are:
v Allocate an intertask communication block (ICB). This function must be called

before a service can be requested. The DSLNIC parameter list contains the
information about the ICB. For all subsequent DSLNIC requests, the same
parameter list must be used. DSLNICTA uses CPI-C functions to communicate
with MERVA ESA. An allocate function is executed to allocate a session to the
MERVA ESA task server.

v Request a service. This function consists of several steps, executed by
DSLNICTA:

40 Concepts and Components

– Sending the data using the CPI-C send function. The data is sent in three or
more chunks. A data buffer containing more than 32KB is segmented.

– Receiving the resulting data using the CPI-C receive function.
v Free an intertask communication block (ICB). This function must be called when

the application program terminates. The CPI-C function DEALLOCATE is
executed by DSLNICTA. If the application fails to free the ICB, some resources
might be blocked. After the free call, no further service requests are allowed.

DSLNICTM—Intertask Communication Interface for MQSeries
If the method of the intertask communication is via MQSeries, this subprogram is
called by DSLNICT.

DSLNICTM carries out all functions required to exchange information between the
requesting task and the MERVA ESA task server. DSLNICTM uses MQSeries
queues to transport the data from the requester to the server. The names of the
queues used in both directions are specified in the customization module DSLPRM.
The functions supported by DSLNICTM are:
v Allocate an intertask communication block (ICB). This function must be called

before a service can be requested. The DSLNIC parameter list contains the
information about the ICB. For all subsequent DSLNIC requests, the same
parameter list must be used.

v Request a service. The services of the MQSeries Queue Handler DSLNMQH are
used to transfer the parameter list and the data buffer.

v Free an intertask communication block (ICB). At the same time the application is
disconnected from MQSeries.

DSLNICTQ—Intertask Communication Interface for CICS TS
If the method of intertask communication is via CICS temporary storage queue,
this subprogram is called by DSLNICT.

DSLNICTQ carries out all functions required to exchange information between the
requesting task and the MERVA ESA task server. These functions are:
v Allocating an intertask communication block (ICB). This function must be called

before a service can be requested. The DSLNIC parameter list contains the
information about the ICB. For all subsequent DSLNIC requests, the same
parameter list must be used.

v Requesting a service. This function consists of several steps, executed by
DSLNICTQ:
– Storing the data in a CICS temporary storage queue
– Using EXEC CICS LINK to call the program DSLNICQ, which runs with

affinity to the task server program (DSLNUC)
– On return from DSLNICQ, reading the the result data from the CICS

temporary storage queue and moving it to the requester’s storage
v Free an intertask communication block (ICB). This function must be called when

the application program terminates. If the application fails to free the ICB, some
resources might be blocked. After the free call, no further service requests are
allowed.

Chapter 7. Control Facilities 41

DSLNICP—Interregion Communication Program for VSE
The interpartition communication program DSLNICP uses the VSE cross-partition
communication control (XPCC). DSLNICP is loaded by both the requester and the
nucleus. A name defined in the customizing parameters DSLPRM identifies the
server’s side and the requester’s side.

DSLNICP carries out the following major functions in supporting the
communication between a requester and a server that operate in two different
partitions or regions:
v Communication control
v Data exchange

Communication Control
Communication control is performed using the SEND/RECEIVE facility of XPCC.
The function is controlled by the event control blocks in the XPCC control blocks
(XPCCB):
v Requester ECBs. The three XPCC ECBs are used for connect, receive, and send.
v Server ECB. The service request is controlled only by the receive ECB.

Data Exchange
This function is carried out via the interregion communication area (DSLICA).

To pass information between a requester and the server, DSLNICP uses the
interregion communication control block (ICB). All ICBs required to support the
communication between several requesters and the server are allocated in DSLICA.

The buffers needed for the data exchange are also allocated in DSLICA. All storage
needed for the communication is obtained using VSE GETVIS macros. For each
requester, one set of buffers is needed in the requester’s partition, and another set
of buffers is needed in the server’s partition.

All data coming from the requester is:
1. Copied into the data buffers of the requester’s XPCCB
2. Given to XPCC for transferring to the server’s buffers of DSLICA
3. Copied into the server’s storage before the request is serviced

Data coming from the server is:
1. Copied into the server’s data buffers of DSLICA
2. Given to XPCC for transferring to the data buffers of the requester’s XPCCB
3. Copied into the requester’s storage area

If one of the buffers is too small to contain all data to be copied, a larger buffer is
obtained dynamically using the VSE GETVIS macro. The maximum size of a buffer
is specified in the MAXBUF parameter in the customization parameters DSLPRM.

DSLNICPM—Interregion Communication Program for MVS
The interregion communication program DSLNICPM is implemented as a type-3
SVC routine. The SVC number is specified in the customizing parameters
(DSLPRM) and can be changed without a new MERVA ESA generation. The actual
name of the interregion communication program in a MERVA ESA installation is
determined by the SVC number.

42 Concepts and Components

DSLNICPM uses the interregion communication area (DSLICA) for the
communication. Depending on the specifications in the customizing parameters
DSLPRM, DSLNICPM saves the address of DSLICA in one of the following ways:
v In a subsystem entry of the subsystem facility of MVS (SSCT)
v In an extension table, the address of which is stored in the CVTUSER field of the

MVS common vector table (CVT)

The MVS requirements described in the MERVA for ESA Installation Guide provide
more information about the use of the MVS subsystem facility or of the CVTUSER
field. DSLNICPM carries out the following major functions in supporting the
communication between a requester and a server that operate in two different
partitions or regions:
v Communication control
v Data exchange

Communication Control
This function is performed using the WAIT/POST facility and controlled by two
event control blocks (ECBs):
v Requester ECB. This ECB is contained in the calling parameter list for DSLNICT.
v Server ECB. This ECB is defined by the TYPE=INTER entry of DSLNPTT and is

owned by DSLNTS.

Data Exchange
This function is carried out via the interregion communication area (DSLICA).

To pass information between a requester and the server, DSLNICPM uses the
interregion communication control block (ICB). All ICBs required to support the
communication between several requesters and the server are allocated in DSLICA.

The buffers needed for the data exchange are also allocated in DSLICA. The
storage needed for the communication is obtained using MVS GETMAIN macros
for the non-fetch protected subpool 241 and the fetch-protected subpool 231. One
set of data buffers is needed for each requester.

All data coming from the requester is copied into the data buffers of DSLICA.
From there it is copied into the server’s storage before the request is serviced.

If one of DSLNICPM’s buffers is too small to contain all data coming from a
requester, DSLNICPM dynamically allocates a larger buffer. The maximum size of
a buffer is specified in the MAXBUF parameter in the customization parameters
DSLPRM.

Data coming from the server is also copied into DSLICA. From here it is copied
into the requester’s storage area.

DSLXSVCX—Interregion and Sysplex Communication Program
for MVS

The interregion and sysplex communication program DSLXSVCX is implemented
as a type-3 SVC routine.

The SVC number is specified in the customizing parameters (DSLPRM) and can be
changed without a new MERVA ESA generation. The actual name of the
communication program in a MERVA ESA installation is determined by the SVC
number. The program DSLXSVCX is an extension of the program DSLNICPM and

Chapter 7. Control Facilities 43

provides the services used for interregion and sysplex communication. The calls for
interregion communication are compatible to MERVA ESA Version 3.

The extension is used to perform authorized XCF services to:
v Create the MERVA ESA XCF group and join an XCF member to the group

(IXCCREAT)
v Leave the MERVA ESA XCF group (IXCLEAVE)
v Quiesce the MERVA ESA group (IXCQUIES)
v Set the current XCF member status (IXCSETUS)

It is also used to issue the MCGRE macro to internally start an address space for a
MERVA ESA instance in another system within the sysplex. The parameter ISCXCF
in the customizing parameter module (DSLPRM) is used to specify the sysplex
environment. The sysplex services are only available for the MERVA ESA
interservice communication.

DSLNICQ—Interface to DSLNTSQ
DSLNICQ is the interface program between DSLNICTQ and DSLNTSQ. DSLNICQ
runs in the same CICS region and with the same storage key as DSLNUC.
DSLNICQ is called by DSLNICTQ via EXEC CICS LINK, and the communication
information is exchanged via the COMAREA. Because the MERVA plist and data
buffer data is exchanged directly between DSLNICTQ and DSLNTSQ via CICS
temporary storage queues, an application program that uses DSLNICTQ does not
need to run in the same storage key as DSLNUC.

DSLNTS—Task Server
The task server (DSLNTS) is the interface between the central services and all
application programs outside the nucleus when using interregion or intraregion
communication.

DSLNTS is defined in the DSLNPTT with a DSLNPTT entry of TYPE=INTER for
the interregion communication. Under CICS only, DSLNTS is defined with a
DSLNPTT entry of TYPE=INTRA for the intraregion communication.

All central services are specified in the nucleus task server request table DSLNTRT.
You can add your own central services to the DSLNTRT. Programs contained in
the DSLNTRT must follow the interface specifications defined for central service
programs, which are described in the MERVA for ESA Customization Guide.

DSLNTS initializes the intertask communication during the start of MERVA ESA,
and terminates it during MERVA ESA termination.

DSLNTS is invoked for a central service request when one of its event control
blocks (ECB) is posted by:
v DSLNICT for intraregion communication (see “DSLNICT—Intertask

Communication Interface” on page 40)
v DSLNICP for interregion communication; under VSE, XPCC does the posting

(see “DSLNICP—Interregion Communication Program for VSE” on page 42)

DSLNTS locates the requested service in DSLNTRT and invokes it. DSLNTS
provides for data to be returned to the requester:
v DSLNTS posts the requester for completion for intraregion communication.

44 Concepts and Components

v Under MVS, DSLNTS invokes the MERVA ESA SVC for posting the requester
for interregion communication.

v Under VSE, DSLNTS invokes DSLNICP for posting the requester for interregion
communication; XPCC does the posting.

DSLNTSA—Task Server for APPC/MVS
The task server DSLNTSA is the interface between the central services and the
APPC/MVS interface program (DSLNICTA) outside the nucleus (see
“DSLNICTA—Intertask Communication Interface for APPC/MVS” on page 40).
DSLNTSA registers as an APPC/MVS server. When the address space is prohibited
to use the local LU, an error message is issued. In this case the batch program
DSLNTSAB must be used.

DSLNTSA waits for an allocation request for its TPNAME. When a request is
received the data is received from APPC/MVS into internal buffers of DSLNTSA.
DSLNTSA calls the requested MERVA ESA central service. The resulting data is
sent to the requester using the APPC/MVS send function.

DSLNTSAB—Batch Task Server Interface for APPC/MVS
The program DSLNTSAB serves as a switch between APPC/MVS and the
MERVA ESA nucleus region in case the registration as an APPC/MVS server is
prohibited. This applies, for example, to the MERVA ESA nucleus running in a
BMP, at least under certain IMS versions. DSLNTSAB is a batch program that
registers as an APPC/MVS server and forwards the requests to the MERVA ESA
nucleus using the traditional interregion communication via SVC.

DSLNTSM—Task Server for MQSeries
The task server DSLNTSM is the interface between the central services and the
intertask communication program DSLNICTM running on the requester’s side (see
“DSLNICTM—Intertask Communication Interface for MQSeries” on page 41). The
services of the MQSeries queue handler DSLNMQH are used to transfer the
parameter list and the data buffer.

DSLNTSQ—Task Server for a CICS TS Queue
The task server DSLNTSQ is the interface between the central services and the
interface program DSLNICQ (see “DSLNICQ—Interface to DSLNTSQ” on page 44).
DSLNTSQ is invoked by posting its event control block. DSLNTSQ reads the input
data from a CICS temporary storage queue.

DSLNTSQ locates the requested service in DSLNTRT and invokes it. DSLNTSQ
provides for data to be returned to the requester. The result data is written to the
CICS temporary storage queue. Finally, the interface program DSLNICQ is posted.

End of Product-Sensitive Programming Interface

Interservice Communication
Interservice communication enables to spread nucleus services among several
systems within a sysplex by defining MERVA ESA instances. This facility is only
available for MVS/ESA and requires MQSeries to be installed and available on all
systems.

There can be two or more MERVA ESA instances. One must be defined as a
primary, all others as secondary MERVA ESA instances. Only the primary MERVA

Chapter 7. Control Facilities 45

ESA instance communicates with the requesters via the intertask communication
and provides the operator interface. Before the primary MERVA ESA instance
issues the MERVA ready message, the primary and all secondary MERVA ESA
instances must have been started and initialized. The services a MERVA ESA
instance provides is defined in the nucleus server table.

If a MERVA ESA instance requests a service that is provided by another MERVA
ESA instance, the service request is forwarded to the local MERVA ESA MQSeries
nucleus server. The local MERVA ESA MQSeries nucleus server communicates with
the MERVA ESA MQSeries nucleus server on the remote MERVA ESA instance that
provides the requested service. The remote MERVA ESA MQSeries nucleus server
forwards the service request to the required nucleus server for being processed.
This nucleus server returns the service response to the remote MERVA ESA
MQSeries nucleus server to create a response message for being returned to the
local MERVA ESA MQSeries nucleus server. The local MERVA ESA MQSeries
nucleus server then updates the local service request, parameter and data buffers.

This communication between MERVA ESA instances is called interservice
communication. Interservice communication is performed in each MERVA ESA
instance by the MERVA ESA MQSeries nucleus server (DSLNMQS) using the
MQSeries queue handler (DSLNMQH).

DSLNMQS—MERVA ESA MQSeries Nucleus Server
The MERVA ESA MQSeries nucleus server is an application program link-edited to
DSLNUC and must therefore be defined in the nucleus program table. It is started
automatically as the first service by DSLNUC: a program start request is added
onto the request queue of the MERVA ESA MQSeries nucleus server. The main
module of the MERVA ESA MQSeries nucleus server is DSLNMQS. The
initialization, precessing, and termination of a MERVA ESA MQSeries nucleus
server are described in the following sections.

Initialization
On a program start request, DSLNMQSS is invoked to:
v Analyze the MERVA ESA multisystem environment
v Connect to the local message queue manager
v Build the internal nucleus server map
v Build the program ECB list for the processing phase
v Initialize all message queues defined to the MERVA ESA MQSeries nucleus

server
v Allocate the message buffers

The startup extension program DSLNMQSX is invoked to exchange information
between the primary and all secondary MERVA ESA instances. At this time, all
secondary MERVA ESA instances must have been started. If specified in DSLPRM,
the primary MERVA ESA instance invokes program DSLXSVCS to start all
secondary MERVA ESA instances automatically. If failure notification is specified in
DSLPRM, the primary MERVA ESA instance waits a defined time until all
secondary MERVA ESA instances have joined the defined MERVA ESA XCF group.

The following sequence is then continued:
v All MERVA ESA instances send their locally created nucleus server map to the

primary MERVA ESA instance.
v The primary MERVA ESA instance consolidates and completes them with further

information and builds the global nucleus server map.

46 Concepts and Components

v The global nucleus server map is sent to all secondary MERVA ESA instances.
v The global nucleus server map received by a secondary MERVA ESA instance

replaces its local nucleus server map. This ensures that each MERVA ESA
instance has the same information about all other MERVA ESA instances.

v All secondary instances send a server ready (SRVREADY) message to all
MERVA ESA instances, which receive them.

v Invoke program DSLXSVCS, which registers to XCF.

Further processing is continued after the primary MERVA ESA instance has
received all nucleus ready messages.

Each MERVA ESA instance needs the following message queue types to be defined:
v The RECEIVE queue. All MQI messages of type DATAGRAM and REQUEST are

directed to this queue.
v The REPLY_TO queue. All MQI messages of type REPORT and REPLY are

directed to this queue.
v The SEND queue. This is a locally defined remote message queue. There are as

many send queues as there are communication partners. For example, if there
are two secondary MERVA ESA instances, two send queues for each MERVA
ESA instance are required. By defining MQI channels, a send queue is connected
to a receive queue.

Processing
The processing of the MERVA ESA MQSeries nucleus server is driven both by
internal, request-related events, and by external events contained in ECBs that have
been posted to a queue. It performs asynchronous request processing to service
multiple requesters in parallel.
v The internal, request-related events are:

request ready
If a nucleus program or central service needs another service that is not
provided by a nucleus server in the local MERVA ESA instance, the
created service request is redirected to the request queue of the MERVA
ESA MQSeries nucleus server. Program DSLNMQSQ is invoked to create
a service request message that contains buffers for control information,
parameters, and data. This message is sent to the MERVA ESA instance
where the nucleus server with the requested service runs.

request processed
If the requested service in the responding MERVA ESA instance has
finished and has signaled this event to the MERVA ESA MQSeries
nucleus server, program DSLNMQSR is invoked to create a request
response message that contains buffers for control information,
parameters, and data. This message is sent to the requesting MERVA
ESA instance that runs the originating request.

v For external events, the following event control blocks (ECBs) must be defined
for the MERVA ESA MQSeries nucleus server in the nucleus program table:
– The first ECB is posted by MQSeries if a message has arrived on the receive

queue.
– The second ECB is posted by MQSeries if a message has arrived on the

reply-to queue.
– The third ECB is used for remote failure notification via XCF. It can be

enabled by specifying it in the DSLPRM. The system environment change
(SEC) ECB is posted by XCF if any status change of a MERVA ESA XCF
group member is signaled.

Chapter 7. Control Facilities 47

Such external events are handled by program DSLNMQSE.

A message that arrives on the receive queue must be of type REQUEST, and
therefore must contain a service request. In this case the MERVA ESA MQSeries
nucleus server is at the responding side. The program DSLNMQSC is invoked to
create a new service request for the server that provides the service. The new
service request is asynchronously processed: if the service request has finished,
the request processed (RP) event is signaled.

A message that arrives on the reply-to queue must be of type REPLY, and hence
must contain a service response. In this case the MERVA ESA MQSeries nucleus
server is at the requesting side. The program DSLNMQSC is invoked to update
the originating service request and associated parameter and data buffers. An
exception report message generated by MQSeries is also accepted.

If remote failure notification is specified in DSLPRM, all MERVA ESA instances
have registered themselves to XCF during startup. Any abnormal status change
is signaled to XCF, for example:
– The abnormal termination of a subtask providing a specific service within a

MERVA ESA instance
– The abnormal termination of the entire MERVA ESA instance
– The abnormal termination of the system on which a MERVA ESA instance

runs

This signal is propagated to all MERVA ESA instances causing the system
environment change (SEC) to be recognized. This event causes termination of all
MERVA ESA instances.

Termination
Termination is initiated:
v By DSLNUC:

– Following a program stop request initiated by the operator
– Following a termination request of the MERVA ESA MQSeries nucleus server

v By XCF, following a system environment change event

On a program stop request, program DSLNMQST is invoked at the primary
MERVA ESA instance to send a nucleus termination message (NUCTERM) to all
secondary MERVA ESA instances to initiate a program stop.

Program DSLNMQSP is invoked to:
v Deregister from XCF by invoking program DSLXSVCS
v Terminate all message queues
v Disconnect from the local message queue manager
v Free all allocated storage areas

Remote Failure Notification
Remote failure notification offers a way to bypass the message processing via
MQSeries in case of a failure. It prevents messages from being put into a queue to
be received by another MERVA ESA instance while this instance is no longer able
to do so. Each MERVA ESA instance is immediately aware of a failure within the
members of the MERVA ESA XCF group.

48 Concepts and Components

Each group member registers itself to XCF during startup and deregisters itself
during normal and abnormal termination. On abnormal termination of a service
subtask, a status change is passed to XCF. These services are provided via the
DSLXSVCS program.

Intersystem Service Invokation (DSLXSVCS)
This program calls the SVC (DSLXSVCX) to perform the following authorized
services:
v XCF services:

– QUERY information about a specific or all members of the XCF group
– JOIN a member to the XCF group
– Update user state flag
– LEAVE sets the state of the member from active to not-defined state
– DELETE sets the state of the member to the not-defined state and from active

to not defined
v Internal address space start

XCF Group Exit Routine (DSLXGRP)
This program will be activated when a MERVA ESA instance joins the XCF group.
It runs as an system routine (SRB routine) and is scheduled by XCF to the address
spaces of all MERVA ESA instances that have joined the MERVA ESA XCF group.
The group exit gets control when a group member:
v Joins the group
v Leaves the group
v Changes the state from active to failed
v Sends an update of a user state

When the program gets control, it searches the member in the nucleus server map,
copies the user data, and posts the system environment change (SEC) ECB in the
nucleus server map entry associated with the MERVA ESA instance that caused the
event.

MQSeries Queue Handler
The MQSeries queue handler provides the interface between MQSeries and the
various MERVA ESA programs requesting MQI services. The MQSeries queue
handler main module is DSLNMQH. Each MQI service is handled by a separate
module:

DSLNMQSB MQI BROWSE message on a local message queue

DSLNMQHC MQI CONNECT to the local message queue manager (MQM)

DSLNMQHO MQI OPEN a message queue

DSLNMQHQ MQI INQUIRE attributes of a local message queue

DSLNMQHI Message queue initialization

DSLNMQHG MQI GET message from a local message queue

DSLNMQHS MQI Set SIGNAL event establishment

DSLNMQHP MQI PUT message onto a message queue

DSLNMQHT Message queue termination

DSLNMQHL MQI CLOSE a message queue

Chapter 7. Control Facilities 49

DSLNMQHD
MQI DISCONNECT from the local message queue manager

Any of the above services can be requested via the MQSeries queue handler
parameter list. Data buffers are automatically adjusted to the required length. If the
maximum message queue length is smaller than the buffer to send, message
segmenting is performed. Control is returned if the entire message buffer is sent.

On the receiving side, length of the data buffer is adjusted to the one at the
sending side. All message segments belonging together are received into the buffer.
Control is returned if the entire message is received.

DSLNRTCP—Remote Task Communication
The remote task communication facility enables one application program to
communicate with another application program using the Remote Task
Communication program DSLNRTCP as a central service. This facility is only
available in MVS.

The remote task communication consists of two parts:
v The receiving task. This task uses the Receiving Remote Task Program

(DSLRRTCP) to make itself known to DSLNRTCP, and to retrieve an instruction
from DSLNRTCP.

v The instructing task. This task uses DSLNICT to send an instruction to a
receiving task.

The Receiving Task
The receiving task communicates with DSLNRTCP using DSLRRTCP.

The receiving task makes four types of calls to DSLRRTCP:
v TYPE=START informs DSLNRTCP that the receiving task has started.

DSLNRTCP returns the address of an ECB that will be posted when an
instruction for the receiving task is sent.

v TYPE=AVAIL informs DSLNRTCP that the receiving task is now ready to receive
instructions. The receiving should now wait on the ECB returned by the
TYPE=START.

v TYPE=RETRIEVE retrieves the instruction from DSLNRTCP. After the
application has processed the instruction, it must use another TYPE=AVAIL for
the next instruction.

v TYPE=STOP informs DSLNRTCP that the receiving task wants to stop the
remote task communication.

The Instructing Task
The instructing task communicates with DSLNRTCP using DSLNICT (intertask
communication interface).

The instructing task makes one type of call to DSLNRTCP:
v TYPE=INSTRUCT informs DSLNRTCP to send an instruction to the receiving

task. If the receiving task is not available to receive the instruction, DSLNRTCP
rejects the instruction.

50 Concepts and Components

DSLISYNP—Synchronization Point Program
The synchronization point program DSLISYNP is defined in DSLNPTT for
MERVA ESA running under IMS or CICS. Under IMS, it requests an IMS
synchronization point (SYNC) each time a time interval has passed. The time
interval is defined in minutes in the entry of DSLNPTT, and it can be modified by
stopping DSLISYNP and starting it with a different time interval while
MERVA ESA is running.

In case of an IMS restart, the SYNC request of DSLISYNP prevents IMS from
scanning too much of the IMS log for the last activity of the BMP region where
DSLNUC was active. Under CICS, a CICS syncpoint is executed each time a time
interval has passed. When the nucleus runs as a native batch program, DSLISYNP
has no effect.

DSLTIMP—Timer Program
The timer program DSLTIMP provides a timer service only for programs defined
in DSLNPTT. Because of this restriction, the timer service is not considered in the
categories direct or central services.

DSLTIMP can handle any number of timer requests and transforms them into a
single request to CICS or MVS.

DSLTIMP is exclusively called by DSLNUC or DSLNSHEL/DSLNSHEC for:
v Initialization
v Requesting a timer service from:

– CICS by means of an EXEC CICS POST command
– MVS by means of an STIMER macro (for MERVA ESA under IMS)

v Posting the programs of DSLNPTT if necessary
v Termination

DSLTIMP is called by the programs of DSLNPTT for:
v Setting a time interval or an expiration time
v Canceling a time interval or an expiration time

DSLCNTP—Message Counter Program
The message counter program DSLCNTP collects and stores in the message
counter log information about the number of incoming and outgoing messages
processed by MERVA ESA:
v SWIFT messages transferred via SWIFT Link or FMT/ESA
v Telex messages

The message counter log is a VSAM KSDS similar to the MERVA ESA journal data
set.

MERVA ESA provides a command and a batch utility that a system administrator
can use to produce a report showing the usage of the MERVA ESA system during
the last month and the last year. The report lists the numbers of messages sent or
received over all of the following:
v An external network link (SWIFT messages transferred via SWIFT Link, and

Telex messages)

Chapter 7. Control Facilities 51

v The MERVA Link (SWIFT messages transferred via FMT/ESA)
v MERVA-MQI Attachment (SWIFT messages transferred via FMT/ESA)

The program DSLCNTP is defined in DSLNPTT. It uses the MERVA ESA timer
service to update the information in the message counter log data set periodically.

52 Concepts and Components

|

Chapter 8. Message Services

This chapter describes the message services available in MERVA ESA for
application programs.

The messages described in the following are the messages that you exchange:
v Within your business
v With your business partners
v With the SWIFT network
v With the telex network
v With other networks

The following components are involved with the message services:
v The message fields defined in the MERVA ESA field definition table (FDT)
v The message types defined in the MERVA ESA message type table (MTT)
v The message formats defined in the MERVA ESA message control blocks

(MCBs)
v The attributes of external devices defined in the MERVA ESA terminal feature

definition table (TFDT)
v The attributes of message processing functions defined in the MERVA ESA

function table (FNT)
v The program function keys defined in the MERVA ESA program function key

tables (for example, DSLMPF00)
v The TOF services
v The message format services

These components are described in the following.

Field Definition Table
All fields used in messages are defined in the MERVA ESA Field Definition Table
(FDT). This table defines the attributes of the fields as they are most often used in
the messages that use these fields.

In the definition of the messages, that is, in the message control blocks (see
Message Control Blocks) the fields need only be referenced. If a field has slightly
different attributes in a particular message, the MCB can override the field
attributes.

The DSLLFLD macro is used to define fields, and the DSLLSUBF macro is used to
define subfields. The MERVA for ESA Macro Reference explains these macros and
their parameters. The MERVA for ESA Customization Guide shows examples of how
to use these macros.

MERVA ESA supplies a sample field definition table with the name DSLFDTT. It
contains all field definitions used by MERVA ESA, for all SWIFT messages, for the
telex messages, and for MERVA Link.

© Copyright IBM Corp. 1987, 2001 53

Message Type Table
All message types used in messages are defined in the MERVA ESA message type
table (MTT). This table defines the attributes of the message types, for example, the
name of the message control block used for mapping the message type, if nesting
with other message types is allowed, and if, for SWIFT message types,
authentication is required.

The DSLMTT macro is used to define the message types. The MERVA for ESA
Macro Reference explains this macro and its parameters. The MERVA for ESA
Customization Guide shows examples of how to use this macro.

MERVA ESA supplies a sample message type table with the name DSLMTTT. It
contains all message types used by MERVA ESA, for all SWIFT messages, for the
telex messages, and for MERVA Link.

Message Control Blocks
The layout of each message type used in MERVA ESA is defined in a message
control block (MCB). One MCB can describe several message types. For example,
the SWIFT common group messages 199, 299, 399, and so on until 999 are defined
in one MCB with the name DWSX99.

An MCB describes the formats of the message type for the following devices:
v The sequence of fields for the MERVA ESA internal format
v The formats for display stations
v The formats for hardcopy printers
v The formats for system printers
v The formats for external network lines and applications

There is only one description of the MERVA ESA internal format of a message, but
for the other ones there can be several descriptions using different layouts or
languages.

The macros DSLLMCB, DSLLDEV, DSLLGRP, DSLLUNIT, DSLLMFLD,
DSLLDFLD, DSLLNFLD, DSLLUEND, DSLLGEN, DSLLCOND, and DSLLEXIT are
used to define the various aspects of the message formats. The MERVA for ESA
Macro Reference explains these macros and their parameters. The MERVA for ESA
Customization Guide shows examples of how to use these macros.

MERVA ESA supplies sample MCBs for all message types used by MERVA ESA,
for all SWIFT messages, for the telex messages, for MERVA Link, and for Financial
EDIFACT messages.

In addition, MERVA ESA uses and supplies special MCBs for the following
purposes:
v Title information on screen and print pages (top frame)
v Information for the bottom of screen and print pages (bottom frame)
v Signon, function selection, and signoff panels for end users
v Message selection panels in message-processing functions using a display station
v List panels with messages or records for selection
v Panels for online maintenance and operator command processing
v Help information

54 Concepts and Components

Terminal Feature Definition Table
The terminal feature definition table (TFDT) defines the attributes of the following
devices:
v Display stations for MERVA ESA working under IMS
v Hardcopy printers
v System printer page sizes

The DSLTFD macro is used to define the terminal feature definition table. The
MERVA for ESA Macro Reference explains this macro and its parameters. The
MERVA for ESA Customization Guide shows examples of how to use this macro.

MERVA ESA supplies a sample table with the name DSLTFDT.

Function Table
The MERVA ESA function table (FNT) defines the attributes of the functions such
as message processing functions. The following attributes are considered by the
services that process messages (queue attributes of message-processing functions
are shown in “Definition of Queues” on page 70):
v Formal checking of field contents
v Address expansion
v Top and bottom frame MCBs
v Display modes (PROMPT, NOPROMPT)
v Message ID to control which parts of SWIFT and telex messages are shown on a

screen or printer
v Program function keys used on display stations
v Formats and languages used for the display
v Protection of fields on screens

The DSLFNT macro is used to define the MERVA ESA function table. The MERVA
for ESA Macro Reference explains this macro and its parameters. The MERVA for ESA
Customization Guide shows examples of how to use this macro.

MERVA ESA supplies a sample table with the name DSLFNTT.

Program Function Key Tables
Program function key tables are used to assign commands to the program function
keys (PF keys) of a display station. PF keys can be defined depending on the
selected function. The PF key tables are referenced:
v In the user file record of a user
v In the selected function
v The PF keys referenced by the PFKEYS commands

If no PF key table name is found, the default table DSLMPF00 supplied by
MERVA ESA is used.

The DSLMPFK macro is used to define PF key tables. The MERVA for ESA Macro
Reference explains this macro and its parameters. The MERVA for ESA Customization
Guide shows examples of how to use this macro.

Chapter 8. Message Services 55

TOF Services
When messages are processed with MERVA ESA, they are in the MERVA ESA
internal message buffer, also called the tokenized format (TOF). In the TOF, the fields
of a message are stored individually, and they can be accessed directly using the
MERVA ESA TOF Supervisor program DSLTOFSV, as shown in Figure 8.

The TOF Supervisor has the following functions:
v Creating a new TOF
v Initializing fields in the TOF
v Writing data to the TOF
v Adding data areas to the TOF
v Reading data from the TOF
v Deleting data from the TOF
v Accessing fields in the TOF
v Checking fields in the TOF
v Expanding fields in the TOF
v Adding a nesting identifier to the TOF
v Compressing the TOF into a buffer
v Merging the TOF with a TOF from a buffer

The TOF is dynamic, that is, if defined in DSLPRM, the TOF space is increased
during processing if necessary. To make use of the TOF dynamic space allocation

Figure 8. The TOF Supervisor

56 Concepts and Components

you must either define the TOF increase value in the DSLPARM, or you set the
increase value using a TOF WRITE request.

If the dynamic TOF is enabled, a TOF full condition will result in the allocation of
internally requested storage. From now on the TOF is split into an index part (the
TOF space supplied by the caller) and a data part (internally requested). These two
areas are linked by a pointer in the TOF header of the caller’s TOF. The TOF
Supervisor will only request more storage if reorganization of the data part does
not return enough free space to service the request.

For the dynamic TOF the following new functions are defined:
v Freeing the storage of the TOF data part
v Joining the index part and the data part of the TOF in one buffer

When referencing a field of the TOF in a request to DSLTOFSV, the following
qualifiers (called the field reference) can be used:
v The name of the field or subfield as defined in the field definition table
v The nesting identifier, for example, zero for internal fields of MERVA ESA, or 1

to n for SWIFT message fields depending on the nesting of message types
v The field group if groups are defined in the MCB
v The repeatable sequence index if the field is in a repeatable sequence. This index

specifies in which of several repeatable sequences the field is. Several indexes
are necessary to address fields in nested repeatable sequences.

v The occurrence index if the field is in a repeatable sequence. This index specifies
in which repetition of the sequence the field is.

v The data area index to access one data area of several

In some cases, the field reference can be simplified using request modifiers, for
example, with the request modifier VFIRST the TOF is scanned from the very first
field until the field name is found.

Request modifiers can also be used to access the option of a field tag.

DSLTOFSV is invoked with the DSLTSV macro directly by the requesting
MERVA ESA application program. Refer to the MERVA for ESA Macro Reference for
details about the DSLTSV macro.

For a detailed description of how to request the TOF services refer to MERVA for
ESA Customization Guide.

Message Format Services

Product-Sensitive Programming Interface

The MERVA ESA message format service (MFS) performs the following functions:
v Transforms a message from the internal format to the external formats
v Transforms a message from an external format to the internal format
v Performs other message-related services

An overview of the MFS is shown in Figure 9 on page 58.

Chapter 8. Message Services 57

The MERVA ESA MFS consists of several modules that carry out the message
transformation and other services. These are:

DSLMMFS MFS interface

DSLMPTT MFS program table for accessing the other modules

DSLMTIN Message initialization in the TOF

DSLMLFP Line (network buffer) formatter

DSLMLEF External line format program

DSLMPxxx Print and edit (screen) services

DSLMNOP NOPROMPT service

DSLMCHE Message checking interface

DSLMXPND Message expansion interface

MFS exit routines
MFS exit routines for checking, setting defaults, editing, expanding,
separating, and general use.

The MFS is invoked directly by the MERVA ESA applications programs using the
DSLMFS macro (see the MERVA for ESA Macro Reference for details). The DSLMFS
macro invokes the interface program DSLMMFS. The execution of the modules is
controlled by the program table DSLMPTT. This table contains an entry for each
MFS program and the modules used by MFS.

Figure 9. Message Format Service

58 Concepts and Components

The functions of the modules are described in the following; no distinction is made
about which MERVA ESA component really invokes MFS for a given function;
when referring to the module or modules invoking MFS, only the terms caller or
calling program are used.

DSLMMFS—MFS Interface
The interface module to all message format services is DSLMMFS.

When a MERVA ESA component requests a service from MFS, it uses the DSLMFS
macro with parameters specifying the type of service requested, the addresses of
storage areas required for data manipulation, and other related information. The
DSLMFS macro prepares the MFS parameter list and passes control to DSLMMFS.

DSLMMFS invokes the appropriate MFS module. When the MFS module is
defined as a user exit written in a high-level language, it is invoked via the
MERVA ESA exit manager program DSLXMGR. DSLXMGR sets up the required
language environment and transfers control to the MFS module. On completion of
a function, the MFS module returns control to DSLMMFS, which analyzes and
prepares error messages.

The calling program is informed by return and reason codes whether the request
was successful.

MFS Initialization
This service establishes the MFS working environment in the MFS permanent
storage.

In a conversational IMS MPP, each conversation step must start with an MFS
initialization to refresh the addresses of the MFS storage areas used.

Module Control
The requested module is located in the MFS program table DSLMPTT. The table
entry indicates if the module is link-edited to DSLMMFS, or if it must be loaded
separately.

DSLMMFS keeps track of loaded modules in the MFS load table. This table is
either provided by the caller or allocated dynamically by DSLMMFS.

The number of entries in the load table (that is, the number of MCBs and MFS
modules held concurrently during a MERVA ESA transaction) is specified by the
parameter MCBNUM of the macro DSLPARM in the MERVA ESA customizing
parameter module DSLPRM.

Get Device Descriptor: This service locates the description of an external format
in an MCB. If the requested layout or language is not found, the first one defined
for the requested device is used.

Get Message Type Table Entry: This service locates an entry in the message type
table.

Get Program Function Key Table: This service locates a program function key
table.

Chapter 8. Message Services 59

Prepare Error Message: This service evaluates the reason code and possibly
generates an error message. The error message is stored in the MFS permanent
storage and, depending on the calling option, stacked in the TOF field DSLMSG or
written into the TOF field DSLERR.

MFS Termination: This service deletes the MCB and MFS modules named in the
MFS load table and releases the MFS load table if it was allocated by DSLMMFS.

DSLMPTT—MFS Program Table
All modules used by DSLMMFS are defined in the MFS program table
(DSLMPTT). These are:
v Message format service programs
v MFS exits (including checking, default setting, editing, separation, expansion,

and user exits)
v Message control blocks (MCBs)
v Program function key tables (PF key tables)

The programs can be defined for link-editing to DSLMMFS, or for loading. If an
MFS program or user exit is not found in DSLMPTT, it cannot be used. If an MCB
or PF key table is not found in DSLMPTT, an attempt to load it is done in any
case.

A program can be defined as written in one of the following programming
languages:
v Assembler
v COBOL
v C/370
v PL/I

The program is called in the requested language environment. The DSLMPT macro
is used to define the MFS program table. The MERVA for ESA Macro Reference
explains this macro and its parameters. The MERVA for ESA Customization Guide
shows examples of how to use this macro.

MERVA ESA supplies a sample MFS program table DSLMPTT. It contains all
entries used by MERVA ESA, SWIFT Link, Telex Link, and MERVA Link.

DSLMTIN—Message Initialization and Formatting
DSLMTIN has three functions:
v Initializing a message in the TOF (INIT)
v Transforming a message from the TOF to the queue format (PUT)
v Transforming a message from the queue format to the TOF (GET)

Message Initialization in the TOF
This service initializes the TOF for a new message or message part. Each part is
controlled by an exit field, which contains the message identification of the part
used for mapping of the message. The internal format described in the MCB is
used for the initialization of the field descriptors in the TOF.

The TOF can be initialized only for one message type at a time, that is, if a
message contains nested messages or different exit fields, DSLMTIN must be called
separately for each message part.

60 Concepts and Components

When a new message is initialized (first call of INIT), the old message is deleted
from the TOF. Optionally the permanent fields on TOF nesting identifier 0 can also
be deleted. The system field NLEXIT is written to the TOF to contain the name of
the exit field that is written to the TOF during message initialization.

The message ID provided by the caller is checked for a correct network
identification and message type, and written to the exit field whose name is
defined in the MTT-entry. If message initialization is called with OPT=CONT, the
old message in the TOF is kept, and a new message part can be added to the
existing one (for example, using a separate exit field).

If a field descriptor contains the number of a default setting routine, the TOF
supervisor calls this routine to set the defaults. For mandatory fields that have an
option list defined and for which only one option is allowed, this option is written
into the TOF, and therefore need not be entered manually.

On completion of DSLMTIN, the TOF is ready to accept data for this message type.
The MFS user exit DSLMU001 is called to allow additional setting of defaults or
special startup processing. For more information on user exits refer to the MERVA
for ESA Customization Guide.

From TOF to Queue Format: This service transforms a message from the TOF
into the queue format, excluding any QUEUE=NO fields. The TOF supervisor
function TYPE=COMPRESS is used.

The queue format can be given to the MERVA ESA queue management service for
storing in the MERVA ESA queues. The message in the TOF remains unchanged.

This service can process large messages (> 32KB) in queue format. If a message in
queue format is too large to fit into the provided buffer and the dynamic buffer
option is specified, the service allocates a larger buffer on behalf of the caller.

From Queue Format to TOF: This service transforms a message from the
MERVA ESA queue format to the TOF. The TOF supervisor function
TYPE=MERGE is used.

On completion, all QUEUE=YES fields of the message are back in the TOF in
exactly the format they had before they were transformed into the queue format.
Permanent fields on TOF nesting identifier 0 that were in the TOF before the
merge remain unchanged.

This service can process large messages (> 32KB) in queue format.

DSLMLFP—Line Formatter
The functions of DSLMLFP are:
v Transforming a message from the line buffer to the TOF (GET)
v Transforming a message from the TOF to the line buffer (PUT)

DSLMLFP uses the formats for external network lines in the MCB of the message
being processed.

This service can process large messages (> 32KB) in an external network format.

DSLMLFP also calls the MFS user exit 54 (DSLMU054) to determine the message
type (refer to the MERVA for ESA Customization Guide for more details about this

Chapter 8. Message Services 61

user exit). The network identifier provided by the calling program and the message
type are used to find the message type table entry. Then the appropriate MCB is
loaded and the TOF is initialized. The line format supplied by the caller is used to
find the format for the external network in the MCB.

For each nested message this process is repeated until all data from the buffer is
moved into the TOF.

If a message type cannot be determined, DSLMLFP assumes the message
identification 0DSL. This message identification contains only one field named
DSLLFBUF to which the complete line buffer, or whatever is left, is written.

When there is remaining data in the buffer that cannot be mapped into the TOF
because the MCB end is reached, this data is written into the TOF as field
DSLLFBUF.

A syntactically incorrect message (that is, a message that contains an erroneous
field, or where, for example, a mandatory field is missing) is accepted. The errors
in the message are detected during later processing.

Line buffer to TOF (GET)
The input data is transformed from the external line format into the TOF. The data
in the line buffer is separated into fields according to the definitions in the MCB,
and stored in the TOF. The fields in the buffer are recognized by their field tags.
Tags can also be connected to exit points in MCBs; these exit points define a block
structure for a message.

The line formatter program scans the buffer contents and tries to find a matching
tag in the MCB definition. If a tag found in the buffer is not found in the MCB, the
data up to the next tag in the buffer is added to the previous field as additional
data areas.

If a LENGTH specification is given in the DSLLNFLD statement, the data is taken
in the required length from the buffer and written into the TOF. In this case, the
separator is optional. For all other fields a separator is necessary.

For DSLLUNIT statements, SEQTYPE=VAR can be defined to show that the tag
matching process should always start at the beginning of the unit instead of
continuing at the current position. Thus it is possible to have tag fields occur in
any sequence in the buffer when the tags are all different and the fields occur
within the same unit.

If data found in the buffer cannot be assigned to a TOF field, this data is
discarded. This may happen when tag-only fields are specified in the DSLLDEV
TYPE=NET section; tag-only fields have no TOF field name specification. Such
events can be traced for the system programmer’s information.

Update Function: The line formatting program can be called with OPT=CONT to
add input data to an existing TOF (for example, defined in a separate MCB and for
a different exit field).

TOF to Line Buffer (PUT): The function PUT is used to transform a message
from the TOF into an external network format according to a message
identification and a line format identification.

62 Concepts and Components

If a message in an external network format is too large to fit into the provided
buffer and the dynamic buffer option is specified, the service allocates a larger
buffer on behalf of the caller.

The line formatting program DSLMLFP requests a load of the MCB that is either
defined by the calling program in the message identification of the MSGID
parameter or contained in the exit field of the TOF. The field name of the exit field
is contained in the NLEXIT field of the TOF. The default field name used for all
internal MERVA ESA and SWIFT messages is DSLEXIT. Under control of the line
format as provided by the calling program and defined in the appropriate
DSLLDEV TYPE=NET section of the MCB, the data contained in the various TOF
fields is read and transferred to the line buffer. The mapping is done by processing
a TYPE=NET device description sequentially. Conditions defined within the MCB
are evaluated according to the TOF contents. DSLMLFP adds control characters as
defined in the MCB. An item to be mapped can be a tag, a separator, or a data
component.

The line formatter program is able to map whole fields, subfields, or single data
areas. The optional tag is written in front of the first data component of a field.
The tag may contain an option; when the option cannot be read from the TOF, the
option space in the tag is filled with hyphen characters (X'60'). A separator is
written after each data area of a field. For mapping of fixed length fields, the
separator is optional. Both types, field and data area mapping, can be mixed in the
same MCB.

ALWAYS for tags and separators indicates that tags or separators must be written
into the buffer, even when the field is empty.

If a LENGTH specification is given in the DSLLNFLD statement the data
component is written in the required length, even when the data component is
empty or shorter than required. Padding with blanks is performed.

For DSLLEXIT statements, tags and separators are mapped only when data has
been mapped by the embedded MCB.

When an edit routine is specified for a field in the format for the external network,
this routine is called to edit the data. This edit routine is called after all data areas
of the field have been moved to the buffer.

The message does not contain any frame control characters required for its
transmission over a network. These characters are added by the appropriate
network link component.

DSLMLEF—External Line Format Program
The functions of DSLMLEF are:
v Transforming a message in the TOF from external line buffer to the tokenized

format
v Transforming a message in the TOF that is in tokenized format to the external

line format

These operations are executed in the TOF; a line buffer is not mandatory. If a line
buffer is specified as parameter, it is used for the intermediate result and contains
the message in external line format.

Chapter 8. Message Services 63

DSLMPxxx—Print and Edit Services
The functions of the MFS print and edit services are:
v Transforming a message from the TOF to the external formats required for a

screen terminal, hardcopy printer, or system printer (PUT)
v Transforming a message from the format of a screen terminal to the TOF (GET)

For this mapping process, an intermediate format is used. This format is called
Logical Data Stream (LDS). The logical data stream is then transformed into a
physical data stream that can be understood by the presentation devices supported
by MERVA ESA. The device types supported by MERVA ESA are:
v 3270 screen devices
v 3270 compatible terminal printers
v SCS printers
v System printers

Processing Modes
Messages can be displayed in two processing modes:

PROMPT The messages are formatted and mapped according to the external
formats defined for the devices in the MCBs. The positions and the
attributes of the fields and their descriptive labels are defined in
the MCBs.

NOPROMPT The messages are formatted using the format descriptions for
external networks in the MCBs. The fields are displayed or printed
with their field tags, but without the separators.

The program DSLMNOP is called for preparing the display lines.

The compression specification defined for the function with the PRFORM
parameter determines the processing mode for the printers.

Page Structure: The messages are structured in logical pages that are processed as
units for display or printing. Each page has three areas:
v The top frame displayed at the top of the page
v The message area displayed after the top frame
v The bottom frame displayed after the message area at the bottom of the page

The top and bottom frames are defined by the frame MCBs (FRAME parameter of
the DSLFNT macro described in the MERVA for ESA Macro Reference). Either the top
or the bottom frame must be available for a screen device to hold the command
line (field DSLCMDL) and the error message line (field DSLERR). The MFS user
exit DSLMU003 is called to put user data and information into the TOF for display
in the top and bottom frame (refer to the MERVA for ESA Customization Guide for
more details about this user exit).

The message area is mapped according to the number of lines that remain on the
physical page between the top and bottom frames.

Editing: When mapping the data for the device, field data can be converted from
the TOF format to presentation format by editing exit programs that are specified
in the field definition table and the MCBs.

Output to 3270 Devices: The 3270 device status is determined and the
model-dependent size and features (color display and extended highlighting) are
retrieved from the terminal user control block (TUCB) provided by the calling

64 Concepts and Components

program. The calling program gets this information from the CICS terminal
definitions or MERVA ESA terminal feature definition table DSLTFDT.

The mapping operation produces a 3270 data stream or an SCS data stream in the
I/O buffer that can be sent to the device, using an EXEC CICS send command in
CICS or an insert (ISRT) request in IMS.

Output to System Printers: For system printers, one print line is produced with
one call to the MFS. An ASA print control character is generated at the first
position in the buffer. A reason code shows whether more lines are available
(reenter necessary), or if the message is complete.

Input from Display Stations: Data received from a screen is moved into an I/O
buffer by an EXEC CICS receive command in CICS or get unique (GU) and get
next (GN) requests in IMS. The data in the I/O buffer is mapped into the LDS and
from there into the TOF. De-editing of data is performed if required. The keyboard
function is evaluated according to the received attention ID. Program function
keys, PA keys, and ENTER are defined in the program function key table. When a
command is entered, it is put into the TOF field DSLCMDL. The MFS screen
command interpreter must be called for the execution of screen commands.

DSLMNOP—NOPROMPT Mapping
In NOPROMPT display mode, the MFS NOPROMPT mapping program
DSLMNOP is called by the MFS print and edit services when preparing the logical
data stream (LDS) for display, and when processing the input from a display
station. DSLMNOP calls the MFS line formatter DSLMLFP to map a TOF into a
line buffer or vice versa. The line format 'X' or 'Y' is used for this mapping process.
The separator carriage return line feed (CRLF) is used to split a message into
several lines for display on a display station.

The line buffer is used to process the data for the logical data stream (LDS).

DSLMCHE—MFS Checking Interface
This MFS service is used as an interface for checking messages and message fields.
The field characteristics and field checking modules are specified in the field
definition table and the MCBs. The message checking modules are specified in the
message type table. The checking of message and field contents is always carried
out on the data as it is contained in the TOF.

Field checking is carried out for each screen page and for the complete message in
NOPROMPT mode. Message checking is carried out by DSLMCHE when a
message is completely mapped to the TOF.

Checking consists of:
v Calling MFS field checking programs (DSLMCnnn) to check the field contents

according to special, message-dependent criteria. nnn is specified by the
CHECK=nnn parameter of the field definition table or an MCB

v Checking the number of occurrences of a repeatable sequence of fields against
what is defined in the REPSEQ parameter

v Calling a message checking exit to check the interdependencies between fields,
permitted message types, and message nesting as specified in the message type
table

v Calling the MFS user exit DSLMU009 to carry out final checks on the message
according to user specifications (refer to the MERVA for ESA Customization Guide

Chapter 8. Message Services 65

for more detail about this user exit). The result of the previous checking
operations may be changed by this routine.

DSLMXPND—MFS Expansion Interface
This MFS service is used as an interface for the expansion of message fields with
the expansion exit programs provided by MERVA ESA. During online message
processing at a display station, the expansion program is called for each screen
cycle. In the transaction for message checking and expansion DSLCXT, the
expansion program is called once for the whole message.

The MERVA ESA expansion facility allows field-specific exit programs to add data
to message fields.

DSLMXPND calls the expansion exits depending on:
v The field specification in the MERVA ESA field definition table DSLFDTT (see

the EXPAND parameter of the DSLLFLD macro)
v The function definition in the MERVA ESA function table (see the EXPAND and

EXPNAM parameters of the DSLFNT macro).

SWIFT Link uses the expansion function and provides expansion exits for the
following:
v Expanding SWIFT addresses (BICs) into correspondents’ names for all SWIFT

address fields in financial transactions
v Expanding user-provided nicknames for financial institutions into SWIFT

addresses and into correspondents’ names for all SWIFT address fields in
financial transactions

v Initializing embedded (nested) message types within SWIFT message types x92,
x95, and x96

v Filling in the option area for a field when only one option character is allowed
for this field

Telex Link uses expansion for the sender’s and receiver’s addresses when
preparing telex messages.

MFS Exits
MFS provides exits to exit routines, which are routines called by the MFS that can
do additional processing. MERVA ESA provides sample exit routines, but you can
also write your own, provided you follow the coding rules for such routines. The
sample routines and the coding rules are described in the MERVA for ESA
Customization Guide. MFS exit routines can be written in the following
programming languages:
v Assembler
v COBOL
v C/370
v PL/I

Exit routines can be of the following types:

Checking
Checking exit routines validate the contents of specific message fields
stored in the TOF. The definition of a field in the field definition table or in
an MCB contains a number from 1 to 32767, which is used to find the
checking module in DSLMPTT.

66 Concepts and Components

MERVA ESA provides standard checking modules numbered from 901 to
913 for character set and date-and-time format checking. SWIFT Link
provides checking modules for all SWIFT fields. Telex Link provides
checking modules for the telex fields.

Give your checking exit routines names of the form DSLMCxxx, where xxx
is a string of any 3 characters except the numbers 900 to 999 (these are
reserved for use by MERVA ESA).

Default setting
Default setting exit routines are called to set default data into specific
message fields:
v During the initialization of a field
v When the field is read and initialized in the TOF, but contains no data
v When the field is written and is not yet in the TOF, it is initialized

implicitly and default setting called therefore

The definition of a field in the field definition table or in an MCB contains
a number from 1 to 32767, which is used to find the default setting module
in DSLMPTT.

MERVA ESA provides default setting modules numbered from 904 to 910
to set defaults for date and time into TOF fields. SWIFT Link provides
default setting modules for the SWIFT message headers and some of the
field options. Telex Link provides default setting modules for the telex
header fields.

Give your default-setting exit routines names of the form DSLMDxxx,
where xxx is a string of any 3 characters except the numbers 900 to 999
(these are reserved for use by MERVA ESA).

Editing
Editing exit routines insert special characters into the data of a message
field when the field is read from the TOF to be displayed, or remove
special characters from data when read in from the screen to be stored in
the TOF. The definition of a field in the field definition table or in an MCB
contains a number from 1 to 32767, which is used to find the editing
module in DSLMPTT.

MERVA ESA provides:
v Two amount editing modules (one for European format, one for

American format)
v Modules to change the display attributes for a field on a screen device
v A module to replace leading zeros by blanks

Give your editing exit routines names of the form DSLMExxx, where xxx is
a string of any 3 characters except the numbers 900 to 999 (these are
reserved for use by MERVA ESA).

Expansion
Expansion exit routines change the contents of TOF fields or carry out
actions based on the contents of TOF fields. The definition of a field in the
field definition table or in an MCB contains a number from 1 to 32767,
which is used to find the expansion module in DSLMPTT.

SWIFT Link and Telex Link provide expansion modules that use expansion
as described in “DSLMXPND—MFS Expansion Interface” on page 66.

Chapter 8. Message Services 67

Give your expansion exit routines names of the form DSLMXxxx, where
xxx is a string of any 3 characters except the numbers 900 to 999 (these are
reserved for use by MERVA ESA).

Separation
Separation exit routines separate the data in message fields into subfields
when a subfield is accessed, or write a subfield into the data of a field. The
definition of a field in the field definition table or in an MCB contains a
number from 1 to 32767, which is used to find the separation module in
DSLMPTT.

MERVA ESA provides separation modules to separate fields with a fixed
structure according to the specification in the field definition table, and to
access system fields. SWIFT Link provides the separation modules for all
subfields defined for SWIFT fields.

Give your separation exit routines names of the form DSLMSxxx, where
xxx is a string of any 3 characters except the numbers 900 to 999 (these are
reserved for use by MERVA ESA).

Other The input for exit routines that do other things consists of the TOF and the
terminal user control block (TUCB). A user exit communication field is also
provided by MFS. The TOF contains all message-dependent information,
which can be accessed or changed by any of the MFS user exits. The TUCB
contains information about the status of the message in process, the
message-processing function, and general user information. All this
information can be used, but only some of the information in the TUCB
can be changed by exit routines.

Give your exits for purposes other than the ones listed above names of the
form DSLMUxxx, where xxx is a string of any 3 characters except the
numbers 001 to 999 (these are reserved for use by MERVA ESA).

End of Product-Sensitive Programming Interface

68 Concepts and Components

Chapter 9. Queue Services (VSAM)

This chapter describes the message queue services available in MERVA ESA for
application programs using a VSAM queue data set.

The MERVA ESA queue services are concerned with storing and retrieving
messages in MERVA ESA queues. The following components are involved with the
queue services:
v The queues defined in the MERVA ESA function table (FNT)
v The queue data set (QDS)
v The queue management program DSLQMGT
v The queue management I/O program DSLQMGIO or DSLQMCNV
v The large message cluster (LMC)
v The large message service program DSLQLRG
v The routing of messages between queues
v The queue data-set utility DSLQDSUT
v The large message cluster maintenance utility DSLQMNT

© Copyright IBM Corp. 1987, 2001 69

DSLQDSUT is described in “Queue Data Set Utility” on page 177. DSLQMNT is
described in “Large Message Cluster (LMC) Maintenance Utility” on page 179. The
other components are described in the following.

Definition of Queues
The MERVA ESA queues are defined in the MERVA ESA function table by means
of the DSLFNT macro. The parameter QUEUE=YES defines an input queue for a
message-processing function (see the MERVA for ESA Macro Reference for details).
Not all functions need a queue. Functions that do not need a queue are, for
example, the operator command function CMD or the user file maintenance
functions USRn.

Even some message-processing functions need not have a queue, for example, the
functions that create new messages (data entry functions).

MERVA ESA queues can have the following attributes:
v Use of one or two keys for direct message retrieval. The keys can be provided

by queue management from the contents of the message, or can be supplied by
the program that stores the message in the queue.

Figure 10. The Queue Services (VSAM)

70 Concepts and Components

v Routing criteria. There can be a fixed definition for the next queue, or the name
of a routing table can be specified to make the next queue dependent on the
contents of the message.

v The length of the stored messages (see “Definition of Small and Large Messages”
on page 75).

v A transaction can be started when a message is written to the queue, and a
terminal can be specified for the transaction (for example, for hardcopy
printing).

v Dummy queues. These can be subject to any queue management operation. For
retrieve requests, these queues are always considered to be empty. For put
requests, messages are never stored, but the additional functions such as starting
a transaction are performed.

Queue Data Set (QDS)
All messages stored in the MERVA ESA queues are stored in the MERVA ESA
queue data set (QDS). The QDS is a VSAM RRDS (relative record data set) with a
fixed record length of 32760 bytes. You define the number of QDS blocks in the
VSAM cluster, and you use the queue data-set utility DSLQDSUT to format the
queue data set before you use it for the first time (see “Queue Data Set Utility” on
page 177).

The following information is contained in the QDS:
v One log record. This is the first block, and it contains status information, for

example the date and time of the last usage, and a large message counter.
v Two byte map records. They contain information on how the data blocks are

used.
v The key table records. They start with the fourth block, and their number is

determined by DSLQDSUT (see “Queue Data Set Utility” on page 177 for
details). They contain the index information, that is, the queue key table entries,
for the messages stored in the data records.

v The data records. They start after the key table records until the end of the
VSAM cluster and are used by DSLQMGT to store messages. A maximum of
65512 data records can be supported. The messages in the data records are called
queue elements. The queue elements have variable lengths in a data record. Each
queue element can be associated with up to 12 queues; each contains
information indicating to which queues it belongs, and which keys are used in
these queues.

Chapter 9. Queue Services (VSAM) 71

The QDS is allocated to the partition or region where MERVA ESA is active, that
is, where the MERVA ESA nucleus has been started. Only one MERVA ESA
system can use a QDS at a time.

For safety reasons, a second QDS can be used to keep an exact copy if there are
hardware errors or other errors. You can specify a second QDS in the MERVA ESA
customizing parameters DSLPRM (see the MERVA for ESA Macro Reference). When a
duplicate QDS is used, all read operations are performed with the first QDS, and
all write operations are performed in both queue data sets.

When two queue data sets are used, and a system breakdown or an I/O error
occurs, the status of the two data sets can differ. In this case, the best QDS must be
duplicated before starting MERVA ESA again. DSLQMGT informs the
MERVA ESA operator which QDS should be used.

You can also create a duplicate of the QDS using the user exit DSLQPUT. This exit
is called whenever a QDS block is written to the queue data set.

You can use DSLQDSUT to increase the size of the QDS. The QDS need not be
empty.

Queue Management Program DSLQMGT

Product-Sensitive Programming Interface

The MERVA ESA queue management program DSLQMGT is controlled by
DSLNUC. DSLQMGT performs the following tasks:
v Initialization
v Servicing message queue requests
v Termination
v Processing the unique message reference
v Tracing queue operations
v Calling DSLQMGIO or DSLQMCNV for the VSAM access to the QDS

Figure 11. The Queue Data Set

72 Concepts and Components

v Calling DSLQLRG for the data of large messages
v Calling user exits

Initialization of DSLQMGT
During the startup of MERVA ESA, DSLNUC requests the queue management
INIT function. The initialization is carried out depending on the status of the QDS:
v If two queue data sets are used, check whether they are identical. If they are, the

initialization continues. If they are not, error messages show what is different
and what should be done before trying to initialize DSLQMGT again.

v If the QDS log record contains a large message counter > 0, large message
support must be specified in DSLPRM, otherwise initialization stops.

v If large message support is specified in DSLPRM, check the integrity of QDS and
LMC. If QDS and LMC are inconsistent, initialization stops.

v Get main storage for the processing of DSLQMGT.
v If large message support is specified in DSLPRM, call the program DSLQLRG

for initialization.
v Start normally if the previous termination of DSLQMGT was successful or if the

QDS was formatted with the queue data-set utility DSLQDSUT.
v Perform a restart if the QDS shows that the previous work was not correctly

terminated, or if the QDS was processed by the DSLQDSUT MODIFY function.
v Call the MERVA ESA routing scanner DSLRTNSC for initialization.

Normal Start of DSLQMGT
During a normal start, DSLQMGT gets the following information from the queue
data set for saving in main storage:
v The byte map from the byte map records (second and third record). The byte

map informs DSLQMGT of how much space is used in each data block by the
queue elements stored there, and how much space is free for storing more queue
elements.

v The queue key tables from the key table blocks (from the fourth record up to as
many as DSLQDSUT has allocated during the formatting). The queue key tables
inform DSLQMGT about the queue elements contained in the data blocks:
– The queue to which a queue element belongs
– The sequence of the queue elements in a queue indicated by the queue

sequence number (QSN)
– The keys of the messages

After formatting, the queue key tables and the byte map show an empty QDS.

Restart of DSLQMGT
In a restart, DSLQMGT cannot use the information contained in the log record, the
byte map records, and the key table records of the QDS for processing. Instead,
DSLQMGT reads all data records to find out:
v How much space is used in them (for the byte map)
v To which queues the queue elements belong
v What their sequence in the queues is, and which keys they have (for the queue

key tables)

As the restart may take some time depending on the size of the QDS, the following
list gives information about how to avoid restarts if possible.

DSLQMGT performs a restart after:

Chapter 9. Queue Services (VSAM) 73

v A system breakdown, when DSLQMGT could not perform its termination, for
example, when terminating CICS without terminating MERVA ESA

v Having used the MODIFY function of DSLQDSUT (the restart after MODIFY can
be shorter because DSLQDSUT indicates to DSLQMGT which data blocks
contain queue elements)

v Having found, during initialization, a queue element that belongs to a queue
that was not found in the MERVA ESA function table after this table has been
changed (to avoid the restart, run the MODIFY function of DSLQDSUT with the
EXCLUDE FNT control statement)

v Having found, during termination, that the key table records cannot hold the
queue key tables, because the number of queue elements in the MERVA ESA
customization parameters DSLPRM or the key specifications in the MERVA ESA
function table have been changed (to avoid always having a restart, use the
MODIFY function of DSLQDSUT; this causes only one more restart)

After an abnormal end of MERVA ESA, DSLQMGT may not perform its
termination when an operation with the QDS is incomplete.

During the restart, DSLQMGT may find out that it was interrupted in the previous
run between a store operation of a queue element and the automatic delete of the
original queue element in another queue. Automatic delete is requested from
DSLQMGT in a store operation by specifying the queue name and the queue
sequence number of the original queue element. This information is saved in the
data records of the QDS together with the queue element. Using this information,
DSLQMGT can complete the interrupted operation, thus avoiding that an
abnormal end duplicates a message in the QDS.

All MERVA ESA applications use automatic delete where possible. There can be
only one queue element in the QDS that requires deletion in a restart of
DSLQMGT if your MERVA ESA applications also use automatic delete whenever
possible. Not using automatic delete can create duplicate queue elements that
cannot be recognized by DSLQMGT in a restart.

Termination of DSLQMGT
During the termination of MERVA ESA, DSLNUC requests the queue management
TERM function. The following steps are performed:
v Save the byte map in the byte map records and save the queue key tables in the

key table records of the QDS. This is not done if:
– DSLQMGT initialization has found messages that belong to function queues

that have been removed from the MERVA ESA function table
– The termination of DSLQMGT is entered after an abnormal end and an

operation with the QDS is incomplete
v Write the log record to the QDS to indicate normal end of work.

This is not done if there is a reason to not save the queue key tables in the key
table records, or if the queue key tables do not fit into the key table records.
Instead, a restart is performed during the next initialization of DSLQMGT (refer
to “Restart of DSLQMGT” on page 73 for details).

v Free all main storage obtained during initialization.
v If large message support is specified in DSLPRM, call the program DSLQLRG

for termination.
v Close the QDS.
v Call the MERVA ESA routing scanner DSLRTNSC for termination.

74 Concepts and Components

Servicing Message Queue Requests
DSLQMGT is invoked when a MERVA ESA application program requests to:
v Store a message in a queue
v Retrieve a message from a queue
v Delete a message in a queue
v Get status information

The processing functions of DSLQMGT are invoked by the programs:
v Link-edited to DSLNUC directly with the DSLQMG macro
v Not link-edited to DSLNUC via the MERVA ESA intertask communication. The

task server DSLNTS invokes DSLQMGT as a central service, and the DSLQMG
macro is used by the requestor to prepare the queue parameter list for the
request

The DSLQMG macro is described in the MERVA for ESA Macro Reference.

Definition of Small and Large Messages
A distinction is made between normal, small, and large messages:
v Normal messages fit into one QDS block and are handled completely by

DSLQMGT.
v Small messages have a size limitation defined with the STORE=(SMALL,nnnnn)

parameter of the DSLFNT macro for this target queue. If the message is longer
than nnnnn, it cannot be stored in the target queue. Small messages are handled
completely by DSLQMGT.

v Large messages are supported in MERVA ESA for MVS and VSE/ESA Version
1.3 or later only. They are not supported under earlier versions of VSE.
To support large messages, the LRGMSG=(YES,nnnnn) parameter of the
DSLPARM macro must be specified in DSLPRM. If a message is longer than
nnnnn, it is considered to be a large message. For large messages, DSLQMGT
only stores status information in the QDS, the message data is given to
DSLQLRG for storage in the large message cluster (LMC).
The size nnnnn can be defined individually for each queue with the
STORE=(LARGE,nnnnn) parameter of the DSLFNT macro.
Large messages cannot be stored in queues for which the
STORE=(SMALL,nnnnn) parameter of the DSLFNT macro is used.

The DSLFNT and DSLPARM macros are described in the MERVA for ESA Macro
Reference.

Storing Messages in Queues
Messages can be stored in MERVA ESA queues using one of the following request
types:
v Single PUT. The calling program requests to put the message into one specific

queue. The calling program supplies the message, the queue name, and the
information for automatic delete if this message was retrieved from a queue and
is to be deleted there.

v Single PUT with RESTORE modifier. The calling program requests to restore the
message into its former queue with its former QSN. The calling program
supplies the message, the queue name, and the QSN.

Chapter 9. Queue Services (VSAM) 75

v Multiple PUT. The calling program requests to put the message into up to three
specific queues. The calling program supplies the message, 1 to 3 queue names,
and the information for automatic delete if this message was retrieved from a
queue and is to be deleted there.

v ROUTE only. The calling program requests to invoke the routing scanner
DSLRTNSC to find out in which queues the message would be stored. Routing
to up to 12 queues is possible. The calling program supplies the message and
either the name of the processing function or the address of a routing table that
is to be used for the routing decision.

v ROUTE with multiple PUT. The calling program requests to invoke the routing
scanner DSLRTNSC to find out in which queues to store the message, and to
store the message in these queues. Routing and storing in up to 12 queues is
possible. The calling program supplies the message, the name of the processing
function that is to be used for the routing decision, and the information for
automatic delete if this message was retrieved from a queue and is to be deleted
there.

v REPLACE. The calling program has retrieved a message from a queue and
requests to replace the message there. The message keeps its position in the
sequence of the messages in this queue. Internally, REPLACE is processed like a
single PUT with automatic delete. The calling program supplies the message (the
message may be longer or shorter than before), the queue name, and
information about its position in the queue (indicated by the queue sequence
number).
The in-service indicator remains unchanged (see “Retrieving a Message from a
Queue” on page 78).

Except for REPLACE, the messages are stored at the end of the relevant queues.

When storing a message in one or more queues, the following steps are performed:
v Invoking the routing scanner DSLRTNSC if routing is requested.

Programs link-edited to DSLNUC can supply a function name or the address of
a routing table for the routing decision.
Programs not link-edited to DSLNUC can only supply a function name for the
routing decision.
In the specified function, either a NEXT function or a routing table is available.
When a routing table is used, the contents of the message can be used for the
determination of the target queues.
The target queue names are made available to the requesting program in the
queue parameter list. If routing to more than 3 queues takes place, the queue
parameter list extension specified with the EXT=YES parameter of the DSLQMG
macro is needed to return all target queue names.

v Finding a data block where the message fits.
The length of a queue element is the length of the message data and the length
of the status information. For large messages, only status information with an
extension is stored in the QDS. The message data is given to DSLQLRG for
storage.
Queue elements that exceed the maximum capacity of a data block cannot be
stored. DSLQMGT uses the byte map to find a block where the queue element
fits. If no block is found, the queue data set is full and the queue element cannot
be stored. It may happen that the remainders of free storage in all data blocks
cannot hold a long queue element, but a shorter one may still fit.

76 Concepts and Components

If DSLQLRG cannot store a large message because the large message cluster
(LMC) is full, the queue element is also not stored.

v Getting the data block and creating the new queue element.
If a data record is found with sufficient free space, it is read from the queue data
set. The status information and, for normal and small messages, the message
data are moved to the data block.

v Determining the keys that are used in the 1 to 12 queues.
Each target queue can be defined with one or two keys for direct retrieval of
messages. Keys have a maximum length of 24 characters. Only as many
characters are used during storage and retrieval as are defined for the queues.
Shorter keys must be padded with blanks or binary zeros. If blanks are used,
they are not considered during storage and retrieval.
There are four ways to determine the keys of a message. No matter how the key
or keys are supplied, no check is made for the keys being unique in the same
queue.
The keys can be supplied as follows:
1. DSLQMGT retrieves the keys from the message. The message must be in the

MERVA ESA queue format (this is a compressed form of the MERVA ESA
internal message buffer TOF), and the TOF field names must be defined in
the KEY1 and KEY2 parameters of the appropriate function-table entry. The
KEY=(0,0) parameter must be specified in the DSLQMG macro, or the two
key fields in the calling parameter list (queue parameter list, QPL) must be
cleared to binary zeros before the DSLQMG or DSLNIC macro.

2. Use the KEY parameter in the DSLQMG macro: KEY=(KEY1,KEY2). KEY1
and KEY2 must be fields of 24 bytes each. If the key is shorter, it must be
padded with binary zeros or blanks. DSLQMGT takes from each key only the
length specified in the function-table entry for each queue.

3. Use the DSLQMG macro without the KEY parameter. The KEY parameter
can be omitted if values for KEY1 and KEY2 are stored in the fields
QPLKEY1 and QPLKEY2 of the QPL.

4. Use the user exit DSLQKEY to supply keys independent of the methods
outlined in 1 to 3. The distribution material of MERVA ESA contains a
sample that explains the interface and makes the setup for that interface. In
DSLQKEY, any keys can be provided in the actual queue parameter list (for
each queue of a multiple PUT or ROUTE) after inspecting the queue
parameter list and the message in the data buffer. If the user exit does not
provide keys, and no key has been provided by the requestor of the queue
management service, DSLQMGT tries to get the keys in the way described in
1.

No matter how the keys are provided, DSLQMGT uses the keys only when they
are defined for the particular queue in the associated function-table entry.

v Creating 1 to 12 queue key table entries in main storage and provide the same
information in the queue element status information.
For later access of the stored queue elements, DSLQMGT provides a queue key
table entry in main storage for each queue to which a queue element belongs.
The queue key table entries of one queue are chained to the function-table entry
in the sequence of the queue sequence numbers. Each queue key table entry
contains:
– The queue sequence number
– The keys if defined for the function
– The number of the data block where the queue element is stored

Chapter 9. Queue Services (VSAM) 77

– A status indicator

Similar information is added to the queue element in the data block. For each
queue to which the queue element belongs, the following status information is
provided:
– The queue name
– The queue sequence number
– The keys if defined for the function

The information for automatic delete of the original message is also added to the
status information if available.

The status information is used to find the queue element in the data block and
to recreate the queue key tables in a DSLQMGT restart.

v Starting 1 to 12 transactions if necessary.
Each of the target queues of a single PUT, multiple PUT, or ROUTE with
multiple PUT can have a transaction code defined (with or without a logical
terminal name). If so, DSLQMGT starts this transaction if the
message-processing function is in NOHOLD status, or if ignore activated
(IGNACT) is specified, also in ACTIVATED status. A CICS START command or
IMS change, insert, and purge requests are used. The status of the function is set
to ACTIVATED. The status changes from ACTIVATED to NOHOLD if the
transaction processes the queue completely, that is, when the queue is empty, or
when GETNEXT requests reach the end of the queue.
You can define a set of up to three related functions that are used by the
transaction to process the queue. These three functions are always set to
ACTIVATED, NOHOLD, or HOLD status at the same time.

v Post 1 to 12 event control blocks if necessary.
Programs link-edited to DSLNUC via DSLNPTT can request posting of an event
control block (ECB) after a message has been stored in a queue. Posting is
performed after single PUT, multiple PUT, ROUTE with multiple PUT, and FREE
(see “Retrieving a Message from a Queue”).
The program that wants an ECB to be posted must indicate this to DSLQMGT
by means of the SET request. Only one program can request posting for one
queue. After each store request, DSLQMGT checks if an ECB is to be posted. The
program that gets its ECB posted is later given control by DSLNUC to process
the message just stored in the queue.
When ECB posting is no longer necessary, the program owning the ECB must
use the RESET request of DSLQMGT to stop posting.

v Delete the original queue element if automatic delete is requested.
If a program retrieves a message from a queue, stores it in another queue, and
then wants to delete it from the input queue, automatic delete must be used.
This ensures that no messages are duplicated in case of a system breakdown.
Automatic delete is indicated by giving the input queue name and input
queue-sequence number in the store request. DSLQMGT then deletes the
message in the input queue.
A REPLACE request internally always performs a PUT and DELETE request.

Retrieving a Message from a Queue
Messages can be retrieved from MERVA ESA queues using one of the following
request types:

78 Concepts and Components

v GET. The queue element to be retrieved is identified either by one of its keys or
by the queue sequence number (QSN). Keys need not be unique in a queue, but
the QSN is unique in each queue. If neither a key nor a QSN is specified, a
GETNEXT is carried out.

v GETNEXT. A QSN is specified, and the queue element with the next higher QSN
is to be retrieved. To start the retrieval with the first queue element of a queue, a
QSN of zero must be specified.

v GETLAST. The queue element to be retrieved is the one with the highest QSN in
the queue, that is, the last one in the sequence of queue elements.

v FREE. This request does not retrieve a queue element, but it resets the in-service
indicator of a queue element that was retrieved with one of the GET requests.

When retrieving a message from a queue, the following steps are performed:
v Checking the HOLD status.

A queue can be set to the HOLD status. A retrieval request for a queue in HOLD
status results in the return code queue empty. To bypass the HOLD status, the
request modifier ignore hold can be used.

v Finding the key or QSN in the queue key table considering the in-service
indicator.
To prevent a queue element from being accessed by more than one MERVA ESA
application at a time, an in-service indicator is used by DSLQMGT to indicate
that one application has already retrieved a message. Another retrieval request
for the same message with the in-service indicator on is rejected.
When retrieving a queue element, DSLQMGT scans the queue key table to find
the key or QSN. When the key or QSN is found and the queue element is
in-service, the request is rejected. For a GETNEXT request, the scan continues
until a queue element is found that is not in-service.
The in-service indicator can be bypassed with the request modifier ignore
in-service. If the queue element is found and is in-service, the requestor gets the
queue element and is informed about the in-service status.
As the in-service indicator is lost after terminating MERVA ESA and starting it
again, the request modifier write-back can be used. This modifier flags the queue
element in the QDS for being read. When a queue element is later read again
with the write-back indicator on, the requestor is informed about this status.
The FREE request can be used to reset the in-service indicator and the write-back
indicator of a queue element. If the write-back indicator is to be reset, the FREE
request must read the relevant data block and write it back.
The request modifier free can be used to not set the in-service indicator when
retrieving a queue element. This can be useful if a program wants to retrieve the
messages only without updating and further storing.

v Reading the data block from the QDS and locating the queue element.
After the requested queue element has been found in the queue key table,
DSLQMGT calls the associated I/O module to read the relevant data block from
the QDS. When the data block is in main storage, DSLQMGT finds the queue
element in the block using the queue name and the QSN that are contained in
the status information of the queue element.
If the queue element indicates that it is a large message, DSLQMGT calls
DSLQLRG to get the message data from the large message cluster (LMC).

v Providing the message and status information for the requestor.
After the queue element has been found, the message is moved to the
requestor’s buffer, and the keys and QSN are moved to the requestor’s queue
parameter list. The return code indicates if the message had the in-service or

Chapter 9. Queue Services (VSAM) 79

write-back indicator set on before this retrieval request. The in-service indicator is
set in the relevant queue key table entry, unless the request modifier free was
used.

Deleting a Message in a Queue
Messages are deleted in a MERVA ESA queue with the request type DELETE. The
message to be deleted must be identified by its QSN. One of the keys can also be
used, but the keys are not necessarily unique, and the wrong message could be
deleted.

If a message was taken from a queue, stored in other queues with a single PUT,
multiple PUT, or ROUTE request, it must be deleted by automatic delete, as
described earlier to prevent duplication of messages if there is a task or system
breakdown. The DELETE request must only be used in cases where automatic
delete cannot be used; for example, when the messages of a queue are deleted after
printing, writing to a sequential file, or when they are no longer needed.

When deleting a message from a queue, the following steps are performed (this is
also true for automatic delete):
v Find the QSN or key in the queue key table.
v Read the data block from the QDS after the queue key table entry has been

found. When the data block is in main storage, DSLQMGT finds the queue
element in the block using the queue name and the QSN that are contained in
the status information of the queue element.

v Remove the queue element from the data block. There are two cases:
1. The queue element still belongs to at least one other queue. Then only the

status information is removed from the queue element for the relevant
queue, and the queue element remains in the data block.

2. The queue element belongs only to the queue from which it is to be deleted.
Then the queue element is removed from the data block. The information
about used and free space in the data block and the byte map are updated.
The free space is available for storing other queue elements.

v Remove the queue key table entry from the queue. The queue key table entry
can be used again when storing a message into any queue.

v Write the data block back to the QDS to make sure that the queue element is not
found again after a restart.

v If the queue element indicated that it was a large message, and it belonged only
to the queue from which it was deleted, DSLQMGT calls DSLQLRG to delete the
message data from the large message cluster (LMC) after the status information
was deleted in the QDS data block and this data block was written back to the
QDS.

Getting Status Information
You can get status information about a queue with the following request types:
v TEST request.

The TEST request returns the following information in the queue parameter list:
– Actual number of queue elements waiting in the queue
– Threshold number of queue elements for the queue
– Information about whether the queue threshold is reached by an appropriate

return code
– The highest queue sequence number (QSN) used in this queue

80 Concepts and Components

The same status information is obtained after each retrieval or single storage
request.

v LIST request.
The LIST request is used to get queue key table information for one queue. The
requesting program specifies the number of queue key table entries to return,
and the position in the queue where to begin the list. The list can be limited to
queue key table entries that have the in-service indicator on, and/or key 1
and/or key 2 contain specific characters or sequences of characters.
The following information is returned in the response buffer:
– Name of the function queue
– Actual number of queue elements waiting in the queue
– Threshold number of queue elements for the queue
– Number of end users that have currently selected the function
– First and last queue sequence number (QSN) currently used in the queue
– Highest QSN already used in this queue
– Field names and lengths of the key fields defined for the queue
– Length of one queue key table entry of this queue
– Number of queue key table entries contained in the current response

This information is followed by the queue key table entries that match the LIST
request. Each queue key table entry contains:
– The QSN of the message
– The number of the data block where the message is stored
– The in-service status
– The keys of the message
– The large message indicator

The highest QSN of the current LIST response is returned in the queue
parameter list.

A reason code indicates the end of the queue to the requesting program.

Unique Message Reference
The unique message reference (UMR) option can be used to assign a unique
identification to each message that enters the MERVA ESA queues. To do so,
UMR=YES is specified in the MERVA ESA customization parameters (DSLPRM).
The processing of the unique message references is controlled by DSLQMGT.

The unique message reference contains:

Identifier
8 characters from the NAME parameter of DSLPRM. The identifier is used
to determine if a message has a UMR in the local MERVA ESA system
(local UMR), or if a UMR is from a different MERVA ESA system, that is,
the UMR has a different identifier.

Sequence number
8 digits in the range from 00000001 to 99999999. The numbers are assigned
in ascending order, and after 99999999 the number wraps around to
00000001.

Chapter 9. Queue Services (VSAM) 81

System date
6 digits in the format YYMMDD. This is the date when this UMR was
assigned.

System time
6 digits in the format HHMMSS. This is the time when this UMR was
assigned.

System date and time indicate when a message was stored in a MERVA ESA
queue the first time, and also helps to distinguish equal sequence numbers after a
wraparound.

The UMR is assigned when a message without a local UMR is stored in a
MERVA ESA queue, and it is stored in the queue together with the message. When
the message is retrieved from the queue, the UMR is available in the field
DSLUMR of the MERVA ESA internal message buffer (TOF).

If a message contains a UMR from a different MERVA ESA system, this UMR is
kept and the local UMR also assigned. When a message contains more than one
UMR, the local UMR is always contained in the first data area of the DSLUMR
field.

When storing a message into a MERVA ESA queue, the assignment of the UMR
can be modified by using the request modifier newumr to force the assignment of
another UMR, or by using the request modifier noumr to not assign a UMR.

When unique message references are used in a MERVA ESA system, the UMR
sequence number of the message is displayed on the end-user screen or in the
hardcopy print. All parts of the UMR can be seen on a help panel when the
command show umr is entered.

The UMR can be preassigned at a display station during creation of messages by
specifying UMR=(YES,IMM) in the MERVA ESA customization parameters
DSLPRM. In this case, the End-User Driver (DSLEUD) requests a UMR from
DSLQMGT and displays it together with the new message.

When processing messages with the batch program DSLSDO, the UMR can be
added to the line format used for the sequential file. If the UMR is not added to
this line format, the UMR is lost. To keep the UMR with the message, the
MERVA ESA queue format can be used (the MERVA for ESA Operations Guide
describes how to run DSLSDO).

The UMR sequence number (with or without the UMR identifier) can be used as
key field in MERVA ESA queues and for routing decisions.

The last UMR assigned in a MERVA ESA system is displayed during MERVA ESA
startup and termination, and can be seen in the response to the MERVA ESA
operator command dq status.

The last UMR can be adjusted using the LASTUMR control statement during the
FORMAT or MODIFY function of the queue data-set utility DSLQDSUT.

82 Concepts and Components

Queue Trace
DSLQMGT can trace all requests with queue elements (general queue trace), or the
requests for individual queues. The queue trace is available in the MERVA ESA
journal with the journal record identification 23 (X'17'). The queue trace is helpful
when testing user applications.

The state of the general queue trace is controlled by the QTRACE parameter of the
DSLPARM macro, and you can switch the state while MERVA ESA is running. You
can define the state for the queue trace of individual queues only while
MERVA ESA is running (see the qswitch command in the MERVA for ESA
Operations Guide). The following states are available:

OFF The queue trace is inactive.

SMALL The queue trace is active. The queue trace record will contain the
queue parameter list showing which queue request was executed
for which queue(s), the queue element prefix (status information)
that shows to which queues the retrieved or new queue element
belongs, and the keys and QSNs the queue element has in each of
these queues.

LARGE The queue trace is active. The queue trace record will contain the
same information as for SMALL, and in addition the whole queue
element. If the message is a small or normal message, all message
data is shown. If the message is a large message, only the status
information is shown. This type of queue trace should only be
used when a sufficiently large journal data set is available.

Details of the layout of the queue trace records can be found in “Appendix A.
Journal Record Layouts” on page 185.

User Exits in DSLQMGT
The following user exits are available in DSLQMGT:

DSLQUMR This program is called by DSLQMGT when a new UMR is
assigned during a store request. The queue parameter list with the
new UMR and the message buffer of the requesting program are
available. DSLQUMR allows for adding the message to another file
or database, using the UMR as a unique identification.

DSLQKEY This program is called by DSLQMGT when determining the keys
for a queue element in a store request. DSLQKEY can inspect the
queue parameter list and the message data and supply keys in the
queue parameter list. When DSLQKEY is called by DSLQMGT is
explained 77.

DSLQTRA This program is called by DSLQMGT with the information
prepared for the queue trace LARGE (see “Queue Trace”), no
matter which level of queue trace is used. DSLQTRA can process
this information and indicate by a return code if DSLQMGT should
write the queue trace or not.

DSLQPUT This program is called by DSLQMGIO before a QDS block is
written to the queue data set. The complete QDS block is available
to DSLQPUT, for example, to write it to a duplicate QDS in
addition to the one provided by MERVA ESA. DSLQPUT allows
for creating a duplicate QDS in a remote location.

Chapter 9. Queue Services (VSAM) 83

The distribution material of MERVA ESA contains samples of these user exits that
explain the interfaces and make the setup for these interfaces.

End of Product-Sensitive Programming Interface

Large Message Cluster (LMC)
The data part of large messages is not stored in the queue data set (QDS) but in
the large messages cluster (LMC). The large message cluster (LMC) is a VSAM
KSDS (key-sequenced data set) cluster with variable record length.

The maximum length of a record is defined by the record size parameter and
depends on the maximum size of a control area for the disk type used.

For record sizes bigger than the defined control interval size, 'spanned' must be
specified for the LMC.

The LMC can be defined with primary allocation only or with primary and
secondary allocation.

The status and statistics of the large message cluster (LMC) can be displayed by
the MERVA ESA operators using the operator commands dlmc (display large
message cluster) and dlmct (display large message cluster for tuning).

Only one LMC can be associated with a QDS. There is no LMC duplicate. If
duplicate write is required, the hardware-supported Dual Copy facility must be
used.

LMC and QDS are considered to be a unit. The QDS log record and the initial load
record (ILR) of the LMC contain the same timestamp for identification.

Large Message Service Program DSLQLRG
The MERVA ESA large message service program DSLQLRG is only called by the
queue management program DSLQMGT for the following services:
v Initialization
v Termination
v Storing the data of large messages
v Retrieving the data of large messages
v Deleting the data of large messages

Routing
Routing determines the next function queues where a message will be stored. The
next function may be a fixed name defined for the message-processing function, or
the next function may be a variable, depending on the message content.

Variable routing consists of:
v Defining routing criteria in routing tables
v Interpreting the routing tables with the routing scanner DSLRTNSC

The result of routing is up to 12 queue names used to store the message.

Routing tables can be tested with the routing trace.

84 Concepts and Components

Definition of Routing Tables
In MERVA ESA, routing criteria are defined in routing tables. The basic functions
of routing tables are:
v Defining variable fields to be used later in the routing table, giving each a name.

The data of a variable field is taken from a field of the MERVA ESA internal
message buffer (TOF) or from a literal. For a TOF field, a displacement and
length can be specified to take only a part of the data.
Defining variable fields includes branching to labels within the routing table if:
– The field is found, empty, or not found.
– The field is considered empty also if the displacement is greater than the

actual length of the TOF field data, so there is no data left for the variable
field.

Up to 20 variable fields, each of up to 32 characters in length, can be defined in
one routing table.

v Testing the contents of the defined variable fields against other defined variable
fields or literals. You can specify exactly how to do so by testing the two
operands:
1. As they are, for example, with different lengths
2. In the length of the shorter operand
3. In the length of the longer operand; the shorter one is then padded with

binary zeros
4. As numbers with a decimal comma (amounts); the operands are adjusted

and a numeric comparison takes place

The result of the test is used to branch to labels within the routing table. The
branch conditions are:
– True

Figure 12. Routing a Message

Chapter 9. Queue Services (VSAM) 85

– False
– Variable field not found

For a numeric test, the false label is used if the adjustment of the operands leads
to an overflow.

v Setting a target function. The function name can be a concatenation of up to
eight variable fields or literals. A maximum of 12 target functions can be set
when processing the routing table for a particular message. Thus, the message
can be routed to up to 12 MERVA ESA queues or functions.
Setting a target function includes branching within the routing table for the
following conditions:
– Unconditionally after the function has been set.
– Variable field not found.
– Too many target functions: When 12 target functions are set and another one

is attempted, it is ignored. Processing branches to the final routing decision.
The MERVA ESA routing trace will show that you tried to set too many
functions.

– The target function is not found in the MERVA ESA function table. All target
functions found up to then are ignored, and the final routing decision is
taken. The routing trace shows the incorrect function.

v Drop variable field names. In complex routing tables more than 20 variable field
names may be needed. In order to not exceed the possible number of 20 variable
fields, the field names that are no longer needed can be dropped to make room
for new field definitions.

v Make a final routing decision. The last entry of each routing table may contain a
target function name. When processing of the routing table leads to an error or
does not find any target function, a final routing decision is attempted as
follows:
– When the calling function was specified and it contains a NEXT function, the

NEXT function is verified in the MERVA ESA function table.
– If no NEXT function is available, the target function of the final routing table

entry is verified.

If the NEXT or final target function is valid, DSLRTNSC considers the routing
process successful but a warning return code and a reason code are given.

If neither the NEXT nor the final target function is valid, the routing process has
failed, and an error return code and a reason code are given showing the
original error.

The routing target functions are used by DSLQMGT to process a multiple PUT,
and they are returned to the requesting program in the queue parameter list or the
queue parameter list extension.

The logic flow of sample routing tables is explained in the MERVA for ESA
Customization Guide.

Routing Scanner Program DSLRTNSC
The routing scanner DSLRTNSC is called by queue management. DSLRTNSC
performs the following functions:

86 Concepts and Components

v Initialization: Load the routing tables defined in the MERVA ESA function table.
Get main storage for the routing trace depending on the specification of the
JRNBUF customization parameter in module DSLPRM.

v Processing: Perform routing. Trace routing if requested.
v Termination: Delete the routing tables defined in the MERVA ESA function table.

Release the storage needed for the routing trace.

Routing Trace
While interpreting a routing table, DSLRTNSC can, on request, trace all its
activities. The routing trace is available in the MERVA ESA journal with the
journal record identification 25 (X'19'). When printed with Access Method Services
of VSAM (IDCAMS), the routing trace can easily be understood from the character
part of the printout. You can also use the batch utility DSLBA13R to print the
routing trace. DSLBA13R enables you to specify that only routing trace entries of
the journal should be printed. See the appendix of the MERVA for ESA Application
Programming Interface Guide for details.

There is a general routing trace state and a routing trace state of individual routing
tables. You can define the initial state of the general routing trace in the
MERVA ESA customizing parameters (see the RTRACE parameter described in the
MERVA for ESA Macro Reference), and you can switch the state while MERVA ESA
is running. You can define the state of the routing trace of individual routing tables
only while MERVA ESA is running (see the rswitch command in the MERVA for
ESA Operations Guide). The following states of the routing trace are available:

OFF The routing trace is inactive.

SEVERE The routing trace is active, but traces only the activities that led to
a severe error. If no errors or only warning errors are detected, the
trace is not written to the MERVA ESA journal.

WARNING The routing trace is active, but traces only the activities that led to
a warning or severe error. If no errors are detected, the trace is not
written to the MERVA ESA journal.

ALL The routing trace is active, and all the activities are traced and can
be found in the MERVA ESA journal. ALL can be used to test
routing tables when customizing MERVA ESA.

The routing trace will contain one or more entries for each routing table entry
processed. Each routing trace entry has a length of 32 bytes, and it is aligned in the
MERVA ESA journal so that it is just in one line of the IDCAMS printout.

Most routing trace entries show, in the first 3 bytes, a number that shows which
routing table entry was processed. During the assembly of a routing table, each
DSLROUTE macro gets a number that can be seen in the assembler listing, or you
count the DSLROUTE macros in the source program. Using this together with the
abbreviated function code in bytes 5 to 7, it is easy to follow the sequence of
events through the routing table. Whenever a condition or branch label is used in a
routing table entry, the routing trace shows with the next trace entry which label
was used.

The routing trace entries are described in detail in “Appendix G. Layout of the
Routing Trace Entries” on page 209.

Chapter 9. Queue Services (VSAM) 87

Special TOF Fields for Routing Decisions
During the processing of MERVA ESA, some fields in the MERVA ESA internal
message buffer (TOF) contain special information. The use of these fields in a
routing table for routing decisions is explained in the following.

MERVA Link provides the field EKACLASS for routing decisions (see “MERVA
Link Message Classes” on page 142 for details).

The Unique Message Reference (UMR)
When a message contains a unique message reference (UMR), the field DSLUMR
can be used for routing decisions. If the message contains more than one UMR, the
first 10 are available for routing decisions.

If the current routing causes a UMR to be assigned, the value is already available
as the first data area of the field DSLUMR. However, if storing of the message
fails, this UMR is assigned to the next message.

If a ROUTE request specifies the modifier route only, the UMR is only available for
the routing decision if the message already had a UMR.

The field DSLUMR has the following layout:

Offset Length Subfield Contents

0 28 DSLUMR Unique message reference

0 16 DSLUMRIN Identifier and sequence number

0 8 DSLUMRID Identifier

8 8 DSLUMRNO Sequence number

16 6 DSLUMRDA Date YYMMDD

22 6 DSLUMRTI Time HHMMSS

The MSGTRACE Field
The MSGTRACE field is created by all MERVA ESA application programs when
they have processed a message and passed it to DSLQMGT for storing in queues.
Another data area is added by these programs for each further processing step.
Therefore the MSGTRACE field shows the path of a message through
MERVA ESA.

Each data area consists of a mandatory part and an optional part that is generated
only when the information is available. The mandatory part has a length of 32
bytes and a fixed format.

The following subfields are defined in the field definition table for each data area
of the MSGTRACE field:

Offset Length Subfield Contents

0 8 MSGTRUID User ID when the MSGTRACE field is written by
DSLEUD. The other MERVA ESA application
programs write their program name into this field,
for example, DSLSDI.

88 Concepts and Components

Offset Length Subfield Contents

8 8 MSGTRFUN Input queue function processed.

v For DSLSDI, this is the intermediate queue
function.

v For DWSDGPA and generated messages and
messages received from the SWIFT network,
DWSDGPA is used.

v For Telex Link and messages received from the
telex network, TELEX is used.

v For MERVA Link, the send queue or the control
queue is used.

v For MERVA-MQI Attachment, the send queue,
the control queue, the wait queue, or the word
MQSERIES for messages received from the
MQSeries is used.

16 4 MSGTRERR Error reason code of the MERVA ESA message
format service. The sample transactions DSLCESTR
and DSLCSETR give a component code followed by
the reason code:

C For a DSLCSE1 error

C1 For a DSLCES1 error

C2 For a DSLCES2 error

0 For a DSLMMFS error

N For a DSLNIC error

Q For a DSLQMGT error

S For a DSLSRVP error

T For a DSLTOFSV error
No error is indicated by 0000.

20 6 MSGTRDAT Date in the form YYMMDD (year, month, day).

26 6 MSGTRTIM Time in the form HHMMSS (hour, minute, second).

32 8 MSGTRTRM Terminal name. Shows the screen terminal where
the message was processed by an end user. This
subfield is optional.

You can use the information in these subfields during message routing, to make
routing dependent on the last processing user or program, the last processed
function, or the error reason code.

The MSGOK Field
The MSGOK field contains the parameters of the end-user commands ok and
route. The field can be tested to find out if the message is authorized for onward
routing. In most cases, the authorization controls access to an external network.

For example, if the MSGOK field contains YES after an ok yes command, the
message is authorized to be sent to the SWIFT network and is therefore routed to
the SWIFT ready queues. But, if the MSGOK field contains NO after an ok no
command, the message is not authorized to be sent to the SWIFT network and is
therefore routed to a verification queue for correction.

Chapter 9. Queue Services (VSAM) 89

If the MSGOK field contains another value, it can be either a function name, or a
signature of up to 8 characters. The function name can be verified if it is permitted
with the command. A signature can be used for a more specific routing decision,
that is, it can be translated into a function name.

The MSGOK field is deleted from the TOF when the message is retrieved again
from a queue by an end user to provide a new signature. When the message is
retrieved by a program, the last MSGOK field is still available.

The MSGACK Field
The MSGACK field is used by SWIFT Link to indicate the status of a message sent
to or received from the SWIFT network. The programs DWSDGPA and DWSDLSK
write the information to the MSGACK field.

The error messages of DWSDGPA, DWSDLSK, and DWSAUTP mentioned below
are described in detail in MERVA for ESA Messages and Codes.

MSGACK Field for SWIFT Input Messages: A message sent to the SWIFT
network can contain the following information in the MSGACK field:
v An error message starting with DWS. In this case, an error was detected when

preparing the message for sending. DWS6nn indicates that the error was
detected by DWSDGPA, DWS7nn indicates that the authentication failed, and
the error was detected by the authentication program DWSAUTP.

v The SWIFT acknowledgment message starting with {1:A21 for the application
control (APC), or with {1:F21 for the financial application (FIN). In this case, the
message was sent to the SWIFT network and the system acknowledgment was
received.
The acknowledgment is positive if the field 451 contains a “0”.
The acknowledgment is negative if the field 451 contains a “1”.
This “0” or “1” is found at displacement 53 in the MSGACK field.

The field MSGACK1 is defined as a subfield of the MSGACK field. When the
MSGACK field contains the SWIFT system acknowledgment (APDU 21), the field
MSGACK1 can be read to get the ACK or NAK message in the SWIFT I format,
that is, starting with the characters ACK or NAK.

MSGACK Field for SWIFT Output Messages: A message received from the
SWIFT network can contain an error message starting with DWS. DWS6nn
indicates that an error was detected by DWSDGPA. DWS7nn indicates the positive
or negative result of the authentication as indicated by the digits nn, nn being the
reason code of DWSAUTP.

MSGACK Field for SLS Session Key Messages: A session key message received
from the SWIFT USE workstation can contain an error message starting with
DWS6. The message contains at offset 8 the name of the program DWSDGPA or
DWSDLSK that detected the error.

90 Concepts and Components

Chapter 10. Queue Services (DB2)

This chapter describes the queue services available in MERVA ESA with queue
management using DB2. Since it is completely transparent to MERVA ESA
application programs and end users whether MERVA ESA runs with queue
management using VSAM or DB2, only the implementation differences are
described in this chapter. For a general description of the MERVA ESA queue
services, see “Chapter 9. Queue Services (VSAM)” on page 69.

The MERVA ESA DB2 queue services are used when storing messages to and
retrieving messages from a DB2 database. This chapter describes the following
aspects:
v The queues defined in the MERVA ESA function table (FNT)
v The DB2 objects, such as tables and indices
v The queue management program DSLQMGD
v The queue management I/O programs DSLQMDIO, DSLQMDLI, and

DSLQMDXK

There is no special service for large messages.

Definition of Queues
With queue management using DB2, you can define the following additional
attributes in the MERVA ESA function table DSLFNTT:
v PARTID to allow a partitioning index to be defined on the message table
v XKEYS to allow extra keys for a function

See the MERVA for ESA Macro Reference for details.

DB2 Objects
The following DB2 tables are used to store the messages:

DSLTQUEL Queue element table. The table is used to store queue element
control data.

DSLTQXDEF Extra-key definition table. The table is used to define the extra keys
for a queue.

DSLTQXKEY Queue extra-key table. The table is used to store the extra-key data.

DSLTQBUSY Busy table. The table contains one entry for each message currently
in use (‘busy’).

DSLTQMSG Message table. The table is used to store the message data.

DSLTQFUN Function control table. The table is used to store control
information about queues.

DSLTQSTAT MERVA status table. The table is used to store the last used
MSGTABLENO and UMR.

See “Appendix F. Layout of the DB2 Tables” on page 203 for a description of the
layout of all used DB2 tables.

© Copyright IBM Corp. 1987, 2001 91

Queue Management Program DSLQMGD

Product-Sensitive Programming Interface

DSLQMGD controls the queue services.

For queue management using DB2 there are two modes of operation, either
centralized or direct. When working centralized, which is the normal mode of
operation, DSLQMGD is controlled by DSLNUC. Only for batch programs
DSLSDxy and API programs for MVS is direct processing possible, that is, the
programs can access queue services directly. You would then specify DSLPRM
SDDB2=YES or switch the API customization parameter APICQDIR on.

DSLQMGD performs the following tasks:
v Initialization
v Servicing queue and status requests
v Processing the unique message reference
v Calling DSLQMDIO, DSLQMDLI, and DSLQMDXK for DB2 access
v Calling user exits
v Tracing queue operations
v Termination

Initialization of DSLQMGD for Central Processing
During the startup of MERVA ESA, DSLNUC requests the queue management
INIT function to:
v Get main storage for DSLQMGD and the DB2 I/O programs DSLQMDIO,

DSLQMDLI, and DSLQMDXK
v Call DSLQMDIO with request type INIT:

1. Call DSLHLI2 to get the apropriate DB2 language interface (MVS only):
CICS: DSNCLI, IMS: DFSLI000, BATCH: DSNHLI2

2. Delete all central entries from the DSLTQBUSY table
3. Reset all entries in the function control table DSLTQFUN to their initial state

as defined in DSLFNTT (insert an entry for all functions defined in the
DSLFNTT with STATUS=HOLD or TRAN=tran)

4. Return the last UMR used (if no last UMR can be found, initialize the
DSLTQSTAT table)

v Call the MERVA ESA routing scanner DSLRTNSC for initialization

Note: There is no special restart processing with queue management using DB2.

Termination of DSLQMGD for Central Processing
During the termination of MERVA ESA, DSLNUC invokes the queue management
TERM function. The following steps are performed:
v Call DSLQMDIO with request type TERM:

1. Return the last UMR used (if no last UMR can be found, initialize the
DSLTQSTAT table)

2. Call DSLHLI2 to release the DB2 language interface (MVS only)
v Free all main storage obtained during initialization
v Call the MERVA ESA routing scanner DSLRTNSC for termination

92 Concepts and Components

Servicing Queue Requests
See “Servicing Message Queue Requests” on page 75. Whether MERVA ESA runs
with queue management using VSAM or DB2 is completely transparent to
MERVA ESA application programs.

Getting Status Information
See “Servicing Message Queue Requests” on page 75. In addition to the TEST,
STATUS, and LIST request you can get SQL error information with the SQLSTAT
request.

Unique Message Reference
See “Unique Message Reference” on page 81. With queue management using DB2
the current UMR is also stored in the DB2 queue element table DSLTQUEL.

Commit
As far as commiting is concerned, there is no difference between queue
management using VSAM and queue management using DB2: all queue
management requests are committed immediately. However, API programs
running with queue management using DB2 on MVS can specify that they want to
handle the commit processing themselves. For more information about commit
processing, refer to the ‘Advanced Topics’ chapter of the MERVA for ESA
Application Programming Interface Guide.

Queue Trace
See “Queue Trace” on page 83. The queue trace facilities are the same whether you
use DB2 or VSAM, but the trace information is different:
v For queue trace state SMALL only the queue parameter list is traced.
v For queue trace state LARGE the queue parameter list, DB2 return information,

queue desriptors, and the message are traced.

The queue trace is written to the MERVA ESA journal with the journal record
identification 26 (X'1A').

Details of the layout of the queue trace records can be found in “Appendix A.
Journal Record Layouts” on page 185.

User Exits in DSLQMGD
See “User Exits in DSLQMGT” on page 83.

The following user exits are available in DSLQMGD:
v DSLQUMR
v DSLQKEY
v DSLQTRAB (corresponds to user exit DSLQTRA called by DSLQMGT)

The distribution material of MERVA ESA contains samples of these user exits that
explain and set up the interfaces.

End of Product-Sensitive Programming Interface

Chapter 10. Queue Services (DB2) 93

Queue Management I/O Programs for DB2
The programs DSLQMDIO, DSLQMDLI, and DSLQMDXK are the interface
between queue management control program DSLQMGD and the DB2 subsystem:
v DSLQMDIO

DSLQMDIO is called by DSLQMGD for the following services:
– Initialization
– Termination
– Status and Test
– Storing of messages
– Retrieving of messages
– Deleting of messages
– Starting of functions
– Holding of functions
– Commit and rollback of database changes

v DSLQMDLI
DSLQMDLI is called by DSLQMGD for the following service:
– List queue elements by QSN and key

v DSLQMDXK
DSLQMDXK is called by DSLQMGD for the following services:
– Insertion of extra keys for queue elements
– Deletion of extra keys for queue elements

Routing
Routing determines the function queue or queues where a message is next to be
stored. There is no difference in routing between queue management using VSAM
and DB2. For more information about routing, refer to “Routing” on page 84.

Extra Keys
With queue management using DB2 you can specify that additional keys, called
extra keys, should be stored for messages. You would specify XKEYS=YES for the
function concerned in the function table DSLFNTT and define the extra keys in the
DB2 table DSLTQXDEF. Note that a large number of extra keys may significantly
reduce the performance of all insert, update, and delete operations. For more
information about extra keys, refer to the MERVA for ESA Customization Guide.

94 Concepts and Components

Chapter 11. Message Processing

The MERVA ESA message processing components provide for the creation and
further processing of messages that you use for communication within your
business or outside your business.

MERVA ESA offers the following message processing components:
v Transaction programs:

– End-user driver DSLEUD
– MERVA Message Processing Client Server
– Hardcopy print program DSLHCP
– Checking and expansion program DSLCXT

v Batch programs:
– Sequential data set input DSLSDI and DSLSDIR
– Sequential data set load DSLSDLR
– Sequential data set output DSLSDO and DSLSDOR
– Sequential data set unload DSLSDUR
– System printer program DSLSDY and DSLSDYR

End-User Driver DSLEUD
The end-user driver (DSLEUD) controls the interaction between a user and
MERVA ESA at a display station. DSLEUD prepares panels and sends them to the
display station and receives responses from the display station using CICS or IMS
facilities.

A user invokes the end-user driver by entering the transaction code defined for
DSLEUD in CICS or IMS at a display station, for example, DSLE.

In a MERVA ESA CICS installation, DSLEUD is a reentrant CICS
pseudo-conversational transaction. DSLEUD uses the dynamic transaction backout
(DTB) function of CICS. In a MERVA ESA IMS installation, DSLEUD is a reusable
conversational transaction running in an IMS MPP region.

The DSLEUD transaction can only start if MERVA ESA is active. DSLEUD is not
link-edited to DSLNUC, and uses therefore the MERVA ESA central services via
the intertask communication facility.

The MERVA ESA end-user driver consists of the main programs DSLEUD and
DSLEFUN, and the function programs.

Figure 13 on page 96 shows the main components of DSLEUD.

© Copyright IBM Corp. 1987, 2001 95

For each conversation step with the display station, DSLEUD and DSLEFUN
perform initialization, processing, and termination.

Initialization of DSLEUD
To initialize DSLEUD the following steps are required:
v Load modules that are needed by the programs that are link-edited to DSLEUD.
v Get main storage that is needed by the programs that are link-edited to

DSLEUD, and by the MERVA ESA direct service programs that are used.
v If it is the continuation of a conversation, get the permanent storage or scratch

pad area (SPA):
– In CICS, get the SPA from CICS temporary storage (this can be in main

storage or on disk).
– In IMS, get the 320 bytes SPA from IMS (also at the start of a conversation),

and call the MERVA ESA SPA file program DSLEOSPA to get the SPA from
the MERVA ESA SPA file. MERVA ESA provides an alternative SPA file
program DSLEOSPB that uses an IMS HDAM database instead of the BDAM
data set for storing the SPA parts.

The MERVA ESA SPA consists of four parts:
– The working storage of DSLEUD
– The TOF, or for a dynamic TOF the index part only
– The logical data stream (LDS) buffer
– The data part of a dynamic TOF

Figure 13. The Main Components of DSLEUD

96 Concepts and Components

Each of the first three parts is always smaller than 32KB. The fourth part is used
only when a large message is processed that does not fit into a single TOF
buffer. The total length of the index part and the data part of a dynamic TOF
will not exceed the value specified in the MAXBUF parameter in the
customization parameters DSLPRM.

v Establish the MERVA ESA intertask communication. This step is only successful
if MERVA ESA is ready.

v Initialize the MERVA ESA internal message buffer (TOF) and the MERVA ESA
message format service (MFS).

Processing of DSLEUD
The processing routine of DSLEUD performs the following:
v Gets the input from the display station:

– In CICS, the CICS RECEIVE command is used.
– In IMS, a GET NEXT (GN) request is used.

v If it is not input from the signon panel, calls the user exit DSLEU002.
v Depending on the status of the conversation and on the input from the display

station, performs the following:
– User signon/signoff
– Function selection
– Processes user commands
– Calls one of the function programs, listed in “Function Programs of DSLEUD”

on page 99
v Prepares the response for the display station and sends it:

– In CICS, the CICS command SEND is used.
– In IMS, an INSERT (ISRT) request is used.

DSLEUD performs all processing for the display station. This means, if in one of
the following sections another program prepares a panel, DSLEUD sends it to the
display station.

The following describes the tasks of DSLEUD processing in more detail.

User Signon
Signon establishes the connection between a user’sdisplay station and
MERVA ESA. After the conversation has started, there are two ways to sign on:
v DSLEUD sends the signon panel to the display station, and the user enters the

user ID and password, and optionally a function.
v DSLEUD skips the signon panel and sends the function selection panel to the

display station.
This requires a preceding signon to CICS or IMS, and an application that starts
DSLEUD (program-to-MERVA switch).

The following steps are performed during signon:
v The user exit DSLEU001 is called with the data received from the signon panel

or data passed by the program-to-MERVA switch. DSLEU001 can check the user
ID, password (if entered on the signon panel), and function and inform DSLEUD
whether the signon is accepted or not.

v A signon request for the MERVA ESA user file program DSLNUSR is prepared.
v DSLEUD invokes the user file service via the MERVA ESA intertask

communication.

Chapter 11. Message Processing 97

v If DSLNUSR accepts the signon request, the user can continue with function
selection. If not, the signon panel is displayed again with an appropriate error
message.

The user can change the password during signon if the signon panel was
displayed.

User Signoff
Signoff releases the connection between a user’s display station and MERVA ESA,
and ends the conversation. The user enters the signoff command, or an automatic
signoff takes place after a severe error or when MERVA ESA has terminated.

The following steps are performed during signoff:
v The user exit DSLEU003 is called.
v A signoff request for the MERVA ESA user file program DSLNUSR is prepared.
v DSLEUD invokes the user file service via the MERVA ESA intertask

communication.
The signoff panel is displayed. After an error or MERVA ESA termination, the
signoff panel shows an appropriate error message.

Function Selection
Function Selection is performed by the program DSLEFUN, which is part of
DSLEUD. After successful signon or when returning from a function, DSLEFUN
uses the user file record information to prepare the Function-Selection Menu for
sending to the user’s display station. After the user has selected a function,
DSLEFUN:
v Prepares a function-selection request for the MERVA ESA user file program

DSLNUSR.
v Invokes the user file service via the MERVA ESA intertask communication.

If DSLNUSR accepts the function-selection request, the selected function can be
processed. If not, the Function-Selection menu is displayed with an appropriate
error message.

Processing of User Commands
The user at the display station communicates with DSLEUD by means of user
commands. All user commands are described in detail in the MERVA for ESA
User’s Guide. The user commands are processed by DSLEFUN as follows, it:
v Calls the user exit DSLMU004 with the command entered at the display station
v Calls the MERVA ESA command parser DSLNPAR for formal analysis of the

command
v Calls the user exit DSLMU005 with the output from DSLNPAR
v Checks if the user is authorized to use the command (if the user is not

authorized, the command is not executed)
v Processes the command:

– If it is a screen command, it lets the MERVA ESA message format service
execute the command.

– If it is a session command, DSLEFUN executes the command.
– If it is a function command, it calls the function program to execute the

command.

Depending on the command, a command response or an error message may be
available for the next panel to display.

98 Concepts and Components

Calling Function Programs
The function programs of DSLEUD are defined in the end-user driver program
table DSLEPTT, and they are referenced in the functions defined in the
MERVA ESA function table DSLFNTT. You can add your own function programs
to the end-user driver by adding them to DSLEPTT and referencing them in a
function of DSLFNTT.

The following function programs are available in DSLEPTT:
v DSLECMD, the operator command program
v DSLEFLM, the general files maintenance program
v DSLEMSG, the message processing program
v DSLEUSR, the user file maintenance program
v EKAEMSC, the MERVA system control facility program
v DWSEAUT, the authenticator-key file maintenance program of SWIFT Link
v User-written function programs

After having processed the user commands (see “Processing of User Commands”
on page 98), DSLEFUN calls the function program that was defined for the

selected function. The function programs are described in more detail in “Function
Programs of DSLEUD”.

Termination of DSLEUD
The termination of DSLEUD takes place at the end of every conversation step, after
having given the next panel for the display station to CICS or IMS. The following
steps are performed:
v Terminate the MERVA ESA message format service.
v Write the scratch pad area (SPA):

– In CICS, write the SPA to CICS temporary storage (this can be in main
storage or on disk)

– In IMS, call the MERVA ESA SPA file program DSLEOSPA to write the SPA to
the MERVA ESA SPA file, and use an INSERT (ISRT) call to give the 320
bytes SPA to IMS.

After signoff of the user, the SPA is not given to CICS, and in IMS, both
DSLEOSPA and IMS are informed that the conversation has ended.

v Release the MERVA ESA intertask communication.
v Delete all modules that have been loaded.
v Free all main storage.
v Return to CICS or IMS.

Function Programs of DSLEUD
The following describes the function programs of DSLEUD supplied with
MERVA ESA.

Operator Command Program DSLECMD
The operator command program DSLECMD is invoked after the user has selected
the CMD function (or another function, for which the program DSLECMD is
specified).

Chapter 11. Message Processing 99

DSLECMD prepares the operator command processing panel for sending to the
user’s display station. After the user has entered a MERVA ESA operator
command (see the MERVA for ESA Operations Guide for details), DSLECMD
performs the following steps, it:
v Prepares the command and response buffer for the MERVA ESA command

server DSLNCS.
v Invokes the command service via the MERVA ESA intertask communication.

After the command has been performed, DSLNCS provides the command
response in the MERVA ESA command and response buffer for both correct and
erroneous commands.

v Prepares the operator command processing panel with the command response
and enables the user to enter the next command.

General File Maintenance Program DSLEFLM
When a user has selected the General File maintenancefunction FLM, the program
DSLEFLM is invoked. General files are described in “General File Service” on
page 168.

The authorization to maintain MERVA ESA General files is defined in the user file
record of the user (see the MERVA for ESA User’s Guide for details).

DSLEFLM prepares the File-Selection menu, which contains the identifications and
descriptions of the files that have been defined as available for online maintenance in
the MERVA ESA File Table. For a shared file, both the private records of the user,
and the records common to all users, can be offered for maintenance.

After the user has selected a file for maintenance, the following tasks can be
performed depending on the authorization of the user:
v Add new records
v Delete records
v Display records
v List records
v Replace records (that is, display a record, change it, and replace it in the file)

These tasks are described in detail in the MERVA for ESA User’s Guide. Whenever
DSLEFLM accepts an appropriate command from the user, DSLEFLM calls the
MERVA ESA file service program DSLFLVP for the requested service. The user is
informed whether the request was successful or not.

Message Processing Program DSLEMSG
When a user has selected one of the message processing functions, the program
DSLEMSG is invoked. DSLEMSG prepares the message selection panel or the
Queue List panel for message selection. When a message has been selected,
DSLEMSG prepares the appropriate message panel.

Depending on the selected function, a new message can be created or an existing
message can be retrieved from the associated queue. The user can enter, verify, or
correct the message data, and tell DSLEMSG by means of user commands how to
complete the message. This is described in detail in the MERVA for ESA User’s
Guide.

User-File Maintenance Program DSLEUSR
When a user has selected one of the user file maintenance functions USRn, the
program DSLEUSR is invoked. User file maintenance requests the user to enter the
password again for more security. To check the password, DSLEUSR invokes the

100 Concepts and Components

user exit DSLEU004 and DSLNUSR via the MERVA ESA intertask communication.
It can be customized in the DSLPRM module that DSLEU004 uses the services of a
security manager (ESM or BSM) to check the password. If the password is correct,
the user can maintain the user file.

Depending on the selected user file maintenance function, the user is allowed to
perform some or all of the following tasks with user file records:
v Add new records
v Authorize records changed by another user
v Delete records
v Display records
v List records
v Reject changes to records
v Replace records (that is, display a record, change it, and replace it in the file)

These tasks are described in detail in the MERVA for ESA User’s Guide. Whenever
DSLEUSR accepts an appropriate command from the user, DSLEUSR prepares a
request to DSLNUSR and invokes the MERVA ESA intertask communication for
the requested service. The user is informed whether the request was successful or
not.

MERVA System Control Facility Program EKAEMSC
When a user has selected the MERVA system control function MSC, the program
EKAEMSC is invoked. EKAEMSC lets you:
v Issue MERVA ESA operator commands at the local MERVA ESA system, similar

to the program DSLECMD (see “Operator Command Program DSLECMD” on
page 99).

v Issue MERVA Link commands to control the MERVA Link connections at the
local MERVA ESA system.

v Switch to a remote MERVA ESA system and both issue MERVA ESA operator
commands and control the MERVA Link connections at that system.

EKAEMSC displays:
v A list of the MERVA Link application support processes (ASPs)
v The status and parameters of a specific MERVA Link application support process

(ASP) and its message transfer process (MTP)
v A list of the local MERVA Link system control processes (SCPs)

The user can enter the MERVA ESA operator commands and the MERVA Link
commands. Refer to the MERVA for ESA Operations Guide for details.

After the command has been performed, EKAEMSC prepares the appropriate
panel with the command response and enables the user to enter the next
command.

Authenticator-Key File Maintenance Program DWSEAUT
When a user has selected one of the Authenticator-key file maintenance functions
AUTn, the program DWSEAUT of SWIFT Link is invoked. Online maintenance is
only possible if the authenticator-key file program DWSAUTP has been initialized.

A user can maintain only the authenticator keys of the financial institution whose
SWIFT bank identifier code (BIC) matches the origin identifier of the user’s user
file record in the first 4, 6 or 8 characters.

Chapter 11. Message Processing 101

Depending on the selected authenticator-key file maintenance function, the user is
allowed to perform the following tasks with authenticator-key file records:
v Add new records
v Authorize records changed by another user
v Delete records
v Display records
v Exchange keys in records
v List records
v Reject changes to records
v Replace records (that is, display a record, change it, and replace it in the file)

These tasks are described in detail in the MERVA for ESA User’s Guide. Whenever
DWSEAUT accepts an appropriate command from the user, DWSEAUT prepares a
request to the authenticator-key file program DWSAUTP and invokes the
MERVA ESA intertask communication for the requested service. The user is
informed whether the request was successful or not.

With the introduction of the SWIFT Bilateral Key Exchange (BKE), the need for
using the functions of DWSEAUT will reduce as the authenticator keys will mostly
be generated automatically without user intervention.

DSLEUD User Exits
The following user exits are available in the MERVA ESA end-user driver:

DSLEU001 Called at signon time. You can check the user ID and password
with this user exit. RACF (MVS only) can be invoked to control
signon. Associated user applications can be started.

DSLEU002 Called whenever terminal input is available after signon. This exit
enables processing of user applications.

DSLEU003 Called at signoff time. RACF (MVS only) can be invoked. User
applications can be stopped.

DSLEU004 Called when you enter the user file maintenance. You can check
the password with this user exit. It can be customized in the
DSLPRM module that DSLEU004 uses the services of a security
manager (ESM or BSM) to check the password.

For processing in DSLEUD, the MFS user exits described in 68 are also available.
Refer to the MERVA for ESA Customization Guide for more information about these
user exits.

MERVA Message Processing Client/Server
The MERVA Message Processing Client/Server lets users at a MERVA Message
Processing Client workstation process messages in a MERVA ESA system. The
workstation can communicate with the server using APPC or TCP/IP
communication protocols. APPC support is for LU Type 6.2 mapped conversations
with no synchronization. For information about MERVA Message Processing Client,
refer to the MERVA ESA Components Message Processing Client for Windows NT User’s
Guide.

The workstation server is comprised of two components:
v A listener, which controls the connection of workstations to MERVA ESA

102 Concepts and Components

v A transaction, which manages a conversation with a workstation after a
connection has been established

The APPC solution for the CICS environment is implemented as a CICS
transaction, all other solutions are implemented as batch programs. In CICS there
is no listener, the listener service is performed by CICS itself. The components are
summarized in the following table:

Table 1. MERVA Message Processing Client/Server

Environment Listener Transaction

APPC CICS — DSLAFM01

APPC/MVS DSLAFA01 DSLAFM01

TCP/IP MVS DSLAFATM DSLAFMTM

TCP/IP VSE DSLAFA04 DSLAFMTM

MERVA ESA Permissions for MERVA Message Processing
Client Users

The MERVA Message Processing Client Server uses the MERVA ESA user file
dervice, DSLNUSR (see “User File Service” on page 163), to manage client signons.
All MERVA ESA users, whether accessing MERVA ESA from a host terminal or a
client workstation, must be defined in the MERVA ESA user file.

Maintenance of the user file cannot be carried out from a client workstation, the
end-user driver (DSLEUD) must be used (see “End-User Driver DSLEUD” on
page 95).

The number of conversations that can be active simultaneously is limited by the
CLIENTS parameter of the module DSLPRM. The MERVA Message Processing
Client is a usage-based feature and must be licensed separately. See your IBM sales
representative for information about how to order the appropriate number of
authorized copies.

CICS LU 6.2 Transactions
In the MERVA ESA CICS environment, the MERVA Message Processing Client
server is a reentrant CICS transaction that is initiated by a request from a client for
conversation allocation. The transaction remains active for the duration of the
conversation, and terminates following deallocation by the client from
MERVA ESA.

Each workstation must be defined to CICS as a CONNECTION resource, and the
logical link as a SESSION resource.

APPC/MVS LU 6.2 Transactions
For MERVA ESA IMS installations, an alternative MERVA Message Processing
Client server solution is provided by the APPC/MVS server DSLAFA01. This
program runs in an MVS batch region and functions as an APPC transaction
scheduler for the DSLAFM01 APPC transaction program.

DSLAFA01 can be initiated as a started task, or by the MVS batch initiator. It
registers with APPC/MVS as a transaction server for any allocate requests from
MERVA Message Processing Clients. The LU and TP names for which DSLAFA01
registers are defined in parameter WSASRV of module DSLPRM.

Chapter 11. Message Processing 103

DSLAFA01 attaches the transaction program DSLAFM01 as a subtask on receipt of
a client request for APPC conversation allocation. One subtask is initiated for each
conversation.

DSLAFA01 terminates when it recognizes a MERVA ESA termination, and can also
be terminated by the system operator.

TCP/IP Listener Program DSLAFATM
The TCP/IP solution is similar to the APPC/MVS solution. The listener program,
DSLAFATM, runs in an MVS batch region and functions as a transaction scheduler
for the DSLAFMTM transaction program.

DSLAFATM can be initiated as a started task, or by the MVS batch initiator. It
registers with TCP/IP as a concurrent server for any connection requests for the
port number specified in parameter WSTSRV of module DSLPRM.

DSLAFATM attaches the transaction program DSLAFMTM as a subtask on receipt
of a client connection request. One subtask is initiated for each conversation.

DSLAFATM terminates when it recognizes a MERVA ESA termination, and it can
also be terminated by the system operator.

In the VSE environment, the number of simultaneous conversations is limited by
the number of subtasks the operating system supports.

Hardcopy Printer Program DSLHCP
The MERVA ESA hardcopy printer program DSLHCP prints messages, contained
in a MERVA ESA queue, on a hardcopy printer.
v Under CICS, DSLHCP is a multithread CICS transaction that is started with a

CICS START command using the transaction code and the logical terminal name
specified in the relevant function table entry. The transaction code must be
defined in the CICS transaction definitions, and the terminal name must be
specified in the terminal definitions.

v Under IMS, DSLHCP is a non-conversational MPP that is started by inserting a
message into the IMS message queue using the transaction code specified in the
relevant function table entry. DSLHCP uses the logical terminal name of the
function table entry for printing messages. Both the transaction code and the
logical terminal name must also be specified in the IMS nucleus.

If there is an entry for the transaction code in the MERVA ESA transaction table,
and if this entry specifies a logical terminal (LTERM), then this specification takes
precedence over any logical terminal specified in the function table entry, and
issuing the change function command to try to change the logical terminal has no
effect.

DSLHCP is started automatically by DSLQMGT when a message is written to the
MERVA ESA queue with which the printing transaction is associated. The function
must be in NOHOLD status. DSLHCP can also be started by the MERVA ESA
operator using the MERVA ESA sf (start function) command.

Messages are printed according to the specifications of the following parameters of
the function table entry of the input queue:

104 Concepts and Components

MSGID This parameter determines which parts of a message are to be
printed, if available:
v The MERVA Link control information
v The telex header and other telex information
v The SWIFT message
v Other information

PRFORM This parameter determines the format of the printing.

The program DSLHCP performs address expansion according to the specifications
in the function table entry of the input queue. Alternatively, address expansion can
be done before routing the messages to the hardcopy print queue, for example,
using the program DSLCXT (see “Transaction for Message Checking and
Expansion DSLCXT”).

The following steps are performed for each message:
v Get the message from the input queue.
v Call the user exit 24 (DSLMU024) for additional processing of the message or to

skip the message.
v Check the message for formal correctness if the function of the hardcopy print

queue specifies CHECK=YES. If errors are found, error messages are printed at
the end of the message.

v Format the message for the printer as specified by MSGID and PRFORM
parameters.

v Call the user exit 27 (DSLMU027) for manipulation of the output data stream.
Refer to the MERVA for ESA Customization Guide for more information on this
user exit. DSLMU027 is called:
– Before the first output segment is prepared. Additional initialization of the

output device may be performed, for example, sending a FORMFEED to the
printer, or modifying the device characteristic. In IMS, the exit is called before
the printer terminal is selected by an IMS CHANGE call. The printer name
can be changed by overwriting the field TUCBLTN.

– For each output segment. The output segment may be modified or routed to
an additional destination, for example, a spooling system.

– After the last output segment has been sent. Additional termination steps on
the output device may be performed.

v Send the message panels to the hardcopy printer using the CICS send command
or the IMS insert (ISRT) request.

v Delete the message in the hardcopy print queue if the function of this queue
specifies KEEPMSG=NO. Do not delete the message if KEEPMSG=YES is
specified. If the messages are not deleted, DSLHCP does not repeat printing the
same messages if it is started again automatically by DSLQMGT. However, if the
MERVA ESA operator starts DSLHCP with the sf (start function) command,
printing starts with the first message in the hardcopy print queue.

If the execution of DSLHCP fails during processing of a message, this message is
printed again the next time DSLHCP is started for this hardcopy print queue.

Transaction for Message Checking and Expansion DSLCXT
The MERVA ESA transaction for message checking and expansion (DSLCXT)
checks, expands, and routes messages. DSLCXT can also be used to transform
messages from the tokenized format to the external line format, or vice versa.

Chapter 11. Message Processing 105

DSLCXT is started automatically by DSLQMGT when a message is written to the
MERVA ESA queue with which DSLCXT is associated. The function must be in
NOHOLD status. DSLCXT can also be started by a MERVA ESA operator with the
sf (start function) command.

Under CICS, DSLCXT is a multithread CICS transaction that is started using a
CICS START command with the transaction code specified in the relevant function
table entry. The transaction code must also be defined in the CICS transaction
definitions.

Under IMS, DSLCXT is a non-conversational MPP that is started by inserting a
message into the IMS message queue using the transaction code specified in the
relevant function table entry. The transaction code must also be specified in the
IMS nucleus.

The following steps are performed for each message:
v Get the message from the input queue.
v Call the user exit 23 (DSLMU023) for additional processing or to skip or delete

the message. Refer to the MERVA for ESA Customization Guide for more
information about this user exit. The number of the user exit can be changed by
specifying the required number in the UAPL parameter of the function table
entry.
If one of the following code word values is specified in the UAPL parameter, a
special user exit processes message transformations for the external line format:

ELF The message is transformed from tokenized format to external line
format.

ELF+ The message in external line format is added to a message in tokenized
format.

TOF The message is transformed from external line format to tokenized
format.

TOF+ The message in tokenized format is added to a message in external line
format.

v Carry out expansion if the function of the input queue specifies expansion. For
example, the SWIFT bank identifier codes (BIC) are expanded to the full address.

v Check the message for formal correctness if the function of the input queue
specifies CHECK=YES.

v Route the message and delete it from the input queue. The routing decision can
depend on the result of checking.

If DSLCXT execution fails during processing of a message, DSLQMGT ensures that
this message is not lost nor duplicated when DSLCXT is started the next time for
this message processing function.

Sequential Data Set (SDS) Batch Programs
MERVA ESA provides the following batch programs for sequential data set (SDS)
processing:
v For input: DSLSDI and DSLSDIR
v For output: DSLSDO and DSLSDOR
v For loading: DSLSDLR
v For unloading: DSLSDUR

106 Concepts and Components

v For printing: DSLSDY and DSLSDYR

The batch programs run in a region or partition not used by MERVA ESA. They
can run only when MERVA ESA is active, because they use central services via the
MERVA ESA intertask communication.

Runtime parameters for the batch programs:
v DSLSDI, DSLSDO, and DSLSDY are specified with the PARM parameter of the

JCL EXEC statement.
v DSLSDIR, DSLSDOR, DSLSDLR, DSLSDUR, and DSLSDYR are specified in the

DD statements SYSTSIN and SYSIPT in the form KEYWORD=VALUE.

Refer to the MERVA for ESA Operations Guide for details.

The input or output device is allocated while the batch program is running.

SDS Input Program DSLSDI
DSLSDI reads a batch of messages from a sequentialdata set and transfers them to
queues of MERVA ESA message processing functions.

The operational unit for DSLSDI is always a complete batch of messages, that is, a
complete data set with messages. If necessary, DSLSDI performs a restart on this
basis.

Processing takes place in two stages:

Stage 1
The messages are read from the data set and stored in an intermediate
queue. This queue must be reserved exclusively to this run of DSLSDI. It is
possible to run several DSLSDI programs simultaneously if each of them
has its own reserved intermediate queue.

An intermediate queue for DSLSDI must never be the target of routing,
because DSLSDI deletes all messages that have entered that queue in any
way other than through DSLSDI.

For each message, the following steps are performed:
1. Get the message from the input data set on tape or disk, using the

queued sequential access method (QSAM).
Usually there is one message in one logical record. In addition,
MERVA ESA supports segmentation of messages in which case one
message may span more than one logical record of the input data set.
Whether segmentation of messages is used or not is determined by a
processing parameter in the JCL EXEC statement. When it is used it
applies to all records in the input data set. In this case the message
length can be larger than 32KB.
The first byte in each record is the segment indicator. This byte can
contain one of the following values:

0 (X'F0') Only segment of a message

1 (X'F1') First segment of a multi-segment message

2 (X'F2') Last segment of a multi-segment message

3 (X'F3') Middle segment of a multi-segment message

The logical records belonging to one message are assembled internally.

Chapter 11. Message Processing 107

2. Present the message to the message format service for transformation
into the MERVA ESA internal format (TOF format). The PARM
parameter of the JCL EXEC statement specifies the format of the input
record.

3. If the intermediate function queue specifies CHECK=YES, perform
formal checking of the message. For a message in queue format no
checking is performed.

4. An incorrect message is handled according to the specification of the
disposition parameter (ACCEPT, DROP, or CANCEL).

5. Call the user exit 20 (DSLMU020) for additional processing of the
message, or to skip the message. Refer to the MERVA for ESA
Customization Guide for more information on this user exit.

6. Store the correct or accepted message in the intermediate function
queue.

After the last message has been stored in the intermediate queue, DSLSDI
stores a specific restart message at the end of this queue for the case of a
system breakdown.

Stage 2
The messages are routed from the intermediate queue to other
MERVA ESA queues. For each message, the following steps are performed:
v Get the message from the intermediate queue.
v Route the message according to the routing criteria defined for the

intermediate function.
v Delete the message in the intermediate queue.

When DSLSDI gets the restart message from the intermediate queue, this
message is deleted and processing is complete.

If the processing of DSLSDI is interrupted for any reason in one of the two stages,
the same job with the same sequential input data set and the same intermediate
function must be started again. No messages are duplicated, and no messages are
lost. DSLSDI can determine how to complete the job:
v If the intermediate queue is empty, normal processing is done as explained

earlier.
v If the intermediate queue is not empty, and the last message in this queue is not

the restart message: DSLSDI was interrupted in stage 1. Therefore all messages
in the queue are deleted, and stage 1 and stage 2 are performed.

v If the intermediate queue is not empty, and the last message in this queue is the
restart message: DSLSDI was interrupted in stage 2. Therefore stage 2 is
continued, that is, all messages in the queue are routed, deleted, and finally the
restart message is deleted. No messages are read from the sequential input file.

SDS Input Program DSLSDIR
DSLSDIR provides the functionality of DSLSDI plus many features and options.
The principle mode of processing is the same.

Program flow:
1. Print the header.
2. Read and check the specified runtime parameters.
3. Under MVS, ENQ the intermediate queue.

108 Concepts and Components

4. If using the function PUT, ROUTB, or ROUTD, read the intermediate queue
and check for a restart situation:
v If the intermediate queue is empty, perform stage 1 and stage 2.
v If the intermediate queue is not empty:

– If the last message is not the restart message, DSLSDIR was interrupted in
stage 1: delete all messages in the intermediate queue, perform stage 1
and stage 2.

– If the last message is the restart message, DSLSDIR was interrupted in
stage 2: remember the QSN of the restart message, perform stage 2 only,
delete the restart message.

5. Stage 1
a. Read the input data set with EXECIO.
b. Put the messages to the intermediate queue (LAZY on):

v Loop over the records read with EXECIO.
v If selection criteria were specified, check whether the message matches

the specified MSGDST, MSGNET, or SWBHLT.
v Use the API function WRIT to write a new MSGTRACE entry.
v PUT the message to the intermediate queue.

c. If using the function PUT, ROUTB, or ROUTD, write the restart message
(LAZY off).

6. Stage 2
a. Loop through the intermediate queue and PUTB (PUT), ROUB (ROUTB), or

ROUN (ROUTD) all queue elements but the restart message to the target
queue or queues (LAZY on).

b. Delete the restart message in the intermediate queue.
c. Under MVS, DEQ the intermediate queue.

Note: There is no stage-2 processing for the CHECK function.
7. Print the report.

SDS Load Program DSLSDLR
DSLSDLR loads the messages unloaded with the DSLSDUR program back to their
MERVA queues preserving the queue name, QSN, key values, and the write back
indicator.

It is checked that on the MERVA ESA queue no queue elements with the same or a
higher QSN exist.

Program flow:
1. Print the header.
2. Read and check the specified runtime parameters.
3. Determine with the du command whether users are currently active in MERVA.

Depending on the value of the runtime parameter ACTIVEUSERS, this might
not be allowed.

4. Check that the input data set is FB1024.
5. Loop over the input records. As the input data set may be very large,

DSLSDLR cannot read all input records with one EXECIO.
a. If it is an ‘A-’ line, check whether it is valid and contains a wanted queue

name.

Chapter 11. Message Processing 109

b. Assemble the lines belonging to one ‘A-’ line into variable mymsg.
c. Input the message with API function PUTR.

6. Close input data set.
7. Print report.

SDS Output Program DSLSDO
DSLSDO reads a batch of messages from a MERVA ESA queue and writes them to
a sequential data set.

The operational unit for DSLSDO is the batch of messages found in the queue for
which DSLSDO was started (input queue). If necessary, DSLSDO performs a restart
on this basis. The input queue must not be processed by any other program as
long as DSLSDO is running. Never start DSLSDO for a queue that was processed
by the hardcopy print program DSLHCP.

The input queue can still be the target of a routing operation while DSLSDO is
running.

Processing takes place in two stages:

Stage 1
The messages are read from the input queue and written to the sequential
data set.

To determine the batch of messages, DSLSDO stores a specific restart
message at the end of the input queue. Messages that enter the queue after
the restart message are ignored in this run of DSLSDO, and after a system
breakdown, DSLSDO can determine where the end of this batch was.

It is possible to run several DSLSDO programs simultaneously if each of
them has its own reserved input queue.

For each message, the following steps are performed:
1. Get the message from the input queue.
2. Call the user exit 22 (DSLMU022) for additional processing of the

message, or to skip the message. Refer to the MERVA for ESA
Customization Guide for more information on this user exit.

3. If the function of the input queue specifies CHECK=YES, perform
formal checking of the message. For a message in queue format no
checking is performed.
Handle an incorrect message according to the specification of the
disposition parameter (ACCEPT, ROUTE, or CANCEL). Routed
messages are immediately deleted from the input queue.

Note: Even with disposition ACCEPT, a message that cannot be
formatted for the sequential file is routed.

4. Format a correct or accepted message as specified by the PARM
parameter of the JCL EXEC statement.

5. Write a correct or accepted message to the sequential output data set.
Usually there is one message in one logical record. In addition,
MERVA ESA supports segmentation of messages in which case one
message may span more than one logical record of the output data set.
Whether segmentation of messages is used or not is determined by a

110 Concepts and Components

processing parameter in the JCL EXEC statement. When it is used it
applies to all records of the output data set. In this case the message
length can be larger than 32KB.
The first byte in each record is the segment indicator. This byte may
contain one of the following four values:

0 (X'F0') Only segment of a message

1 (X'F1') First segment of a multi-segment message

2 (X'F2') Last segment of a multi-segment message

3 (X'F3') Middle segment of a multi-segment message

A message is divided into one or more logical records internally. Each
of the records together with the appropriate segment indicator byte is
written to the output data set.

After all messages up to the restart message have been processed, the
output data set is closed.

Stage 2
The messages in the input queue are deleted. The following steps are
performed:
v Flag the first message in the queue to indicate the start of the deletion.
v Delete all messages from the second one up to the restart message.
v Delete the first message and the restart message.

If the processing of DSLSDO is interrupted for any reason in one of the two stages,
the same job with the same sequential output data set and the same input function
must be started again. No messages are duplicated, no messages are lost. DSLSDO
can determine how to complete the job:
v If the first message in the input queue does not have the flag on that indicates

that the deletion of messages was started: DSLSDO was interrupted during stage
1. Therefore a new restart message is written to the end of the input queue, and
stage 1 is processed. All messages that have been routed to the input queue
between the previous and the actual run are included in the output data set. If
an earlier restart message is found, it is immediately deleted. A new output data
set is created.

v If the first message in the input queue has the flag on that indicates that the
deletion of messages was started: DSLSDO was interrupted during stage 2.
Therefore all messages in the input queue up to the restart message are deleted,
the output data set is not changed as it was already complete.

SDS Output Program DSLSDOR
DSLSDOR provides the functionality of DSLSDO plus other features and options.
The principle mode of processing is the same.

Program flow:
1. Print the header.
2. Read and check the specified runtime parameters.
3. Build a list of the queue elements of the input queue that match the specified

selection criteria (from QSN, to QSN, from KEY1, to KEY1, from KEY2, and to
KEY2).

Chapter 11. Message Processing 111

4. If using the DELETE function, check for restart situation. (This step is only
necessary for the DELETE function; the functions CHECK and KEEP do not
modify the MERVA ESA queue data set in any way.)
The first message in the input queue that matches the specified selection
criteria has a flag, called the write back indicator, that indicates whether the
deletion of messages was started. If the write back indicator indicates that the
deletion of messages:
v Was started, then DSLSDOR was interrupted during stage 1, and a new

restart message is written to the end of the input queue, and stage 1 is
processed. All messages that have been routed to the input queue between
the previous and the actual run are included in the output data set. If an
earlier restart message is found, it will be deleted. A new output data set is
created.

v Was not started, then DSLSDOR was interrupted during stage 2, and all
(matching) messages in the input queue up to the restart message are
deleted, the output data set is not changed as it was already complete.

5. Stage 1
a. If using the DELETE function, write the restart message.
b. Read the input queue, that is, loop over the queue elements found in step 3,

and select those that match the specified selection criteria (from UMR, to
UMR, MSGDST, MSGNET, SWBHLT).

c. Write the messages with EXECIO to the output data sets.
6. Stage 2

If using the DELETE function, delete all matching messages in the input queue:
a. A flag (the write back indicator) is set for the first matching message in the

queue to indicate that stage 2 has started.
b. Delete the subsequent matching messages up to the restart message.
c. Delete the first matching message and the restart message.

7. Print the report.

SDS Unload Program DSLSDUR
DSLSDUR unloads the messages of all or specified MERVA ESA queues to a
sequential data set preserving the queue name, QSN, key values, and the write back
indicator. The messages can be reloaded with the DSLSDLR utility.

Program flow:
1. Print the header.
2. Read and check the specified runtime parameters.
3. Use the du command to determine whether users are currently active in

MERVA. Depending on the value of the runtime parameter ACTIVEUSERS, this
might not be allowed.

4. Get all function names and store them in stem variable qn.
5. Check that the output data set is FB1024.
6. Loop over the queue names in stem variable qn.

a. Write the line *** Queue qname to the output data set, where qname is the
name of the queue.

b. Loop over the messages in the queue.
1) Read the next message with API function GETU.
2) Map the message with API function MSGG to external format.

112 Concepts and Components

3) Write the ‘A-’ line to the output data set.
4) Split the message into chunks of 1023 characters.
5) Prefix each chunk with the segment character (to a total line length of

1024 characters).
6) Write the message segments to the output data set.

7. Close the output data set.
8. Print the report.

System Printer Program DSLSDY
DSLSDY reads a batch of messages from a MERVA ESA queue and prints them on
a SYSOUT printer.

Messages are printed according to the specifications of the following parameters of
the function table entry of the input queue:
v MSGID. This parameter determines which parts of a message are to be printed,

if available:
– The MERVA Link control information
– The telex header and other telex information
– The SWIFT message
– Other information

v PRFORM. This parameter determines the format of the printing.

The format of the printing can be modified by the specification of the PARM
parameter of the JCL EXEC statement.

DSLSDY does not perform address expansion even if specified in the function table
entry of the input queue. If expanded addresses are to be printed, the expansion
must be done before routing the messages to the printer queue, for example, using
the program DSLCXT.

The following steps are performed for each message:
v Get the message from the input queue.
v Call the user exit 21 (DSLMU021) for additional processing of the message or to

skip the message. Refer to the MERVA for ESA Customization Guide for more
information on this user exit.

v Check the message for formal correctness if the function of the input queue
specifies CHECK=YES.

v Format the message for the printer as specified by message ID, PRFORM and
PARM parameter of the JCL EXEC statement.

v Write the message pages, line-by-line, to the printer.
v Delete the message in the input queue if the function of the input queue

specifies KEEPMSG=NO. Do not delete the message if KEEPMSG=YES is
specified. If the messages are not deleted, DSLSDY prints all messages again in a
subsequent run, and the ones that have been routed to the input function in the
meantime.

System Printer Program DSLSDYR
DSLSDYR provides the functionality of DSLSDY plus many features and options.
The principle mode of processing is the same. The print lines are written to a
sequential file.

Chapter 11. Message Processing 113

Program flow:
1. Print the header.
2. Read and check the specified runtime parameters.
3. Build a list with the queue elements in the input queue that match the specified

selection criteria (from QSN, to QSN, from KEY1, to KEY1, from KEY2, and to
KEY2).

4. Use the API function PRTI to initialize the printing environment.
5. Customize the printing environment by setting the appropriate TUCB fields.
6. Loop over the queue elements found in step 3:

a. Read the queue element with API function GET.
b. Check whether the queue element matches the specified selection criteria

(from UMR, to UMR, MSGDST, MSGNET, SWBHLT), if any.
c. Use the API function WRIT to write the contents of field DSLSDYNO (the

running number) to the TOF.
d. If required, print the separator page to the output data set.
e. Loop with API function PRTL over the print lines of one message, save the

lines to be printed in the stem variable outrec.
f. Write the lines with EXECIO to the output data set.
g. If using the DELETE function, delete the queue element.

7. Use the API function PRTT to terminate the printing environment.
8. Close the output data set.
9. Print the report.

Converting Messages to Other Formats
MERVA ESA provides programs to:
v Convert EDIFACT FINPAY messages into SWIFT MT121 messages (using

envelope and de-compose), and vice versa.
v Convert EDIFACT messages (of any type, including FINPAY) into SWIFT MT105

or MT106 messages (using envelope and de-compose), and vice versa (using
de-envelope and compose).

The following descriptions assume that you are familiar with the S.W.I.F.T. EDI
Handbook. The term EDIFACT message refers here to to a SWIFT EDIFACT
messages (for example FINPAY) that can be exchanged by banks using the
S.W.I.F.T. EDI service.

Converting EDIFACT FINPAY Messages into MT121 Messages,
and Vice Versa

Use the batch utility DSLSDIR to convert EDIFACT FINPAY messages to SWIFT
MT121 messages. It can process input FINPAY messages, for example those created
by a bank application, and append the necessary SWIFT headers and tags to make
them into SWIFT MT121 input messages.

Use the batch utility DSLSDOR to convert SWIFT MT121 messages to EDIFACT
FINPAY messages. Only the bank message part is written.

See the MERVA for ESA Operations Guide for details.

114 Concepts and Components

Converting EDIFACT Messages into SWIFT MT105 or MT106
Messages

The conversion of an EDIFACT message into a sequence of MTs 105 or 106 is
performed as followings:
v Create the SWIFT EDIFACT envelope MT 105 or 106.
v Split the EDIFACT message into parts that fit into the field 77F of MT 105 or

field 77G of MT 106.

The conversion of EDIFACT messages into the message types 105 or 106 is possible
using:
v Customer-written batch programs
v Customer-written transaction programs

The conversion uses the programs DSLCES1 and DSLCES2. Calling DSLCES1 or
DSLCES2 is possible from a DSLAPI environment.

The sample transaction program DSLCESTR shows how a customer-written
program can invoke DSLCES1.

In customer-written programs, the conversion can be combined with the invocation
of a program that processes EDIFACT messages, for example, IBM Data
Interchange.

The information for the fields of the message types 105 or 106 is obtained from the
EDIFACT message. This requires that you use the formats that are described in the
S.W.I.F.T. EDI Handbook. User exit DSLMU242 is called to modify the fields, for
example, to determine the message type 105 or 106 depending on the receiver, or
to set the transaction reference number. The content of field 27 (sequence of total)
is created by the conversion program (see below) depending on the number of
MT105s or MT106s created.

The EDIFACT character set A is supported by MERVA ESA. Note that when using
Telex Link for Message Types 105 and 106, not all characters of EDIFACT character
set A are allowed in a Telex transmission.

The following programs are used for the conversion:
v The conversion program DSLCES1. DSLCES1 invokes the MERVA ESA services

necessary for the conversion, and the program DSLCES2.
v The conversion program DSLCES2. DSLCES2 creates the MT105s or MT106s in

SWIFT format from the EDIFACT message.
v The user exit DSLMU242 for retrieval or modification of the fields for the

message types 105 or 106.
v The sample transaction program DSLCESTR that uses DSLCES1 for the

conversion.

DSLCES1 uses an intermediate queue that must not be used by other programs
(for example, DSLSDI) and vice versa. When converting EDIFACT/FINPAY
messages into SWIFT MT105s or MT106s, the intermediate queue must be empty.

Conversion Program DSLCES1
DSLCES1 needs a MERVA ESA environment that is initialized and terminated by
the caller. The caller can be:
v The sample transaction DSLCESTR

Chapter 11. Message Processing 115

v Another customer-written program

DSLCES1 is called with one EDIFACT message in a buffer in main storage and the
name of the intermediate function. The intermediate function is used by DSLCES1
to perform a restart similar to the one performed by DSLSDI if necessary.

DSLCES1 performs the following steps:
v Use DSLQMG TYPE=GETLAST to find out the processing status:

– If the intermediate queue is empty, go to normal processing.
– If the message retrieved is the restart message of DSLCES1, processing was

interrupted during routing of the previous message. Routing is resumed.
When complete, there are two cases:
- The new EDIFACT message is identical with the one in the intermediate

queue. In this case, processing is finished after routing is complete.
- The new EDIFACT message is not identical with the one in the

intermediate queue. In this case, the new EDIFACT message is processed
after routing is complete.

– If the message retrieved is not the restart message of DSLCES1, processing
was interrupted during creation of the MT105s or MT106s from an EDIFACT
message. There are also two cases:
- The new EDIFACT message is identical with the one in the intermediate

queue. In this case, the processing of this message can be resumed and
completed.

- The new EDIFACT message is not identical with the one in the
intermediate queue. In this case, DSLCES1 informs the calling program by
an appropriate return code. The calling program must decide what to do
with these messages, for example, delete them or route them to another
queue. When the intermediate queue is empty, DSLCES1 can be called to
process the new EDIFACT message.

v Call DSLCES2 to start conversion of the EDIFACT message. DSLCES2 will give a
return and reason code that indicates if the EDIFACT message can be processed.
If not, the following steps are skipped. If so, the first MT105 or MT106 is
returned.

v Call the user exit DSLMU240 to allow inspection or modification of the MT 105
or 106.

v Store the MT105 or MT106 in the intermediate queue.
v If it was not the last MT105 or MT106, call DSLCES2 again and process all

MT105s or MT106s until all parts are stored in the intermediate queue.
v Finally store the DSLCES2 restart message in the intermediate queue.
v Route the messages from the intermediate queue to user-defined queues.
v Finally delete the restart message.
v Return to the caller with appropriate return information.

Conversion Program DSLCES2
The caller of DSLCES2 can be:
v DSLCES1
v A customer-written program

The calling program must provide the working storage of DSLAPI and must have
initialized it.

116 Concepts and Components

DSLCES2 is called with an EDIFACT message in a buffer in main storage. When
called the first time for this EDIFACT message, DSLCES2 performs the following
steps:
v Call the user exit DSLMU242 that retrieves the data for the fields of the MT105s

or MT106s from the EDIFACT message.
The relation between fields used in a message type 105 or 106 and a FINPAY
message is defined in the S.W.I.F.T. EDI Handbook. The EDIFACT message types
FINPAY and REMADV are supported by the user exit for automatic conversion.
When other EDIFACT messages are to be converted it might be necessary to
modify this user exit.
The Sub-Message Type field 12 is filled according to the definition given in the
S.W.I.F.T. EDI Handbook. The contents of EDIFACT Field BGM is used to fill the
Related Reference field 21 as well as Transaction Reference Number field 20 in
the SWIFT message. The standard user exit fills the same value for all resulting
parts of an EDIFACT message (SWIFT MTs 105 or 106) into the Transaction
Reference Number field 20. It is not required to have the same value in field 20
of the SWIFT MTs 105 and 106. The Related Reference Number field 21 must be
the same for each message in a series.

Note: The Related Reference Number field 21 must be unique for each EDIFACT
message. This allows for deleting duplicates when converting the SWIFT
messages to the EDIFACT message.

v Check the EDIFACT message for the level-A character set. If an error is found,
all MT105s or MT106s are marked in error in the MSGTRACE field to allow
error routing of all parts, no matter in which part the error really is.

v The EDIFACT message cannot be processed if it is too long. This is indicated by
a return and reason code to the caller.

v If everything is OK, create the first MT105 or MT106 and indicate to the caller if
there are more parts or if there was only one.
The decision whether to convert into SWIFT message types 105 or 106 is
controlled by the user exit DSLMU242. In the delivered sample exit the decision
is made according to the BIC Codes in field UNB of the FINPAY/EDIFACT
message and a table in DSLMU242.
A message type 106 is created if the BIC codes for home address and
correspondent address in the message are found in a table coded in the user
exit. Message type 105 is created if the BIC codes are not found in this table.
This table must be modified according to the installation’s requirements.

If called for the second or other part, create this part and give appropriate return
information.

Sample Transaction Program DSLCESTR
DSLCESTR is a CICS or IMS transaction that invokes DSLCES1 to converr an
EDIFACT message into an MT105 or MT106. DSLCESTR initializes and terminates
the interfaces to MERVA ESA using DSLAPI. DSLCESTR performs the following
steps:
1. Get an EDIFACT message from, for example, a MERVA ESA queue, a data set,

or IBM Data Interchange. The sample delivered with MERVA ESA is set up to
retrieve a message from a queue.

2. Call DSLCES1 to check the restart conditions and to convert the EDIFACT
message into an MT105 or MT106.

3. Handle the return information from DSLCES1.

Chapter 11. Message Processing 117

The source code of DSLCESTR can be found in the MERVA ESA source library
under the names:
v DSLCESTI for IMS
v DSLCESTC for CICS/MVS
v DSLCESTV for CICS/VSE

Converting SWIFT MT105 or MT106 Messages into EDIFACT
Messages

The conversion of a sequence of MTs 105 or 106 into an EDIFACT message is
performed in the following way:
v Get the data from field 77
v If several MTs 105 or 106 contain parts of one EDIFACT message, concatenate

the field 77 data in the correct order

The conversion of MT105s or MT106s into an EDIFACT message requires that all
parts have been received from the SWIFT network and are available in one
MERVA ESA queue.

MERVA ESA cannot process the MT105s or MT106s that never become complete
and therefore remain in the queue. The particular installation must decide what to
do with incomplete messages, for example, to process them manually or to delete
them. When converting SWIFT MTs 105 and 106 into EDIFACT/FINPAY the input
queue must contain only these message types.

The conversion of MT105s or MT106s into EDIFACT messages is possible using:
v Customer-written batch programs
v Customer-written transaction programs

The conversion uses the program DSLCSE1, which can be called by a
customer-written program. Calling DSLCSE1 is possible from a DSLAPI
environment. The sample transaction program DSLCSETR shows how to invoke
DSLCSE1.

In customer-written programs, the invocation of the conversion can be combined
with the invocation of a program that processes EDIFACT messages, for example,
IBM Data Interchange.

The following programs are used for the conversion:
v The conversion program DSLCSE1 that invokes the MERVA ESA services

necessary for the conversion
v The sample transaction program DSLCSETR that uses DSLCSE1 for the

conversion

The contents of the SWIFT message fields are lost after the conversion. For that
reason, the user exit DSLMU241 is called for each MT105 or MT106 to save this
information if necessary, for example, in a database.

The input queue used by DSLCSE1 must not be used by other programs (for
example, DSLSDO) and vice versa.

Conversion Program DSLCSE1
DSLCSE1 needs a MERVA ESA environment that is initialized and terminated by
the caller. The caller can be:

118 Concepts and Components

v The sample transaction DSLCSETR
v Another customer-written program

DSLCSE1 is called with one MT105 or MT106 in the MERVA ESA queue buffer
and the name of the input function. This queue must be defined with the field 21
(related reference) as key 1 and field 27 (sequence of total) as key 2.

DSLCSE1 performs two main requests:
1. Status check and conversion
2. Deleting, moving or routing the MT105 or MT106 of the input queue

When processing status check and conversion, DSLCSE1 performs the following
steps:
v Use DSLQMG TYPE=LIST to find out if all parts of the EDIFACT message are in

the queue using field 21 (related reference) as list argument for key 1. It is
necessary that EDIFACT messages have different fields 21 if they come from the
same sender. Field 27 (sequence of total) is returned in key 2 and allows to
check completeness. When processing the individual parts, the sender is verified
to avoid mixture of parts that have the same field 27 but come from different
senders. Messages from other senders are removed from the list immediately.
The following conditions can occur:
– If not all parts are available, return to the caller with an appropriate return

and reason code.
– If all parts are available, start the processing loop. Some parts may be

available more than once, they are considered only once.
v Processing loop:

– Get the MT105s or MT106s in the order of field 27 using the queue sequence
number (QSN) from the list.

– Call the user exit DSLMU241 to inspect the MT105s or MT106s.
– Get the data areas of field 77F or 77G and create the EDIFACT message in a

buffer.
v If the EDIFACT message is complete, indicate completion and return to the

caller.

DSLCSETR and customer-written programs call DSLCSE1 for the deletion of the
MT105s or MT106s in the input queue after they have processed the EDIFACT
message. This deletion uses the same queue list. After deletion, the processing of
one EDIFACT message is complete.

Sample Transaction Program DSLCSETR
DSLCSETR is a CICS or IMS transaction that invokes DSLCSE1 for conversion of
MT105s or MT106s into an EDIFACT message. DSLCSETR initializes and
terminates the interfaces to MERVA ESA using DSLAPI.

The source code of DSLCSETR can be found in the MERVA ESA source library
under the names:
v DSLCSETI for IMS
v DSLCSETC for CICS/MVS
v DSLCSETV for CICS/VSE

DSLCSETR processing is different depending on how it was started:

Chapter 11. Message Processing 119

v When started by an sf command, processing starts with the first message in the
queue and processes the whole queue.

v When started because a message was stored in the input queue, processing starts
by retrieving this message using the queue sequence number (QSN) in the
terminal and user control block (TUCB).

After having retrieved a message from the input queue, DSLCSETR performs the
following steps:
1. Call DSLCSE1 for status check and conversion. Further processing depends on

the return information of DSLCSE1:
v If not all parts of the EDIFACT message are available, the conversion can not

be done.
v If the EDIFACT message has been created, process it further, for example,

give it to IBM Data Interchange. The sample supplied contains the code for
storing in a queue.

2. If the EDIFACT message has been processed successfully, call DSLCSE1 for
deletion of the MT105 or MT106.

Continue with the next message in the input queue until the end of the queue is
reached.

User-Written Application Programs
The purpose of user-written application programs is determined by your
installation. The MERVA for ESA Customization Guide and the MERVA for ESA
Application Programming Interface Guide provide information on how to use
MERVA ESA services in user-written application programs.

120 Concepts and Components

Chapter 12. Communication Links

This chapter describes the communication components provided by MERVA ESA:
v SWIFT Link
v Telex Link
v MERVA Link
v MERVA-MQI Attachment

SWIFT Link
SWIFT Link enables communication with the SWIFT network; it supports X.25
connections to the SWIFT network. The connection to the SWIFT network via X.25
uses the separate product MERVA Extended Connectivity running on a 37xx
controller under ACF/NCP. Refer to the MERVA Extended Connectivity Installation
and User’s Guide for more information about this product. SWIFT Link performs all
actions required by the SWIFT network. It can be adapted to the operational and
functional requirements of your business. You can use up to 30 lines to the SWIFT
network.

If multiple logical terminals are used in an MVS installation and high throughput
is required, you can customize MERVA ESA so that it uses multiple independent
SWIFT Link servers running as parallel tasks.

SWIFT Link calls messages sent to the SWIFT network input messages because they
are input to the SWIFT network, and they contain an input sequence number
(ISN). The acknowledgment messages for input messages are called ISN ACKs
because they are received for a specific input sequence number (ISN). In SWIFT
terminology, these are system acknowledgments.

SWIFT Link calls messages received from the SWIFT network output messages
because they are output from the SWIFT network, and they contain an output
sequence number (OSN). In SWIFT Link, the acknowledgment messages for output
messages are called OSN ACKs because they are sent for a specific output sequence
number (OSN). In SWIFT terminology, these are user acknowledgments.

The formats of all SWIFT messages are described in the S.W.I.F.T. User Handbook.

Overview of the SWIFT Link
The architecture of the SWIFT network uses layers that are derived from the OSI
reference model of the International Organization for Standardization (ISO). This
architecture is described in the S.W.I.F.T. User Handbook. SWIFT Link reflects the
layered structure.

SWIFT Link supports the two parts of the SWIFT User Security Enhancements
(USE):
1. Secure Login/Select (SLS)
2. Bilateral Key Exchange (BKE)

Many functions of the SWIFT USE are implemented running on a workstation,
called the USE workstation in this book. For the communication between
MERVA ESA and the USE workstation, one of the following can be used:

© Copyright IBM Corp. 1987, 2001 121

v MERVA Link with VTAM LU 6.2 (advanced program-to-program
communications, often abbreviated to APPC). Refer to “The MERVA Link” on
page 134 for more information about the MERVA Link.

v MERVA-MQI Attachment using MQSeries. Refer to “MERVA-MQI Attachment”
on page 152 for more information about the MERVA-MQI Attachment.

An overview of SWIFT Link is shown in Figure 14.

The main program of the SWIFT Link is the general purpose application program
DWSDGPA. It prepares all messages for sending to the SWIFT network, and
processes all received messages. Note that DWSDGPA can exist several times in a
single MERVA ESA installation.

DWSDGPA is controlled by the MERVA ESA nucleus program table DSLNPTT.
One or more servers with the DWSDGPA program can be specified. Each of these
servers uses a different descriptive name (DESC parameter). The descriptive name
of the main SWIFT Link server is SWIFTII. The parallel servers must be defined as
SWIFTIIx, where x represents the letter A, B, or C. The additional SWIFT Link
servers must be defined in the nucleus server table (DSLNSVT) to run as subtasks.

As the parallel servers share the centralized resources of MERVA ESA there is limit
of parallelization; it is not useful to have more than three additional SWIFT Link
servers defined.

You can use from 1 to 30 lines to connect to the SWIFT network. For each line, a
subtask is attached that runs under the control of the operating system MVS or
VSE. The protocol used is X.25.

The lines can be shared by parallel SWIFT Link servers. Each of these lines is a
VTAM connection; that is, the lines as seen by SWIFT Link are logical lines that
finally end up as switched virtual circuits (SVCs) on a physical X.25 line. The

Figure 14. SWIFT Link Structure

122 Concepts and Components

|
|

physical X.25 line to the SWIFT network is controlled by MERVA Extended
Connectivity. It is possible to run multiple SVCs on one physical X.25 line. Thus,
the parallel SWIFT Link servers can share a single physical X.25 line. For more
information, refer to “Connection to the SWIFT X.25 Network” on page 125.

The main program of the subtask is the event control program DWSNAEVV.

DWSNAEVV controls the layers defined by SWIFT:
v Logical terminal control (LTC, programs DWSNLTCx)
v Application control (APC, programs DWSNAPCx)
v Financial application (FIN, program DWSNFIN)
v Application interface (DWSNAIST)
v Transport layer (DWSTxxxx)
v Link layer (DWSNLNK)

DWSNLNK switches control to the network link program for the X.25 connection
to the SWIFT network.

DWSNLNKV accesses the X.25 line to the SWIFT network via the VTAM control
program DWSVTMLC, which communicates with the program MERVA Extended
Connectivity running on a 37xx controller. For more information, refer to
“Connection to the SWIFT X.25 Network” on page 125.

DWSAUTP, the authentication support, is called by DWSDGPA to authenticate
SWIFT messages when required. DWSPREM, the SWIFT PREMIUM support, is
called by DWSAUTP when the PREMIUM support is installed. DWSFCPY, the
SWIFT FIN-Copy support, is called by DWSAUTP when the FIN-Copy support is
installed. For more details refer to the MERVA for ESA Customization Guide.

Authenticator keys enter the authenticator file in one of the following ways:
v During authenticator key file online maintenance using the program DWSEAUT
v Off-line using the authenticator key file utility DWSAUTLD
v Receiving an update from the USE workstation (for example, after completion of

a bilateral key exchange, BKE) that is processed by the transaction DWSAUTT

Most SWIFT Link programs require customizing data defined in DWSPRM.

SWIFT Link appears to the SWIFT network as a computer-based terminal (CBT).

The connection to the SWIFT network is controlled by the following components of
SWIFT Link:
v Operator commands start, stop, and monitor the connection with the SWIFT

network. These commands are defined in the operator command table
DSLNCMT, and they are described in detail in the MERVA for ESA Operations
Guide.

v The general purpose application program DWSDGPA processes the protocol of a
SWIFT network connection on the application level.

v The event control program DWSNAEVV which processes the SWIFT layer
protocols in the line subtasks. There is a special communication between
DWSDGPA and the line subtasks using event control blocks (ECBs) and the
WAIT/POST facilities of the operating system.

Chapter 12. Communication Links 123

Logical Terminal Table DWSLTT
SWIFT Link can handle several different SWIFT master logical terminals (SWIFT
addresses). Therefore several financial institutions can share one MERVA ESA
installation.

Each SWIFT Link server has its own logical terminal table. The name of the table is
customized with the PARM parameter of the DSLNPT definition statement. It is
recommended that you use the naming convention DWSLTTx, where x is the letter
A, B, or C, and corresponds to the descriptive name SWIFTIIx of the parallel
SWIFT Link server.

Master logical terminals are used to log in to the SWIFT network. Login is used for
the general purpose application (GPA, also called the application control, or APC)
of this master logical terminal. Each master logical terminal has its own range of
session numbers, login sequence numbers (LSN), input sequence numbers (ISN),
and output sequence numbers (OSN).

For each master logical terminal, a financial application (FIN) can be defined. Each
FIN application has its own range of session numbers, select sequence numbers
(SSN), input sequence numbers (ISN), and output sequence numbers (OSN).

One or more synonym logical terminals can be defined for each master logical
terminal. Synonym logical terminals share the session number, LSN, ISN, and OSN
range of the GPA with their master logical terminal, and they share the session
number, SSN, ISN, and OSN of the FIN application of their master logical terminal.
When a master logical terminal is logged in or has selected the financial
application, its synonyms share both the LOGIN status of the APC and the OPEN
status of the FIN.

All master logical terminals, their FIN applications, and their synonyms are
defined in the logical terminal table DWSLTT using the DWSLT macro (see the
MERVA for ESA Macro Reference for details). The name of the logical terminal table
can be changed in the customizing parameters (DWSPRM).

The following attributes can be defined in DWSLTT:
v The name of the master or synonym logical terminal.
v The type of entry: master, synonym, or financial application.
v The number of the line a master logical terminal uses for the communication

with the SWIFT network. The number of the line determines the name of the
line module to be used. The master logical terminals of one SWIFT Link can
share one line to the SWIFT network, or they can use several lines in any
combination. The synonyms and the financial applications always use the same
line as the master.

v The technology that is used for login and select: paper tables or SLS within the
SWIFT USE.

v The names of the routing tables used for routing input and output messages.
The master logical terminal and the financial applications can use different
routing tables. The synonyms share the routing tables of the master or FIN.

v The names of up to four ready queues. The master logical terminal and the
financial applications must use different ready queues. The synonyms share the
ready queues of the master or FIN.

v The name of the session key queue if SLS and pregenerating of session keys is
used.

124 Concepts and Components

v The default window for the login of the master logical terminal or for the select
of the FIN application.

v The default delivery subset mnemonics for the select of the FIN application.

Some information of DWSLTT is stored in a MERVA ESA queue between a SWIFT
Link termination and the next startup. The name of this queue is defined in
DWSPRM.

General Purpose Application Program DWSDGPA
The general purpose application program DWSDGPA controls the communication
with the SWIFT network. DWSDGPA controls login, logout, select, quit, abort,
sending, and receiving of SWIFT messages and acknowledgment messages.

DWSDGPA is defined in the MERVA ESA nucleus program table DSLNPTT with
the descriptive name SWIFTII. DWSDGPA can be started automatically during the
MERVA ESA startup, or it can be started and stopped by an authorized
MERVA ESA operator using the MERVA ESA start and stop commands.

When customizing the DSLNPT macro of DWSDGPA in DSLNPTT, only the
parameters DESC, AUTO, PRTY, STRT, STOP, or PARM can be changed.

DWSDGPA is composed of several subprograms. These programs act like one
program, and referencing DWSDGPA always means all of them.

DWSDGPA performs the initialization, processing, and termination of the SWIFT
Link.

DWSDGPA is a reentrant program and allows the execution of multiple SWIFT
Link servers exploiting the parallel processing concept of MERVA ESA.

Connection to the SWIFT X.25 Network
MERVA ESA uses the separate product MERVA Extended Connectivity to connect
to the SWIFT X.25 network.

The MERVA ESA SWIFT Link that uses X.25 has two main parts:

Figure 15. MERVA ESA Connection to the SWIFT X.25 Network

Chapter 12. Communication Links 125

v The general purpose application program DWSDGPA runs directly under control
of the MERVA ESA nucleus. DWSDGPA retrieves and stores SWIFT messages in
the MERVA ESA queues and formats these messages for the SWIFT network. It
provides the interface for the operator control of SWIFT Link.

v The event control program DWSNAEVV runs as a subtask in asynchronous
mode. It communicates with DWSDGPA using a shared storage area.
DWSNAEVV is started on operator request for a specific line number. The
LOGIN and the SETLT commands are used to start a line subtask. Up to 30 line
subtasks can be started and operate in parallel.

The line subtask processes the layers defined for the SWIFT network. It provides
the correct protocol depending on the action requested. For example, the
resumption of a suspended switched line is processed automatically when
DWSDGPA provides a message for sending to the SWIFT network.

The main program of the subtask is the event control program DWSNAEVV.
DWSNAEVV waits for the following events:
v ECB for VTAM event. The network layer program DWSNLNKV is called if this

ECB is posted by an asynchronous VTAM exit program. Depending on the
event, DWSNLNKV can call the transport layer to further process received data
or to provide more data for sending to DWSVTMLC.

v Send ECB. DWSDGPA posts this ECB to indicate that there is a message
prepared for sending to the SWIFT network. DWSNAEVV calls the appropriate
application program (DWSNLTCK, DWSNAPCK, or DWSNFIN) to process the
message.

v Timer ECB of the applications. This ECB is posted by DSLTIMP when a request
for association, disassociation, suspension, or resumption is not answered by the
SWIFT network in time. The application program (DWSNLTCx, DWSNAPCx, or
DWSNFIN) is called to process the time-out.

v Receive ECB. When a message was received from the SWIFT network, the line
subtask gives the message to DWSDGPA. DWSDGPA posts the receive ECB after
the message has been stored in the MERVA ESA queues.

Figure 16. MERVA ESA SWIFT Link Structure

126 Concepts and Components

SWIFT Layer Programs
When communicating with the SWIFT network, the SWIFT layer programs
perform the following functions as defined by SWIFT:
v The application interface DWSNAIST performs:

– Associations
– Suspensions
– Resumptions
– Disassociations
– Data transfers

v The transport layer programs DWSTxxxx:
– Establish transport connections
– Release transport connection (disconnect)
– Transfer data
– Acknowledge data transfer (transport layer acknowledgments)

v The network layer program DWSNLNKV:
– Calls DWSVTMLC to initialize an SNA LU1 session to MERVA Extended

Connectivity
– Builds requests to communicate with MERVA Extended Connectivity
– Calls DWSVTMLC to transfer data to MERVA Extended Connectivity
– Receives requests from MERVA Extended Connectivity

Figure 17. Network Layer of SWIFT Link Subtask

Chapter 12. Communication Links 127

The data transfer between DWSNLNKV and DWSVTMLC is performed
asynchronously by using a queuing mechanism. This mechanism allows the
overlapping of data preparation and data transmission operations.

v The VTAM control program DWSVTMLC:
– Opens and closes the communication path to MERVA Extended Connectivity

running on a 37xx controller
– Communicates with the logical unit controlled by MERVA Extended

Connectivity
– Processes VTAM exits and events asynchronously
– Transfers data (the data transfer is executed asynchronously to maximize

throughput)

MERVA Extended Connectivity
MERVA Extended Connectivity is a licensed program that enables access from
MERVA ESA to the SWIFT X.25 network through a 37xx communications
controller. MERVA ESA running on the host interacts with MERVA Extended
Connectivity at networking services level.

SWIFT Link line subtask acts as the CBT that has a connection to the SWIFT
network through an X.25 logical channnel. A switched virtual circuit (SVC) on an
X.25 physical connection appears to the subtask as a virtual line on the 37xx
controller.

128 Concepts and Components

Refer to the MERVA Extended Connectivity Installation and User’s Guide for further
information on the MERVA Extended Connectivity product.

Load Session Keys Program DWSDLSK
The load session keys program DWSDLSK is used together with the SWIFT secure
login/select (SLS). It is possible to pregenerate the session keys for login and select
on the USE workstation and send them to MERVA ESA via the MERVA Link, or
the MERVA-MQI Attachment. The program DWSDLSK receives the session keys
and writes them into the session key queues defined for the master logical
terminals or the financial applications. The session keys in these queues are
encrypted, and they can neither be displayed nor printed.

DWSDLSK is defined in the MERVA ESA nucleus program table DSLNPTT with
the descriptive name SWLOADSK. DWSDLSK can be started automatically during
the MERVA ESA startup, or it can be started and stopped by an authorized
MERVA ESA operator using the MERVA ESA start and stop commands.

Figure 18. MERVA Extended Connectivity System Configuration

Chapter 12. Communication Links 129

|
|
|
|
|
|
|

When customizing the DSLNPT macro of DWSDLSK in DSLNPTT, only the
parameters DESC, AUTO, PRTY, STRT, or STOP can be changed. DWSDLSK is
designed to run with a low priority in DSLNPTT to not compete with the SWIFT
Link and other MERVA ESA applications.

DWSDLSK performs an initialization, processing, and a termination.

DWSDLSK Initialization
A MERVA ESA start command is used during the MERVA ESA startup or entered
by a MERVA ESA operator. Then the DWSDLSK initialization is performed:
v Load the parameter module DWSPRM.
v A DSLQMG TYPE=SET macro is used to provide the address of the ECB of

DWSDLSK in the load session keys queue function defined with the LSKQUE
parameter of the DWSPARM macro. If this call to DSLQMGT fails, DWSDLSK
cannot operate and the initialization does not continue.

v Post the own ECB to get control later in processing.
v Load the logical terminal table DWSLTT.
v Get main storage for buffers.
v Initialize the internal message buffer (TOF) and the message format service.
v Finally, the list of the event control block (ECB) addresses of DWSDLSK is

prepared for DSLNUC, and control returns to DSLNUC. This list contains only
one ECB address.

If any of these steps fails, a dump of the error is taken, and the DWSDLSK
termination is invoked to reset all successful initialization steps. DSLNUC is
informed by an appropriate return code that the initialization of DWSDLSK failed.

DWSDLSK Processing
DWSDLSK processing is invoked when the event control block (ECB) of
DWSDLSK is posted for one of the following events:
v DWSDLSK initialization is complete.
v A message was routed to the load session keys queue.
v DWSDLSK has written one session key to a session key queue of a master

logical terminal or its financial application, and there are more session keys.
DWSDLSK interrupts its processing to allow DSLNUC to give control to a
program of DSLNPTT with a higher priority. Processing is resumed later.

v DWSDGPA has received a login ACK (LAK) or a select ACK (SAK) and
indicates to DWSDLSK that the session key for this LSN or SSN is not needed
anymore. DWSDLSK then deletes this session key and the previous two if they
exist.
Older session keys must be deleted manually by an operator.

DWSDLSK Termination
A MERVA ESA stop command is entered by a MERVA ESA operator or used
during the MERVA ESA termination. Then the DWSDLSK termination is
performed:
v Call the message format service for termination.
v Free main storage obtained during initialization.
v Use a DSLQMG TYPE=RESET macro to remove the ECB address from the load

session key queue function.
v Delete all modules loaded during initialization.

Errors during the termination are ignored.

130 Concepts and Components

Telex Link
Telex Link enables communication with the public telex network using the Telex
Plus/23 on PC or alternatively the Headoffice Telex on a fault-tolerant system3.

Telex Link via Fault-Tolerant System
Telex Link via a fault-tolerant system communicates with the Headoffice Telex in
the Telex Substation. Telex Link performs all actions required for this
communication. The telex substation is connected to the telex network.

Telex Link provides an interface for a test-key calculation program.

Telex Link can be adapted to the operational and functional requirements of your
business.

An overview of Telex Link is shown in Figure 19.

The main program of Telex Link is the station program. It consists of two parts.
One part is the program ENLSTPL, which is linked to DSLNUC and controlled by
DSLNPTT. When the Telex Link via a fault-tolerant system is started, ENLSTPL
dynamically loads the other part, program ENLSTP. ENLSTP communicates via
MERVA ESA queues with the interface transaction ENLHCF1 when sending and
receiving telex messages. ENLHCF1 communicates via a telecommunication line
controlled by either CICS or IMS with the telex interface program in the Telex
Substation.

Operator commands can start, stop, and monitor the communication with the telex
interface program. These commands are defined in the operator command table
DSLNCMT, and they are described in detail in the MERVA for ESA Operations
Guide.

3. “Telex Plus/2” and “Headoffice Telex” are IBM vendor logo products from Intercope. Currently, only these two Telex Interfaces
can be used to connect to the Telex network.

Figure 19. Overview of Telex Link

Chapter 12. Communication Links 131

Station Program ENLSTP
The station program ENLSTP controls the communication with the telex interface
program. ENLSTP controls signon and signoff of the session, and sending and
receiving of the telex messages and acknowledgments.

The load program ENLSTPL is defined in the MERVA ESA nucleus program table
DSLNPTT with the descriptive name TELEX. ENLSTP can be started automatically
during the MERVA ESA startup, or it can be started and stopped by an authorized
MERVA ESA operator using the MERVA ESA start and stop commands.

When customizing the DSLNPT macro of ENLSTP in DSLNPTT, only the
parameters DESC, AUTO, STRT, or STOP can be changed.

ENLSTPL loads ENLSTP, which in turn performs the initialization, processing, and
termination of Telex Link.

ENLSTP Initialization: A MERVA ESA start command is used during the
MERVA ESA startup or entered by a MERVA ESA operator. Then the ENLSTP
initialization is performed:
v Load the customizing parameter module ENLPRM.
v Get main storage for buffers.
v Initialize the message format service.
v Verify the queue names defined in ENLPRM.
v Route messages contained in the receive and send queues from the last session.
v Perform automatic signon to the telex interface program if specified in ENLPRM.
v Finally, the list of the event control block (ECB) addresses of ENLSTP is

prepared for DSLNUC, and control returns to DSLNUC.

If one of these steps fails, an error message is issued, and the ENLSTP termination
is invoked to reset all successful initialization steps. DSLNUC is informed by an
appropriate return code that the initialization of ENLSTP failed.

ENLSTP Processing: ENLSTP processing is invoked when one of the event
control blocks (ECBs) of ENLSTP is posted. The following ECBs are used:
v The receive ECB indicates that a message was received from the telex interface

program and was stored in the receive queue by the interface transaction
ENLHCF1.

v The queue ECB indicates that a message was written to a ready queue.
v The program ECB indicates that a command of Telex Link was accepted (for

example, a txon or txoff command), or that more work needs to be done for an
event.

In all cases, DSLNUC gives control to ENLSTP. Depending on the event, ENLSTP:
v Signs on a session with the telex interface program. A signon command is sent

to the telex interface program, and a signon acknowledgment from the telex
interface program confirms the signon.

v Signs off a session with the telex interface program. A signoff command is sent
to the telex interface program, and a signoff acknowledgment from the telex
interface program confirms the signoff. After certain errors, the current session is
signed off automatically.

v Prepares messages for sending to the telex interface program from the ready
queues. The messages are stored in the send queue for ENLHCF1, which in turn
gives them to CICS or IMS for sending.

132 Concepts and Components

ENLSTP uses a possible duplicate emitted queue (PDE queue) where one
message waits for the logical acknowledgment from the telex interface program
and is sent again in case of a transmission failure.

v Receives the logical acknowledgment message that confirms the receipt of the
telex message by the telex interface program.
ENLSTP uses an ACK wait queue where the messages wait for the transmission
acknowledgments.

v Receives transmission acknowledgment messages that indicate if sending the
telex message via the telex network to the receiver was successful or not.
The messages are then routed from the ACK wait queue according to a
user-defined routing table.

v Receives telex messages that the telex interface program has received from the
telex network.
The messages have been received by the interface transaction ENLHCF1 and
stored in the receive queue.
ENLSTP uses a last-received queue to determine if a message was received twice
in case of a transmission failure. Duplicate messages are dropped.
Received telex messages are routed according to a user-defined routing table.

v Sends an acknowledgment message to the telex interface program for each
received telex message.

v Receives status reports from the telex interface program. The status can be
displayed with the operator command txdisp.

v Writes all traffic with the telex interface program to the MERVA ESA journal if
specified in ENLPRM.

v Counts all traffic with the telex interface program in two MERVA ESA message
counters, one for incoming telex messages and one for outgoing telex messages.

ENLSTP Termination: A MERVA ESA stop command is entered by a
MERVA ESA operator or used during the MERVA ESA termination. Then the
ENLSTP termination is performed:
v Sign off the session with the telex interface program without waiting for the

acknowledgment.
v Call the message format service for termination.
v Free main storage obtained during initialization.
v Delete the customizing parameter module ENLPRM.
v Issue the Telex Link termination message.

Errors during the termination are ignored.

Recovery after Restart
If the communication between Telex Link and the telex interface program fails,
Telex Link provides for a recovery after the next successful signon.

Recovery for Messages Sent to the telex interface program: If no logical
acknowledgment is received from the telex interface program for the last telex
message sent during a session, this message is sent again as the first message after
a restart. It includes a reference to the first transmission (the original session and
sequence numbers).

The message is sent from the PDE queue, which contains the last unacknowledged
message sent to the telex interface program. There can be only one message in the
PDE queue.

Chapter 12. Communication Links 133

Recovery of Messages Received from the telex interface program: If the first
telex message received from the telex interface program in a session contains the
indicator for being a possible duplicate, Telex Link checks whether this telex
message has already been received. For this purpose, Telex Link uses the last
received queue (LR queue). There can be only one message in this queue:
v If the message in the LR queue matches the received telex message, Telex Link

considers the one just received as a duplicate and discards it. An information
message is issued to the MERVA ESA operators and an acknowledgment is sent
to the telex interface program.

v If the message in the LR queue does not match the message just received, Telex
Link considers the one just received as a new message.

v If the LR queue is empty, Telex Link cannot decide whether the message just
received is a duplicate. User-defined routing can route this message to a possible
duplicate received queue (PDR queue).
A user must then decide whether it is a duplicate.

The MERVA Link
MERVA Link is comprised of two components:
v MERVA Link ESA, which lets you transfer messages and commands between

MERVA installations. It is associated with a particular MERVA ESA installation
and runs in a CICS or IMS environment.

v MERVA Link USS, which lets you route MERVA Link conversations
synchronously from an SNA APPC network to a TCP/IP network, and vice
versa. It is not associated with a particular MERVA ESA installation, and
executes in an OS/390 UNIX System Services (USS) environment.

MERVA Link ESA
MERVA Link ESA enables:
v The communication between customer application programs handling outgoing

or incoming messages, and MERVA Link Application Support Programs
v The transfer of any kind of messages between MERVA ESA installations, for

example, SWIFT messages, telex messages, and customer-defined messages
v The communication between a MERVA ESA end user and the MERVA ESA

Command Facility in a partner MERVA ESA system

MERVA Link ESA lets you set up a global system of cooperating MERVA
installations, only one of which has a connection to the SWIFT network. The other
installations use MERVA Link ESA to send their SWIFT input messages to the one
installation with the SWIFT connection, which in turn uses MERVA Link ESA to
return the SWIFT acknowledgments and distribute the SWIFT output messages.

SWIFT acknowledgments can be handled in two ways:
v The entire input message with the acknowledgment data in the MSGACK field

is returned to the originating installation. The original message and the
acknowledged SWIFT input message are handled as separate messages. The two
messages are not correlated by MERVA Link.

v Only the SWIFT acknowledgment data is returned in a MERVA Link
acknowledgment message to the originating installation. The original message
and the acknowledgment message are correlated, and the SWIFT
acknowledgment data is added to the original message. This means, MERVA
Link creates an exact copy of the acknowledged input message.

134 Concepts and Components

Figure 20 shows an overview of MERVA Link in cooperating MERVA ESA
installations.

The MERVA System Control Facility (program EKAEMSC) is an end-user function
that provides the means to supervise the MERVA ESA and MERVA Link functions
in the local MERVA ESA system and in a partner MERVA ESA system. For details
about the MERVA System Control Facility, refer to the MERVA for ESA Operations
Guide.

The MERVA Link Partner Table (EKAPT) defines and describes the following
MERVA Link resources:
v An application support process (ASP) entry describes the characteristics and the

requirements of a customer’s message transfer application.
v A message transfer process (MTP) entry describes the characteristics and the

identifiers of its partner MTP. An MTP supports the transfer of messages
between the partner MERVA ESA systems.

v A system control process (SCP) entry describes the characteristics and the
identifiers of its partner SCP. An SCP supports the transfer of MERVA ESA
commands to the partner system, and the execution of a command in the
partner system. An SCP is not shown in Figure 20.

CICS, APPC/MVS, or APPC/IMS services are used by MERVA Link to send and
receive messages. The sending transaction is started by DSLQMGT when a
message is stored in one of the send queues defined for MERVA Link. The sending

Figure 20. MERVA Link Overview

Chapter 12. Communication Links 135

transaction may also be started by an end user in the MERVA Link control function
MSC or by the MERVA Link CICS ASP Monitor. The receiving transaction is
started by CICS, APPC/MVS, or APPC/IMS when a message is received from a
partner.

The connections to other MERVA systems use SNA APPC (LU 6.2) services
provided by CICS or APPC/MVS. MERVA Link USS supports connections to other
MERVA systems using SNA APPC or TCP/IP services.

MERVA Link Programs
There are two groups of MERVA Link programs in a MERVA ESA installation:
v Application support programs, which, when executed, start application support

processes (ASPs)
v Message transfer programs, which, when executed, start message transfer

processes (MTPs)

The Application Support Programs: The application support programs perform
all functions that require MERVA ESA services. The group includes:
v The sending application support program (EKAAS10), which processes outgoing

messages
v The receiving application support program (EKAAR10), which processes

incoming messages

Each application support process (ASP) is associated with one partner ASP in a
partner system. It can send messages to and receive messages from only this
partner ASP. A specific protocol is used between the partner ASPs: the peer-to-peer
protocol at the Application Support Layer, called the MERVA Link Application
Support Protocol (P2).

Data is exchanged in the form of P2 protocol data units (P2 PDUs). They carry the
application or acknowledgment messages.

Each ASP is permanently associated with one MTP in the local system. The ASP
may call its MTP via an application support filter (ASF) program. The ASF can
perform additional processing with the P2 PDU.

The Message Transfer Programs: The message transfer programs perform the
actual message transfer. The group of programs includes:
v The message transfer service program (EKASP10), which is the interface between

an application support program and a sending or receiving message transfer
program

v The sending message transfer programs (EKATS10 and EKATPO1), which send
messages to their partner programs

v The receiving message transfer programs (EKATR10 and EKATPI1), which
receive messages from their partner programs

v The Back-to-Back TP Mirror program (EKATM10), which provides for
transferring messages between ASPs in the same MERVA Link node

Each message transfer process (MTP) is associated with one partner MTP in a
partner system. It can send messages to and receive messages from only this
partner MTP. A specific protocol is used between the partner MTPs: the
peer-to-peer protocol at the Message Transfer Layer, called the MERVA Link
Message Transfer Protocol (P1).

136 Concepts and Components

Messages are exchanged in the form of P1 protocol data units (P1 PDUs). They
carry a P2 PDU as their content.

The message transfer is processed synchronously, based on SNA LU 6.2 protocols
(advanced program-to-program communication, abbreviated to APPC). One or
more messages are transferred to the partner MTP, and a transfer confirmation is
returned in the same conversation. The confirmation is requested by the sending
MTP from the receiving MTP when a message transmission window is exhausted
(that is, when an agreed number of messages has been sent), or when the last
message in the send queue cluster has been transferred.

Each ASP and MTP requires an entry in the partner table. The association of an
ASP with its MTP, and with the partner ASP and MTP, is defined in the Partner
Table. Figure 21 gives an overview of the ASPs and MTPs used for one MERVA
Link connection in cooperating MERVA ESA installations.

Detailed information about the MERVA Link protocols and PDUs can be found in
the MERVA for ESA Advanced MERVA Link manual.

The Partner Table (EKAPT): The partner table, which has the name EKAPT,
defines the characteristics of any message transfer application and any partner
MERVA system that must be operated at the local MERVA system. For each
message transfer application, the following is defined:

MERVA
Link

Control
Queue

Message
Queue(s)

Message
Queue(s)

MERVA
Link

Control
Queue

User
Exit

Sending
ASP

EKAAS10

Receiving
ASP

EKAAR10

User
Exit

Message Transfer
Support Proccessor

MTSP
EKASP10

Message Transfer
Support Processor

MTSP
EKASP10

Sending MTP
EKATS10
EKATPO1

Receiving MTP
EKATR10
EKATPI1

P
a

rt
n

e
r

T
a

b
le

P
a

rt
n

e
r

T
a

b
le

ASL Boundary

MTL Boundary

MTP Boundary

Application Support
Protocol

P2

Message Transfer
Protocol

P1

EKAPT EKAPT

Application
Support

Filter
ASF

Application
Support

Filter
ASF

Figure 21. Overview of a MERVA Link Installation

Chapter 12. Communication Links 137

1. An ASP, including application information and execution parameters, for
example:
v The name of this ASP
v The MERVA Link node name of the partner system
v The name of the partner ASP in the partner system
v The names of the send queues and the application control queue
v Routing parameters for sent messages
v Routing parameters for received messages and reports
v Security provisions (authentication and encryption)
v Formats of the messages transferred
v The module number of an MFS user exit to be called
v Message transfer journaling requirements
v Message delivery error handling requirements
v The names of up to three application support filters (ASF)
v The name of the MTP associated with this ASP

2. An MTP, including information about the connection with the partner, for
example:
v The name of this MTP
v The transaction code of the receiving MTP in the partner system
v The identifier of the connection to the partner system
v The communication type used (APPC or BTB)
v The name of the ASP associated with this MTP

For each partner MERVA system, which must be operated at the local MERVA
system, a system control process (SCP) defines partner system identifiers and
execution parameters, for example:
v A nickname and the MERVA Link node name of the partner MERVA ESA

system
v The identifier of the connection to the partner system
v Local operator authorization
v Remote operator authorization

The partner table is generated by coding EKAPT macro statements, which are
described in the MERVA for ESA Macro Reference. The name of the partner table,
EKAPT, cannot be changed.

Application Support Concepts and Functions

Message Integrity: When sending and receiving messages, MERVA Link ensures
that any loss of a message is detected and reported, and it ensures that no message
is stored twice in the queues of the receiving MERVA Link.

For this purpose, MERVA Link uses application control queues and message
sequence numbers. The message sequence numbers are used by the sending and
receiving ASPs to verify that no message is missing in a sequence of messages, and
to detect duplicate messages. The application control queues are MERVA ESA
queues. Each ASP defined in the Partner Table has one application control queue.
An application control queue must not be accessed by programs other than
MERVA Link programs.

MERVA Link stores the following messages in an application control queue:

138 Concepts and Components

v The last confirmed control message (LC control message).
This message is generated by MERVA Link when an empty application control
queue is found, and updated during a sending process. The LC control message
keeps track of the status of the sending process. This status can be displayed in
the MERVA Link control function MSC.
The LC control message contains the following data:
– Last confirmed message sequence number (LC MSN)
– Active window size (maximum number of unconfirmed messages)
– Date and time of the status
– ASP AS status identifier
– ASP MT status code
– Diagnostic Code
– Buckslip, an operator message explaining the ASP status

There is only one LC control message in an application control queue.
v The in-process messages (IP messages).

These messages are moved from the send queue to the application control queue
when they are prepared for sending, and they stay there until the delivery is
confirmed by the partner ASP. The message sequence numbers (MSN) have
already been assigned to the IP messages. The maximum number of IP messages
in the application control queue is equal to the active window size.
If the message transfer fails, that is, if the confirmation does not arrive, the IP
messages remain in the application control queue. When the ASP is started
again, the IP messages are sent to the partner ASP with the same message
sequence numbers assigned earlier. Messages from the send queues are only
processed after the IP messages have been confirmed and routed.

v The last received control message (LR control message).
This message is a copy of the last message that was received by an ASP from its
partner. The LR control message is used to prevent routing of duplicate
messages to the receive queues. When a message is received, its MSN is
compared with the MSN of the LR control message:
– If the received MSN is lower than or equal to the LR MSN, but within the

window, the received message is a duplicate. It is not routed but confirmed to
the partner ASP. The LR control message is not changed.

– If the received MSN is one higher than the LR MSN, the received message is
the expected new message. It is routed and confirmed to the partner ASP. The
LR control message is replaced by the new message with the new MSN.

– If the received MSN is more than one higher than the LR MSN, at least one
message is lost. An error indication is sent to the partner ASP instead of the
confirmation. The received message is not routed. The LR control message is
not changed.

The simultaneous routing of a received message and the replacement of the LR
control message is ensured by the use of the MERVA ESA queue service ROUTE
with automatic delete.

There is only one LR control message in an application control queue.

Message Sequence Number: The message sequence number (MSN) is a 4-digit
number from 0001 to 9999. After 9999, it wraps around to 0001. The MSN is
assigned to the messages for sending in ascending order when they are read from

Chapter 12. Communication Links 139

one of the send queues and stored in the application control queue. When the
transmission of a message fails, all retries are done with the MSN that was
originally assigned.

The sending ASP checks the sequence of the MSN in IP messages by means of the
MSN in the LC control message and in the IP messages. The receiving ASP checks
the sequence of the MSN by means of the LR control message.

Window Size: The communication between two partner ASPs uses a window size.
That means, the sending ASP sends as many messages as defined by the window
size, and then requests a transfer confirmation of all messages in the window.

A delivery error report may identify a specific IP message. This report implies a
delivery confirmation for all IP messages in the window that preceded the reported
message. If the delivery error report does not identify a specific IP message, all
messages of the window must be considered as undelivered.

Sending Messages: MERVA Link finds the messages for sending in the send
queues defined in the partner table entry of an ASP. This set of send queues is
called the send queue cluster of that ASP. The sending ASP performs the following
steps when preparing a message for sending:
1. Retrieve the message from one of the send queues.
2. Call the user exit specified in the partner table entry with the function code “S”

(ready to send message). The user exit can decide if the message should be
transferred, or if it should immediately be routed using the routing table
defined for the application control queue (close the ASP temporarily for that
message).

3. Provide the MERVA Link control information (for example, the message
sequence number).

4. Store the message as in-process (IP) message in the application control queue
and delete it from the send queue.

5. Call the user exit specified in the partner table entry with the function code
“O” (outgoing message). This user exit must check whether an application
message or an acknowledgment message must be transferred.
v For an application message it indicates to the ASP that an application

message must be transferred.
v For an acknowledgment message, for example, a SWIFT or telex

acknowledgment, the user exit provides the acknowledgment data, and
indicates to the ASP that an acknowledgment message must be transferred.
The unique identifier of the reported message is transferred as part of the
acknowledgment message.

The MERVA for ESA Customization Guide shows how to code such a user exit.
6. If specified, perform:

v Authentication to ensure that the message text is not altered during
transmission

v Encryption to make the message contents unreadable during transmission
7. Write the application message or the acknowledgment message to the

MERVA ESA journal. The journal record shows the data before encryption.
8. Call the associated MTP.

140 Concepts and Components

More than one message may be in process by an ASP. The maximum number of
these messages is defined by the window size. When a message window is
exhausted, the sending ASP asks for a delivery confirmation for all messages in the
window.

When the confirmation has been obtained, the ASP updates the LC control
message and routes the IP messages from the application control queue using the
routing table defined for the application control queue. Target queues can be:
v Queues for further message processing.
v A queue where the messages wait for acknowledgments (that is, an ACK wait

queue). The unique identifier of the application message must be used as a key
for the ACK wait queue.

Before a confirmed message is routed, the user exit specified in the partner table
entry is called with the function code “C” (confirmed message). The user exit can
provide transfer confirmation control information in application-specific terms at
this place.

When all IP messages have been routed, more messages are processed from the
send queue cluster.

Receiving Application Messages: The receiving ASP performs the following steps
when an application message is received:
1. If specified, it performs:

v Decryption to make the message contents readable
v Authentication to ensure that the message text was not altered during

transmission
2. Writes the decrypted message to the MERVA ESA journal.
3. Checks the message sequence number (MSN). The subsequent steps are only

performed if the message is a new message with the correct MSN.
4. Calls the user exit defined in the partner table entry of this ASP with the

function code “I” (incoming message). The user exit may check the message or
provide additional information for the subsequent routing.

5. Routes the message to the application control queue and to one or several
receive queues for further processing using the routing table defined for the
application control queue. The LR control message with the new MSN is
replaced in the application control queue by the same routing request.

Receiving Acknowledgment Messages: Dependent on the requirements defined
in the PT ASP entry, the receiving ASP performs the following steps when an
acknowledgment message is received:
1. It writes the message to the MERVA ESA journal
2. It checks the message sequence number (MSN). The subsequent steps are only

performed if the acknowledgment message is a new message with the correct
MSN.

3. If the receiving ASP must correlate the acknowledgment message with the
reported message, it tries to find the reported message in the ACK wait queue
defined in the partner table entry of this ASP. For this purpose, the ACK wait
queue must be defined with the MERVA Link field EKAAMSID as key 1.

4. If the reported message is not found in the ACK wait queue (this can happen if
the applicable message is still in the application control queue of this ASP as an
IP message because it is not yet confirmed), the ASP tries to find it in the
application control queue.

Chapter 12. Communication Links 141

5. If the applicable message is found in the ACK wait queue or in the application
control queue, the user exit defined in the partner table entry of this ASP is
called with the function code “R” (incoming report). The user exit can merge
report data of the acknowledgment message with the reported message. For a
SWIFT acknowledgment, for example, the header, the trailer, and the MSGACK
field can be updated.

6. The acknowledged message is routed as specified by the routing table defined
for the application control queue. The LR control message in the application
control queue is replaced by the updated message in the same routing request.
The application message in the ACK wait queue is deleted by a separate
request.
Target queues can be queues for further processing, or the ACK wait queue
again if more acknowledgments are expected for the message. If an IP message
was acknowledged, the message is routed back to the application control queue
because of the pending delivery confirmation.

7. If the reported message is not found in the ACK wait queue nor in the
application control queue, the acknowledgment message is formatted as a
MERVA Link control message (MCTL) and routed using the routing table
defined for the application control queue. The LR control message in the
application control queue is replaced by this message in the same routing
request.

MERVA Link Message Classes: A message class is assigned to each message that
is processed by MERVA Link. The message class consists of 2 characters. It is
contained in the field EKACLASS in the MERVA ESA internal message buffer
(TOF). The EKACLASS field must be used as key 1 in all application control
queues.

The message class can be used for routing decisions. The message class of a
message can change depending on its processing status within MERVA Link. The
classes LC and LR of the MERVA Link control messages, however, never change.

The following message classes are defined for MERVA Link:

LC Is the last confirmed control message in the application control queue. The
LC control message is generated and maintained by a MERVA Link ASP.

LR Is used for:
v The last received control message in the application control queue
v All received application and acknowledgment messages that were routed

to receive queues
v All messages from ACK wait queues when they are routed together with

the acknowledgment information (acknowledged messages)

IP Are the messages that are being processed by MERVA Link. The in-process
messages have been moved from the send queues to the application
control queue. They are being transferred to the partner ASP, or waiting for
a transfer confirmation.

CF Are confirmed messages. They were IP messages. The transfer was
confirmed, and they have been routed to an ACK wait queue or a queue
containing transferred messages.

CA Are confirmed messages that have been acknowledged before the transfer
confirmation is received. They were IP messages. The transfer was
confirmed, and they have been routed to an ACK wait queue or a queue
containing transferred messages.

142 Concepts and Components

RC Are recovered messages. They have been IP messages. The MERVA Link
command recover was used to route (copy) them to other queues using the
routing table defined for the application control queue.

RC messages are copies of IP messages in the application control queue.
They contain a PDM indicator in a MERVA Link control field.

RI Are recovered messages. They have been IP messages, which could not be
successfully delivered to the receiving application. Messages of the class RI
have either been automatically recovered from a delivery error, or the
MERVA Link command iprecov was used to route (move) them to other
queues using the routing table defined for the application control queue.

RI messages do not contain a PDM indicator in a MERVA Link control
field.

RM Are messages that have been immediately removed from an outbound
window upon request of an ASF.

RS Are messages of a closed ASP that are routed from the send queues to
other queues using the routing table defined for the application control
queue.

RR Are messages that are routed from a send queue to other queues upon the
request of the user exit defined for the ASP. The routing table defined for
the application control queue is used.

The message class RR is an example. A MERVA Link installation can define
any other message class instead of RR for this purpose, except those used
by MERVA Link.

MERVA Link Control Fields: MERVA Link adds control information to the
messages that are sent to a partner or received from a partner. These fields contain,
for example, the sender’s and receiver’s address, a time stamp, and the MERVA
Link message identifier.

The control fields become part of a message in the MERVA ESA internal format
and in a MERVA ESA queue.

The control fields can be displayed on screen terminals and printers together with
the message, and they can be added to a network format of a message using an
appropriate MCB.

A list of the MERVA Link control fields is contained in MERVA for ESA Messages
and Codes.

Journalling: MERVA Link journals all message traffic and some other events.
Details about the layout of these journal records can be found in “Appendix A.
Journal Record Layouts” on page 185.

Financial Message Transfer/ESA (FMT/ESA)
MERVA-to-MERVA Financial Message Transfer/ESA (FMT/ESA) uses the
capabilities of MERVA Link ESA or MERVA-MQI Attachment to transfer SWIFT
messages between two MERVA ESA systems in a way similar to the way
MERVA ESA transfers messages via the SWIFT network. FMT/ESA can exploit
existing intra-enterprise or inter-enterprise networks, and is fully transparent to
applications.

Chapter 12. Communication Links 143

|
|
|
|
|
|

FMT/ESA does the following:
v Prepares SWIFT input messages for a follow-on transfer
v Requests that MERVA Link or MERVA-MQI Attachment transfer the messages

from the sending to the receiving MERVA ESA system (messages can be
transmitted either in SWIFT format or MERVA ESA queue format)

v Transforms the received SWIFT input messages to SWIFT output messages
v Routes (or lets MERVA Link or MERVA-MQI Attachment route) the output

messages to target queues
v Provides a SWIFT acknowledgment for the messages transmitted from the

sending MERVA ESA system (the acknowledgment may be generated either in
the sending or in the receiving MERVA ESA system)

v Provides a SWIFT delivery notification (message type 011) (if requested by a
received SWIFT input message and the customer)

v Journals SWIFT input and output messages and their acknowledgments
v Authenticates SWIFT input and output messages, if requested by the customer
v Checks SWIFT input messages (if using MERVA Link or MERVA-MQI

Attachment) and output messages (only if using MERVA-MQI Attachment), if
requested by the customer

v When using MERVA Link, and when there is a message recovery for an
inoperable MERVA Link ASP using the MERVA Link command RECOVER:
– Appends a PDE trailer generated by FMT/ESA to a SWIFT input message

that can be routed to a SWIFT ready queue
– Appends a PDE trailer generated by the SWIFT Link to a SWIFT input

message before MERVA Link transfers the message to the receiving
MERVA ESA

Figure 22. The FMT/ESA

144 Concepts and Components

|
|
|

|
|

|

|
|
|

|
|

|
|

|
|
|

You can also set up FMT/ESA to run on a single MERVA ESA system. This might
be of interest for an installation that has one instance of MERVA ESA serving more
than one bank, and where these banks currently exchange messages among each
other via the SWIFT network. By using FMT/ESA, messages and
acknowledgments are routed from the sender to the recipient and back to the
sender without ever leaving the MERVA ESA system, even though they look and
behave exactly like messages sent and received via the SWIFT network. This is a
less expensive way to exchange messages.

Which user exit is called as the FMT/ESA program depends on whether you are
using MERVA Link or MERVA-MQI Attachment:
v For MERVA Link, the MFS user exit EKAMU044 represents the FMT/ESA

program. MERVA Link calls a user exit at different processing stages before a
message is sent and after a message or an acknowledgment is received.
Figure 21 on page 137 shows the close connection of a user exit to a MERVA Link
sending and receiving ASP, respectively. The functions of the user exit are
described in “Sending Messages” on page 140, “Receiving Application Messages”
on page 141, and “Receiving Acknowledgment Messages” on page 141.

v For MERVA-MQI Attachment, the MFS user exit DSLKQ044 represents the
FMT/ESA program. MERVA-MQI Attachment calls a user exit at different
processing stages before a message is sent and after a message or an
acknowledgment is received.

FMT/ESA Message Classes: When FMT/ESA is used with MERVA Link, the
following additional message classes can be contained in the EKACLASS field:

SE An error was detected before a SWIFT input message was sent to the
partner MERVA Link. As a result, a complete SWIFT input message cannot
be generated.

Such a message is routed from a send queue to a verification queue and is
not transmitted.

IE An error was detected after a SWIFT input message was received in the
partner MERVA Link. As a result, a SWIFT output message cannot be
generated.

Such a message is routed to a local error queue at the message-receiving
side.

LE An error was detected after the MERVA Link confirmation was received
indicating that a SWIFT input message was successfully received in the
partner MERVA Link. As a result, the SWIFT acknowledgment for the same
SWIFT input message contained in the ACK wait queue, cannot be
generated.

Such a message is routed to a local error queue at the message-sending
side.

PE An error was detected after an acknowledgment message was received. As
a result, the SWIFT acknowledgment data cannot be inserted into the
appropriate SWIFT input message contained in the ACK wait queue.

Such a message is routed to a local error queue at the message-sending
side.

You find more information on the FMT/ESA in the MERVA for ESA Customization
Guide and in the MERVA for ESA Operations Guide.

Chapter 12. Communication Links 145

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|

MERVA Link USS
MERVA Link UNIX System Services (MERVA Link USS) is an implementation of
MERVA Link functions in the OS/390 UNIX System Services environment. The
MERVA Link USS functions provide for the routing of MERVA Link conversations
synchronously from an SNA APPC network to a TCP/IP network, and vice versa
(MERVA Link Gateway). These functions also provide for customizing and
administering the routing functions.

MERVA Link USS is not associated with a particular MERVA ESA installation. It
cannot deliver inbound messages to a MERVA ESA messaging application, nor
submit application messages for transmission to a partner node.

The resources provided or used by MERVA Link USS are:

Message Handling Programs
The functionality of the sublayers defined in the MERVA Link Message
Handling System model is implemented in a set of MERVA Link USS
message handling programs. Each sublayer function implementation is
provided in two versions, one for the outbound and one for the inbound
tower. Four programs are provided for the lowest MERVA Link sublayer
that provides outbound and inbound SNA APPC and TCP/IP services.

The MERVA Link USS message handling programs that are used in the
MERVA Link USS gateway scenario are provided with all functions. The
other MERVA Link USS message handling programs are provided for
installation verification and test purposes only.

Control Programs
MERVA Link USS provides a number of control programs for
customization and administration purposes:
v The MERVA Link USS Application Control Daemon (ACD) provides the

functions to generate the MERVA Link USS Application Control Table
(ACT). The ACT contains all MERVA Link USS customization
parameters. A MERVA Link USS Application Control Daemon process
and its ACT represent an active MERVA Link USS instance.

v The MERVA Link USS Application Control Command Application (ACC)
provides the functions to operate an active MERVA Link USS instance.
ACC provides a USS command interface in three modes (single
command mode, conversation mode, batch input mode).

v The MERVA Link USS Conversation Security Control Application (ACS)
provides the functions to store confidential information that is used for
an outbound TCP/IP conversation in a MERVA Link USS security file.

v Some other programs are provided to perform advanced MERVA Link
USS tasks. For more information, refer to the MERVA for ESA Advanced
MERVA Link manual.

Control Files
MERVA Link USS uses a number of control files in the OS/390 USS
Hierarchical File System (HFS) for customization and administration
purposes:
v The MERVA Link USS customization parameters are provided by the

MERVA Link USS administrator in a MERVA Link USS Configuration
File (CFG). The ACD uses a configuration file to create the ACT.

146 Concepts and Components

v MERVA Link USS conversation security information is provided by the
MERVA Link USS administrator in a MERVA Link USS Security File
(SEC) using the ACS application. The ACD uses security files to store
security information in the ACT.

v MERVA Link USS message handling programs can generate a processing
trace, and store the trace information of one conversation in a trace file
(TRC). The trace facility can be activated with various trace levels, or be
deactivated.

v MERVA Link USS message handling programs write inbound and
outbound error reports to a MERVA Link USS error report log file (ERR).
The error report log facility is always activated.

MERVA Link USS Programs
MERVA Link USS contains application support programs, message transfer
programs, and control programs.

Application Support Programs: Application support functions are not part of a
MERVA Link USS Gateway and not part of MERVA Link USS of MERVA ESA V4.1.
This is why the application support (AS) programs ekaaso, ekaasi, ekap2o, and
ekap2i are provided without full functionality for installation verification and test
purposes only. The programs ekaaso and ekaasi can be used only for test
purposes. They cannot access a MERVA installation to retrieve messages from a
MERVA Link send queue nor deliver an inbound message to a receive queue.
However, the two P2 programs ekap2o and ekap2i provide enough functionality
to perform a number of MERVA Link USS control functions that require P2
services.

Message Transfer Programs: Message transfer functions are used by a MERVA
Link USS Gateway to route an inbound conversation to a partner MERVA Link
system. The necessary functions are contained in the inbound message transfer
programs ekatpi and ekatci, the outbound message transfer programs ekatpo and
ekatco, and in the inbound P1 program ekap1i.

The inbound P1 program contains all outbound P1 functions from the program
ekap1o that are required in a routing process. This is why the outbound P1
program ekap1o is not used by a MERVA Link USS routing process. The outbound
P1 program is, however, used by the outbound P2 program for some control
functions (as described above).

The two programs ekatpo and ekatpi provide the necessary MERVA Link
functions to communicate with a partner system using SNA APPC services. The
inbound SNA APPC TP ekatpi is started upon request of a MERVA Link sending
system directly or indirectly by the APPC/MVS transaction scheduler (ASCH).
APPC/MVS must be customized to provide this service.

The two programs ekatco and ekatci provide the necessary MERVA Link functions
to communicate with a partner system using TCP/IP services. The inbound
TCP/IP TP ekatci is started upon request of a MERVA Link sending system
directly or indirectly by the OS/390 USS Internet Daemon (InetD). InetD must be
customized to provide this service.

Routing Process Program Call Sequence: Figure 23 on page 148 shows a sample
message routing scenario that interconnects a MERVA Link running on a CICS
ayatem and a MERVA Link running on an AIX® system. Messages are routed from
a sending SNA APPC node via the MERVA Link USS Gateway Node to a receiving

Chapter 12. Communication Links 147

TCP/IP node. The receiving TCP/IP node is assumed to have no SNA services
installed.

The program call sequence in a gateway node is:

ekatpi The inbound TP supporting SNA APPC. It receives the data sent by its
partner TP using APPC/MVS services, and passes this data to ekap1i. The
TP ekatci would be the inbound TP if the originator were a TCP/IP node.

ekap1i
The inbound P1 program. It analyzes and decodes P1 PDUs (message
envelopes), and learns that the intended destination node is not the local
MERVA Link node. The inbound request is passed to the routing
functionality in EKAP1I in this case.

The routing functionality in ekap1i (also called ekap1r) determines the
parameters of the intended destination node and passes the inbound
request to the applicable outbound TP.

ekatco The outbound TP supporting TCP/IP. It transmits the data passed by the
routing functionality in ekap1i to its partner TP using TCP/IP socket
services. The program ekatpo would be the outbound TP if the recipient
were an SNA APPC node.

Control Programs:

Application Control Daemon (ACD)
A long lasting OS/390 USS process (daemon) that represents a MERVA
Link USS instance. The ACD generates and owns the MERVA Link USS
Application Control Table (ACT), a USS shared memory region that
contains the customization parameters of a MERVA Link USS instance. No
other MERVA Link USS process can execute without access to an ACT.

Application Verification Control Daemon (VCD)
A daemon that can be used to verify a MERVA Link configuration in a test
environment.

Figure 23. Sample MERVA Link USS Routing Scenario

148 Concepts and Components

Application Control Command (ACC)
A command program, used in the OS/390 USS interactive shell
environment, that lets authorized users display MERVA Link USS resources
and modify MERVA Link processing parameters.

Application Verification Control Command (VCC)
A command program that can be used to display data in the Application
Control Table (ACT) of a VCD.

Conversation Security Control (ACS)
A program that provides a USS shell command interface to store
confidential information in MERVA Link USS security files.

Conversation Security Control Application (VCS)
A program that can be used in a configuration verification environment.

Change Security Information Application (CSI)
A program that provides a USS shell command interface to store
confidential conversation security information in a partner MERVA Link
system.

MERVA Link USS Gateway Functions
MERVA Link USS Gateway supports all functions necessary to route an inbound
MERVA Link SNA APPC conversation to a partner system using the MERVA Link
TCP/IP protocol, or vice versa.

Accepting an Inbound Conversation: How MERVA Link USS accepts an inbound
conversation and schedules an inbound transaction program depends on the
connection type. If the connection type is:
v SNA APPC, the APPC/MVS transaction scheduler ASCH schedules ekatpi in an

APPC/MVS initiator (an OS/390 region). It accepts the inbound conversation as
specified by the CPI-C services provided by APPC/MVS.

v TCP/IP, the OS/390 USS Internet superserver InetD schedules ekatci. It accepts
the inbound conversation as specified by the TCP/IP stream socket services.

Routing an Inbound Conversation: The inbound P1 program (ekap1i) checks
whether the local MERVA Link node name and the recipient node name in the first
PDU segment of an inbound conversation, a Probe PDU envelope, match. If they
match, the local system houses the intended destination node.

If the two MERVA Link node names do not match, the normal situation for a
MERVA Link Gateway, the local system acts as a gateway that routes the inbound
conversation to the intended destination node.

The gateway function is performed if MERVA Link finds a set of intersystem
connection (ISC) parameters in its customization data that describes a connection
to the intended destination node. The preferred connection type is the connection
type that is different from the inbound connection. This means, the preferred route
for an inbound SNA APPC conversation is an outbound TCP/IP connection, and
vice versa.

Connecting to a Partner System: The partner system can be connected via SNA
APPC or TCP/IP, whatever communication protocol is supported by the partner
system. If the partner system supports both communication protocols and the two
partner systems are actually connected in those two ways, there is a choice
between the two connections. One of these connections is called the preferred
connection, the other is called the alternate connection.

Chapter 12. Communication Links 149

Conversation Security: SNA APPC conversation security is completely handled
by APPC/MVS for a MERVA Link USS gateway. MERVA Link USS functions are
not concerned with SNA APPC conversation security.

A security function equivalent to that provided by SNA APPC is not provided by
TCP/IP. This is why MERVA Link USS provides a conversation security function in
the TCP/IP environment. The type of this conversation security function is
equivalent to SNA APPC conversation security type PROGRAM. This means that
an outbound MERVA Link USS conversation using TCP/IP services must provide a
client user ID and password if the server process (the receiving MERVA Link
system) asks for it.

The security of an inbound TCP/IP conversation is checked as a mandatory
function by the MERVA Link USS TCP/IP server (ekatci). Conversation security
information must be contained in the PROBE of an inbound TCP/IP conversation.

Confirming an Inbound Conversation: A request for confirmation received from
the partner system is always passed to the inbound P1 program. The P1 program
determines whether it must route that request to another partner system (gateway
scenario), or whether it can issue the confirmation immediately (local message
delivery).

MERVA Link USS Control Functions

Application Control Command Application (ACC): The MERVA Link USS
Application Control Command application (ACC) is the means to control the status
and the execution of MERVA Link USS. ACC can be used in an OS/390 USS
interactive command shell environment, in a USS batch environment (BPXBATCH),
and in an MVS batch environment. The command or program ekaacc calls ACC in
the OS/390 USS environments. Program EKAACC calls ACC in the MVS
environment.

An ACC interactive command begins with an ACC command name that must be
entered in lowercase letters. A subset of the ACC command names is followed by a
resource name. Resource names can be, for example, an ASP name, a partner
system node name, a keyword, or a MERVA Link diagnostic code. MERVA Link
resource names are normally made of uppercase characters, however, they can be
entered with lowercase letters. An uppercase translation is performed automatically
(where applicable). Help information is displayed as response to an invalid ACC
command.

A conversation mode is supported by ACC. The USS command ekaacc sc starts the
ACC conversation mode in a window. All data entered in a window in ACC
conversation mode is interpreted as an ACC command. The command prompt
ekaacc is a reminder of the fact that the window is in ACC conversation mode.

A batch input mode is supported by ACC. The program calls ekaacc si
(BPXBATCH) and EKAACC si (MVS) start ACC in batch input mode. The ACC
commands are retrieved from stdin, and the command output is written to stdout.

ACC cannot be used when the MERVA Link USS Daemon EKAACD is not active.
EKAACD generates and owns the MERVA Link Application Control Table
(EKAACT), which is the main resource of the MERVA Link USS Control Facility.

150 Concepts and Components

ASP related functions are supported by ACC. ASPs are, however, supported by the
MERVA Link USS Gateway for installation verification and test purposes only. All
ACC functions related to ASPs are therefore not applicable in a production
environment.

Conversation Security Control Applications: Conversation security information
is the information that authorizes a client process to access a server process. A
server process specifies whether a client process must provide conversation
security information, or whether it provides its service without client
authentication at the conversation level.

Conversation security information is a client user ID (called user name in the USS
environment), and a client user password. Passwords are considered as
confidential, and must not be stored in plain text format on any storage media.
This is why conversation security information must be handled separately from
MERVA Link USS configuration files in MERVA Link USS security files.

The MERVA Link USS Conversation Security Control Application (ACS, VCS) is
the means to specify, store, and modify conversation security information in local
MERVA Link USS security files. The MERVA Link USS Daemon (ACD) refers to the
information in the security files when it creates the MERVA Link USS ACT.
MERVA Link USS message processing programs refer only to conversation security
information in the ACT.

The MERVA Link USS application Change Security Information in a Partner
System (CSI) provides a means to specify and verify conversation security
information in the local system, transmit it to a partner system, and store it in the
configuration facility of a partner MERVA Link system. The CSI application can be
used only for partner MERVA Link systems that support the CSI application as an
inbound P2 service. The CSI application is supported by MERVA Link USS. It is
not supported by MERVA Link ESA.

Routing Process Trace: The MERVA Link USS Processing Trace Facility provides
diagnosis information about MERVA Link USS message handling processes. The
trace facility parameters in the ACT determine the HFS directory for the trace files
of all routing processes, the trace level (amount of data to be traced), and the trace
file naming rules. Parameters of the MERVA Link USS processing trace facility in
the ACT can be modified by ACC commands.

If a MERVA Link USS receiving process cannot attach the ACT, it tries to write a
trace to the /trc/ subdirectory of the applicable MERVA instance directory. If the
name of the latter directory is not available, a MERVA Link USS receiving process
tries to write a trace to the /tmp/ directory.

If the request to open a trace file fails, a MERVA Link USS receiving process tries
to write a trace to the /tmp/ directory. The unique trace file names are ekatpi.trace
and ekatci.trace in all exceptional situations.

Daemon Activity Trace and Report: The MERVA Link USS Application Control
Daemon (ACD) supports an activity trace. This trace can be requested by a
command line parameter when the daemon is started. The trace file is written to
the directory specified in the trace request parameter (trc). The trace file name is
’ekaacd.t.MMDDhhmmss’. The last part of the trace file name is a date-time stamp.
It identifies the date and time when the daemon was started.

Chapter 12. Communication Links 151

The MERVA Link USS Configuration Verification Daemon (VCD) supports an
extended activity trace that is also referred to as the VCD verification report. A
VCD report can be requested by a VCD command line parameter when the
daemon is started. The report file is written to the directory specified in the report
request parameter (rep). The report file name is ’ekavcd.r.MMDDhhmmss’. The last
part of the trace file name is a date-time stamp. It identifies the date and time
when the daemon was started.

Error Report Log: The MERVA Link USS Error Report Log Facility writes, to a
permanent log file, error information received from a partner system, and any
error report to be sent to a partner system. The log file is associated with the
communication direction (inbound or outbound), and associated with the
applicable partner node.

Error reports are always written to the log files, independent of the processing
trace level. The information written to an error report log file is, however, the same
information that is written to a trace file (as far as intersystem error information is
concerned).

Error report log entries are always appended to the applicable existing file.
MERVA Link USS does not erase the content of an error report log file, or parts of
it.

MERVA-MQI Attachment
MERVA-MQI Attachment enables communication between MERVA ESA and
MQSeries running on MVS/ESA or VSE/ESA. MQI stands for Message Queue
Interface, a programming interface provided by the MQSeries queue manager that
lets application programs access the message queueing services of the MQSeries.
Message queueing is a programming technique by which a program communicates
with other programs by putting messages into queues.

MERVA-MQI Attachment enables the exchange of messages between MERVA ESA
and other applications on platforms where the MQSeries is installed. That is,
applications on IBM or non-IBM platforms are possible partners for the
communication. Using standard MERVA ESA queues and formats makes this
exchange transparent to the customer application.

Functions of MERVA-MQI Attachment
MERVA-MQI Attachment sends and receives three groups of messages:
v SWIFT
v Telex
v User-defined messages

In order to handle these message groups, MERVA-MQI Attachment processes four
MQI message types:

Datagram
A message that does not require a reply from the application that receives
the message

Request
A message that requires a reply from the application that receives the
message

Reply A message that replies to a previous request message

152 Concepts and Components

Report
A message that informs an application about expected and unexpected
events

A datagram or a request message is the envelope to transport a SWIFT, telex, or
user-defined message. It is possible to add further fields to the envelope. These
fields are clearly separated from the SWIFT, telex, or user-defined message.
MERVA-MQI Attachment sends and receives datagrams and request messages.

A reply message contains application-specific data previously agreed upon
between the sending and the receiving applications. An example of this kind of
data is the MSGACK field for a SWIFT message. A reply message without
application data also represents a valid reply. MERVA-MQI Attachment sends and
receives reply messages.

A report message contains a feedback or reason code that is usually provided by
an MQSeries queue manager or message channel agent. One or more report
messages can be returned in response to a sent datagram, request message, or
reply message. MERVA-MQI Attachment receives report messages.

The following report message types are supported:

Confirm on arrival (COA)
Generated by the queue manager that owns the destination queue when
the message is placed on that queue

Confirm on delivery (COD)
Generated by the queue manager when an application retrieves the
message from the queue in a way that causes the message to be deleted
from the queue

Exception
Generated by a message channel agent of MQSeries for MVS/ESA when a
message is sent to another queue manager, but the message cannot be
delivered to the specified destination queue

MERVA-MQI Attachment correlates the received reply and report messages with
the previously sent message waiting for a response. After correlation of the original
request message with the reply message, the application data of the reply message,
if available, is accessible in the original message.

After correlation of the original message with one or more report messages, the
feedback code is accessible in the original message. When both a COA and a COD
report were received and correlated, the feedback code of the last correlated report
is available. This is usually the feedback code of the COD report.

Activating MERVA-MQI Attachment
MERVA-MQI Attachment can be activated automatically or by operator commands.

At the message sending side it is started by MERVA ESA when a message is put
to a MERVA ESA queue that acts as a send queue for MERVA-MQI Attachment. At
the message receiving side it is triggered by the MQSeries queue manager when
predetermined conditions on an MQI queue are satisfied that acts as a receive
queue for MERVA-MQI Attachment.

The MERVA ESA operator can control MERVA-MQI Attachment by the operator
commands CF (change function), SF (start function), and HF (hold function), which

Chapter 12. Communication Links 153

can be entered selecting the operator command function CMD or the MERVA
system control function MSC, provided that the operator is authorized.

When using MQSeries for MVS/ESA, the SF command can enable triggering for an
MQI receive queue for which triggering was disabled. This is only possible if
MERVA-MQI Attachment itself disabled triggering due to an error detected during
the processing of the messages in the queue. The MQSeries for MVS/ESA
command ALTER QLOCAL has to be used outside MERVA ESA to disable
triggering for an MQI queue for which triggering is enabled.

Components of MERVA-MQI Attachment
MERVA-MQI Attachment is made up of the following components:
v MERVA-to-MQI send process program
v MQI-to-MERVA receive process program
v Process table for customization
v User exit for send and receive process
v Conversion exit
v Routing table
v Message control blocks
v MERVA ESA resource definitions
v MQSeries resource definitions

MERVA-to-MQI Send Process Program
The send process program DSLKQS is the interface between MERVA ESA and
MQSeries at the sending side of MERVA-MQI Attachment. DSLKQS performs the
following steps when application messages are to be sent:
v Retrieves the MERVA ESA TUCB from CICS or IMS and determines the name of

the function that started the program. The function can have a message queue or
a dummy queue.

v Loads MERVA-MQI Attachment process table DSLKPROC and determines the
single send process (message queue) or the send processes (dummy queue) the
queue belongs to. For a dummy queue, DSLKQS also determines the send
queues that are to be processed.

v Connects to the MQSeries queue manager (IMS and CICS/VSE only).
v Opens the MQI send and control queues.
v Retrieves a message from the current MERVA ESA send queue, calls a user exit

(if customized), and writes the message to the MQI send queue and
MERVA ESA control queue. This is repeated until the messages in the MQI send
queue have to be committed. Before committing, MERVA-MQI Attachment
writes control data to the MQI control queue.
After committing, MERVA-MQI Attachment routes the messages from the
MERVA ESA control queue to their target queues. The data in the MQI control
queue is deleted.

v Retrieves the next message from the MERVA ESA send queue and repeats the
message processing until the queue is empty. If there are other send queues or
send processes, the retrieval continues until the last message of the last send
queue was processed.

v Closes the MQI send and control queues.
v Disconnects from the MQSeries queue manager (IMS and CICS/VSE only).
v Releases the process table DSLKPROC.

154 Concepts and Components

MQI-to-MERVA Receive Process Program
The receive process program DSLKQR is the interface between MQSeries and
MERVA ESA at the receiving side of MERVA-MQI Attachment. DSLKQR performs
the following steps when application messages are received:
v Retrieves the message from CICS or IMS and determines whether it is a

MERVA ESA TUCB or an MQSeries trigger message. Then it determines the
name of the queue that started the program. The queue can be an MQI receive
queue or a MERVA ESA dummy queue.

v Loads MERVA-MQI Attachment process table DSLKPROC and determines the
single receive process (MQI receive queue) or the receive processes
(MERVA ESA dummy queue) the queue belongs to. For a dummy queue,
DSLKQR also determines the MQI receive queues that are to be processed.

v Connects to the MQSeries queue manager (IMS and CICS/VSE only).
v Opens the MQI receive queue.
v Retrieves a message from the current MQI receive queue, calls a user exit (if

customized), and writes the message to the MERVA ESA control queue. This is
repeated until the retrieved messages from the MQI receive queue have to be
committed.
After committing, MERVA-MQI Attachment retrieves the messages from the
MERVA ESA control queue. A reply or report message is correlated with the
waiting message of the appropriate send process. The correlated message is
routed from the wait queue to its target queue. MERVA-MQI Attachment routes
each retrieved message from the MERVA ESA control queue to its target queue.

v Retrieves the next message from the MQI receive queue and repeats the message
processing until the queue is empty. If there are other MQI receive queues or
receive processes, the retrieval continues until the last message of the last receive
queue was processed.

v Closes the MQI receive queue.
v Disconnects from the MQSeries queue manager (IMS and CICS/VSE only).
v Releases the process table DSLKPROC.

Process Table
The process table DSLKPROC contains the definitions of all MERVA-to-MQI send
processes and MQI-to-MERVA receive processes:
v A send process describes the queues, the formatting, and other control

information required for MERVA-MQI Attachment to send messages from
MERVA ESA to the MQSeries. Some examples of the definition parameters of a
send process are:
– The name of the send process
– The names of the MERVA and MQI send queues
– The names of the MERVA and MQI control queues
– The names of various wait queues
– The message format control information
– The limit for an MQI commit
– The MFS user exit number
– The handling of certain MQI message types in the next processing step
– The MQI message types written to the MERVA ESA journal
– The output medium for, and the amount of, operator messages

Chapter 12. Communication Links 155

v A receive process describes the queues, the formatting, and other control
information required for MERVA-MQI Attachment to receive messages from the
MQSeries and pass them to MERVA ESA. Some examples of the definition
parameters of a receive process are:
– The name of the receive process
– The names of the MQI receive queues
– The name of the MQSeries dead-letter queue
– The name of the MERVA control queue
– The wait interval for getting a message from an MQI receive queue
– The message format control information
– The limit for an MQI commit
– The MFS user exit number
– The MQI message types written to the MERVA ESA journal
– The output medium for, and the amount of, operator messages

The send and receive processes group messages that have common message
transfer characteristics.

The process table is defined by the DSLKPROC macro (see the MERVA for ESA
Macro Reference for details). The name DSLKPROC of the process table cannot be
changed. The sample process tables DSLKPSAM (for MVS) and DSLKPSMV (for
VSE) show examples of definitions of send and receive processes.

User Exit for Send and Receive Processes
MERVA-MQI Attachment calls a user exit for a send process to do the following:
v Put additional fields to a datagram or request message. These fields are

transmitted together with the SWIFT, telex, or user-defined message in the
datagram or request message.

v Create the data for a reply message.

MERVA-MQI Attachment calls a user exit for a receive process to do the following:
v Put the additional fields of a received datagram or request message into their

target fields in the SWIFT, telex, or user-defined message.
v Put the data of the reply message into their target fields in the SWIFT, telex, or

user-defined message. The received reply message was already correlated with
the original request message.

The user exit can be written in Assembler or in any of the high-level languages
supported for a MERVA ESA MFS user exit:
v C/370
v COBOL
v PL/I

The following language-specific copy books and macros are available to access the
data provided by MERVA-MQI Attachment:

DSLKCBLK User exit control block and TOF field buffer. Available for
Assembler, COBOL, and PL/I.

DSLKPROC Process table entry. Available for Assembler (macro), COBOL, and
PL/I.

DSLKEXIC User exit control block, TOF field buffer, and process table entry.
Available for C/370.

156 Concepts and Components

For more information about these copy books, see the MERVA for ESA
Customization Guide.

The sample Assembler user exits DSLKQ001 and DSLKQ002 illustrate the
described processing for a send and receive process.

Conversion Exit
MERVA-MQI Attachment itself does not make any conversion of the sent or
received messages. Conversion means translating the character and numeric data
of a message according to the needs of the message receiver. For example, a
conversion from EBCDIC to ASCII or vice versa could become necessary.

MQSeries for MVS/ESA offers the data-conversion exit facility for message
conversion. The data-conversion exit only converts messages consisting of
characters and binary integer numeric data. When the data-conversion exit facility
is enabled, MQSeries for MVS/ESA converts messages consisting of character data
only. A data-conversion exit supports the conversion from or to double-byte
character sets (DBCS).

The MQSeries for MVS/ESA sending message channel agent can invoke the
data-conversion exit. The MQSeries for MVS/ESA queue manager invokes the
data-conversion exit during the processing of an MQGET call (see the MERVA for
ESA Customization Guide for details).

When the sending MCA invokes the data-conversion exit, the message data is
converted before the message is sent to the recipient. This is required if the
recipient is not able to convert the message.

When the MQSeries for MVS/ESA queue manager invokes the data-conversion
exit, the message data is converted before the queue manager puts the message to
an MQI queue. Usually the conversion is done at the receiving side.

Under CICS/ESA, the sample data-conversion exit DSLKCDCC applies when
received messages are to be converted. The equivalent exit DSLKCDCM can be
used both under IMS and when the distributed queue management without CICS
is installed.

Under CICS/VSE, the sample conversion exit DSLKCVSE is provided that is
always invoked by MERVA-MQI Attachment rather than by a component of
MQSeries for VSE/ESA (see the MERVA for ESA Customization Guide for details).

The exit DSLKCVSE can convert both received messages and messages before they
are sent. The exit converts messages consisting of character data only or of
characters and binary integer numeric data. For character conversion it uses the
sample conversion tables DSLKATOE (ASCII to EBCDIC) and DSLKETOA
(EBCDIC to ASCII). The conversion exit only supports the conversion of
single-byte character set (SBCS) data.

Routing Table
The sample routing table DSLKQRT shows how the MQI message types datagram,
request, reply, and report message can be handled as MERVA messages and
distributed among MERVA queues.

MERVA-MQI Attachment adds several new control fields to the message after it
sent or received the message. The control fields contain the MQI message type, the

Chapter 12. Communication Links 157

name of the send and receive process, the message status, and other information
(see the MERVA for ESA Customization Guide for details).

The routing table can be used for both the send and the receive process. It is
associated with the MERVA control queue of a send or receive process.

Message Control Blocks
MERVA-MQI Attachment uses the following message control blocks (MCBs):

DSLKCOV Cover MCB. Formats SWIFT, telex, or user-defined messages to the
external network format. Displays control fields, additional
message data, and reply message data.

Operator command: SHOW KCOV or SHOW MQCOVER

DSLKCTL Control messages. Displays the MQSeries control blocks MQMD
(Message Descriptor), MQGMO (Get-Message Options), and
MQPMO (Put-Message Options). The MFS editing exits DSLME910
and DSLME911 prepare the external representation of selected
control block fields.

Operator command: SHOW KCTL or SHOW MQCTL

DSLKDTA Additional message data. Displays the additional fields for a
SWIFT, telex, or user-defined message transmitted as an MQI
datagram or request message.

Operator command: SHOW KDTA or SHOW MQMORDAT

DSLKNPG Page heading. Displays the new page heading during the
MQSeries control block display.

Operator command: SHOW KNPG or SHOW MQNEWPAG

DSLKRPL Reply message data. Displays the MQI reply message data fields.

Operator command: SHOW KRPL or SHOW MQREPLY

DSLKRPT Report message data. Displays the MQI report message data (the
first 100 characters of the message data from the original message).

Operator command: SHOW KRPT or SHOW MQREPORT

MERVA ESA Resource Definitions
The required resources are defined in the following MERVA ESA tables:

DSLFDTT Field definition table, copy book DSLFDTTC. Defines the fields for
additional data of a datagram and request message, the reply
message, and the MQI control blocks MQMD, MQGMO, and
MQPMO.

DSLFNTT Function table, copy book DSLFNTTC. Defines the send, control,
various wait, and dummy queues.

DSLMPTT MFS program table, copy book DSLMPTTC. Defines the MCBs, the
MFS user exits, and the MFS editing exits.

DSLMSGT Operator message table, copy book DSLKMSTC in DSLMSGTC.
Defines the operator messages issued by MERVA-MQI Attachment.

DSLMTTT Message type table, copy book DSLMTTTC. Defines the message
types and message type synonyms of the MCBs.

158 Concepts and Components

MQSeries Resource Definitions
When using MQSeries for MVS/ESA, the copy books DSLKCSQC (for CICS) and
DSLKCSQI (for IMS) contain the sample definitions of the MQSeries resources:
v Send, control, receive, and reply-to queues
v Processes for receive queues
v Sender and receiver channels

The appropriate copy book can be used as input for the MQSeries utility program
CSQUTIL to define the resources. The MERVA ESA program directory contains a
sample job for CSQUTIL. For more details see the MQSeries for MVS/ESA System
Management Guide.

When using MQSeries for VSE/ESA, the master terminal transaction MQMT
enables you to define the MQSeries resources:
v Send, control, receive, and reply-to queues
v Sender and receiver channels

The MERVA for ESA Installation Guide contains an example how to define local
queues using the MQMT transaction. For more information, see the MQSeries for
VSE/ESA System Management Guide.

Chapter 12. Communication Links 159

160 Concepts and Components

Chapter 13. File, System, and Operator Services

This chapter describes additional services available in MERVA ESA for application
programs.

Journal Service
The journal program DSLJRNP supervises and controls all the activities concerned
with the MERVA ESA journal. This program is started by DSLNUC during the
MERVA ESA startup.

The MERVA ESA journal program records:
v Successful commands and their responses
v Unsolicited operator messages
v Accesses to the user file
v Accesses to the authenticator-key file of SWIFT Link
v Program traces when requested
v Routing traces when requested
v Queue traces when requested
v Message traffic of communication network links

The journal record header part starts with the current date and includes the user
key data. It is used as the key for the VSAM KSDS journal data set. The journal
record header in MERVA ESA has a four-digit year. The format allows writing up
to 1000 journal records per second and to create segmented journal records for
larger buffers.

The complete description of the MERVA ESA journal records is found in
“Appendix A. Journal Record Layouts” on page 185.

The MERVA ESA journal program supports two separate physical journal data
sets. When the first data sets becomes full or unusable, MERVA ESA switches to
the second journal data set and processing continues. If the second journal data set
becomes full, MERVA ESA terminates.

It is possible to switch the journal data sets manually by using the operator
command JSWITCH. If you specify the RESET parameter with this command, the
data set that is switched to is cleared. Automatic switching is controlled by the
journal switch status, which can be checked or changed using the JSET command.
The switch status can have one of the following values:

ONCE The journal is switched automatically the first time the switch is
necessary; further switches are only possible via operator
command.

MANUAL No automatic switches occur.

CYCLE The switch is performed back and forth as long as it is needed.

The JSTAT command allows the inspection of a table where all switch events were
logged.

© Copyright IBM Corp. 1987, 2001 161

During initialization, the journal program opens the journal data set A. If the data
set is empty, the journal program writes an initialization record to the journal file.
If the journal data set A is full, processing is switched to data set B. An
initialization record is written to journal data set B. If this request fails, or the
journal data set B is also full, the journal initialization fails. If initialization is
successful, a journal statistics message is issued indicating the number of records in
the journal file and the percentage of space used in the allocated extents of the
data set. If only primary space is allocated for the journal data set, the percentage
numbers show how full the journal data set is. If secondary allocation is specified
in the cluster definition, the number of allocated extents in the statistics message
informs about this value. VSAM expands the space for a data set to a maximum of
123 extents.

The journal program DSLJRNP loads the exit program DSLJR001. The program
DSLJR001 is available as a general user exit. If the module cannot be loaded, the
customization parameter module DSLPRM specifies whether the journal program
terminates or whether processing continues normally.

The following requests are processed by DSLJRNP:

PUT This request puts a new record into the journal file. The journal record
identifier, the user key data, and the data itself must be supplied by the
calling program. Date and time are supplied by the journal program. With
each journal record written within one second, a counter is incremented by
1. It is appended to the time to ensure that each record has a unique
VSAM key. The number of digits of this counter depends on the format of
the journal record header used. The new format has a 3-digit counter for
up to 1000 journal records written within one second.

When the JRNBUF parameter of the customization parameters DSLPRM
specifies that segmentation of journal records is allowed, a record may be
larger than the maximum record length of the VSAM KSDS. In this case
the record is split into segments that will fit into the VSAM KSDS. All
segments of a journal record have the same time stamp, which is extended
by a 3-digit segment counter to force a unique key for each VSAM record.

GET This request gets an existing record from the journal file. The date, the
time, and optionally the user key extension are supplied by the calling
program as the search argument. The calling program can specify one of
three options:

KEQ The key of the retrieved record must be equal to the key specified
in the parameter list.

KGE The journal program returns the record with the next higher key if
a record with the specified key is not available.

KGT The journal program returns the record with the next higher key.

The data of the record is passed to the calling program in the buffer. The
journal record identifier, the date, the time, and the user key extension are
passed to the calling program in the parameter list.

When a journal record is segmented, each get request will supply only one
segment in the buffer. The journal record header contains the current
segment number and the total number of segments of the record. The
application program has to assemble the individual segments to build the
complete record in the output buffer.

162 Concepts and Components

DSLJRNP indicates the completion status of the request by means of return and
reason codes to the journal parameter list. These codes are listed in the MERVA for
ESA Messages and Codes.

The journal program provides a user exit, DSLJR001, which is called at the end of
each request. The input to the user exit is the address of the original journal
parameter list in register 1 and the data buffer from the call in register 0. Using
this exit program, a duplicate journal data set can be implemented.

DSLJR001 is loaded during the initialization of DSLJRNP. For more information on
user exits, refer to the MERVA for ESA Customization Guide.

The MERVA ESA journal can be inspected online with the test command journal
in the operator command function CMD or in the MERVA system control function
MSC (see the MERVA for ESA Installation Guide for details).

User File Service
The user file contains one record for each MERVA ESA user. Each record
determines which functions and message types a user is authorized to use, and
any command restrictions that may apply. The record contains control information,
such as password and origin ID, and also specifies the user’s preferred
environment: language, NOPROMPT format, network format, PF keys, and so on.
See the MERVA for ESA User’s Guide for details.

The MERVA ESA user file service is a MERVA ESA central service carried out by
DSLNUSR under the control of the nucleus program DSLNUC. The end-user
driver DSLEUD requests user file services via the MERVA ESA intertask
communication.

The MERVA ESA user file is a keyed VSAM file. The key is the user ID. The data
in the file is encrypted. This method is selected by specifying EXUMASK=YES in
the MERVA ESA customizing module DSLPRM.

Note: There is a customizable option in MERVA ESA that allows you to apply an
additional and more secure encryption algorithm to all modified user file
records. When this option is selected, a modified user file record cannot be
used by MERVA/ESA V3.1 and earlier.

Records are added to the user file using the online maintenance function of
DSLEUD. The records are used to control the user’s activities during an end-user
driver session.

DSLNUSR provides access to the user file and carries out the following functions:
v Initialization.

DSLNTS calls DSLNUSR for initialization during the MERVA ESA startup.
DSLNUSR opens the user file and allocates the active user table.
The user exits DSLNU003, DSLNU004, and DSLNU005 are loaded. When
loading of one of these programs fails, processing continues, but the user exit is
not called during later processing. For more information on user exits refer to
the MERVA for ESA Customization Guide.

v Processing end-user session control.
During end-user sessions, DSLEUD requests the following services from
DSLNUSR:

Chapter 13. File, System, and Operator Services 163

– Signon.
The user record is read. If the record can be used for signon, the password is
checked to see if it is valid. The user exit DSLNU003 is called at this stage to
carry out optional additional authorizations. The user file record is returned
to the caller. The active user table is updated, and the signon request is
journaled. The last sign-on date is updated in the user file record. A unique
signon sequence number is returned to the caller. This number is required in
all subsequent requests. If the number does not match, it is assumed that the
signoff of the user has been forced. For more information on user exits refer
to the MERVA for ESA Customization Guide.

– Function Selection.
The function entered on a panel is checked against the allowed functions to
determine whether the request is valid. The function-table entry is returned to
the caller. The function selection is journaled. The table of active users is
updated.

– Signoff.
The active user table is updated. The signoff request is journaled.

– Password Check or Change.
The password is checked to see if it is the current password of the user. If a
password change is requested, the user’s record is updated. The request is
journaled.
The user exit DSLNU005 is called to check the password of the user. The
parameter list containing the entered password, and the user file record
containing the current password of the user, are passed to the routine. Both
passwords are scrambled and can be compared by the user exit. A routine for
unscrambling the password is also provided to allow password checks against
external resources. When the user exit is not available, the passwords are
compared by DSLNUSR, and processing continues according to the result. For
more information on user exits refer to the MERVA for ESA Customization
Guide.

– Function Retrieval.
All functions defined for the user are provided together with function-related
information from the function table (for example, the functions’ descriptions)
when the Function Selection Panel is displayed. The function retrieval request
is journaled.

v Processing user file maintenance.
The user file maintenance is performed by the end-user function program
DSLEUSR. DSLNUSR supports the following requests for online maintenance:
– Display a user record
– Add a user record
– Delete a user record
– Replace a user record after a change
– List user records

The access to one user record is limited to one user at a time. All maintenance
requests are journaled.

DSLNUSR can perform extended authorization checks on all user file
maintenance requests except LIST:

Extended origin ID checking
The following rules apply:

164 Concepts and Components

– The request is accepted only (1) if the first 8 bytes of the origin ID of
the maintenance user match the first 8 bytes of the origin ID in the
requested user file record, or (2) if the maintenance user is a master
user.

– Even if the first 8 bytes of the origin IDs match, if an unauthorized
user attempts to add or modify the record of an authorized
MERVA ESA administrator, the request is rejected. However, an
unauthorized user can display this record.

Extended origin ID checking is performed if the parameter
EXUSR=(YES,ORIGINID) is specified in the customizing module
DSLPRM.

Extended group ID checking
The following rules apply:
– The request is accepted only (1) if the group ID of the maintenance

user matches the group ID in the requested user file record, or (2) if
the maintenance user is a master user.

– Even if the group IDs match, if an unauthorized user attempts to add
or modify the record of an authorized MERVA ESA administrator, the
request is rejected. However, an unauthorized user can display this
record.

Extended group ID checking is performed if the parameter
EXUSR=(YES,GROUPID) is specified in the customizing module
DSLPRM.

Checking origin and group IDs is useful when user file records for more than
one financial institution are maintained in the same MERVA ESA user file. It
prevents the deletion or modification of the records of one financial institution’s
user file by a maintenance user of another financial institution. For each of these
requests the user exit DSLNU004 is called, which can carry out an additional
authorization. An individual request may be rejected by the user exit depending
on the current status or the user profile. For more information on user exits refer
to the MERVA for ESA Customization Guide.

v Termination.
DSLNTS calls DSLNUSR for termination during the MERVA ESA termination.
DSLNUSR closes the user file and releases the storage of the active user table.
The user exit programs are deleted.

For all processing requests, DSLNUSR provides one of the following:
v The user file record and the function table entry
v The data for a list of users

The operator commands du and force are also serviced by DSLNUSR. The force
command only sets an indicator into the active user table, but does not remove the
entry from the active user table. When this indicator is set, the user is signed off
automatically if a user file service request is issued. When a signon request for this
user is received, the request is fulfilled and the active user table entry is reused but
a new signon sequence number is assigned.

Chapter 13. File, System, and Operator Services 165

Authentication Service of SWIFT Link
Many SWIFT financial messages require authentication to determine if they have
been changed during their transmission from one destination to another, and to
show to the receiver that the sender was authorized to send the message. In the
customizing parameter module DWSPRM you can specify whether SWIFT Link
performs authentication of SWIFT messages.

The authentication service has two components:
v The maintenance of the authenticator-key file, using authenticator keys

exchanged on paper via the public mail system, or using the SWIFT bilateral key
exchange (BKE) over the SWIFT network

v The authentication of SWIFT messages

These functions are performed by the authenticator-key file program DWSAUTP,
and, for the BKE, partly by the SWIFT user security enhancement (USE) functions
running on a USE workstation.

The authenticator-key file utility DWSAUTLD calls DWSAUTP directly for the
maintenance of the authenticator-key file.

When MERVA ESA is running, DWSAUTP is controlled by DSLNUC.

DWSAUTP can be initialized by the following programs defined in the Nucleus
Program Table DSLNPTT:
v The general purpose application program DWSDGPA with the descriptive name

SWIFTII
v The special program DWSAUTIN with the descriptive name SWIFTAUT

(DWSAUTIN allows for initializing DWSAUTP without starting the connection
to the SWIFT network)

The MERVA ESA application programs invoke DWSAUTP as follows:
v The programs link-edited to DSLNUC directly with the DWSAUT macro. For

example, the program DWSDGPA calls DWSAUTP directly for authentication of
SWIFT messages.

v The programs not link-edited to DSLNUC via the MERVA ESA intertask
communication. The task server DSLNTS invokes DWSAUTP as a central
service, and the DWSAUT macro is used by the requestor to prepare the
parameter list for the request. For example, the SWIFT Link program DWSEAUT
calls DWSAUTP for the online maintenance of the authenticator-key file, and for
authentication of SWIFT output messages with the user command authent (see
the MERVA for ESA User’s Guide for details).

The DWSAUT macro is described in the MERVA for ESA Macro Reference.

Maintenance of the Authenticator-Key File
All authenticator keys of a MERVA ESA installation are contained in one
authenticator-key file. If the SWIFT bilateral key exchange (BKE) is used, a copy of
the authenticator-key file is contained in the USE workstation.

When several financial institutions share one MERVA ESA installation, each of
them may have its own sets of authenticator keys, or they may share authenticator
keys according to the rules defined by SWIFT.

166 Concepts and Components

The authenticator-key file is a VSAM key-sequenced data set (KSDS). The records
of this data set are enciphered for security reasons.

The authenticator-key file can be maintained off-line with the utility DWSAUTLD
or online with the authenticator-key file maintenance program DWSEAUT.

If BKE is used, the authenticator keys are maintained by the BKE process running
on the USE workstation using the SWIFT Link of MERVA ESA. After a BKE is
complete or on operator request, an update is sent from the USE workstation to
MERVA ESA. The transaction program DWSAUTT receives the update and
invokes DWSAUTP for updating the authenticator-key file.

DWSAUTP and DWSEAUT ensure that only authorized users can maintain
authenticator-key file records, and one user can only maintain the records for the
financial institution indicated by the Origin ID of the user file record.

Online maintenance can be done in two ways:
1. As two steps by two different users, the first one making the changes (add,

replace, or delete), and the second one authorizing the changes.
2. One user making these two steps, that is, the changes are immediately

authorized.

Refer to the MERVA for ESA User’s Guide for details.

Authentication of SWIFT Messages
The input to DWSAUTP is the message to be authenticated in the format in which
it is transmitted to or received from the SWIFT network, and the authenticator key
from the authenticator-key file or, if BKE is not used, supplied in the calling
parameter list after the user command authent.

Authentication is carried out when:
v The MERVA ESA message type table (containing the specifications for SWIFT

message types) shows that a specific message type must be authenticated.
v The message contains an authentication trailer component (MAC). This allows a

user to request authentication of a SWIFT input message for which
authentication is not specified in the message type table by just adding an
authentication trailer with a dummy authenticator to the message.

If authentication is required, the authenticator-key file record relevant for a
particular correspondent relationship is retrieved. For better performance,
frequently used records are held in main storage.

DWSAUTP decides which key to use:
v The sending key for an input message. The key is used that is current on the

sending date.
v The receiving key for an output message. The key is used that was current on

the sending date.

The authentication algorithm calculates the authenticator.

Processing continues:
v For a SWIFT input message by providing the authentication trailer with the

authenticator.

Chapter 13. File, System, and Operator Services 167

v For a SWIFT output message by comparing the authenticator in the
authentication trailer with the calculated authenticator. If this comparison fails
and the authentication was tried with the key from the file, a second or third try
is done with the other two keys from the file (if available) that were not current
on the sending day.

The success or failure of authentication is indicated by a reason code and a
diagnostic message.

General File Service

Product-Sensitive Programming Interface

MERVA ESA can process (for example read from and write to) files that you have
defined.
v For MERVA ESA running under CICS, these files must be VSAM key sequenced

data sets (KSDS) with fixed record length. No alternate index is allowed. These
files must also be defined in the CICS file definitions.

v For MERVA ESA running under IMS, these files must be HISAM databases
(DBs) of DL/I with one root segment of fixed length only. A secondary index DB
is not allowed. For the database, a VSAM KSDS cluster must be defined whose
attributes can be derived from the generation of the database for IMS.
These files must also be defined in the IMS nucleus. Programs using the file
must have the database PCB included in their IMS PSB.

Whenever a file is to use the MERVA ESA general file service, it must be defined
to MERVA ESA in the file table DSLFLTT with the DSLFLT macro. Such files can
then use the following services of MERVA ESA:
v Initialization of the file using the file utility DSLFLUT
v Listing records that are in the file using the file utility DSLFLUT
v Access to the file in MERVA ESA application programs and user exits using the

file service program DSLFLVP
v Online maintenance of the file by the MERVA ESA users
v Expansion function of the MERVA ESA message format services, for example for

the expansion of the SWIFT addresses (BICs) to correspondents’ names

The MERVA ESA general files can be shared or nonshared files.
v Shared file: This is one physical file that is divided logically into several files of

different owners. The record key is preceded by an 8-byte owner prefix.
– Private records are owned by a specific user. The owner prefix contains the

user ID of the owning user. Only this user can process the private records
during the online maintenance functions of MERVA ESA.

– Common records are not owned by a specific user. The owner prefix contains
an asterisk (*) indicating the common ownership. Any user who is allowed to
perform online file maintenance can process the common records.

v Nonshared file: This is one physical file for just one purpose. Any user who is
allowed to perform online file maintenance can process the records of the
nonshared file.

A file can be used as a nickname file:that is, the real search argument of another
file can be replaced by an “easier” search argument of the nickname file.

168 Concepts and Components

For example, the 8 or 11 characters of a SWIFT address can be referred to in the
MERVA ESA nicknames file. A nickname can be entered in a message field instead
of the SWIFT address, and the SWIFT Link expansion routine DWSMX001 uses the
nickname to read the appropriate record from the MERVA ESA nicknames file to
get the SWIFT address, which then replaces the nickname in the message field. It
then uses the SWIFT address to get the correspondent’s name from the SWIFT
correspondents file.

When nicknames are to be used for the address expansion of SWIFT Link, the
MERVA ESA nicknames file must be filled by the user, and the nickname
expansion must be defined in the relevant function table entry.

Nickname files can be nonshared, or shared with private and common records.

For details on defining names expansion in a function, see the description of the
EXPAND and EXPNAM parameters of the DSLFNT macro in the MERVA for ESA
Macro Reference.

MERVA ESA supplies an example of a Nicknames File, which is a shared file. The
record layout is described in “Appendix B. Layout of the MERVA ESA Nicknames
File” on page 195, and in the copy code DSLCORN.

SWIFT Link supplies the SWIFT Correspondents File, which is a nonshared file.

File Service Program DSLFLVP
The MERVA ESA file service program DSLFLVP can access files, following the
MERVA ESA general file concept, from programs running in a MERVA ESA
environment. DSLFLVP is invoked by means of the DSLFLV macro. The MERVA for
ESA Macro Reference explains this macro and its parameters.

The following general file services are available:
v Open a file
v Close a file
v Add a record
v Delete a record
v Replace a record
v Get a record by direct access (get with key)
v Get a record by sequential access

When a MERVA ESA application program uses DSLFLVP to access the general
MERVA ESA files, it need not know if it is operating in the environment of a batch
program, a CICS environment, or an IMS environment.

Calling the program DSLFLVP requires the use of a parameter list (PL) and a
request control block (RCB), which can be generated by the DSLFLV macro.

End of Product-Sensitive Programming Interface

System Services
For many of the services of the operating system or CICS, MERVA ESA programs
invoke the service program DSLSRVP. The MERVA ESA program then need not
know if it is running under CICS, under IMS, or in a batch environment. The
services provided are:

Chapter 13. File, System, and Operator Services 169

v Obtain and initialize main storage
v Release main storage
v Load a program
v Delete a loaded program
v Request current date and time of day
v Post an event control block
v Wait for an event to occur
v Request exclusive control of a resource
v Release exclusive control of a resource
v Dump main storage

DSLSRVP is invoked by the DSLSRV macro. The MERVA for ESA Macro Reference
explains this macro and its parameters. The MERVA for ESA Customization Guide
shows examples of how to use this macro.

Depending on the environment, DSLSRVP uses VSE or MVS macros or CICS
commands. CICS commands are used if the field COMEIB in the MERVA ESA
communication area (DSLCOM) contains an address.

The parameter list for calling DSLSRVP is contained in DSLCOM.

Operator Command Service
The operator command service performs the execution of MERVA ESA operator
commands. The MERVA ESA command server (DSLNCS) is the interface between
MERVA ESA operators and the command execution routines. All MERVA ESA
operator commands are defined in the MERVA ESA operator Command Table
DSLNCMT, and all command responses or their basic structures are defined in the
MERVA ESA operator message table (DSLMSGT).

DSLNCS is called only by the programs link-edited to DSLNUC. Therefore the
MERVA ESA application programs invoke DSLNCS as follows:
v The programs link-edited to DSLNUC directly.
v The programs not link-edited to DSLNUC via the MERVA ESA intertask

communication. The task server DSLNTS invokes DSLNCS as a central service.

The requesting program must provide status information and the command in a
MERVA ESA command and response buffer, and DSLNCS adds the command
response. This buffer is defined with a DSLNMO MF=BUF macro (see the MERVA
for ESA Macro Reference for details).

DSLNCS carries out the following steps for command execution:
v The command table DSLNCMT is searched to find the command. If found, the

command input is checked to see that it is formally correct.
v The user exit DSLNCU01 is called to check if the operator is authorized to use

this command. An error is returned if authorization is not confirmed.
v Control is given to the command execution routine indicated in DSLNCMT. The

interface for command execution routines is described in the MERVA for ESA
Customization Guide.

v After return from the command execution routine, the command response is
journaled, or error responses are prepared by DSLNCS depending on the return
code from the command execution routine.

170 Concepts and Components

Operator and Diagnostic Message Services

Product-Sensitive Programming Interface

The operator and diagnostic messages services handle the messages that are given
to the users and operators of MERVA ESA programs:
v Unsolicited messages to operators when running MERVA ESA, its batch

programs and utilities
v Response messages for operator and user commands
v Diagnostic and error messages of MFS services, for example, checking

The services for these messages include:
v The definition of the messages or message skeletons in the Message Table

DSLMSGT
v The retrieval of the message or the skeleton from the Message Table using the

program DSLOMSG
v Issuing the message

The Message Table DSLMSGT
The Message Table DSLMSGT defines all messages that are issued to MERVA ESA
operators and users. The DSLMSG macro is used to generate this table. The
MERVA for ESA Macro Reference explains this macro and its parameters. The
MERVA for ESA Customization Guide shows examples of how to use this macro.

The DSLMSG macro allows for defining:
v Variable information in the message that is inserted by the message retrieval

program DSLOMSG
v Several national languages for the same message

MERVA ESA supplies the sample Message Table DSLMSGT that contains all
messages used by MERVA ESA and its components.

The Message Retrieval Program DSLOMSG
The message retrieval program DSLOMSG is used to retrieve operator and
diagnostic messages from the Message Table DSLMSGT. During the retrieval
process, variable information can be inserted into the message by DSLOMSG.

The DSLOMS macro is used to invoke DSLOMSG. The MERVA for ESA Macro
Reference explains this macro and its parameters. The MERVA for ESA Customization
Guide shows examples of how to use this macro.

In the calling parameter list for DSLOMSG, the DSLOMS macro defines the
variable fields to insert in the messages. The calling program provides the data for
these fields to insert into the messages.

Issuing Operator and Diagnostic Messages
These messages are issued as follows:
v The diagnostic and error messages for display on screen and printer devices are

written to the internal message buffer (TOF).
v Unsolicited operator messages are issued using:

Chapter 13. File, System, and Operator Services 171

– The operator interface program DSLNMOP (refer to “The Operator Interface
Program (DSLNMOP)” on page 34 for details). DSLNMOP is invoked using
the DSLNMO macro. The MERVA for ESA Macro Reference explains this macro
and its parameters. The MERVA for ESA Customization Guide shows examples
of how to use this macro.

– The write-to-operator program DSLWTOP (refer to “The Write-to-Operator
Program (DSLWTOP)” on page 35 for details). DSLWTOP is invoked using the
DSLWTO macro. The MERVA for ESA Macro Reference explains this macro and
its parameters. The MERVA for ESA Customization Guide shows examples of
how to use this macro.

End of Product-Sensitive Programming Interface

172 Concepts and Components

Chapter 14. MERVA ESA Data Sets and Utilities

This chapter describes the MERVA ESA data sets and utilities.

Data Sets
The following describes the data sets required for the operation of MERVA ESA
and the network links. MERVA ESA uses the following data sets:
v Journal data set
v Queue data set
v Large message cluster
v User file
v Nicknames file
v Message counter log data set
v SPA File (IMS only)
v Authenticator-key file
v SWIFT correspondents file
v SWIFT currency code file
v Telex correspondents file

The SPA file can be a BDAM data set or an HDAM database. All other
MERVA ESA data sets are VSAM data sets. They are key-sequenced organized
(KSDS) except the queue data set, which is relative-record organized (RRDS).

Journal Data Sets
The journal data sets are controlled by the journal program DSLJRNP (see “Journal
Service” on page 161 for details).

The information provided in the journal data sets can be the basis for the off-line
preparation of various kinds of overviews and statistics for different administrative
and operational purposes. The layout of the journal records is shown in
“Appendix A. Journal Record Layouts” on page 185. The journal record header of
MERVA ESA contains a 4-digit year field. A 2-digit year field is not supported.

The contents of the journal data sets can be viewed online with the journal
command in the operator command function CMD or in the MERVA system
control function MSC.

Queue Data Sets
All messages in the MERVA ESA queues are stored in the MERVA ESA queue
data set (QDS). The data of large messages is stored in the large message cluster
described in the next section. For added assurance, a duplicate QDS can be
maintained. The queue data sets are controlled by the queue management program
DSLQMGT (see “Queue Management Program DSLQMGT” on page 72 for details).

The MERVA for ESA Installation Guide gives details about how to calculate the space
required for the queue data sets.

© Copyright IBM Corp. 1987, 2001 173

The current usage can be seen with the dq (display queues) and dq status
commands in the operator command function (CMD) or the system control
function (MSC).

Large Message Cluster
The data of large messages in the MERVA ESA queues is stored in the
MERVA ESA large message cluster (LMC). For added assurance, hardware
duplication can be used, for example, the Dual Copy of the IBM 3390. The large
message cluster is controlled by the program DSLQLRG (see “Large Message
Service Program DSLQLRG” on page 84 for details).

The MERVA for ESA Installation Guide gives details about how to calculate the space
required for the large message cluster.

The current usage can be seen with the dlmc (display LMC status) and dlmct
(display LMC tuning information) commands in the operator command function
(CMD) or the system control function (MSC).

User File
The user file contains one record for each MERVA ESA end user. The record
defines which functions and message types a user is authorized to use, and any
command restrictions that may apply. It contains records of fixed length. The user
ID serves as the key for accessing the user file. The user file records are scrambled
to prevent reading by unauthorized persons.

The user file is controlled by the user file program DSLNUSR (see “User File
Service” on page 163 for details).

The user file is maintained online with the end user functions USRx.

Nicknames File
The Nicknames File is a sample file supplied with MERVA ESA to show the use of
the MERVA ESA general file concept. It is defined as a shared file, and it can
contain private nickname records and common nickname records. (See “General
File Service” on page 168 for details). The records are added and maintained using
the general file maintenance of end users in the FLM function.

MERVA ESA provides sample definitions for the Nicknames File for the
MERVA ESA File table in the copy code DSLFLTTC.

The record layout of the Nicknames File is described in the copy code DSLCORN
and shown in “Appendix B. Layout of the MERVA ESA Nicknames File” on
page 195.

The Nicknames File can be printed with the utility DSLFLUT using the message
control block DSL0CORN.

Message Counter Log Data Set
This data set, which is controlled by the program DSLCNTP, is used to record
statistics regarding the message traffic handled by MERVA ESA on:
v External network links
v Internal links using MERVA Link or MERVA-MQI Attachment with FMT/ESA

174 Concepts and Components

|
|

|

|

If the usage exceeds the maximum amount specified in the customization module
(DSLPRM), MERVA ESA alerts the system administrator.

Use the dclog operator command to view online the total or average usage per
month for the previous one to 12 months.

SPA File
The SPA file is used only in IMS. Its purpose is to allow a scratch pad area (SPA)
for the MERVA ESA End-User Driver, which is bigger than the 32768 bytes (32KB)
and therefore cannot be handled by IMS. For the End-User Driver, the IMS SPA is
only 320 bytes, and all other storage is saved in the MERVA ESA SPA file. The
scratch pad area saves the permanent storage for a user session between two
conversation steps.

The SPA-file initialization program (DSLEBSPA) must be run before starting
MERVA ESA for the first time (see “SPA File Initialization Program” on page 180).

The MERVA ESA SPA file can handle up to 96KB of permanent storage plus up to
2MB for processing of large messages for each user session. The file consists of an
index record and data records containing the user-session data. The basic direct
access method (BDAM) is used. When running the End-User Driver in more than
one MPP region, the same SPA file is assigned to each MPP region with
DISP=SHR.

For installations that want to implement their own SPA file, the macro DSLEISPA
defines the interface between DSLEUD and the online SPA file program. Refer to
the MERVA for ESA Customization Guide for further information. MERVA ESA V3.2
provides the sample program DSLEOSPB that uses an IMS HDAM database
instead of a BDAM data set. This program can be installed instead of DSLEOSPA.
Refer to the MERVA for ESA Customization Guide and MERVA for ESA Installation
Guide for further information.

Authenticator-Key File
The authenticator-key file holds the authenticator keys of all financial institutions
sharing one MERVA ESA installation. The authenticator keys are used for the
authentication of SWIFT messages.

The records in the data set are enciphered. The authenticator keys are stored in
these records.

The number of authenticator keys to be stored determines the size of the data set.
The MERVA for ESA Installation Guide gives details about how to calculate the space
for the authenticator-key file.

SWIFT Correspondents File
The SWIFT Correspondents File contains a record for each SWIFT correspondent.
The records of the file are created from the SWIFT Bank Identifier Code (BIC)
Directory update tape using the utility DWSCORUT. They are used for the
expansion of SWIFT addresses (BICs) to full addresses.

The SWIFT Correspondents File is a nonshared file using the MERVA ESA general
file concept (see “General File Service” on page 168 for details). The file can be
maintained using the general file maintenance of end users in the FLM function.

Chapter 14. MERVA ESA Data Sets and Utilities 175

|
|

MERVA ESA provides sample definitions for the SWIFT Correspondents File for
the MERVA ESA File Table in the copy code DWSFLTTC.

The record layout of the SWIFT Correspondents File is described in the copy code
DWSCOR and shown in “Appendix D. Layout of the SWIFT Correspondents File”
on page 199.

The SWIFT Correspondents File can be printed with the utility DSLFLUT using the
message control block DWSSCOR.

SWIFT Currency Code File
The SWIFT currency code file contains a record for each currency code. The
records of the file are created from the SWIFT Bank Identifier Code (BIC) Directory
update tape using the utility DWSCURUT. They can be used for checking the
currency codes in a SWIFT message.

The SWIFT currency code file is a nonshared file using the MERVA ESA general
file concept (see “General File Service” on page 168 for details). The file can be
maintained using the general file maintenance of end users in the FLM function.

MERVA ESA provides sample definitions for the SWIFT currency code file for the
MERVA ESA File Table in the copy code DWSFLTTC.

The record layout of the SWIFT currency code file is described in the copy code
DWSCUR and shown in “Appendix C. Layout of the Currency Code File” on
page 197.

The SWIFT currency code file can be printed with the utility DSLFLUT using the
message control block DWSSCUR.

Telex Correspondents File
The Telex Correspondents File contains a record for each telex correspondent. It is
used for telex address expansion.

The file is a nonshared file using the MERVA ESA general file concept (see
“General File Service” on page 168 for details). Its records are created and
maintained using the general file maintenance of end users in the FLM function.

MERVA ESA provides sample definitions for the Telex Correspondents File for the
MERVA ESA File table in the copy code ENLFLTTC.

The record layout of the Telex Correspondents File is shown in “Appendix E.
Layout of the Telex Correspondents File” on page 201.

The Telex Correspondents File can be printed with the utility DSLFLUT using the
message control block ENLTCOR.

Utilities
The utilities provided by MERVA ESA are:
v Queue data set utility
v Large message cluster maintenance utility
v General file utility
v Message counter report utility

176 Concepts and Components

v SPA file initialization utility (IMS only)
v Authenticator-key file utility
v SWIFT correspondents file utility
v SWIFT currency code file utility

The MERVA for ESA Operations Guide describes in detail how to use all
MERVA ESA utilities.

Queue Data Set Utility
The queue data set (QDS) utility DSLQDSUT processes the QDS as follows:
1. Formats the queue data set
2. Copies the queue data set
3. Modifies the queue data set
4. Sets the last unique message reference (UMR)

Formatting removes all messages from the QDS; modifying keeps them, but causes
a DSLQMGT restart during the next MERVA ESA startup.

If your MERVA ESA installation uses the unique message reference (UMR) option,
the FORMAT and MODIFY functions of DSLQDSUT can be used to set or adjust
the last assigned UMR.

The MERVA for ESA Operations Guide describes in detail how to use DSLQDSUT.
The formula to calculate the space required for the QDS is given in the MERVA for
ESA Installation Guide.

Formatting a Queue Data Set
Formatting is necessary after the VSAM cluster definition of the QDS, before
MERVA ESA is started the first time.

Formatting an existing QDS removes all messages from this QDS. Formatting
prepares the QDS as follows:
v The first block is reserved for the QDS log record.
v The second and third blocks are reserved for the QDS byte map for storage

allocation in the data blocks.
v The following blocks are for the queue key tables. The number of blocks is

determined by the space needed for the queue key tables. This space depends on
the NQE parameter of the MERVA ESA customizing parameters, and on the key
lengths specified in the function table for the various queues.

v The rest of the QDS is filled with empty data blocks (cleared to binary zeros),
each block having a block header indicating the block number, the amount of
free space, and the offset to the free space. Data blocks are written to the QDS
until VSAM returns the return code for no more space in the data set. Then the
first block is updated with the number of available data blocks for use by
DSLQMGT.

After successful formatting, the MERVA ESA operator receives a message stating
the number of blocks available in the QDS for storing messages.

When duplicate queue data sets are used, both queue data sets must be formatted.
After formatting the first queue data set, the DSLQDSUT COPY function or the
VSAM Repro function can be used to produce a duplicate of the formatted queue
data set.

Chapter 14. MERVA ESA Data Sets and Utilities 177

Copying a Queue Data Set
Copying is recommended for the following reasons:
v To make a backup copy of the QDS
v To make a copy of the first QDS after formatting when using duplicate QDSs
v To make a copy of the error-free QDS after an error in the duplicate one

The output queue data set must have the same space allocation as the input data
set. If the output queue data set is smaller, the COPY function cannot complete
successfully. If the output queue data set is larger, only as much space is used as in
the input queue data set, and the rest of the space cannot be accessed.

Modifying a Queue Data Set
Modifying a queue data set is recommended in the following cases:
v After the NQE parameter of the MERVA ESA customizing parameters has been

increased or decreased, the QDS blocks reserved for the queue key tables may
not be enough (increase of NQE), or space may be wasted (decrease of NQE). In
both cases, the DSLQMGT remains operational, but if the actual queue key table
entries do not fit into the system blocks at DSLQMGT termination, a DSLQMGT
restart is necessary to build the correct queue key tables during the next
DSLQMGT initialization. Modifying the QDS ensures enough system blocks.

v If key lengths in the MERVA ESA function table are changed, the same applies
as for NQE.

v If message-processing functions are added to the MERVA ESA function table,
and the keys of the new functions are longer than the longest key used before,
the same applies as for increasing NQE.

v If message-processing functions are removed from the MERVA ESA function
table, and there are still messages in these function queues.
The EXCLUDE FNT control statement indicates to DSLQDSUT to not copy
messages of queues that are not in the function table.

v If large messages that are not in the LMC are referenced in the QDS.
The EXCLUDE LMC control statement indicates to DSLQDSUT to not copy
message references to large messages that are not in the large message cluster.

v If MERVA ESA terminated with error message DSL359A due to corrupted queue
element prefix.
The REPAIR control statement indicates to DSLQDSUT to fix corrupted QE
prefixes.

v To adjust the last unique message reference (UMR).

Modifying a queue data set is necessary in the following cases:
v When the old queue data set is full, and you want to allocate a larger one and

keep all messages contained in the old queue data set.
v When the old queue data set is too big, and you want to allocate a smaller one

to reduce the number of empty blocks, but keep all messages contained in the
old queue data set.

v When the old queue data set has one or more corrupted blocks, and you want to
keep the messages that are not corrupted.

The MODIFY function copies messages from the old queue data set (input) to the
new queue data set (output). If a corrupted QDS block is found, all complete
messages are copied. Corrupted QDS blocks can be excluded completely using

178 Concepts and Components

EXCLUDE rbn control statements. After the input queue data set has been
completely processed, the rest of the output queue data set is formatted as in the
FORMAT function.

The output queue data set can have a space allocation different from the input
data set. If the output queue data set is smaller than the input queue data set, the
MODIFY function completes successfully only if all messages (except the ones
excluded by EXCLUDE FNT or EXCLUDE rbn or EXCLUDE LMC control
statements) can be copied into the output queue data set.

When MERVA ESA is started with a queue data set created by the MODIFY
function, a DSLQMGT restart is performed to create a new queue key table. This
DSLQMGT restart can be shorter than the usual restart as DSLQDSUT tells
DSLQMGT which data blocks contain messages.

Large Message Cluster (LMC) Maintenance Utility
The large message cluster (LMC) maintenance utility DSLQMNT can be used to
reorganize the input LMC into an output LMC by copying the LMC records in
ascending key sequence into the output LMC. To ensure for data integrity,
DSLQMNT also verifies that all LMC records are referenced by a queue element in
the queue data set. LMC records without a corresponding queue element are not
copied.

The reorganization provides a contiguous free space from the end of the last record
to the end of the output LMC.

A status and statistics report is provided for the input LMC and the output LMC.
It also provides a detailed list of all large messages referenced in the QDS but not
found in the LMC.

The utility should be run when the free space can not be used for storing the data
of a large message because there is not enough contiguous free space. If this
condition happens frequently, it may be necessary to allocate a larger LMC.

General File Utility
MERVA ESA provides the general file utility DSLFLUT to process files that have
been defined in the MERVA ESA File Table. Two functions are available:
v Initialize a file
v List the records of a file (that is, the whole file or only selected groups of

records).

Control statements determine the processing of DSLFLUT. They are specified in a
sequential input data set that may be included in the startup job. At least two
control statements are required:one specifying the requested function, and one
specifying the file name. The MERVA for ESA Operations Guide describes in detail
how to use DSLFLUT.

Message Counter Report Utility
MERVA ESA provides a utility called DSLCNTUT that lets you create monthly
reports that show the message traffic handled by MERVA ESA on:
v External network links
v Internal links using MERVA Link or MERVA-MQI Attachment with FMT/ESA

Chapter 14. MERVA ESA Data Sets and Utilities 179

|
|

|

|

A report shows the total and average usage per month for the previous one to 12
months. If the usage exceeds the maximum amount specified in the customization
module (DSLPRM), MERVA ESA alerts the system administrator. You should print
one report each month, and retain copies of these reports for future reference.

SPA File Initialization Program
In IMS, the SPA-file initialization program (DSLEBSPA) is used to initialize the
MERVA ESA SPA file before it is used the first time. DSLEBSPA must not be run
when MERVA ESA is active.

DSLEBSPA formats the SPA file by writing the index record and empty session
records. Details about running the SPA-file initialization program can be found in
the MERVA for ESA Installation Guide and MERVA for ESA Operations Guide.

Authenticator-Key File Utility
The authenticator-key file utility DWSAUTLD maintains the authenticator-key file
of SWIFT Link off-line.

If SWIFT bilateral key exchange (BKE) is used, it is recommended to use the
maintenance functions of the USE workstation as much as possible, and not
DWSAUTLD.

DWSAUTLD is used to:
v Initialize the authenticator-key file with a secure transmission key for

enciphering if BKE is used.
v Maintain the authenticator-key file by:

– Adding records
– Replacing existing records
– Exchanging the keys in one record or a set of records depending on the

change dates in the records
– Deleting existing records
– Listing the contents of records

DWSAUTLD always creates authorized records in the file. It is not possible to
create unauthorized records as during the online maintenance described in the
MERVA for ESA User’s Guide.

v Unload all or part of the authenticator-key file to a sequential data set when
saving the file, changing its size, or changing the secure transmission key for
enciphering. The sequential file is scrambled.

v Reload the complete authenticator-key file, or a part of it, from a sequential data
set created by the unload operation. The records can be reloaded into a new file
(especially after space problems in the old file), or the records of the sequential
data set can be merged with records already in the file.

If several financial institutions share one MERVA ESA installation, the online
maintenance allows one user to process only the authenticator keys of one financial
institution. DWSAUTLD can maintain the authenticator keys of all these
institutions, or of a single institution depending on the input records that control
the processing of DWSAUTLD. These input records are described in detail in the
MERVA for ESA Operations Guide.

DWSAUTLD uses the authentication program DWSAUTP for accessing the
authenticator-key file.

180 Concepts and Components

|
|
|
|

According to the SWIFT specifications, DWSAUTLD supports:
v Small keys consisting of 16 unique hexadecimal characters
v Large keys consisting of 32 hexadecimal characters in any combination

The authenticator-key file can hold both types of keys.

When using BKE, it is recommended to use the unload file of MERVA ESA to
create an authenticator-key file in MERVA OS/2 and send the authenticator keys
from MERVA OS/2 to MERVA ESA via MERVA Link.

SWIFT Correspondents File Utility
The SWIFT Correspondents File Utility DWSCORUT fills the SWIFT
Correspondents File of SWIFT Link with data from the SWIFT Bank Identifier
Code (BIC) Directory update tape. This tape is created, maintained, and distributed
by S.W.I.F.T. In this book, BICs are also referred to as SWIFT addresses or SWIFT II
logical terminals.

DWSCORUT processes the BIC tape as follows:
v New SWIFT addresses are added to the file.
v Existing SWIFT addresses are replaced.
v SWIFT addresses that are in the file and were added by the DWSCORUT but are

not on the tape are deleted from the file.
v SWIFT addresses that are in the file and were added by a USER using general

file services but are not on the tape are left on the file.
v SWIFT addresses that are marked for deletion on the BIC tape are deleted from

the file.
v If there are records with identical BICs, only the first record found is taken from

the tape to the file; the others are ignored.

DWSCORUT writes a report that you can print on a system printer. The report
shows all actions taken:
v The contents of the records that have been added
v The contents of the records that have been deleted and ignored
v The old and new contents of the records that have been changed
v Feedback information such as the return code, and error and confirmation

messages

The processing of DWSCORUT is determined by control statements. The MERVA
for ESA Operations Guide shows how to run DWSCORUT.

Report Layout
The report is formatted using MFS services and the system printer sections of an
MCB.

Records are mapped from the file buffer to the MERVA ESA internal message
buffer (TOF) using the MFS line formatter DSLMLFP. The record layout is
described in the net section of an MCB.

You can customize the layouts of the reports by writing a new MCB or by
changing the MCB DWSSCOR.

Chapter 14. MERVA ESA Data Sets and Utilities 181

SWIFT Currency Code File Utility
The SWIFT currency code file utility DWSCURUT fills the SWIFT currency code
file with data from the SWIFT bank identifier code (BIC) directory update tape.
This tape is created, maintained, and distributed by S.W.I.F.T.

DWSCURUT processes the BIC tape as follows:
v New currencies are added to the file.
v Existing currencies are replaced.
v Currencies that are in the file and were added by the DWSCURUT but are not

on the tape are deleted from the file.
v Currencies that are in the file and were added by a user using general file

services but are not on the tape are left on the file.
v Currencies that are marked for deletion on the BIC tape are deleted from the file.

DWSCURUT writes a report that you can print on a system printer. The report
shows all actions taken:
v The contents of the records that have been added
v The contents of the records that have been deleted and ignored
v The old and new contents of the records that have been changed
v Feedback information such as the return code, and error and confirmation

messages

The processing of DWSCURUT is determined by control statements. The MERVA
for ESA Operations Guide shows you how to run DWSCURUT.

Report Layout
The report is formatted using MFS services and the system printer sections of an
MCB.

Records are mapped from the file buffer to the MERVA ESA internal message
buffer (TOF) using the MFS line formatter DSLMLFP. The record layout is
described in the net section of an MCB.

You can customize the layouts of the reports by writing a new MCB or by
changing the MCB DWSSCUR.

182 Concepts and Components

Part 3. Appendixes

© Copyright IBM Corp. 1987, 2001 183

184 Concepts and Components

Appendix A. Journal Record Layouts

Each journal record consists of a 50 byte, fixed-length header, which is followed by
the data length field and the journal data. The layout of the header is:

Byte 1 Journal record identifier. This identifies the type of the journal
record and indicates which program created it. It also determines
the layout of the data in the user-key extension, as well as the
layout of the journal data. It can have one of the values shown in
the list below.

Bytes 2 to 18 A 17-byte time stamp (see Table 2 on page 187 for details).

Bytes 19 to 21 The segment count. This is used only when the journal data is too
large to fit into one record, in which case the record is segmented.
The segments are numbered, starting with 001, up to a maximum
of 999. If the record is not segmented, this field contains blanks.

Bytes 22 to 25 If the journal record is segmented, this field contains a slash
followed by the total number of segments belonging to this record
(/nnn). If the journal record is not segmented, this field contains
blanks.

Bytes 26 to 50 The remaining 25 bytes of the journal header is the user-key
extension. The data in the user-key extension depends on the
journal record ID.

Bytes 2 through 21 of the journal record header form a 20-byte key that uniquely
identifies each record in the journal data set, which is a VSAM KSDS.

The 1–byte journal record identifiers are shown below as 2–digit hexadecimal
numbers. The program that creates this type of journal record is shown in
parentheses. All values other than those shown are reserved.

ID Description

00 Journal file initialization record (DSLJRNP)

02 MERVA ESA startup record (DSLNUC)

03 MERVA ESA stop record (DSLNUC)

04 End-user signon record (DSLNUSR)

05 End-user signoff record (DSLNUSR)

06 End-user function selection record (DSLNUSR)

07 Online maintenance record (DSLNUSR)

08 User file initialization (DSLNUSR)

09 User file termination (DSLNUSR)

10 Password check or change (DSLNUSR)

11 Invalid request (DSLNUSR)

12 General File maintenance (DSLEFLM)

13 Function table information (DSLNUSR)

14 MERVA ESA command and response (DSLNCS)

© Copyright IBM Corp. 1987, 2001 185

16 Unsolicited MERVA ESA operator messages (DSLNMOP)

17 Queue trace (DSLQMGT)

18 Debugging trace (DSLTRAP)

19 Routing trace (DSLRTNSC)

1A Queue trace DB2 (DSLQMGD)

40 Received telex message (ENLHCF1)

41 Sent telex message (ENLHCF1)

50 Sent SWIFT message (DWSDGPA)

51 Received SWIFT message (DWSDGPA)

5F Authenticator-key file maintenance (DWSAUTP)

60 Sent SWIFT message:
v EKAMU044 for FMT/ESA with MERVA Link
v DSLKQ044 for FMT/ESA with MERVA-MQI Attachment

61 Received SWIFT message:
v EKAMU044 for FMT/ESA with MERVA Link
v DSLKQ044 for FMT/ESA with MERVA-MQI Attachment

70 Outgoing MERVA Link application message (EKAAS10)

71 Outgoing MERVA Link acknowledgment message (EKAAS10)

72 Incoming MERVA Link application message (EKAAR10)

73 Incoming MERVA Link acknowledgment message (EKAAR10)

74 Incoming MERVA Link delivery report (EKAAR10)

78 Recovered MERVA Link in-process message (EKAAS10)

7F MERVA Link Control Facility command (EKAEMSC)

80-8F Journal record identifiers available for user programs

90 Sent MQI datagram (DSLKQS)

91 Sent MQI request message (DSLKQS)

92 Sent MQI reply message (DSLKQS)

97 Received MQI datagram (DSLKQR)

98 Received MQI request message (DSLKQR)

99 Received MQI reply message (DSLKQR)

9C Received MQI exception report message (DSLKQR)

9D Received MQI COA report message (DSLKQR)

9E Received MQI COD report message (DSLKQR)

9F Received unsupported MQI report message (DSLKQR)

D0-FE Journal record identifiers available for user programs

186 Concepts and Components

||

|

|

||

|

|

Table 2. Journal Record Layouts

Offset
in Decimal
(in Hex)

Length
in Bytes

Description

0 (0) 1 Journal record identifier. It can have one of the hexadecimal values shown in the list
on page 185.

Key field

1 (1) 17 Date and time in the form YYYYMMDDHHMMSSppp, where:

YYYY year (for example 2001). Note: MERVA ESA Version 4 does not
support journal record header formats with a 2-digit year.

MM month (01 to 12).

DD day (01 to 31).

HH hour (00 to 23).

MM minute (00 to 59).

SS second (00 to 59).

ppp A fraction used to differentiate among journal records created
during the same second. Currently, this starts with 000 and is
incremented to 999. In future releases, this field might be changed
to support more than 1000 journal records during the same second.
Theoretically, a maximum of 2²⁴ different values is possible.

18 (12) 3 The segment count for a segmented record. This is used only when the journal data
is too large to fit into one record, in which case the record is segmented. The
segments are numbered, starting with 001, up to a maximum of 999. If the record is
not segmented, this field contains blanks.

21 (15) 4 If the journal record is segmented, this field contains a slash followed by the total
number of segments belonging to this record (/nnn). If the journal record is not
segmented, this field contains blanks.

25 (19) 25 User-key extension. The data in the user-key extension depends on the journal
record ID.

User-Key Extension of Journal Records with ID 00:

25 (19) 25 CL25' vvvvJOURNAL A INIT' or
CL25' vvvvJOURNAL B INIT'
CL25'SWITCH A TO B FDBK=xx '

The placeholder vvvv applies to VSE only and represents the available space in
bytes.

User-Key Extension of Journal Records with IDs 04, 05, 06, 07, 08, 09, 10, 11, 13:

28 (1C) 4 Journal User-key
Record ID extension
--------- ---------

04 'SON '
05 'SOFF'
06 'FSEL'
07 'ONL '
08 'INIT'
09 'TERM'
10 'CHPW'
11 'INV*'
13 'FNT '

Appendix A. Journal Record Layouts 187

Table 2. Journal Record Layouts (continued)

Offset
in Decimal
(in Hex)

Length
in Bytes

Description

34 (22) 4 For journal records with ID = 07, request:

'ADD '
'DSP '
'LST ' or 'LST1'
'CHG '
'DEL '
'UNLK'

50 (32) 4 Length field showing the length of data that follows from this point:
For journal data smaller than 32767 bytes, the length value is contained in the
first 2 bytes of this field; the remaining 2 bytes are reserved.
For journal data larger than 32767 bytes, the first byte is set to X'80'. The length
value is contained in the remaining 3 bytes of this field.

54 (36) - Begin of the MERVA ESA journal data. The data that follows depends on the journal
record ID.

For journal record ID 00, the data part is used only for switch records to fill the
remaining space in the last control interval.

Records with Journal Record IDs 02 and 03:

54 (36) 13 Journal
Record ID Value
--------- --------------

02 'MERVA STARTUP'
03 'MERVA STOP '

Records with Journal Record IDs 04, 05, 06, 07, 08, 09, 10, 11, 13 show the
DSLNUSR Parameter List from Offset 54 as follows:

54 (36) 1 Type code

55 (37) 1 Online Maintenance request code

56 (38) 1 DSLNUSR return code

57 (39) 1 Reserved

58 (3A) 2 Reserved

60 (3C) 2 DSLNUSR reason code

62 (3E) 8 User ID (of updating/requesting user)

70 (46) 8 User ID of update/display (ID = 07)

78 (4E) 8 Function name (ID = 06, Function selection)
Logical terminal name (ID = 04, Signon)
Next user ID in a list (ID = 07, List)
Next function table entry name (ID = 12, FNT)

86 (56) 4 Signon sequence number binary

90 (5A) 4 Reserved

Records with Journal Record ID 12:

50 (32) 2 Length field showing the length of data that follows from this point

52 (34) 2 Reserved

54 (36) 8 Name of the General File as defined with the DAT parameter of the DSLFLT macro.

62 (3E) 8 Update function ADD, REPLACE or DELETE padded with blanks.

188 Concepts and Components

Table 2. Journal Record Layouts (continued)

Offset
in Decimal
(in Hex)

Length
in Bytes

Description

70 (46) * The data of the General File record. This data is described in the message control
block defined by the MSGID parameter of the DSLFLT macro. The data does not
start with a length field.

For the MERVA ESA Nicknames File, the data is described in “Appendix B. Layout
of the MERVA ESA Nicknames File” on page 195.

For the SWIFT Correspondents File, the data is described in “Appendix D. Layout of
the SWIFT Correspondents File” on page 199.

Records with Journal Record ID 14:

54 (36) 8 User ID of MERVA ESA operator

62 (3E) 34 Origin ID of MERVA ESA operator

96 (60) 2 Length of the command part (CL)

98 (62) 2 Reserved

100 (64) CL-4 Command with a length of CL - 4

The commands and responses are journaled with their actual lengths. The offsets of
the subsequent fields depend on the length of the command.

96 (60) +CL 2 Length of the response part (RL)

96 (64) +CL+2 2 Reserved

96 (64) +CL+4 RL-4 Response with a length of RL - 4

Records with Journal Record ID 16:

50 (32) 2 Length of the unsolicited operator message (LU)

52 (34) 2 Reserved

54 (36) LU-4 Unsolicited operator message with a length of LU - 4

Records with Journal Record ID 17 (Queue Trace):

54 (36) 148 Queue parameter list with the layout shown by a DSLQMG MF=L macro as it is
given back to the caller, but without the queue parameter list extension.

202 (CA) 2 Length of queue element even if not shown for QTRACE=SMALL in DSLPRM

204 (CC) 2 Reserved

206 (CE) 2 Length of the queue element prefix as it is also stored in the queue data set with the
queue element. This length varies with the number of queues in which a queue
element was originally stored.

208 (D0) 2 Reserved

210 (D2) 2 Number of queues (1 to 12) in which the queue element was originally stored.

212 (D4) 2 Number of queues (1 to 12) in which the queue element is still stored.

214 (D6) 2 Length of all unique message references (UMRs) of this queue element. This length
is a multiple of 32.

216 (D8) 1 'L' to indicate that the queue element is for a large message, and the message data is
stored in the large message cluster (LMC). Binary zeros if the queue element is for a
normal message.

217 (D9) 1 Reserved

218 (DA) 8 Name of the original queue for automatic delete and restart.

226 (E2) 4 Queue sequence number of the original queue for automatic delete and restart.

Appendix A. Journal Record Layouts 189

Table 2. Journal Record Layouts (continued)

Offset
in Decimal
(in Hex)

Length
in Bytes

Description

230 (E6) 8 Reserved

238 (EE) 64 to 768 Queue descriptors of the queue element. There can be 1 to 12 queue descriptors as
indicated by the original number of queues on offset 210 (D2).

Each queue descriptor has the following format:

8 bytes queue name (function)
4 bytes queue sequence number
1 byte status (x'80' indicates MODIF=WRTBACK was used)
3 bytes reserved
24 bytes key 1
24 bytes key 2

nnn 2 Block length of the queue element data including the UMRs. The offset nnn depends
on the number of queue descriptors. From here, the data is only available if
QTRACE=LARGE was specified in DSLPRM.

nnn+2 2 Reserved

nnn+4 2 Data length of the queue element data including the UMRs. This is the block length
minus 4.

nnn+6 2 Reserved

nnn+8 0 to n*32 Unique message references of the queue element in the length indicated by the UMR
length field on offset 214 (D6). Each UMR is 32 bytes long and starts with the 4
characters MUMR.

mmm 2 Block length of the queue element data without the UMRs. The offset mmm depends
on the offset nnn and the number of UMRs.

mmm+2 2 Reserved

mmm+4 2 Data length of the queue element data without the UMRs. This is the block length
minus 4.

mmm+6 2 Reserved

mmm+8 * The message data in the length (minus 4) indicated at offset mmm+4. The message
data can be in the MERVA ESA TOF format, or the status information of a large
message, or any other contents.

Records with Journal Record ID 18 (Debugging Trace):

54 (36) 2 Reserved

56 (38) 8 Time stamp indicating when this trace block was started.

64 (40) 32 CL32' **** MERVA TRACE TABLE **** '

96 (60) 32 Trace table header of the particular program

128 (80) * Trace table entries until the end of the journal record The format of the debugging
trace table entries is described in the MERVA for ESA Diagnosis Guide.

Records with Journal Record ID 19 (Routing Trace):

54 (36) 10 Reserved

64 (40) 32 CL32' ROUTING TRACE FOR table ' table is replaced by the name of the routing
table which is traced

96 (60) * Routing trace table entries of 32 bytes each as described in “Appendix G. Layout of
the Routing Trace Entries” on page 209.

Records with Journal Record ID 1A (Queue Trace DB2):

190 Concepts and Components

Table 2. Journal Record Layouts (continued)

Offset
in Decimal
(in Hex)

Length
in Bytes

Description

54 (36) 148 Queue parameter list with the layout shown by a DSLQMG MF=L macro as it is
given back to the caller, but without the queue parameter list extension.

202 (CA) 24 DB2 I/O module return information

From here, the data is only available if QTRACE=LARGE was specified in DSLPRM.

The return information has the following format:

4 bytes access method (DB2)
8 bytes I/O module name
5 bytes debug information (last statement)
1 byte I/O module return code
1 byte I/O module reason code
1 byte trigger status for backref function

X'80' element inserted (ECB)
X'40' element inserted (Trx)

4 bytes SQL code

226 (E2) 984 (12*82) 12 queue descriptors

Each queue descriptor has the following format:

8 bytes function name
4 bytes QSN
8 bytes key1 fieldname
24 bytes key1 value
8 bytes key2 fieldname
24 bytes key2 value
2 bytes partition ID
1 byte queue status byte 1 (corresponds to FNTQUEST)
1 byte queue status byte 2 (corresponds to FNTQUST2)
1 byte queue status byte 3

X'04' extra keys
1 byte trigger status

X'80' element inserted (ECB)
X'40' element inserted (Trx)

1210 (4BA) 4 Message buffer prefix

1214 (4BE) 2 Message data length including the UMRs and the length field.

1216 (4C0) 2 Reserved

1218 (4C2) 0 to n*32 Unique message references of the queue element. Each UMR is 32 bytes long and
starts with the 4 characters MUMR.

mmm 2 Block length of the message data without the UMRs. The offset mmm depends on
the number of UMRs.

mmm+2 2 Reserved

mmm+4 2 Data length of the message data without the UMRs + 4.

mmm+6 2 Reserved

mmm+8 * The message data in the length (minus 4) indicated at offset mmm+4. The message
data can be in the MERVA ESA TOF format, or any other contents.

Records with Journal Record IDs 50, 51:

50 (32) 2 Length of the SWIFT or acknowledgment message (ML)

52 (34) 2 Reserved

54 (36) ML-4 The SWIFT or acknowledgment message with a length of ML - 4. The basic and
application headers must be used to determine the APDU and message type.

Appendix A. Journal Record Layouts 191

Table 2. Journal Record Layouts (continued)

Offset
in Decimal
(in Hex)

Length
in Bytes

Description

Records with Journal Record ID 5F:

50 (32) 2 Length field showing the length of data that follows from this point

52 (34) 2 Reserved

54 (36) 8 User ID of updating user

62 (3E) 34 Origin ID of updating user

96 (60) 1 Update function for DWSAUTP. These are the same values as defined for the field
AUTPUPDF in the DWSAUT MF=L macro expansion.

97 (61) 8 Home destination for update

105 (69) 3 Blanks

108 (6C) 8 Corresponding destination for update

116 (74) 3 Blanks

119 (77) * Repetition of the sequence of fields from offset 97 (61) to offset 119 (77) for generic
delete and exchange as indicated by the length field on offset 50 (34).

Records with Journal Record IDs 70, 71, 72, 73, 74, 78:

These records of MERVA Link use the user-key extension on offset 25 as follows:

25 (19) 2 Message class (ID 78 only)

27 (1B) 1 Reserved

28 (1C) 4 Message sequence number

32 (20) 8 Application support process (ASP) name

40 (28) 10 Reserved

50 (32) 4 Journal record data length (JRDL in the format LL00 or LLLL)

Records with Journal Record IDs 70 and 72 (outgoing or incoming application
message):

54 (36) 2 Length of the MERVA Link header (HL)

56 (38) 2 Header ID 0120

58 (3A) HL-4 Header data

54 (36) +HL 4 Body part ID 00008122 or 00008123

54 (36) +HL
+4

4 Body part data length (DL)

54 (36) +HL
+8

DL-4 Message text (body part data)

Records with Journal Record IDs 71 and 73 (outgoing or incoming
acknowledgment message):

54 (36) 2 Length of the MERVA Link acknowledgment message (SL)

56 (38) 2 Status report ID 0122

58 (3A) SL-4 Acknowledgment message data

Records with Journal Record ID 74 (incoming delivery report):

54 (36) 2 Length of the MERVA Link delivery report (RL)

56 (38) 2 Delivery report ID 0111

58 (3A) RL-4 Delivery report data

192 Concepts and Components

Table 2. Journal Record Layouts (continued)

Offset
in Decimal
(in Hex)

Length
in Bytes

Description

Records with Journal Record ID 78 (recovered in-process (IP) message in the
MERVA ESA queue format):

54 (36) JRDL-4 Data of the queue buffer starting with *DSLTOF$

Records with Journal Record ID 7F (MERVA Link control command and response):

25 (19) 25 Reserved

54 (36) 8 User ID of the MERVA ESA operator

62 (3E) 34 Origin ID of the MERVA ESA operator

96 (60) 2 MERVA Link control command length (CL = X'001C')

98 (62) 2 Reserved

100 (64) 24 MERVA Link control command

124 (7C) 2 Length of response (RL)

126 (7E) 2 Reserved

128 (80) RL-4 Response data

User-Key Extension of Journal Records with IDs 90, 91, 92, 97, 98:

25 (19) 24 Message identifier field MsgId from the MQI message descriptor control block
MQMD.

49 (31) 1 Reserved

User-Key Extension of Journal Records with IDs 99, 9C, 9D, 9E, 9F:

25 (19) 4 Journal
Record ID Value
--------- ---------

99 'XACK'
9C 'XEXC'
9D 'XCOA'
9E 'XCOD'
9F 'XUNS'

29 (1D) 20 Bytes 5 to 24 of the message identifier field MsgId from the MQI message descriptor
control block MQMD.

49 (31) 1 Reserved

Records with Journal Record IDs 90, 91, 92, 97, 98, 99, 9C, 9D, 9E, 9F:

50 (32) 4 Journal record data length (JRDL in the format LL00 or LLLL)

54 (36) JRDL-4 The application message data of the MQI message type

Appendix A. Journal Record Layouts 193

194 Concepts and Components

Appendix B. Layout of the MERVA ESA Nicknames File

The layout of the MERVA ESA Nicknames File is defined in the message control
block (MCB) DSL0CORN.The MCB also describes how a record is displayed
during online maintenance using the MERVA ESA General File Maintenance, and
how it is printed when the file is listed using the MERVA ESA utility program
DSLFLUT.

The records of the MERVA ESA Nicknames File have a fixed length of 304 bytes.
Table 3 summarizes the format of the Nicknames File.

Table 3. Format of the MERVA ESA Nicknames File
Offset Decimal

(Hex) Length (Bytes) Field Name Description

0 (0) 2 Record length field

2 (2) 2 Reserved

4 (4) 24 DSLCORID Correspondents Identifier

28 (1C) 124 DSLBLANK Reserved (blanks)

152 (98) 26 DSLFLCUP Creation Stamp of the format:

UUUUUUUU User ID 8 bytes
00 Reserved 2 bytes
YY/MM/DD Date 8 bytes
HH:MM:SS Time 8 bytes

178 (B2) 26 DSLFLUP Update Stamp of the format:

UUUUUUUU User ID 8 bytes
00 Reserved 2 bytes
YY/MM/DD Date 8 bytes
HH:MM:SS Time 8 bytes

204 (CC) 6 Reserved

210 (D2) 32 DSLCORN Key of record (search field)

210 (D2) 8 DSLCORNO Owner prefix of key

218 (DA) 24 DSLCORNN Nickname of key

242 (F2) 62 DSLBLANK Reserved (blanks)

The first 4 bytes (record length field and 2 bytes reserved) are not defined in the
MCB but added by the MERVA ESA message format services (DSLMMFS).

© Copyright IBM Corp. 1987, 2001 195

196 Concepts and Components

Appendix C. Layout of the Currency Code File

The layout of the Currency Code File is defined in the message control block
(MCB) DWSSCUR.The MCB also describes how a record is displayed during
online maintenance using the MERVA ESA General File Maintenance, and how it
is printed when the file is listed using the MERVA ESAutility program DSLFLUT.
In addition, the MCB defines the layout of the report listing when loading the file
using the SWIFT Link utility program DWSCURUT.

The records of the Currency Code File have a fixed length of 1622 bytes.

Table 4 summarizes the format of the Currency Code File.

Table 4. Format of the Currency Code File
Offset Decimal

(Hex) Length (Bytes) Field Name Description

0 (0) 2 Record length field
2 (2) 2 Reserved
4 (4) 3 DWSCURID Key: Currency’s Identifier
7 (7) 70 DWSCURNM Key: Currency Name
77 (4D) 1 DWSCURF Key: Maximum Length of Fraction
78 (4E) 2 DWSCURC01 Key: Country Code of 1st country using the currency
80 (50) 70 DWSCURN01 Key: Country Name of 1st country using the currency
150 (96) 2 DWSCURC02 Key: Country Code of 2nd country using the currency
152 (98) 70 DWSCURN02 Key: Country Name of 2nd country using the currency
222 (DE) 2 DWSCURC03 Key: Country Code of 3rd country using the currency
224 (E0) 70 DWSCURN03 Key: Country Name of 3rd country using the currency
294 (126) 2 DWSCURC04 Key: Country Code of 4th country using the currency
296 (128) 70 DWSCURN04 Key: Country Name of 4th country using the currency
366 (16E) 2 DWSCURC05 Key: Country Code of 5th country using the currency
368 (170) 70 DWSCURN05 Key: Country Name of 5th country using the currency
438 (1B6) 2 DWSCURC06 Key: Country Code of 6th country using the currency
440 (1B8) 70 DWSCURN06 Key: Country Name of 6th country using the currency
510 (1FE) 2 DWSCURC07 Key: Country Code of 7th country using the currency
512 (200) 70 DWSCURN07 Key: Country Name of 7th country using the currency
582 (246) 2 DWSCURC08 Key: Country Code of 8th country using the currency
584 (248) 70 DWSCURN08 Key: Country Name of 8th country using the currency
654 (28E) 2 DWSCURC09 Key: Country Code of 9th country using the currency
656 (290) 70 DWSCURN09 Key: Country Name of 9th country using the currency
726 (2D6) 2 DWSCURC10 Key: Country Code of 10th country using the currency
728 (2D8) 70 DWSCURN10 Key: Country Name of 10th country using the

currency
798 (31E) 2 DWSCURC11 Key: Country Code of 11th country using the currency
800 (320) 70 DWSCURN11 Key: Country Name of 11th country using the

currency
870 (366) 2 DWSCURC12 Key: Country Code of 12th country using the currency
872 (368) 70 DWSCURN12 Key: Country Name of 12th country using the

currency
942 (3AE) 2 DWSCURC13 Key: Country Code of 13th country using the currency
944 (3B0) 70 DWSCURN13 Key: Country Name of 13th country using the

currency
1014 (3F6) 2 DWSCURC14 Key: Country Code of 14th country using the currency

© Copyright IBM Corp. 1987, 2001 197

Table 4. Format of the Currency Code File (continued)
Offset Decimal

(Hex) Length (Bytes) Field Name Description

1016 (3F8) 70 DWSCURN14 Key: Country Name of 14th country using the
currency

1086 (43E) 2 DWSCURC15 Key: Country Code of 15th country using the currency
1088 (440) 70 DWSCURN15 Key: Country Name of 15th country using the

currency
1158 (486) 2 DWSCURC16 Key: Country Code of 16th country using the currency
1160 (488) 70 DWSCURN16 Key: Country Name of 16th country using the

currency
1230 (4CE) 2 DWSCURC17 Key: Country Code of 17th country using the currency
1232 (4D0) 70 DWSCURN17 Key: Country Name of 17th country using the

currency
1302 (516) 2 DWSCURC18 Key: Country Code of 18th country using the currency
1304 (518) 70 DWSCURN18 Key: Country Name of 18th country using the

currency
1374 (55E) 2 DWSCURC19 Key: Country Code of 19th country using the currency
1376 (560) 70 DWSCURN19 Key: Country Name of 19th country using the

currency
1446 (5A6) 2 DWSCURC20 Key: Country Code of 20th country using the currency
1448 (5A8) 70 DWSCURN14 Key: Country Name of 20th country using the

currency
1518 (5EE) 26 DSLFLCUP Creation Stamp of the format:

UUUUUUUU User ID 8 bytes
00 Reserved 2 bytes
YY/MM/DD Date 8 bytes
HH:MM:SS: Time 8 bytes

1544 (608) 26 DSLFLUP Update Stamp of the format:

UUUUUUUU User ID 8 bytes
00 Reserved 2 bytes
YY/MM/DD Date 8 bytes
HH:MM:SS Time 8 bytes

1570 (622) 26 DWSCURIM First import stamp of the format:

DWSCURUT User ID 8 bytes
00 Reserved 2 bytes
YY/MM/DD Date 8 bytes
HH:MM:SS Time 8 bytes

1596 (63C) 26 DWSCURST Last import stamp of the format:

DWSCURST User ID 8 bytes
00 Reserved 2 bytes
YY/MM/DD Date 8 bytes
HH:MM:SS Time 8 bytes

The first 4 bytes (record length field and 2 bytes reserved) are not defined in the
MCB but added by the message format services (DSLMMFS).

198 Concepts and Components

Appendix D. Layout of the SWIFT Correspondents File

The layout of the SWIFT Correspondents File is defined in the message control
block (MCB) DWSSCOR, and is shown in Table 5.The MCB also describes how a
record is displayed during online maintenance using the MERVA ESA General File
Maintenance, and how it is printed when the file is listed using the
MERVA ESAutility program DSLFLUT. In addition, the MCB defines the layout of
the report listing when loading the file using the SWIFT Link utility program
DWSCORUT.

The records of the SWIFT Correspondents File have a fixed length of 1738 bytes.
The first 4 bytes (record length field and 2 bytes reserved) are not defined in the
MCB but added by the message format services (DSLMMFS).

Table 5. Format of the SWIFT Correspondents File
Offset Decimal

(Hex) Length (Bytes) Field Name Description

0 (0) 2 Record length field
2 (2) 2 Reserved
4 (4) 24 DSLCORID Key: Correspondent’s Identifier
28 (1C) 26 DSLFLCUP Creation Stamp of the format:

UUUUUUUU User ID 8 bytes
00 Reserved 2 bytes
YY/MM/DD Date 8 bytes
HH:MM:SS Time 8 bytes

54 (36) 26 DSLFLUP Update Stamp of the format:

UUUUUUUUU User ID 8 bytes
00 Reserved 2 bytes
YY/MM/DD Date 8 bytes
HH:MM:SS Time 8 bytes

80 (50) 6 Reserved
86 (56) 140 DWSCORBK Correspondent’s name
86 (56) 35 DWSCORB1 Correspondent’s name line 1
121 (79) 35 DWSCORB2 Correspondent’s name line 2
156 (9C) 35 DWSCORB3 Correspondent’s name line 3
191 (BF) 35 DWSCORB4 Correspondent’s name line 4
226 (E2) 200 DWSCORAD Correspondent’s address
226 (E2) 40 DWSCORA1 Correspondent’s address line 1
266 (10A) 40 DWSCORA2 Correspondent’s address line 2
306 (132) 40 DWSCORA3 Correspondent’s address line 3
346 (15A) 40 DWSCORA4 Correspondent’s address line 4
386 (182) 40 DWSCORA5 Correspondent’s address line 5
426 (1AA) 10 DWSCORZP ZIP code
436 (1B4) 16 DSLBLANK Reserved (blanks)
452 (1C4) 26 DWSCORIM First import stamp of the format:

DWSCORUT User ID 8 bytes
00 Reserved 2 bytes
YY/MM/DD Date 8 bytes
HH:MM:SS Time 8 bytes

478 (1DE) 26 DWSCORST Last import stamp of the format:

DWSCORUT User ID 8 bytes
00 Reserved 2 bytes
YY/MM/DD Date 8 bytes
HH:MM:SS Time 8 bytes

© Copyright IBM Corp. 1987, 2001 199

Table 5. Format of the SWIFT Correspondents File (continued)
Offset Decimal

(Hex) Length (Bytes) Field Name Description

504 (1F8) 1234 DWSCORBE Unedited data from BIC Directory Update Tape
504 (1F8) 35 DWSCORI1 Institution Name (first part)
539 (21B) 35 DWSCORI2 Institution Name (second part)
574 (23E) 35 DWSCORI3 Institution Name (third part)
609 (261) 35 DWSCORR1 Branch Information (first part)
644 (284) 35 DWSCORR2 Branch Information (second part)
679 (2A7) 35 DWSCORC1 City Heading
714 (2CA) 4 DWSCORS1 Subtype indication
718 (2CE) 30 DWSCORV1 Value Added Services (first 10 fields)
748 (2EC) 30 DWSCORV2 Value Added Services (second 10 fields)
778 (30A) 35 DWSCORE1 Extra Information
813 (32D) 35 DWSCORP1 Physical address (first part)
848 (350) 35 DWSCORP2 Physical address (second part)
883 (373) 35 DWSCORP3 Physical address (third part)
918 (396) 35 DWSCORP4 Physical address (fourth part)
953 (3B9) 35 DWSCORL1 Location (first part)
988 (3DC) 35 DWSCORL2 Location (second part)
1023 (3FF) 35 DWSCORL3 Location (third part)
1058 (422) 35 DWSCORN1 Country Name (first part)
1093 (445) 35 DWSCORN2 Country Name (second part)
1128 (468) 35 DWSCORW1 POB Number
1163 (48B) 35 DWSCORX1 POB Location (first part)
1198 (4AE) 35 DWSCORX2 POB Location (second part)
1233 (4D1) 35 DWSCORX3 POB Location (third part)
1268 (4F4) 35 DWSCORY1 POB Country Name (first part)
1303 (517) 35 DWSCORY2 POB Country Name (second part)
1338 (53A) 400 DWSCORZ1 BIC+ fields
1338 (53A) 2 DWSCORSC Source of Info
1340 (53C) 6 DWSCORSP Special Code
1346 (542) 1 DWSCORNM Non-merged Code
1347 (543) 6 DWSCORUP Update Date
1353 (549) 4 DWSCOROR Origin of Key
1357 (54D) 8 DWSCORKY Bic+ Key
1365 (555) 6 DWSCORCH Chips UID
1371 (55B) 15 DWSCORNI National ID
1386 (56A) 6 DWSCORAC Activation Date
1392 (570) 6 DWSCORDE Deactivation Date
1398 (576) 8 DWSCORUN Undo Merge BIC+
1406 (57E) 8 DWSCORNW New BIC+ Key
1414 (586) 128 DWSCORUS User Field:
1414 (586) 43 DWSCORU1 User Field 1
1457 (5B1) 43 DWSCORU2 User Field 2
1500 (5DC) 42 DWSCORU3 User Field 3
1542 (606) 17 DWSCOR1X Cross Border 1
1559 (617) 17 DWSCOR2X Cross Border 2
1576 (628) 17 DWSCOR3X Cross Border 3
1593 (639) 17 DWSCOR4X Cross Border 4
1610 (64A) 29 DWSCOR1W X with Dates 1
1639 (667) 29 DWSCOR2W X with Dates 2
1668 (684) 70 DWSCORTR Trailer
1668 (684) 35 DWSCORT1 Trailer (first part)
1703 (6A7) 35 DWSCORT2 Trailer (second part)

200 Concepts and Components

Appendix E. Layout of the Telex Correspondents File

The layout of the Telex Correspondents File is defined in the message control block
(MCB) ENLTCORthat also describes how:
v A record is displayed during online maintenance using the general file

maintenance
v It is printed when the file is listed using the MERVA ESA utility program

DSLFLUT.

The records of the Telex Link Telex Correspondents File have a fixed length of 504
bytes. Table 6 summarizes the format of the Telex Correspondents File.

Table 6. Format of the Telex Correspondents File
Offset Decimal

(Hex) Length (Bytes) Field Name Description

0 (0) 2 Record length field
2 (2) 2 Reserved
4 (4) 24 DSLCORID Key: Correspondent’s Identifier
28 (1C) 124 DSLZERO Reserved (zeros)
152 (98) 26 DSLFLCUP Creation Stamp with the format:

UUUUUUUU User ID 8 bytes
00 Reserved 2 bytes
YY/MM/DD Date 8 bytes
HH:MM:SS Time 8 bytes

178 (B2) 26 DSLFLUP Update Stamp with the format:

UUUUUUUU User ID 8 bytes
00 Reserved 2 bytes
YY/MM/DD Date 8 bytes
HH:MM:SS Time 8 bytes

204 (CC) 6 Reserved
210 (D2) 35 ENLFLCO1 Correspondent’s address line 1
245 (F5) 35 ENLFLCO2 Correspondent’s address line 2
280 (118) 22 ENLFLNR1 First telex number
302 (12E) 22 ENLFLNR2 Second telex number
324 (144) 120 ENLFLTKY Test-key requirements of 6 bytes each; a 4-byte message

type, “Y” or “N”, and 1 reserved byte
444 (1BC) 20 ENLFLAB1 Long Answerback 1
464 (1D0) 20 ENLFLAB2 Long Answerback 2
484 (1E4) 20 DSLZERO Reserved (zeros)

The first 4 bytes (record length field and 2 reserved bytes) are not defined in the
MCB but added by the message format services (DSLMMFS).

© Copyright IBM Corp. 1987, 2001 201

202 Concepts and Components

Appendix F. Layout of the DB2 Tables

If you use queue management using DB2, the messages are stored in the following
DB2 tables:

DSLTQUEL Queue element table

DSLTQXDEF Extra-key definition table

DSLTQXKEY Queue extra-key table

DSLTQBUSY Busy table

DSLTQMSG Message table

DSLTQFUN Function control table (for example, the highest QSN used so far)

DSLTQSTAT MERVA status table

Note: The clause ″NOT NULL WITH DEFAULT″ applies only to DB2 for OS/390.

Table DSLTQUEL (Queue Element Table)
This table is used to store queue element data. It contains the following columns
(the names and descriptions of columns that comprise the primary key are shown
in bold):

Column Name Description Data Type and Additional Information

QUEUE queue name CHAR(8), NOT NULL, PRIMARY KEY

QSN queue sequence number INTEGER, NOT NULL, PRIMARY KEY
Allowed values: 1 to +2 147 483 647

KEY1FIELD key 1 field name CHAR(8), NOT NULL
This is the TOF field name, for example, SW20.

KEY1VALUE key 1 value CHAR(25), NOT NULL, NON-UNIQUE INDEX

KEY2FIELD key 2 field name CHAR(8), NOT NULL
This is the TOF field name, for example, SWBHSN.

KEY2VALUE key 2 value CHAR(25), NOT NULL, NON-UNIQUE INDEX

UMR_MERVA UMR MERVA name CHAR(8), NOT NULL

This is the name as specified for the NAME parameter of the
MERVA customization module DSLPRM.

UMR_SEQNO UMR sequence number INTEGER, NOT NULL
Allowed values: 1 to +99 999 999

Value is 0 for messages written with the modifier NOUMR, for
example, messages in the queue SLSLTT.

UMR_DATE UMR date DATE, NOT NULL WITH DEFAULT
YYYY-MM-DD (int. 4 bytes, ext. 10 characters)

UMR_TIME UMR time TIME, NOT NULL WITH DEFAULT
HH.MM.SS (internally 3 bytes, externally 8 characters)

PUTOPERATION PUT operation method CHAR(1), NOT NULL WITH DEFAULT ’S’
M = multiple PUT
S = single PUT

© Copyright IBM Corp. 1987, 2001 203

Column Name Description Data Type and Additional Information

WRTBACK_IND write-back indicator CHAR(1), NOT NULL WITH DEFAULT ’N’
N = ’not written back’
Y = ’written back’

PARTID part ID CHAR(2), NOT NULL
Part ID of this message in DSLTQMSG.

MSGTABLENO message number DECIMAL(13,0), NOT NULL
Number of this message in DSLTQMSG.

DEPTH highest sequence number SMALLINT, NOT NULL

This is the highest sequence number of this message in
DSLTQMSG. If set to 1, the message is not split, and the message
length must be less than or equal to 4000 characters.

Note: The key values are stored with trailing hexadecimal zeros and the 25th (last)
character is always hexadecimal zero.

Table DSLTQXDEF (Extra-Key Definition Table)
This table is used to define the extra keys for a queue. It contains the following
columns (the names and descriptions of columns that comprise the primary key
are shown in bold):

Column Name Description Data Type and Additional Information

QUEUE queue name CHAR(8), NOT NULL, PRIMARY KEY

KEYNO key number SMALLINT, NOT NULL, PRIMARY KEY

Because MERVA already uses key numbers 1 and 2, it is
recommended that you start with key number 3.

ACTIVE active indicator CHAR(1), NOT NULL WITH DEFAULT ’Y’
N = not active
Y = active

KEYFIELD key field name CHAR(8), NOT NULL
The TOF field name, for example SW20.

STARTPOS start position in the TOF
field

SMALLINT, NOT NULL

LENGTH key length SMALLINT, NOT NULL
Allowed values: 1 to 48

KEYDESC description VARCHAR(24), NOT NULL WITH DEFAULT
Description of this key field, for example ″currency code″.

CREATOR creator of the extra-key
definition

CHAR(8), NOT NULL WITH DEFAULT USER

CREATEDATE creation date DATE, NOT NULL WITH DEFAULT
Date the extra-key definition was created.

CREATETIME creation time TIME, NOT NULL WITH DEFAULT
Time the extra-key definition was created.

CREATECOMMENT creator’s comment VARCHAR(200), NOT NULL WITH DEFAULT

Note: To make QUEUE and KEYFIELD the primary key is not possible, because
you might want to define the same KEYFIELD more than once as extra key,
for example, one with STARTPOS 1, and one with STARTPOS 5.

204 Concepts and Components

Table DSLTQXKEY (Queue Extra-Key Table)
This table is used to store the extra-key data. It contains the following columns (the
names and descriptions of columns that comprise the primary key are shown in
bold):

Column Name Description Data Type and Additional Information

QUEUE queue name CHAR(8), NOT NULL, PRIMARY KEY

QSN queue sequence number INTEGER, NOT NULL, PRIMARY KEY

KEYNO key number SMALLINT, NOT NULL, PRIMARY KEY

KEYFIELD key field name CHAR(8), NOT NULL, NON-UNIQUE INDEX
The TOF field name, for example SW20.

STARTPOS Start position in the TOF
field

SMALLINT, NOT NULL

LENGTH Length of the key SMALLINT, NOT NULL

KEYDESC description VARCHAR(24), NOT NULL WITH DEFAULT
Description of this key field.

KEYVALUE key value VARCHAR(48), NOT NULL, NON-UNIQUE INDEX

CREATEDATE creation date DATE, NOT NULL WITH DEFAULT
Date the extra-key definition was created.

CREATETIME creation time TIME, NOT NULL WITH DEFAULT
Time the extra-key definition was created.

CREATECOMMENT creator’s comment VARCHAR(200), NOT NULL WITH DEFAULT

Table DSLTQBUSY (Busy Table)
This table contains one entry for each message currently in use; that is, each
message that is busy. It contains the following columns (the names and
descriptions of columns that comprise the primary key are shown in bold):

Column Name Description Data Type and Additional Information

QUEUE queue name CHAR(8), NOT NULL, PRIMARY KEY

QSN queue sequence number INTEGER, NOT NULL, PRIMARY KEY
Allowed values: 1 to +2 147 483 647

SERVICE Service Indicator CHAR(1), NOT NULL
C = central service
D = direct service

PROGNAME Program Name
(DSLQMDIO)

CHAR(8), NOT NULL

BUSY_TIMESTAMP BUSY Timestamp TIMESTAMP, NOT NULL WITH DEFAULT
YYYY-MM-DD-HH.MM.SS.TTTTTT
(internally 10 bytes, externally 26 characters)

Note: Every time MERVA is started, all central entries are cleared with a DELETE
FROM DSLTQBUSY WHERE SERVICE = 'C'.

Appendix F. Layout of the DB2 Tables 205

Table DSLTQMSG (Message Table)
This table is used to store the message data. It contains the following columns (the
names and descriptions of columns that comprise the primary key are shown in
bold):

Column Name Description Data Type and Additional Information

PARTID Partition ID CHAR(2), NOT NULL, PRIMARY KEY

MSGTABLENO message number DECIMAL(13,0), NOT NULL, PRIMARY KEY
Note: The MSGTABLENO is UNIQUE.

SEQNO message sequence
number

SMALLINT, NOT NULL, PRIMARY KEY
Allowed values: 1 to +32767

MESSAGE message VARCHAR(4000), NOT NULL

Table DSLTQFUN (Function Control Table)
This table is used to store control information about queues. It contains the
following columns (the names and descriptions of columns that comprise the
primary key are shown in bold):

Column Name Description Data Type and Additional Information

QUEUE queue name CHAR(8), NOT NULL, PRIMARY KEY

MAXQSN Highest QSN used so far
in this queue

INTEGER, NOT NULL
Allowed values: 1 to +2 147 483 647

STATUS Queue Status CHAR(6), NOT NULL
HOLD or NOHOLD

TRIGGERECB trigger insert (ECB) CHAR(1), NOT NULL
Y = set flag when message is inserted in queue
N = do not set flag when message is inserted in queue

TRIGGERINS trigger insert (TRX) CHAR(1), NOT NULL
Y = set flag when message is inserted in queue
N = do not set flag when message is inserted in queue

Table DSLTQSTAT (MERVA Status Table)
This table is used to store message number (MSGTABLENO) and UMR of the
message that was last added to the queue. It contains the following columns:

Column Name Description Data Type and Additional Information

MSGTABLENO message number DECIMAL(13,0), NOT NULL
Message number of the last message added to the queue. This
will be the highest message number in the queue.

UMR_MERVA MERVA name CHAR(8), NOT NULL
Identifier portion (MERVA name) of the UMR of the last message
added to the queue.

UMR_SEQNO sequence number INTEGER, NOT NULL
Sequence number portion of the UMR of the last message added
to the queue.

UMR_DATE date DATE, NOT NULL WITH DEFAULT YYYY-MM-DD
(internally 4 bytes, externally 10 characters)
Date portion of the UMR of the last message added to the queue.

206 Concepts and Components

Column Name Description Data Type and Additional Information

UMR_TIME time TIME, NOT NULL WITH DEFAULT HH.MM.SS
(internally 3 bytes, externally 8 characters)
Time portion of the UMR of the last message added to the
queue.

Appendix F. Layout of the DB2 Tables 207

208 Concepts and Components

Appendix G. Layout of the Routing Trace Entries

This appendix describes the layout of each particular routing trace entry.
Uppercase letters appear in the routing trace entries as shown; italics are variables
and are explained for each individual routing trace entry.

Routing Trace Header
The routing trace header is always the first entry of a routing trace.

Format:
ROUTING TRACE FOR rt-name

Explanation:

rt-name is the name of the routing table as coded in its first DSLROUTE macro. It
shows which routing table is processed.

Routing Trace DEFINE Entry

Format:
nnn DEF var-name
tof-name result

Explanations:

nnn
Is the number of the routing table entry processed.

DEF
Shows that a DSLROUTE TYPE=DEFINE is processed.

var-name
Is the name of the variable field to be defined.

tof-name
Is the name of the TOF field from which the variable field is to be defined. If a
literal value is used instead of a TOF field name, then LITERAL is shown
instead of a TOF field name.

result
Is the result of the definition. It can have the following values:

FOUND The TOF field was found and contained enough data about the
DISP and LENGTH parameters to have at least 1 byte of data
for the variable field. In this case, the DEF trace entry is
followed by another routing trace entry showing the data
found and padded to 32 bytes with binary zeros if necessary.

EMPTY The TOF field was found but was either empty or did not
contain enough data about the DISP and LENGTH parameters
to have at least 1 byte of data for the variable field.

TNOTFD The TOF field was not found, that is, the MERVA ESA TOF
supervisor returned reason code 3.

© Copyright IBM Corp. 1987, 2001 209

RC=nnn The TOF field was not found for the reason indicated by nnn.
See the MERVA for ESA Messages and Codes for the explanation
of the reason codes of DSLTOFSV.

VNOTFD The TOF field was found, but this was the definition of the
21st variable field name, and only 20 field names are possible.

Routing Trace TEST Entry

Format:
nnn TST operand1
operand2 result

Explanations:

nnn
Is the number of the routing table entry processed.

TST
Shows that a DSLROUTE TYPE=TEST is processed.

operand1
Is the first operand of the test. It is either the name of a variable field or
LITERAL when a literal is the first operand.

operand2
Is the second operand of the test. It is either the name of a variable field or
LITERAL when a literal is the second operand.

result
Is the result of the test. It can have the following values:

TRUE Depending on the test operator and the modifier (not shown in
the routing trace entry), all variable fields have been found,
compared, and the condition is true; that is, the TRUE label is
taken for further processing of the routing table. Two
additional routing trace entries follow showing the data
compared. For the AMOUNT modifier, the operands are shown
after adjustment to the decimal comma.

FALSE Depending on the test operator and the modifier, all variable
fields have been found, compared, and the condition is false
(that is, the FALSE label is taken for further processing of the
routing table). Two additional routing trace entries follow,
showing the data compared. For the AMOUNT modifier, the
operands are shown after adjustment to the decimal comma.

VNOTFD A variable field name was specified but it was not defined
successfully before the test, or it was dropped before the test.
Ensure that the FOUND, NOTFND, and EMPTY labels are
always used correctly during DEFINE.

OVERFL The AMOUNT modifier was specified, but the two operands
could not be adjusted with their significant digits before and
after the decimal comma within 32 bytes. The same processing
takes place as for FALSE.

210 Concepts and Components

Routing Trace SET Entry

Format:
nnn SET functn-name-parts
result

Explanations:

nnn
Is the number of the routing table entry processed.

SET
Shows that a DSLROUTE TYPE=SET was processed.

functn-name-parts
Show the parts (up to 8) of which a target function can be composed. See the
source program or the assembler listing for which parts are to be composed.
The SET entry shows each part separated from the other by a blank. The
separating blanks are omitted when a target function is given to DSLQMGT.

result
Is the result of the set. It can have the following values:

(blank) Set was successful with no error.

TRUNC Set was successful, but the concatenated variables and literals
used were longer than 8 characters. Only 8 characters in the set
will be used; characters in excess of this are ignored.

FNOTFD Set was successful but the target set was not found in the
function table. None of the targets found until then is used,
and processing continues with the FINAL statement.

VNOTFD A variable field name was specified but it was not defined
successfully before the set, or has been dropped before the set.
Ensure that always the FOUND, NOTFND, and EMPTY labels
are used correctly during DEFINE.

TOMANY An attempt was made to define a fourth target function. The
target function is ignored, and processing proceeds with the
FINAL statement.

If a routing error occurs during the evaluation of the routing table, MERVA
routes the message to the queue specified in the NEXT parameter of the
function table entry. If no NEXT parameter is specified, it routes the message
to the target queue specified in the TARGET parameter of the TYPE=FINAL
statement of the DSLROUTE macro.

Routing Trace DROP Entry

Format:
nnn DRP var-name
var-name

Explanations:

nnn
Is the number of the routing table entry processed.

Appendix G. Layout of the Routing Trace Entries 211

DRP
Shows that a DSLROUTE TYPE=DROP was processed.

var-name
Shows the variable field names that are found and dropped. For DROP ALL, it
shows which variable names have been defined successfully. For DROP with a
list of field names, it shows only those that have been found. When more than
two variable field names are dropped, as many continuation trace entries
follow as are necessary to show all field names, with the sequence number and
the DRP indication omitted.

Routing Trace FINAL Entries
Each routing trace has three final entries:
1. The FIN entry

Format:
nnn FIN orign function

Explanations:

nnn
Is the number of the FINAL routing table entry.

FIN
Shows that a DSLROUTE TYPE=FINAL was processed.

orign
Is used only when an error occurs that leads to the use of the NEXT or
FINAL function, and orign shows this with the words NEXT or FINAL.
Orign is blank when no errors have been detected.

function
Is the target function used from NEXT or FINAL if orign is not blank.

2. The summary of target functions

Format:
TARG= target1 target2 target3

target4 target5 target6

target7 target8
target9

target10 target11 target12

Explanations:

TARG=
Shows the final summary of routing target functions
evaluated during this routing process. All target functions
shown here have been shown earlier with SET routing trace
entries. Depending on the routing result, none, or one to
twelve target functions can be shown indicated by target1 to
target12.

3. The return and reason code

Format:
RETCODE = r REASON = rc

212 Concepts and Components

Explanations:

r Shows the return code of DSLRTNSC. See the MERVA for
ESA Messages and Codes for the explanation of the return
codes.

rc Shows the reason code of DSLRTNSC. See the MERVA for
ESA Messages and Codes for the explanation of the reason
codes.

Appendix G. Layout of the Routing Trace Entries 213

214 Concepts and Components

Appendix H. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Deutschland
Informationssysteme GmbH
Department 3982
Pascalstrasse 100

© Copyright IBM Corp. 1987, 2001 215

70569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement
or any equivalent agreement between us.

The following paragraph does apply to the US only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Programming Interface Information
This book is intended to help the customer to understand MERVA. This book
primarily documents Product-Sensitive Programming Interface and Associated
Guidance Information provided by MERVA.

General-Use Programming Interface allow the customer to write programs that
obtain the services of MERVA.

However, this book also documents Product-Sensitive Programming Interface and
Associated Guidance Information.

Product-Sensitive programming interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of this IBM software product. Use of such interfaces creates dependencies
on the detailed design or implementation of the IBM software product.
Product-Sensitive programming interfaces should be used only for these
specialized purposes. Because of their dependencies on detailed design and
implementation, it is to be expected that programs written to such interfaces may
need to be changed in order to run with new product releases or versions, or as a
result of service.

216 Concepts and Components

Product-Sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section by the following marking:

Product-Sensitive Programming Interface

Product-Sensitive Programming Interface and Associated Guidance Information...

End of Product-Sensitive Programming Interface

Trademarks
The following terms are trademarks of the IBM Corporation in the United States,
other countries, or both:
v Advanced Peer-to-Peer Networking
v AIX
v APPN
v C/370
v CICS
v CICS/ESA
v CICS/MVS
v CICS/VSE
v DB2
v Distributed Relational Database Architecture
v DRDA
v eNetwork
v IBM
v IMS/ESA
v Language Environment
v MQSeries
v MVS
v MVS/ESA
v MVS/XA
v OS/2
v OS/390
v RACF
v VSE/ESA
v VTAM

Workstation (AWS) and Directory Services Application (DSA) are trademarks of
S.W.I.F.T., La Hulpe in Belgium.

Pentium is a trademark of Intel Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by IBM
Corporation under license.

C-bus is a trademark of Corollary, Inc.

Appendix H. Notices 217

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks or
registered trademarks of Microsoft Corporation in the United States, other
countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

218 Concepts and Components

Glossary of Terms and Abbreviations

This glossary defines terms as they are used in
this book. If you do not find the terms you are
looking for, refer to the IBM Dictionary of
Computing, New York: McGraw-Hill, and the
S.W.I.F.T. User Handbook.

A
ACB. Access method control block.

ACC. MERVA Link USS application control command
application. It provides a means of operating MERVA
Link USS in USS shell and MVS batch environments.

Access method control block (ACB). A control block
that links an application program to VSAM or VTAM.

ACD. MERVA Link USS application control daemon.

ACT. MERVA Link USS application control table.

address. See SWIFT address.

address expansion. The process by which the full
name of a financial institution is obtained using the
SWIFT address, telex correspondent’s address, or a
nickname.

AMPDU. Application message protocol data unit,
which is defined in the MERVA Link P1 protocol, and
consists of an envelope and its content.

answerback. In telex, the response from the dialed
correspondent to the WHO R U signal.

answerback code. A group of up to 6 letters following
or contained in the answerback. It is used to check the
answerback.

APC. Application control.

API. Application programming interface.

APPC. Advanced Program-to-Program
Communication based on SNA LU 6.2 protocols.

APPL. A VTAM definition statement used to define a
VTAM application program.

application programming interface (API). An
interface that programs can use to exchange data.

application support filter (ASF). In MERVA Link, a
user-written program that can control and modify any
data exchanged between the Application Support Layer
and the Message Transfer Layer.

application support process (ASP). An executing
instance of an application support program. Each
application support process is associated with an ASP
entry in the partner table. An ASP that handles
outgoing messages is a sending ASP; one that handles
incoming messages is a receiving ASP.

application support program (ASP). In MERVA Link,
a program that exchanges messages and reports with a
specific remote partener ASP. These two programs must
agree on which conversation protocol they are to use.

ASCII. American Standard Code for Information
Interchange. The standard code, using a coded set
consisting of 7-bit coded characters (8 bits including
parity check), used for information interchange among
data processing systems, data communication systems,
and associated equipment. The ASCII set consists of
control characters and graphic characters.

ASF. Application support filter.

ASF. (1) Application support process. (2) Application
support program.

ASPDU. Application support protocol data unit,
which is defined in the MERVA Link P2 protocol.

authentication. The SWIFT security check used to
ensure that a message has not changed during
transmission, and that it was sent by an authorized
sender.

authenticator key. A set of alphanumeric characters
used for the authentication of a message sent via the
SWIFT network.

authenticator-key file. The file that stores the keys
used during the authentication of a message. The file
contains a record for each of your financial institution’s
correspondents.

B
Back-to-Back (BTB). A MERVA Link function that
enables ASPs to exchange messages in the local MERVA
Link node without using data communication services.

bank identifier code. A 12-character code used to
identify a bank within the SWIFT network. Also called
a SWIFT address. The code consists of the following
subcodes:
v The bank code (4 characters)
v The ISO country code (2 characters)
v The location code (2 characters)
v The address extension (1 character)

© Copyright IBM Corp. 1987, 2001 219

v The branch code (3 characters) for a SWIFT user
institution, or the letters “BIC” for institutions that
are not SWIFT users.

Basic Security Manager (BSM). A component of
VSE/ESA Version 2.4 that is invoked by the System
Authorization Facility, and used to ensure signon and
transaction security.

BIC. Bank identifier code.

BIC Bankfile. A tape of bank identifier codes supplied
by S.W.I.F.T.

BIC Database Plus Tape. A tape of financial
institutions and currency codes, supplied by S.W.I.F.T.
The information is compiled from various sources and
includes national, international, and cross-border
identifiers.

BIC Directory Update Tape. A tape of bank identifier
codes and currency codes, supplied by S.W.I.F.T., with
extended information as published in the printed BIC
Directory.

body. The second part of an IM-ASPDU. It contains
the actual application data or the message text that the
IM-AMPDU transfers.

BSC. Binary synchronous control.

BSM. Basic Security Manager.

BTB. Back-to-back.

buffer. A storage area used by MERVA programs to
store a message in its internal format. A buffer has an
8-byte prefix that indicates its length.

C
CBT. SWIFT computer-based terminal.

CCSID. Coded character set identifier.

CDS. Control data set.

central service. In MERVA, a service that uses
resources that either require serialization of access, or
are only available in the MERVA nucleus.

CF message. Confirmed message. When a sending
MERVA Link system is informed of the successful
delivery of a message to the receiving application, it
routes the delivered application messages as CF
messages, that is, messages of class CF, to an ACK wait
queue or to a complete message queue.

COA. Confirm on arrival.

COD. Confirm on delivery.

coded character set identifier (CCSID). The name of a
coded set of characters and their code point
assignments.

commit. In MQSeries, to commit operations is to make
the changes on MQSeries queues permanent. After
putting one or more messages to a queue, a commit
makes them visible to other programs. After getting
one or more messages from a queue, a commit
permanently deletes them from the queue.

confirm-on-arrival (COA) report. An MQSeries report
message type created when a message is placed on that
queue. It is created by the queue manager that owns
the destination queue.

confirm-on-delivery (COD) report. An MQSeries
report message type created when an application
retrieves a message from the queue in a way that
causes the message to be deleted from the queue. It is
created by the queue manager.

control fields. In MERVA Link, fields that are part of
a MERVA message on the queue data set and of the
message in the TOF. Control fields are written to the
TOF at nesting identifier 0. Messages in SWIFT format
do not contain control fields.

correspondent. An institution to which your
institution sends and from which it receives messages.

correspondent identifier. The 11-character identifier of
the receiver of a telex message. Used as a key to
retrieve information from the Telex correspondents file.

cross-system coupling facility. See XCF.

coupling services. In a sysplex, the functions of XCF
that transfer data and status information among the
members of a group that reside in one or more of the
MVS systems in the sysplex.

couple data set. See XCF couple data set.

CTP. MERVA Link command transfer processor.

currency code file. A file containing the currency
codes, together with the name, fraction length, country
code, and country names.

D
daemon. A long-lived process that runs unattended to
perform continuous or periodic systemwide functions.

DASD. Direct access storage device.

data area. An area of a predefined length and format
on a panel in which data can be entered or displayed.
A field can consist of one or more data areas.

data element. A unit of data that, in a certain context,
is considered indivisible. In MERVA Link, a data

220 Concepts and Components

element consists of a 2-byte data element length field, a
2-byte data-element identifier field, and a field of
variable length containing the data element data.

datagram. In TCP/IP, the basic unit of information
passed across the Internet environment. This type of
message does not require a reply, and is the simplest
type of message that MQSeries supports.

data terminal equipment. That part of a data station
that serves as a data source, data link, or both, and
provides for the data communication control function
according to protocols.

DB2. A family of IBM licensed programs for relational
database management.

dead-letter queue. A queue to which a queue
manager or application sends messages that it cannot
deliver. Also called undelivered-message queue.

dial-up number. A series of digits required to
establish a connection with a remote correspondent via
the public telex network.

direct service. In MERVA, a service that uses resources
that are always available and that can be used by
several requesters at the same time.

display mode. The mode (PROMPT or NOPROMPT)
in which SWIFT messages are displayed. See PROMPT
mode and NOPROMPT mode.

distributed queue management (DQM). In MQSeries
message queuing, the setup and control of message
channels to queue managers on other systems.

DQM. Distributed queue management.

DTE. Data terminal equipment.

E
EBCDIC. Extended Binary Coded Decimal
Interchange Code. A coded character set consisting of
8-bit coded characters.

ECB. Event control block.

EDIFACT. Electronic Data Interchange for
Administration, Commerce and Transport (a United
Nations standard).

ESM. External security manager.

EUD. End-user driver.

exception report. An MQSeries report message type
that is created by a message channel agent when a
message is sent to another queue manager, but that
message cannot be delivered to the specified
destination queue.

external line format (ELF) messages. Messages that
are not fully tokenized, but are stored in a single field
in the TOF. Storing messages in ELF improves
performance, because no mapping is needed, and
checking is not performed.

external security manager (ESM). A security product
that is invoked by the System Authorization Facility.
RACF is an example of an ESM.

F
FDT. Field definition table.

field. In MERVA, a portion of a message used to enter
or display a particular type of data in a predefined
format. A field is located by its position in a message
and by its tag. A field is made up of one or more data
areas. See also data area.

field definition table (FDT). The field definition table
describes the characteristics of a field; for example, its
length and number of its data areas, and whether it is
mandatory. If the characteristics of a field change
depending on its use in a particular message, the
definition of the field in the FDT can be overridden by
the MCB specifications.

field group. One or several fields that are defined as
being a group. Because a field can occur more than
once in a message, field groups are used to distinguish
them. A name can be assigned to the field group
during message definition.

field group number. In the TOF, a number is assigned
to each field group in a message in ascending order
from 1 to 255. A particular field group can be accessed
using its field group number.

field tag. A character string used by MERVA to
identify a field in a network buffer. For example, for
SWIFT field 30, the field tag is :30:.

FIN. Financial application.

FIN-Copy. The MERVA component used for SWIFT
FIN-Copy support.

finite state machine. The theoretical base describing
the rules of a service request’s state and the conditions
to state transitions.

FMT/ESA. MERVA-to-MERVA Financial Message
Transfer/ESA.

form. A partially-filled message containing data that
can be copied for a new message of the same message
type.

G
GPA. General purpose application.

Glossary of Terms and Abbreviations 221

H
HFS. Hierarchical file system.

hierarchical file system (HFS). A system for
organizing files in a hierarchy, as in a UNIX system.
OS/390 UNIX System Services files are organized in an
HFS. All files are members of a directory, and each
directory is in turn a member of a directory at a higher
level in the HFS. The highest level in the hierarchy is
the root directory.

I
IAM. Interapplication messaging (a MERVA Link
message exchange protocol).

IM-ASPDU. Interapplication messaging application
support protocol data unit. It contains an application
message and consists of a heading and a body.

incore request queue. Another name for the request
queue to emphasize that the request queue is held in
memory instead of on a DASD.

InetD. Internet Daemon. It provides TCP/IP
communication services in the OS/390 USS
environment.

initiation queue. In MQSeries, a local queue on which
the queue manager puts trigger messages.

input message. A message that is input into the
SWIFT network. An input message has an input
header.

INTERCOPE TelexBox. This telex box supports
various national conventions for telex procedures and
protocols.

interservice communication. In MERVA ESA, a
facility that enables communication among services if
MERVA ESA is running in a multisystem environment.

intertask communication. A facility that enables
application programs to communicate with the MERVA
nucleus and so request a central service.

IP. Internet Protocol.

IP message. In-process message. A message that is in
the process of being transferred to another application.

ISC. Intersystem communication.

ISN. Input sequence number.

ISN acknowledgment. A collective term for the
various kinds of acknowledgments sent by the SWIFT
network.

ISO. International Organization for Standardization.

ITC. Intertask communication.

J
JCL. Job control language.

journal. A chronological list of records detailing
MERVA actions.

journal key. A key used to identify a record in the
journal.

journal service. A MERVA central service that
maintains the journal.

K
KB. Kilobyte (1024 bytes).

key. A character or set of characters used to identify
an item or group of items. For example, the user ID is
the key to identify a user file record.

key-sequenced data set (KSDS). A VSAM data set
whose records are loaded in key sequence and
controlled by an index.

keyword parameter. A parameter that consists of a
keyword, followed by one or more values.

KSDS. Key-sequenced data set.

L
LAK. Login acknowledgment message. This message
informs you that you have successfully logged in to the
SWIFT network.

large message. A message that is stored in the large
message cluster (LMC). The maximum length of a
message to be stored in the VSAM QDS is 31900 bytes.
Messages up to 2MB can be stored in the LMC. For
queue management using DB2 no distinction is made
between messages and large messages.

large queue element. A queue element that is larger
than the smaller of:

v The limiting value specified during the customization
of MERVA

v 32KB

LC message. Last confirmed control message. It
contains the message-sequence number of the
application or acknowledgment message that was last
confirmed; that is, for which the sending MERVA Link
system most recently received confirmation of a
successful delivery.

LDS. Logical data stream.

LMC. Large message cluster.

222 Concepts and Components

LNK. Login negative acknowledgment message. This
message indicates that the login to the SWIFT network
has failed.

local queue. In MQSeries, a queue that belongs to a
local queue manager. A local queue can contain a list of
messages waiting to be processed. Contrast with remote
queue.

local queue manager. In MQSeries, the queue
manager to which the program is connected, and that
provides message queuing services to that program.
Queue managers to which a program is not connected
are remote queue managers, even if they are running
on the same system as the program.

login. To start the connection to the SWIFT network.

LR message. Last received control message, which
contains the message-sequence number of the
application or acknowledgment message that was last
received from the partner application.

LSN. Login sequence number.

LT. See LTERM.

LTC. Logical terminal control.

LTERM. Logical terminal. Logical terminal names
have 4 characters in CICS and up to 8 characters in
IMS.

LU. A VTAM logical unit.

M
maintain system history program (MSHP). A
program used for automating and controlling various
installation, tailoring, and service activities for a VSE
system.

MCA. Message channel agent.

MCB. Message control block.

MERVA ESA. The IBM licensed program Message
Entry and Routing with Interfaces to Various
Applications for ESA.

MERVA Link. A MERVA component that can be used
to interconnect several MERVA systems.

message. A string of fields in a predefined form used
to provide or request information. See also SWIFT
financial message.

message body. The part of the message that contains
the message text.

message category. A group of messages that are
logically related within an application.

message channel. In MQSeries distributed message
queuing, a mechanism for moving messages from one
queue manager to another. A message channel
comprises two message channel agents (a sender and a
receiver) and a communication link.

message channel agent (MCA). In MQSeries, a
program that transmits prepared messages from a
transmission queue to a communication link, or from a
communication link to a destination queue.

message control block (MCB). The definition of a
message, screen panel, net format, or printer layout
made during customization of MERVA.

Message Format Service (MFS). A MERVA direct
service that formats a message according to the
medium to be used, and checks it for formal
correctness.

message header. The leading part of a message that
contains the sender and receiver of the message, the
message priority, and the type of message.

Message Integrity Protocol (MIP). In MERVA Link,
the protocol that controls the exchange of messages
between partner ASPs. This protocol ensures that any
loss of a message is detected and reported, and that no
message is duplicated despite system failures at any
point during the transfer process.

message-processing function. The various parts of
MERVA used to handle a step in the
message-processing route, together with any necessary
equipment.

message queue. See queue.

Message Queue Interface (MQI). The programming
interface provided by the MQSeries queue managers. It
provides a set of calls that let application programs
access message queuing services such as sending
messages, receiving messages, and manipulating
MQSeries objects.

Message Queue Manager (MQM). An IBM licensed
program that provides message queuing services. It is
part of the MQSeries set of products.

message reference number (MRN). A unique 16-digit
number assigned to each message for identification
purposes. The message reference number consists of an
8-digit domain identifier that is followed by an 8-digit
sequence number.

message sequence number (MSN). A sequence
number for messages transferred by MERVA Link.

message type (MT). A number, up to 7 digits long,
that identifies a message. SWIFT messages are
identified by a 3-digit number; for example SWIFT
message type MT S100.

Glossary of Terms and Abbreviations 223

MFS. Message Format Service.

MIP. Message Integrity Protocol.

MPDU. Message protocol data unit, which is defined
in P1.

MPP. In IMS, message-processing program.

MQA. MQ Attachment.

MQ Attachment (MQA). A MERVA feature that
provides message transfer between MERVA and a
user-written MQI application.

MQH. MQSeries queue handler.

MQI. Message queue interface.

MQM. Message queue manager.

MQS. MQSeries nucleus server.

MQSeries. A family of IBM licensed programs that
provides message queuing services.

MQSeries nucleus server (MQS). A MERVA
component that listens for messages on an MQI queue,
receives them, extracts a service request, and passes it
via the request queue handler to another MERVA ESA
instance for processing.

MQSeries queue handler (MQH). A MERVA
component that performs service calls to the Message
Queue Manager via the provided Message Queue
Interface.

MRN. Message reference number.

MSC. MERVA system control facility.

MSHP. Maintain system history program.

MSN. Message sequence number.

MT. Message type.

MTP. (1) Message transfer program. (2) Message
transfer process.

MTS. Message Transfer System.

MTSP. Message Transfer Service Processor.

MTT. Message type table.

multisystem application. (1) An application program
that has various functions distributed across MVS
systems in a multisystem environment. (2) In XCF, an
authorized application that uses XCF coupling services.
(3) In MERVA ESA, multiple instances of MERVA ESA
that are distributed among different MVS systems in a
multisystem environment.

multisystem environment. An environment in which
two or more MVS systems reside on one or more
processors, and programs on one system can
communicate with programs on the other systems.
With XCF, the environment in which XCF services are
available in a defined sysplex.

multisystem sysplex. A sysplex in which one or more
MVS systems can be initialized as part of the sysplex.
In a multisystem sysplex, XCF provides coupling
services on all systems in the sysplex and requires an
XCF couple data set that is shared by all systems. See
also single-system sysplex.

MVS/ESA. Multiple Virtual Storage/Enterprise
Systems Architecture.

N
namelist. An MQSeries for MVS/ESA object that
contains a list of queue names.

nested message. A message that is composed of one
or more message types.

nested message type. A message type that is
contained in another message type. In some cases, only
part of a message type (for example, only the
mandatory fields) is nested, but this “partial” nested
message type is also considered to be nested. For
example, SWIFT MT 195 could be used to request
information about a SWIFT MT 100 (customer transfer).
The SWIFT MT 100 (or at least its mandatory fields) is
then nested in SWIFT MT 195.

nesting identifier. An identifier (a number from 2 to
255) that is used to access a nested message type.

network identifier. A single character that is placed
before a message type to indicate which network is to
be used to send the message; for example, S for SWIFT

network service access point (NSAP). The endpoint
of a network connection used by the SWIFT transport
layer.

NOPROMPT mode. One of two ways to display a
message panel. NOPROMPT mode is only intended for
experienced SWIFT Link users who are familiar with
the structure of SWIFT messages. With NOPROMPT
mode, only the SWIFT header, trailer, and pre-filled
fields and their tags are displayed. Contrast with
PROMPT mode.

NSAP. Network service access point.

nucleus server. A MERVA component that processes a
service request as selected by the request queue
handler. The service a nucleus server provides and the
way it provides it is defined in the nucleus server table
(DSLNSVT).

224 Concepts and Components

O
object. In MQSeries, objects define the properties of
queue managers, queues, process definitions, and
namelists.

occurrence. See repeatable sequence.

option. One or more characters added to a SWIFT
field number to distinguish among different layouts for
and meanings of the same field. For example, SWIFT
field 60 can have an option F to identify a first opening
balance, or M for an intermediate opening balance.

origin identifier (origin ID). A 34-byte field of the
MERVA user file record. It indicates, in a MERVA and
SWIFT Link installation that is shared by several banks,
to which of these banks the user belongs. This lets the
user work for that bank only.

OSN. Output sequence number.

OSN acknowledgment. A collective term for the
various kinds of acknowledgments sent to the SWIFT
network.

output message. A message that has been received
from the SWIFT network. An output message has an
output header.

P
P1. In MERVA Link, a peer-to-peer protocol used by
cooperating message transfer processes (MTPs).

P2. In MERVA Link, a peer-to-peer protocol used by
cooperating application support processes (ASPs).

P3. In MERVA Link, a peer-to-peer protocol used by
cooperating command transfer processors (CTPs).

packet switched public data network (PSPDN). A
public data network established and operated by
network common carriers or telecommunication
administrations for providing packet-switched data
transmission.

panel. A formatted display on a display terminal.
Each page of a message is displayed on a separate
panel.

parallel processing. The simultaneous processing of
units of work by several servers. The units of work can
be either transactions or subdivisions of larger units of
work.

parallel sysplex. A sysplex that uses one or more
coupling facilities.

partner table (PT). In MERVA Link, the table that
defines how messages are processed. It consists of a

header and different entries, such as entries to specify
the message-processing parameters of an ASP or MTP.

PCT. Program Control Table (of CICS).

PDE. Possible duplicate emission.

PDU. Protocol data unit.

PF key. Program-function key.

positional parameter. A parameter that must appear
in a specified location relative to other parameters.

PREMIUM. The MERVA component used for SWIFT
PREMIUM support.

process definition object. An MQSeries object that
contains the definition of an MQSeries application. A
queue manager uses the definitions contained in a
process definition object when it works with trigger
messages.

program-function key. A key on a display terminal
keyboard to which a function (for example, a
command) can be assigned. This lets you execute the
function (enter the command) with a single keystroke.

PROMPT mode. One of two ways to display a
message panel. PROMPT mode is intended for SWIFT
Link users who are unfamiliar with the structure of
SWIFT messages. With PROMPT mode, all the fields
and tags are displayed for the SWIFT message.
Contrast with NOPROMPT mode.

protocol data unit (PDU). In MERVA Link a PDU
consists of a structured sequence of implicit and
explicit data elements:
v Implicit data elements contain other data elements.
v Explicit data elements cannot contain any other data

elements.

PSN. Public switched network.

PSPDN. Packet switched public data network.

PSTN. Public switched telephone network.

PT. Partner table.

PTT. A national post and telecommunication authority
(post, telegraph, telephone).

Q
QDS. Queue data set.

QSN. Queue sequence number.

queue. (1) In MERVA, a logical subdivision of the
MERVA queue data set used to store the messages
associated with a MERVA message-processing function.
A queue has the same name as the message-processing
function with which it is associated. (2) In MQSeries, an

Glossary of Terms and Abbreviations 225

object onto which message queuing applications can
put messages, and from which they can get messages.
A queue is owned and maintained by a queue
manager. See also request queue.

queue element. A message and its related control
information stored in a data record in the MERVA ESA
Queue Data Set.

queue management. A MERVA service function that
handles the storing of messages in, and the retrieval of
messages from, the queues of message-processing
functions.

queue manager. (1) An MQSeries system program that
provides queueing services to applications. It provides
an application programming interface so that programs
can access messages on the queues that the queue
manager owns. See also local queue manager and remote
queue manager. (2) The MQSeries object that defines the
attributes of a particular queue manager.

queue sequence number (QSN). A sequence number
that is assigned to the messages stored in a logical
queue by MERVA ESA queue management in
ascending order. The QSN is always unique in a queue.
It is reset to zero when the queue data set is formatted,
or when a queue management restart is carried out and
the queue is empty.

R
RACF. Resource Access Control Facility.

RBA. Relative byte address.

RC message. Recovered message; that is, an IP
message that was copied from the control queue of an
inoperable or closed ASP via the recover command.

ready queue. A MERVA queue used by SWIFT Link to
collect SWIFT messages that are ready for sending to
the SWIFT network.

remote queue. In MQSeries, a queue that belongs to a
remote queue manager. Programs can put messages on
remote queues, but they cannot get messages from
remote queues. Contrast with local queue.

remote queue manager. In MQSeries, a queue
manager is remote to a program if it is not the queue
manager to which the program is connected.

repeatable sequence. A field or a group of fields that
is contained more than once in a message. For example,
if the SWIFT fields 20, 32, and 72 form a sequence, and
if this sequence can be repeated up to 10 times in a
message, each sequence of the fields 20, 32, and 72
would be an occurrence of the repeatable sequence.

In the TOF, the occurrences of a repeatable sequence
are numbered in ascending order from 1 to 32767 and
can be referred to using the occurrence number.

A repeatable sequence in a message may itself contain
another repeatable sequence. To identify an occurrence
within such a nested repeatable sequence, more than
one occurrence number is necessary.

reply message. In MQSeries, a type of message used
for replies to request messages.

reply-to queue. In MQSeries, the name of a queue to
which the program that issued an MQPUT call wants a
reply message or report message sent.

report message. In MQSeries, a type of message that
gives information about another message. A report
message usually indicates that the original message
cannot be processed for some reason.

request message. In MQSeries, a type of message used
for requesting a reply from another program.

request queue. The queue in which a service request
is stored. It resides in main storage and consists of a set
of request queue elements that are chained in different
queues:

v Requests waiting to be processed

v Requests currently being processed

v Requests for which processing has finished

request queue handler (RQH). A MERVA ESA
component that handles the queueing and scheduling
of service requests. It controls the request processing of
a nucleus server according to rules defined in the finite
state machine.

Resource Access Control Facility (RACF). An IBM
licensed program that provides for access control by
identifying and verifying users to the system,
authorizing access to protected resources, logging
detected unauthorized attempts to enter the system,
and logging detected accesses to protected resources.

retype verification. See verification.

routing. In MERVA, the passing of messages from one
stage in a predefined processing path to the next stage.

RP. Regional processor.

RQH. Request queue handler.

RRDS. Relative record data set.

S
SAF. System Authorization Facility.

SCS. SNA character string

SCP. System control process.

226 Concepts and Components

SDI. Sequential data set input. A batch utility used to
import messages from a sequential data set or a tape
into MERVA ESA queues.

SDO. Sequential data set output. A batch utility used
to export messages from a MERVA ESA queue to a
sequential data set or a tape.

SDY. Sequential data set system printer. A batch
utility used to print messages from a MERVA ESA
queue.

service request. A type of request that is created and
passed to the request queue handler whenever a
nucleus server requires a service that is not currently
available.

sequence number. A number assigned to each
message exchanged between two nodes. The number is
increased by one for each successive message. It starts
from zero each time a new session is established.

sign off. To end a session with MERVA.

sign on. To start a session with MERVA.

single-system sysplex. A sysplex in which only one
MVS system can be initialized as part of the sysplex. In
a single-system sysplex, XCF provides XCF services on
the system, but does not provide signalling services
between MVS systems. A single-system sysplex requires
an XCF couple data set. See also multisystem sysplex.

small queue element. A queue element that is smaller
than the smaller of:

v The limiting value specified during the customization
of MERVA

v 32KB

SMP/E. System Modification Program Extended.

SN. Session number.

SNA. Systems network architecture.

SNA character string. In SNA, a character string
composed of EBCDIC controls, optionally mixed with
user data, that is carried within a request or response
unit.

SPA. Scratch pad area.

SQL. Structured Query Language.

SR-ASPDU. The status report application support
PDU, which is used by MERVA Link for
acknowledgment messages.

SSN. Select sequence number.

subfield. A subdivision of a field with a specific
meaning. For example, the SWIFT field 32 has the
subfields date, currency code, and amount. A field can

have several subfield layouts depending on the way the
field is used in a particular message.

SVC. (1) Switched Virtual Circuit. (2) Supervisor call
instruction.

S.W.I.F.T. (1) Society for Worldwide Interbank
Financial Telecommunication s.c. (2) The network
provided and managed by the Society for Worldwide
Interbank Financial Telecommunication s.c.

SWIFT address. Synonym for bank identifier code.

SWIFT Correspondents File. The file containing the
bank identifier code (BIC), together with the name,
postal address, and zip code of each financial
institution in the BIC Directory.

SWIFT financial message. A message in one of the
SWIFT categories 1 to 9 that you can send or receive
via the SWIFT network. See SWIFT input message and
SWIFT output message.

SWIFT header. The leading part of a message that
contains the sender and receiver of the message, the
message priority, and the type of message.

SWIFT input message. A SWIFT message with an
input header to be sent to the SWIFT network.

SWIFT link. The MERVA ESA component used to
link to the SWIFT network.

SWIFT network. Refers to the SWIFT network of the
Society for Worldwide Interbank Financial
Telecommunication (S.W.I.F.T.).

SWIFT output message. A SWIFT message with an
output header coming from the SWIFT network.

SWIFT system message. A SWIFT general purpose
application (GPA) message or a financial application
(FIN) message in SWIFT category 0.

switched virtual circuit (SVC). An X.25 circuit that is
dynamically established when needed. It is the X.25
equivalent of a switched line.

sysplex. One or more MVS systems that communicate
and cooperate via special multisystem hardware
components and software services.

System Authorization Facility (SAF). An MVS or VSE
facility through which MERVA ESA communicates
with an external security manager such as RACF (for
MVS) or the basic security manager (for VSE).

System Control Process (SCP). A MERVA Link
component that handles the transfer of MERVA ESA
commands to a partner MERVA ESA system, and the
receipt of the command response. It is associated with a
system control process entry in the partner table.

Glossary of Terms and Abbreviations 227

System Modification Program Extended (SMP/E). A
licensed program used to install software and software
changes on MVS systems.

Systems Network Architecture (SNA). The
description of the logical structure, formats, protocols,
and operating sequences for transmitting information
units through, and for controlling the configuration and
operation of, networks.

T
tag. A field identifier.

TCP/IP. Transmission Control Protocol/Internet
Protocol.

Telex Correspondents File. A file that stores data
about correspondents. When the user enters the
corresponding nickname in a Telex message, the
corresponding information in this file is automatically
retrieved and entered into the Telex header area.

telex header area. The first part of the telex message.
It contains control information for the telex network.

telex interface program (TXIP). A program that runs
on a Telex front-end computer and provides a
communication facility to connect MERVA ESA with
the Telex network.

Telex Link. The MERVA ESA component used to link
to the public telex network via a Telex substation.

Telex substation. A unit comprised of the following:

v Telex Interface Program

v A Telex front-end computer

v A Telex box

Terminal User Control Block (TUCB). A control block
containing terminal-specific and user-specific
information used for processing messages for display
devices such as screen and printers.

test key. A key added to a telex message to ensure
message integrity and authorized delivery. The test key
is an integer value of up to 16 digits, calculated
manually or by a test-key processing program using the
significant information in the message, such as
amounts, currency codes, and the message date.

test-key processing program. A program that
automatically calculates and verifies a test key. The
Telex Link supports panels for input of test-key-related
data and an interface for a test-key processing program.

TFD. Terminal feature definitions table.

TID. Terminal identification. The first 9 characters of a
bank identifier code (BIC).

TOF. Originally the abbreviation of tokenized form, the
TOF is a storage area where messages are stored so that
their fields can be accessed directly by their field names
and other index information.

TP. Transaction program.

transaction. A specific set of input data that triggers
the running of a specific process or job; for example, a
message destined for an application program.

transaction code. In IMS and CICS, an alphanumeric
code that calls an IMS message processing program or
a CICS transaction. Transaction codes have 4 characters
in CICS and up to 8 characters in IMS.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of communication protocols that
support peer-to-peer connectivity functions for both
local and wide area networks.

transmission queue. In MQSeries, a local queue on
which prepared messages destined for a remote queue
manager are temporarily stored.

trigger event. In MQSeries, an event (such as a
message arriving on a queue) that causes a queue
manager to create a trigger message on an initiation
queue.

trigger message. In MQSeries, a message that contains
information about the program that a trigger monitor is
to start.

trigger monitor. In MQSeries, a continuously-running
application that serves one or more initiation queues.
When a trigger message arrives on an initiation queue,
the trigger monitor retrieves the message. It uses the
information in the trigger message to start a process
that serves the queue on which a trigger event
occurred.

triggering. In MQSeries, a facility that allows a queue
manager to start an application automatically when
predetermined conditions are satisfied.

TUCB. Terminal User Control Block.

TXIP. Telex interface program.

U
UMR. Unique message reference.

unique message reference (UMR). An optional
feature of MERVA ESA that provides each message
with a unique identifier the first time it is placed in a
queue. It is composed of a MERVA ESA installation
name, a sequence number, and a date and time stamp.

UNIT. A group of related literals or fields of an MCB
definition, or both, enclosed by a DSLLUNIT and
DSLLUEND macroinstruction.

228 Concepts and Components

UNIX System Services (USS). A component of
OS/390, formerly called OpenEdition (OE), that creates
a UNIX environment that conforms to the XPG4 UNIX
1995 specifications, and provides two open systems
interfaces on the OS/390 operating system:

v An application program interface (API)

v An interactive shell interface

UN/EDIFACT. United Nations Standard for Electronic
Data Interchange for Administration, Commerce and
Transport.

USE. S.W.I.F.T. User Security Enhancements.

user file. A file containing information about all
MERVA ESA users; for example, which functions each
user is allowed to access. The user file is encrypted and
can only be accessed by authorized persons.

user identification and verification. The acts of
identifying and verifying a RACF-defined user to the
system during logon or batch job processing. RACF
identifies the user by the user ID and verifies the user
by the password or operator identification card
supplied during logon processing or the password
supplied on a batch JOB statement.

USS. UNIX System Services.

V
verification. Checking to ensure that the contents of a
message are correct. Two kinds of verification are:

v Visual verification: you read the message and
confirm that you have done so

v Retype verification: you reenter the data to be
verified

Virtual LU. An LU defined in MERVA Extended
Connectivity for communication between MERVA and
MERVA Extended Connectivity.

Virtual Storage Access Method (VSAM). An access
method for direct or sequential processing of fixed and
variable-length records on direct access devices. The
records in a VSAM data set or file can be organized in
logical sequence by a key field (key sequence), in the
physical sequence in which they are written on the data
set or file (entry sequence), or by relative-record
number.

Virtual Telecommunications Access Method (VTAM).
An IBM licensed program that controls communication
and the flow of data in an SNA network. It provides
single-domain, multiple-domain, and interconnected
network capability.

VSAM. Virtual Storage Access Method.

VTAM. Virtual Telecommunications Access Method
(IBM licensed program).

W
Windows NT service. A type of Windows NT
application that can run in the background of the
Windows NT operating system even when no user is
logged on. Typically, such a service has no user
interaction and writes its output messages to the
Windows NT event log.

X
X.25. An ISO standard for interface to packet switched
communications services.

XCF. Abbreviation for cross-system coupling facility,
which is a special logical partition that provides
high-speed caching, list processing, and locking
functions in a sysplex. XCF provides the MVS coupling
services that allow authorized programs on MVS
systems in a multisystem environment to communicate
with (send data to and receive data from) authorized
programs on other MVS systems.

XCF couple data sets. A data set that is created
through the XCF couple data set format utility and,
depending on its designated type, is shared by some or
all of the MVS systems in a sysplex. It is accessed only
by XCF and contains XCF-related data about the
sysplex, systems, applications, groups, and members.

XCF group. The set of related members defined to
SCF by a multisystem application in which members of
the group can communicate with (send data to and
receive data from) other members of the same group.
All MERVA systems working together in a sysplex
must pertain to the same XCF group.

XCF member. A specific function of a multisystem
application that is defined to XCF and assigned to a
group by the multisystem application. A member
resides on one system in a sysplex and can use XCF
services to communicate with other members of the
same group.

Glossary of Terms and Abbreviations 229

230 Concepts and Components

Bibliography

MERVA ESA Publications
v MERVA for ESA Version 4: Application

Programming Interface Guide, SH12-6374
v MERVA for ESA Version 4: Advanced MERVA

Link, SH12-6390
v MERVA for ESA Version 4: Concepts and

Components, SH12-6381
v MERVA for ESA Version 4: Customization Guide,

SH12-6380
v MERVA for ESA Version 4: Diagnosis Guide,

SH12-6382
v MERVA for ESA Version 4: Installation Guide,

SH12-6378
v MERVA for ESA Version 4: Licensed Program

Specifications, GH12-6373
v MERVA for ESA Version 4: Macro Reference,

SH12-6377
v MERVA for ESA Version 4: Messages and Codes,

SH12-6379
v MERVA for ESA Version 4: Operations Guide,

SH12-6375
v MERVA for ESA Version 4: System Programming

Guide, SH12-6366
v MERVA for ESA Version 4: User’s Guide,

SH12-6376

MERVA ESA Components
Publications
v MERVA Automatic Message Import/Export Facility:

User’s Guide, SH12-6389
v MERVA Connection/NT, SH12-6339
v MERVA Connection/400, SH12-6340
v MERVA Directory Services, SH12-6367
v MERVA Extended Connectivity: Installation and

User’s Guide, SH12-6157
v MERVA Message Processing Client for Windows

NT: User’s Guide, SH12-6341
v MERVA-MQI Attachment User’s Guide,

SH12-6714
v MERVA Traffic Reconciliation, SH12-6392
v MERVA USE: Administration Guide, SH12-6338
v MERVA USE & Branch for Windows NT: User’s

Guide, SH12-6334

v MERVA USE & Branch for Windows NT:
Installation and Customization Guide, SH12-6335

v MERVA USE & Branch for Windows NT:
Application Programming Guide, SH12-6336

v MERVA USE & Branch for Windows NT:
Diagnosis Guide, SH12-6337

v MERVA USE & Branch for Windows NT:
Migration Guide, SH12-6393

v MERVA USE & Branch for Windows NT:
Installation and Customization Guide, SH12-6335

v MERVA Workstation Based Functions, SH12-6383

Other IBM Publications
v MERVA ESA Components Client User’s Guide,

SH12-6282
v MQSeries for MVS/ESA System Management

Guide, SC33-0806
v MQSeries for VSE/ESA System Management

Guide, GC34-5364
v MVS/ESA SP V5 Writing TPs for APPC/MVS,

GC28-1471
v MVS/ESA SP V5 Writing Servers for APPC/MVS,

GC28-1472
v MVS/ESA SP V5 Initialization and Tuning

Reference, SC28-1452.

S.W.I.F.T. Publications
The following are published by the Society for
Worldwide Interbank Financial
Telecommunication, s.c., in La Hulpe, Belgium:
v S.W.I.F.T. User Handbook

v S.W.I.F.T. Dictionary

v S.W.I.F.T. FIN Security Guide

v S.W.I.F.T. Card Readers User Guide

© Copyright IBM Corp. 1987, 2001 231

232 Concepts and Components

Index

Numerics
0DSL (message ID) 62
3270 devices 64

A
access method services of VSAM

(IDCAMS) 87
accessing records 23
acknowledgment

application control (APC) 90
financial application (FIN) 90
negative (SWIFT) 90
positive (SWIFT) 90
system (SWIFT) 90

advanced program-to-program
communication (APPC) 137

ALL state (routing trace) 87
APC (application control) 124
API 36
APPC

MERVA Message Processing Client
Server 103

APPC (advanced program-to-program
communication) 137

APPC/MVS, batch task server for 45
APPC/MVS, task server for 45
APPC/MVS communication 39
APPC/MVS LU 6.2 transactions 103
APPC/MVS server 40
application control 124
application interface

DWSNAIST 127
application message 141
application programs

interfaces for 36
link-edited to DSLNUC 36
service components 53
user-written 36

application support filter (ASF) 136
application support program (ASP)

receiving ASP (EKAAR10) 136
sending ASP (EKAAS10) 136

application support protocol 136
ASF (application support filter) 136
attributes, field 6
authentication

result 20
service 166
support (DWSAUTP) 122
SWIFT messages 167

authenticator-key file
maintenance 166
online maintenance (DWSEAUT) 101
program (DWSAUTP) 101
update transaction (DWSAUTT) 167
utility (DWSAUTLD) 180

authorized services
internal address space start 49
XCF services 49

AUTO parameter (DSLNPT macro) 132
automatic delete 74, 78, 80
automatic start program (DSLCAS) 27,

34

B
bank identifier codes (BIC) 20
basic security manager (BSM) 35
batch programs 16, 17
batch programs for sequential data

sets 106
batch task server for APPC/MVS

(DSLNTSAB) 45
BIC (bank identifier codes) 20
bilateral key exchange (BKE) 121, 166
BKE (bilateral key exchange) 121, 166

authenticator-key file
program (DWSAUTP) 166

bottom frame 64
BSM 35
buffer, message 7
business messages 6

C
CA (confirmed and acknowledged) 142
caller (definition of) 59
calling program (definition of) 59
carriage return line feed (CRLF) 65
central services 23, 28
CF (confirmed) 142
checking, group ID 165
checking, origin ID 164
checking and expansion transaction

(DSLCXT) 105
checking exit routines (DSLMCnnn) 66
checking messages 65
CICS LU 6.2 transactions 103
CICS programs requiring storage

protection 38
CICS TS 41
CICS TS queue, task server for 45
command responses 171
command server (DSLNCS) 170
communication control for interregion

communication program
for MVS 43
for VSE 42

communication links 19
compression 64
computer-based terminal 123
conditions (routing) 86
Confirm-on-arrival report

COA 153
Confirm-on-delivery report

COD 153
confirmed (CF) 142
confirmed and acknowledged (CA) 142
control concept 23

control facilities 27
control fields 143
conversion program DSLCES1 115
conversion program DSLCSE1 118
converting EDIFACT FINPAY into

MT121 114
converting EDIFACT into MT105 or

MT106 115
converting messages to other

formats 114
converting MT105 or MT106 into

EDIFACT 118
converting MT121 into EDIFACT

FINPAY 114
CRLF (carriage return line feed) 65
currency code 176
Currency Code file 197
customizing parameters (DSLPRM) 35

D
data area index 7
data block 79
data exchange for interregion

communication program
for MVS 43
for VSE 42

data lines 7
data sets 173
datagram 152
DB2

commit 93
queue services 91
tables 203

DB2 queue services 91
de-editing of data 65
default setting exits (DSLMDnnn) 67
definition of

functions 11
messages 8
queues 12, 70
routing 13
routing tables 85

delete message in queue 80
DELETE request (queue services) 80
deregistering from XCF 48
DESC parameter (DSLNPT macro) 132
device types 64
diagnostic messages 171
direct services 23
display stations 65
DSL0CORN (MCB) 195
DSLAFA01 103
DSLAFA04

MERVA Message Processing
Client/Server 102

DSLAFM01 103
DSLCAS (automatic start program) 27,

34
DSLCES1 (conversion program) 115
DSLCES2 (conversion program) 116

© Copyright IBM Corp. 1987, 2001 233

DSLCESTR (sample transaction) 117
DSLCMDL (command line field) 64
DSLCMO (master operator program) 27,

34
DSLCNTP (message counter

program) 51
DSLCNTUT (message counter report

utility) 179
DSLCORN (copy code) 169
DSLCSE1 (conversion program) 118
DSLCSETR (sample transaction) 119
DSLCXT (checking and expansion

transaction) 105
DSLEBSPA (SPA file initialization

program) 180
DSLECMD (operator command

program) 99
DSLEFLM (general file maintenance

program) 100
DSLEFUN (function selection

program) 98
DSLEMSG (message processing

program) 100
DSLEOSPA (online SPA file

program) 175
DSLEOSPB (alternative SPA file

program) 175
DSLEPTT (DSLEUD program table) 99
DSLERR (error message line field) 64
DSLEU001 (user exit in DSLEUD) 102
DSLEU002 (user exit in DSLEUD) 102
DSLEU003 (user exit in DSLEUD) 102
DSLEU004 (user exit in DSLEUD) 102
DSLEUD

end-user driver program 95
program table (DSLEPTT) 99

DSLEUD (end-user interface) 15
DSLEUSR (user-file maintenance

program) 100
DSLEXIT (TOF field) 63
DSLFDTT (sample field definition

table) 53
DSLFLT (file table macro) 168
DSLFLTT (file table) 168
DSLFLUT (file utility) 168, 179
DSLFLV (file service macro) 169
DSLFLVP (file service program) 169
DSLFNT (function table macro) 55, 64,

66, 70, 169
DSLFNTT (sample function table) 55
DSLHCP (hardcopy printer

program) 16, 104
DSLICA (interregion communication

area) 42, 43
DSLISYNP (synchronization point

program) 51
DSLJR001 (journal user exit) 162, 163
DSLJRNP (journal program) 161
DSLKPROC (process table) 155
DSLKQ044 (MFS user exit) 145
DSLLCOND (MCB macro) 54
DSLLDEV (device macro) 54, 62, 63
DSLLDFLD (screen/printer field

macro) 54
DSLLEXIT (message nesting macro) 54,

63
DSLLFBUF (field name) 62

DSLLFLD (field macro) 53, 66
DSLLGEN (FDT/MCB macro) 54
DSLLGRP (field group macro) 54
DSLLMCB (MCB macro) 54
DSLLMFLD (message field macro) 54
DSLLNFLD (network field macro) 54,

62, 63
DSLLSUBF (subfield macro) 53
DSLLUEND (display unit macro) 54
DSLLUNIT (display unit macro) 54, 62
DSLMCHE (MFS checking interface) 65
DSLMCnnn (checking exit routines) 66
DSLMDnnn (default setting exits) 67
DSLMEnnn (editing exits) 67
DSLMFS (MFS macro) 59
DSLMLEF (external line format

program) 63
DSLMLFP (line formatting program) 61
DSLMMFS (MFS interface program) 59
DSLMNOP (NOPROMPT mapping

program) 65
DSLMPF00 (default PF key table) 55
DSLMPFK (PF key table definition

macro) 55
DSLMPT (MFS program table macro) 60
DSLMPTT (sample MFS program

table) 59, 60
DSLMPxxx (print and edit services) 64
DSLMSG (message table macro) 171
DSLMSGT (message table) 171
DSLMSnnn (separation exits) 68
DSLMTIN (message initialization and

formatting) 60
DSLMTT (message type table macro) 54
DSLMTTT (sample message type

table) 54
DSLMU001 (MFS user exit) 61
DSLMU003 (MFS user exit) 64
DSLMU004 (MFS user exit) 98
DSLMU009 (MFS user exit) 66
DSLMU020 (MFS user exit) 108
DSLMU021 (MFS user exit) 113
DSLMU022 (MFS user exit) 110
DSLMU023 (MFS user exit) 106
DSLMU024 (MFS user exit) 105
DSLMU027 (MFS user exit) 105
DSLMU054 (MFS user exit) 62
DSLMXnnn (expansion exits) 67
DSLMXPND (MFS expansion

interface) 66
DSLN (transaction code) 34
DSLNCMT (nucleus command table) 28,

33, 170
DSLNCS (command server) 170
DSLNCU01 (command server user

exit) 170
DSLNIC (intertask communication

macro) 77
DSLNICP 42
DSLNICPM 42
DSLNICQ 44
DSLNICT 40
DSLNICTA 40
DSLNICTM 41
DSLNICTQ 41
DSLNMOP (operator interface

program) 34, 172

DSLNMQH (MQSeries queue
handler) 49

DSLNMQS
initialization 46

DSLNMQS (MERVA ESA MQSeries
nucleus server) 46

DSLNMQSP 48
DSLNPTT (nucleus program table) 27,

34, 36, 37
DSLNRQH (request queue handler) 30,

32
DSLNRTCP (remote task communication

program) 50
DSLNSHEC (nucleus server shell) 31
DSLNSHEC (Nucleus Server Shell for

CICS environment) 29
DSLNSHEL (nucleus server shell) 31
DSLNSHEL (Nucleus Server Shell for

non-CICS environment) 29
DSLNTRT (nucleus task server request

table) 28, 44
DSLNTS 44
DSLNTSA (task server for

APPC/MVS) 45
DSLNTSAB (batch interface to task server

for APPC/MVS) 45
DSLNTSM (task server for MQSeries) 45
DSLNTSQ

interface to 44
DSLNTSQ (task server for CICS TS

queue) 45
DSLNU003 (user exit in DSLNUSR) 163
DSLNU004 (user exit in DSLNUSR) 163,

165
DSLNU005 (user exit in DSLNUSR) 163,

164
DSLNUC

components 27
functions 27

DSLNUSR (user file program) 163
DSLOMSG (message retrieval

program) 171
DSLPARM macro (generating

DSLPRM) 83
DSLPRM (customizing parameters) 35
DSLQDSUT (queue data set utility) 177
DSLQDSUT (queue data-set utility) 73
DSLQKEY (user exit in DSLQMGT) 77,

83
DSLQLRG

large message service program 84
DSLQMDIO (DB2 queue management

pgm) 94
DSLQMDLI (DB2 queue mgmt pgm) 94
DSLQMDXK (DB2 queue mgmt

pgm) 94
DSLQMG (queue management

macro) 77
DSLQMGD

queue management program 92
DSLQMGD (DB2 queue management

pgm) 92
DSLQMGT

posting an ECB 78
queue management program 72
start of transactions 78
termination 74

234 Concepts and Components

DSLQMNT (large message cluster
maintenance utility) 179

DSLQPUT (user exit in DSLQMGIO) 83
DSLQPUT (user exit in DSLQMGT) 72
DSLQTRA (user exit in DSLQMGT) 83
DSLQTRAB (user exit in DSLQMGD) 93
DSLQUMR (user exit in DSLQMGT) 83
DSLROUTE (routing table macro) 87
DSLRTNSC (routing scanner) 73, 76, 86,

92
DSLSDI 16
DSLSDI (sequential data set input

program) 107
DSLSDIR 16
DSLSDIR (sequential data set input

program) 108
DSLSDLR (SDS load program) 16
DSLSDLR (sequential data set load

program) 109
DSLSDO (SDS output program) 16
DSLSDO (sequential data set output

program) 110
DSLSDOR (SDS output program) 16
DSLSDOR (sequential data set output

program) 111
DSLSDUR (SDS unload program) 17
DSLSDUR (sequential data set unload

program) 112
DSLSDY (system printer program) 17,

113
DSLSDYR (sequential data set print

program) 113
DSLSDYR (system printer program) 17
DSLSRV (service request macro) 170
DSLSRVP (service program) 169
DSLTFD (terminal feature definition

macro) 55
DSLTFDT (sample terminal feature

definition table) 55
DSLTIMP (timer program) 51
DSLTOFSV (TOF supervisor

program) 56
DSLTQBUSY (DB2 table) 205
DSLTQFUN (DB2 table) 206
DSLTQMSG (DB2 table) 206
DSLTQSTAT (DB2 table) 206
DSLTQUEL (DB2 table) 203
DSLTQXDEF (DB2 table) 204
DSLTQXKEY (DB2 table) 205
DSLTSV (TOF supervisor macro) 57
DSLUMR (TOF field) 82, 88
DSLWTO (write-to-operator macro) 172
DSLWTOEX (WTO user exit) 35
DSLWTOP (write-to-operator

program) 35, 172
DSLXGRP (XCF group exit routine) 49
DSLXSVCS

deregistering an MERVA ESA
MQSeries nucleus server 48

registering a MERVA ESA MQSeries
nucleus server 47

DSLXSVCS (intersystem service
invocation) 49

DSLXSVCX 43
DSLXSVCX (interregion and sysplex

communication) 49
dummy queues 71

DWSAUT macro 166
DWSAUTIN (initialization of

authentication service) 166
DWSAUTLD (authenticator-key file

utility) 180
DWSAUTP (authenticator-key file

program) 101, 122, 166, 167
authenticator-key file

online maintenance
(DWSEAUT) 167

DWSAUTT (authenticator-key file update
transaction) 167

DWSCOR (copy code) 176
DWSCORUT (SWIFT correspondents file

utility) 122, 181
DWSCUR (copy code) 176
DWSCURUT (currency code file

utility) 182
DWSDGPA

descriptive name SWIFTII 125
general purpose application

program 122, 125, 166
SWIFT general purpose application

program 90
DWSDLSK (load session keys

program) 90, 122, 129
descriptive name SWLOADSK 129

DWSEAUT (authenticator-key file online
maintenance) 101, 167

DWSFLTTC (copy code) 176
DWSLT (logical terminal table

macro) 124
DWSLTT (logical terminal table) 124
DWSNAEVV (event control program for

X.25) 123, 126
DWSNAIST (application interface) 127
DWSNLNKV (link layer program for

X.25) 127
DWSPREM (SWIFT PREMIUM

Support) 122
DWSPRM (SWIFT Link parameters) 122
DWSSCOR (MCB) 176, 181, 199
DWSSCUR (MCB) 176, 182, 197
DWSTxxxx (transport layer) 127
DWSVTMLC (VTAM line control

program) 128
DWSX99 (MCB name) 54

E
ECB, posted by MQSeries 47
ECB, posted by XCF 47
ECB, posting by DSLQMGT 78
ECB, SEC (system environment

change) 49
ECBs processed by the MERVA ESA

MQSeries nucleus server 46
EDI messages, converting to 114
EDIFACT envelope 115
EDIFACT FINPAY envelope 114
EDIFACT messages, converting to 114
edit and print services (DSLMPxxx) 64
editing exit programs 64
editing exits (DSLMEnnn) 67
EKAAR10 (receiving ASP) 136
EKAAS10 (sending ASP) 136

EKAEMSC (MERVA System Control
Facility program) 101, 135

EKAMU044 (MFS user exit) 145
EKAPT (partner table) 137
EKAPT (partner table), generating 138
EKASP10 program (MTSP) 136
EKATPI1 program (receiving MTP) 136
EKATPO1 program (sending MTP) 136
EKATR10 program (receiving MTP) 136
EKATS10 program (sending MTP) 136
ELF (external line format) 8
end-user driver program (DSLEUD) 95
end-user interface (DSLEUD) 15
ENLHCF1 (interface transaction) 131
ENLSTP

descriptive name TELEX 132
initialization 132
processing 132
station program 132
termination 133

ENLTCOR (MCB) 176, 201
envelope

EDIFACT 115
EDIFACT FINPAY 114

error messages 171
ESM 35
event control block, posting by

DSLQMGT 78
event control program

(DWSNAEVV) 123, 126
Exception report 153
exit routines

checking 66
editing 67
expansion 67
other 68
separation 68
setting defaluts 67

EXPAND parameter
DSLFNT macro 66, 169
DSLLFLD macro 66

expansion and checking transaction
(DSLCXT) 105

expansion exits (DSLMXnnn) 67
expansion facility 66
expansion in a function 169
EXPNAM parameter (DSLFNT

macro) 66, 169
extended group ID checking 165
extended origin ID checking 164
external line format (ELF) 8
external line format program

(DSLMLEF) 63
external message format 57
external security manager (ESM) 35
extra keys 94

F
fault-tolerant system 20
FDT (field definition table) 53
field

attributes 6
definition table (FDT) 53
divisions 7
reference in TOF 57
separators 6

Index 235

field (continued)
tags 6

file maintenance 15
file service program (DSLFLVP) 169
file table (DSLFLTT) 168
file utility (DSLFLUT) 168
FIN (financial application) 124
financial application

FIN 124
financial EDI messages, converting

to 114
finite state machine, rules of 33
FINPAY, converting MT121 to 114
FINPAY envelope 114
FMT/ESA 4, 143

DSLKQ044 (MFS user exit) 145
EKAMU044 (MFS user exit) 145

FNT (function table) 55
format

message 7
format, converting message 114
format, message 7
formats

message type 54
SDS 16

formatting the queue data set 177
FRAME parameter (DSLFNT macro) 64
FREE request (queue services) 79
function

concept 11
programs 99
retrieval 164
selection 98, 164
selection program (DSLEFUN) 98
table (FNT) 55

G
general file

maintenance program
(DSLEFLM) 100

service 168
utility (DSLFLUT) 179

general purpose application 124
GPA 124
program DWSDGPA 122, 125

general purpose application program
DWSDGPA 122

general request queue handler
functions 32

get device descriptor 59
GET request

DSLJRNP 162
GET request (queue services) 79
GETLAST request (queue services) 79
GETNEXT request (queue services) 79
GPA (general purpose application) 124
group ID checking, extended 165

H
hardcopy printer program

(DSLHCP) 16, 104
HOLD status 79

I
ICB (intertask communication block) 40,

41
IDCAMS (access method services of

VSAM) 87
in-process (IP) 139, 142
in-service indicator 79
index, data area 7
indexes 57
initialization of a MERVA ESA MQSeries

nucleus server 46
initialization of authentication service

(DWSAUTIN) 166
input messages

definition of 121
SWIFT 90

input program 16
input program DSLSDI 107
input program DSLSDIR 108
input sequence number (ISN) 121, 124
instructing task 50
interface transaction (ENLHCF1) 131
internal message buffer (TOF) 56
internal message format 57
interregion and sysplex communication

(DSLXSVCX) 49
interregion communication

area (DSLICA) 42, 43
DSLICA 42, 43

interregion communication area
(DSLICA) 42, 43

interregion communication program for
MVS 42

interregion communication program for
VSE 42

interservice communication 30
facility 45

intersystem service invocation
(DSLXSVCS) 49

intertask communication 37
block (ICB) 40, 41
DSLNICP 42
DSLNICPM 42
DSLNICQ 44
DSLNICT 40
DSLNICTA 40
DSLNICTM 41
DSLNICTQ 41
DSLNTS 44
DSLXSVCX 43
interface 40, 41
interface to DSLNTSQ 44
interregion communication program

for MVS 42
interregion communication program

for VSE 42
sysplex communication program 43
task server 44

intertask communication, service
programs used for 39

invocation of authorized services 49
IP (in-process) 139, 142
ISN (input sequence number) 121, 124
ISN ACK 121

J
journal data sets 173
journal program (DSLJRNP) 161
journal record layouts 185
journal service 161
journaling 143

K
KEY parameter (DSLQMG macro) 77
keys (message retrieval) 77, 79

L
large message cluster (LMC) 174
Large Message Cluster (LMC) 84
large message cluster maintenance utility

(DSLQMNT) 179
large message service program

(DSLQLRG) 84
LARGE state (queue trace) 83
last confirmed (LC) 139, 142
last received (LR) 139, 142
layers of SWIFT 123, 127
layout

Currency Code file 197
DB2 tables 203
nicknames file 195
routing trace entries 209
SWIFT correspondents file 199
telex correspondents file 201

layouts
journal record 185

LC (last confirmed) 139, 142
LDS (logical data stream) 64
LENGTH parameter (DSLLNFLD

macro) 62, 63
line formatter (DSLMLFP) 61
line subtask using X.25 126
link-edited application programs 36
links

communication 19
MERVA Link ESA 21
MERVA Link USS 21
MERVA-MQI Attachment 21
SWIFT Link 19
Telex Link 20

LIST request (queue services) 81
LMC (large message cluster) 84, 174
load program (DSLSDLR) 16
load program DSLSDLR 109
load session keys program

(DWSDLSK) 90, 122, 129
logical data stream (LDS) 64
logical terminal table (DWSLTT) 124
login sequence number (LSN) 124
LR (last received) 139, 142
LSN (login sequence number) 124

M
MAC trailer 167
master operator program (DSLCMO) 27,

34
MCB (message control block) 54

236 Concepts and Components

MCBNUM parameter (DSLPARM
macro) 59

MERVA ESA instance
primary 45
secondary 45

MERVA ESA MQSeries nucleus
server 30

initialization 46
MERVA ESA MQSeries nucleus server

(DSLNMQS) 46
processing 47
termination 48

MERVA Extended Connectivity 128
MERVA Link

control fields 143
MERVA Link ESA 21
MERVA Link USS 21, 146
MERVA Message Processing Client

Server 16
MERVA Message Processing

Client/Server 102
MERVA-MQI Attachment 21, 152
message buffer 7
message classes 142, 145
message control block (MCB) 54
message counter

log data set 174
program (DSLCNTP) 51
utility (DSLCNTUT) 179

message distribution 3
message flow 13
message format 7
message format, converting to other 114
message format service (MFS) 57, 97
message formats 3
message initialization and formatting

(DSLMTIN) 60
message integrity of MERVA Link 138
message load 16
message presentation 7
message processing 15
Message Processing Client Server 16
message processing components 95
message processing program

(DSLEMSG) 100
message processing steps 11
message retrieval 12
message retrieval program

(DSLOMSG) 171
message sequence number (MSN) 139
message services 53
message storage 3
message structure 5
message table (DSLMSGT) 171
message transfer 16
message transfer process (MTP) 136
message transfer protocol 136
message transfer service program

(MTSP) 136
message type formats 54
message type table (MTT) 54
message unload 17
MFS (message format service) 57
MFS checking interface (DSLMCHE) 65
MFS exits 66
MFS expansion interface

(DSLMXPND) 66

MFS interface program (DSLMMFS) 59
MFS program table (DSLMPTT) 59, 60
modes of processing 64
MQSeries 41
MQSeries, task server for 45
MQSeries queue handler

(DSLNMQH) 49
MSC (MERVA system control) 21
MSGACK field

SLS session key messages 90
SWIFT input messages 90
SWIFT output messages 90

MSGOK field 89
MSGTRACE field 88
MSN (message sequence number) 139
MT105, converting to 114
MT106, converting to 114
MT121, converting FINPAY to 114
MTP (message transfer process) 136
MTSP (message transfer service

program) 136
MTT (message type table) 54
multiple processors, using 30
multiple PUT request (queue

services) 76
multisystem environment 46

N
nested sequence 7
NEXT function 86
nicknames file 168, 174, 195
NLEXIT (TOF field) 63
nonshared file 168
NOPROMPT mapping program

(DSLMNOP) 65
NOPROMPT mode 64
Notices 215
notification, remote failure 48
nucleus (DSLNUC)

components 27
functions 27
programs included 24
programs not included 24
resources 23

nucleus command table (DSLNCMT) 28,
33, 170

nucleus program table (DSLNPTT) 27,
34, 36, 37

nucleus server, MERVA ESA
MQSeries 30

nucleus server map 46
nucleus server shell 30
nucleus server shell (DSLNSHEC) 29
nucleus server shell (DSLNSHEL) 29
nucleus server shell event processors 31
nucleus server shell events

nucleus server termination 31
posted program 31
request processed 32
request ready 31
service processed 32
timer expiration 31

nucleus server termination 31
nucleus task server request table

(DSLNTRT) 28, 44

O
occurrence 7
OFF state (queue trace) 83
OFF state (routing trace) 87
online maintenance 15
operator command program

(DSLECMD) 99
operator command service 170
operator command table

(DSLNCMT) 170
operator commands 165
operator functions 15, 33
operator interface program

(DSLNMOP) 34, 172
operator messages 171
operator messages, unsolicited 34
origin ID checking, extended 164
OSN (output sequence number) 121, 124
OSN ACK 121
output messages

definition 121
SWIFT 90

output program DSLSDO 110
output program DSLSDOR 111
output sequence number (OSN) 121, 124

P
P1 protocol 136
P2 protocol 136
page structure (screen) 64
parallel processing 29
partner table (EKAPT) 137
partner table (EKAPT), generating 138
password 164
PDU (protocol data unit) 136
PF key tables 55
posted program 31
posting an ECB by DSLQMGT 78
pregenerate session keys 129
PREMIUM (SWIFT PREMIUM Support)

online maintenance (DWSEAUT) 122
presentation of messages 7
primary MERVA ESA instance 45
print and edit services (DSLMPxxx) 64
private network 4
process, send and receive 155
process table (DSLKPROC) 155
processing attributes 55
processing modes 64
programs, user-written 17
PROMPT mode 64
protocol data unit (PDU) 136
PT (partner table) 21
PUT request (DSLJRNP) 162
PUT request (queue services)

multiple 76
single 75

Q
QDS (queue data set) 71, 173
QPL fields 77
QSN (queue sequence number) 73, 79
QTRACE parameter (DSLPARM

macro) 83

Index 237

queue data set (QDS) 71, 173
queue data set utility (DSLQDSUT) 177
queue data-set utility (DSLQDSUT) 73
queue definition 12, 70
queue elements 71, 77, 79
queue format 7, 61
queue key table entries 77
queue management program

(DSLQMGD) 92
queue management program

(DSLQMGT) 72
QUEUE parameter (DSLFNT macro) 70
queue sequence number (QSN) 73, 79
queue services (VSAM) 69

DELETE request 80
FREE request 79
GET request 79
GETLAST request 79
GETNEXT request 79
LIST request 81
PUT request

multiple 76
single 75

ROUTE request 76
TEST request 80

queue trace 83

R
RC (recovered) 143
receive process 155
receiving task 50
recovered (RC) 143
recovered (RI) 143
recovery of Telex Link 133
registering from XCF 47
remote failure notification 48

caused by abnormal termination 48
remote task communication 50
repeatable sequences 7
REPLACE request (queue services)

REPLACE request 76
reply message 48, 152
report message 48, 153
request message 48, 152
request modifiers (queue services) 57
request processed 32
request queue handler 30
request queue handler functions

ADD queuing 32
DELETE queuing 32
NOTIFY queuing 32
OBTAIN queuing 32

request queue handler functions,
general 32

request ready 31
request response message 48
request state

active 32
finished 32
free 32
waiting 32

resources, nucleus 23
response buffer 81
restart of DSLQMGT 73
retrieval request 79
retrieving messages 12

RI (recovered) 143
RM messages 143
ROUTE request (queue services) 76
ROUTE request (UMR) 88
routing 13, 84, 88
routing criteria 85
routing scanner (DSLRTNSC) 73, 76, 86,

92
routing tables 85
routing trace 87
routing trace entries 209
RR messages 143
RS messages 143

S
safe message storage 3
scratch pad area (SPA) 96
SDS

DSLSDI (input program) 16
DSLSDIR (input program) 16
DSLSDLR (load program) 16
DSLSDO (output program) 16
DSLSDOR (output program) 16
DSLSDUR (unload program) 17
DSLSDY (system printer

program) 17
DSLSDYR (system printer

program) 17
SEC (system environment change)

ECB 48, 49
secondary MERVA ESA instance 45
secure login/select (SLS) 121
send process 155
separation exits (DSLMSnnn) 68
SEQTYPE parameter (DSLLUNIT

macro) 62
sequences, field 7
sequential data set

batch programs 106
DSLSDI (input program) 16, 107
DSLSDIR (input program) 16, 108
DSLSDLR (load program) 109
DSLSDO (output program) 16, 110
DSLSDOR (output program) 16, 111
DSLSDUR (unload program) 112
DSLSDY (system printer

program) 113
DSLSDYR (system printer

program) 113
sequential data set (SDS)

DSLSDLR (load program) 16
DSLSDUR (unload program) 17
DSLSDY (system printer

program) 17
DSLSDYR (system printer

program) 17
Server, MERVA Message Processing

Client 16
service concept 23
service facilities 161
service processed 32
service program (DSLSRVP) 169
service programs used for intertask

communication 39
service request 32

services (handling if nucleus not
available) 32

services, use of 24
session keys (pregenerated) 129
SEVERE state (routing trace) 87
SF command 104
shared file 168
shell, nucleus server 30
signoff of users 98, 164
signon, controlling 35
signon of users 97, 164
single PUT request (queue services) 75
SLS (secure login/select) 121
SMALL state (queue trace) 83
SPA (scratch pad area) 96
SPA file in IMS database

(DSLEOSPB) 175
authenticator-key file

general 175
SPA file initialization program

(DSLEBSPA) 180
SPA file program, online

(DSLEOSPA) 175
start of transactions by DSLQMGT 78
station program (ENLSTP) 132
STOP parameter (DSLNPT macro) 132
storage of messages 3
storage protection, CICS programs

requiring 38
STRT parameter (DSLNPT macro) 132
subtask, running an application program

as a 37
subtask for SWIFT line using X.25 125
SVC routine for MVS

DSLNICPM 42
DSLXSVCX 43

SWIFT correspondents file 175, 199
SWIFT correspondents file utility

(DWSCORUT) 122, 181
SWIFT currency code file 176
SWIFT currency code file utility

(DWSCURUT) 182
SWIFT Link 19
SWIFT user security enhancements

(USE) 121
SWIFTII (descriptive name of

DWSDGPA) 125
switched virtual circuit (SVC) 128
SWLOADSK (descriptive name of

DWSDLSK) 129
synchronization 12
synchronization point program

(DSLISYNP) 51
SYSOUT printer 113
sysplex communication program 43
system control (MERVA Link)

MSC 21
system control facility (MERVA Link)

program (EKAEMSC) 101, 135
system environment change (SEC)

ECB 49
system environment change (SEC)

event 48
system printer program (DSLSDY) 17
system printer program (DSLSDYR) 17
system printer program DSLSDY 113
system printer program DSLSDYR 113

238 Concepts and Components

system printers 65
system services 24, 169
systems network architecture (SNA) 21

T
table, nucleus server 31
tags in fields 6
target function 86
task server 44

for a CICS TS queue 45
for APPC/MVS 45
for MQSeries 45

TCP/IP
MERVA Message Processing Client

Server 104
TELEX (descriptive name of

ENLSTP) 132
telex correspondents file 176, 201
telex interface program (TXIP) 20, 131
Telex Link 20
Telex Substation 131
terminal feature definition table

(TFDT) 55
terminal user control block (TUCB) 65,

68
termination, nucleus server 31
test-key calculation program 20
TEST request (queue services) 80
TFDT (terminal feature definition

table) 55
timer expiration 31
timer program (DSLTIMP) 51
TOF (internal message buffer)

fields for routing decisions 88
message initialization 60
supervisor program (DSLTOFSV) 56

TOF (tokenized form) 7
tokenized form (TOF) 7
top frame 64
trace

queue requests 83
routing 87

trailer 167
transaction code (DSLN) 34
transactions, start by DSLQMGT 78
transferring message 16
transport layer (DWSTxxxx) 127
TUCB (terminal user control block) 65,

68
TXIP (telex interface program) 20, 131

U
UMR (unique message reference) 81, 88
unique message reference (UMR) 81, 88
unload program (DSLSDUR) 17
unload program DSLSDUR 112
unsolicited operator messages 34, 172
USE (SWIFT user security

enhancements) 121
USE workstation 166

authenticator-key file
program (DWSAUTP) 167

user commands 98

user exits
DSLEU001 in DSLEUD 102
DSLEU002 in DSLEUD 102
DSLEU003 in DSLEUD 102
DSLEU004 in DSLEUD 102
DSLJR001 (journal) 162, 163
DSLMU001 (MFS) 61
DSLMU003 (MFS) 64
DSLMU004 (MFS) 98
DSLMU009 (MFS) 66
DSLMU020 (MFS) 108
DSLMU021 (MFS) 113
DSLMU022 (MFS) 110
DSLMU023 (MFS) 106
DSLMU024 (MFS) 105
DSLMU027 (MFS) 105
DSLMU054 (MFS) 62
DSLNCU01 (command server) 170
DSLNU003 in DSLNUSR 163
DSLNU004 in DSLNUSR 163, 165
DSLNU005 in DSLNUSR 163, 164
DSLQKEY in DSLQMGT 77, 83
DSLQPUT in DSLQMGIO 83
DSLQPUT in DSLQMGT 72
DSLQTRA in DSLQMGT 83
DSLQTRAB in DSLQMGD 93
DSLQUMR in DSLQMGT 83
DSLWTOEX (for WTO) 35
DSLWTOEX (WTO) 35

user file 174
user-file maintenance program

(DSLEUSR) 100
user file program (DSLNUSR) 163
user file service 163
user function selection 98
user signoff 98
user signon 97
user-written application programs 36,

120
user-written programs 17
USS, MERVA Link 146
utilities 176

V
VTAM line control program

(DWSVTMLC) 128

W
WARNING state (routing trace) 87
window size 140
write-back indicator (queue services) 79
write-to-operator macro (DSLWTO) 172
write-to-operator program

(DSLWTOP) 35, 172

X
X.25 connection to SWIFT 125
X.25 link layer program

(DWSNLNKV) 127
XCF, deregistering from 48
XCF, registering from 47
XCF group exit routine (DSLXGRP) 49
XPCC running under VSE 42

Index 239

240 Concepts and Components

MERVA Requirement Request

Use the form overleaf to send us requirement requests for the MERVA product. Fill
in the blank lines with the information that we need to evaluate and implement
your request. Provide also information about your hardware and software
environments and about the MERVA release levels used in your environment.

Provide a detailed description of your requirement. If you are requesting a new
function, describe in full what you want that function to do. If you are requesting
that a function be changed, briefly describe how the function works currently,
followed by how you are requesting that it should work.

If you are a customer, provide us with the appropriate contacts in your
organization to discuss the proposal and possible implementation alternatives.

If you are an IBM employee, include at least the name of one customer who has
this requirement. Add the name and telephone number of the appropriate contacts
in the customer’s organization to discuss the proposal and possible implementation
alternatives. If possible, send this requirement online to MERVAREQ at SDFVM1.

For comments on this book, use the form provided at the back of this publication.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

Send the fax to:

To: MERVA Development, Dept. 5640 Fax Number: +49-7031-16-4881
Attention: Gerhard Stubbe Internet address:

mervareq@de.ibm.com
IBM Deutschland Entwicklung GmbH
Schoenaicher Str. 220
D-71032 Boeblingen
Germany

© Copyright IBM Corp. 1987, 2001 241

MERVA Requirement Request

To: MERVA Development, Dept. 5640 Fax Number: +49-7031-16-4881
Attention: Gerhard Strubbe Internet address:

mervareq@de.ibm.com
IBM Deutschland Entwicklung GmbH
Schoenaicher Str. 220
D-71032 Boeblingen Germany

Page 1 of ______

Customer’s Name __

Customer’s Address __

__

__
Customer’s
Telephone/Fax __

Contact Person at __
Customer’s Location
Telephone/Fax __

MERVA
Version/Release __

Operating System __
Sub-System
Version/Release __

Hardware __

Requirement
Description __

__

__

__

__

__

__

Expected Benefits __

__

__

242 Concepts and Components

Readers’ Comments — We’d Like to Hear from You

MERVA for ESA
Concepts and Components
Version 4 Release 1

Publication No. SH12-6381-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SH12-6381-01

SH12-6381-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH
Information Development, Dept. 0446
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5648-B29

SH12-6381-01

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
M

ER
VA

fo
r

E
SA

Co
nc

ep
ts

an
d

Co
m

po
ne

nt
s

Ve
rs

io
n

4
R

el
ea

se
1

	Contents
	About This Book
	Prerequisites for Using This Book

	Summary of Changes
	Part 1. MERVA ESA Concepts
	Chapter 1. Introducing MERVA ESA
	Chapter 2. Messages
	The Message Structure
	Message Formats
	Defining Messages

	Chapter 3. Functions and Queues
	Functions
	Queues
	Routing

	Chapter 4. Message Processing
	End-User Interface
	MERVA Message Processing Client Server
	Hardcopy Print
	Sequential Data Set Batch Interfaces
	User-Written Programs

	Chapter 5. Communication Links
	SWIFT Link
	Telex Link
	Telex Link via a Workstation
	Telex Link via a Fault-Tolerant System

	MERVA Link
	MERVA Link ESA
	MERVA Link USS

	MERVA-MQI Attachment

	Chapter 6. Control and Services
	Central Services
	Direct Services
	Use of the Services

	Part 2. MERVA ESA Components
	Chapter 7. Control Facilities
	The MERVA ESA Nucleus (DSLNUC)
	Components of DSLNUC

	Nucleus Server Shell
	General Request Queue Handler (DSLNRQH) Functions
	MERVA ESA Operator Functions
	CICS Master Operator Program (DSLCMO)
	CICS Automatic Start Program (DSLCAS)
	The Operator Interface Program (DSLNMOP)
	The Write-to-Operator Program (DSLWTOP)

	MERVA ESA Functions Using a Security Manager
	User-Written Application Programs
	Application Programs Link-Edited to DSLNUC

	Intertask Communication
	DSLNICT—Intertask Communication Interface
	DSLNICTA—Intertask Communication Interface for APPC/MVS
	DSLNICTM—Intertask Communication Interface for MQSeries
	DSLNICTQ—Intertask Communication Interface for CICS TS
	DSLNICP—Interregion Communication Program for VSE
	Communication Control
	Data Exchange

	DSLNICPM—Interregion Communication Program for MVS
	Communication Control
	Data Exchange

	DSLXSVCX—Interregion and Sysplex Communication Program for MVS
	DSLNICQ—Interface to DSLNTSQ
	DSLNTS—Task Server
	DSLNTSA—Task Server for APPC/MVS
	DSLNTSAB—Batch Task Server Interface for APPC/MVS
	DSLNTSM—Task Server for MQSeries
	DSLNTSQ—Task Server for a CICS TS Queue

	Interservice Communication
	DSLNMQS—MERVA ESA MQSeries Nucleus Server
	Initialization
	Processing
	Termination

	Remote Failure Notification
	Intersystem Service Invokation (DSLXSVCS)
	XCF Group Exit Routine (DSLXGRP)

	MQSeries Queue Handler
	DSLNRTCP—Remote Task Communication
	The Receiving Task
	The Instructing Task

	DSLISYNP—Synchronization Point Program
	DSLTIMP—Timer Program
	DSLCNTP—Message Counter Program

	Chapter 8. Message Services
	Field Definition Table
	Message Type Table
	Message Control Blocks
	Terminal Feature Definition Table
	Function Table
	Program Function Key Tables
	TOF Services
	Message Format Services
	DSLMMFS—MFS Interface
	MFS Initialization
	Module Control

	DSLMPTT—MFS Program Table
	DSLMTIN—Message Initialization and Formatting
	Message Initialization in the TOF

	DSLMLFP—Line Formatter
	Line buffer to TOF (GET)

	DSLMLEF—External Line Format Program
	DSLMPxxx—Print and Edit Services
	Processing Modes

	DSLMNOP—NOPROMPT Mapping
	DSLMCHE—MFS Checking Interface
	DSLMXPND—MFS Expansion Interface
	MFS Exits

	Chapter 9. Queue Services (VSAM)
	Definition of Queues
	Queue Data Set (QDS)
	Queue Management Program DSLQMGT
	Initialization of DSLQMGT
	Normal Start of DSLQMGT
	Restart of DSLQMGT

	Termination of DSLQMGT
	Servicing Message Queue Requests
	Definition of Small and Large Messages
	Storing Messages in Queues
	Retrieving a Message from a Queue
	Deleting a Message in a Queue
	Getting Status Information

	Unique Message Reference
	Queue Trace
	User Exits in DSLQMGT

	Large Message Cluster (LMC)
	Large Message Service Program DSLQLRG

	Routing
	Definition of Routing Tables
	Routing Scanner Program DSLRTNSC
	Routing Trace
	Special TOF Fields for Routing Decisions
	The Unique Message Reference (UMR)
	The MSGTRACE Field
	The MSGOK Field
	The MSGACK Field

	Chapter 10. Queue Services (DB2)
	Definition of Queues
	DB2 Objects
	Queue Management Program DSLQMGD
	Initialization of DSLQMGD for Central Processing
	Termination of DSLQMGD for Central Processing
	Servicing Queue Requests
	Getting Status Information

	Unique Message Reference
	Commit
	Queue Trace
	User Exits in DSLQMGD

	Queue Management I/O Programs for DB2
	Routing
	Extra Keys

	Chapter 11. Message Processing
	End-User Driver DSLEUD
	Initialization of DSLEUD
	Processing of DSLEUD
	User Signon
	User Signoff
	Function Selection
	Processing of User Commands
	Calling Function Programs

	Termination of DSLEUD
	Function Programs of DSLEUD
	Operator Command Program DSLECMD
	General File Maintenance Program DSLEFLM
	Message Processing Program DSLEMSG
	User-File Maintenance Program DSLEUSR
	MERVA System Control Facility Program EKAEMSC
	Authenticator-Key File Maintenance Program DWSEAUT

	DSLEUD User Exits

	MERVA Message Processing Client/Server
	MERVA ESA Permissions for MERVA Message Processing Client Users
	CICS LU 6.2 Transactions
	APPC/MVS LU 6.2 Transactions
	TCP/IP Listener Program DSLAFATM

	Hardcopy Printer Program DSLHCP
	Transaction for Message Checking and Expansion DSLCXT
	Sequential Data Set (SDS) Batch Programs
	SDS Input Program DSLSDI
	SDS Input Program DSLSDIR
	SDS Load Program DSLSDLR
	SDS Output Program DSLSDO
	SDS Output Program DSLSDOR
	SDS Unload Program DSLSDUR
	System Printer Program DSLSDY
	System Printer Program DSLSDYR

	Converting Messages to Other Formats
	Converting EDIFACT FINPAY Messages into MT121 Messages, and Vice Versa
	Converting EDIFACT Messages into SWIFT MT105 or MT106 Messages
	Conversion Program DSLCES1
	Conversion Program DSLCES2
	Sample Transaction Program DSLCESTR

	Converting SWIFT MT105 or MT106 Messages into EDIFACT Messages
	Conversion Program DSLCSE1
	Sample Transaction Program DSLCSETR

	User-Written Application Programs

	Chapter 12. Communication Links
	SWIFT Link
	Overview of the SWIFT Link
	Logical Terminal Table DWSLTT
	General Purpose Application Program DWSDGPA
	Connection to the SWIFT X.25 Network
	SWIFT Layer Programs
	MERVA Extended Connectivity

	Load Session Keys Program DWSDLSK
	DWSDLSK Initialization
	DWSDLSK Processing
	DWSDLSK Termination

	Telex Link
	Telex Link via Fault-Tolerant System
	Station Program ENLSTP
	Recovery after Restart

	The MERVA Link
	MERVA Link ESA
	MERVA Link Programs
	Application Support Concepts and Functions
	Financial Message Transfer/ESA (FMT/ESA)

	MERVA Link USS
	MERVA Link USS Programs
	MERVA Link USS Gateway Functions
	MERVA Link USS Control Functions

	MERVA-MQI Attachment
	Functions of MERVA-MQI Attachment
	Activating MERVA-MQI Attachment
	Components of MERVA-MQI Attachment
	MERVA-to-MQI Send Process Program
	MQI-to-MERVA Receive Process Program
	Process Table
	User Exit for Send and Receive Processes
	Conversion Exit
	Routing Table
	Message Control Blocks
	MERVA ESA Resource Definitions
	MQSeries Resource Definitions

	Chapter 13. File, System, and Operator Services
	Journal Service
	User File Service
	Authentication Service of SWIFT Link
	Maintenance of the Authenticator-Key File
	Authentication of SWIFT Messages

	General File Service
	File Service Program DSLFLVP

	System Services
	Operator Command Service
	Operator and Diagnostic Message Services
	The Message Table DSLMSGT
	The Message Retrieval Program DSLOMSG
	Issuing Operator and Diagnostic Messages

	Chapter 14. MERVA ESA Data Sets and Utilities
	Data Sets
	Journal Data Sets
	Queue Data Sets
	Large Message Cluster
	User File
	Nicknames File
	Message Counter Log Data Set
	SPA File
	Authenticator-Key File
	SWIFT Correspondents File
	SWIFT Currency Code File
	Telex Correspondents File

	Utilities
	Queue Data Set Utility
	Formatting a Queue Data Set
	Copying a Queue Data Set
	Modifying a Queue Data Set

	Large Message Cluster (LMC) Maintenance Utility
	General File Utility
	Message Counter Report Utility
	SPA File Initialization Program
	Authenticator-Key File Utility
	SWIFT Correspondents File Utility
	Report Layout

	SWIFT Currency Code File Utility
	Report Layout

	Part 3. Appendixes
	Appendix A. Journal Record Layouts
	Appendix B. Layout of the MERVA ESA Nicknames File
	Appendix C. Layout of the Currency Code File
	Appendix D. Layout of the SWIFT Correspondents File
	Appendix E. Layout of the Telex Correspondents File
	Appendix F. Layout of the DB2 Tables
	Table DSLTQUEL (Queue Element Table)
	Table DSLTQXDEF (Extra-Key Definition Table)
	Table DSLTQXKEY (Queue Extra-Key Table)
	Table DSLTQBUSY (Busy Table)
	Table DSLTQMSG (Message Table)
	Table DSLTQFUN (Function Control Table)
	Table DSLTQSTAT (MERVA Status Table)

	Appendix G. Layout of the Routing Trace Entries
	Routing Trace Header
	Routing Trace DEFINE Entry
	Routing Trace TEST Entry
	Routing Trace SET Entry
	Routing Trace DROP Entry
	Routing Trace FINAL Entries

	Appendix H. Notices
	Programming Interface Information
	Trademarks

	Glossary of Terms and Abbreviations
	Bibliography
	MERVA ESA Publications
	MERVA ESA Components Publications
	Other IBM Publications
	S.W.I.F.T. Publications

	Index
	MERVA Requirement Request
	Readers’ Comments — We'd Like to Hear from You

