
MERVA for ESA

Advanced MERVA Link
Version 4 Release 1

SH12-6390-01

���

MERVA for ESA

Advanced MERVA Link
Version 4 Release 1

SH12-6390-01

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix B.
Notices” on page 171.

Second Edition, May 2001

This edition applies to

Version 4 Release 1 of IBM MERVA for ESA (5648-B29)

and to all subsequent releases and modifications until otherwise indicated in new editions.

Changes to this edition are marked with a vertical bar.

© Copyright International Business Machines Corporation 1991, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book vii
Who This Book Is For vii
What You Need to Know to Understand This Book vii
How to Use This Book vii

Summary of Changes ix
What Has Been Added. ix

MERVA Link UNIX System Services ix
What Has Been Modified ix

MERVA Link P1 and P2 Protocols ix
MERVA Link Conversation Trace Events ix

What Has Been Removed ix
MERVA Link Asynchronous Communication . . ix
MERVA Link APPC/MVS Mirror ix
MERVA Link Internals ix

Part 1. The MERVA Link Message
Handling System 1

Chapter 1. Introduction 3
The Model of the MERVA Link Message Handling
System 3

Functional View of the Model 3
Layered Representation of the Model 4

Boundary Functions 6
MERVA Link Boundaries 6
Boundary Function Service Primitives 6

Peer-to-Peer Protocols 6
Message Transfer and Application Support
Protocols (P1 and P2) 7
Command Transfer Protocol (P3) 8

Implementation Overview 8
MERVA Link ESA Implementation Overview . . 8
MERVA Link USS Implementation Overview . . 11

Chapter 2. Service Elements 15
The Message Transfer Service 15

Content Type Indication 15
MTL Message Identification 15
ASL Content Identification 15
Encoded Information Type Indication. 15
Submission Timestamp Indication 15
Partner Connection 16
Grade of Delivery Indication (Priority) 16
P1 Routing 16

The Application Support Service 16
Message Transfer Service Elements 16
ASL Message Identification 16
Typed Body 16
Receipt Confirmation 17
Acknowledgment Message Correlation 17
Originator/Recipient Indication 17
Subject Indication 17
Buckslip (Attached Note) 17

Message Integrity Protocol 17
Message Text Encryption Indication 18
Message Text Encryption 18
Message Text Authentication Indication 18
Message Text Authentication 18
Message Text Compression Indication 18
Priority Indication 18
Possible Duplicate Message Indication 19
Body Part 19

The MERVA Link Message Integrity Protocol (MIP) 19
Message Integrity Protocol Terms 19
Description of the MIP at the Sending Side . . . 20
Description of the MIP at the Receiving Side . . 23
Message Integrity Checks at the Sending Side . . 24
Message Integrity Checks at the Receiving Side 25

P1 Routing Facility 26
Recipient Information in an Inbound
Conversation 26
P1 Routing Parameters 27
Confirming a Routed Conversation 27

Chapter 3. Peer-to-Peer Protocols . . . 29
MERVA Link Protocol Data Units (PDUs) 29

MERVA Link Message Handling System PDU
Hierarchy 29
MERVA Link MHS PDU Types 30

MERVA Link PDU Data Elements 32
Notation of the P1, P2, and P3 Protocol Definitions 33
Definition of the Message Transfer Protocol (P1) . . 35

PDU Trailer 35
Application Message PDU (AMPDU) 35
Delivery Report MPDU (DR MPDU) 39
Probe PDU 39

Definition of the Application Support Protocol (P2) 41
Interapplication Message ASPDU (IM-ASPDU) 41
Status Report ASPDU (SR-ASPDU) 46
Report 47

Definition of the Command Transfer Protocol (P3) 48
Command Transfer PDU Envelope
(CPDUEnvelope) 49
Command Transfer PDU Content (CPDUContent) 49
Command Request PDU (CRqPDU) 49
Command Request Heading 50
Command Response PDU (CRsPDU) 51
Command Response Heading 51
Command Response Body 53
Command PDU Trailer 53
Command Error Report 53

Chapter 4. Boundary Function Service
Primitives 55
MTL Boundary Function Service Primitives. . . . 56
MTP Boundary Function Service Primitives. . . . 57

© Copyright IBM Corp. 1991, 2001 iii

||
||
||
||
||
||
||
||
||

||

||
||
||

||

||
|
||
||
||

Part 2. MERVA Link ESA
Application Support 59

Chapter 5. Application Support
Concepts and Resources 61
MERVA Link Application Control Queue (ACQ) . . 61
MERVA Link Sending ASP AS Status 61

AS Status OPEN-NOHOLD 62
AS Status OPEN-HOLD 62
AS Status CLOSED-NOHOLD 63
AS Status CLOSED-HOLD 63

MERVA Link Sending ASP MT Status 63
MERVA Link Message Class Concept 64
MERVA Link Application Support Control Fields . . 66

Chapter 6. Application Support
Functions 69
Sending Messages 69

Acknowledgment Control Information 69
Inserting Acknowledgment Information in
Outgoing Messages 69

Receiving Application Messages 70
Receiving Acknowledgment Messages 70

Merging an ACK with the Original Message . . 70
Correlation Data 70
Application Message in the ACK Wait Queue . . 71
ACK Correlation Process 71
ACK Correlation Failure 71
MIP Considerations during ACK Processing . . 71

Automatically Starting an Inoperable ASP 72
Sending an ASP Kickoff from a Receiving ASP . 72
Retry to Start an Inoperable Sending ASP . . . 73
ASP Monitor 73

Handling Message Delivery Errors 73
Accept an Inbound Message Despite a Warning 73
Recovering from Delivery Errors 74
Recovering from a Recovery Process Interrupt . . 75
Immediate Recovery 75

Chapter 7. The MERVA Link CICS ASP
Monitor 77
Operating the ASP Monitor 77

Automatic ASP Monitor Start 77
ASP Monitor Handling within MSC 77
Direct ASP Monitor Transaction Call 78

ASP Monitor Functions 79
ASP Kickoff Criteria 79
Restart Time Interval Considerations 79

Chapter 8. Support of MERVA ESA
Facilities in MERVA Link 81
MERVA ESA MFS User Exit Support 81

Ready-to-Send Messages 81
Outgoing Messages 81
Confirmed Messages 82
Incoming Application Messages 82
Incoming Acknowledgment Messages 82
Recovered Messages 83

MERVA ESA Routing Table Support 84
Route Ready-to-Send Messages to Another Send
Queue 84
Route Confirmed Outgoing Messages 84
Route Incoming Acknowledgment or
Acknowledged Messages 85
Route Incoming Application Messages 85

MERVA ESA Message Trace Support 85
Move Message from the Send Queue to the ACQ 85
Route Confirmed Message (Synchronous
Confirmation) 85
Route Incoming Application Message. 86
Route Acknowledgment or Acknowledged
Message 86
Route Ready-to-Send Message to Another Send
Queue 86
Copy In-Process Message to Another Send Queue 86

MERVA ESA Journal Support 86
Classes of MERVA Link Entries in the
MERVA ESA Journal 86
General Layout of a MERVA Link Journal Record 87
Types of MERVA Link Entries in the
MERVA ESA Journal 88
Outgoing Application Message Journal Entry
(ID=70) 88
Outgoing Acknowledgment Message Journal
Entry (ID=71). 89
Incoming Application Message Journal Entry
(ID=72) 89
Incoming Acknowledgment Message Journal
Entry (ID=73). 89
Delivery Notification Journal Entry (ID=74). . . 89
Recovered Message Journal Entry (ID=78) . . . 89
MERVA System Control Facility Command
Journal Entry (ID=7F) 90

Part 3. MERVA Link USS Functions 93

Chapter 9. The MERVA Link USS
Control Facility 95
Control Facility Overview 95

Application Control Table (ACT) 95
Application Control Daemon (ACD) 95
Application Control Command Application
(ACC) 96
Configuration and Security Files (CFG, SEC) . . 96
Conversation Security Programs (ACS and CSI) 96
Configuration Verification Programs (VCD, VCC,
and VCS) 97

Application Control Table (ACT) 97
ACT IPC Resources. 97
ACT Header 98
ACT ASP Section 99
ACT ISC Section 100

Application Control Daemon (ACD). 101
Starting the ACD 102
Monitoring ACD Activity 102
Stopping the ACD. 103

Application Control Command Application (ACC) 103
ACC Command Format 104

iv Advanced MERVA Link

||

||

|
||
||
||
||
|
||
||
||
|
||
||
||
||
||
||
||
||
||
||
||
||

Changing ACT ISC Parameters for Partner
Nodes 104
Displaying Information about Routing Process
Event Delays 105
Modifying an ASP. 106
Send Probe Commands 107
Analyzing and Explaining Error Information 108
ACC Conversation Mode 108
ACC Batch Input Mode 110

Partner Security Control Application (CSI). . . . 112
The CSI Program 112
The CSI Execution Environment 112
The CSI Execution Modes 112
The CSI Command Parameters 112
The CSI Standard Input File 113
The CSI Batch Mode 114

Application Control Daemon for Verification (VCD) 114
Starting the VCD 114
Function of the VCD 115
Stopping the VCD 116

Application Control Command Application for
Verification (VCC) 116

Examples of the MERVA Instance Owner Using
VCC 117
Examples of Another USS User Using VCC . . 117

Local Security Control Application for Verification
(VCS) 118

The VCS Program 118
The VCS Execution Environment 118
The VCS Execution Modes and Command
Parameters 118
The VCS Function 118

Chapter 10. MERVA Link USS in the
OS/390 USS Environment 119
Standard MERVA Link USS Program Call
Environment 119

MERVA USS Environment Variables 119
PATH and LIBPATH Environment Variables . . 119

MERVA Link USS Program Call Environments . . 120
MERVA Link USS Programs Called in a USS
Shell 120
MERVA Link USS Inbound SNA APPC TP
(ekatpi) 121
MERVA Link USS Inbound TCP/IP TP (ekatci) 121

Chapter 11. MERVA Link USS in the
OS/390 MVS Environment 123
Allocate MERVA Link USS MVS Data Sets. . . . 123

Side Definitions Data Set 123
Program Objects Data Set 123

Copy DLLs from HFS Library to PDSE 124
Copy DLL Procedure 124
Copy DLL Job Sequence 124
Sample Copy DLL Job Steps 125

Copy Programs from HFS Library to PDSE . . . 125
Copy Program Procedure 126
Copy Program Job Sequence 126
Sample Copy Program Job Steps 127

Execute Programs in the OS/390 MVS
Environment 127

Application Control Daemon (ACD). 127
Application Control Command Application
(ACC) 128
Local Conversation Security Application (ACS) 128
Partner Conversation Security Application (CSI) 129
Application Control Daemon for Verification
(VCD) 129
Application Control Command Application for
Verification (VCC) 130
Local Conversation Security Application for
Verification (VCS) 130
Inbound SNA APPC TP (TPI) 131

Part 4. MERVA Link Problem
Determination Aids 133

Chapter 12. MERVA Link ESA
Conversation Traces 135
Conversation Trace Control Information 135

The Conversation Command Type 135
Compressed Conversation Indicators 136

The External Conversation Trace 137
Using the External Conversation Trace 137
Interpreting the Control Information Part . . . 138

External Conversation Trace Samples 139
Full External Conversation Trace Samples . . . 139
Weak External Conversation Trace Samples . . 143

The Internal Conversation Trace 145
EKATS10 Internal Conversation Trace 146
EKATR10 Internal Conversation Trace 146
EKATPO1 Internal Conversation Trace 147
EKATPI1 Internal Conversation Trace 148

Chapter 13. MERVA Link USS Problem
Determination Aids 149
Processing Trace Facility. 149

Trace File Allocation Modes 150
Trace File Directory 151
Trace Levels 152
Time Trace 152
PDU Segment Trace Format 153
Trace Facility Commands 153

Intersystem Error Reporting 153
Standard Error Information. 154
Extended Error Information 154
Routing and Receiving Processes 155
Sending Processes 156
Error Report Log Facility 157
ACC Commands That Handle Extended Error
Information 158

Part 5. Appendixes 161

Appendix A. PDU Data Elements . . . 163
Level-1 Data Elements 163
Contents of Implicit Data Elements 164

Contents v

|
||
|
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
|
||
|
||
||
|
||
||
||
|
||
||

|
||
|
||
||
||
||
|
||
|
||
||

|
||
||
||
||
||
||
||
||
||
||
||
||

|
||
||
|
||
||
||
|
||
|
||
|
||
||

||
||
||

|
||
||
||
||
||
||
||
||
||
||
||
||
||
||
|
||

Probe Envelope. 164
AMPDU Envelope. 164
Delivery Report Envelope and Content 164
Command PDU Envelope 164
Originator or Recipient Address 164
Security Information 165
MTP Trace 165
IM-ASPDU Heading 165
Application Descriptor 166
Status Report ASPDU 166
Report Data Element 166
Command Request PDU Heading 166
Command Response PDU Heading 167
Command Response Report 167
Application Defined Data Elements 167

List of Implicit Data Elements 167
Level-1 Implicit Data Elements 167
Level-2 Implicit Data Elements 168

List of Explicit Data Elements 168

Level-1 Explicit Data Elements 168
Level-2 and Level-3 Explicit Data Elements . . 169

Appendix B. Notices 171
Trademarks 172

Glossary of Terms and Abbreviations 175

Bibliography. 187
MERVA ESA Publications 187
MERVA ESA Components Publications 187
Other IBM Publications 187
S.W.I.F.T. Publications 187

Index 189

MERVA Requirement Request 195

vi Advanced MERVA Link

||

||

||
||

||
||

About This Book

MERVA Link is a component of the IBM licensed program Message Entry and
Routing with Interfaces to Various Applications for ESA Version 4 Release 1
(abbreviated to MERVA ESA). It provides a means to interconnect cooperating
MERVA systems in an SNA or an IP network. This interconnection is used to
exchange MERVA ESA messages between the cooperating MERVA systems
(MERVA Link Message Handling System) and to control a partner MERVA system
by means of sending a MERVA ESA command (MERVA System Control Facility).
The MERVA System Control Facility is supported only in an SNA network.

This book contains the information necessary to understand the MERVA Link
Message Handling System (MHS) architecture and implementation, and
information that is not covered by other books of the MERVA ESA library.

Who This Book Is For
This book is for:
v Anyone who wants to become familiar with the concept of the MERVA Link and

its terminology
v System programmers responsible for setting up a network of cooperating

MERVA systems
v Application programmers responsible for developing their own implementation

of the MERVA Link protocol
v Anyone who is responsible for analyzing problems in a network of cooperating

MERVA systems.

What You Need to Know to Understand This Book
It is assumed throughout this book that you have experience with single
MERVA ESA systems, and basic knowledge of SNA concepts and terminology as
well as knowledge of the CICS and APPC/MVS intersystem communication
facilities. If you plan to use the MERVA Link functions executing in the OS/390®

UNIX System Services environment, you must have basic knowledge of the
OS/390 UNIX System Services.

How to Use This Book
Read Chapter 1 to familiarize yourself with the concepts, the resources, and the
terminology of MERVA Link.

Thereafter, you can use the appropriate parts of the book as guidance and
reference material for your particular task.

© Copyright IBM Corp. 1991, 2001 vii

|
|

|

|
|
|

viii Advanced MERVA Link

Summary of Changes

This edition of this manual reflects the following differences between the current
version of MERVA ESA (Version 4.1) and the previous version (Version 3.3):

What Has Been Added

MERVA Link UNIX System Services
MERVA ESA now provides a set of MERVA Link functions called MERVA Link
USS. These functions execute in the OS/390 UNIX System Services (USS)
environment, and provide gateway services for routing MERVA Link conversations
from an SNA APPC network to a TCP/IP network, and vice versa.

What Has Been Modified

MERVA Link P1 and P2 Protocols
The definitions of the MERVA Link P1 and P2 protocols have been extended to
provide additional functionality. The protocol definitions and PDU data element
summary have been changed accordingly.

MERVA Link Conversation Trace Events
A number of CICS commands related to an APPC conversation have been added
to the events shown in the MERVA Link conversation trace. The conversation trace
description and the conversation trace samples have been changed accordingly.

What Has Been Removed

MERVA Link Asynchronous Communication
Support of the asynchronous communication protocol based upon LU 6.1 services
has been dropped. The corresponding topics have been removed from this manual.

MERVA Link APPC/MVS Mirror
Support of the MERVA Link APPC/MVS Mirror has been dropped in MERVA
Link. The corresponding topics have been removed from this manual.

MERVA Link Internals
The description of a number of MERVA Link internal implementation topics has
been removed from this manual. These topics are:
v MTL and MTP boundary interfaces
v APPC and ISC boundary interfaces
v Internal module and service primitive traces
v Program return codes
v Storage areas in MERVA Link dumps
v Journal entry samples
v MERVA Link IMS APPC considerations
v MSC processing structure

© Copyright IBM Corp. 1991, 2001 ix

|
|

|

|

|
|
|
|

|

|

|
|
|

|

|
|
|

|

|

|
|

|

|
|

|

|
|

|

|

|

|

|

|

|

|

x Advanced MERVA Link

Part 1. The MERVA Link Message Handling System

© Copyright IBM Corp. 1991, 2001 1

|

2 Advanced MERVA Link

Chapter 1. Introduction

This chapter introduces the MERVA Link message handling system (MHS). It
contains a description of the MERVA Link message handling system model, that is,
MERVA Link’s conceptual view of the world. It names the protocols defined and
used in MERVA Link and introduces the MERVA Link implementation.

The Model of the MERVA Link Message Handling System
The MERVA Link message handling system model serves as a tool to aid in the
development of an architecture for a message handling system and describes the
basic concepts graphically. It consists of several different functional components
that work together to provide message handling services. The model can be
applied to a number of physical and organizational structures.

The message handling system model employed by MERVA Link is described in the
following; and familiarity with it is necessary to fully understand the MERVA Link.

Functional View of the Model
The functional view of the MERVA Link message handling system model is shown
in Figure 1.

In this model, an application is a computer process that requests message handling
services from the message handling system (MHS). An application is referred to as
either:
v An originating application (when preparing and sending a message)
v A recipient application (when receiving a message)

Figure 1. MERVA Link MHS Model: Functional View

© Copyright IBM Corp. 1991, 2001 3

An originating application prepares a message and passes it to its application
support process (ASP). An ASP is a computer process that interacts with the
message transfer system (MTS) to submit messages for a single originating
application. The MTS, as known by a specific ASP, consists of a sending and
receiving message transfer process (MTP) and works as follows:
1. A sending ASP submits a message to its associated sending MTP.
2. The sending MTP transfers the message to its partner receiving MTP.
3. The receiving MTP delivers the message to its associated receiving ASP.
4. The receiving ASP passes the message to the recipient application associated

with it.

The MERVA Link message transfer system (MTS) consists of a set of cooperating
MTPs and a data communication network interconnecting cooperating MTPs. A
MERVA Link P1 Routing Gateway can be part of the MTS. A MERVA Link
Gateway can interconnect an MTP using SNA APPC with an MTP using TCP/IP.

Layered Representation of the Model
The layered representation of the MERVA Link MHS Model is shown in Figure 2.
The explanation of the abbreviations used in this figure is contained in the text
following that figure.

Figure 2 uses the following abbreviations:

AS MERVA Link Application Support is a set of functions that provide ASL

Application

AS

ACF

ASP

MT

MTSP

MTP

Lower Layer Functionality
- Presentation
- Session
- Transport
- Network

Application

AS

ACF

ASP

MT

MTSP

MTP

Lower Layer Functionality
- Presentation
- Session
- Transport
- Network

System 1 System 2

P2

P1

ASL ASL

MTLMTL

Figure 2. MERVA Link Message Handling System Model: Layered Representation

4 Advanced MERVA Link

|
|
|

and MTL services to applications. An executing entity of MERVA Link
Application Support is called an application support process (ASP).

ACF The application communication functionality (ACF) is contained in a
sublayer between the application and the MERVA Link application support
layer (ASL). It is closely related to the application. The functionality
contained in this sublayer is specified individually by each application and
is not part of a general MERVA Link application support service.

Application communication functionality can be implemented in a MERVA
Link user exit.

ASL The application support layer (ASL) contains the general MERVA Link
application support functionality. This functionality provides the
application support services that are independent of a specific application.

ASP A sending or a receiving application support process is an executing entity
of MERVA Link Application Support. It supports a specific application.

An ASP can be adapted to a specific application through individual
application communication functionality (ACF) and through ASP
customization.

A sending ASP obtains a message from the application, converts it to the
internal MERVA Link format, and submits the message to the message
transfer system.

When the message transfer system has delivered a message to a receiving
ASP, the ASP converts it from the internal MERVA Link format to the
application format and passes the message to the application.

MT MERVA Link Message Transfer (MT) is a set of functions that provide
message transfer services to MERVA Link Application Support. An
executing entity of MERVA Link Message Transfer is called a message
transfer process (MTP).

MTL The message transfer layer (MTL) contains the MERVA Link message
transfer functionality.

MTSP
The MERVA Link message transfer service processor (MTSP) contains the
main message transfer layer functionality. It interfaces with all sending and
receiving ASPs and all sending and receiving MTPs.

The MTSP deals with the MERVA Link message transfer protocol, called
P1. It is therefore also called the MERVA Link P1 processor. All
functionality that deals with the actual transfer of a message is provided
by a message transfer program.

MTP A sending or a receiving message transfer process is an executing entity of
MERVA Link Message Transfer. The functions of an MTP are implemented
in a message transfer program, also called a message transfer processor.

A MERVA Link message transfer program communicates with the message
transfer service processor and sends or receives protocol data units (PDUs)
to or from its partner.

An MTP uses SNA APPC (LU 6.2) or TCP/IP Stream Socket services to
communicate with its partner process.

P1 The peer-to-peer protocol at the message transfer layer is called P1. P1
defines the language used by cooperating message transfer processes.

P2 The peer-to-peer protocol at the application support layer is called P2. It

Chapter 1. Introduction 5

|
|
|

|
|

supports messaging between applications, called Interapplication
Messaging (IAM). P2 defines the language used by cooperating IAM
application support processes.

Boundary Functions
The model of the MERVA Link message handling system shows that MERVA Link
is organized in layers and sublayers. Boundary functions are supported at the
boundaries of all layers and sublayers.

MERVA Link Boundaries
The functions at the boundary between the application and MERVA Link is
described by the MERVA ESA functions and the MERVA Link application support
functions.

The functions at the boundaries between MERVA Link layers and sublayers are
described by boundary function service primitives.

The functions at the boundary between a MERVA Link message transfer processor
and the data communication services used by that MTP are specified by the
corresponding data-communication system (CICS (R) or APPC/MVS), and by
MERVA Link implementation rules.

Boundary Function Service Primitives
Service primitives can be compared with program function calls and the return to
the calling program. Parameters are associated with the function call and with the
return to the caller.

The name of a service primitive consists of two parts that are connected by a
period. The first part denotes the service primitive function and is written in
uppercase letters except for the two exceptions, SendPDU and ProcessPDU.
Examples of names of service primitive functions are CONNECT, SUBMIT,
DELIVER, and DISCONNECT.

The second part of a service primitive name identifies the type of the call. Types of
service primitives are Request, Confirmation, Indication, and Response.

The call of an upper-layer program to a lower-layer program is called a request. A
request is a primary service primitive. A confirmation, the return to the calling
program, is associated with every request. A confirmation is a secondary service
primitive.

The call of a lower-layer program to an upper-layer program is called an indication.
An indication is a primary service primitive. A response, the return to the calling
program, is associated with every indication. A response is a secondary service
primitive. Notice that the upper-layer programs at the receiving side are called by
the lower-layer programs.

Peer-to-Peer Protocols
The following peer-to-peer protocols are defined in MERVA Link:

P1 The message transfer protocol

P2 The application support protocol

6 Advanced MERVA Link

|

|
|
|

|

P3 The command transfer protocol

Message Transfer and Application Support Protocols (P1 and
P2)

At the interapplication messaging application support layer (IAM ASL), an
application message consists of a message header and a message body. The
message body contains a single body part (implementation rule). The body part
consists of a body part header and body part data. The body part data consists of
one or more body part data segments.

An acknowledgment message at the application support layer contains only status
information in a status report.

At the message transfer layer, a message consists of a message envelope, its
content (optional), and a message trailer. The content of an application message is
an ASL message (consisting of a message header and a message body, or a status
report). A service message at the message transfer layer can be a test message
(probe). The support of a MERVA Link delivery report has been dropped. A test
message consists only of a PROBE envelope and the message trailer.

The MERVA Link message structure at its highest level is shown in Figure 3.

The messages exchanged between MERVA Link peer entities (cooperating ASPs
and MTPs) are represented by protocol data units (PDUs). The encoding of
MERVA Link P1 and P2 PDUs corresponds to the format of an SNA LU 6.2 general
data stream (GDS). The main characteristics of this data stream are its sequence of
data elements and the format of a data element.

A data element consists of a 4-byte prefix (2-byte data-element length and 2-byte
data-element identifier) and the data-element data (optional). Data-element data
can consist of one or more data elements.

A complete description of MERVA Link P1 and P2 is in “Chapter 3. Peer-to-Peer
Protocols” on page 29.

Message
Header

Message
Body

Status Report

Message
Envelope

Message
Content

Message
Trailer

Message
Trailer

PROBE Envelope

IAM AS Layer either

or

MT Layer

or

IM-ASPDU

SR-ASPDU

AMPDU
DR MPDU

PROBE PDU

Figure 3. MERVA Link Message Structure

Chapter 1. Introduction 7

|
|

Command Transfer Protocol (P3)
The MERVA Link Command Transfer protocol (P3) covers the requirements of a
partner system control function. It defines structures (PDUs) that are similar to the
PDUs of the P1 and P2 protocols.

A command request PDU and a command response PDU consist of an envelope, a
content, and a trailer. It is the same structure as defined by P1. A command request
content consists of a command request heading. A command response content,
however, consists of a command response heading and an optional command
response body.

A complete description of MERVA Link P3 is in “Chapter 3. Peer-to-Peer Protocols”
on page 29.

Implementation Overview
Two implementations of MERVA Link functions are available from MERVA ESA.
MERVA Link ESA executes in the MERVA ESA CICS and IMS (TM) environments.
MERVA Link USS executes in an OS/390 UNIX System Services environment and
provides MERVA Link gateway services independently of a MERVA ESA
installation.

MERVA Link ESA Implementation Overview
The main elements of the MERVA Link ESA implementation are introduced in the
following.

MERVA Link Partner Table
The MERVA Link partner table (PT) is the main MERVA Link control resource. It
contains static control information as well as dynamic status information. The PT is
the means to customize MERVA Link.

The MERVA Link PT consists of a PT header and a number of PT entries of
different types. It is generated by coding a set of EKAPT macro instructions:
v EKAPT TYPE=INITIAL generates the table header. It contains MERVA Link

control information that is unique in a MERVA Link system.
v EKAPT TYPE=ASP generates an ASP entry. An ASP entry contains MERVA Link

control information concerning a specific message transfer application.
v EKAPT TYPE=MTP generates an MTP entry. An MTP entry contains MERVA

Link control information concerning a specific message transfer communication
partner.

v EKAPT TYPE=SCP generates an SCP entry. An SCP entry contains MERVA Link
control information concerning a specific system control communication partner.

MERVA Link Application Support Program
An Application Support Program (ASP) is a program that serves as the interface
between an application and the message transfer system. The application either
generates outgoing messages or processes incoming messages. The characteristics
of the application are respected in this program.

For outgoing messages, an ASP is scheduled by the application program. It
receives the message and control information from the application. Defaults apply
to support outgoing messages without or with only a minimum of control
information.

8 Advanced MERVA Link

|

|
|
|
|
|

|

|
|

Using this control information and information from the applicable MERVA Link
PT entry, a message heading and a SUBMIT.Request is generated. All message text
and control data is passed to the application support filter, if applicable, or directly
to the message transfer service processor. The message transfer service processor or
the ASF returns to the ASP with a SUBMIT.Confirmation. Finally, the ASP
processes the outgoing message as specified by the applicable MERVA Link PT
entry. This final message processing can be one of the following:
v Delete it from the input MERVA ESA queue
v Delete it from the input MERVA ESA queue and put it to another queue
v Delete it from the input MERVA ESA queue and request routing by a

MERVA ESA routing table

For incoming messages and reports, an ASP or an ASF is scheduled by the
message transfer service processor. The latter processor was scheduled by the MTP
that received the message from the remote system. The ASP passes the message
and control information obtained in a DELIVER.Indication to the application as
specified by the applicable MERVA Link PT entry.

MERVA Link Application Support Filter
A MERVA Link application support filter (ASF) is a program similar to a user exit.
A user exit is normally called by a standard program and returns control to this
standard program as soon as it has performed some control functions that are
unique in a specific user environment. Standard processing is then continued by
the standard program.

A MERVA Link ASF performs a similar kind of user-specific control function.
However, its link to standard programs is different. It is inserted between two
standard programs rather than called by one standard program. The entry and exit
interface of an ASF (ASF upper-layer boundary interface) is the same as the ASF
lower-layer boundary interface, and matches the interface between the standard
programs. You can insert any number of application support filters between two
standard programs.

The difference between a user exit and a MERVA Link ASF is shown in Figure 4.

For events originating at the upper-layer (for example, a SUBMIT.Request) each
ASF must know the name of its lower-layer ASF or the name of the lower-layer

Program A Program A

Program BProgram B

User Exit

AS Filter

ASF Upper-Layer Interface

ASF Lower-Layer Interface

Figure 4. MERVA Link ASF Compared with a User Exit

Chapter 1. Introduction 9

standard program, and it must call that program. When this program has returned
control to the ASF, the ASF can again perform some control functions and, finally,
return control to its caller.

For events originating at the lower-layer (for example, a DELIVER.Indication) each
ASF must know the name of its upper-layer ASF or the name of the upper-layer
standard program, and it must call that program. When this program returns
control to the ASF, the ASF can again perform some control functions and, finally,
return control to its caller.

A MERVA Link ASP calls the first ASF in a list of ASFs. The message transfer
service processor calls the last ASF in a list of ASFs.

MERVA Link Service Primitive Filter
MERVA Link supports two classes of ASFs. The first class, which keeps the name
ASF, comprises the filters that get control for service primitives that handle an
application message. These service primitives are the SUBMIT.Request and the
DELIVER.Indication. An ASF in that class is not called for any other service
primitive crossing the MTL boundary (for example, a CONNECT.Request or a
TEST.Indication).

The second class of ASFs comprises the Service Primitive Filters. The only
difference between an ASF and a Service Primitive Filter (SPF) is that the latter
filters are called for all service primitives crossing the MTL boundary.

MERVA Link Message Transfer Service Processor
The message transfer service processor (MTSP) contains the central functionality of
the MERVA Link message transfer system. It communicates with the upper-layer
functions via the MERVA Link message transfer services interface. Some of the
tasks to be performed by the MTSP are:
v Validate input parameters including a formal check of the MERVA Link P2 data

stream for a SUBMIT.Request
v Find the name of the applicable message transfer process for a SUBMIT.Request
v Generate a unique message transfer layer message identifier for a submitted

message
v Generate or analyze the message envelope according to the MERVA Link P1

protocol
v Call the applicable message transfer processor
v Return with a SUBMIT.Confirmation to the calling ASF or ASP as a response to

a submitted message
v Pass an incoming message or an incoming receipt report to the applicable ASF

or ASP

MERVA Link Message Transfer Processor
A message transfer processor (MTP) is a program that transfers a message from the
local system to a specific remote system, or receives a message from a specific
remote system. The communication protocol bilaterally agreed upon with the
partner MTP is respected in this program.

For outgoing messages, an MTP is scheduled by the message transfer service
processor. The message text and control information is passed to the MTP in the
main storage. A conversation with the partner is established and the message is
transferred to the partner.

10 Advanced MERVA Link

|
|

For incoming messages, an MTP is scheduled by the applicable data
communication system. One or more messages are received from the partner, and
all messages are passed, message-by-message, to the MTSP.

MERVA System Control Facility
An interactive control facility is provided by MERVA Link to issue commands for
the complete MERVA system including MERVA Link. The complete MERVA system
includes also all partner MERVA ESA systems that are interconnected with the
local MERVA system by a MERVA Link APPC connection. A partner MERVA AIX®

system supports a subset of the MERVA Link commands supported by the MERVA
System Control Facility.

The MERVA System Control Facility is the means to issue MERVA ESA commands
with the same functionality that is provided by the MERVA ESA CMD function.

The MERVA System Control Facility is the means to display MERVA Link
customization parameters, supervise the execution of MERVA Link, and to modify
the execution parameters of MERVA Link. It is also the means to display status and
error information that is collected by the MERVA Link CICS programs in the
partner table.

A detailed description of the MERVA System Control Facility can be found in the
MERVA for ESA Operations Guide.

The MERVA System Control Facility cannot be used to perform MERVA ESA user
maintenance (function USR) and authenticator-key file maintenance (function AUT)
in a partner MERVA ESA system.

MERVA Link USS Implementation Overview
The main elements of the MERVA Link USS implementation are introduced in the
following.

Application Control Table (ACT) and Application Control Daemon
(ACD)
The MERVA Link USS application control table (ACT), an OS/390 USS shared
memory region, is the main MERVA Link USS control resource. It contains static
control information as well as dynamic status information. The ACT is the means
to customize MERVA Link USS.

The MERVA Link USS application control daemon (ACD), a long running OS/390
USS background process, is the owner of the ACT. The ACD creates the ACT based
on information in MERVA Link USS configuration and security files.

The ACT consists of an ACT header, a number of ASP entries, and a number of
ISC entries:
v The ACT header contains information that is unique for the MERVA Link USS

instance represented by this ACT, for example the MERVA Link local node
name.

v An ACT ASP entry contains information that applies to a specific MERVA Link
USS ASP and its partner ASP in a partner MERVA Link system. Application
Support functions are, however, available from MERVA Link USS for installation
verification purposes only. MERVA Link USS does not provide functions to
deliver a message to a MERVA ESA application.

Chapter 1. Introduction 11

|
|

|

|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|

v An ACT ISC entry contains intersystem connection information that applies to a
specific partner node. It can be information for an SNA APPC and a TCP/IP
connection to the partner system that houses the subject partner MERVA Link
node.

AS Layer Programs
The MERVA Link AS layer contains the AS and P2 sublayers. The outbound and
inbound functions of both sublayers are implemented in four separate programs:

ekaaso contains the outbound AS sublayer functions. Program ekaaso is
available in a test version only. It cannot be used to handle
messages.

ekaasi contains the inbound AS sublayer functions. Program ekaasi is
available in a test version only. It prints information contained in a
TEST or DELIVERY indication to a processing trace file. Program
ekaasi cannot deliver an inbound message to MERVA ESA.

ekap2o contains the outbound P2 sublayer functions. Program ekap2o is
available in a test version only.

ekap2i contains the inbound P2 sublayer functions. Program ekap2i is
available in a test version only.

MT Layer Programs
The MERVA Link MT layer contains the P1 and MT sublayers. The outbound and
inbound functions of both sublayers are implemented in six separate programs:

ekap1o
contains the outbound P1 sublayer functions. Program ekap1o is available
in a test version only. It cannot be used to handle messages.

ekap1i
contains the inbound P1 sublayer functions. Functions of the outbound P1
sublayer are part of this program. These functions provide the P1 Routing
service element, the main application function of MERVA Link USS.

ekatpo
contains the outbound MT sublayer functions for an SNA APPC connection
to a partner MERVA Link system.

ekatpi contains the inbound MT sublayer functions for an SNA APPC connection
from a partner MERVA Link system.

ekatco contains the outbound MT sublayer functions for a TCP/IP connection to a
partner MERVA Link system.

ekatci contains the inbound MT sublayer functions for a TCP/IP connection from
a partner MERVA Link system.

Application Control Programs
MERVA Link USS provides a number of programs that are used to operate and
control MERVA Link USS functions:

ekaacc is the MERVA Link USS application control command application (ACC). It
provides an interactive USS shell command interface to control and modify
MERVA Link USS functions.

ekaacs is the MERVA Link USS local security control application (ACS). It
provides an interactive USS shell command interface to specify security
information for use by an outbound TCP/IP process.

12 Advanced MERVA Link

|
|
|
|

|
|
|

||
|
|

||
|
|
|

||
|

||
|

|
|
|

|
|
|

|
|
|
|

|
|
|

||
|

||
|

||
|

|
|
|

||
|
|

||
|
|

Configuration Verification
Use a MERVA Link USS configuration verification environment to verify the
correctness of a configuration without affecting an active MERVA Link USS node.
For each of the programs ekaacc, ekaacd, and ekaacs, there is a corresponding
program (ekavcc, ekavcd, and ekavcs) for use in a configuration verification
environment.

Chapter 1. Introduction 13

|
|
|
|
|
|

14 Advanced MERVA Link

Chapter 2. Service Elements

This chapter describes the service elements provided by the MERVA Link Message
Transfer and Application Support services. It contains also detailed descriptions of
important MERVA Link service elements, the Message Integrity Protocol (provided
by MERVA Link ESA AS) and the P1 Routing service (provided by MERVA Link
USS MT).

The Message Transfer Service
The message transfer service lets application support functions access and be
accessed by the message transfer system in order to exchange messages.

The features of the message transfer service are:

Content Type Indication
This service element enables an originating ASP to indicate the content type for
each submitted message.

The only content type supported by MERVA Link is MERVA Link P2
(Inter-Application Messaging).

MTL Message Identification
This service element enables the MTS to provide an ASP with a unique identifier
for each message submitted to or delivered by the MTS. Application support
functions and the MTS use this identifier to refer to a previously submitted
message in connection with the delivery-notification service element.

The MTSP generates the MTL message identifier as the character representation of
the S/390 (R) system clock.

ASL Content Identification
This service element enables the ASP to provide the MTS with an identifier for
each message submitted to or delivered by the MTS. Application support functions
can use this identifier to refer to a previously submitted message in connection
with the delivery-notification service element.

Encoded Information Type Indication
This service element enables an originating ASP to specify to the MTS the encoded
information type of a message being submitted. When a message is delivered, it
also indicates to the recipient ASP the encoded information type of the message
specified by the originating ASP.

Encoded information types are MERVA ESA queue format and MERVA ESA
network (line) format.

Submission Timestamp Indication
This service element enables the MTS to indicate to an originating ASP and to the
recipient ASP the date and time at which a message was submitted to the MTS.
The format of the timestamp is YYMMDDHHMMSS.

© Copyright IBM Corp. 1991, 2001 15

|
|
|
|
|

|
|

Partner Connection
This service element enables an originating ASP to acquire a connection to a
partner ASP and to test for its availability. This explicitly acquired connection can
be used by the ASP to transfer a set of messages to this partner ASP.

Grade of Delivery Indication (Priority)
This service element enables an originating ASP to specify to the MTS the priority
of the message. When a message is delivered, the message priority is indicated to
the recipient ASP.

This service element does not support a message transfer with different priorities.

P1 Routing
This service element provides for routing an inbound SNA APPC or TCP/IP
conversation to an outbound SNA APPC or TCP/IP conversation at the MERVA
Link P1 sublayer. A detailed description of the P1 Routing service of MERVA Link
USS can be found in “P1 Routing Facility” on page 26.

The Application Support Service
The Application Support Service, which is built upon the Message Transfer Service,
is provided by the class of application support functionalities supporting the
MERVA Link Inter-Application Messaging (P2) protocol. This service enables an
application to send a message to a recipient and to have it received by this
recipient. Application Support Functionalities make use of the Message Transfer
Services of the MTS described in “The Message Transfer Service” on page 15. In
addition, application support functionalities supporting the MERVA Link P2
protocol provide other capabilities that are elements of the Application Support
Service. For example, they uniquely identify each message and the nature and
attributes of its body.

The features of the Application Support Service are:

Message Transfer Service Elements
The service elements that are part of the message transfer service and that are used
to transfer an application message are available as part of the application support
service.

ASL Message Identification
This service element permits cooperating ASPs to convey an identifier for each
application message sent or received. The applications and the ASPs use this
identifier to refer to a previously sent or received message (for example, in a
Receipt Confirmation).

The ASP generates the IAM message ID as the character representation of the
S/390 system clock if this message identifier is not already contained in the
message or if it is not provided by the ACF.

Typed Body
This service element permits the nature and attributes of the body of the
application message to be conveyed together with the body. Any MERVA Link
defined body type can be designated.

16 Advanced MERVA Link

|

|
|
|
|

|
|
|

MERVA Link defined body types are MERVA ESA Network (line) format and
MERVA ESA queue format. The attributes of a body in MERVA ESA line format
are, for example, the MERVA ESA message type (MCB identifier) and the line
identifier.

Receipt Confirmation
This service element allows the originator to request that he be notified that an
application message was received or not received by the intended recipient
application. The actual meaning of the receipt or nonreceipt event is defined by the
cooperating applications.

Acknowledgment Message Correlation
This service element allows the originator to request that an incoming
acknowledgment message (also called receipt report or status report) is correlated
with the reported message and the receipt information is merged with the reported
message.

Originator/Recipient Indication
This service element allows the identity of the originating and recipient application
to be conveyed to the recipient application. The MTS provides to the recipient ASP
the authenticated address of the originator and the recipient. In contrast, the
intention of this AS Service element is to identify the originator and the recipient
application in terms specified by the cooperating applications.

Subject Indication
This service element enables the originating application to indicate to the recipient
application the subject of the application message being sent. The subject
information is made available to the recipient application.

A subject is conveyed to the recipient application if it is contained in the
MERVA ESA message.

The maximum length of a subject is 60 characters.

Buckslip (Attached Note)
This service element enables the originating application to attach a short note to
the application message being sent. The buckslip is made available to the recipient
application.

A buckslip is conveyed to the recipient application if it is contained in the
MERVA ESA message. The maximum length of a buckslip is 256 characters.

Message Integrity Protocol
The Message Integrity Protocol (MIP) service element provides functionality that
ensures that:
v Any loss of a message that was in a MERVA Link send queue and was

processed by MERVA Link is detected and reported.
v No message is passed twice to the receiving application, regardless of what kind

of system failure occured, and regardless of at which point in the message
transfer process it occurred.

Chapter 2. Service Elements 17

Message Text Encryption Indication
This service element allows the originator to indicate to the recipient that the text
of the application message being sent is encrypted. An identification of the
encryption algorithm or the encryption key, or both, can be conveyed to the
recipient. This service element can be used by the recipient to determine that the
text of the application message must be decrypted.

This service element does not encrypt or decrypt the message text. The encryption
and decryption process can be performed in an application support filter, a
program similar to a user exit.

The identifier of the body part data segment tells whether that part of the message
has actually been encrypted (ID=8123) or has not been encrypted (ID=8122).

Message Text Encryption
A specific message-encryption service is provided by MERVA Link. This service
element is provided using the message-encryption indication service element and a
MERVA Link proprietary encryption algorithm.

Message Text Authentication Indication
This service element allows the originator to convey an authentication key and the
identification of an authentication algorithm to the recipient.

Message authentication means protecting the message against unauthorized
modification during the transfer process. The authentication process does not
encrypt the message.

This service element does not authenticate the message text. The authentication
process can be performed in an application support filter, a program similar to a
user exit.

Message Text Authentication
A specific message-authentication service is provided by MERVA Link. This service
element is provided using the message-authentication Indication service element
and a MERVA Link proprietary authentication algorithm.

Message Text Compression Indication
This service element allows the originator to convey a compression key and the
identification of a compression algorithm to the recipient.

This service element does not compress the message text. The
compression/expansion processes can be performed in an application support
filter, a program similar to a user exit.

Priority Indication
This service element allows the originator to convey information about the priority
of the message to the receiver. It does not provide priority handling of a message
within the message transfer system.

18 Advanced MERVA Link

Possible Duplicate Message Indication
This service element allows the originator to convey the information to the receiver
that the message might have been transmitted through another medium (such as
telex) in addition to the transmission through MERVA Link.

Body Part
This service element allows the originator to send to a recipient an application
message with a body that consists of a single body part. This body part can consist
of one or more body part data segments.

The MERVA Link Message Integrity Protocol (MIP)
Provisions are made in MERVA Link to ensure that no message passed to MERVA
Link in a member of a MERVA Link send queue cluster is lost and that messages
are not passed twice to the receiving application. MERVA Link ensures that
messages transmitted twice are not passed twice to the receiving application
despite possible system failures at any point of the message transfer process.

The MERVA Link Message Integrity Protocol (MIP) implementation is based on
MERVA ESA Queue Management Services (QMS).

Message Integrity Protocol Terms
The descriptions of the MERVA Link Message Integrity Protocol (MIP) in the
following sections use the following terms:

application control queue
The MERVA Link MIP uses a MERVA ESA queue to store:
v The last confirmed control message (LC MS)
v The last received control message (LR MS)
v The in-process messages (IP MS)

Every ASP defined in the partner table has its own application control
queue (ACQ). A control queue cannot be shared between ASPs.

The application control queue should not be accessed by any MERVA ESA
user directly. Information from control messages in the application control
queue can be displayed using the MERVA System Control Facility (MSC).

last confirmed (LC) control message
The last confirmed (LC) control message is a message in the application
control queue. It is owned by MERVA Link. This means, its content and
format is specified by MERVA Link, and it is automatically generated by
MERVA Link if necessary.

The main purpose of the LC control message is to monitor the status of the
message transfer from the applicable ASP to its partner ASP (only in this
direction). MERVA Link reports the status or any malfunction of the
message transfer in the LC control message. This information can be
displayed using the MERVA System Control Facility (MSC).

An LC control message is in an application control queue when a message
has been sent by the applicable ASP to its partner.

in-process (IP) message

An in-process (IP) message is a message being transferred to the partner
ASP. An MIP message identifier and an MIP message sequence number

Chapter 2. Service Elements 19

|
|

have been assigned to an IP message. The IP message remains in the
application control queue until the message transfer has been confirmed by
the message transfer service.

The maximum number of IP messages in an application control queue is
equal to the static MIP window size. In an inactive system, no IP message
should be in this queue. An IP MS in the application control queue
indicates an exceptional condition or a malfunction if the system is
inactive.

IP messages are subject to automatic recovery as specified by the MIP. IP
messages are subject to automatic or manual recovery as specified by the
MERVA Link recover and iprecov commands.

last received (LR) control message
The last received (LR) control message is a copy of the last message
received by an ASP from its partner in the application control queue. It
remains on this queue until another message has been received and been
accepted by the receiving ASP. There is only one LR control message in an
application control queue.

MIP message identifier
The MIP message identifier is a unique identifier generated by a sending
ASP and associated by that ASP to an IP message. The content of this
identifier is an 8-byte binary number with an increasing value each time it
is generated. The MIP message identifier is used by the receiving ASP to
determine whether an IP message is a new message that was generated
after the MIP control information of the sending ASP was deleted.

MIP message sequence number (MSN)
The MIP message sequence number (MSN) is a wrap-around number
between 1 and 9999 inclusive. For the next MSN following the number
9999, the MSN is wrapped around to the number 1. It is used by the
sending and receiving ASP to verify that no message is missing and to
detect duplicate messages.

static MIP window size
The static MIP window size specifies the maximum number of messages
an ASP can submit before it must request a confirmation of the transfer
process. An ASP must stop submitting messages until the requested
confirmation has been received. That confirmation applies to all messages
in this window.

dynamic MIP window size
The dynamic MIP window size specifies the index of a message in a
window. The dynamic MIP window size of the first message in a window
is 1. The dynamic MIP window size of the last message in a complete
window is equal to the static MIP window size.

Description of the MIP at the Sending Side
The sending MERVA Link resources are shown in Figure 5 on page 21. The
indicated contents of the application control queue reflect a normal processing
status where the second message within a window was transferred to the partner
MTP. The corresponding status at the receiving side is shown in Figure 6 on
page 23.

20 Advanced MERVA Link

|
|
|

The MIP processing logic in the sending system is explained in the following.

The Send Queue Cluster
The sending MERVA ESA application is represented by a set of MERVA ESA
queues that are categorized, for example, as urgent, normal, and low priority
queues. When the local MERVA ESA application puts a message into one of these
queues, the MERVA Link sending Application Support Processor is started. It
identifies the applicable ASP entry in the PT and ensures that no other task works
for this ASP. If there is already another task active for this ASP, it terminates
immediately.

Begin Initial Message Processing
After connecting successfully to the partner system, the ASP checks whether the
previous conversation was successfully completed. This is the status when there
are no IP messages in the application control queue. Normal message processing
begins in this case.

If there is no LC control message in the application control queue, an LC control
message is generated with an LC MSN of 9999. The first message will therefore get
the MSN 0001. A missing LC MS means that the ASP is started the first time. An
LC MSN of 0000 means that an MIP reset has been requested by a MERVA Link
administrator (MSC command lcreset).

Check the Integrity of IP Messages
All IP messages in the application control queue with an IP MSN not greater than
the LC MSN are routed as specified by the MERVA ESA routing table associated
with the application control queue. These messages were confirmed but routing of
all or part of the confirmed messages failed.

All IP messages in the application control queue with an IP MSN that is greater
than the LC MSN are recovered. This means they are sent to the partner system
and confirmation is requested when the last IP message has been sent.

When a confirmation has been received from the partner, the LC MSN in the
application control queue is updated with the last IP MSN. All IP messages are
routed as specified by the MERVA ESA routing table associated with the
application control queue after a confirmation.

Application Support
Processor

(IP MSN =14)

Message Transfer
Service Processor

Message Transfer
Processor

LC MSN = 12

IP MSN = 13

IP MSN = 14

LR MSN = xx

Last Confirmed Message

In-Process Message

In-Process Message

Last Received Message

MERVA Link Processors Application
Control Queue

Send Queue
Cluster

Figure 5. MIP Resources at the Sending Side

Chapter 2. Service Elements 21

When the partner process has signaled an error (nonconfirmation), the application
status is set to 09 or 13 as response to the reported event return codes 08 (error) or
12 (severe error), respectively, the IP messages are not routed, and the ASP is
terminated without processing any message in the send queue cluster.

For details, see “Message Integrity Checks at the Sending Side” on page 24.

Begin Normal Message Processing
Normal message processing according to the MIP is started at this point. The
status is as follows:
v There is an LC control message in the application control queue containing an

LC MSN.
v There are no IP messages in the application control queue.
v There is at least one message in one queue of the send queue cluster.

Normal message processing is initialized by defining a last-used message sequence
number (LU MSN) in the ASP working storage. Its initial value is the LC MSN.

Now the ASP starts to process the messages in the send queue cluster in the
sequence as specified by the priority of the individual queues. This means that the
messages in the first queue in the cluster are processed first. The next message in
the second queue of the cluster is processed if the first queue is empty. The next
message in the third queue of the cluster is processed if the first and the second
queue are empty.

Assign Message Sequence Number and Message Identifier
The ASP calculates the next message sequence number (MSN) and generates a
unique MIP message identifier. Both values are stored in MERVA Link control
fields of the IP message. The static MIP window size is also stored in a MERVA
Link control field of the IP message.

Move IP Message to the Control Queue
The IP message, including new MERVA Link control information, is moved from
the send queue to the application control queue. The message in the send queue
was deleted in the “move” process (MERVA ESA Queue Management PUT with
automatic delete from the source queue).

Assign Dynamic MIP Window Size
The ASP calculates the index of the IP message in the current window and
includes it as the dynamic MIP window size in the message heading (P2 PDU).

Submit the Message and Handle the Submit Confirmation
The ASP now submits the message to the MTS and requests a message transfer
confirmation if a MIP window boundary has been reached.

The MTS returns with a SUBMIT.Confirmation containing one of the indicators
accepted, confirmed, or error. The ASP receiving the accepted indicator is asked to
send the next message. In case of an error indicator it is asked to handle (report)
that error and to terminate. If the ASP receives the confirmed indicator it is asked
to synchronize its message transfer control status with the partner ASP.

To synchronize its message transfer control status with the partner ASP, the local
ASP updates the LC MSN (last confirmed message number) with the LU MSN (last
used message number) in the LC control message in the application control queue
and routes all IP messages as specified by the MERVA ESA routing table
associated with the application control queue.

22 Advanced MERVA Link

No More Messages to Be Transferred
When all messages in the send queue cluster have been processed (queue empty
condition on all queues of that cluster) the messages within the last window might
not yet have been confirmed. In this case (LC MSN not equal LU MSN) a
DISCONNECT.Request with the confirmed indicator is issued. If the last message
was already confirmed, a DISCONNECT.Request without the confirmed indicator
is issued.

Description of the MIP at the Receiving Side
The MERVA Link MIP resources at the receiving side are shown in Figure 6. The
indicated contents of the application control queue reflect a normal processing
status where the second message within a window was received from the partner
MTP but not yet passed to the ASP. The corresponding status on the sending side
is shown in Figure 5 on page 21.

The MIP processing logic in the receiving system is explained in the following.

Receiving ASP
The receiving side is represented by a message transfer process associated with an
ASP and a MERVA ESA receive queue via MERVA Link customization in the
partner table.

The MTP receives a complete message and passes it via the MTSP to its associated
receiving ASP.

The receiving ASP analyzes the message and extracts the In-Process message
sequence number (IP MSN), the MIP message identifier, the index of the IP
message in its window, and the (optional) MIP reset indicator from the message
heading.

Begin Inital Message Processing
The receiving ASP retrieves the “last received message sequence number” (LR
MSN) and the dynamic MIP window size from the LR control message (LR MS) in
the application control queue. If the MIP reset flag is set in the received message,
the message integrity check is skipped without indicating an error condition. It is
also skipped if there is no LR control message in the application control queue.

Application Support
Processor

Message Transfer
Service Processor

Message Transfer
Processor

LR MSN = 13

IP MSN = xx

IP MSN = xx

LC MSN = xx

Last Received Message

In-Process Message

In-Process Message

Last Confirmed Message

Receive
Queue

MERVA Link Processors Application
Control Queue

Figure 6. MIP Resources at the Receiving Side

Chapter 2. Service Elements 23

Check the Integrity of IP Messages
If the received message is the next expected message, it is delivered to the
receiving application. An IP message that is outside the normal message sequence
causes an implicit reset of the MIP if the following conditions apply:
v The IP MSN is 1.
v The IP message is the first message in its window.
v The MIP message identifier of the IP message is greater than the MIP message

identifier of the LR control message.

Implicit MIP reset means that the LR control message is disregarded and the
received message is delivered to the receiving application. This situation can occur,
for example, when the MERVA ESA queue data set of the sending partner system
is redefined or when all messages in the control queue of the partner ASP are
deleted.

If the IP MSN is greater than the LR MSN plus one, an MIP violation is reported.
If the IP MSN is less than the LR MSN minus the dynamic MIP window size
contained in the LR control message, an MIP violation is also reported.

If the above conditions do not apply, the IP message is a member of a recovered
window. It is considered as already received and delivered to the receiving
application. The delivery confirmation was, however, not received or processed by
the sending ASP. The received IP message is discarded without further processing.
It will be confirmed later.

For details, see “Message Integrity Checks at the Receiving Side” on page 25.

Route Incoming Message
The ASP puts the received message in one MERVA ESA QMG ROUTE request to
both the receive queues and the application control queue (as new LR control
message), and automatically deletes the old LR control message from that queue.
The MERVA ESA routing table that controls this process can be associated with
any queue. It must ensure that the message is routed to the applicable application
control queue in addition to the receive queue or queues.

When all AS processing has been successfully completed, the ASP returns to the
MTSP and to the MTP, indicating successful completion.

Message Integrity Checks at the Sending Side
The message integrity check at the sending side is based on the following
information:

LC Message sequence number of the last confirmed message as contained in
the LC control message in the application control queue.

IP Message sequence number of the message currently in process as contained
in the IP message in the application control queue.

WSZ Static MIP window size as contained in the LC control message in the
application control queue.

The message integrity check algorithm uses two variables, the first called the
distance (D1) and the second called the wrap-around distance (D2) of the IP
message from the LC message.

The distance D1 is defined as D1 = IP - LC.

24 Advanced MERVA Link

The wrap-around distance D2 is defined as:
D2 = D1 if |D1| ≤ WSZ,
D2 = D1 - 9999 if D1 > 0, otherwise,
D2 = D1 + 9999

The rules must be applied in this sequence.

The action to be performed with the message currently in process is determined by
the following rules:
IF D2 = WSZ THEN send message,
IF |D2| ≥ WSZ THEN indicate MIP violation,
IF D2 ≤ 0 THEN route confirmed message locally,
OTHERWISE send message

The rules must be applied in this sequence.

An example of the action performed for various IP messages in the application
control queue with an LC MSN of 15 and an MIP window size of 3 is shown in
Table 1.

Table 1. MIP Check for LC MSN = 15 and WSZ = 3

IP MSN 10 11 12 13 14 �15� 16 17 18 19 20

D1
D2

-5
9994

-4
9995

-3
-3

-2
-2

-1
-1

0
0

1
1

2
2

3
3

4
-9995

5
-9994

Action Protocol Error Route MSG Send MSG Protocol Error

Message Integrity Checks at the Receiving Side
A message integrity check at the receiving side is performed if an LR control
message is available in the application control queue. This check is based upon the
following information:

LR Message sequence number of the last received message as
contained in the LR control message in the application control
queue.

LRID MIP message identifier of the LR control message.

IP Message sequence number of the message currently in process as
contained in the received message.

IPID MIP message identifier of the IP message.

DWSZ Dynamic MIP window size as contained in the LR control message
in the application control queue.

IPWX Index of the IP message in the current window as contained in the
MIP window size control field of the IP message.

The message integrity check algorithm uses two variables. The first variable is
called the distance of the IP message from the LR control message (D1). The
second variable is called the wrap-around distance of the IP message from the LR
control message (D2).

The distance D1 is defined as D1 = IP - LR.

The wrap-around distance D2 is defined as:

Chapter 2. Service Elements 25

D2 = D1 if |D1| ≤ DWSZ,
D2 = D1 - 9999 if D1 > 0, otherwise,
D2 = D1 + 9999

The rules must be applied in this sequence.

The action to be performed with the IP message is determined by the following
rules, which must be applied in this sequence.
IF D2 = 1 THEN process message (normal situation)
IF IP = 1, IPWX = 1, AND IPID > LRID THEN process message with implicit LRRESET
IF D2 > 1 THEN report MIP violation
IF |D2| ≥ DWSZ THEN report MIP violation
OTHERWISE discard message, it has already been delivered

The implicit reset of the LR control message is not executed if either of the MIP
message identifiers (IPID or LRID) is not available. An MIP message identifier may
not be available as the corresponding data element in a P2 PDU is defined as
optional.

An example of the action performed for various IP messages with an LR MSN of
14 and a dynamic MIP window size of 3 in the LR control message is shown in
Table 2.

Table 2. MIP Check for LR MSN = 14 and DWSZ = 3

IP MSN 9 10 11 12 13 �14� 15 16 17 18 19

D1
D2

-5
9994

-4
9995

-3
-3

-2
-2

-1
-1

0
0

1
1

2
2

3
3

4
-9995

5
-9994

Action Protocol Error Discard MSG OK Protocol Error

P1 Routing Facility
A message routing facility is available at the P1 layer of MERVA Link USS. It
routes an inbound conversation synchronously to another partner system.

Recipient Information in an Inbound Conversation
The first data that is received by a MERVA Link inbound conversation is a Probe
PDU envelope with the data element identifier 0100. The Probe PDU envelope
contains the recipient node name as part of the recipient address data element. The
recipient node name must match the MERVA Link node name of the local
(receiving) system. Inbound conversation data must not be delivered by the
inbound P1 processor to a receiving application if the two node names do not
match.

If the two node names do not match, a P1 processor can reject an inbound
conversation and tell the sending process that the recipient node is not the MERVA
Link node that actually received the data. This is what MERVA Link ESA does in
the CICS and IMS environments.

As an alternative, a P1 processor can try to identify the partner system that houses
the recipient MERVA Link node and route the inbound conversation to that partner
system. This is what MERVA Link AIX and MERVA Link USS do.

26 Advanced MERVA Link

|

|
|

|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

P1 Routing Parameters
The MERVA Link USS customization parameters are divided into the following
parameter groups:
v The unique local MERVA Link USS parameters
v The ASP parameter sets
v The ISC parameter sets

The ISC parameter sets are used by the P1 routing facility to route an inbound
conversation to the appropriate destination. The ″invalid″ recipient node name is
used as the key to find the parameters of the intersystem connection to the
destination system. For more information about MERVA Link USS customization
parameters, refer to the MERVA for ESA Customization Guide.

Each ISC parameter set is divided into two subsets:
v Parameters for routing a conversation via an SNA APPC connection
v Parameters for routing a conversation via a TCP/IP connection

Confirming a Routed Conversation
The confirmation of a conversation (that is, the confirmation of the correct transfer
and delivery of a set of messages) is requested by a sending ASP. The request for
confirmation can be part of a SUBMIT.Request that submits a message. It can also
be submitted without a message.

The request for confirmation is received by the partner MTP either together with
an inbound message or as separate control information.

A receiving MTP that delivers an inbound message to its ASP is informed in the
DELIVER.Response whether the message was successfully delivered or not. It can
therefore correctly respond to a request for confirmation at any time.

A receiving MTP that routes an inbound message to another node is informed of
the successful delivery only if it requests a confirmation for the routed message.
Therefore, it cannot correctly respond to a request for confirmation at any time
unless it request a confirmation for every message. Requesting a confirmation for
every message can decrease the message transfer rate significantly. This is why
additional functionality is added to a receiving MTP to support message
windowing in the gateway scenario.

Request for Confirmation (RFC) Parameter in a
ProcessPDU.Indication
A request for confirmation (RFC) parameter is added to the parameters of a
ProcessPDU.Indication service primitive. It is passed by an inbound TP (EKATPI or
EKATCI) to the inbound P1 processor (EKAP1I). The inbound TP sets this
parameter, if a request for confirmation has been received together with a message,
when it passes a message to the P1 processor.

When the inbound TP that is not in an error state receives a request for
confirmation as separate control information, it does not respond to the request for
confirmation immediately. It calls the P1 processor with a specific
ProcessPDU.Indication service primitive that contains the request for confirmation
parameter in the service primitive parameter area. The pointer to the message
envelope is NULL in that service primitive.

Chapter 2. Service Elements 27

|

|
|

|

|

|

|
|
|
|
|

|

|

|

|

|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

Handling a request for confirmation (RFC) in a
ProcessPDU.Indication
The inbound MTP (P1 processor) handles a request for confirmation differently
depending on whether it must deliver messages to its local ASP or route inbound
messages to a partner node:
v When it must deliver inbound messages to its local ASP, it need not perform any

special action as response to a request for confirmation that is not associated
with a message. It returns immediately to the caller and indicates successful
completion in the ProcessPDU.Response.

v When it must route inbound messages to a partner node, it must also pass the
request for confirmation to the partner. If that request is not associated with a
message, it issues a SendPDU.Request without application data to the applicable
outbound TP (EKATPO or EKATCO).

28 Advanced MERVA Link

|
|
|
|
|

|
|
|
|

|
|
|
|

Chapter 3. Peer-to-Peer Protocols

A peer-to-peer protocol is a convention between two functional entities at
corresponding layers (peers) about their communication. The MERVA Link
functional entities (Message Transfer and Application Support) communicate with
their peer entities by exchanging data. The MERVA Link peer-to-peer protocols are
therefore conventions about the syntax and the semantics of data exchanged
between MERVA Link Message Transfer and MERVA Link Application Support.

The MERVA Link Command Transfer is another set of functions that use a
proprietary peer-to-peer protocol. These functions support MERVA ESA and
MERVA Link commands and their responses, rather than messages.

The unit of data exchanged by peer entities is called a protocol data unit (PDU).

MERVA Link Protocol Data Units (PDUs)
A protocol data unit (PDU) is a data construct exchanged between functionalities
in corresponding layers of a message handling system, or more generally, of a
communication system.

A PDU exchanged between two functionalities in a specific layer is assigned a
name that reflects the purpose of this layer. For example, a PDU exchanged
between transport layer functions is called a transport PDU (TPDU), and a PDU
that is exchanged between message transfer layer functions is called a message
PDU (MPDU).

A PDU exchanged between functionalities in a specific layer can contain a higher
layer PDU as its content. For example, an MPDU can contain an Application
Support PDU (ASPDU) as its content.

MERVA Link Message Handling System PDU Hierarchy
The PDUs exchanged between Message Transfer Functions in the MERVA Link
message handling system are called Message PDUs (MPDU). The purpose of an
MPDU qualifies it as either an Application Message PDU (AMPDU) or a Service
Message PDU (SMPDU).

The PDUs exchanged between application support functions in the MERVA Link
message handling system are called application support PDUs (ASPDUs). The
purpose of an ASPDU qualifies it as either an interapplication messaging ASPDU
(IM-ASPDU) or a status report ASPDU (SR-ASPDU).

The MERVA Link message handling system PDU hierarchy is shown in Figure 7 on
page 30. A single line connecting two PDU boxes means “can have the format of”,
for example, an MPDU can have the format of an AMPDU or an SMPDU. A bold
line connecting two PDU boxes means “contains”, for example, an AMPDU
contains an AMPDU Content.

© Copyright IBM Corp. 1991, 2001 29

|

MERVA Link MHS PDU Types
The MERVA Link P1 and P2 protocols are represented by protocol data units
(PDUs). Four types of PDUs are defined in the MERVA Link message handling
system:
v Probe PDU (an SMPDU)
v Delivery report MPDU (DR MPDU, also an SMPDU)
v AMPDU containing an application message (IM-ASPDU)
v AMPDU containing an acknowledgment message (SR-ASPDU)

A MERVA Link PDU is composed of PDU data elements. A PDU data element has
the format of a 4-byte prefix (LLID), which is usually but not necessarily followed

PDU

MPDU

AMPDU SMPDU

Content DR MPDU PROBE PDU

ASPDU

IM-ASPDU SR-ASPDU

Heading Body

MTL P1 Message Transfer

ASL P2 Inter-Application Messaging

Figure 7. MERVA Link MHS PDU Hierarchy

30 Advanced MERVA Link

by data-element data. LL in the data-element prefix represents a 2-byte binary field
that contains the length of the data element including the length of the LLID field,
and ID represents a 2-byte identifier of the data element.

Data-element levels are assigned to PDU data elements. A data element not
contained in another data element is called a level-1 data element. A data element
contained in the data of a level-1 data element is called a level-2 data element. A
data element contained in the data of a level-2 data element is called a level-3 data
element. The identifier of level-1 data elements starts with X'01' (implicit data
element) or X'81' (explicit data element).

The last data element of every PDU is the PDU trailer.

Probe PDU
A Probe PDU is used for control communication between message transfer entities.
It is used by an MTP, for example, to request an ASP availability test from its
partner MTP.

A Probe PDU consists of the:
v Probe Envelope (ID=0100)
v PDU Trailer (ID=81FF)

Delivery Report MPDU (DR MPDU)
A delivery report is used by an MTP to report successful or unsuccessful delivery
of an AMPDU to the originator of the latter PDU. The MTP uses this means to
report the delivery of a message only if it cannot report the delivery synchronously
to its partner MTP.

The support of the asynchronous communication protocol based on LU 6.1 has
been dropped in MERVA Link of MERVA ESA V4. MERVA Link of MERVA ESA
V4 supports only synchronous communication protocols that do not use delivery
reports. The support of the delivery report MPDU is therefore dropped in MERVA
Link of MERVA ESA V4.

AMPDU containing an Application Message (IM-ASPDU)
The main purpose of the MERVA Link message handling system is to exchange
messages or application data between applications. An AMPDU containing an
IM-ASPDU conveys this application data. It is, therefore, the most important PDU
in message handling system. The event associated with this PDU at the sending
side is a message submission (service primitive SUBMIT.Request). The event
associated with this PDU at the receiving side is a message delivery (service
primitive DELIVER.Indication).

An AMPDU containing an application message consists of the following:
v AMPDU envelope (ID=0102)
v IM-ASPDU heading (ID=0120)
v IM-ASPDU body part header (ID=8121)
v One of the following:

– IM-ASPDU body part data segment (ID=8122 or 8132)
– IM-ASPDU body part encrypted data segment (ID=8123 or 8133)
– IM-ASPDU body part compressed data segment (ID=8126 or 8136)
– IM-ASPDU body part encrypted compressed data segment (ID=8127 or 8137)

v PDU trailer (ID=81FF)

Chapter 3. Peer-to-Peer Protocols 31

|

|
|
|
|

|

|

|

|

|
|
|
|
|

The message text is contained in one or more IM-ASPDU body part data segments.
This text can be:
v Plain text in EBCDIC encoding (ID=8122)
v Encrypted text in EBCDIC encoding (ID=8123)
v Compressed text in EBCDIC encoding (ID=8126)
v Encrypted compressed text in EBCDIC encoding (ID=8127)
v Plain text in ASCII encoding (ID=8132)
v Encrypted text in ASCII encoding (ID=8133)
v Compressed text in ASCII encoding (ID=8136)
v Encrypted compressed text in ASCII encoding (ID=8137)

Plain message text is first compressed and then encrypted if the IM-ASPDU body
part data segment type is 8127 or 8137. To recover plain text from such a body part
data segment, the transmitted text must first be decrypted and then decompressed.

AMPDU containing an Acknowledgment Message (SR-ASPDU)
The actual processing status of a message received from a partner application can
be reported by the receiving application to the sending application in a status
report. A status report is also called an acknowledgment message or a receipt
report. The event associated with this PDU at the sending side is, again, a message
submission (service primitive SUBMIT.Request). The event associated with this
PDU at the receiving side is, again, a message delivery (service primitive
DELIVER.Indication).

An AMPDU containing an acknowledgment message consists of the:
v AMPDU Envelope (ID=0102)
v Status Report ASPDU (ID=0112)
v PDU Trailer (ID=81FF)

MERVA Link PDU Data Elements
A MERVA Link PDU data element consists of a 4-byte LLID prefix that is usually,
but not always, followed by data. The first 2 bytes (the LL part of the LLID)
indicate the length, in bytes, of the data-element. Because this length always
includes the length the prefix itself, the minimum length is X'0004' (for a data
element that consists only of a prefix, with no data). Unless otherwise stated, data
elements have a variable length.

The third and fourth bytes of the prefix (the ID part of the LLID) indicate the ID of
the data-element. The data element IDs are listed in “Appendix A. PDU Data
Elements” on page 163. The third byte indicates the group to which the data
element belongs. The data-element groups are shown in the following table:

32 Advanced MERVA Link

Group Group Description or Data Elements in this Group

01
02
81
82

Implicit Level-1 Message Transfer Data Elements
Implicit Level-1 Command Transfer Data Elements
Explicit Level-1 Message Transfer Data Elements
Explicit Level-1 Command Transfer Data Elements

10
11
92
93
14
15
95
96

Originator Address, Descriptor, Security Info
Recipient Address and Descriptor
Message Identifiers
Date and Time
Message Transfer Processor Trace
Receipt Report, Error Report
Status Codes, Status Data, Error Report Information
Message Attachments, Control Information, Correlation Data

A0
A1
A2

Application Free Form Name
Address Elements
Message Transfer Process Names

B0 Control Indicators Consisting of 1 Character

C0 Request for MIP Reset, PDM Indicator

7F
FF

Implicit Application Defined Data Element
Explicit Application Defined Data Element, Do not Care DE

The data elements in the group B0 consist of the data-element prefix and 1
character as data. The data elements in the group C0 consist of the data-element
prefix only.

The data contained in a data element can have the format of a sequence of data
elements. All level-1 data elements, except the data elements of the message body
and the PDU trailer, contain other data elements (level-2 data elements), which in
turn can contain other data elements (level-3 data elements). Level-3 is the lowest
level that a data element in a MERVA Link PDU can have. A data element that
contains another data element is called an implicit data element. A data elements
that does not contain another data element, or that contains no data at all, is called
an explicit data element.

The meaning of the identifier part (bytes 3 and 4) of the prefix of a data element at
level 2 or 3 might not be unique; its meaning might depend on the higher level
data element that contains it. For example, a timestamp data element is always
encoded in the same way, but its meaning depends on its context. The timestamp
data element in an AMPDU envelope specifies the submit timestamp, while in a
DR content it specifies the delivery timestamp.

Notation of the P1, P2, and P3 Protocol Definitions
The structure of each MPDU or CPDU is described in the following sections using
a special notation. The elements of this notation are as follows:

::= This character string denotes a definition and can be read as has a valid
format of. It is always preceded by the name of the PDU construct defined
in this statement. This character string is always followed by a set operator
(CHOICE, SEQ, SEQ OF, or SET) and a set of data elements enclosed in
braces {}, or by another PDU construct.

CHOICE
This set operator means that a choice must be made between the elements
of the following set. Only one element of the set is applicable at one time.

Chapter 3. Peer-to-Peer Protocols 33

|
|

|
|

SEQ This set operator means that all elements of the following set must appear
in the sequence as listed in the set. Specific elements of the set can be
qualified as optional.

SEQ OF
This set operator means that the following set appears once or more than
once.

SET This set operator means that all elements of the following set can appear
once or more than once in the PDU construct to be defined. The elements
of the set can appear in any sequence in the PDU construct to be defined.
Unless otherwise stated, MERVA Link supports only the first occurrence of
a specific data element in a set of data elements.

[xxxx] This character string with hexadecimal digits for xxxx specifies the
identifier (ID) in the LLID prefix of a data element. In an encoded PDU it
is always preceded by the 2-byte length field that contains the length of the
data element including the 4 bytes of the data element LLID prefix.

If the data element identifier [xxxx] is immediately followed by a blank,
that data element consists of the prefix only. A description of the meaning
of that data element follows after the blank in this case.

An element in the set of data elements enclosed by braces that has no
data-element identifier [xxxx] will be defined later in that section.

(an,..) This qualifier indicates that the data-element data consists of alphanumeric
data and is not further expanded. The set of alphanumeric characters
comprises the characters $, @, and #, the letters A to Z in uppercase, and
the digits 0 to 9.

The alphanumeric data of a variable length data element can have trailing
blanks. These blanks are insignificant unless otherwise stated.

(nc,..) This qualifier indicates that the data-element data consists of numeric
characters and is not further expanded. The set of numeric characters
comprises the digits 0 to 9.

(ps,..) This qualifier indicates that the data-element data consists of a printable
string and is not further expanded. The set of printable characters
comprises all printable characters of the EBCDIC character set.

(xc,..) This qualifier indicates that the data-element data consists of hexadecimal
characters and is not further expanded. The set of hexadecimal characters
comprises the uppercase letters A to F and the digits 0 to 9.

(xs,..) This qualifier indicates that the data-element data consists of a hexadecimal
string and is not further expanded. A hexadecimal string can contain all
codes from hexadecimal 00 to hexadecimal FF.

(..,vnn)
This qualifier indicates that the data-element has a variable length. The
maximum length of the data-element data is identified by nn. The
minimum data-element data length is 1.

(..,fnn) This qualifier indicates that the data element has a fixed length. The fixed
length of the data-element data is identified by nn.

optional
This attribute indicates that the data element is optional. Optional means, it
might or might not be part of the PDU independent of all other data
elements in the PDU.

34 Advanced MERVA Link

Any data element without the attribute optional is a mandatory data
element. All mandatory data elements must be contained in a PDU.

Definition of the Message Transfer Protocol (P1)
Two classes of an MPDU are defined in P1:
MPDU ::= CHOICE {ApplicationMPDU, ServiceMPDU}

v Application MPDUs carry messages. One type of an application MPDU is
defined. It carries a message from an originating ASP toward a recipient ASP.

v Service MPDUs carry information about messages. Two types of a service
MPDU are currently defined:
ServiceMPDU ::= CHOICE {DeliveryReportPDU,

ProbePDU }

– The delivery report PDU carries a delivery or a nondelivery report to an
originating ASP. The support of a delivery report PDU has been dropped in
MERVA Link of MERVA ESA V4.

– The Probe PDU carries a request for information about the availability of an
ASP to the MTP supporting this ASP.

Every MPDU is divided into the following parts:
v The envelope, which contains the information that the MTL needs to transfer the

MPDU to its intended destination
v The content, which is the primary information the MPDU is intended to convey,

but that can, however, be empty
v The trailer

PDU Trailer
Every MPDU is terminated by a PDU trailer. A PDU trailer consists of an LLID
data-element prefix, optionally followed by one character as data element data. The
PDU trailer data supports a conversation control communication in the MERVA
Link TCP/IP environment that corresponds to the SNA APPC control
communication.

The PDU trailer data element prefix is encoded as:
PDU_trailer_prefix ::= [000481FF] or [000581FF]

The PDU trailer data element data can be empty or one of the following numeric
characters:

0 Standard PDU trailer without additional information (standard trailer)

1 PDU trailer requesting the termination of the conversation (termination
trailer)

4 PDU trailer indicating an error (error trailer)

8 PDU trailer requesting a confirmation (confirmation request trailer)

PDU trailers with data are used only in the MERVA Link TCP/IP enviroment.

The PDU trailer is not shown in the following PDU definitions.

Application Message PDU (AMPDU)
An application MPDU carries a message to its recipient ASP. It has three parts: an
envelope, content, and a trailer (the trailer is not shown below):

Chapter 3. Peer-to-Peer Protocols 35

|
|
|

|
|
|
|
|

|

|

|
|

||

||
|

||

||

|

ApplicationMPDU ::= SEQ {[0102]AMPDUEnvelope, AMPDUContent}

The type of the AMPDU content is specified as an AMPDU envelope parameter.
The only AMPDU content type defined is MERVA Link P2.

AMPDU Envelope
The AMPDU envelope (data-element identifier 0102) is defined as follows:
AMPDUEnvelope ::= SET {[1001]originator Address,

[1101]recipient Address,
[9200]ASLContentID (ps,v16) optional,
[9201]MPDUIdentifier (ps,v16),
[9301]SubmitTimeStamp (nc,f12),
[1403]MTPTrace optional,
[B000]EncodedInformationType (an,f1),
[B001]ReqDeliveryNotification (nc,f1),
[B002]Priority (an,f1),
[B003]ContentType P2 (nc,f1) }

An AMPDU envelope can contain other, user-defined data elements. These data
elements are ignored by MERVA Link. The maximum length of an envelope
supported by MERVA Link is 512 bytes.

Originator Address and Recipient Address
The originator address and recipient address are sets of data elements that
name and describe resources of the originator and recipient of a message.
Address information is provided by the originating ASP and used by the
message transfer system to route the MPDU to the recipient. It is finally
used by the recipient ASP to pass it to the intended recipient application:
originator Address ::= Address
recipient Address ::= Address

ASL Content ID

The ASL content ID is a message identifier that can be assigned to the
message by the ASP. It is passed to the message transfer process as a
SUBMIT.Request parameter. The ASL content ID is returned to the
Application Support Process in a SUBMIT.Confirmation and in a delivery
notification.

The data of this data element can have trailing blanks. These trailing
blanks are insignificant.

MPDU Identifier
The MPDU identifier is a message identifier that is unique within the MT
Node. It is assigned to the message by the message transfer process when
the SUBMIT.Request is processed. The MPDU Identifier is returned to the
ASP in a SUBMIT.Confirmation.

The MPDU identifier together with the originator address is unique within
the MTS. It is the main reference of the message within the message
transfer system. It is contained in a delivery notification referring to this
message.

In MERVA Link the MPDU identifier is generated by the MTSP as the
16-byte character representation of the S/390 system clock.

The data of this data element can have trailing blanks when it was not
generated by MERVA Link. These trailing blanks are insignificant.

Submit Timestamp
The submit timestamp contains the date and time when the

36 Advanced MERVA Link

|
|
|
|
|
|
|
|
|
|

|
|

|
|

SUBMIT.Request was accepted by the MTS. Date and time are specified in
the fixed format YYMMDDHHMMSS (year, month, day, hour, minute,
second).

MTP Trace
The MTP trace can consist of two external MTP names, the name of a
sending and a receiving MTP:
MTPTrace ::= SEQ {[A201]ExtSendMTPName (an,v8) optional,

[A202]ExtRecvMTPName (an,v8) optional }

The MTP trace information can be used by a receiving MTP to identify the
sending MTP. An MTP trace data element must be contained in an
envelope if an MTP name is required by the receiving MERVA Link
implementation.

A MERVA Link receiving process may be independent of one or both MTP
names. The complete MTP trace data element or either of the MTP names
are optional in this case.

Encoded Information Type
The encoded information type of a message is the information that appears
in its content. In an , it is the type (format) of the body.

This PDU element consists of the 4-byte LLID prefix, plus one character
indicating the encoded information type:

Q For MERVA ESA queue format

B For the queue format used by MERVA USE & Branch workstation
programs

N For network (line) format

The encoded information type can be blank (X'40') if the envelope does not
contain a body (it contains, for example, a status report).

The queue format used by MERVA USE & Branch workstation programs is
not supported by MERVA Link of MERVA ESA. A message with a body of
that format can, however, be handled by a MERVA Link USS Gateway.

If Network Format is indicated, the applicable network identifier can be
found in MERVA Link P2 rather than in this protocol (MERVA Link P1).

Request for Delivery Notification
The delivery notification indicator tells whether a delivery notification
should be returned to the originating ASP. A nondelivery notification is
always returned to the originating ASP.

This PDU element consists of the 4-byte LLID prefix and 1 character
identifying the request for delivery notification as follows:

0 No delivery notification requested

2 Delivery notification requested

As the MERVA Link Message Integrity Protocol is a mandatory service
element in MERVA Link, a delivery notification is always requested and
returned.

Chapter 3. Peer-to-Peer Protocols 37

|
|
|

|
|

|
|
|
|

|
|
|

||
|

||

|
|
|

|
|

Priority
The priority indicator specifies the relative priority of the message carried
by the MPDU.

This PDU element consists of the 4-byte LLID prefix and 1 character
identifying the priority as follows:

L Low priority

N Normal priority

H High priority

A sending MERVA Link ASP sets the P1 priority according to the position
of the applicable send queue in the MERVA Link send queue cluster.
Messages from the first, second, and third send queue are assigned high,
normal, and low priority, respectively.

Content Type
The content type specifies the encoding rules of the MPDU content. The
only content type defined is MERVA Link P2 (content type data is 2).

Address
The address in an AMPDU envelope is as follows:
Address ::= SET {[A100]MERVA_System_Type (an,f4) optional,

[A101]MTNodeName (an,v8),
[A102]ASProcessName (an,v8) }

MERVA System Type
The MERVA System Type identifies the type and the version of the MERVA
installation that houses the subject ASP. It consists of an alphabetic MERVA
System Identifier, followed by three numeric characters (VRM) identifying
the MERVA version. The alphabetic MERVA System Identifiers are defined
as follows:

C MERVA ESA CICS MVS

V MERVA ESA CICS VSE

I MERVA ESA IMS

U MERVA USS

A MERVA AIX

O MERVA OS/2®

N MERVA NT

MT Node Name
The MT node name identifies a MERVA Link system. This name must be
unique within the message transfer system. It is the vehicle to address
another MT Node in the MTS.

AS Process Name
The AS Process name identifies a specific application (ASP) within the MT
Node. This name must be unique within an MT Node.

AMPDU Content
The AMPDU content contains the information to be communicated between the
originating and receiving applications.

The format of the AMPDU content is described in “Definition of the Application
Support Protocol (P2)” on page 41.

38 Advanced MERVA Link

|
|
|

|
|
|
|
|
|

||

||

||

||

||

||

||

|

Delivery Report MPDU (DR MPDU)
MERVA Link of MERVA ESA V4 supports only synchronous communication
protocols that do not use delivery reports. The support of the delivery report
MPDU is therefore dropped in MERVA Link of MERVA ESA V4.

Probe PDU
A Probe PDU carries a request for information or a request for specific action to a
partner system. A Probe PDU has only an envelope and no content.
ProbePDU ::= [0100]ProbeEnvelope

The Probe envelope contains all information the message transfer system requires
to pass the PDU to the intended recipient, and to perform the requested function.

The Probe is supported by all MTPs that have a synchronous conversation with
their partner MTP (SNA APPC, TCP/IP, or BTB). The Probe processing result is
reported back to the sender of the Probe within the same conversation.

Probe Envelope
The Probe envelope (data-element identifier 0100) is defined as follows:
ProbeEnvelope ::= SET {[1001]originator Address,

[1101]recipient Address,
[1403]MTPTrace optional,
[1003]ClientSecInfo optional,
[1004]ChangeSecInfo optional,
[B004]ProbeFunction (an,f1) }

Address
The originator address parameter identifies the originator of the Probe. It
can be a sending ASP that must test a partner ASP for its availability. As
an alternative, it can be the name of a MERVA Link internal resource that
requests a specific action from its partner resource in a partner MERVA
Link node (for example, change client security information).

The recipient address parameter identifies the target application. It can be a
receiving ASP that must be tested for its availability. As an alternative, it
can be the name of a MERVA Link internal resource that performs a
requested action (for example, change client security information).

MTP Trace
The MTP trace contains a sending and a receiving MTP Name. It can be
used for partner verification at the receiving side. The MTP trace data
element need not to be sent to partner systems that use another method to
identify the recipient MTP and to verify the originator.

Client Security Information
Client security information (data-element identifier 1003) is defined as
follows:
ClientSecInfo ::= SecurityInfo

Client security information conveys data that enables the receiving MTP to
check whether the sender (client) is authorized to access the receiving
MERVA Link system (server). Partner authorization is performed only
when the DC system used by MERVA Link does not support conversation
security (for example, TCP/IP). Client security information is mandatory in
that case. Otherwise it is optional data that is ignored by the MERVA Link
server.

Chapter 3. Peer-to-Peer Protocols 39

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|

|
|
|
|
|
|
|

Change Security Information
Change security information (data-element identifier 1004) is defined as
follows:
ChangeSecInfo ::= SecurityInfo

Change security information conveys data that enables the receiving MTP
to change the conversation security information that must be used by its
associated sending MTP to establish a conversation with its partner MTP.
Change security information is mandatory if the Probe function is C
(identifying a change security information request). Otherwise it is optional
data that is ignored by the MERVA Link server.

Probe Function
Probe Function indicates the purpose of this Probe PDU. This PDU element
consists of the 4-byte LLID prefix and one character identifying the
purpose of the Probe as follows:

T Test the availability of a receiving ASP.

R Test the availability of a receiving ASP and ask the receiving ASP
to return a probe (with function T).

C Request the change of client security information in the partner
MERVA Link node.

K Test the availability of a receiving ASP and kick off the
corresponding sending ASP at the end of the receiving process.

S Test the availability of a receiving ASP and start the corresponding
sending ASP at the end of the receiving process.

H Test the availability of a receiving ASP and hold the corresponding
sending ASP at the begin of the receiving process.

E Enable the receiving ASP and test its availability.

D Test the availability of a receiving ASP and disable it at the end of
the receiving process.

Any MERVA Link implementation must support the T-Probe. The support
of all other Probe functions is optional.

Security Information
Security information in a Probe envelope is defined as follows:
SecurityInfo ::= SET {[A108]UserID (an,v8),

[A109]EncrPasswd (xs,f8),
[A10A]EncrCtlInfo (xs,v32),
[B005]EncrMethod (an,f1) }

All security information data elements are mandatory.

User ID
The User ID data element contains the applicable security user identifier.

Encrypted Password
The encrypted password is the password that is currently applicable for
the specified security user. The password has been encypted for
confidentiality reasons during the transfer. It must be decrypted as
specified by the encryption control information and the encryption method
before it can be used.

40 Advanced MERVA Link

|
|
|

|

|
|
|
|
|
|

|
|
|
|

||

||
|

||
|

||
|

||
|

||
|

||

||
|

|
|

|
|

|
|
|
|

|

|
|

|
|
|
|
|
|

Encryption Control Information
The encryption control information and the encryption method enable a
MERVA Link function to decrypt the encrypted password.

Encryption Method
The encryption method identifies the function that was used by MERVA
Link to encrypt the password as follows:

0 MERVA Link basic password encryption method

1 MERVA Link AIX Crypt

2 MERVA Link USS Crypt

3 MERVA Link NT Crypt

The basic password encryption method is supported by all MERVA Link
implementations that support TCP/IP. The encryption method that is
based on the unrestricted DES function crypt() can be used only for
connections between MERVA Link nodes in the same operating system
environment. This method can, for example, not be used in a connection
from MERVA Link AIX to MERVA Link USS.

Both the basic password encryption method and the password encryption
method based on function crypt() use MERVA Link proprietary algorithms.
These algorithms are confidential, and are disclosed on a need-to-know
basis only.

Definition of the Application Support Protocol (P2)
Two types of an ASPDU are defined in P2:
v IM-ASPDUs, which carry interapplication messages
v SR-ASPDUs, which carry interapplication messaging status reports
ASPDU ::= CHOICE {IM-ASPDU, SR-ASPDU}

Interapplication Message ASPDU (IM-ASPDU)
Every IM-ASPDU has two parts, the heading and the body.
IM-ASPDU ::= SEQ {[0120]Heading, Body}

IM-ASPDU Heading
The heading of an IM-ASPDU contains descriptive information or control data
concerning the application message:
Heading ::= SET {[1002]originator ApplicationDescriptor,

[1102]recipient ApplicationDescriptor,
[9202]IAMessageID (ps,v16),
[9203]MIPMessageID (xs,f8) optional,
[9204]MIPMessageSN (nc,f4),
[9600]BodyPartEncryptionCtrlInfo (xs,v60) optional,
[9601]MsgAuthCtrlInfo (xs,v60) optional,
[9602]MERVALineFormatID (an,f1) optional,
[9603]MERVAMessageType (an,v8) optional,
[9604]MIPWindowSize (nc,f3),
[9605]BodyPartCompressionCtrlInfo (xs,v60) optional,
[9608]Buckslip (ps,v256) optional,
[9609]Subject (ps,v60) optional,
[9610]ApplRequestData (ps,v1024) optional,
[9611]ApplResponseData (ps,v256) optional,
[9612]ApplAckData (ps,v256) optional,
[9613]ApplMacData (ps,v256) optional,
[9614]ApplPacData (ps,v256) optional,

Chapter 3. Peer-to-Peer Protocols 41

|
|
|

|
|
|

||

||

||

||

|
|
|
|
|
|

|
|
|
|

|

[B000]BodyType (an,f1),
[B001]ReqReceiptConfirmation (nc,f1),
[B002]Priority (an,f1),
[C000] MIPResetIndicator optional,
[C001] PDMIndicator optional }

The MERVA ESA line-format identifier is mandatory if the body type denotes a
MERVA ESA line format. The MERVA ESA message-type data element is optional
regardless of the body type.

A message heading can contain user-defined data elements. These data elements
are ignored by MERVA Link. MERVA Link supports a maximum message heading
length of 4084 bytes. The maximum length of the message heading and the
appended body part header is 4096 bytes (4KB).

Application Descriptor

The application descriptor is defined as follows:
ApplicationDescriptor ::= SET {[A001]FreeFormName (ps,v60) optional,

[A101]MTNodeName (an,v8),
[A102]ASProcessName (an,v8) }

The free-form name identifies the application in a format selected for
human comprehension rather than for processing by computer processes.

The MT node name identifies the message transfer function in a MERVA
Link system. This name must be unique within the message transfer
system. It is the vehicle to address another MT Node in the MTS and to
verify the identity of a communication partner.

The AS Process Name identifies a specific application within the MT Node.
This name must be unique within an MT Node.

IAM Message ID
The Interapplication Messaging message identifier identifies a particular
message. It is used to provide the MERVA Link P2 Message Identification
service element. The IAM message ID is intended to be a unique and
unambiguous identifier within the originating application’s context.

MIP Message Identifier
The Message Integrity Protocol (MIP) message identifier component
conveys a message identifier generated by the sending application support
process. It is used to provide the Message Integrity Protocol service
element.

MIP Message Sequence Number
The Message Integrity Protocol Sequence Number component conveys a
message sequence number generated by the sending application support
process. It is used to provide the Message Integrity Protocol service
element.

Body Part Encryption Control Information
The Encryption component conveys the indication that the message body
is encrypted and, optionally, either the name of an encryption algorithm or
an encryption key, or both. As a matter of fact, the meaning of the
data-element data must be bilaterally agreed upon between the cooperating
ASPs. The body part data segment identifier indicates whether the body is
actually encrypted (8123, 8127, 8133, or 8137) or in plain text (8122, 8126,
8132, or 8136).

42 Advanced MERVA Link

Body part text that must be compressed and encrypted must first be
compressed and then encrypted. Body part text that is both compressed
and encrypted must first be decrypted and then decompressed (expanded).

Message Authentication Control Information
The authentication component conveys the indication that the message
body was authenticated and the result of the authentication. The
authentication algorithm or its name can also be part of this data element.
The meaning of the data-element data must be bilaterally agreed upon
between the cooperating ASPs.

MERVA ESA Line-Format Identifier
The MERVA ESA line-format identifier component conveys the line-format
identifier used when the message was formatted from MERVA ESA TOF
format to the MERVA ESA line (net) format. This parameter is applicable
only if the body type is MERVA ESA network format (N). It is a
mandatory data element then.

MERVA ESA Message Type

The MERVA ESA message-type component conveys the type of the
message as specified when the message was generated in MERVA ESA. It
is used by MERVA ESA Message Format Services to map the message via
the MERVA ESA TOF format to any other format defined in the MCB for
that message type.

This parameter is applicable only if the body type is MERVA ESA
Network Format (N). If this data element is missing, the receiving process
should determine the message type from the data in the ASPDU body.

The data of this data element can have trailing blanks. These trailing
blanks are insignificant.

MIP Window Size
The MIP window size component conveys the message transfer window
size used to provide the MIP service element.

Body Part Compression Control Information
The compression component conveys the indication that the message body
is compressed and, optionally, either the name of a compression/expansion
algorithm or a compression/expansion key, or both. As a matter of fact, the
meaning of the data element data must be bilaterally agreed upon between
the cooperating ASPs. The body part data segment identifier tells whether
the body part text is actually compressed (8126, 8127, 8136, or 8137) or not
compressed (8122, 8123, 8132, or 8133).

Body part text that must be compressed and encrypted must first be
compressed and then encrypted. Body part text that is both compressed
and encrypted must first be decrypted and then decompressed (expanded).

Buckslip

The Buckslip component conveys a short notice attached to the subject
message.

Subject
The subject component conveys information the originator specified as the
subject of the message.

Application Request Data

The Application Request Data component conveys application specific
request data.

Chapter 3. Peer-to-Peer Protocols 43

Application Response Data

The Application Response Data component conveys application specific
response data.

Application Acknowledgment Data

The Application Acknowledgment Data component conveys application
specific acknowledgment data.

Application MAC Data

The Application MAC Data component conveys application specific
Message Authentication Code information.

Application PAC Data

The Application PAC Data component conveys application specific PAC
information.

Body Type

The body-type indicator specifies the type of any body part contained in
the body. The data of this data element consists of one character indicating
the body type:

Q For MERVA ESA queue format

B For the queue buffer format of a MERVA USE & Branch
workstation program

N For network (line) format

The queue format used by MERVA USE & Branch workstation programs is
not supported by MERVA Link of MERVA ESA.

Request for Receipt Confirmation

The Receipt Confirmation indicator tells whether either a receipt or a
nonreceipt confirmation should be returned to the originating ASP. The
receipt confirmation implies the nonreceipt notification. The data of this
data element consists of 1 character identifying the requested notification.
Its meaning is as follows:

0 No receipt confirmation requested

1 Nonreceipt notification requested

2 Receipt confirmation requested.

Priority

The priority parameter specifies the relative priority of the message carried
by the IM-ASPDU. The data of this data element consists of 1 character
identifying the priority as follows:

L Low priority

N Normal priority

H High priority.

MIP Reset Indicator

The MIP reset indicator conveys the information that the specified IAM
Message Sequence Number must be accepted as a Message Integrity
Protocol syncpoint. A Message Integrity Protocol violation cannot be

44 Advanced MERVA Link

||
|

||

|
|

reported for a message that contains this indicator. This PDU element
consists of the 4-byte LLID prefix only.

PDM Indicator

The PDM indicator indicates that the message might have already been
passed to the receiving application via a route outside the scope of MERVA
Link, for example, TELEX. A message containing this indicator should be
checked by a process outside the scope of MERVA Link to prevent
duplication. This PDU element consists of the 4-byte LLID prefix only.

This data element is sent to a partner ASP if corresponding information is
found in the message (MERVA Link control field EKAPDUPM with the
content PDM). The receiving MERVA Link ASP provides the PDM
indicator in the message (characters PDM in the MERVA Link control field
EKAPDUPM).

IM-ASPDU Body
The body of an IM-ASPDU consists of a single body part. The type of that body
part is specified in the BodyPartType data element in the message heading.
Body ::= BodyPart

The body part is defined as follows:
BodyPart ::= SEQ {[8121]BodyPartHeader (xs,f8),

SEQ OF CHOICE {[8122]BPDataSeg (xs,v32763),
[8123]EncrBPDataSeg (xs,v32763),
[8126]ComprBPDataSeg (xs,v32763),
[8127]EncrComprBPDataSeg (xs,v32763),
[8132]BPDataSeg (xs,v32763),
[8133]EncrBPDataSeg (xs,v32763),
[8136]ComprBPDataSeg (xs,v32763),
[8137]EncrComprBPDataSeg (xs,v32763) }}

Body Part Header
The body part header defines the begin of a body part. It has two 4-byte
fields as data element data. The first 4-byte field contains the total data
length of this body part as a 4-byte binary number. The second 4-byte field
contains the total data length of the body. The content of these two fields is
identical as only one body part is supported in a body.

Body Part Data Segments

The body part header is followed in the body part by a sequence of body
part data segments. All data segments of a body part have the same
identifier. The segmentation of the body part data has no meaning for that
data. It is not correlated to an internal structure of the body part data.

Body part data can be divided into any number of segments. The length of
a body part data segment (including the 8-byte data segment prefix) can be
in the range of 9 bytes to 32K minus 1 bytes.

A body part data segment can be encrypted. Whether it is actually
encrypted or not is indicated in the data element identifier of the body part
data segment. ID=8122 and ID=8132 identify a segment with plain text,
ID=8123 and ID=8133 identify an encrypted body part data segment,
ID=8126 and ID=8136 identify a segment with compressed plain text,
ID=8127 and ID=8137 identify an encrypted compressed body part data
segment.

Encryption control information, which enables the receiver of an encrypted
segment to recover the plain text, can be contained in the message heading.

Chapter 3. Peer-to-Peer Protocols 45

Compression control information, which enables the receiver of a
compressed segment to expand the text, can be contained in the message
heading.

The body part data segment data starts with a 4-byte field that can contain
the data length of this body part data segment (data element length minus
8). Body part data follow this 4-byte field. The minimum length of a body
part data segment is therefore 9 bytes.

The encoding of body part data segment data is EBCDIC for ID=8122,
ID=8123, ID=8126, and ID=8127. For ID=8132, ID=8133, ID=8136, and
ID=8137 the encoding is ASCII. EBCDIC and ASCII body part data
segments are handled by MERVA Link of MERVA ESA in the same way. If
code conversion is necessary it must be performed in an application
support filter.

Status Report ASPDU (SR-ASPDU)
The SR-ASPDU is used to return notification of receipt or nonreceipt of a message
to its originator:
SR-ASPDU ::= [0112]ReceiptInfo

The receipt information contains receipt or nonreceipt information, information to
correlate the report to the applicable message and the recipient, and MERVA Link
Message Integrity Protocol control information.

A status report can contain user-defined data elements. These data elements are
ignored by MERVA Link. MERVA Link supports a maximum status report length
of 4084 bytes:
ReceiptInfo ::= SET {[1102]reported RecApplDescriptor optional,

[9202]reported IAMessageID (ps,v16),
[9203]MIPMessageID (xs,f8) optional,
[9204]MIPMessageSN (nc,f4),
[9604]MIPWindowSize (nc,f3),
[9608]Buckslip (ps,v256) optional,
[9609]Subject (ps,v60) optional,
[9611]ApplResponseData (ps,v256) optional,
[9612]ApplAckData (ps,v256) optional,
[9613]ApplMacData (ps,v256) optional,
[9614]ApplPacData (ps,v256) optional,
[C000]MIPResetIndicator optional,
[1500]Report }

Recipient Application Descriptor
The Recipient Application Descriptor specifies the recipient of the reported
message. It describes the originator of the status report.

IAM Message ID
The IAM message ID identifies the reported message.

Standard P2 Data Elements
A subset of the MERVA Link P2 data elements that are defined for an
IM-ASPDU heading are also defined for an SR-ASPDU. This subset
consists of the following data elements:
v 9203 MIP Message ID
v 9204 MIP Message Sequence Number
v 9604 MIP Window Size
v 9608 Buckslip
v 9609 Subject

46 Advanced MERVA Link

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|

|

|

|

|

|

v 9611 Application Response Data
v 9612 Application ACK Data
v 9613 Application MAC Data
v 9614 Application PAC Data
v C000 MIP Reset Indicator

For more information about these data elements, refer to the description of
the IM-ASPDU heading.

Report
The report data element contains the main information conveyed in a status report.
It can, however, also be used by a receiving MERVA Link process to return error
information in case of a receiving process failure (conversation error report).
Specific rules for the layout and content of a report data element may apply in the
latter case.

The report data element contains the following information:
Report ::= SET {[9301]ReportTime optional,

[9501]ReturnCode (nc,f2),
[9502]DiagnosticCode (ps,f6) optional,
SEQ OF {[9503]ReportData (xs,v256) optional},
[B006]DcOriginatorType (an,f1) optional,
[9505]IntErrorCodeVector (xs,f12) optional,
SEQ OF {[9506]OperatorMsg (ps,v79) optional} }

The maximum length of a Report data element in a Status Report is 4080 bytes.
The maximum length of a Report data element that is used by a receiving TP to
report an error synchronously is 1024 bytes.

Report Time
The report time specifies the date and time when the message was
received by the recipient application or the date and time when the report
was generated. Its format is YYMMDDHHMMSS (year, month, day, hour,
minute, second). The report time is missing from a conversation error
report.

Return Code

The return code specifies whether the notification is for receipt or
nonreceipt. Receipt can be qualified as intermediate or final receipt.
ReturnCode ::= CHOICE {00 final receipt,

04 not-final (intermediate) receipt,
08 final nonreceipt }

Final receipt means that message processing in the receiving application is
finished and no other status report will be sent. Not-final receipt means,
that message processing in the receiving application is not yet finished and
another status report will be sent. A nonreceipt is always treated as a final
status report.

The return code in a conversation error report can be 04 (warning), 08
(error), or 12 (severe error).

Diagnostic Code

The diagnostic code data element provides additional information about
the reported status. It can be a mnemonic or a sequence of MERVA Link
error codes as specified by the originator of the diagnostic code.

Chapter 3. Peer-to-Peer Protocols 47

|

|

|

|

|

|
|

|

|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|

|
|

|

|
|
|

Diagnostic code values are not architected by MERVA Link. Each MERVA
Link implementation defines its own set of diagnostic codes. This is why
the type of the MERVA Link system that generated a diagnostic code must
be known in order to interpret a diagnostic code.

Report Data
You can arrange for additional receipt report information to be contained
in a sequence of report-data data elements. The meaning of report data is
defined by an application using MERVA Link services rather than by the
MERVA Link architecture. Corresponding functionality can be implemented
in a MERVA Link user exit as application communication functionality
(ACF).

Diagnostic Code Originator Type
The diagnostic code originator type data element contains information
about the type of the MERVA Link system that generated the diagnostic
code in this report. The diagnostic code originator types are defined as
follows:

E MERVA ESA (CICS MVS, CICS VSE, or IMS)

U MERVA USS

A MERVA AIX

O MERVA OS/2

N MERVA NT

MERVA Link Internal Error Code Vector (ECV)
Any MERVA Link internal error information is contained in a report data
element in the format of a fixed length sequence of six two-byte error
codes called an error code vector (ECV). The meaning of the error codes is
specified by the MERVA Link implementation identified by the diagnostic
code originator type data element.

Operator Message
An explanation of the return code, the diagnostic code, and the internal
error code vector can be contained in a sequence of operator messages.

Definition of the Command Transfer Protocol (P3)
A command transfer service is defined for use by the MERVA System Control
Facility. It employs a pair of command transfer processors (CTPs): an outbound
CTP and an inbound CTP. The outbound CTP is also called the requestor that
sends a command. The inbound CTP is also called the server that receives a
command and sends the command response back to the requestor.

The rules for the communication between the two CTPs are defined in the MERVA
Link Command Transfer Protocol. This protocol is referred to as P3. It defines the
syntax and the semantic of the data exchanged between the CTPs, called
Command Protocol Data Units (CPDUs), and the characteristics of the PDU
exchange using APPC (Advanced Program-to-Program Communication).

A CPDU exchanged between Command Transfer Processors in the MERVA System
Control Facility has two parts, an envelope and a content:
CPDU ::= SEQ {[0202]CPDUEnvelope, CPDUContent}

48 Advanced MERVA Link

|
|
|
|

|
|
|
|
|

||

||

||

||

||

|
|
|
|
|
|

|
|
|

The CPDU envelope contains information to route the command to its intended
command processor or to route the response back to the command requestor. The
CPDU content contains the command request or the command response.

Command Transfer PDU Envelope (CPDUEnvelope)
The CPDU envelope (data-element identifier 0202) is defined as follows:
CPDUEnvelope ::= SET {[1001]originator Address,

[1101]recipient Address,
[B000]EncodedInformationType (an,f1) }

A CPDU envelope can contain other, user-defined data elements. These data
elements are ignored by MERVA Link. The maximum length of a command PDU
envelope supported by MERVA Link is 256 bytes.

Address

The originator and the recipient address is defined as a set of data
elements describing and naming resources of the originator or the recipient
of a CPDU.
Address ::= SET {[A101]Node Name (an,v8),

[A102]UserName (an,v8) }

The node name identifies a MERVA Link system in a network of MERVA
systems. This name must be unique within this network.

The user name identifies a specific user or a command processor within
that node.

Encoded Information Type
The encoded information type of a message is the information that appears
in its content. In a CPDU it is the type (format) of the body.

This PDU element consists of the 4-byte LLID prefix and 1 character
identifying the encoded information type as follows:

Q Command response in queue format.

N Command response in network (line) format.

The encoded information type is blank (X'40') if the content does not
contain a body.

Command Transfer PDU Content (CPDUContent)
The purpose of a CPDU Content qualifies it as either a Command Request PDU
(CRqPDU) or a Command Response PDU (CRsPDU).
CPDUContent ::= CHOICE {CRqPDU, CRsPDU}

A Command Reqest PDU carries a MERVA operator command and other control
information from a command requestor to a command server. A Command
Response PDU carries the response of the command server back to the command
requestor.

Command Request PDU (CRqPDU)
A Command Request PDU carries a command to the command processor in the
target system. The CRqPDU consists of a single part, the Command Request
Heading.
CRqPDU ::= [0220]CRqHd

Chapter 3. Peer-to-Peer Protocols 49

Command Request Heading
The Command Request Heading contains the command and descriptive
information or control data concerning the command.
CRqHd ::= SET {[1002]originator Descriptor,

[1102]recipient Descriptor,
[9603]MERVAMessageType (an,v8),
[9608]Buckslip (ps,v256) optional,
[960A]UniqueMscCorData (ps,v64) optional,
[960B]SpecMscCorData (ps,v256) optional,
[960C]SpecCmdCorData (ps,v1024) optional, [B000]BodyType (an,f1) }

A command request heading can contain user-defined data elements. These data
elements are ignored by MERVA Link. MERVA Link supports a maximum
command request heading length of 2048 bytes.

Descriptor

The originator and recipient descriptors are defined as follows:
Descriptor ::= SET {[A001]FreeFormName (ps,v60) optional,

[A101]NodeName (an,v8),
[A102]UserName (an,v8) }

The free-form name identifies the user or application in a format selected
for human comprehension rather than for processing by computer
processes.

The node name identifies the MERVA Link system in a network of MERVA
systems. This name must be unique within this network.

The User Name identifies a specific user or application within that node.

Message Type

The message-type component conveys the type of the screen in which the
command was entered.

The data of this data element can have trailing blanks. These trailing
blanks are insignificant.

Buckslip

The Buckslip data element contains the command as it was entered by the
operator.

Unique MSC Correlation Data

The unique correlation data is provided by a command processor and
describes its status when a command has been executed. Unique MSC
correlation data is optional in a command request. It must be returned to
the command processor in the next command request if the execution of
that command depends on the result of the previous command.

The semantic of the unique MSC correlation data is not defined in P3. It
must be bilaterally agreed between the cooperating System Control
Processes (SCPs).

Specific MSC Correlation Data

Specific MSC correlation data is provided by a lower level command
execution routine and describes its status when a command has been

50 Advanced MERVA Link

executed. It must be returned to that routine in the next command request
if the execution of that command depends on the result of the previous
command.

The semantic of the specific MSC correlation data is not defined in P3. It is
defined by the command execution routine.

Specific CMD Correlation Data

Specific command correlation data contains the command response in a
specific command sequence, for example, the DDS command sequence. It
must be passed to the command execution routine like a parameter each
time the command is executed.

The semantic of the specific command correlation data is not defined in P3.
It is defined by the command execution routine of that specific command.

Body Type

The body-type indicator specifies the type of the body. It is blank to
indicate that no body follows this command request heading.

Command Response PDU (CRsPDU)
A Command Response PDU carries a command response from the partner system
back to the requestor. A CRsPDU can have two parts, the heading and the body.
The heading is mandatory, the body is optional.
CRsPDU ::= SEQ {[0221]CRsHd,

[8221]CRsBody optional }

Command Response Heading
The heading of a CRsPDU contains descriptive information or control data
concerning the command response.
CRsHd ::= SET {[1002]originator Descriptor,

[1102]recipient Descriptor,
[1500]Report,
[9603]MERVAMessageType (an,v8) optional,
[9608]Buckslip (ps,v256) optional,
[960A]UniqueMscCorData (ps,v64) optional,
[960B]SpecMscCorData (ps,v256) optional,
[B000]BodyType (an,f1) }

A command response heading can contain user-defined data elements. These data
elements are ignored by MERVA Link. MERVA Link supports a maximum
command response heading length of 1024 bytes.

Descriptor

The originator and recipient descriptors are defined as follows:
Descriptor ::= SET {[A001]FreeFormName (ps,v60) optional,

[A101]NodeName (an,v8),
[A102]UserName (an,v8) }

The free-form name identifies the user or application in a format selected
for human comprehension rather than for processing by computer
processes.

The node name identifies the MERVA Link system in a network of MERVA
systems. This name must be unique within this network.

The User Name identifies a specific user or application within that node.

Chapter 3. Peer-to-Peer Protocols 51

Report

The information contained in the report data element provides the
timestamp of the partner system and tells whether command processing
was successful or unsuccessful:
Report ::= SET {[9301]ReportTime (nc,f12),

[9501]ReturnCode (nc,f2),
[9504]CpDiagCode (ps,f8) optional }

v The report time specifies the date and time when the report was
generated. Its format is YYMMDDHHMMSS (year, month, day, hour,
minute, second).

v The return code tells whether the command was successfully processed
or not successfully processed.
ReturnCode ::= CHOICE {00 command processing successful,

08 command processing error }

v Information about the nature of a command processing error might be
provided by the command processing diagnostic code. Whether the
diagnostic code is set depends upon the implementation and is not
defined in P3.

Message Type

The message-type component conveys the type of the message. It is used
by MERVA Message Format Services to map the message to TOF format
for display at the user’s terminal. This parameter is applicable only if the
body type is N.

The data of this data element can have trailing blanks. These trailing
blanks are insignificant.

Buckslip

The Buckslip component conveys a short notice attached to the command
response. It can, for example, be displayed in the error message line of an
EUD screen.

Unique MSC Correlation Data

The unique correlation data is provided by a command processor and
describes its status when a command has been executed. Unique MSC
correlation data is optional in a command request. It must be returned to
the command processor in the next command request if the execution of
that command depends on the result of the previous command.

The semantic of the unique MSC correlation data is not defined in P3. It
must be bilaterally agreed between the cooperating System Control
Processes (SCPs).

Specific MSC Correlation Data

Specific MSC correlation data is provided by a lower-level command
execution routine and describes its status when a command has been
executed. It must be returned to that routine in the next command request
if the execution of that command depends on the result of the previous
command.

The semantic of the specific MSC correlation data is not defined in P3. It is
defined by the command execution routine.

Body Type

52 Advanced MERVA Link

The body-type indicator specifies the type of the body. It is N if the body
contains the command response in the MERVA net format. It is Q if the
body contains the command response in the MERVA queue format
(compressed TOF format). The body type is blank if the body is missing.

Command Response Body
The body of a CRsPDU consists of a single body part. It contains the command
response data in MERVA net or queue format. The message type of a command
response in net format is contained in the Message Type data element of the
CRsPDU heading. The line format identifier is the first character of the message
type.

The maximum length of a command response body is 6908 bytes.

Command PDU Trailer
Every CPDU is terminated by a Command PDU trailer. A CPDU trailer consists of
an LLID data-element prefix only. It has no data and is encoded as
CPDUtrailer ::= [000482FF]

Command Error Report
The receiver of a Command Request PDU can return an error report instead of a
command response PDU if it finds an error during command request processing.
The error report is defined as follows:
ErrorReport ::= [1500]Report

Report ::= SEQ {[9301]ReportTime (nc,f12),
[9501]ReturnCode (nc,f2),
[9504]CpDiagCode (ps,f8) }

The Report Time specifies the date and time when the report was generated. Its
format is YYMMDDHHMMSS. The Return Code is 08. Information about the
nature of a command processing error or the incomplete command processing is
contained in the Command Processing Diagnostic Code. The semantic of the
diagnostic code is not defined in P3.

All three data elements of the Report data element are mandatory in an error
report.

Chapter 3. Peer-to-Peer Protocols 53

54 Advanced MERVA Link

Chapter 4. Boundary Function Service Primitives

The Layered Representation of the MERVA Link message handling system model
comprises two layers, the application support layer and the message transfer layer.
The latter layer is divided into two sublayers, the upper sublayer that contains the
message transfer service processor, and the lower sublayer that contains the
message transfer processors.

These three sublayers constitute four boundaries. These are the upper sublayer
boundaries of the three sublayers, and the lower sublayer boundary of the lowest
sublayer. Figure 8 shows the three MERVA Link sublayers and the four boundaries.

The main layer boundary within the MERVA Link message handling system is the
boundary between the ASL and the MTL, called the MTL boundary.

The MTL internal boundary between the message transfer service processor and a
message transfer processor is also described by service primitives. This boundary is
called the message transfer processor boundary.

Sending MTP

Sending ASP

MTL Boundary

MTP Boundary

APPC or ISC Boundary

ASL Boundary

Receiving MTP

Receiving ASP

primary sp

primary sp

primary sp

primary sp

CNRQ
SURQ

DCRQ

TSIN
DLIN
NTIN
DCIN

TSRS
DLRS
NTRS
DCRS

CNRQ
SPDU
DCRQ

PPDU
DCIN

CNCF
SUCF

DCCF

CNCF
SPCF
DCCF

PPRS
DCRS

Message Transfer Service Processor (MTSP)

secondary sp

secondary sp

secondary sp

secondary sp

Figure 8. MERVA Link Sublayer Boundaries and Service Primitives

© Copyright IBM Corp. 1991, 2001 55

MTL Boundary Function Service Primitives
An application support processor communicates with the message transfer service
processor or an application support filter using the following set of service
primitives:

CONNECT.Request/Confirmation (CNRQ/CNCF)
A CONNECT.Request is issued by an ASP to establish a conversation with
its partner ASP for the transfer of a set of messages.

A CONNECT.Confirmation is the response of the MTL to a
CONNECT.Request. A CONNECT.Confirmation indicates whether a
connection to the partner was acquired and if the partner ASP is prepared
to receive messages.

TEST.Indication/Response (TSIN/TSRS)
A TEST.Indication is issued by the MERVA Link message transfer layer to
test for the availability of a receiving ASP. This service primitive
corresponds to a CONNECT.Request that includes the request to test the
availability of the receiving ASP.

A TEST.Response is issued by the receiving ASP to indicate whether it is
prepared to accept messages.

SUBMIT.Request/Confirmation (SURQ/SUCF)
A SUBMIT.Request is issued by a sending ASP to request the transfer of a
message or the transfer of a status report.

A SUBMIT.Confirmation is the response of the MTL to a SUBMIT.Request.
A SUBMIT.Confirmation indicates whether the MERVA Link message
transfer system has accepted the request to transfer the data in the
SUBMIT.Request to the recipient application, or whether an error has been
found and the request was not accepted. A SUBMIT.Confirmation can even
indicate that the message was successfully delivered to the recipient ASP
and the ASP has taken responsibility of that message.

DELIVER.Indication/Response (DLIN/DLRS)
A DELIVER.Indication delivers a message or a status report to a receiving
ASP. A delivered status report contains an identifier of the reported
message.

A DELIVER.Response is issued by the receiving ASP to indicate whether it
has taken responsibility of that message or could not accept responsibility
for that message.

NOTIFY.Indication/Response (NTIN/NTRS)
The support of the NOTIFY service primitives has been dropped.

DISCONNECT.Request/Confirmation (DCRQ/DCCF)
A DISCONNECT.Request is issued by an ASP to free a previously acquired
partner connection (conversation).

A DISCONNECT.Confirmation is the response of the MERVA Link message
transfer layer to a DISCONNECT.Request. A DISCONNECT.Confirmation
indicates whether a connection to the partner was successfully freed.

DISCONNECT.Indication/Response (DCIN/DCRS)
A DISCONNECT.Indication is issued by an MTP to allow a receiving ASP
to disconnect from its application.

A DISCONNECT.Response is the response of the receiving ASP to a
DISCONNECT.Indication.

56 Advanced MERVA Link

|
|
|
|

|
|

|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|

MTP Boundary Function Service Primitives
The message transfer service processor communicates with a message transfer
program using the following set of service primitives.

CONNECT.Request/Confirmation (CNRQ/CNCF)
A CONNECT.Request is issued by the message transfer service processor
as response to the corresponding request from the ASP. Part of
CONNECT.Request processing is the generation and transmission of a
PROBE PDU to test for the availability of the partner ASP.

A CONNECT.Confirmation is the response of the sending MTP to a
CONNECT.Request.

SendPDU.Request/Confirmation (SPDU/SPCF)
A SendPDU.Request passes a PDU to a sending MTP for transfer to the
applicable partner.

A SendPDU.Confirmation is the response of the sending MTP to a
SendPDU.Request.

ProcessPDU.Indication/Response (PPDU/PPRS)
A ProcessPDU.Indication is issued by a receiving MTP to pass a PDU to
the message transfer service processor.

A ProcessPDU.Response is the response of the message transfer service
processor to a ProcessPDU.Indication.

DISCONNECT.Request/Confirmation (DCRQ/DCCF)
A DISCONNECT.Request is issued by the message transfer service
processor as response to the corresponding request from the ASP.

A DISCONNECT.Confirmation is the response of the sending MTP to a
DISCONNECT.Request.

DISCONNECT.Indication/Response (DCIN/DCRS)
A DISCONNECT.Indication is issued by a receiving MTP to indicate that it
will terminate the process.

A DISCONNECT.Response is the response of the message transfer service
processor to a DISCONNECT.Indication.

Chapter 4. Boundary Function Service Primitives 57

|
|
|
|

|
|

58 Advanced MERVA Link

Part 2. MERVA Link ESA Application Support

© Copyright IBM Corp. 1991, 2001 59

60 Advanced MERVA Link

Chapter 5. Application Support Concepts and Resources

MERVA Link Application Support is implemented in MERVA ESA application
programs. The sending Application Support Process is called by MERVA ESA via
its transaction code in the MERVA ESA function table. Once in control, a MERVA
Link ASP connects to MERVA ESA and requests services from MERVA ESA.

The interactions between MERVA Link and MERVA ESA follow the rules of
MERVA ESA macro interface programming, which are described in the MERVA for
ESA Macro Reference.

This chapter describes:
v The MERVA Link application control queue (ACQ).
v The Application Support (AS) status and the Message Transfer (MT) status of a

MERVA Link sending ASP. The AS status of an ASP is identified by an
alphabetic status identifier. The MT status of and ASP is identified by a numeric
status code. Both parts of the sending ASP status determine whether MERVA
Link should process outgoing messages, and if so, how.

v The MERVA Link message class concept. A message class is assigned to any
message processed by MERVA Link in various states of the message transfer
process to identify that state. This message class is important information for the
correct routing of a message.

v The MERVA Link Application Support control fields, which are used by MERVA
Link to control the message transfer process in MERVA Link programs, in MFS
user exits, and in routing tables.

MERVA Link Application Control Queue (ACQ)
Each MERVA Link ASP has its own application control queue (ACQ) for its
internal processing purposes. An ACQ cannot be shared among ASPs. Each ACQ:
v Contains an LC control message, if a sending ASP was once active. The LC

control message is used to record the status of a sending ASP, and to control the
message integrity of outgoing messages.

v Contains an LR control message, if any message was received by the receiving
ASP. The LR control message is used to control the message integrity of
incoming messages.

v Can contain one or more in-process (IP) messages when a sending ASP is
processing messages. IP messages can be in the ACQ of an inactive ASP if an
error was found in a sending process.

MERVA Link Sending ASP AS Status
The AS status of a MERVA Link sending ASP deals with the link of an ASP with
its message source, it can be one of:
v OPEN-NOHOLD
v OPEN-HOLD
v CLOSED-NOHOLD
v CLOSED-HOLD

The MERVA System Control Facility command:

© Copyright IBM Corp. 1991, 2001 61

|
|
|
|
|

|

v hold asp puts an ASP into a HOLD status. An ASP in a HOLD status cannot and
will not read any message from a queue of its send queue cluster.

v astart asp puts an ASP in a NOHOLD status. An ASP in a NOHOLD status can
read messages from a queue of its send queue cluster.

v aclose asp puts an ASP in a CLOSED status. An ASP in a CLOSED status will
route any message read from its send queue cluster to another queue (or other
queues) as specified by the routing table associated with its application control
queue. It will not (try to) transmit messages read from the send queue cluster to
its partner. An ASP can be changed from OPEN to CLOSED only if it is in a
HOLD status.

v aopen asp puts an ASP in an OPEN status. An ASP in an OPEN status can
attempt transmitting messages read from a queue of its send queue cluster to its
partner.

AS Status OPEN-NOHOLD
The AS status OPEN-NOHOLD is the initial and the normal AS status of an ASP.
An ASP in this status can transmit messages to its partner and it is able to read
messages from its send queue cluster. The MT status of the ASP, which is described
later in this chapter, determines, however, whether actual message transmission is
possible or not. The AS status OPEN-NOHOLD is a prerequisite for the successful
transfer of messages in the send queue cluster to the partner ASP.

An aopen command for an ASP in this status is not accepted. It would have no
effect. The effect of a START or a kickoff command for an ASP in this AS status
depends on the current MT status of the ASP. Refer to the description of the astart
and kickoff commands of the MERVA System Control Facility in the MERVA for
ESA Operations Guide.

A hold command for an ASP in this status has the following effect: The ASP is put
to HOLD status, the queues of the send queue cluster are set to HOLD, processing
of the messages in the current transmission window is finished, and message
transmission stops. Messages in the send queue cluster wait for transmission until
the ASP is started again using the command astart.

An aclose command for an ASP in this status is not accepted. To close the ASP, set
it to HOLD status before issuing the aclose command.

AS Status OPEN-HOLD
The AS status OPEN-HOLD is obtained from the initial AS status by issuing a
hold application command. An ASP in this status collects messages in its send
queue cluster. It does not transmit these messages.

An aopen command for an ASP in this status has no effect. The same applies for a
hold command.

An astart command for an ASP in this status has the following effect: The ASP is
put to NOHOLD status and the first queue of the send queue cluster is started.
This results in a start of the applicable ASP that resumes message transmission.

A kickoff command for an ASP in this status has the following effect: The ASP is
kept in HOLD status. It is started and resumes transmission of IP messages in the
application control queue. Messages in the send queue cluster are not transmitted.
If there are no IP messages in the application control queue, this kickoff command
has no effect.

62 Advanced MERVA Link

|
|

|
|

|
|
|
|
|
|

|
|
|

An aclose command for an ASP in this status puts it into CLOSED status.

AS Status CLOSED-NOHOLD
The AS status CLOSED-NOHOLD cannot be obtained directly from the initial
status. It can be obtained from the status OPEN-NOHOLD by issuing the
command sequence hold, aclose, and astart.

An ASP in this status routes messages in its send queue cluster (message class RS)
immediately to a queue or to queues specified by the routing table associated with
the application control queue. It does not transmit these messages to the partner
ASP.

An aclose command for an ASP in this status is not accepted. A kickoff or an
astart command for an ASP in this AS status starts the ASP for routing (not for
transmission) of the messages in the send queue cluster.

A hold command for an ASP in this status has the following effect: The ASP is put
to HOLD status, the queues of the send queue cluster are set to HOLD, and
message routing stops. Messages in the send queue cluster wait for routing until
the ASP is started again using the command astart.

An aopen command for an ASP in this status is not accepted. To open the ASP, set
it to HOLD status before entering the aopen command.

AS Status CLOSED-HOLD
The AS status CLOSED-HOLD is obtained from the initial status by issuing a hold
application and an aclose application command. An ASP in this status collects
messages in its send queue cluster. It does not route or transmit these messages.

An aclose command for an ASP in this status has no effect. The same applies for a
hold command.

An astart command for an ASP in this status has the following effect: The ASP is
put to NOHOLD status and the first queue of the send queue cluster is started.
This results in a start of the applicable ASP that resumes message routing to a
queue or to queues specified by the routing table associated with the application
control queue. Messages are not transmitted to the partner ASP.

A kickoff command for an ASP in this status starts the ASP but keeps it in HOLD
status.

An aopen command for an ASP in this status has the following effect: The ASP is
put to OPEN status, and messages in the send queue cluster are transmitted to the
partner ASP. This transmission starts as soon as the ASP is set to NOHOLD status
and the ASP is started by the astart command.

MERVA Link Sending ASP MT Status
The MT status of a MERVA Link sending ASP deals with actual message
processing (transmission or routing). The following ASP status codes are used to
describe the MT status:

00 The general meaning of this status code is confirmed or delivered. The

Chapter 5. Application Support Concepts and Resources 63

transfer of all messages processed so far has been confirmed by the partner
application. The message transfer is complete and the messages have been
locally routed as required.

04 The general meaning of this status code is accepted. The request to transfer
a message was accepted and no error was found in the local system when
processing this request. However, an explicit confirmation from the remote
system is outstanding. This is a normal status for all not-last messages in a
transmission window.

08 The general meaning of this status code is error detected in the local system.
This error possibly requires the intervention of the system administrator.

Examples for this status are situations where the link to the partner system
is not in service or where a local Message Integrity Protocol violation has
been detected.

09 The general meaning of this status code is error detected in the remote system.
This error most probably requires an intervention by the system
administrator in either the local or remote system, or in both systems.

A Message Integrity Protocol violation that is detected in the remote
system, for example, is reported in the local system by this code. Another
reason for this status code might be that MERVA ESA is not active in the
remote system.

12 The general meaning of this status code is severe error detected in the local
system. A MERVA Link customization error or an error in the local MERVA
Link system is reported by this status code.

13 The general meaning of this status code is severe error detected in the remote
system. A severe error in the remote MERVA Link system is reported by
this status code.

An ASP in the status 08, 09, 12, or 13 cannot transmit messages to its partner ASP.
It can be manually started via the MERVA System Control Facility commands
astart. It might be automatically started if the ASP monitor is active, or if
START=RETRY has been specified in the EKAPT ASP entry.

MERVA Link Message Class Concept
MERVA Link uses a concept of message classes to provide its AS services. The
class of a message is identified by the contents of the MERVA Link control field
EKACLASS in the MERVA ESA TOF, which consists of 2 alphabetic characters. The
field EKACLASS is located at nesting level 0 in the MERVA ESA TOF.

A message class is assigned by MERVA Link to any message that is processed by
MERVA Link. The class of a message can change as it is routed within a
MERVA ESA system. The class of MERVA Link internal control messages is,
however, not changed.

MERVA Link requires an application control queue (ACQ) to be defined for any
ASP. This queue can contain messages of three different classes (LC, LR, and IP).
MERVA Link accesses messages in an ACQ via KEY1. Any MERVA Link ACQ
must therefore be defined with the field EKACLASS as KEY1.

The following message classes are defined by and reserved for MERVA Link:

LC The class of the MERVA Link internal LC control message. A single LC

64 Advanced MERVA Link

|
|
|
|

control message is contained in the ACQ of any ASP that was once active.
It is generated automatically and updated by a MERVA Link ASP.

The main purpose of the LC control message is to hold the message
sequence number (MSN) of the application or acknowledgment message
that was confirmed last. Confirmed in this context means that the sending
MERVA Link system was informed of the successful delivery of the
message to the intended receiving application.

The LC control message holds, in addition, other ASP-specific control
information, the ASP status (AS and MT status), the MIP window size for
ASPs associated with an APPC-type MTP, and a short note explaining the
ASP’s MT status.

LR The class of the MERVA Link internal LR control message that is contained
in a MERVA Link ACQ. LR is also the class of any message received from
a partner system. Finally, LR is the class of any message sent and
correlated with an incoming acknowledgment message.

Messages of the class LR can therefore be contained in ACQs, ACK wait
queues, completed message queues, and in received message queues.

IP The class of a message in the process of transfer to the intended receiving
application. Message class IP is assigned to any message read from a send
queue before it is written to the applicable ACQ and deleted from the send
queue.

The number of IP messages in an ACQ is topped by the MIP window size,
which is specified in the LC control message. IP messages must remain in
that sequence in the ACQ in which they were written into this queue. The
correct sequence is checked as specified by the message sequence number
in the TOF field EKAAMSEQ of an IP control message.

CF The class of a confirmed message. When a sending MERVA Link system is
informed about the successful delivery of one or more messages to the
intended receiving application, it routes the delivered application messages
as messages of the class CF to an ACK wait queue or to a complete
message queue (if no acknowledgment is expected). Confirmed
acknowledgment messages must be discarded or routed to a confirmed
acknowledgment message queue.

CA The class of a confirmed and acknowledged message. An ASP can receive
an acknowledgment for a message that has not yet been confirmed. The
subject message is still in the ACQ as an IP message when the
acknowledgment message is received. In that case, the control information
in the acknowledgment message is added to the IP message in the ACQ,
and the IP message remains in the ACQ until it is confirmed.

When the sending MERVA Link system is informed about the successful
delivery of that message to the intended receiving application, it routes the
delivered and acknowledged message with the class CA to an ACK wait
queue or to a complete message queue (if the final acknowledgment has
already been received).

RC The class of an IP message copied from the ACQ of an inoperable or closed
ASP via the MERVA System Control Facility command recover. The
routing table associated with the ACQ must identify a recovered and
copied message by its class and take appropriate action.

Messages of the class RC always contain the Possible Duplicate Message
(PDM) indicator.

Chapter 5. Application Support Concepts and Resources 65

RI The class of an IP message that could not be successfully delivered to the
intended receiving application and was routed out of the transfer process
to continue transferring other messages. This routing was requested via the
MERVA Link Control command iprecov or performed, automatically, by
the MERVA Link Automatic IP Message Recovery Function.

The routing table associated with the ACQ must identify a recovered IP
message by its class and take appropriate action.

RM The class of an IP message that was immediately removed from the
outbound window upon request from an ASF. The message has not been
sent to the partner ASP. The routing table associated with the ACQ must
identify such a message by its class and take appropriate action.

RS The class of a message that is rerouted from the send queue of a closed
ASP. The routing table that is associated with the ACQ must identify a
rerouted message by its class and take appropriate action.

RR The class of a message that is rerouted from the send queue upon the
request of the MERVA Link sample ASP user exit. The routing table that is
associated with the ACQ must identify a rerouted message by that class
and take appropriate action.

The message class RR is to be considered as a MERVA Link sample. It is
not defined by and reserved for MERVA Link.

MERVA Link Application Support Control Fields
MERVA Link supports a number of control fields in MERVA ESA messages for
both outgoing and incoming messages. Message transfer control information can
be provided, for example, in MERVA Link control fields that are part of the
message in the TOF. MERVA Link control fields are added to any message
processed by MERVA Link. These fields contain message transfer parameters, for
example, the originator and the recipient address, the submit timestamp, and the
MERVA Link message identifier.

MERVA Link control fields are part of a MERVA ESA message on the MERVA ESA
queue data set and part of the message in the MERVA ESA TOF. These control
fields are part of a screen, printer, or network format of a message only if the
corresponding message format definition in a MERVA ESA MCB asks for these
fields. Messages formatted to SWIFT format do not contain any of the MERVA
Link control fields.

The MERVA Link control fields are written to the MERVA ESA TOF at nesting
level 0.

The main purpose of the MERVA Link control fields is to provide:
v A means to pass message transfer control information to MERVA Link
v Control information to be referenced by MERVA ESA routing tables
v Control information for message transfer control applications
v Control information for MERVA Link internal processing

The names of all MERVA Link control fields start with the MERVA Link
component identifier EKA as the field name prefix. A specific field is identified by
the five letters following the prefix, called the short field name. The short field
name, however, can be customized via a modification of the EKAPT macro (rather
than via customization parameters).

66 Advanced MERVA Link

||
|
|
|

The following description of the MERVA Link control fields uses the short field
names as they are provided by MERVA Link as defaults in the partner table
header.

The names of the MERVA Link control fields (excluding the prefix EKA), the
identifiers of the corresponding data elements (if applicable), and the names of
these control data items are contained in the following table:

Name DE ID Control Data Item Name

AMCID
MSGID
AMSID
AMSEQ
MIPID
IMSEQ

9200
9201
9202
9203
9204

ASL Message Identifier (Content ID)
MTL Message Identifier
IAM Message ID
MIP Message Sequence Number
MIP Message Identifier
MIP Message Sequence Number (inbound)

OAFFN
ONODE
OAPPL
MTPNM

A001
A101
A102

Originating Application Free Form Name
Originating MT Node Name
Originating Application Name
Internal Message Transfer Process Name

RAFFN
RNODE
RAPPL

A001
A101
A102

Receiving Application Free Form Name
Receiving MT Node Name
Receiving Application Name

NETID
AMBSL
AMSUB

9602
9608
9609

MERVA ESA Line (Net) Format Identifier
Buckslip
Message Subject

SUBDT
SUBRC
SUBDC

SUBMIT Timestamp
SUBMIT Return Code
SUBMIT Diagnostic Code

DELDT
DELRC
DELDC

9301
9501
9502

DELIVER Timestamp
DELIVER Return Code
DELIVER Diagnostic Code

RECDT
RECRC
RECDC
RDATA

9301
9501
9502
9503

RECEIPT Timestamp
RECEIPT Return Code
RECEIPT Diagnostic Code
RECEIPT Report Data

TARQD
TARSD
TAACK
TAMAC
TAPAC

9610
9611
9612
9613
9614

Application Defined Request Data
Application Defined Response Data
Application Defined Acknowledgment Data
Application Defined MAC Data
Application Defined PAC Data

ACKRQ
PRIOR
PDUPM

B001
B002
C001

Request for ACK (Receipt Confirmation)
Message Priority
PDM Indicator

CLASS
AWQSN
WSIZE
ACQNM

9604

MERVA Link Message Class
ACK Wait Queue QSN
MIP Window Size
Name of the applicable ACQ

The three fields (CLASS, AWQSN, and WSIZE) are for MERVA Link internal
purposes. They are used, for example, to control the integrity of the message
transfer according to the rules of the Message Integrity Protocol. The field ACQNM
is provided to be used by a routing table to route a message to the applicable
MERVA Link ACQ.

Chapter 5. Application Support Concepts and Resources 67

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

68 Advanced MERVA Link

Chapter 6. Application Support Functions

This chapter discusses the logic how MERVA Link retrieves a message from the
applicable send queue cluster, how it determines whether the retrieved message is
an outgoing message or a status report (acknowledgment message), and how either
of these messages is processed.

Other items discussed in this chapter are the correlation of acknowledgment
messages with the reported message and the handling of delivery errors.

Sending Messages
A message is passed to MERVA Link by routing it to a MERVA ESA queue that is
a member of a MERVA Link send queue cluster. The MERVA Link ASP gets the
messages from the send queue cluster as specified by the priority of the queues in
this cluster (specified sequence of the queues in the cluster definition in the partner
table).

A message in a MERVA Link send queue can be an application message or a status
report (acknowledgment message). An application message is sent to the intended
partner application via an IM-ASPDU, whereas an acknowledgment message is
sent via an SR-ASPDU. This is why the MERVA Link ASP needs to know whether
the retrieved message is an application message or an acknowledgment message.

The MERVA Link ASL Interface defines that an outgoing message that contains the
control field EKARECRC with a valid receipt return code is an acknowledgment
message. All other messages are treated as application messages.

Acknowledgment Control Information
The information in an SR-ASPDU that is related to the ACK is contained in the
receipt-report data element (ID=1500). The receipt-report data element contains up
to four types of lower-level data elements, the:
v Receipt Timestamp
v Receipt return code
v Receipt diagnostic code (optional)
v Receipt report data (optional)

The receipt-report-data data element can be contained in the receipt-report data
element more than once.

Inserting Acknowledgment Information in Outgoing Messages
A new application or a modified existing application can add receipt control
information to an acknowledgment message before it is routed to a MERVA Link
send queue. However, it might not be possible to modify existing applications for
providing this control data. A MERVA ESA MFS user exit enables MERVA Link to
add MERVA Link receipt control information to an acknowledgment message.

The number of a MERVA ESA MFS user exit is associated with an ASP in the
partner table. This user exit is called when an outgoing message has been retrieved
from the send queue and has been formatted to the MERVA ESA TOF format.

© Copyright IBM Corp. 1991, 2001 69

This user exit checks whether a message is an application message or an
acknowledgment message. In case of an acknowledgment it adds MERVA Link
receipt control information to the message in the MERVA ESA TOF. A sample MFS
user exit is provided by MERVA Link.

The MERVA Link Application Support Processor finds and processes the receipt
control information.

Receiving Application Messages
A message is passed to a MERVA ESA application by routing it to one or several
MERVA ESA queues as specified by a MERVA ESA routing table. One of the
twelve possible destination queues is reserved for MERVA Link MIP processing. A
received message must always be routed to the applicable MERVA Link ACQ.

The MERVA ESA application can return an acknowledgment to the originator of
that message, based on that incoming message. This acknowledgment message is
sent to the partner application in the same way as an application message.

An incoming application message can be handled by a MERVA ESA MFS user exit
before it is routed to the destination queues. The applicability of an MFS user exit
is specified in the partner table ASP entry.

Receiving Acknowledgment Messages
A MERVA Link Acknowledgment Message (ACK) is a message containing a valid
receipt return code in the field EKARECRC. It is constructed from information in
an SR-ASPDU. An acknowledgment message is either merged with the applicable
reported message and routed as appropriate, or it is immediately routed as
appropriate. The format of the message in the latter case is that of the MERVA
Link control message MCTL. This message type is specified by the EKAMCTL
Message Control Block.

The logic how an incoming acknowledgment message is merged with the
applicable reported message is described in the following sections.

Merging an ACK with the Original Message
An acknowledgment message is sent by an application, which has received an
application message from its partner, back to this partner in an SR-ASPDU. The
application message originating ASP receives the acknowledgment message and
correlates this ACK with the reported application message. Correlation means to
find the applicable reported message in the MERVA Link ACK wait queue or in
the MERVA Link control queue, to add the receipt report data to this message, and
to route the acknowledged message as appropriate.

Correlation Data
The MERVA Link IAM message ID serves for correlation of an acknowledgment
message with the applicable reported message. The MERVA Link IAM message ID
can be contained in a MERVA Link control field provided by an application. If an
application provides an IAM message ID, it is used by MERVA Link for the
correlation of an ACK with its reported application message. Otherwise, MERVA
Link generates an IAM message ID for that purpose.

70 Advanced MERVA Link

Application Message in the ACK Wait Queue
An application message has been routed to the applicable ACK wait queue when
the transfer of the message to the recipient application was confirmed. The ACK
wait queue has been defined in the MERVA ESA Function Table with the IAM
message ID control field as key. A MERVA Link Application Support Program can
therefore retrieve a specific message from the ACK wait queue based on the IAM
message ID.

ACK Correlation Process
The ACK correlation process is initiated when a receiving ASP gets a receipt report
(SR-ASPDU). After checking message integrity, it extracts all applicable report
information. One item of this information is the correlation data (IAM message ID).

The reported application message is retrieved from the ACK wait queue using the
correlation data. When this message has been found in the ACK wait queue,
receipt-report information is added to that message, and the modified message is
routed as appropriate.

ACK Correlation Failure
The reported message might not have been found in the ACK wait queue when a
status report was processed that should have been correlated with the reported
message. This can occur for the following reasons:
v More than one final ACK sent by the recipient of the reported message
v A MERVA Link customization error
v An error in a routing table involved in MERVA Link processing
v A delivery report processing error at the sending or receiving side
v A race condition where the status report is processed at the originally sending

side before the delivery confirmation of the reported message has been
completely processed

To handle the race condition between the delivery confirmation and the status
report, MERVA Link waits for the sending ASP to complete the current window,
then tries again to find the reported message in the ACK wait queue. If the
reported message is found during this attempt, it is processed as described above.

If the reported message is, again, not found in the ACK wait queue, MERVA Link
tries to find the reported message as IP message in the application control queue
(ACQ). If the reported message is found in the ACQ:
v The acknowledgment control information is saved in the IP message, the receipt

return code 00, 04, or 08 is masked to 01, 05, or 09, respectively, and the updated
IP message is replaced in the ACQ.

v A general control message (type MCTL) with message class LR is generated
from information in the received acknowledgment message, and is routed to the
ACQ as the new LR control message replacing the old LR control message.

If the reported message is not found, a general control message (type MCTL) with
message class LR is generated from information in the received acknowledgment
message and routed as appropriate for an inbound message.

MIP Considerations during ACK Processing
The MERVA Link MIP requires that a MERVA Link ASP incoming message is
routed as the new last received (LR) control message to the application control

Chapter 6. Application Support Functions 71

|
|
|
|
|
|

|
|
|

|
|
|

|
|

queue (ACQ), and to the applicable destination queues (maximum eleven queues).
At the same time, this means that, with the same MERVA ESA queue management
request, the old LR control message must be deleted from the ACQ.

ACK processing, however, requires that the acknowledged message, not the
incoming message (which is also the acknowledgment message), be routed.
MERVA ESA does not support a service request that handles all four activities
required by concurrent MIP and ACK processing at once.

This problem is solved by an extension of MIP processing, and a second step when
processing an ACK as follows:

When the receipt report information has been added to the reported message, the
following MIP-related information is added to this message in MERVA Link control
fields:
v Message Class LR
v MIP MSN of the ACK
v MERVA ESA queue sequence number of the acknowledged message in the ACK

wait queue

A single MERVA ESA Queue Management request routes the acknowledged
message to the ACQ and to the applicable destination queues, and deletes the old
LR control message from the ACQ. Another MERVA ESA Queue Management
request deletes the acknowledged message from the ACK wait queue if the
reported message was found in that queue.

To recover from a possible system failure between the latter two steps, MIP
processing for a received message is extended as follows.

When the LR control message has been retrieved from the ACQ, the message
identified by the queue sequence number contained in the MERVA Link control
field EKAAWQSN (ACK wait-queue sequence number) is deleted from the ACK
wait queue. In most cases, that is, when the subject failure did not happen, no
message is deleted from the ACK wait queue. When the last received message was
no ACK, the control field EKAAWQSN will not contain a valid MERVA ESA
queue sequence number and deletion of a message will not be requested.

Automatically Starting an Inoperable ASP
When a MERVA system comes up in the morning and an ASP starts sending
messages to its partner, the ASP becomes inoperable if the partner system is not
yet active. Two functions are provided to recover the sending ASP from that
inoperable status.

When the partner system comes up and sends a message (PROBE or a real
message), the receiving ASP (associated with the inoperable sending ASP) can kick
off the sending ASP. When another message is routed to a send queue of an
inoperable ASP, the ASP can retry to start the sending process despite its
inoperable status.

Sending an ASP Kickoff from a Receiving ASP
An inoperable (sending) ASP with AS status OPEN/NOHOLD and MT status 08
or higher is automatically started at the end of a receiving ASP task (immediately
before the receiving ASP disconnects from MERVA ESA). Hours and minutes of

72 Advanced MERVA Link

|
|
|

the current time must be different from the status time in the LC control message
to avoid multiple starts within a short time frame.

A remote inoperable ASP can be manually kicked off if the ASPs are connected
through APPC-type MTPs. A kickoff command for such an ASP causes a PROBE
to be sent to the remote partner ASP, which might be inoperable. If the partner
ASP is indeed inoperable, it is kicked off by the receiving ASP in the remote
system when the PROBE has been successfully processed.

For more information about the kickoff command, refer to the MERVA System
Control Facility in the MERVA for ESA Operations Guide.

Retry to Start an Inoperable Sending ASP
An ASP customization option in the partner table (START=RETRY) asks an
inoperable ASP to retry the transmission of the messages in its send queue cluster
when another message has been routed to one of its send queues. This request for
automatic retry is honored only if hours and minutes of the current time are
different from the status time in the LC control message to avoid multiple starts
within a short time frame.

ASP Monitor
An ASP monitor is supported in the MERVA ESA CICS environment. It can
automatically start an inoperable ASP without an external event.

The ASP monitor is a MERVA Link program that periodically scans the partner
table for inoperable ASPs, and provides the same functionality as a kickoff
command for all eligible ASPs. For more information about the MERVA Link CICS
ASP monitor, refer to “Chapter 7. The MERVA Link CICS ASP Monitor” on
page 77.

Handling Message Delivery Errors
When a message is sent to a receiving ASP in net format it is formatted to TOF
format. This formatting process can fail or return a warning.

An MFS user exit is called before an incoming message is routed to the destination
queue(s). It indicates whether the message is correct or not correct.

Message delivery error handling applies if the formatting process or the MFS user
exit detect any problem (warning or error).

Two functions are provided to handle a message delivery error. The first function
allows a receiving ASP to accept a message despite a warning. The second function
allows a sending ASP to recover automatically from an IP-message that cannot be
successfully delivered to its partner receiving ASP. This function is also provided
as an operator command through the MERVA System Control Facility (MSC).

Accept an Inbound Message Despite a Warning
A parameter of the ASP definition in the MERVA Link partner table tells whether
an inbound message that could not be formatted from net format to TOF format
(or queue format to TOF format) without a warning must be accepted by MERVA
Link and be passed to the receiving application. The same applies for a warning
returned by the user exit.

Chapter 6. Application Support Functions 73

The warning codes of a formatting error (MFS return code 04 and the MFS reason
code) are recorded by MERVA Link in the delivery report fields EKADELRC and
EKADELDC. The delivery return code (field EKADELRC) contains 04, and the
delivery diagnostic code (field EKADELDC) contains the 4-byte character
representation of the hexadecimal MFS reason code (padded with two blanks to fill
the 6-byte diagnostic code field).

The user exit and the routing table can react upon these delivery error codes. As its
reaction, the user exit can, for example, modify the delivery report fields
EKADELRC and EKADELDC. And a routing table can route a message, which was
accepted despite a warning, to a manually processed error queue.

A message that is accepted by a receiving ASP is reported to the sending ASP as
having been “delivered without error”.

Recovering from Delivery Errors
When a receiving ASP detects a delivery error, it notifies the sending ASP, and in
the notification identifies the corresponding IP-message. A delivery error reported
by a receiving ASP causes the sending ASP to be set inoperable. This event is
reported to the console operator via message EKA701E. Recovering from this
situation entails doing the following:
v Changing the class of the message from IP to RI (an abbreviation of ″recovered

IP message″), to indicate that it could not be delivered, and routing the message
as specified by the routing table associated with the ACQ

v Setting the ASP status to operable with status code 00 and diagnostic code
AIPRCV (an abbreviation of ″automatic IP message recovery successful″)

v Resequencing the message numbers (MSNs) of any subsequent messages in the
ACQ so that there are no gaps between MSNs

v Resuming transmission with the next message

Due to the resequencing of MSNs, several non-delivery notifications might refer to
the same MSN, namely when several attempts to transmit messages fail one right
after the other. Do not be confused by this. When the MIP window size is not 1,
you can see on the Display Specific ASP/MTP (AC02) screen that the number of IP
messages in the ACQ is changing.

A parameter of the ASP definition in the MERVA Link partner table determines
whether the sending ASP tries to recover from non-delivery situations
automatically, or waits for someone to address this situation manually.

Automatic Recovery
If automatic recovery was specified for a sending ASP, the steps listed above are
carried out automatically. In addition, during automatic recovery, the LC MSNs in
the LC control messages of messages that were successfully delivered are updated
accordingly. This prevents the retransmission of any already delivered messages
when message transmission is resumed. Because an ASP transfers all messages
sequentially, and because the MSN of a message that could not be delivered is
reused for the next message, a non-delivery notification for a specific IP-message
implies that all preceding messages (that is, all messages with lower MSNs) were
delivered successfully.

If the non-delivery notification does not adequately identify the affected
IP-message, or if the reported message cannot be found in the ACQ, or if there is

74 Advanced MERVA Link

an error during the automatic recovery process, then the process terminates, and
the original SUBMIT/DELIVERY error is reported as if automatic recovery were
not requested.

After automatic ASP recovery is performed and is successful, the ASP is operable
again, and the console operator is informed via message EKA703I that no action is
required to address the message EKA701E that was issued when the ASP was set
inoperable.

Manual Recovery
If automatic recovery was not specified for a sending ASP, the recovery steps listed
previously must be carried out manually. To do this, on the Display Specific
ASP/MTP (AC02) screen enter the MERVA System Control Facility (MSC)
command iprecov msn, where msn is the message number of the undelivered IP
message.

The iprecov command is accepted only if it is specified in the AC02 screen. This
ensures that the applicable ASP and the ACQ that contains the subject IP message
are clearly identified. This screen also shows the LC MSG note that contains the
MSN of the IP-message that was not delivered. This MSN must be specified as
parameter of the iprecov command.

The iprecov command is accepted only for an inoperable ASP. It includes the
functionality of a kickoff command, which is described briefly in “Sending an ASP
Kickoff from a Receiving ASP” on page 72, and in more detail in the MERVA
System Control Facility in the MERVA for ESA Operations Guide.

Unlike during automatic ASP recovery, the iprecov command does not update the
LC MSN , and so some already delivered messages might be retransmitted. This
retransmission, however, does not mean that the message is accepted by the
receiving application a second time: the MIP at the receiving side recognizes if a
message has already been sent, and discards such messages.

A consequence of manual recovery is that the delivery return and diagnostic codes
are not available. To give an indication of the manual IP message recovery in the
recovered message, the delivery return and diagnostic codes are set to 08 and IP
RCV, respectively. The delivery return code 08 indicates that the diagnostic code IP
RCV has been provided by the local system rather than by the partner system.

Recovering from a Recovery Process Interrupt
Because the MSNs of IP messages in an ACQ must be an ascending sequence
without gaps, when an IP message is routed out of the ACQ during automatic or
manual recovery, the subsequent IP messages are assigned new message sequence
numbers (MSNs). If the process of assigning new MSNs is interrupted (for
example, if MERVA is terminated during this process), a gap remains in the
sequence of MSNs. When the MERVA Link sending task is started again, it reports
the gap as a local MIP violation. To recover from such a violation:
1. Make sure the ASP is inoperable.
2. On the Display Specific ASP/MTP (AC02) panel, issue the command iprecov *.

Immediate Recovery
An application support filter can check an outbound message and, if the message
is not to be sent to the partner ASP, arrange for it to be instead rerouted as

Chapter 6. Application Support Functions 75

|

|
|

specified in the routing table associated with the ACQ. The ASP continues sending
messages without an error indication. The class of this message when it is passed
to the routing table is set to RM.

76 Advanced MERVA Link

|
|
|

Chapter 7. The MERVA Link CICS ASP Monitor

An ASP monitor is provided in the MERVA Link CICS environment. Once started,
this program checks all ASPs defined in the MERVA Link partner table (PT)
periodically for inoperable ASPs. It issues a kickoff command for every inoperable
ASP that meets a number of additional criteria. The ASP monitor is not supported
in the MERVA Link IMS environment.

Operating the ASP Monitor
The ASP monitor can be started automatically by the first executing entity of any
sending or receiving ASP. As an alternative, it can be started and stopped manually
by means of the MSC set and reset commands, or by the explicit call of the ASP
monitor transaction EKAM.

The ASP monitor restart time-interval can be set from one minute to 59 minutes
when the ASP monitor is started, and can be manually reset to any value from 01
to 59 at any time. All manual modifications of the restart time interval are
applicable until a new PT is loaded from the module library. At the begin of a
CICS job, the ASP monitor parameters defined in the PT are applicable.

Automatic ASP Monitor Start
The permanent characteristics of the ASP monitor can be defined in the MERVA
Link partner table. The transaction identifier of the ASP monitor task and the ASP
monitor task restart time interval can be specified in the MONITOR parameter of
the EKAPT TYPE=INITIAL macro instruction.

When a valid transaction code (for example, EKAM) and a restart time interval
different from 00 are specified in the MONITOR parameter of the
EKAPT TYPE=INITIAL macro instruction, the ASP monitor is automatically
started by the first sending or receiving ASP task in a CICS job. All further
modifications of the ASP monitor task (for example, stop, restart, reset time
interval) must be performed manually, if required.

ASP Monitor Handling within MSC
The MERVA System Control Facility provides a set of commands to modify the
ASP monitor parameters. It provides also a means to monitor the execution of the
ASP monitor.

MSC Commands for the ASP Monitor
When a valid transaction code and a restart time interval of 00 are specified in the
PT, the ASP monitor is not automatically started. It can be, however, started and
stopped by means of the MSC set and reset commands.

SET AM
The MSC command set am starts the ASP monitor if the ASP monitor
transaction identifier and a restart time interval different from 00 are
contained in the PT. The ASP monitor must, however, not be stopped
before via EKAM STOP (see “Direct ASP Monitor Transaction Call” on
page 78).

© Copyright IBM Corp. 1991, 2001 77

SET AM00
The MSC command set am00 sets the restart time interval to zero. The
effect is that the ASP monitor task is not restarted after its next instance.

SET AM01 .. AM59
The MSC commands set am01 to set am59 set the restart time interval to
the number of minutes specified in the SET command parameter (01 to 59).
The effect is that the ASP monitor task is started when the specified time
interval has elapsed. If another instance of the ASP monitor task is
scheduled within that time interval, it terminates without processing. This
means, the new restart time interval becomes immediately active.

A SET AMnn command with nn outside the range 00 to 59 is processed
like the SET AM command.

RESET AM
The MSC command reset am sets the restart time interval to zero. It has
the same effect as the SET AM00 command.

Monitoring the ASP Monitor
A number of ASP monitor parameters and ASP monitor activity information are
contained in the PT header. This information can be displayed via the MSC
command dpth (for display partner table header).

For more information about this display refer to the description of the MSC screen
AC04.

Direct ASP Monitor Transaction Call
When no ASP monitor support is generated in the PT (this means, the MONITOR
parameter of the EKAPT TYPE=INITIAL macro instruction is not specified), the
ASP monitor is not automatically started. It can be, however, started and stopped
by means of a direct call of the ASP monitor transaction (for example, EKAM).

EKAM START
The direct call of the ASP monitor transaction with parameter START starts
the ASP monitor immediately and sets the restart time interval to five
minutes. The ASP monitor transaction identifier in the PT is set to the
transaction identifier entered as part of this direct transaction call (EKAM,
in our example). The ASP monitor parameters in the PT are ignored by this
task start request.

This ASP monitor task start request is also applicable when no ASP
monitor parameters have been specified when the PT was generated, and
when the ASP monitor was stopped via EKAM STOP.

EKAM STOP
The direct call of the ASP monitor transaction with parameter STOP stops
the ASP monitor immediately. Any pending ASP monitor restart request
results in an empty ASP monitor task.

The only means to restart the ASP monitor after EKAM STOP is the EKAM
START direct transaction call (or a new PT in this CICS or in a new CICS
job).

EKAM
The direct ASP monitor transaction call without a parameter starts the ASP
monitor if the ASP monitor transaction identifier and a restart time interval
different from 00 are contained in the PT. It corresponds to the MSC
command set am.

78 Advanced MERVA Link

EKAM 00
The direct ASP monitor transaction call with parameter 00 sets the restart
time interval to zero. The effect is that the ASP monitor task is not
restarted after its next instance. This corresponds to the MSC command
set am00.

EKAM 01 .. 59
The direct ASP monitor transaction call with parameters 01 to 59 sets the
restart time interval to the specified number of minutes (01 to 59). This
corresponds to the MSC commands set am01 .. set am59.

ASP Monitor Functions
The ASP monitor follows a number of rules to evaluate whether an ASP must be
started (kicked off).

ASP Kickoff Criteria
A number of criteria must be met before the ASP monitor issues a KICKOFF
command for an ASP. As a matter of fact, it is actually a MERVA SF (start function)
command for the first send queue of an ASP.

Automatic ASP Start Requested
The ASP monitor checks whether operator start is requested for this ASP
(START=OPERATOR specified in the PT ASP entry). It disregards any ASP that is
reserved for operator start.

Sending ASP Not Active
The ASP monitor checks whether an instance of the sending ASP task is currently
active. It disregards an ASP if it finds any evidence that it is active.

ASP Not Closed or On Hold
The ASP monitor checks whether the ASP is open for message transmission and in
no-hold status. It disregards an ASP if its status identifier in the LC control
message is not ON (open, no-hold). An ASP without an LC control message in its
ACQ is also disregarded. No error is reported in this case.

ASP Permanently Inoperable
The ASP monitor checks whether the ASP is inoperable. It disregards an ASP if its
status code in the LC control message is smaller than 08.

ASP not Recently Active
The ASP monitor checks whether the ASP was active within the current minute. It
disregards an ASP if its status timestamp in the LC control message
(yymmddhhmm) is the same as the current timestamp. The seconds of the
timestamp are ignored.

Restart Time Interval Considerations
A number of considerations apply when selecting the ASP monitor restart time
interval. The minimum restart time interval of one minute means that the ASP
monitor task is started once every minute. The additional load on the MERVA
system by the ASP monitor itself can be ignored. It is very low, also if you have a
large number of ASPs defined in the partner table.

The additional load on the local MERVA system by the sending ASP tasks started
by the ASP monitor, and the possible additional load on the data communication
network and on the partner MERVA systems must, however, be carefully
considered. This additional load, and the fact that each ASP that remains

Chapter 7. The MERVA Link CICS ASP Monitor 79

|
|

inoperable writes the EKA701E operator message to the MVS (TM) console and the
MERVA journal, suggest that the ASP monitor restart time interval should not be
too small.

The maximum restart time interval of 59 minutes means that the ASP monitor task
is started once about every hour. The additional load on the local MERVA system
by the sending ASP tasks started by the ASP monitor, and the possible additional
load on the network and the partner MERVA systems is at its minimum. The fact
that messages ready for transmission possibly wait longer for transmission than
necessary, suggests that the ASP monitor restart time interval should not be too
big.

The optimum ASP monitor restart time interval depends on the characteristics of
your environment. A restart time interval of five to ten minutes might be
acceptable in the majority of the production environments. In a test environment,
however, one minute is possibly the best choice.

80 Advanced MERVA Link

Chapter 8. Support of MERVA ESA Facilities in MERVA Link

This chapter discusses the support of various MERVA ESA facilities by MERVA
Link. These facilities are the MFS user exit, the routing table, the message trace,
and the journal.

MERVA ESA MFS User Exit Support
A MERVA ESA MFS user exit can be associated with a MERVA Link ASP. This
user exit is called by MERVA Link at six (logical) places for different purposes.
These places and purposes are described in the following.

The rules how to write a MERVA ESA MFS user exit for use with MERVA Link is
described in the MERVA for ESA Customization Guide

The rules how to write a MERVA ESA MFS user exit for use with MERVA Link is
described in the MERVA for ESA Customization Guide. This description is based on
the MERVA Link Sample MFS user exit EKAMU010.

A MERVA ESA MFS user exit for use with MERVA Link can access, modify, and
write new MERVA Link control fields in the MERVA ESA TOF. These control fields
are at nesting level 0. The user exit can handle TOF fields associated with other
applications in the same way.

Ready-to-Send Messages
The MFS user exit is called by the sending ASP with function code S, for
ready-to-send messages, before the message is moved from the send queue to the
MERVA Link application control queue (ACQ).

The user exit tells MERVA Link to transmit the message, or to route the message
immediately as specified by the routing table associated with the ACQ.

The MFS user exit must return a new message class in the first 2 bytes of the MFS
user exit output data buffer (see parameter OUTBUF of the DSLMFS TYPE=USER
macro) to request immediate routing out of MERVA Link. In response to this
request, MERVA Link saves the specified message class in the MERVA Link control
field EKACLASS in the message, and routes the message as specified by the
routing table associated with the ACQ. This routing table can refer to the specified
message class.

If the MFS user exit returns an empty MFS user exit output data buffer, MERVA
Link will start the message transmission process.

The MFS user exit support at this place provides a means to close an ASP
temporarily for a single message. For more information about a closed ASP refer to
“MERVA Link Sending ASP AS Status” on page 61.

Outgoing Messages
The MFS user exit is called by the sending ASP with function code O, for outgoing
messages, before the P2 PDU is constructed, which conveys the message to the

© Copyright IBM Corp. 1991, 2001 81

partner. The PDU that will be constructed (an IM-ASPDU or an SR-ASPDU)
depends on the nature of that message (an application message or an
acknowledgment message).

It is the task of the user exit to tell MERVA Link whether the message is an
application message or an acknowledgment message via data in the MERVA Link
control field EKARECRC (receipt return code). A message containing 00, 04, or 08
in the field EKARECRC is processed as an acknowledgment message by MERVA
Link. All other messages are processed as application messages.

When the MFS user exit is called with function code O, the message can contain
01, 05, or 09 in the field EKARECRC. This means that the message has been
acknowledged before it was confirmed, and it must be retransmitted as application
message to resynchronize the MERVA Link MIP. In this case, the user exit must not
modify those fields in the message that are related to the acknowledgment. These
fields are EKARECDT, EKARECRC, EKARECDC, and EKARDATA.

Depending on the originating MERVA ESA application, the correct
acknowledgment control information can already be contained in an
acknowledgment message passed to MERVA Link. The user exit might not have to
do anything in this case (or even not be applicable).

Confirmed Messages
The MFS user exit is called by the sending ASP (APPC protocol) or by the
receiving ASP (ISC protocol) with function code C, for confirmed (delivered)
message, before the message is routed to the ACK wait queue or to a queue
containing delivered messages.

When the transfer of an outgoing message has been confirmed or a delivery report
has been received for that message, the user exit can identify this message as
delivered to the recipient application in application specific terms. Both,
application messages and acknowledgment messages can be controlled and
modified by a user exit at this place.

The class of a message at this place is CF or CA. A message with class CA is a
confirmed application message that contains already acknowledgment control
information, this means, a valid receipt return code in EKARECRC. A valid receipt
return code (00, 04, or 08) in a message of the class CF indicates an
acknowledgment message. If it does not contain a valid receipt return code, the
confirmed message with class CF is an application message.

Incoming Application Messages
The MFS user exit is called by the receiving ASP with function code I, for incoming
application messages, before the message is routed to the destination queues.

It is the task of the user exit to check the message and to provide information that
is used by the MERVA ESA routing table to route that message to the appropriate
destination queues. If sufficient information is already contained in the message,
the user exit might not have to do anything here.

Incoming Acknowledgment Messages
The MFS user exit is called by the receiving ASP with function code R, for
incoming report (acknowledgment message), before an acknowledgment message

82 Advanced MERVA Link

or an acknowledged message (original message merged with acknowledgment
message) is routed to the destination queues.

It is the task of the user exit to check the message and to provide acknowledgment
information as appropriate for the destination application. If appropriate
information is already contained in the message, the user exit might not have to do
anything at this point.

When the MFS user exit is called with function code R, the message can contain
01, 05, or 09 in the field EKARECRC and message class IP in the field EKACLASS.
This indicates a message that has been acknowledged before it was confirmed, and
is still “in process”. The user exit must know that this IP message will be rerouted
to the ACQ. It must not change the masked receipt return code in the field
EKARECRC.

The masked receipt return code is unmasked to 00, 04, or 08 when the transfer of
the message is confirmed. The message is then routed with class CA to the
appropriate next queue (ACK wait queue or completed message queue depending
on the receipt return code).

Recovered Messages
The MFS user exit is called by the ASP or by the MERVA System Control Facility
with function code V when a message is recovered or routed out of MERVA Link
because of a temporarily or permanently closed ASP. It is called before the message
is journaled, and routed as specified by the routing table associated with the ACQ.

The class of a message at this logical place is one of the following:

RC Is the class of a message that has been recovered from an inoperable ASP
via the recover command.

RI Is the class of a message that has been manually recovered from a delivery
error via the iprecov command, or automatically by the ASP.

RM Is the class of a message that has been immediately recovered from an
outbound window upon request of an ASF.

RS Is the class of a message that has been routed out of MERVA Link because
of a permanently closed ASP.

any Other message class can have been set by the user exit when it was called
to check a message that is “ready to send”. By setting the message class to
any value other than blanks, the user exit closes the ASP temporarily for
this message.

A user exit called with function V can, for example, add a SWIFT PDE trailer to a
message that carries a MERVA Link PDM indicator. The MERVA Link PDM
indicator is added to a message when it is recovered from an inoperable ASP using
the RECOVER command, and, for example, subsequently routed to the SWIFT
ready queue.

Note: The message type is not passed to the user exit as an input parameter when
it is called with function V. The message type can be contained in a TOF
field.

Chapter 8. Support of MERVA ESA Facilities in MERVA Link 83

||
|

MERVA ESA Routing Table Support
MERVA Link requests routing of a message as specified by a routing table
associated with a MERVA ESA queue at six places. These places and the purpose
of the destination queue(s) is described in the following.

A detailed description how to code a MERVA ESA routing table for the use with
MERVA Link is described in the MERVA for ESA Customization Guide based on the
MERVA Link sample routing tables EKARTS and EKARTS1I.

Route Ready-to-Send Messages to Another Send Queue
MERVA Link provides four facilities to route a message to a send queue of another
transmission medium. This is useful if a message cannot be transmitted in time by
MERVA Link or if it should not be transmitted by MERVA Link because of any
other reason. These four facilities are:
v Processing of the messages in the send queue of a permanently closed ASP
v Message rerouting requested by the MFS user exit when it was called before

MERVA Link message transmission processing started for a message in a send
queue (temporarily closed ASP)

v In-process message recovery requested by the MERVA Link system administrator
via the recover command for a permanently closed ASP

v Undeliverable message recovery requested by the MERVA Link system
administrator via the iprecov command, or automatically performed by the
MERVA Link sending ASP

The message class is:

RS For messages rerouted from a send queue of a permanently closed ASP

RC For in-process messages rerouted via the recover command from the ACQ
of a permanently closed ASP

RI For undeliverable messages recovered via the iprecov command from the
ACQ of an inoperable ASP

A user-exit routine can determine whether a message is to be rerouted and, if so,
set the message class so that the routing module will reroute it. Do not use the
message classes LC, LR, IP, CF, CA, RC, RI, RM, or RS in a user exit routine for a
rerouted message, as these are reserved for use by MERVA.

A rerouted message can be either an application message or an acknowledgment
message. An acknowledgment message is not necessarily indicated by a valid
receipt return code in the MERVA Link control field EKARECRC.

Route Confirmed Outgoing Messages
When the transfer of a message has been confirmed by the receiving ASP, it must
be routed from the ACQ to an ACK wait queue (if an acknowledgment is expected
for this message) or to a Transfer Process Finished queue (if no acknowledgment is
expected).

The MERVA Link class of a confirmed message is CF for both an application
message and an acknowledgment message. An acknowledgment message,
however, must not be acknowledged by the receiver. Therefore, it must not be
routed to an ACK wait queue. It can be routed, for example, to a MERVA ESA
dummy queue in order to discard it.

84 Advanced MERVA Link

|
|
|
|

The MERVA Link class of a confirmed message that already contains
acknowledgment control information is CA. Dependent on the receipt return code,
this message must be routed to the ACK wait queue (if more acknowledgment is
expected) or to a Transfer Process Finished queue (if no more acknowledgment is
expected).

Route Incoming Acknowledgment or Acknowledged Messages
When a receipt report has been correlated with the reported message and their
information has been merged to an acknowledged message, or when an
acknowledgment message has been generated from information in the receipt
report, that message must be routed to the ACK wait queue (if another
acknowledgment is expected for this message) or to a Transfer Process Finished
queue (if the final acknowledgment has been obtained for that message).

The MERVA Link class of an acknowledgment message or an acknowledged
message is LR. It must be routed to the applicable ACQ in addition to the
destination queue(s). The ACQ name contained in the field EKAACQNM can be
used by the routing table to route the received message to the ACQ as required.

Route Incoming Application Messages
An incoming application message can be routed to one or more incoming message
queues. The maximum number of target queues supported by MERVA ESA in a
message routing request is twelve. As MERVA Link asks for the ACQ to be one of
these twelve target queues, the maximum number of target queues available for
the receiving application is eleven.

The MERVA Link class of an incoming message is LR. It must be routed to the
applicable ACQ in addition to the incoming message queue(s). The ACQ name
contained in the field EKAACQNM of any incoming message can be used by the
routing table to route the received message to the ACQ as required.

MERVA ESA Message Trace Support
MERVA Link adds entries to the MERVA ESA message trace to document MERVA
Link processing in the message. There are eight places in MERVA Link programs
where a message trace is written. All places where a message trace is written and
the message trace data applicable at this place are described in the following.

Move Message from the Send Queue to the ACQ
MERVA Link starts message processing at the sending side by moving the highest
priority message from the send queue cluster to the applicable ACQ.

This process is traced with the sending application support program name
EKAAS10 as the user name, and the name of the applicable send queue as function
name.

Route Confirmed Message (Synchronous Confirmation)
When the transfer of a message has been confirmed by the receiving system, the
message is routed as specified by the outgoing message routing control
information in the applicable PT ASP entry at the sending side.

This process is traced with the sending application support program name
EKAAS10 as the user name, and the routing identifier of the outgoing message
routing control information as function name.

Chapter 8. Support of MERVA ESA Facilities in MERVA Link 85

Route Incoming Application Message
When an application message has been received, it is routed as specified by the
incoming message routing control information in the applicable PT ASP entry at
the receiving side.

This process is traced with the receiving application support program name
EKAAR10 as the user name, and the routing identifier of the incoming message
routing control information as function name.

Route Acknowledgment or Acknowledged Message
When a receipt report has been received, it is correlated with the original message
or processed as a unique acknowledgment message. The acknowledged message or
the acknowledgment message is routed as specified by the incoming report routing
control information in the applicable PT ASP entry at the (original) sending side.

This process is traced with the receiving application support program name
EKAAR10 as the user name, and the routing identifier of the incoming report
routing control information as function name.

Route Ready-to-Send Message to Another Send Queue
When a message is routed from a MERVA Link send queue to the send queue of
another message transmission medium because of a permanently or temporarily
closed ASP, a message trace entry is written to the message.

This message trace entry contains the sending ASP program name EKAAS10 as the
user name, and the name of the ACQ as the function name.

Copy In-Process Message to Another Send Queue
When an IP message is copied from a MERVA Link ACQ to the send queue of
another message transmission medium using the recover command for an
inoperable or permanently waiting closed ASP, a message trace entry is written to
the message.

This message trace entry contains the name of the MERVA System Control Facility
program name EKAEMSC as the user name and the name of the ACQ as the
function name. The ASP MT status code applicable when the recover command is
entered is shown as return code in the message trace entry.

MERVA ESA Journal Support
A number of events are journaled by MERVA Link in the MERVA ESA journal.
These events can be divided into three classes. Any class contains journal entries of
one or more journal entry types.

Classes of MERVA Link Entries in the MERVA ESA Journal
The events journaled by MERVA Link in the MERVA ESA journal can be divided
into three classes:
v Events at the ASP/MTSP boundary
v Recovered IP messages of an inoperable ASP
v MERVA Link commands

86 Advanced MERVA Link

Class-1 Journal Entries
Class-1 journal entries have the format of a MERVA Link PDU. This class
comprises the events:
v Submit application message (SUBMIT.Request)
v Submit acknowledgment message (SUBMIT.Request)
v Deliver application message (DELIVER.Indication)
v Deliver acknowledgment message (DELIVER.Indication)

The events of this class are journaled only upon customization request. This
customization option is specified separately for each ASP and for each of the three
message categories (outgoing message, incoming report, and incoming application
message).

MERVA Link guarantees that a message is not passed twice to the receiving
application despite possible transmission failures. A message can, however, be
submitted and transmitted twice. Therefore, a message can be recorded twice (or
even more often) in the MERVA ESA journal.

Class-2 Journal Entries
Class-2 journal entries have the format of a message in a MERVA ESA queue
buffer. This class contains the journal of an IP message of an inoperable or
permanently waiting ASP. The message has been copied from the ACQ to the send
queue of another message transmission medium using the MERVA Link recover
command.

This class contains also the journal of an undeliverable message that was moved
out of the ACQ to continue message transmission. It has been routed to an error
queue either automatically or using the MERVA Link iprecov command. The
events of this class are always journaled.

Class-3 Journal Entries
Class-3 journal entries have the format of a MERVA ESA command journal entry.
The following MERVA Link commands are journaled:
v ACLOSE
v AOPEN
v ASTART (SA)
v HOLD (HA)
v KICKOFF (KA)
v LCRESET (LCRS)
v LRRESET (LRRS)
v RECOVER (IPCOPY)
v IPRECOV (IPMOVE)

The events of this class are always journaled when the command has been
executed, successfully or not successfully. The MERVA ESA command, which is
issued by a subset of these MERVA Link commands, is journaled separately by
MERVA ESA. The command feedback is, however, in most cases the same in the
MERVA ESA command journal entry and in the MERVA Link journal entry.

General Layout of a MERVA Link Journal Record
A MERVA ESA journal record written by MERVA Link consists of the following
sequence of fields:

Chapter 8. Support of MERVA ESA Facilities in MERVA Link 87

|

1. The 1-byte journal entry identifier (X'70' to X'7F').
2. The 24-byte journal record MERVA ESA key.
3. The 25-byte journal record user key.
4. The 4-byte journal record data length field in one of the two valid MERVA ESA

length field formats (LLbb, or LLLL with the high-order bit on).
5. The variable length journal record data starting at displacement 54 (X'36') in a

MERVA ESA journal record.

The last 7 bytes of the 24-byte journal record MERVA ESA key contain blanks
unless the journal entry is segmented. A journal entry is automatically segmented
in multiple journal records if the journal data is too large for a single record in the
journal data set.

The journal entry identifier, the first 17 bytes of the 24-byte journal record
MERVA ESA key, and the 25-byte journal record user key are the same in all
journal records of a segmented journal entry.

Types of MERVA Link Entries in the MERVA ESA Journal
MERVA Link entries in the MERVA ESA journal are identified by a hexadecimal
journal identifier starting with 7. The set of MERVA Link journal entries consists of
the following members:

70 Outgoing application message

71 Outgoing acknowledgment message

72 Incoming application message

73 Incoming acknowledgment message

78 Recovered message

7F MERVA Link command

All these journal entries are described in the following in detail.

Outgoing Application Message Journal Entry (ID=70)
An outgoing application message is journaled before it is passed to the message
transfer system or to the first application support filter (if applicable) at the
sending side. At this point in time it can have already been authenticated and
encrypted. The journal record, however, shows plain text, not the encrypted text.
Authentication and encryption control information is contained in the message
heading (if applicable).

The journal identifier in the journal record header contains X'70'. The user
extension of the journal record key contains the 4-byte MERVA Link MIP sequence
number and the name of the applicable sending ASP.

The journal record data of an application message consists of the message heading
and the body part data segment. The body part header is not contained in the
journal record.

The 8-byte prefix of the body part data segment in a journal record does not
conform to the rules of a P2 body part data segment. It consists of a 4-byte
identifier X'00008122' or X'00008123', followed by a 4-byte field containing the
length of the body part data including the 4-byte length field.

88 Advanced MERVA Link

Outgoing Acknowledgment Message Journal Entry (ID=71)
An outgoing acknowledgment message (status report) is journaled before it is
passed to the message transfer system or to the first application support filter (if
applicable) at the sending side.

The journal record of a status report (acknowledgment message) consists of the
journal record header and the status report data segment (SR-ASPDU).

The journal identifier in the journal record header contains X'71'. The user
extension of the journal record key contains the 4-byte MERVA Link MIP sequence
number and the name of the applicable sending ASP.

Incoming Application Message Journal Entry (ID=72)
An incoming application message is journaled before it is routed to the applicable
incoming message queue(s). At this point in time, an application message text has
already been authenticated and decrypted (if applicable). The message integrity
has, however, not yet been checked according to the rules of the MERVA Link MIP.

The journal identifier in the journal record header contains X'72'. The user
extension of the journal record key contains the 4-byte MERVA Link MIP sequence
number and the name of the applicable sending ASP.

The journal record data of an application message consists of the message heading,
and the message body part data segment. The body part header is not contained in
the journal record.

The 8-byte prefix of the body part data segment in a journal record does not
conform to the rules of a P2 body part data segment. It consists of a 4-byte
identifier X'00008122' or X'00008123', followed by a 4-byte field containing the
length of the body part data including the 4-byte length field.

Incoming Acknowledgment Message Journal Entry (ID=73)
An incoming acknowledgment message (status report) is journaled before it is
correlated with the reported message in the ACK wait queue or before it is routed
to the incoming report queue (without correlation with the reported message).

The journal identifier in the journal record header contains X'73'. The user
extension of the journal record key contains the 4-byte MERVA Link MIP sequence
number and the name of the applicable receiving ASP.

The journal record data of an acknowledgment message journal record contains a
status report data segment (SR-ASPDU).

Delivery Notification Journal Entry (ID=74)
A NOTIFY.Indication event is part of the asynchronous MERVA Link message
transfer protocol. The support for the asynchronous message transfer service has
been dropped, so the delivery notification journal entry is no longer applicable.

Recovered Message Journal Entry (ID=78)
The Recovered Message Journal Entry (ID=78) can contain either of two kinds of
recovered messages. It can be an IP message that was copied to the send queue of

Chapter 8. Support of MERVA ESA Facilities in MERVA Link 89

|
|
|

another transmission medium, or an IP message that could not be successfully
delivered to the receiving application and was moved out of the ACQ to continue
message transmission.

An in-process message in the ACQ of an inoperable or permanently waiting ASP
can be recovered (copied) using the MERVA System Control Facility command
recover. This recover process is journaled immediately before the message is
copied (routed as specified by the routing table associated with the ACQ, and kept
as IP message in that ACQ).

At this point in time, the message class is set to RC, the PDM indicator is set, and
the MERVA Link control fields SUBMIT return code (EKASUBRC), SUBMIT
diagnostic code (EKASUBDC), SUBMIT date and time (EKASUBDT), MTL message
identifier (EKAMSGID), MIP window size (EKAWSIZE), and MIP message
sequence number (EKAAMSEQ) have been deleted in the copied message. The
IAM message ID control field is not deleted.

The journal record of a copied IP message consists of the journal record header and
the copied message in the MERVA ESA queue buffer format.

The journal identifier in the journal record header contains X'78'. The user
extension of the journal record key contains the message class RC and the name of
the applicable sending ASP. The 4-byte MERVA Link MIP sequence number of the
in-process message is not contained in the copied message and not shown in the
journal record header.

An ASP with an undelivered in-process message in the ACQ can be recovered
using the MERVA System Control Facility command iprecov. This function can
also be performed automatically upon ASP customization request by the ASP.

The recovered message is journaled immediately before it is routed as specified by
the routing table associated with the ACQ, and deleted as IP message in the ACQ.

At this point in time, the message class has been set to RI, and the MERVA Link
control fields window size (EKAWSIZE) and MIP message sequence number
(EKAAMSEQ) have been deleted in the recovered message.

The journal record of a recovered message with class RI consists of the journal
record header and the message in the MERVA ESA queue buffer format.

The journal identifier in the journal record header contains X'78'. The user
extension of the journal record key contains the message class RI, the MERVA Link
MIP message sequence number, and the name of the applicable sending ASP.

When an ASP is recovered from an undelivered message, the message following
the undelivered message is assigned the same MIP message sequence number as
the undelivered message to stay in a contiguous MSN sequence. This is why the
MIP message sequence number in recovered messages in the MERVA ESA journal
can be non-unique.

MERVA System Control Facility Command Journal Entry
(ID=7F)

A MERVA System Control Facility command concerning MERVA Link that has an
effect on the processing of messages by MERVA Link is journaled as soon as it has

90 Advanced MERVA Link

been executed (successfully or not successfully). At this point in time, the
command response message returned to the operator for a subset of the journaled
commands is available.

The journal record of a MERVA Link command has the same format as the journal
record of a MERVA ESA command (ID=14).

The journal identifier in the journal record header contains X'7F'. The user
extension of the journal record key is empty as in a MERVA ESA command journal
entry. The journal record data area contains the operator identification, originator
information as specified in the MERVA ESA user record of this operator, the
command with its parameter, and the command response message (if applicable).

Chapter 8. Support of MERVA ESA Facilities in MERVA Link 91

|

92 Advanced MERVA Link

Part 3. MERVA Link USS Functions

© Copyright IBM Corp. 1991, 2001 93

|

|

94 Advanced MERVA Link

Chapter 9. The MERVA Link USS Control Facility

The MERVA Link USS Control Facility is the collection of resources used to
establish the MERVA Link USS environment, and to control the execution of
MERVA Link processes, both manually and automatically. The MERVA Link USS
Control Facility consists of the MERVA Link application control table (ACT), the
MERVA Link application control daemon (ACD), the MERVA Link configuration
and security files, and a set of control applications.

Control Facility Overview
The components of the MERVA Link USS Control Facility are described in the
following sections. All resources related to ASPs are defined in the MERVA Link
USS structures, and are partly supported by the MERVA Link USS programs.
However, in a MERVA Link USS Gateway environment, ASP resources are used for
test purposes only.

Application Control Table (ACT)
The MERVA Link USS application control table (ACT) is the most important
MERVA Link USS resource. It contains static MERVA Link customization
parameters as well as dynamic processing information. Any MERVA Link process
must attach the ACT during its initialization, and detach the ACT before
termination. A process that is attached to the ACT can retrieve information from
the ACT and store dynamic status information in the ACT.

The ACT is divided into these sections:
v ACT header
v ACT ASP section
v ACT ISC section

For more information about the structure of the ACT and the information
contained in the ACT, see “Application Control Table (ACT)” on page 97.

Application Control Daemon (ACD)
The MERVA Link USS application control daemon (ACD) is a long lasting OS/390
USS process (daemon) that represents a MERVA Link USS instance. The ACD can
be started as part of the OS/390 USS system startup (/etc/inittab), by an
authorized OS/390 USS user, or by other means. The termination of the ACD can
be requested by a MERVA Link application control command or by OS/390 USS
shell commands.

The main tasks of the ACD are:
v Allocate shared memory for the application control table (ACT)
v Initialize the ACT with static MERVA Link customization parameters from the

applicable configuration file
v Copy confidential information (passwords) from security files in a confidential

way into ACT ISC entries
v Check for and handle an ACD termination request

© Copyright IBM Corp. 1991, 2001 95

|

|

|
|
|
|
|
|

|
|

|
|
|
|
|

|

|
|
|
|
|
|

|

|

|

|

|
|

|

|
|
|
|
|
|

|

|

|
|

|
|

|

For more information about the ACD, see “Application Control Daemon (ACD)”
on page 101.

Application Control Command Application (ACC)
The MERVA Link USS application control command application (ACC) can be used
by any authorized user to display MERVA Link resources and to modify MERVA
Link processing parameters in a USS command shell environment. Examples of
ACC functions are:
v Display ACC help information
v Display ACT header information
v Display a list of the partner nodes (ISC parameter sets) defined in the ACT
v Display static and dynamic information of an intersystem connection to a

specific partner node
v Analyze error information in the ACT, and explain it
v Request ACD termination

The requested ACC function is entered as the first parameter of the USS command
ekaacc. This parameter is called the ACC command name. Additional command
parameters may be applicable.

To get a summary of the ACC commands, enter ekaacc without a parameter.

For more information about the ACC application, see “Application Control
Command Application (ACC)” on page 103.

Configuration and Security Files (CFG, SEC)
The static information used by the ACD to initialize an ACT is contained in a
MERVA Link USS Configuration File (CFG). The full path name of the
configuration file must be specified as a command parameter when the ACD is
started. CFG information types and structures are the same as the types and
structures of the information in the ACT.

An application control function is provided to generate a configuration file based
on information in the currently active ACT. An exported configuration file shows
the keywords for all parameters supported by the MERVA Link USS configuration
facility.

Conversation security information to access partner systems via TCP/IP is stored
in MERVA Link USS Security Files (SEC). There is one security file for each partner
system that must be connected via TCP/IP.

Conversation security information in a security file is encrypted. It can be
decrypted only in the original host system by an authorized process.

Conversation Security Programs (ACS and CSI)
There are two MERVA Link USS programs that provide a USS shell command
interface to store confidential conversation security information:
v The local security control application (ACS) lets you store information in

MERVA Link USS security files when the ACD is active. For more information
about the ACS, see the MERVA for ESA Customization Guide.

96 Advanced MERVA Link

|
|

|

|
|
|
|

|

|

|

|
|

|

|

|
|
|

|

|
|

|

|
|
|
|
|

|
|
|
|

|
|
|

|
|

|

|
|

|
|
|

v The partner security control application (CSI) lets you store security information
at a partner MERVA Link system. For more information about the CSI, see
“Partner Security Control Application (CSI)” on page 112.

Configuration Verification Programs (VCD, VCC, and VCS)
The MERVA Link configuration verification programs are:
v The application control daemon for verification (VCD), which is similar to the

ACD. Like the ACD, it lets you verify a configuration file and for generating an
ACT, but for configuration verification purposes only. In a configuration
verification environment, use the VCD as you would use the ACD in a regular
environment. For more information about the VCD, see “Application Control
Daemon for Verification (VCD)” on page 114.

v The application control command application for verification (VCC), which is
similar to the ACC. It lets you display information in the ACT owned by a VCD,
and terminate a VCD. In a configuration verification environment, use the VCC
and EKAVCC as you would use the ACC and EKAACC in a regular
environment. For more information about the VCC, see “Application Control
Command Application for Verification (VCC)” on page 116.

v The local security application for verification (VCS), which is similar toe th ACS.
It provides a USS shell command interface that lets you store confidential
information in MERVA Link USS security files when the VCD is active. For more
information about the VCS, see “Local Security Control Application for
Verification (VCS)” on page 118.

Application Control Table (ACT)
The MERVA Link USS application control table (ACT) is the most important
MERVA Link USS resource. It is accessed and shared by all MERVA Link USS
processes. The ACT provides static and dynamic information to processes, and
provides for communication between MERVA Link USS processes. For example, a
MERVA Link USS routing process can retrieve from the ACT information needed
to connect to a partner system, and can store process statistics and error
information in the ACT.

The configuration of a MERVA Link USS instance is subject to modification when
the MERVA Link network changes. To provide for an uninterrupted MERVA Link
USS service, a dual ACT facility is provided by MERVA Link USS. Dual means that
two ACTs, an old and a new ACT, may exist for a short period of time when the
configuration of a MERVA Link USS instance is changed. The old ACT is used by
processes that were already active when the new ACT was generated. The old
processes continue to use the old ACT until they end. When all old processes have
ended, the old ACT is physically removed. The new ACT is used by all new
processes.

An ACT is generated or an ACT configuration is changed simply by starting the
MERVA Link application control daemon (ACD) with the applicable configuration
file, or starting a second ACD instance with a modified configuration file. Another
configuration change can be performed by starting another ACD instance when the
former old ACT has been physically removed.

ACT IPC Resources
The ACT is implemented as an OS/390 USS shared memory region (SHM) for
read/write access by all MERVA Link processes. The MERVA Link application
control daemon (ACD) allocates the SHM for the ACT, and initializes the ACT with

Chapter 9. The MERVA Link USS Control Facility 97

|
|
|

|

|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

static information contained in a MERVA Link USS Configuration File. The ACD
releases the SHM of the ACT when it is terminated.

An OS/390 USS SHM is associated with an IPC resource, which is an HFS file.
Any MERVA Link ACT is therefore associated with an IPC resource. The name of
the IPC resource must be specified when the SHM is created, and when a process
attaches to the SHM.

The HFS files that are used as IPC resources for the dual ACT facility are
contained in the MERVA USS IPC directory. The file names are ekaact.a and
ekaact.b. These files can be generated by a touch command in an OS/390 USS
shell. An IPC resource file can be empty.

ACT Header
The ACT header contains the local MERVA Link node name as the only static
MERVA Link customization parameter. All other information in the ACT header is
either dynamic information, or static information that cannot be customized.

ACT Identifiers
The ACT header starts with three ACT identifiers:
v An ACT version identifier (1)
v The suffix of the corresponding IPC resource file (a or b)
v The ACT name

The ACT name field contains the name of the ACT in uppercase letters: EKAACT.
The application control daemon (ACD) stores this character string in the ACT after
it has been sucessfully initialized. The ACD can modify this string to indicate that
the ACT is not accessible. In fact, the string is modified to eKAACT before the
ACD terminates to indicate a request for immediate termination of any MERVA
Link process.

Any process that accesses the ACT must check this field. If it does not contain
EKAACT, the ACT must be considered inaccessible, and the process must
terminate as soon as possible.

ACT Generation Time
The ACT generation time field contains a timestamp that reflects the date and time
when the ACT was initialized. This timestamp is used to select the new ACT if
two ACT SHMs are allocated.

Local MERVA Link Node Name
The local MERVA Link node name field contains the node name of the MERVA
Link USS Gateway, the local MERVA Link system. This name must not be specified
as destination node by ASPs in partner MERVA Link systems as long as
Application Support (AS) functions are missing from MERVA Link USS.

Inbound messages that specify this node name as the recipient node are accepted,
and passed to a dummy inbound AS program (EKAASI). This dummy AS program
prints inbound message information to a processing trace file. The MERVA Link
USS Gateway does not support ASPs that deliver inbound messages to a
MERVA ESA message queue.

Inbound messages that do not specify this node name as the recipient node are
routed to the specified node or rejected as undeliverable (depending on the
availability of routing information for the specified recipient node).

98 Advanced MERVA Link

|
|

|
|
|
|

|
|
|
|

|

|
|
|

|
|

|

|

|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

ACD Process Identifier
The ACD process identifier field is the first field of the ACD section in the ACT
header. The ACD process identifier is saved in the ACT header to enable any
program that is attached to the ACT to send an alarm signal to the MERVA Link
daemon. An alarm signal wakes the MERVA Link daemon up if it is sleeping.

ACD Process Owner Identifier
The ACD process owner identifier is saved in the ACT header to control the
execution of restricted commands. Restricted commands, for example ACD
termination, are accepted only from the ACD process owner, or an operator with
root user authority (UID 0).

ACD Sleep Time Interval
The ACD sleep time interval specifies the number of seconds the MERVA Link
daemon must sleep between phases of activity. This time interval applies only if
the daemon ist not activated by any other event during a sleep time interval.

ACD Activity Trace Area
The MERVA Link daemon writes operator messages to the ACD activity trace area
in the ACT header. The ACD activity trace area can contain up to 16 operator
messages of up to 69 characters each. The MERVA Link ACC command dsd can be
used to display the ACD activity trace.

Processing Trace Parameters
Information concerning the MERVA Link processing trace:
v Trace level
v Trace wrap-around limit
v Trace file index for an inbound SNA APPC conversation
v Trace file index for an inbound TCP/IP conversation
v Trace directory path name (applies to all inbound and outbound MERVA Link

processes)

These parameters are described in “Chapter 13. MERVA Link USS Problem
Determination Aids” on page 149.

Unsolicited Receiving Process Status Information
An error can be found in a MERVA Link receiving process before the identity of
the receiving process (ASP) or the routing destination was determined. Information
describing this kind of error is stored by one of the MERVA Link programs
EKATPI, EKATCI, and EKAP1I in the applicable fields of the ACT header. The
status information stored by these programs consists of:
v For EKATPI, the status timestamp, the EKATPI return and reason codes, and the

USS error number (if any)
v For EKATCI, the status timestamp, the EKATCI return and reason codes, and the

USS error number (if any)
v For EKAP1I, the status timestamp and the EKAP1I return and reason codes

ACT ASP Section
The ACT ASP section consists of a sequence of ACT ASP entries. A pointer to the
first ASP entry and the total number of ASP entries is contained in the ACT
header.

ACT ASP entries are not applicable in a MERVA Link USS Gateway scenario. They
are supported by MERVA Link USS for test purposes only.

Chapter 9. The MERVA Link USS Control Facility 99

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|

|

|

|

|
|

|
|

|
|
|
|
|
|

|
|

|
|

|

|

|
|
|

|
|

ACT ISC Section
The ACT ISC section consists of a sequence of ACT ISC entries. A pointer to the
first ISC entry and the total number of ISC entries is contained in the ACT header.
The fields of an ACT ISC entry are described in the following.

Partner Node Name
The partner node name can be considered as the key of an ISC entry. The ISC
entry contains intersystem connection parameters that apply for a connection to a
specific partner node. The ISC parameters either describe the partner system that
houses the partner node, or describe a gateway that must route the conversation to
one of its partner systems (that houses the partner node).

A routing process uses the inbound destination node name to find the applicable
ISC parameter set to perform its task.

SNA APPC Connection Parameters
The SNA APPC connection parameters are the name of an APPC/MVS Side
Information (SI) Profile, that is also called a symbolic destination, and an optional
partner TP name if the TP name in the SI profile must not be used.

An APPC/MVS SI profile contains the following parameters:
v Partner LU name
v SNA mode name
v Partner TP name

An SNA APPC connection is not supported if a symbolic destination is missing
from an ACT ISC entry.

TCP/IP Connection Parameters
TCP/IP connection parameter fields are defined in the ACT ISC entry structure for
both of the following:
v Partner host name
v Partner port number

A TCP/IP connection is not supported if a partner host name is missing from an
ACT ISC entry.

Conversation Security Parameters
Conversation security parameter fields are defined in the ACT ISC entry structure.
These fields are:
v Conversation security user ID
v Conversation security user password (encrypted)
v Local password encryption method
v Partner password encryption method

Conversation security information applies only for outbound TCP/IP
conversations. In the MERVA Link USS SNA APPC environment, conversation
security is completely handled by APPC/MVS.

ISC Status Information
An error can be found in a MERVA Link sending or receiving TP when the identity
of the partner node is known. Information describing this kind of error is stored by
the MERVA Link programs EKATPO, EKATCO, EKATPI, and EKATCI in the
applicable fields of the ACT ISC entry.

100 Advanced MERVA Link

|

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

|

|

|

|

|
|

|
|
|

|

|

|
|

|
|
|

|

|

|

|

|
|
|

|
|
|
|
|

The status information for each of the four TPs consists of the status timestamp,
the TP return and reason codes, and the USS error number. Separate sets of status
information fields are defined for processes handling inbound and outbound
messages (currently not applicable), and for routing processes. The set of routing
process status information fields includes EKAP1R return and reason code fields.

Extended Error Information
Extended error information that has been found in an error report received from
the subject partner system is saved in the corresponding ACT ISC entry for access
by other functions. It can be:
v Diagnostic code originator type
v Error code vector
v Error code vector receive timestamp

ISC Statistics Information
The following statistics information is collected by a routing process, and stored in
the ACT ISC entry describing the destination node of the routing process:
v Number of messages routed since the ACT generation
v Amount of time used to route messages (in seconds)

The routing process statistics apply to all processes with the subject node as
destination node, independent of the originating node.

Event Delay Information
Delay information is collected by a routing process for the following events:
v Connect Request
v Send Request
v Request Confirmation
v Receive Request

The following information is collected for each event, and stored in the applicable
ACT ISC entry:
v Minimum event delay
v Average event delay
v Maximum event delay
v Number of measured events
v Accumulated event delay

The average delay is always the accumulated event delay divided by the number
of measured events.

Application Control Daemon (ACD)
The MERVA Link USS application control daemon (ACD) is a long-lasting
background process that generates and owns the MERVA Link USS ACT. In the
MERVA Link USS Gateway environment it has nothing else to do but waiting for a
request to terminate.

The ACD must be active and must have generated an ACT before any other
MERVA Link process can execute. An active ACD and its ACT represent a
particular MERVA Link USS instance. There is one ACD for each MERVA USS
instance in a host.

Chapter 9. The MERVA Link USS Control Facility 101

|
|
|
|
|

|
|
|
|

|

|

|

|
|
|

|

|

|
|

|
|

|

|

|

|

|
|

|

|

|

|

|

|
|

|
|

|
|
|
|

|
|
|
|

All aspects of the ACD are described in the following sections.

Starting the ACD
The ACD is started by an authorized USS user (the MERVA USS instance owner)
via a USS shell command, via an OS/390 batch job, or by other means. It is started
with a set of parameters:
v The name of the MERVA USS instance directory must be specified as the first

ACD command parameter. It identifies the applicable MERVA USS instance.
v The full path name of the configuration file must be specified as another ACD

command parameter. The configuration file is the source of the MERVA Link
USS customization.

v To request an external trace from the ACD, specify the full path name of a trace
directory. If no trace directory is specified, the ACD does not generate an
external trace.

External ACD Activity Trace
The ACD supports an external activity trace. The activity trace is requested by
specifying a trace parameter as an ACD command line argument. An ACD trace
parameter consists of the keyword trc that is optionally followed by the applicable
trace directory name. An external activity trace is not written by default.

The default trace directory is the subdirectory trc of the MERVA USS instance
directory (for example, /u/merva1/trc/) if a trace directory name is missing from
the ACD trace parameter.

The activity trace of the ACD is written to the file ekaacd.t.MMDDhhmmss in the
applicable trace directory. The user who starts the ACD must be authorized to
write files to the trace directory. Otherwise, the activity trace is not written. There
is no error indication in the latter situation.

Internal ACD Activity Trace
An activity trace area is defined in the ACT header for use by the ACD. It contains
16 entries. An ACD activity trace entry consists of a timestamp and an activity
message of up to 69 characters.

The activity trace area is used by the ACD in wrap-around mode. This means, the
17th activity trace message overlays the first activity trace message. The second
trace entry is cleared in this example to indicate the wrap-around situation.

The ACD writes an activity trace message for all events it considers as interesting
enough to be reported. Interesting events are, for example:
v Automatic wake-up
v Start of ACD termination

The ACD activity trace messages are self-explanatory. They are not further
explained.

The activity trace messages written to the ACT header are also written to the
external ACD trace (if applicable).

Monitoring ACD Activity
The MERVA Link application control command application (ACC) provides a
command that can be used to display the current conntent of the ACD activity
trace area in the ACT header. The command name is dsd (for display the status of

102 Advanced MERVA Link

|

|

|
|
|

|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|

|

|

|
|

|
|

|

|
|
|

the application control daemon). This command has no parameters. The output of
the dsd command consists of a heading line and up to 16 ACD activity trace lines.

The heading line of the dsd command output shows the USS process identifier of
the ACD and the time when the ACT was last active.

Each ACD activity trace line starts with the time when the activity trace was
generated. The time is followed by an ACD activity trace message of up to 69
characters. A maximum of 16 trace lines are supported by the ACD and displayed
the dsd command. A trace area wrap is indicated by a separator line following the
most recently written activity trace line.

Stopping the ACD
The termination of the ACD can be requested via the MERVA Link application
control command trm daemon, or by sending an interrupt signal (SIGINT) to the
ACD process. The ACC command to terminate the ACD is accepted only from the
ACD process owner and from a USS root user with uid=0.

Application Control Command Application (ACC)
The MERVA Link USS application control command application (ACC) is the
means by which you control the status and the execution of MERVA Link USS.
ACC can be used in an OS/390 USS interactive command shell environment, in a
USS batch environment (BPXBATCH), and in an MVS batch environment. The
command or program ekaacc calls ACC in the OS/390 USS environments. Program
EKAACC calls ACC in the MVS environment.

An ACC interactive command begins with an ACC command name that must be
entered in lowercase letters. A subset of the ACC command names is followed by a
resource name. Resource names can be, for example, an ASP name, a partner
system node name, a keyword, or a MERVA Link diagnostic code. MERVA Link
resource names are normally made of uppercase characters. They can, however, be
entered with lowercase letters. An uppercase translation is performed automatically
(where applicable). Help information is displayed as response to an invalid ACC
command.

A conversation mode is supported by ACC. The USS command ekaacc sc starts the
ACC conversation mode in a window. All data entered in a window in ACC
conversation mode is interpreted as an ACC command. The command prompt
ekaacc is a reminder of the fact that the window is in ACC conversation mode.

A batch input mode is supported by ACC. Use the program calls ekaacc si
(BPXBATCH) or EKAACC si (MVS) to start the ACC in batch input mode. The
ACC commands are retrieved from stdin, and the command output is written to
stdout.

ACC cannot be used when the ACD is not active. The ACD generates and owns
the ACT, which is the main resource of the MERVA Link USS Control Facility.

Note: The support of ASP-related functions has not been removed from the ACC
implementation in the OS/390 USS environment. ASPs are, however,
supported by the MERVA Link USS Gateway for installation verification and
test purposes only. All functions related to ASPs are therefore not applicable
in a production environment.

Chapter 9. The MERVA Link USS Control Facility 103

|
|

|
|

|
|
|
|
|

|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|

ACC Command Format
An ACC command consists of a command name and a command parameter. A
command name consists of up to four characters. The command parameter can be
the name of a resource or the resource itself. A resource (for example, a diagnostic
code) can consist of two parts. The command parameter is empty in a subset of the
ACC commands.

The majority of the ACC command names is structured according to the following
rules:
v The first letter identifies a command activity, for example, analyze, change,

display, help, list, send probe, reset, set, start, and terminate.
v A command activity can also be identified by the first two characters of a

command name, for example, cx (configuration export) and dx (display
explanation).

v The character behind the activity indicator identifies a data class if it is not the
last character of the command name. Data classes are, for example, error code
vector, parameter, receiving process, routing process, sending process, status
information, and trace information.

v The last letter of the command name identifies an object or object class, for
example, a (ACT ASP entry), c (ACT ISC entry), h (ACT header), d (diagnostic
code), and e (error information or error class).

Most of the ACC commands are described in Chapter 8 of the MERVA for ESA
Operations Guide. The advanced ACC commands that are not described there are
descirbed in the following in alphabetic sequence of the ACC command name.

Changing ACT ISC Parameters for Partner Nodes
The following commands let you modify parameters in ACT ISC entries for
partner nodes temporarily, that is, during the lifetime of the current ACT shared
memory instance. The modifications are lost when the ACD is terminated.

Change partner symbolic destination name
To change the SNA APPC symbolic destination name in the ACT ISC entry
for a partner node, enter

cdc p_node sdn

where p_node is the name of the partner node, and sdn is the new
symbolic destination name. The new symbolic destination name is not
checked against APPC/MVS side information definitions.

Change partner host name
To change the TCP/IP partner host name in the ACT ISC entry for a
partner node, enter

chc p_node host

where p_node is the name of the partner node, and host is the new partner
host name. The new partner host name is checked against the TCP/IP
customization, and must be a valid TCP/IP host name defined in the local
USS system or in a remote TCP/IP name server.

Change partner host port number
To change the TCP/IP port number in the ACT ISC entry for a partner
node, enter

cpc p_node port

104 Advanced MERVA Link

|

|
|
|
|
|

|
|

|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|

|
|
|

|
|
|

|

|
|
|

|
|
|

|

|
|
|
|

|
|
|

|

where p_node is the name of the partner node, and port is the new port
number. The new port number must be a number from 1000 to 32000.

Change partner password encryption method
To change the partner password encryption method in the ACT ISC entry
for a partner node, enter

cpe p_node methodnum

where p_node is the name of the partner node, and methodnum is the
identifier of the encryption method:

0 MERVA Link basic encryption method.

1 An encryption method using the unrestricted DES function crypt().
This method can be used only for a connection to another MERVA
Link USS node.

Change partner TP name
To change the SNA APPC partner TP name in the ACT ISC entry for a
partner node, enter

ctc p_node tpn

where p_node is the name of the partner node, and tpn is the new partner
TP name. This TP name overwrites the TP name specified in the
APPC/MVS side information.

Displaying Information about Routing Process Event Delays
A MERVA Link USS routing process collects information about the delays
associated with the following event categories:
v Connect to destination partner node, including probe confirmation
v Send PDU to destination partner node
v Get message window confirmation from destination partner node
v Receive next PDU from orginator partner node

The delays are measured at the MERVA Link P1 layer close to the corresponding
service primitive calls. The processing time of the P1 functions are not included in
the delay values.

The ACC command ddc partner_node_name displays event delay information
collected for the specified partner node. This information consists of the number of
events, and the minimum, average, and maximum delay values for each event
category. The delay values are displayed in milliseconds.

The send delay can be a very small value. It is the time interval required by the
data communication subsystem (APPC/MVS or TCP/IP) to copy the message PDU
into its buffers. The actual transmission to the partner system may not be included
in this time interval.

The receive delay can be a very large value. It is the time interval until the next
message PDU is received from the originating partner system. This time interval
may include the time required by the originating node to handle the confirmation
of a message window. It can be 3000 milliseconds for a window size of 100
messages.

The ACC command ddcr partner_node_name displays event delay information
collected for the specified partner node, and resets all event delay information in
the ACT ISC entry.

Chapter 9. The MERVA Link USS Control Facility 105

|
|

|
|
|

|

|
|

||

||
|
|

|
|
|

|

|
|
|

|

|
|

|

|

|

|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

Modifying an ASP
The MERVA Link ASP operating commands let you modify the processing
characteristics of a sending or receiving ASP. ASP operating commands are of two
types:
v Local ASP commands, which modify the processing characteristics of local ASPs

(these commands start with the letter m)
v Partner ASP commands, which modify the processing characteristics of partner

ASPs (these commands start with the letter p)

The second letter in the command name identifies the specific function to be
performed. You always specify the name of the local ASP as the command
parameter, even when modifying the processing characteristics of its partner ASP.

To carry out an ASP operating command for a partner ASP, MERVA Link uses
command probes, which it sends to the partner system. MERVA Link command
probes are not supported by all MERVA Link implementations. A MERVA Link
implementation that does not support command probes handles an inbound
command probe as if it were a T-Probe.

Disable local receiving ASP
The command mda local_asp_name requests that the specified receiving
ASP is disabled. A disabled ASP does not accept any inbound message.

Enable local receiving ASP
The command mea local_asp_name requests that the specified receiving
ASP is enabled. An enabled ASP accepts inbound messages from its
partner ASP.

Hold local sending ASP
The command mha local_asp_name requests that the specified sending
ASP is set to HOLD status. An ASP in HOLD status does not get messages
from the send queue cluster and transfer those messages. It can, however,
transfer a message in the MERVA Link control queue.

Kick off local sending ASP
The command mka local_asp_name requests that the specified sending
ASP is kicked off. An ASP in HOLD status keeps this status when it is
kicked off.

The kick-off command asks the MERVA AIX daemon to send an alarm
signal to the MERVA Link daemon to request immediate processing of the
kickoff request. Sending a signal to the MERVA daemon can fail if you are
not authorized to do so. Your kick-off request is handled in this case when
the MERVA Link daemon is next activated by any other means. Your
kick-off request is not lost.

Start local sending ASP
The command msa local_asp_name requests that the specified sending
ASP is set to NOHOLD status and be kicked off.

Disable partner receiving ASP
The command pda local_asp_name requests that the partner receiving ASP
of the specified local ASP is disabled. A disabled ASP does not accept any
inbound message.

Enable partner receiving ASP
The command pea local_asp_name requests that the partner receiving ASP
of the specified local ASP is enabled. An enabled ASP accepts inbound
messages from its partner ASP.

106 Advanced MERVA Link

|

|
|
|

|
|

|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

Hold partner sending ASP
The command pha local_asp_name requests that the partner sending ASP
of the specified local ASP is set to HOLD status. An ASP in HOLD status
does not get messages from the send queue cluster and transfer those
messages.

Kickoff partner sending ASP
The command pka local_asp_name requests that the partner sending ASP
of the specified local ASP is kicked off. An ASP in HOLD status keeps this
status when it is kicked off.

Start partner sending ASP
The command psa local_asp_name requests that the partner sending ASP
of the specified local ASP is set to NOHOLD status and be kicked off. An
ASP in NOHOLD status can get messages from the send queue cluster and
transfer those messages.

Send Probe Commands
The send probe commands provide a means to send a PROBE to the partner ASP
of a local ASP. The name of the local ASP must be specified as probe command
parameter. Standard MERVA Link MT layer programs (ekap1o, ekatpo, ekatco) are
used to handle send probe commands.

Standard MERVA Link AS layer programs (ekaaso, ekap2o) are not involved in an
ACC send probe command. The ACC command processor itself represents the AS
layer programs. This is why the ACC command processor stores return
information from the connect request associated with the send probe command in
the ASO and P2O return information fields in the ACT. These fields are the ASO
status and diagnostic codes, the ASO return and reason codes, and the P2O return
and reason codes.

If an ACC send probe command was successfully executed and the connect request
was confirmed by the partner ASP, the ASP status and diagnostic codes are set to
00 CON CF. Any error is reported as appropriate.

Send T-Probe
The command pta local_asp_name requests that a T-Probe be sent to the
partner ASP of the local ASP specified. When the command has been
executed, you are informed whether the ASP availability test was
successful or unsuccessful.

To display the processing trace supported by the MERVA Link programs
handling the send probe command, specify pta1 local_asp_name (for trace
level 1) or pta2 local_asp_name (for trace level 2). The processing trace
shows error information when the probe is not successful.

Send R-Probe

The command pra local_asp_name requests that an R-Probe be sent to the
partner ASP of the local ASP specified. The interface of the pra command
is the same as the pta command interface. The difference is the function
performed by the R-Probe.

In addition to the function performed by a T-Probe, the R-Probe tests the
connection from the partner system back to the local system. This test is,
however, performed only if all the following are true:
v The receiving partner ASP is available.
v The sending ASP at the partner system is currently not active.

Chapter 9. The MERVA Link USS Control Facility 107

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|
|

|
|
|

|

|

v The partner MERVA Link system can handle an inbound R-Probe.
MERVA Link ESA, for example, does not support an R-Probe, and
handles an R-Probe as if it were a T-Probe.

Analyzing and Explaining Error Information
The error codes collected during a MERVA Link process are saved in the ACT
header, in an ACT ASP entry, and in one or two ACT ISC entries.
v The display status commands (dsh, dsa, and dsc) show the complete error

information stored in an ACT object (ACT header, ACT ASP entry, ACT ISC
entry). That information is not necessarily related to a single instance of a
MERVA Link application process (send a message, receive a message, or route an
inbound conversation), nor is it always the complete information associated with
an instance of a MERVA Link process.

v The analyze commands (asa, aih, ara, and arc) divide the error information in
the ACT objects into error analysis process groups, and explain the error
information from an application process perspective. The MERVA Link error
analysis process groups are:

Send Message Process
The send message process includes all activities related to an outbound
conversation initiated by a sending ASP.

Accept Inbound Conversation Process
This process is the begin of any inbound conversation. It becomes a
receive message process when the intended recipient of the message is a
local receiving ASP. It becomes a route inbound conversation process
when the recipient node is not the local node, and connection
information for the recipient node is available in an ACT ISC entry.

The error codes of an accept inbound conversation process are stored in
the ACT header because this process is not yet associated with any ASP
or ISC entry in the ACT. When the recipient node of an inbound
message is not the local node, and no ACT ISC entry is available for the
recipient node, an error is reported (by the inbound P1 processor). This
error information is also stored in the ACT header.

Receive Message Process
This process includes the activities of the inbound P1 and P2 processors,
and the activities of the inbound AS processor. Errors of the receiving TP
(EKATPI or EKATCI) are not analyzed as part of a receive message
process.

Route Inbound Conversation Process
This process includes the activities of the inbound P1 processor that
performs the P1 routing function, and the activities of the sending TP
(EKATPO or EKATCO) that passes the inbound conversation to the
destination node. Errors of the receiving TP (EKATPI or EKATCI) are not
analyzed as part of a route inbound conversation process.

ACC Conversation Mode
A sequence of ACC commands can be entered as a sequence of independent USS
commands calling the MERVA Link program ekaacc. As an alternative, the MERVA
Link program ekaacc can be called and put in ACC conversation mode. Any
terminal input is then interpreted as an ACC command.

108 Advanced MERVA Link

|
|
|

|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|

Start ACC Conversation Mode
The USS command ekaacc sc places the terminal in ACC conversation mode. You
are informed about that fact in the first operator message that is displayed as
response to the command ekaacc sc. The second operator message tells the
applicable MERVA instance. The third operator message tells how to exit the ACC
conversation mode.

ACC Command Echo
After typing an ACC command (or pressing the ENTER key without an ACC
command), the ACC command that will be passed to the ACC command processor
is displayed by EKAACC followed by the effective ACC command.

Effective ACC Command
At the begin of an ACC conversation the previous ACC command is set to ?, an
invalid command. A summary of the EKAACC commands is therefore displayed if
you press the ENTER key without any data at the begin of an ACC conversation.

The ACC command that becomes effective after pressing the ENTER key in ACC
conversation mode depends on the previous ACC command and on the data
entered before pressing the ENTER key. The following rules apply:
v If the ENTER key is pressed without any data, the previous command is

executed again.
v If data is entered before pressing the ENTER key, the new effective command is

the entered data (explicit command) or it is based on this data (generic
command).

v For a subset of the ACC commands, the first parameter of the previous
command is automatically included in the new command if a mandatory
command parameter is missing. This command subset contains all commands
that require an ASP or partner node name as command parameter.

v The command name and parameters of the previous command can be included
in the new command upon request. The command data can refer to parts of the
previous command using a period (.) as the first character of the first and the
second data token.

A Way to Make It Easier to Enter ACC Commands
When entering an ACC command, you can use a period (.) to refer to the previous
command name or to the previous command parameter. For example:
v To display the customization parameters of the partner node USSNODE1, enter

dpc ussnode1. To then display the status information contained in the ACT ISC
entry for that node and to get an explanation of the error information in that ISC
entry, enter dsc ussnode1 or, to save effort, dsc .. The ACC interprets the period
to mean ″the argument specified in the previous command″.

v To display an explanation of the first two error codes of the MERVA Link ESA
sending MTP error code vector 000a0022ac020857, enter dxsm 000a0022. After
entering this command, to display an explanation of the third error code as well,
enter dxsm 000a0022ac02 or, to save effort, . .ac02 (note that a blank separates
the two periods). The ACC interprets the first period to mean ″the previous
command″ and the second period to mean ″the previous argument″. Next, enter
. .0857; this is equivalent to entering dxsm 000a0022ac020857, and displays an
explanation of the complete error code vector.

ACC Command Execution
ACC in conversation mode is represented by one long lasting process (ACC parent
process) that is associated with a terminal. It is also associated with the MERVA

Chapter 9. The MERVA Link USS Control Facility 109

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

Link USS ACT when it starts. The ACT is detached when the ACC conversation
mode is entered. The ACC parent process ends when ACC conversation mode end
is explicitly requested.

An ACC command entered in ACC conversation mode is executed in an ACC
process of its own (ACC child process). The ACC parent process forks an ACC
child process to execute the subject command. The command output is written to
stdout, and the ACC child process ends.

This technique is worthwhile to know in order to understand the behaviour of
ACC when the ACT is refreshed while an ACC process is active in conversation
mode.

End ACC Conversation Mode
The ACC commands x and end end the interactive ACC parent process. The
Ctrl_C key that generates an interrupt signal (SIGINT) for the ACC process can be
used in an rlogin shell to end ACC.

ACC conversation mode end must be explicitly requested. The ACC parent process
does not end automatically when the ACD has been terminated.

ACC Batch Input Mode
When ACC is started in batch input mode, it reads a sequence of ACC commands
(without the program name ekaacc) from stdin, and executes the commands
sequentially in a single process. The command output is written to stdout.

Start ACC Batch Input Mode
The USS command ekaacc si starts program ekaacc in ACC batch input mode. The
MERVA USS instance directory name can be optionally provided as the si
command parameter, for example, ekaacc si /u/merva1/.

ACC does not prompt for commands in batch input mode.

ACC Command Execution
All ACC commands read from stdin in ACC batch input mode are executed in the
ACC process that reads the commands from stdin. This is the major difference
between ACC in conversation mode and ACC in batch input mode.

ACC in batch input mode is represented by a single process that is associated with
the standard input and output files, and with the MERVA Link USS ACT that is
applicable when the ACC process starts. This process ends when all ACC
commands on stdin have been executed. An ACT refresh while an ACC process is
active in batch input mode has no effect on that ACC process. It remains attached
to the old ACT.

End ACC Batch Input Mode
The ACC commands x and end end the ACC batch input mode. ACC batch input
mode ends also if EOF is found on stdin.

Execution Environments of ACC in Batch Input Mode
Three environments are supported by ACC in batch input mode:
v OS/390 USS shell environment
v OS/390 USS batch environment (BPXBATCH)
v OS/390 batch environment (EKAACC)

110 Advanced MERVA Link

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

|

|
|
|

|
|
|
|

|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

|

|

|

The following is an example of a command to execute ACC in batch input mode in
a USS shell:
ekaacc si < acc.cmd > acc.out

In this example, the ACC commands are retrieved from file acc.cmd, and the ACC
command output is written to file acc.out.

ACC Batch Job Samples
The following is an example of a job to execute ACC in batch input mode in a USS
batch environment:

//xxxxxxx JOB xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
//EXEC EXEC PGM=BPXBATCH,
// PARM='PGM /usr/lpp/merva1/bin/ekaacc si'
//STDOUT DD PATH='/u/user/acc.out',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//STDIN DD PATH='/u/user/acc.cmd',PATHOPTS=ORDONLY
//STDENV DD *
MERVA_DIR=/u/merva1/
/*
//

The ACC commands are retrieved from file /u/user/acc.cmd, and the ACC
command output is written to file /u/user/acc.out, in this example. The MERVA
instance directory environment variable must be provided in STDENV.

The following is an example of a job to execute ACC in batch input mode in an
MVS batch environment:

//xxxxxxxx JOB xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
//EKAACC EXEC PGM=EKAACC,REGION=4M,PARM='/si /u/merva1/'
//STEPLIB DD DSN=hlq.SDSLLIB0,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
dph
lc
x
/*
//

The ACC commands are retrieved from instream data SYSIN, and the ACC
command output is written to SYSOUT, in this example. The MERVA instance
directory name must be provided as another ekaacc command parameter when
ACC is started in batch input mode in the MVS batch environment.

The STEPLIB refers to an OS/390 program object library (PDSE) that contains the
MERVA Link USS programs and dynamic load libraries (DLLs). Replace
hlq.SDSLLIB0 by the name of this PDSE in your installation.

For more information about the generation of the MERVA Link USS program object
library and about executing MERVA Link USS programs in the OS/390 MVS
environment, refer to “Chapter 10. MERVA Link USS in the OS/390 USS
Environment” on page 119.

Chapter 9. The MERVA Link USS Control Facility 111

|
|

|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

Partner Security Control Application (CSI)
The MERVA Link USS partner security control application (CSI) provides a means
to specify and verify conversation security information in the local system,
transmit it to a partner system, and store it in the configuration facility of a partner
MERVA Link system. The CSI can be used only for partner MERVA Link systems
that support the CSI application; for example, MERVA Link USS, MERVA Link
AIX, and MERVA Link NT. The CSI application is not supported by MERVA Link
ESA.

The MERVA Link USS applications ACS and CSI are both used to specify and store
conversation security information for use by MERVA Link processes:
v ACS handles security information for use by a local sending process.
v CSI handles security information for use by a sending process in a partner

MERVA Link system.

ACS and CSI are MERVA Link USS applications with many common
characteristics, for example, command parameters and the execution environments.
The ACS is described in the MERVA for ESA Customization Guide. The CSI
characteristics that are different from ACS are described in the following sections.

The CSI Program
The CSI program name is ekacsi. In an OS/390 USS shell environment, the
command ekacsi is used to call CSI. The CSI can run in an OS/390 TSO USS shell
or in a remote login shell at a remote host.

In an OS/390 batch environment, the program name EKACSI is used to start the
CSI.

The CSI Execution Environment
The CSI process must have access to an active MERVA Link USS ACT. This is why
the ACD must be active when the CSI is called, and the name of the MERVA USS
instance directory must be accessible to the CSI program.

The fully qualified path name of the MERVA USS instance directory can be
provided as the first CSI command parameter. If this parameter is missing when
the CSI is called in a USS shell, the USS shell environment variable MERVA_DIR
must contain the MERVA USS instance directory name. If this environment
information is missing or incorrect, the CSI cannot attach to the active ACT.

The CSI Execution Modes
The CSI application supports the three execution modes that are also supported by
ACS.

In batch mode, the standard input file can contain conversation security
information for different partner systems. A CSI process can communicate with
multiple partner systems (sequentially, one after the other) to handle a batch of CSI
application parameters.

The CSI Command Parameters
The CSI command parameters can be divided into these classes:
v The MERVA instance directory parameter
v CSI execution control parameters

112 Advanced MERVA Link

|
|

|
|
|
|
|
|
|

|
|

|

|
|

|
|
|
|

|

|
|
|

|
|

|

|
|
|

|
|
|
|
|

|

|
|

|
|
|
|

|

|

|

|

v Security information parameters

All ACS parameter classes and parameters apply also to the CSI parameter,
however the CSI application provides additional execution control parameter to
control a CSI processing trace:

t1 Asks for a normal CSI process trace that does not include the C-Probe sent
to a partner system

t2 Asks for an extended CSI process trace that includes the C-Probe sent to a
partner system

The CSI writes its processing trace to the file ekacsi.trace in the trace subdirectory
of the applicable MERVA USS instance directory. The sample CSI trace file name
reads /u/merva1/trc/ekacsi.trace. Each CSI process overwrites the trace file of a
former CSI process (if applicable).

Security Information Parameters
The parameters of this class let you specify conversation security information as
CSI command parameters. CSI security information parameters have the format of
keyword parameters (a keyword followed by data). A parameter keyword and its
data must be specified as two tokens separated by one or more blanks. The
security information parameter keywords are:

node identifies the following data as the applicable partner MERVA Link node
name. The partner MERVA Link node name identifies the partner system
that must use the client user name and password to access the local
system.

user identifies the following data as the applicable client user ID (user name)
that is defined in the local system.

pswd identifies the following data as the applicable client user password.

For more information about the CSI security information parameters, refer to the
section about ACS security information parameters (they are identical) in the
MERVA for ESA Customization Guide.

Sample CSI Commands
The CSI command:

ekacsi /u/merva1/ h
Sets the USS shell environment variable for the MERVA USS instance
directory and displays CSI help information.

ekacsi v c t2
Starts the CSI application in verbose interactive mode, prompts the
operator for all security information items, and requests a confirmation
before it handles the specified set of security information items. A detailed
trace is written to the CSI trace file. This command requires that the USS
shell environment variable for the MERVA USS instance directory has been
set before the command is executed.

ekacsi node pnode1 user pn1user pswd pn1pswd
Starts the CSI application in interactive mode, and handles the complete
set of security information items without asking for a confirmation.

The CSI Standard Input File
The CSI application retrieves the conversation security information for a set of
partner systems from standard input (stdin) if it is started with the control

Chapter 9. The MERVA Link USS Control Facility 113

|

|
|
|

||
|

||
|

|
|
|
|

|
|
|
|
|
|

||
|
|
|

||
|

||

|
|
|

|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

|

|
|

parameter s. The format and content of a CSI standard input file is the same as the
format and content of an ACS standard input file.

The CSI Batch Mode
Both an OS/390 batch environment and a USS shell environment can host the CSI
application in batch mode. The USS shell environment accepts input from the
terminal or from an HFS file.

For more information about the CSI batch mode, refer to the description of the
ACS batch mode in the MERVA for ESA Customization Guide. All ACS batch mode
considerations apply to the CSI batch mode as well.

Application Control Daemon for Verification (VCD)
The MERVA Link USS application control daemon used for verification (VCD) is
an interactive USS shell application used to verify the correctness of a MERVA Link
USS configuration file before it is used to configure an actual MERVA Link USS
Gateway. The VCD provides almost the same functionality as the ACD, but can
only be used for verification purposes.

A MERVA Link USS configuration file can be verified in the environment of the
applicable MERVA USS instance owner (for example, /u/merva1/) or in another
USS user’s environment (for example, /u/user1). The MERVA USS instance HFS
structure applies in both cases.

The verification of a MERVA Link USS configuration file can be divided into
several steps:
v Use VCD to scan the specified configuration file, check for formal errors, and

write a short summary report to the display terminal.
v Ask VCD to provide a detailed report of all errors and inconsistencies found.

The report is written to the specified HFS file or to a file in the specified
directory (like the ACD trace).

v Ask VCD to generate an ACT for configuration verification purposes and
assume the role of a MERVA Link USS daemon. This ACT can be operated and
the VCD can be terminated by the MERVA Link USS Configuration Verification
Command Application (VCC). VCC is almost the same as the MERVA Link USS
application ACC, but can only be used for verification purposes. For more
information about VCC, see “Application Control Command Application for
Verification (VCC)” on page 116.

Starting the VCD
The VCD is started by an authorized USS user via a USS shell command or a shell
command script.

Examples of Using USS Shell Scripts to Issue the VCD
Command
How you use USS shell scripts to issue the VCD command depends on whether
you are the MERVA instance owner (that is, if your ID is merva1), or if you are
another user. If you are the MERVA instance owner, you might use scripts similar
to these:
v The following shell script performs the minimum VCD function. It does not

write a report, and terminates immediately.
/usr/lpp/merva/bin/ekavcd /u/merva1/ cfg /u/merva1/cfg/ekaact.cfg

114 Advanced MERVA Link

|
|

|

|
|
|

|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|

|
|

|
|
|

|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|

|
|

|

v The following shell script checks the specified configuration file, writes a report
to the MERVA instance trace directory, and terminates.
/usr/lpp/merva/bin/ekavcd /u/merva1/ \

cfg /u/merva1/cfg/ekaact.cfg \
rep /u/merva1/trc/

v The following shell script checks the specified configuration file, writes a report
to the MERVA instance trace directory, and assumes the role of a MERVA Link
daemon.
/usr/lpp/merva/bin/ekavcd /u/merva1/ \

cfg /u/merva1/cfg/ekaact.cfg \
rep /u/merva1/trc/ k &

A VCD process that keeps the generated ACT should execute in the USS
background (specify & at the end of the command line arguments). Otherwise,
the terminal is locked for input until the VCD process ends.

If you are not the MERVA instance owner, you use shell scripts in exactly the same
way, except:
v You specify your own home directory (for example /u/user1/) instead of that of

the MERVA instance owner (/u/user1/).
v You must first set up a pseudo MERVA USS instance HFS directory structure.

The pseudo MERVA USS instance environment is based on your home directory,
which in this example is /u/user1/. This HFS structure and the necessary
resources can be set up by a USS command sequence similar to the following:
cd make /u/user1/ the current directory
mkdir ipc generate IPC subdirectory
cd ipc make /u/user1/ipc/ the curr directory
touch ekaact.v generate IPC resource file for VCD/VCC

Function of the VCD
When the VCD is called, it checks the VCD parameters, the syntax of the
configuration file, and the contents of the configuration file.

Verifying the VCD Command Parameters
Error messages are written to stdout (for example, the terminal) if any of the
following are true:
v The MERVA USS instance directory is not specified as the first command

parameter.
v The configuration file name parameter is missing.
v The specified configuration file does not exist.
v The specified report directory does not exist.

Verifying the Configuration File Syntax
The formal content of the configuration file is checked by VCD using the same
internal MERVA Link USS functions that are used by the ACD when a real ACT
must be generated. The most important formal checks are:
v The ACT header parameter group is specified as the first parameter group in the

configuration file.
v There is only one ACT header parameter group in the configuration file.
v The parameter group identifiers are valid (ACTH, ACTA, or ACTC).
v The parameter line structure is valid (keyword = value), whereby the parameter

value can be optional.

Chapter 9. The MERVA Link USS Control Facility 115

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|
|

|
|
|
|

|

|
|

|
|
|

|
|

|

|

|

|
|
|
|

|
|

|

|

|
|

If a syntax error is found in the configuration file and a report is not requested, a
single error message is written to sysout. If this happens, start VCD again and
request that a report be created. Any error messages will be inserted at the
appropriate places in a copy of the configuration file in the report.

If a formal error is found in the configuration file, an ACT is not generated, so
VCD does not check the configuration data.

Verifying the Configuration File Data
When the syntax of the configuration file is acceptable, VCD generates an ACT and
checks the following:
v The local node name specified in the ACT header
v The processing trace directory path name in the ACT header
v The partner node name specified in each ACT ISC entry
v That each partner node name is specified only in one ACT ISC entry
v Any (SNA APPC or TCP/IP) intersystem connection parameters specified in

each ACT ISC entry
v If TCP/IP intersystem connection parameters are specified in an ACT ISC entry,

that the messaging port number is greater than 1024

If a configuration data error is found in the ACT and a report is not requested, one
or two error messages are written to stdout. If this happens, start VCD again and
request a report. Any error or a warning message will be written to the report.

If the VCD parameter k is specified, the ACT is kept even if its configuration file
contains data errors. The configuration verification command (VCC) can be used to
display information in this ACT, and to verify the ACT data error report.

Stopping the VCD
The VCD process terminates immediately if either of the following are true:
v The verification of the VCD command parameters or of the configuration file

syntax, described in “Function of the VCD” on page 115, fails.
v The k parameter, which indicates that the generated ACT is to be kept active, is

not specified.

If the k parameter is specified and no errors are found, you must request the
termination of the VCD process by doing one of the following:
v Issue the VCC command trm daemon. This command is accepted only if issued

by the VCD process owner or from a USS root user with uid=0.
v Send an interrupt signal (SIGINT) to the VCD process.

Application Control Command Application for Verification (VCC)
The MERVA Link USS application control command application used for
verification (VCC) is almost the same as the ACC, but can only be used for
verification purposes. It attaches to the ACT generated by a VCD, and displays the
data in that VCD’s ACT as specified by the ACC.

The only major difference between the ACC and VCC is the means by which they
attach to the applicable ACT shared memory:
v ACC uses the IPC resource names ekaact.a and ekaact.b in the /ipc/

subdirectory of the applicable MERVA instance directory.

116 Advanced MERVA Link

|
|
|
|

|
|

|
|
|

|

|

|

|

|
|

|
|

|
|
|

|
|
|

|

|

|
|

|
|

|
|

|
|

|

|
|

|
|
|
|

|
|

|
|

v VCC uses the IPC resource name ekaact.v in the /ipc/ subdirectory of the
applicable real or pseudo MERVA instance directory.

VCC can, like ACC, execute in single command mode and in conversation mode.
The command syntax for VCC and ACC is identical.

Examples of the MERVA Instance Owner Using VCC
In this example, the MERVA instance owner merva1 has set the MERVA USS
environment variable by adding the statement export MERVA_DIR=/u/merva1/ to
the .setup script during installation.

A VCD instance must be active before VCC can be started. In this example, the
MERVA instance owner starts the VCD by issuing the command:
ekavcd /u/merva1/ cfg /u/merva1/cfg/ekaact.cfg k &

The command to list all entries in the ACT generated by the VCD is:
ekavcc l

The command to enter VCC conversation mode is:
ekavcc sc

The command to terminate VCD in VCC conversation mode is:
trm daemon

Examples of Another USS User Using VCC
This example assumes the user user1 does not have the MERVA USS environment
variable set. This user establishes a pseudo MERVA USS instance environment
based on his or her home directory /u/user1/. This environment is set up by the
following USS command sequence:
cd make /u/user1/ the current directory
mkdir ipc generate IPC subdirectory
cd ipc make /u/user1/ipc/ the curr directory
touch ekaact.v generate IPC resource file for VCD/VCC

The user then uses a shell script to call VCC. This shell script is named vcc and
reads:
MERVA_DIR=/u/user1/
/usr/lpp/merva/bin/ekavcc $1 $2 $3

A VCD instance must be active before VCC can be started. A sample command to
start a VCD instance is:
ekavcd /u/user1/ cfg /u/merva1/cfg/ekaact.cfg k &

The command to list all entries in the ACT generated by the VCD is:
vcc l

The command to enter VCC conversation mode is:
vcc sc

The command to terminate VCD in VCC conversation mode is:
trm daemon

Chapter 9. The MERVA Link USS Control Facility 117

|
|

|
|

|

|
|
|

|
|

|

|

|

|

|

|

|

|

|
|
|
|

|
|
|
|

|
|

|
|

|
|

|

|

|

|

|

|

|

Local Security Control Application for Verification (VCS)
The local security control application for verification (VCS) provides basically the
same service as the local security control application (ACS), but whereas ACS
cooperates with an ACD in a production environment, VCS cooperates with a VCD
in a test environment.

The differences between VCS and ACS are described in the following. For more
information about ACS, refer to the MERVA for ESA Customization Guide.

The VCS Program
The command ekavcs (or the applicable fully qualified program path name) is
used to call the VCS in an OS/390 USS shell environment. The VCS can be
executed in an OS/390 TSO USS shell or in a remote login shell at a remote host.

The VCS Execution Environment
The VCS must have access to a MERVA Link USS ACT that is owned by a VCD.
This is why the VCD must be active when the VCS is called, and the name of the
MERVA USS instance directory must be available to the VCS program.

The fully qualified path name of the MERVA USS instance directory can be
provided as the first VCS command parameter. If this parameter is missing when
the VCS is called in a USS shell, the USS shell environment variable MERVA_DIR
must contain the MERVA USS instance directory name. If this environment
information is missing or incorrect, the VCS cannot attach to the configuration
verification ACT.

The VCS Execution Modes and Command Parameters
The ACS and VCS execution modes and command parameters are the same. ACS
executes in a MERVA USS production environment, and attaches to a production
ACT (IPC resource names ekaact.a or ekaact.b). VCS executes in a MERVA USS test
environment (configuration verification environment), and attaches to a test ACT
(IPC resource name is ekaact.v).

The VCS Function
Like the ACS, the VCS generates security files in the sec subdirectory of the
MERVA USS instance directory, for example, /u/merva1/sec/, and updates the
security information in the ACT it is attached to. Whereas the ACS is attached to
an ACT that represents a MERVA Link USS production environment, the VCS is
attached to an ACT that represents a MERVA Link USS test environment. The
security files, however, apply to both the production and the test environments if
the MERVA USS instance directory is the same for both the production and test
environments.

If the MERVA USS instance directory is the same for ACS and VCS, the
conversation security information specified via VCS does not become immediately
active for the production environment. It can be activated by restarting the ACD in
the production environment.

118 Advanced MERVA Link

|
|

|
|
|
|

|
|

|

|
|
|

|

|
|
|

|
|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|

Chapter 10. MERVA Link USS in the OS/390 USS Environment

The OS/390 UNIX System Services (USS) Environment is the primary environment
for MERVA Link USS. This means that the MERVA Link executables (shell scripts,
programs, and DLLs) reside in the OS/390 Hierarchical File System (HFS), and are
executed in a child process of a USS shell (for example, /bin/sh) or a daemon (for
example, /usr/sbin/inetd).

Parameters can be passed to the main program of a process implicitly and
explicitly. The explicit parameters can be retrieved from the program arguments
list. The implicit parameters can be retrieved from the list of environment
parameters. MERVA Link USS programs provide for specifying some mandatory
parameters alternatively as an explicit or as an implicit parameter. You may choose
the most convenient method in these cases.

The following sections describe various aspects of MERVA Link USS in the OS/390
USS environment.

Standard MERVA Link USS Program Call Environment
The standard MERVA Link USS program call environment has various aspects.

MERVA USS Environment Variables
Two OS/390 USS environment variables are defined for MERVA USS when
MERVA USS is installed and when a MERVA USS instance is generated.

DSLPP_DIR
Defines the MERVA USS installation directory. The sample MERVA USS
installation directory is /usr/lpp/merva. MERVA USS can be installed more
than once in an OS/390 system. You may wish, for example, to use one
installation for production, and another installation to test MERVA USS
program PTFs, or a new MERVA USS release.

MERVA_DIR
Defines the MERVA USS instance directory. The sample MERVA USS
instance directory is /u/merva1. The MERVA USS instances generated in an
OS/390 system can be based on the same or on different MERVA USS
installations.

MERVA Link USS programs may refer to these environment variables in order to
establish the processing environment for a MERVA Link USS process. This is why
these variables should be defined in the USS shell of any user who works with
MERVA Link USS.

PATH and LIBPATH Environment Variables
The OS/390 USS shell uses the sequence of directories specified in the PATH
environment variable to locate the executable of a command or of a called
program. The LIBPATH environment variable is used by the OS/390 USS dynamic
loader to locate the DLL that contains a called function.

In the standard MERVA Link USS program call environment, the PATH and
LIBPATH environment variables need not contain MERVA USS installation
subdirectories if you follow these rules:

© Copyright IBM Corp. 1991, 2001 119

|

|

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|

|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|
|

|
|
|

Specify the full path of the executable

The full path of the executable should always be specified when a MERVA
Link USS program is called. The USS shell does not refer to the PATH
variable in this case.

During the MERVA USS instance generation a number of shell scripts and
command aliases are made available that provide for minimum typing
when MERVA Link programs are called in a USS shell. The full path names
are contained in the shell scripts or in the command alias definitions, and
you need not type long program path names.

Use the standard MERVA USS installation directory

The full path of an executable should be part of a standard MERVA USS
installation directory tree. The MERVA USS installation directory can be
any HFS directory. To be a standard MERVA USS installation directory, it
must have a bin and a lib subdirectory containing the MERVA Link USS
programs and DLLs, respectively.

If programs are called from a standard bin subdirectory, the corresponding
lib subdirectory can be easily evaluated, and the LIBPATH environment
variable can be set by the MERVA Link USS program as appropriate.

If a MERVA Link USS program is not called from a standard bin
subdirectory, it may use other information (for example, the DSLPP_DIR
variable) to set the LIBPATH. If the information needed to set the LIBPATH
is missing, successful execution depends on the setting of the LIBPATH
before the MERVA Link USS program was called.

MERVA Link USS Program Call Environments
MERVA Link USS programs execute in four different environments:
v OS/390 USS Shell
v OS/390 USS InetD Subserver Process
v OS/390 BPXBATCH Process (APPC/MVS)
v OS/390 MVS Region

Most of the MERVA Link USS programs can execute in more than one of these
environments. The MERVA Link USS programs and the applicable environments
are discussed in the following sections.

The OS/390 MVS environment is, however, not covered because the following
considerations don’t apply for the OS/390 MVS environment. The environment of
a program executing in an OS/390 MVS region is completely established by the
MVS JCL. For more information about MERVA Link USS programs executing in
the OS/390 MVS environment, refer to “Chapter 11. MERVA Link USS in the
OS/390 MVS Environment” on page 123.

MERVA Link USS Programs Called in a USS Shell
The following MERVA Link USS programs are called from within a USS shell:
ekaacd Application control daemon
ekaacc Application control command application
ekaacs Local security control application
ekacsi Partner security control application
ekavcd Application control daemon used for verification
ekavcc Application control command application used for verification

120 Advanced MERVA Link

|

|
|
|

|
|
|
|
|

|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|

|

|

|

|

|
|
|

|
|
|
|
|
|

|

|
||
||
||
||
||
||

ekavcs Security control application used for verification

You can start one of these programs from within a USS shell by calling a shell
script. Before running the program, the shell sets the value of the program path
environment variable _ to the path and name of the program being called, for
example /usr/lpp/merva/bin/ekavcd.

The LIBPATH is set as follows:
v If the program being called resides in a subdirectory with the name bin, the

program sets the LIBPATH to a subdirectory on the same level as its bin
subdirectory, but with the name lib, for example /usr/lpp/merva/lib.

v If it does not reside in a subdirectory with the name bin, the program checks
whether the environment variable DSLPP_DIR is set. If it is, the program sets
the LIBPATH to the lib subdirectory of the directory specified DSLPP_DIR.

v If it does not reside in a subdirectory with the name bin and the environment
variable DSLPP_DIR is not set, you must set the LIBPATH to include the
directory containing the program DLLs before calling the program.

MERVA Link USS Inbound SNA APPC TP (ekatpi)
The MERVA Link USS inbound SNA APPC TP ekatpi can be started either directly
or indirectly (that is, by means of a shell script) in an OS/390 USS BPXBATCH
environment. If started directly, environment variables can be passed to ekatpi in
the BPXBATCH environment file (DD name is STDENV). If started indirectly (by
means of a shell script), environment variables can be set in the shell script before
calling the program.

When the BPXBATCH utility or the shell script calls ekatpi, it must include the
path to the directory in which the program resides, for example
/usr/lpp/merva/bin/ekatpi. The program receives this string as its first argument
(arg0).

The LIBPATH is set as follows:
v If ekatpi resides in a subdirectory with the name bin, ekatpi sets the LIBPATH to

a subdirectory on the same level as its bin subdirectory, but with the name lib,
for example /usr/lpp/merva/lib.

v If ekatpi does not reside in a subdirectory with the name bin, ekatpi checks
whether the environment variable DSLPP_DIR is set. If it is, ekatpi sets the
LIBPATH to the lib subdirectory of the directory specified DSLPP_DIR.

v If ekatpi does not reside in a subdirectory with the name bin and the
environment variable DSLPP_DIR is not set, you must set the LIBPATH to
include the directory containing the ekatpi DLLs before calling ekatpi.

MERVA Link USS Inbound TCP/IP TP (ekatci)
The MERVA Link USS Inbound TCP/IP TP ekatci is started directly or indirectly
(via a shell script) by the OS/390 USS Internet Daemon (InetD) as an InetD
subserver. InetD sets the PATH environment variable to the path of the subserver
executable as specified in the subserver’s entry in the InetD configuration file
(/etc/inetd.conf). This path is either the directory path to ekatci (direct call) or the
directory path to the shell program (/bin/sh).

Before running the program, the shell sets the value of the program path
environment variable _ to the path and name of the program being called, for
example /usr/lpp/merva/bin/ekatci.

Chapter 10. MERVA Link USS in the OS/390 USS Environment 121

||

|
|
|
|

|

|
|
|

|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|
|

|

|
|
|

|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|

To set the LIBPATH, ekatci checks the environment variables _ and PATH:
v If the program path (environment variable _) ends with /bin/ekatci, the

LIBPATH is set to a subdirectory on the same level as this bin subdirectory, but
with the name lib.

v If the program path does not end with /bin/ekatci, and if the value of the PATH
environment variable ends with /bin and is longer than four characters, the
LIBPATH is set to a subdirectory on the same level as this bin subdirectory, but
with the name lib.

122 Advanced MERVA Link

|

|
|
|

|
|
|
|

Chapter 11. MERVA Link USS in the OS/390 MVS Environment

The OS/390 UNIX System Services (USS) environment is the primary environment
for MERVA Link USS. This means that the MERVA Link executables (shell scripts,
programs, and DLLs) reside in the OS/390 Hierarchical File System (HFS) and are,
in most cases, executed via an USS shell command.

The OS/390 MVS environment is the alternate environment for MERVA Link USS.
This means that the MERVA Link executable program objects (programs and DLLs)
reside in an OS/390 PDSE, and are, in most cases, executed via an MVS batch job.

MERVA Link USS processes that are started from a PDSE member finally also
execute in an OS/390 USS environment. An MVS process is dubbed to a USS
process automatically by OS/390 if it requests USS services. This is what all
MERVA Link USS processes do to access the ACT SHM and to process HFS files,
for example.

The following sections describe various aspects of MERVA Link USS in the OS/390
MVS environment.

Allocate MERVA Link USS MVS Data Sets
Two MVS data sets are used to install MERVA Link USS executables in the OS/390
MVS environment:
v The OS/390 Binder Side Definition data set SYSDEFSD contains IMPORT

control statements for all exported functions of all MERVA Link USS DLLs.
v The OS/390 Program Object Library contains all MERVA Link USS executables

(programs and DLLs).

Side Definitions Data Set
The side definitions data set is a standard PDS with fixed-length record members.
The OS/390 binder creates a side definition file (PDS member) and writes IMPORT
control statements to that file when it creates a DLL. The name of the side
definition file is the same as the name of the DLL. When the MERVA Link USS
DLLs have been created, this data set contains one member for each DLL.

The side definitions data set must have the attributes RECFM=F or RECFM=FB,
LRECL=80. The sample MERVA Link USS side definitions PDS has the name
hlq.SDSLIMP, where hlq is the high-level qualifier of your MERVA ESA
installation. The record format is FB with a record length of 80 and a block size of
400. The MERVA Link USS IMPORT files occupy about 32 blocks in this data set.

Program Objects Data Set
The program objects data set is an OS/390 PDSE. The OS/390 binder creates a
program object (PDSE member) and writes it to that data set when it creates a DLL
or a program.

The program objects data set must have the attribute RECFM=U. The sample
MERVA Link USS program library PDSE is named hlq.SDSLLIB, where hlq is the

© Copyright IBM Corp. 1991, 2001 123

|

|

|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

|

|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|

high-level qualifier of your MERVA ESA installation. The record format is U with a
record length of 0 and a block size of 4096. The MERVA Link USS program objects
occupy about 512 blocks in this data set.

A PDSE can be allocated in a TSO/E session using option M (enhanced data set
allocation) in the ISPF Data Set Utility (PDF 3.2).

Copy DLLs from HFS Library to PDSE
In the following samples, the MERVA Link USS dynamic link libraries (DLLs) are
assumed to be contained in the HFS directory /usr/lpp/merva/lib/. All DLLs must
be copied to a program object library if MERVA Link USS is to execute in the
OS/390 MVS environment. The OS/390 binder (program IEWBLINK) is used for
that pupose.

A DLL may use functions that are exported by other DLLs. The IMPORT files of
these other DLLs must be included when a DLL is copied from the HFS to the
PDSE. An INCLUDE file for the copied DLL is created by the binder during this
process. The INCLUDE file contains INCLUDE statements for all functions
exported by the copied DLL.

When the set of MERVA Link USS DLLs is copied the first time, INCLUDE files
are not available from the side definitions data set. This is why the DLLs that
export functions to other DLLs must be copied first.

Copy DLL Procedure
The following sample procedure can be used to copy DLLs from the HFS to a
PDSE:
//LINKDLL PROC DLL=EKADLL
//LINK EXEC PGM=IEWBLINK,REGION=4M,
// PARM='LIST,LET,RENT,REUS,DYNAM(DLL),CASE=MIXED'
//SYSPRINT DD SYSOUT=*
//INLIB DD PATH='/usr/lpp/merva/lib/'
//INIMP DD DSN=hlq.SDSLIMP,DISP=SHR
//SYSDEFSD DD DSN=hlq.SDSLIMP(&DLL),DISP=SHR
//SYSLMOD DD DSN=hlq.SDSLLIB,DISP=SHR
// PEND

The binder option DYNAM(DLL) controls DLL processing and must be specified.

The data sets specified in the DD statements do the following:
v INLIB specifies the HFS directory that contains the DLL to be copied.
v INIMP specifies the PDS that contains INCLUDE files for functions exported by

other DLLs.
v SYSDEFSD specifies the name of the INCLUDE file that is generated by the

binder. This file contains INCLUDE statements for all functions exported by the
subject DLL.

v SYSLMOD specifies the name of the target program object library.

This procedure is used in the copy jobs described in the next section.

Copy DLL Job Sequence
DLLs that call functions provided by other DLLs must be copied after copying the
latter DLLs. A sample sequence for copying the MERVA Link USS DLLs is:
1. ekacex

124 Advanced MERVA Link

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|

|
|

|
|
|
|
|
|
|
|
|

|

|

|

|
|

|
|
|

|

|

|

|
|

|

2. ekaeex
3. ekacsc (ekacex, ekaeex)
4. ekadsc (ekacsc)
5. ekatco (ekacsc)
6. ekatpo (ekacsc)
7. ekaasi (ekacsc)
8. ekap2i (ekacsc, ekaasi, ekap1o)
9. ekap1i (ekacsc, ekatco, ekatpo, ekap2i)

10. ekap1o (ekacsc, ekatco, ekatpo)
11. ekap2o (ekacsc, ekap1o)

The DLLs that export functions for the subject DLLs are shown in parentheses after
the HFS names of the subject DLLs.

Sample Copy DLL Job Steps
The following job step can be used to copy DLL ekacsc from the HFS to a PDSE as
program object EKACSC:
//EKACEX EXEC LINKDLL,DLL=EKACEX
//SYSLIN DD *

INCLUDE INLIB(ekacex)
NAME EKACEX(R)

/*

This job copies the MERVA Link USS Common Error Explanation DLL to the
MERVA Link USS program object library, and writes the IMPORT statements to the
EKACEX side definition file (member EKACEX of SYSDEFSD).

The following sample job step can be used to copy DLL ekacex from the HFS to a
PDSE as program object EKACEX:
//EKAP1I EXEC LINKDLL,DLL=EKAP1I
//SYSLIN DD *

INCLUDE INLIB(ekap1i)
INCLUDE INIMP(EKACSC,EKATCO,EKATPO,EKAP2I)
NAME EKAP1I(R)

/*

This job copies the MERVA Link USS Inbound P1 processor to the MERVA Link
USS program object library, and writes the IMPORT statements to the EKAP1I side
definition file (member EKAP1I of SYSDEFSD).

The copy job steps for the other MERVA Link USS DLLs can be created
accordingly.

Copy Programs from HFS Library to PDSE
In the following samples, the MERVA Link USS programs are assumed to be
contained in the HFS directory /usr/lpp/merva/bin/ when MERVA USS has been
installed. All programs that must be executed in the OS/390 MVS environment
must be copied to a program object library. The OS/390 Binder (program
IEWBLINK) is used for that pupose.

The MERVA Link USS programs use functions that are exported by DLLs. The
IMPORT files of these DLLs must be included when a program is copied from the
HFS to the PDSE.

Chapter 11. MERVA Link USS in the OS/390 MVS Environment 125

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|

|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|

The set of MERVA Link USS DLLs must be copied as described in “Copy DLLs
from HFS Library to PDSE” on page 124 before the MERVA Link USS programs
can be copied. INCLUDE files required for copying programs may not be available
from the side definitions data set before all DLLs are copied.

Copy Program Procedure
The following sample procedure can be used to copy MERVA Link USS programs
from the HFS to a PDSE:
//LINKPGM PROC
//LINK EXEC PGM=IEWBLINK,REGION=4M,
// PARM='LIST,LET,RENT,REUS,DYNAM(DLL),CASE=MIXED'
//SYSPRINT DD SYSOUT=*
//INLIB DD PATH='/usr/lpp/merva/bin/'
//INIMP DD DSN=hlq.SDSLIMP,DISP=SHR
//SYSLMOD DD DSN=hlq.SDSLLIB,DISP=SHR
// PEND

The binder option DYNAM(DLL) controls DLL processing and must be specified.

The data sets specified in the DD statements do the following:
v INLIB specifies the HFS directory that contains the program to be copied.
v INIMP specifies the PDS that contains INCLUDE files for functions exported by

MERVA Link USS DLLs.
v SYSLMOD specifies the name of the target program object library.

This procedure is used in the copy jobs described in the next section.

Copy Program Job Sequence
The MERVA Link USS programs can be copied in any sequence after copying the
DLLs that export functions to the subject program. The MERVA Link USS
programs and the directly called DLLs are:
v EKAACC (EKACSC, EKACEX, EKAEEX, EKADSC, EKAP1O)
v EKAACS (EKACSC)
v EKAACD (EKACSC, EKADSC)
v EKAASO (EKACSC, EKAP2O)
v EKACSI (EKACSC, EKAP1O)
v EKATCI (EKACSC, EKAP1I)
v EKATPI (EKACSC, EKAP1I)
v EKAVCC (alias of EKAACC)
v EKAVCD (EKACSC, EKADSC)
v EKAVCS (alias of EKAACS)

The DLL program objects that export functions for the subject programs are shown
in parentheses after the PDSE names of the subject programs. The programs
EKAVCC and EKAVCS are aliases of EKAACC and EKAACS, respectively.

All MERVA Link USS programs except the InetD subserver program EKATCI can
be executed in the OS/390 MVS environment. It may make no sense, therefore, to
copy program EKATCI from the HFS to a PDSE.

126 Advanced MERVA Link

|
|
|
|

|

|
|

|
|
|
|
|
|
|
|

|

|

|

|
|

|

|

|

|
|
|

|

|

|

|

|

|

|

|

|

|

|
|
|

|
|
|

Sample Copy Program Job Steps
The following sample job step can be used to copy program ekaacc from the HFS
to a PDSE as program object EKAACC:
//EKAACC EXEC LINKPGM
//SYSLIN DD *

INCLUDE INLIB(ekaacc)
INCLUDE INIMP(EKACSC,EKACEX,EKAEEX,EKADSC,EKAP1O)
ALIAS EKAVCC
NAME EKAACC(R)

/*

This job copies the MERVA Link USS ACC application program to the MERVA
Link USS program object library, and defines EKAVCC as an alias name for that
program. This alias name corresponds to the symbolic link defined in the HFS for
the VCC application program.

The following sample job step can be used to copy program ekaacd from the HFS
to a PDSE as program object EKAACD:
//EKAACD EXEC LINKPGM
//SYSLIN DD *

INCLUDE INLIB(ekaacd)
INCLUDE INIMP(EKACSC,EKADSC)
NAME EKAACD(R)

/*

This job copies the MERVA Link USS daemon program to the MERVA Link USS
program object library. You can create other, similar copy job steps for the other
MERVA Link USS programs.

Execute Programs in the OS/390 MVS Environment
This section contains sample MVS jobs that can be used to execute MERVA Link
USS programs in the OS/390 MVS environment. OS/390 MVS environment means
that the MERVA Link program executes as part of an MVS batch job, or as an
APPC/MVS TP started in an APPC/MVS initiator.

Application Control Daemon (ACD)
An MVS batch job can be used to start the ACD. The duration of this job may be
indefinite. The CPU requirements are marginal.

An ACD job can be canceled by the standard MVS means, however to terminate an
ACD job in an orderly way, do one of the following:
v Send a SIGINT or SIGTERM to the ACD process in the USS environment. The

ACD process identifier that must be specified in the kill command is recorded in
the ACT header.

v Issue the ACC command ’trm daemon’. This is the most appropriate means to
stop an ACD job.

An ACD can be refreshed with an updated configuration in the USS environment
by starting another instance of the daemon process. However, an ACD refresh
cannot be initiated in the MVS environment by submitting the same ACD job
again. The same ACD job will be queued by JES until the active ACD job
terminates. It may be possible to refresh an ACD by submitting an ACD job with a
job name that is different from the name of the active ACD job.

The following is an example of an ACD job:

Chapter 11. MERVA Link USS in the OS/390 MVS Environment 127

|

|
|

|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|

|

|
|

|
|

|
|
|

|
|

|
|
|
|
|
|

|

//xxxxxxxx JOB xxxxxxxxxxxxxxxxxxx
//EKAACD EXEC PGM=EKAACD,REGION=4M,
// PARM='//u/merva1/ cfg /u/merva1/cfg/ekaacd.cfg
// trc /u/merva1/trc/'
//STEPLIB DD DSN=hlq.SDSLLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//

The PARM parameter of this job specifies the MERVA instance directory
/u/merva1/, the ACD configuration file /u/merva1/cfg/ekaacd.cfg, and the ACD
trace directory /u/merva1/trc/.

SYSPRINT represents the standard output (stdout) of the ACD process. The ACD
writes error information to stdout if an error occurs before it can open the trace
file.

Application Control Command Application (ACC)
The ACC is primarily an interactive application, but it also accepts input
commands from a batch file. Batch input mode is the only reasonable way in
which to execute ACC in an MVS environment.

The following is an example of an ACC job:.
//xxxxxxxx JOB xxxxxxxxxxxxxxxxxxx
//EKAACC EXEC PGM=EKAACC,REGION=4M,PARM='/si /u/merva1/'
//STEPLIB DD DSN=hlq.SDSLLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
dph
la
lc
dpa *
dpc *
/*
//

The PARM parameter of this job specifies that the ACC must be started in batch
input mode (si), and specifies the name of the MERVA instance directory
(/u/merva1/).

SYSPRINT represents the standard output (stdout) of the ACC process. ACC writes
command output to stdout. SYSIN represents standard input (stdin). ACC reads
commands from stdin.

Local Conversation Security Application (ACS)
The ACS is primarily an interactive application, but it also accepts input data from
stdin. The ACS standard input mode is the only reasonable way in which to
execute ACS in an MVS environment.

The following is an example of an ACS job:
//xxxxxxxx JOB xxxxxxxxxxxxxxxxxxx
//EKAACS EXEC PGM=EKAACS,REGION=4M,
// PARM='//u/merva1/ s v'
//STEPLIB DD DSN=hlq.SDSLLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
#---
MERVA Link USS Conversation Security Info
#---
Partner Node Client User Name Password

128 Advanced MERVA Link

|
|
|
|
|
|
|

|
|
|

|
|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|

#---
NODE2 user2 passwd2
NODE3 user3 passwd3
/*
//

The PARM parameter of this job specifies that the ACS must be started in verbose
mode (v), and that it must read data from stdin (s). The name of the MERVA
instance directory is specified as /u/merva1/.

SYSPRINT represents the standard output (stdout) of the ACS process. ACS writes
operator messages to stdout. SYSIN represents standard input (stdin). ACS reads
conversation security data from stdin.

Partner Conversation Security Application (CSI)
The CSI is primarily an interactive application. It supports, however, also input
data from stdin. The CSI standard input mode is the only reasonable way in which
to execute CSI in an MVS environment.

The following is an example of a CSI job:.
//xxxxxxxx JOB xxxxxxxxxxxxxxxxxxx
//EKACSI EXEC PGM=EKACSI,REGION=4M,
// PARM='//u/merva1/ s t2'
//STEPLIB DD DSN=hlq.SDSLLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
#---
MERVA Link USS Conversation Security Info
#---
Partner Node Local Client User Name Password
#---
NODE2 user2 passwd2
NODE3 user3 passwd3
/*
//

The PARM parameter of this job specifies that the CSI application must read data
from stdin (s), and that it must write a detailed trace (t2) to the HFS file
/u/merva1/trc/ekacsi.trace. The name of the MERVA instance directory is specified
as /u/merva1/.

SYSPRINT represents the standard output (stdout) of the CSI process. CSI writes
operator messages to stdout. SYSIN represents standard input (stdin). CSI reads
conversation security data from stdin.

Application Control Daemon for Verification (VCD)
An MVS batch job can be used to start the VCD. This batch job is similar to the job
used to start the ACD; the only difference is that the program name is EKAVCD
instead of EKAACD.

A VCD can verify the correctness of a MERVA Link USS configuration file and
generate an ACT for test purposes without affecting an active MERVA Link
instance. The VCD and its test ACT do not support the transfer of messages. All
other ACD and ACC functions apply to VCD and VCC also. For more information
refer to “Application Control Daemon (ACD)” on page 127.

The following is an example of a VCD job:

Chapter 11. MERVA Link USS in the OS/390 MVS Environment 129

|
|
|
|
|

|
|
|

|
|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|

|
|
|

|
|
|
|
|

|

//xxxxxxxx JOB xxxxxxxxxxxxxxxxxxx
//EKAVCD EXEC PGM=EKAVCD,REGION=4M,
// PARM='//u/merva1/ cfg /u/merva1/cfg/ekaacd.cfg
// trc /u/merva1/trc/'
//STEPLIB DD DSN=hlq.SDSLLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//

Application Control Command Application for Verification
(VCC)

The VCC attaches to the test ACT generated by the VCD. Like the ACC, it is
primarily an interactive application, but it also accepts input commands from a
batch file. Batch input mode is the only reasonable way in which to execute the
VCC in an MVS environment.

The following is an example of a VCC job:
//xxxxxxxx JOB xxxxxxxxxxxxxxxxxxx
//EKAVCC EXEC PGM=EKAVCC,REGION=4M,PARM='/si /u/merva1/'
//STEPLIB DD DSN=hlq.SDSLLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
dph
la
lc
dpa *
dpc *
trm daemon
/*
//

The PARM parameter of this job specifies that the VCC must be started in batch
input mode (si), and that the name of the MERVA instance directory is /u/merva1/.

SYSPRINT represents the standard output (stdout) of the VCC process. VCC writes
command output to stdout. SYSIN represents standard input (stdin). VCC reads
commands from stdin.

The last VCC command in this sample requests the termination of the VCD.

Local Conversation Security Application for Verification (VCS)
The VCS attaches to ACT generated and owned by the VCD. It can generate
security files that are usable by an ACD and a VCD, and modifies conversation
security information in its ACT (the ACT owned by the VCD). Conversation
security information in the ACT of an ACD cannot be modified by the VCS.

All other functions of the ACS apply also to VCS. For more information refer to
“Local Conversation Security Application (ACS)” on page 128.

The following is an example of a VCS job:
//xxxxxxxx JOB xxxxxxxxxxxxxxxxxxx
//EKAVCS EXEC PGM=EKAVCS,REGION=4M,
// PARM='//u/merva1/ s v'
//STEPLIB DD DSN=hlq.SDSLLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
#---
MERVA Link USS Conversation Security Info
#---
Partner Node Client User Name Password

130 Advanced MERVA Link

|
|
|
|
|
|
|

|

|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|

|

|
|
|
|

|
|

|

|
|
|
|
|
|
|
|
|
|

#---
NODE2 user2 passwd2
NODE3 user3 passwd3
/*
//

Inbound SNA APPC TP (TPI)
When APPC/MVS schedules a TP from a PDSE, the started transaction does not
execute in an USS environment initially. This is why the TP profile and the TP
itself must care for the mandatory USS environment variables.

The following is a sample of JCL in a TP profile for MERVA Link USS (EKARP1)
that executes EKATPI as a PDSE member:

TP name: EKARP1
Level : SYSTEM ID . . . :

******************************* Top of Data ************************
//xxxxxxx JOB xxxxxxxxxxxxxxxxxxxxxxxxxx
//EKAR1 EXEC PGM=EKATPI,
// PARM='//u/merva1/ TZ=CET-1 '
//STEPLIB DD DSN=hlq.SDSLLIB,DISP=SHR
//SYSPRINT DD DSN=stdout,DISP=SHR
****************************** Bottom of Data **********************

This TP profile defines the MERVA Link USS receiving TP that is associated with
MERVA USS instance 1. It can receive messages from all kinds of MERVA Link
partner systems.

The format and content of the JOB statements depends on requirements of the
OS/390 installation.

The //EKAR1 EXEC statement starts the job step and identifies the program to be
executed (EKATPI). Parameters must be passed to EKATPI as follows:
v The first forward slash (/) must be specified to identify the end of the runtime

options (there are none in this example).
v /u/merva1/ is the first program parameter (arg1). It specifies the name of the

OS/390 USS directory that contains the MERVA Link USS Inter-Process
Communication (IPC) resources. IPC resources are used by MERVA Link USS
programs to attach to central MERVA Link USS resources, for example, the
MERVA Link USS customization data in the MERVA Link USS ACT.

v TZ=CET-1 is the second program parameter (arg2). It specifies the local time
zone in the format of the applicable OS/390 USS environment variable. The time
zone value is specified as a number of hours west of GMT (London). The New
York time zone is identified by TZ=CET+5. The Frankfurt time zone is identified
by TZ=CET-1.
If the time zone parameter is missing or incorrect, the timestamps in MERVA
Link USS traces may be incorrect.

The SYSLIB DD statement identifies the location of the executable MERVA Link
inbound TP. Program EKATPI resides in an OS/390 program library (PDSE).

The SYSPRINT DD statement defines the standard output file (stdout) to be used
by EKATPI. It is an optional statement. Under normal circumstances, no data is
written to stdout.

Chapter 11. MERVA Link USS in the OS/390 MVS Environment 131

|
|
|
|
|

|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
||

|
|
|

|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|

|
|
|

132 Advanced MERVA Link

Part 4. MERVA Link Problem Determination Aids

© Copyright IBM Corp. 1991, 2001 133

134 Advanced MERVA Link

Chapter 12. MERVA Link ESA Conversation Traces

The communication between the local and the remote message transfer processors
is performed via PDUs (Protocol Data Units) and APPC indicators. The PDUs are
transmitted in segments as specified by the MERVA Link P1 protocol. APPC
indicators are transmitted as requested by APPC commands and parameters in
these commands following the SNA LU 6.2 protocol.

MERVA Link provides facilities to trace the data exchanged between two APPC
processes. These facilities are called the MERVA Link external conversation trace
and the MERVA Link internal conversation trace. In this context, external and
internal mean the target of the trace. The external trace is written to MERVA Link
external resource, a sequential data set. The internal trace is written to a MERVA
Link storage area in wrap-around mode.

Internal and external conversation traces are not supported by the MERVA Link TP
Mirror EKATM10 that is used in the MERVA Link Back-to-Back environment.

Conversation Trace Control Information
A conversation trace record contains, among other information, the command type
and the compressed conversation indicators. These two conversation control
information items are described in this section and referred to in the following
sections.

The Conversation Command Type
The conversation command type that identifies a command issued by a MERVA
Link message transfer program is the most important information in a conversation
trace record. It can be an APPC command or a CICS system administration
command:
v For an APPC command, it consists of a letter that identifies an APPC command

and, if applicable, a specific command parameter.
v For a CICS system administration command, it consists of a digit that identifies

the CICS command and, if applicable, the place where the command is issued.

The conversation command identifiers (CIDs), the corresponding commands, and
information about each command are shown in Table 3 on page 136.

© Copyright IBM Corp. 1991, 2001 135

|
|
|
|
|
|

|
|

|
|
|
|

|
|

|
|

|
|

Table 3. Conversation Trace Command Identifiers

CID Command Description

1 Inquire
Connection

A CICS APPC MTP checks the status of the connection to the
applicable partner system. Follow-on actions can be based on the
result of this check.

2 Acquire
Connection
(begin)

A CICS APPC MTP tries to acquire a connection to the applicable
partner system at the begin of a sending task if a connection is not
available and if this function is requested by the MTP parameter
CONNECT=(ACQ,QUEUE).

8 Acquire
Connection
(end)

A CICS APPC MTP tries to acquire a connection to the applicable
partner system at the end of a sending task if the request to allocate
a session failed and if this function is requested by the MTP
parameter CONNECT=(ACQ).

9 Release
Connection

A CICS APPC MTP releases the connection to the partner system at
the end of a sending task if this function is requested by the MTP
parameter CONNECT=(REL).

A Allocate
Session

In the APPC/MVS environment, an ALLOCATE command includes
the request to attach the remote process.

P Connect
Process

In the CICS environment, the request to attach the remote process is
specified in a separate command.

S Send Data
Segment

Send application data (a PDU segment), or error data (a report data
element) without a request for confirmation. The application or
error data identifier is also shown in the trace record.

T Send Trailer Send a PDU trailer without a request for confirmation. The
identifier of the PDU trailer is also shown in the trace record.

V Send Trailer,
Confirm

Send a PDU trailer with a request for confirmation, or send a
request for confirmation without data. The data identifier in the
trace record is 0000 if no data (PDU trailer) is sent.

I Send Invite,
Invite to
Send

An inbound TP returns error data to the outbound TP and returns
the permission to send to the partner process. For a Send Invite call
the identifier of the error data is also shown in the trace record.

R Receive Data
Segment

Conversation control indicators received with this command are
shown in the trace record. If application data has been received, the
application data identifier is also shown in the trace record.

X Receive Error An outbound TP receives error data from the inbound TP. The
identifier of the error data is also shown in the trace record.

C Confirmed An inbound TP confirms a conversation as response to a request for
confirmation received from the partner process.

E Indicate
Error

An inbound TP indicates to the outbound TP that an error
condition has been detected. The inbound TP will try to send
details of the error condition in an error report to the outbound TP.

F Free Session The conversation is terminated and the session to the partner
system is freed (deallocated).

Compressed Conversation Indicators
Conversation indicators are used in an APPC conversation to control the state of
the processes involved in this conversation. The indicators tell these processes in
what state they are, this means, what they can do or must do.

Conversation indicators are found by an outbound TP or by an inbound TP at
various places in the CICS and the APPC/MVS APPC interfaces. This is why

136 Advanced MERVA Link

||
|
|
|
|

||
|
|

|
|
|
|

||
|
|

|
|
|
|

||
|
|
|
|

MERVA Link collects the most interesting conversation indicators from different
places and puts them into a single byte. This byte contains the MERVA Link
compressed conversation indicators that are independent of the APPC interfaces
provided by CICS or APPC/MVS.

Five conversation indicators are collected by MERVA Link. Each of these indicators
is represented by one bit in the MERVA Link Compressed Conversation Indicators
byte. The bits of the compressed conversation indicator byte, their meaning and
comments for each indicator are shown in Table 4.

Table 4. Compressed Conversation Indicators

CCI Bit Indicator Comments

00010000 Receive
required

This indicator tells an APPC program that it must issue a
RECEIVE command.

00001000 Confirmation
required

This indicator tells an APPC program that it must confirm the
conversation or raise the error flag.

00000100 Error
indicated

An error has been indicated by the partner process. The local
process must receive error information.

00000010 No data
received

No application data has been received. It is only conversation
control information that has been received.

00000001 Free session
required

The APPC program must free (deallocate) the session to the
partner system.

The External Conversation Trace
The MERVA Link external conversation trace is written by a sending and by a
receiving message transfer program to a sequential data set. It is supported in the
MERVA Link CICS environment only.

Using the External Conversation Trace
A trace entry is written as soon as control is returned to the MTP after issuing the
corresponding APPC command. The conversation trace data set is defined as a
CICS output extrapartition transient data queue. The name of this queue is
specified in the partner table header (applicable to all receiving MTPs and default
for all sending MTPs) or in an EKAPT TYPE=MTP entry (applicable for this
message transfer process as sending MTP only).

The MERVA Link conversation trace can be disabled or reset dynamically by
closing the data set using the CICS CEMT transaction. The conversation trace is
enabled again by opening that data set again. Disable applies immediately for all
MTPs that use this data set, including the currently active MTPs. Enable applies for
all MTPs that use this data set, excluding the currently active MTPs.

An entry (record) in the MERVA Link conversation trace consists of two parts.
First, a fixed-length control information part, and second, a variable-length
application data part. The second part is missing in a conversation trace record if
there is no application data (for example, with an Allocate Session, Connect
Process, or Issue Confirmation). It is also missing if a weak conversation trace was
requested via the corresponding parameter in the partner table.

Application data is traced with a maximum length of 2048 bytes. PDU parts sent to
or received from the partner process that are greater than 2048 bytes are truncated
to that length in the MERVA Link conversation trace. The length of the most

Chapter 12. MERVA Link ESA Conversation Traces 137

|
|
|
|

interesting parts of a PDU (envelope, heading) is smaller than 2048 bytes.
Therefore, this restriction applies only to body parts exceeding the size of 2048
bytes.

In the MVS environment, the MERVA Link conversation trace data set can be
printed in dump format (showing both, the hexadecimal and the character
representation of the records) using the VSAM utility IDCAMS, although the
Conversation Trace data set is not a VSAM data set. In the VSE environment,
DITTO can be used instead of IDCAMS.

Interpreting the Control Information Part
The format of the fixed-length control information part of an external conversation
trace record, this is, the displacement of its fields in the record, the field lengths,
and a description of each field is shown in Table 5 on page 139.

For CICS commands related to APPC, the first of the two additional control bytes
(Displ. 50) contains the CICS conversation state (CVDA content).

As the default, the first 4 bytes of the Additional Control Information field show
the CICS EIBRCODE, and the second 4 bytes show the CICS EIBERRCD.

The Additional Control Information field contains the APPC LU name of the
partner system in the trace of a CICS Inquire Connection command.

The Additional Control Information field contains the local identification of the
partner system in an ALLOCATE command trace. It contains the partner process
identifier in a CICS CONNECT PROCESS command trace.

The Additional Control Information field contains the event return code (2
characters) and the event diagnostic code (6 characters) when an error report (data
element ID 1500) is sent.

138 Advanced MERVA Link

|
|

|
|

|
|

|
|
|

Table 5. External Conversation Trace Record Control Data

Displ. Length Field Description

00 2 Conversation trace record length

02 2 Conversation trace record identifier X'0010'

04 2 Conversation trace control data length

06 2 Conversation trace control data ID X'8110'

08 8 Relative time in the format SSS.FFF- (seconds and milliseconds)

16 8 Internal message transfer process name (send), or partner system
identifier (APPC receive)

24 8 Task number and CICS connection status (CVDA value returned by
Inquire Connection), or CICS command response value (Acquire
Connection), or conversation identifier (APPC related command).

32 1 Command identifier (see Table 3 on page 136)

33 1 Compressed conversation indicators (see Table 4 on page 137)

34 4 Application data identifier in characters, the identifier of the first
level-1 data element of the PDU segment. 0000 if no data is
associated with this command.

38 2 Byte 3 of EIBRESP and byte 0 of EIBRCODE (CICS), or
ATB_RETURN_CODE as a halfword (APPC/IMS)

40 8 Command duration in the format -SS.FFF- (seconds and milliseconds)

48 2 Compressed conversation indicators in characters (see Table 4 on
page 137)

50 2 Additional control bytes containing specific information in specific
situations

52 4 Total body text length when an AMPDU heading is sent or received

56 8 Additional control information as specified by specific commands in
specific situations.

External Conversation Trace Samples
The samples of full and weak external conversation traces shown in the following
sections have been obtained from the transfer of messages between the sample
MERVA Link systems CICS 1 and CICS 2. Two application messages have been
transferred from CICS 1 to CICS 2 in one conversation, and two acknowledgment
messages have been returned by CICS 2 in another conversation. The MIP window
sizes in CICS 1 and CICS 2 are 010 and 001, respectively.

Full External Conversation Trace Samples
The full conversation trace samples have been generated by MERVA Link
transactions in CICS 1.

Example 1: Send Two Application Messages
The following is an example of a full external conversation trace written by a
sending MTP during the transfer of two application messages:

Chapter 12. MERVA Link ESA Conversation Traces 139

|||
|

|||
|
|

|

|
|
|
|
|
|

|

|
|

|
|
|
|

RECORD SEQUENCE NUMBER - 1
000000 00400010 003C8110 F3F2F84B F6F0F760 E3F2C140 40404040 0000050C 00000046 *.a.328.607-T2A*
000020 F100F0F0 F0F00000 60F0F04B F0F0F060 F0F00000 00000000 C6C4F0C1 C3F2F9F2 *1.0000..-00.000-00......FD0AC292*

RECORD SEQUENCE NUMBER - 2
000000 00400010 003C8110 F3F2F84B F6F0F760 E3F2C140 40404040 0000050C 00000000 *.a.328.607-T2A*
000020 F200F0F0 F0F00000 60F0F04B F0F0F560 F0F00000 00000000 C3C1F0F2 40404040 *2.0000..-00.005-00......CA02 *

RECORD SEQUENCE NUMBER - 3
000000 00400010 003C8110 F3F2F84B F6F1F360 E3F2C140 40404040 0000050C 00000045 *.a.328.613-T2A*
000020 F100F0F0 F0F00000 60F0F14B F1F7F060 F0F00000 00000000 C6C4F0C1 C3F2F9F2 *1.0000..-01.170-00......FD0AC292*

RECORD SEQUENCE NUMBER - 4
000000 00400010 003C8110 F3F2F94B F7F8F460 E3F2C140 40404040 60C1C4F4 40404040 *.a.329.784-T2A -AD4 *
000020 C100F0F0 F0F00000 60F0F04B F0F0F060 F0F05100 00000000 C3C1F0F2 40404040 *A.0000..-00.000-00......CA02 *

RECORD SEQUENCE NUMBER - 5
000000 00400010 003C8110 F3F2F94B F7F8F560 E3F2C140 40404040 60C1C4F4 40404040 *.a.329.785-T2A -AD4 *
000020 D700F0F0 F0F00000 60F0F04B F0F0F160 F0F05A00 00000000 C5D2C1D9 40404040 *P.0000..-00.001-00!.....EKAR *

RECORD SEQUENCE NUMBER - 6
000000 008D0010 003C8110 F3F2F94B F7F8F660 E3F2C140 40404040 60C1C4F4 40404040 *.—....a.329.786-T2A -AD4 *
000020 E200F0F1 F0F00000 60F0F04B F0F0F060 F0F05A00 00000000 00000000 00000000 *S.0100..-00.000-00!.............*
000040 004D0100 001C1001 0008A100 C3F4F1F0 0009A101 E2C4C6C3 F10007A1 02C1F2C1 *.(........x.C410..x.SDFC1..x.A2A*
000060 00141101 0009A101 E2C4C6C3 F20007A1 02C1F1C1 00141403 0008A201 E7F1F2C1 *......x.SDFC2..x.A1A......s.X12A*
000080 0008A202 E7F2F1C1 0005B004 E3 *..s.X21A..[.T *

RECORD SEQUENCE NUMBER - 7
000000 00440010 003C8110 F3F2F94B F7F8F660 E3F2C140 40404040 60C1C4F4 40404040 *......a.329.786-T2A -AD4 *
000020 E500F8F1 C6C60000 60F0F04B F1F8F560 F0F05A00 00000000 00000000 00000000 *V.81FF..-00.185-00!.............*
000040 000481FF *..a. *

RECORD SEQUENCE NUMBER - 8
000000 00C00010 003C8110 F3F3F04B F1F2F960 E3F2C140 40404040 60C1C4F4 40404040 *.{....a.330.129-T2A -AD4 *
000020 E200F0F1 F0F20000 60F0F04B F0F0F060 F0F05A00 00000000 00000000 00000000 *S.0102..-00.000-00!.............*
000040 00800102 001C1001 0008A100 C3F4F1F0 0009A101 E2C4C6C3 F10007A1 02C1F2C1 *..........x.C410..x.SDFC1..x.A2A*
000060 00141101 0009A101 E2C4C6C3 F20007A1 02C1F1C1 00149201 C2F1F8F2 C1F1F6C1 *......x.SDFC2..x.A1A..k.B182A16A*
000080 C4F4C3C4 F1F8F0F3 00141403 0008A201 E7F1F2C1 0008A202 E7F2F1C1 00109301 *D4CD1803......s.X12A..s.X21A..l.*
0000A0 F9F8F1F2 F1F6F1F1 F4F4F4F3 0005B001 F00005B0 02D30005 B000D500 05B003F2 *981216114443..[.0..[.L..[.N..[.2*

RECORD SEQUENCE NUMBER - 9
000000 014E0010 003C8110 F3F3F04B F1F2F960 E3F2C140 40404040 60C1C4F4 40404040 *.+....a.330.129-T2A -AD4 *
000020 E200F0F1 F2F00000 60F0F04B F0F0F060 F0F05A00 00000012 00000000 00000000 *S.0120..-00.000-00!.............*
000040 01020120 00401002 002CA001 C1D7D7C3 40C3D6D5 D5C5C3E3 C9D6D540 E2C9C6C9 *.....È.APPC CONNECTION SIFI*
000060 40C3C9C3 E2F140E3 D640E2C9 C6C940C3 C9C3E2F2 0009A101 E2C4C6C3 F10007A1 * CICS1 TO SIFI CICS2..x.SDFC1..x*
000080 02C1F2C1 00141102 0009A101 E2C4C6C3 F20007A1 02C1F1C1 001C9601 B182A16A *.A2A......x.SDFC2..x.A1A..o.¶bx.*
0000A0 D0519000 B1F4B7B2 DACB9711 AFB96CB1 F1359152 000C9600 B182A16A D06B6C00 *}...¶4»ý..p..5%¶1.j...o.¶bx.},%.*
0000C0 00089204 F0F0F5F8 00079604 F0F0F100 0C9203B1 82A16ABE DCAE0100 379609E3 *..k.0058..o.001..k.¶bx.Ø.ò...o.T*
0000E0 85A2A340 9485A2A2 81878540 F1408696 99408396 95A58599 A281A389 969540A3 *est message 1 for conversation t*
000100 99818385 40849683 A4948595 A381A389 96950014 9202C2F1 F8F2C1F1 F6C1C2C5 *race documentation..k.B182A16ABE*
000120 C3F6F7F0 F0F10005 B000D500 059602C4 00089603 C4C5D4D6 0005B001 F10005B0 *C67001..[.N..o.D..o.DEMO..[.1..[*
000140 02D3000C 81210000 00000000 0012 *.L..a......... *

RECORD SEQUENCE NUMBER - 10
000000 005A0010 003C8110 F3F3F04B F1F3F060 E3F2C140 40404040 60C1C4F4 40404040 *.!....a.330.130-T2A -AD4 *
000020 E200F8F1 F2F30000 60F0F04B F0F0F060 F0F05A00 00000000 00000000 00000000 *S.8123..-00.000-00!.............*
000040 001A8123 00000000 BA49F9E5 721ED5D2 D0BB07B7 1A810D72 BC0D *..a.......9V..NK}Ù.».a..¿. *

RECORD SEQUENCE NUMBER - 11
000000 00440010 003C8110 F3F3F04B F1F3F060 E3F2C140 40404040 60C1C4F4 40404040 *......a.330.130-T2A -AD4 *
000020 E300F8F1 C6C60000 60F0F04B F0F0F360 F0F05A00 00000000 00000000 00000000 *T.81FF..-00.003-00!.............*
000040 000481FF *..a. *

RECORD SEQUENCE NUMBER - 12
000000 00C00010 003C8110 F3F3F04B F2F1F560 E3F2C140 40404040 60C1C4F4 40404040 *.{....a.330.215-T2A -AD4 *
000020 E200F0F1 F0F20000 60F0F04B F0F0F160 F0F05A00 00000000 00000000 00000000 *S.0102..-00.001-00!.............*
000040 00800102 001C1001 0008A100 C3F4F1F0 0009A101 E2C4C6C3 F10007A1 02C1F2C1 *..........x.C410..x.SDFC1..x.A2A*
000060 00141101 0009A101 E2C4C6C3 F20007A1 02C1F1C1 00149201 C2F1F8F2 C1F1F6C1 *......x.SDFC2..x.A1A..k.B182A16A*
000080 C5F9C3F7 F0F0F0F2 00141403 0008A201 E7F1F2C1 0008A202 E7F2F1C1 00109301 *E9C70002......s.X12A..s.X21A..l.*
0000A0 F9F8F1F2 F1F6F1F1 F4F4F4F3 0005B001 F00005B0 02D30005 B000D500 05B003F2 *981216114443..[.0..[.L..[.N..[.2*

140 Advanced MERVA Link

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

In this example:
v Record 1 shows that there was no connection to the partner system (netname

FD0AC292) when the MTP was started (the CICS connection status CVDA is 46).
v Record 2 shows that the MTP is customized to acquire a connection immediately.
v Record 3 shows that the connection was successfully established after less than 2

seconds.
v Records 4 and 5 show the CICS allocate session and connect process

commands. The partner system identifier is CA02 and the partner process
identifier is EKAR.

v Records 6 and 7 show the PROBE PDU that was sent to the partner process with
a request for confirmation.

v Records 8 to 11 contain a trace of the first message sent to the partner process.
The second message is traced in records 12 to 15.

v In this example, the MIP window size is 010, but only two messages were sent,
so the message transfer confirmation had to be requested in a separate
command. Record 16 shows the request for confirmation that was sent in a send
confirm command without data.

v Record 17 shows the free command, which deallocates the session to the partner
system.

The timestamps in the conversation trace records indicate when the conversation
commands were issued. From these timestamps and the timestamps in the example
of a weak external conversation trace shown in “Example 3: Receive Two
Application Messages” on page 143, you can calculate the time required for the
flow of application data and APPC control information between the partner
systems. In this example:
v The first message was prepared within 158 milliseconds (from 329.971 to

330.129). The four send commands to send the first message were issued within
1 millisecond (330.129 - 330.130). Data transmission (flush VTAM buffer) was
requested after a send command for a PDU Trailer (see records 4 to 7 in
“Example 3: Receive Two Application Messages” on page 143).

RECORD SEQUENCE NUMBER - 13
000000 014E0010 003C8110 F3F3F04B F2F1F760 E3F2C140 40404040 60C1C4F4 40404040 *.+....a.330.217-T2A -AD4 *
000020 E200F0F1 F2F00000 60F0F04B F0F0F060 F0F05A00 00000012 00000000 00000000 *S.0120..-00.000-00!.............*
000040 01020120 00401002 002CA001 C1D7D7C3 40C3D6D5 D5C5C3E3 C9D6D540 E2C9C6C9 *.....È.APPC CONNECTION SIFI*
000060 40C3C9C3 E2F140E3 D640E2C9 C6C940C3 C9C3E2F2 0009A101 E2C4C6C3 F10007A1 * CICS1 TO SIFI CICS2..x.SDFC1..x*
000080 02C1F2C1 00141102 0009A101 E2C4C6C3 F20007A1 02C1F1C1 001C9601 B182A16A *.A2A......x.SDFC2..x.A1A..o.¶bx.*
0000A0 E0A6DC00 4D5DBA09 9DA6B495 5923C884 E5C59A00 000C9600 B182A16A E0BFCC00 *.w..().."w╕n..HdVE....o.¶bx..Å..*
0000C0 00089204 F0F0F5F9 00079604 F0F0F200 0C9203B1 82A16ADA 4A520100 379609E3 *..k.0059..o.002..k.¶bx..>....o.T*
0000E0 85A2A340 9485A2A2 81878540 F2408696 99408396 95A58599 A281A389 969540A3 *est message 2 for conversation t*
000100 99818385 40849683 A4948595 A381A389 96950014 9202C2F1 F8F2C1F1 F6C1C4C1 *race documentation..k.B182A16ADA*
000120 F2C5F5F8 F0F10005 B000D500 059602C4 00089603 C4C5D4D6 0005B001 F10005B0 *2E5801..[.N..o.D..o.DEMO..[.1..[*
000140 02D3000C 81210000 00000000 0012 *.L..a......... *

RECORD SEQUENCE NUMBER - 14
000000 005A0010 003C8110 F3F3F04B F2F1F760 E3F2C140 40404040 60C1C4F4 40404040 *.!....a.330.217-T2A -AD4 *
000020 E200F8F1 F2F30000 60F0F04B F0F0F060 F0F05A00 00000000 00000000 00000000 *S.8123..-00.000-00!.............*
000040 001A8123 00000000 894909D1 AFDB9FD5 84BD3CFC A7DCB380 3426 *..a.....i..J..5Nd]..x..... *
RECORD SEQUENCE NUMBER - 15
000000 00440010 003C8110 F3F3F04B F2F1F860 E3F2C140 40404040 60C1C4F4 40404040 *......a.330.218-T2A -AD4 *
000020 E300F8F1 C6C60000 60F0F04B F0F0F360 F0F05A00 00000000 00000000 00000000 *T.81FF..-00.003-00!.............*
000040 000481FF *..a. *

RECORD SEQUENCE NUMBER - 16
000000 00400010 003C8110 F3F3F04B F2F3F560 E3F2C140 40404040 60C1C4F4 40404040 *.a.330.235-T2A -AD4 *
000020 E500F0F0 F0F00000 60F0F04B F0F7F060 F0F05A00 00000000 00000000 00000000 *V.0000..-00.070-00!.............*

RECORD SEQUENCE NUMBER - 17
000000 00400010 003C8110 F3F3F04B F3F8F960 E3F2C140 40404040 60C1C4F4 40404040 *.a.330.389-T2A -AD4 *
000020 C600F0F0 F0F00000 60F0F04B F0F0F460 F0F00000 00000000 00000000 00000000 *F.0000..-00.004-00..............*

Chapter 12. MERVA Link ESA Conversation Traces 141

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|

|
|
|

|
|

|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

v The second message was prepared within the next 82 milliseconds (from 330.133
to 330.215), and the four send commands for the second message were issued
within 3 milliseconds.

v It took MERVA Link 14 milliseconds to realize that the last message had been
sent, and that a confirmation for the two messages needed to be requested. The
confirmation was received after 70 milliseconds, and the two confirmed
messages were processed by MERVA Link within 84 milliseconds (330.305 to
330.389).

Example 2: Receive Two Acknowledgments
The following is an example of a full external conversation trace written by a
receiving MTP during the transfer of two acknowledgment messages:

RECORD SEQUENCE NUMBER - 18
000000 008D0010 003C8110 F4F0F64B F9F9F260 C3C1F0F2 40404040 60C1C4F7 40404040 *.—....a.406.992-CA02 -AD7 *
000020 D910F0F1 F0F00006 60F0F04B F0F0F060 F1F00000 00000000 00200000 00000000 *R.0100..-00.000-10..............*
000040 004D0100 001C1001 0008A100 C3F4F1F0 0009A101 E2C4C6C3 F20007A1 02C1F1C1 *.(........x.C410..x.SDFC2..x.A1A*
000060 00141101 0009A101 E2C4C6C3 F10007A1 02C1F2C1 00141403 0008A201 E7F2F1C1 *......x.SDFC1..x.A2A......s.X21A*
000080 0008A202 E7F1F2C1 0005B004 E3 *..s.X12A..[.T *

RECORD SEQUENCE NUMBER - 19
000000 00440010 003C8110 F4F0F64B F9F9F360 C3C1F0F2 40404040 60C1C4F7 40404040 *......a.406.993-CA02 -AD7 *
000020 D918F8F1 C6C60006 60F0F04B F0F0F060 F1F80000 00000000 00200000 00000000 *R.81FF..-00.000-18..............*
000040 000481FF *..a. *

RECORD SEQUENCE NUMBER - 20
000000 00400010 003C8110 F4F0F74B F0F4F360 C3C1F0F2 40404040 60C1C4F7 40404040 *.a.407.043-CA02 -AD7 *
000020 C300F0F0 F0F00000 60F0F04B F0F0F260 F0F00000 00000000 00000000 00000000 *C.0000..-00.002-00..............*

RECORD SEQUENCE NUMBER - 21
000000 00C00010 003C8110 F4F0F74B F0F4F660 C3C1F0F2 40404040 60C1C4F7 40404040 *.{....a.407.046-CA02 -AD7 *
000020 D910F0F1 F0F20006 60F0F04B F0F7F060 F1F00000 00000000 00200000 00000000 *R.0102..-00.070-10..............*
000040 00800102 001C1001 0008A100 C3F4F1F0 0009A101 E2C4C6C3 F20007A1 02C1F1C1 *..........x.C410..x.SDFC2..x.A1A*
000060 00141101 0009A101 E2C4C6C3 F10007A1 02C1F2C1 00149201 C2F1F8F2 C1F1C2F4 *......x.SDFC1..x.A2A..k.B182A1B4*
000080 F3C5C5C4 F9C1F0F7 00141403 0008A201 E7F2F1C1 0008A202 E7F1F2C1 00109301 *3EED9A07......s.X21A..s.X12A..l.*
0000A0 F9F8F1F2 F1F6F1F1 F4F6F0F0 0005B001 F00005B0 02C80005 B0004000 05B003F2 *981216114600..[.0..[.H..[. ..[.2*

RECORD SEQUENCE NUMBER - 22
000000 00CF0010 003C8110 F4F0F74B F1F1F660 C3C1F0F2 40404040 60C1C4F7 40404040 *......a.407.116-CA02 -AD7 *
000020 D910F0F1 F1F20006 60F0F04B F0F0F060 F1F00000 00000000 00200000 00000000 *R.0112..-00.000-10..............*
000040 008F0112 00141102 0009A101 E2C4C6C3 F20007A1 02C1F1C1 00149202 C2F1F8F2 *.Å........x.SDFC2..x.A1A..k.B182*
000060 C1F1F6C1 C2C5C3F6 F7F0F0F1 00089204 F3F2F6F5 00079604 F0F0F100 0C9203B1 *A16ABEC67001..k.3265..o.001..k.¶*
000080 82A1B433 85BA0000 48150000 109301F9 F8F1F2F1 F6F1F1F4 F5F5F900 069501F0 *bx╕.e........l.981216114559..n.0*
0000A0 F0000A95 02D6D240 40404000 249503D4 85A2A281 878540F1 40A2A483 8385A2A2 *0..n.OK ..n.Message 1 success*
0000C0 86A49393 A8409799 968385A2 A28584 *fully processed *

RECORD SEQUENCE NUMBER - 23
000000 00440010 003C8110 F4F0F74B F1F1F760 C3C1F0F2 40404040 60C1C4F7 40404040 *......a.407.117-CA02 -AD7 *
000020 D918F8F1 C6C60006 60F0F04B F0F0F060 F1F80000 00000000 00200000 00000000 *R.81FF..-00.000-18..............*
000040 000481FF *..a. *

RECORD SEQUENCE NUMBER - 24
000000 00400010 003C8110 F4F0F74B F2F0F460 C3C1F0F2 40404040 60C1C4F7 40404040 *.a.407.204-CA02 -AD7 *
000020 C300F0F0 F0F00000 60F0F04B F0F0F060 F0F00000 00000000 00000000 00000000 *C.0000..-00.000-00..............*

RECORD SEQUENCE NUMBER - 25
000000 00C00010 003C8110 F4F0F74B F2F0F660 C3C1F0F2 40404040 60C1C4F7 40404040 *.{....a.407.206-CA02 -AD7 *
000020 D910F0F1 F0F20006 60F0F04B F1F2F460 F1F00000 00000000 00200000 00000000 *R.0102..-00.124-10..............*
000040 00800102 001C1001 0008A100 C3F4F1F0 0009A101 E2C4C6C3 F20007A1 02C1F1C1 *..........x.C410..x.SDFC2..x.A1A*
000060 00141101 0009A101 E2C4C6C3 F10007A1 02C1F2C1 00149201 C2F1F8F2 C1F1C2F4 *......x.SDFC1..x.A2A..k.B182A1B4*
000080 F7F3C1C5 F9C3F0F8 00141403 0008A201 E7F2F1C1 0008A202 E7F1F2C1 00109301 *73AE9C08......s.X21A..s.X12A..l.*
0000A0 F9F8F1F2 F1F6F1F1 F4F6F0F0 0005B001 F00005B0 02C80005 B0004000 05B003F2 *981216114600..[.0..[.H..[. ..[.2*

RECORD SEQUENCE NUMBER - 26
000000 00CF0010 003C8110 F4F0F74B F3F3F060 C3C1F0F2 40404040 60C1C4F7 40404040 *......a.407.330-CA02 -AD7 *
000020 D910F0F1 F1F20006 60F0F04B F0F0F060 F1F00000 00000000 00200000 00000000 *R.0112..-00.000-10..............*
000040 008F0112 00141102 0009A101 E2C4C6C3 F20007A1 02C1F1C1 00149202 C2F1F8F2 *.Å........x.SDFC2..x.A1A..k.B182*
000060 C1F1F6C1 C4C1F2C5 F5F8F0F1 00089204 F3F2F6F6 00079604 F0F0F100 0C9203B1 *A16ADA2E5801..k.3266..o.001..k.¶*
000080 82A1B46A 69720600 48150000 109301F9 F8F1F2F1 F6F1F1F4 F5F5F900 069501F0 *bx╕..........l.981216114559..n.0*
0000A0 F0000A95 02D6D240 40404000 249503D4 85A2A281 878540F2 40A2A483 8385A2A2 *0..n.OK ..n.Message 2 success*
0000C0 86A49393 A8409799 968385A2 A28584 *fully processed *

142 Advanced MERVA Link

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|

In this example:
v The MIP window size of the sending ASP is 001.
v Records 18 and 19 show the PROBE PDU that is received from the partner

process with a request for confirmation (bit X'08' of the compressed conversation
indicator in record 19 is set).

v Record 20 shows the requested confirmation.
v Records 21 to 23 contain a trace of the first acknowledgment message received

from the partner process.
v Record 24 shows the requested confirmation.
v Records 25 to 27 contain a trace of the second acknowledgment message.
v Record 28 shows the requested confirmation.
v Record 29 shows the trace of another receive command. The compressed

conversation indicators (X'03') indicate that no data has been received (X'02'),
and that the receiving process must terminate the conversation (X'01').

v Record 30 shows the required free command.
v Records 24 and 28 show the transfer confirmation that was requested when the

PDU trailer of each of the acknowledgment message PDUs was received. Note
that the MIP window size at CICS 2, the sender of the acknowledgment
messages, is 001. This means, a transfer confirmation is requested for each
message.

Weak External Conversation Trace Samples
These examples of weak conversation traces were generated by MERVA Link
transactions in CICS 2.

Example 3: Receive Two Application Messages
The following is an example of a weak external conversation trace written by a
receiving MTP during the transfer of two application messages:

RECORD SEQUENCE NUMBER - 27
000000 00440010 003C8110 F4F0F74B F3F3F160 C3C1F0F2 40404040 60C1C4F7 40404040 *......a.407.331-CA02 -AD7 *
000020 D918F8F1 C6C60006 60F0F04B F0F0F060 F1F80000 00000000 00200000 00000000 *R.81FF..-00.000-18..............*
000040 000481FF *..a. *

RECORD SEQUENCE NUMBER - 28
000000 00400010 003C8110 F4F0F74B F3F8F760 C3C1F0F2 40404040 60C1C4F7 40404040 *.a.407.387-CA02 -AD7 *
000020 C300F0F0 F0F00000 60F0F04B F0F0F160 F0F00000 00000000 00000000 00000000 *C.0000..-00.001-00..............*

RECORD SEQUENCE NUMBER - 29
000000 00400010 003C8110 F4F0F74B F3F8F860 C3C1F0F2 40404040 60C1C4F7 40404040 *.a.407.388-CA02 -AD7 *
000020 D903F0F0 F0F00006 60F0F04B F0F8F360 F0F30000 00000000 00200000 00000000 *R.0000..-00.083-03..............*

RECORD SEQUENCE NUMBER - 30
000000 00400010 003C8110 F4F0F74B F4F7F260 C3C1F0F2 40404040 60C1C4F7 40404040 *.a.407.472-CA02 -AD7 *
000020 C600F0F0 F0F00000 60F0F04B F0F0F260 F0F00000 00000000 00000000 00000000 *F.0000..-00.002-00..............*

Chapter 12. MERVA Link ESA Conversation Traces 143

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|

|
|

|

|

|

|
|
|

|

|
|
|
|
|

|

|
|

|
|
|
|

In this example:
v When the receiving process confirmed the PROBE (record 3), it issued a receive

command at 329.968 seconds (record 4). The sending partner process received
that confirmation and sent the first message within 166 milliseconds.

v The complete first message was received by the receiving process 3 milliseconds
after the sending process sent the PDU Trailer (records 4 to 7). The first message
was delivered to the receiving application within the next 115 milliseconds, and
the second message was delivered within 46 milliseconds (see records 11 and
12).

v The request for confirmation for the two messages is received together with the
PDU trailer of the second message (record 11). The compressed conversation
indicators (X'18') ask for confirmation (X'08') and indicate that another receive
command must be issued after the requested confirm command (X'10').

v The request to terminate the conversation (X'01') was received as response to a
receive command (record 13). This command did not return data (X'02').

This trace corresponds to the trace shown in “Example 1: Send Two Application
Messages” on page 139.

RECORD SEQUENCE NUMBER - 1
000000 00400010 003C8110 F3F2F94B F8F2F860 C3C1F0F1 40404040 60C1C2E3 40404040 *.a.329.828-CA01 -ABT *
000020 D910F0F1 F0F00006 60F0F04B F0F0F060 F1F00000 00000000 00200000 00000000 *R.0100..-00.000-10..............*

RECORD SEQUENCE NUMBER - 2
000000 00400010 003C8110 F3F2F94B F8F2F960 C3C1F0F1 40404040 60C1C2E3 40404040 *.a.329.829-CA01 -ABT *
000020 D918F8F1 C6C60006 60F0F04B F0F0F060 F1F80000 00000000 00200000 00000000 *R.81FF..-00.000-18..............*

RECORD SEQUENCE NUMBER - 3
000000 00400010 003C8110 F3F2F94B F9F6F560 C3C1F0F1 40404040 60C1C2E3 40404040 *.a.329.965-CA01 -ABT *
000020 C300F0F0 F0F00000 60F0F04B F0F0F360 F0F00000 00000000 00000000 00000000 *C.0000..-00.003-00..............*

RECORD SEQUENCE NUMBER - 4
000000 00400010 003C8110 F3F2F94B F9F6F860 C3C1F0F1 40404040 60C1C2E3 40404040 *.a.329.968-CA01 -ABT *
000020 D910F0F1 F0F20006 60F0F04B F1F6F660 F1F00000 00000000 00200000 00000000 *R.0102..-00.166-10..............*

RECORD SEQUENCE NUMBER - 5
000000 00400010 003C8110 F3F3F04B F1F3F560 C3C1F0F1 40404040 60C1C2E3 40404040 *.a.330.135-CA01 -ABT *
000020 D910F0F1 F2F00006 60F0F04B F0F0F060 F1F00000 00000012 00200000 00000000 *R.0120..-00.000-10..............*

RECORD SEQUENCE NUMBER - 6
000000 00400010 003C8110 F3F3F04B F1F3F660 C3C1F0F1 40404040 60C1C2E3 40404040 *.a.330.136-CA01 -ABT *
000020 D910F8F1 F2F30006 60F0F04B F0F0F060 F1F00000 00000000 00200000 00000000 *R.8123..-00.000-10..............*

RECORD SEQUENCE NUMBER - 7
000000 00400010 003C8110 F3F3F04B F1F3F660 C3C1F0F1 40404040 60C1C2E3 40404040 *.a.330.136-CA01 -ABT *
000020 D910F8F1 C6C60006 60F0F04B F0F0F060 F1F00000 00000000 00200000 00000000 *R.81FF..-00.000-10..............*

RECORD SEQUENCE NUMBER - 8
000000 00400010 003C8110 F3F3F04B F2F5F160 C3C1F0F1 40404040 60C1C2E3 40404040 *.a.330.251-CA01 -ABT *
000020 D910F0F1 F0F20006 60F0F04B F0F0F360 F1F00000 00000000 00200000 00000000 *R.0102..-00.003-10..............*

RECORD SEQUENCE NUMBER - 9
000000 00400010 003C8110 F3F3F04B F2F5F560 C3C1F0F1 40404040 60C1C2E3 40404040 *.a.330.255-CA01 -ABT *
000020 D910F0F1 F2F00006 60F0F04B F0F0F060 F1F00000 00000012 00200000 00000000 *R.0120..-00.000-10..............*

RECORD SEQUENCE NUMBER - 10
000000 00400010 003C8110 F3F3F04B F2F5F660 C3C1F0F1 40404040 60C1C2E3 40404040 *.a.330.256-CA01 -ABT *
000020 D910F8F1 F2F30006 60F0F04B F0F0F060 F1F00000 00000000 00200000 00000000 *R.8123..-00.000-10..............*

RECORD SEQUENCE NUMBER - 11
000000 00400010 003C8110 F3F3F04B F2F5F660 C3C1F0F1 40404040 60C1C2E3 40404040 *.a.330.256-CA01 -ABT *
000020 D918F8F1 C6C60006 60F0F04B F0F0F060 F1F80000 00000000 00200000 00000000 *R.81FF..-00.000-18..............*

RECORD SEQUENCE NUMBER - 12
000000 00400010 003C8110 F3F3F04B F3F0F260 C3C1F0F1 40404040 60C1C2E3 40404040 *.a.330.302-CA01 -ABT *
000020 C300F0F0 F0F00000 60F0F04B F0F0F160 F0F00000 00000000 00000000 00000000 *C.0000..-00.001-00..............*

RECORD SEQUENCE NUMBER - 13
000000 00400010 003C8110 F3F3F04B F3F0F460 C3C1F0F1 40404040 60C1C2E3 40404040 *.a.330.304-CA01 -ABT *
000020 D903F0F0 F0F00006 60F0F04B F0F8F960 F0F30000 00000000 00200000 00000000 *R.0000..-00.089-03..............*

RECORD SEQUENCE NUMBER - 14
000000 00400010 003C8110 F3F3F04B F3F9F460 C3C1F0F1 40404040 60C1C2E3 40404040 *.a.330.394-CA01 -ABT *
000020 C600F0F0 F0F00000 60F0F04B F0F0F060 F0F00000 00000000 00000000 00000000 *F.0000..-00.000-00..............*

144 Advanced MERVA Link

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|

|
|

Example 4: Send Two Acknowledgment Messages
The following is an example of a weak external conversation trace written by a
sending MTP during the transfer of two acknowledgment messages:

In this example:
v The MIP window size was 001.
v The connection to the partner system was immediately available when the MTP

starts (record 15).
v A confirmation was requested for the initial probe (record 19) as well as for each

message (records 22 and 25).

This trace corresponds to the trace shown in “Example 2: Receive Two
Acknowledgments” on page 142.

The Internal Conversation Trace
The MERVA Link internal conversation trace is written by a sending and by a
receiving message transfer program to the internal conversation trace area of that
program. The internal conversation trace area is a part of a larger main storage
area, the message transfer program (permanent) work area. The length of the
internal conversation trace area is individually specified by each MERVA Link

RECORD SEQUENCE NUMBER - 15
000000 00400010 003C8110 F4F0F64B F9F4F760 E3F1C140 40404040 0000071C 00000045 *.a.406.947-T1A*
000020 F100F0F0 F0F00000 60F0F04B F0F0F060 F0F00000 00000000 C6C4F0C1 C3F2F9F1 *1.0000..-00.000-00......FD0AC291*

RECORD SEQUENCE NUMBER - 16
000000 00400010 003C8110 F4F0F64B F9F4F860 E3F1C140 40404040 60C1C2D8 40404040 *.a.406.948-T1A -ABQ *
000020 C100F0F0 F0F00000 60F0F04B F0F0F060 F0F05100 00000000 C3C1F0F1 40404040 *A.0000..-00.000-00......CA01 *

RECORD SEQUENCE NUMBER - 17
000000 00400010 003C8110 F4F0F64B F9F4F860 E3F1C140 40404040 60C1C2D8 40404040 *.a.406.948-T1A -ABQ *
000020 D700F0F0 F0F00000 60F0F04B F0F0F160 F0F05A00 00000000 C5D2C1D9 40404040 *P.0000..-00.001-00!.....EKAR *

RECORD SEQUENCE NUMBER - 18
000000 00400010 003C8110 F4F0F64B F9F5F060 E3F1C140 40404040 60C1C2D8 40404040 *.a.406.950-T1A -ABQ *
000020 E200F0F1 F0F00000 60F0F04B F0F0F060 F0F05A00 00000000 00000000 00000000 *S.0100..-00.000-00!.............*

RECORD SEQUENCE NUMBER - 19
000000 00400010 003C8110 F4F0F64B F9F5F060 E3F1C140 40404040 60C1C2D8 40404040 *.a.406.950-T1A -ABQ *
000020 E500F8F1 C6C60000 60F0F04B F0F9F860 F0F05A00 00000000 00000000 00000000 *V.81FF..-00.098-00!.............*

RECORD SEQUENCE NUMBER - 20
000000 00400010 003C8110 F4F0F74B F1F1F060 E3F1C140 40404040 60C1C2D8 40404040 *.a.407.110-T1A -ABQ *
000020 E200F0F1 F0F20000 60F0F04B F0F0F060 F0F05A00 00000000 00000000 00000000 *S.0102..-00.000-00!.............*

RECORD SEQUENCE NUMBER - 21
000000 00400010 003C8110 F4F0F74B F1F1F060 E3F1C140 40404040 60C1C2D8 40404040 *.a.407.110-T1A -ABQ *
000020 E200F0F1 F1F20000 60F0F04B F0F0F060 F0F05A00 00000000 00000000 00000000 *S.0112..-00.000-00!.............*

RECORD SEQUENCE NUMBER - 22
000000 00400010 003C8110 F4F0F74B F1F1F160 E3F1C140 40404040 60C1C2D8 40404040 *.a.407.111-T1A -ABQ *
000020 E500F8F1 C6C60000 60F0F04B F0F9F760 F0F05A00 00000000 00000000 00000000 *V.81FF..-00.097-00!.............*

RECORD SEQUENCE NUMBER - 23
000000 00400010 003C8110 F4F0F74B F3F2F660 E3F1C140 40404040 60C1C2D8 40404040 *.a.407.326-T1A -ABQ *
000020 E200F0F1 F0F20000 60F0F04B F0F0F060 F0F05A00 00000000 00000000 00000000 *S.0102..-00.000-00!.............*

RECORD SEQUENCE NUMBER - 24
000000 00400010 003C8110 F4F0F74B F3F2F660 E3F1C140 40404040 60C1C2D8 40404040 *.a.407.326-T1A -ABQ *
000020 E200F0F1 F1F20000 60F0F04B F0F0F060 F0F05A00 00000000 00000000 00000000 *S.0112..-00.000-00!.............*

RECORD SEQUENCE NUMBER - 25
000000 00400010 003C8110 F4F0F74B F3F2F760 E3F1C140 40404040 60C1C2D8 40404040 *.a.407.327-T1A -ABQ *
000020 E500F8F1 C6C60000 60F0F04B F0F6F360 F0F05A00 00000000 00000000 00000000 *V.81FF..-00.063-00!.............*

RECORD SEQUENCE NUMBER - 26
000000 00400010 003C8110 F4F0F74B F4F6F960 E3F1C140 40404040 60C1C2D8 40404040 *.a.407.469-T1A -ABQ *
000020 C600F0F0 F0F00000 60F0F04B F0F0F460 F0F00000 00000000 00000000 00000000 *F.0000..-00.004-00..............*

Chapter 12. MERVA Link ESA Conversation Traces 145

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|

|
|

|
|

|
|

message transfer program. This area provides space for a specific maximum
number of trace entries. It is used in wrap-around mode. The last trace entry is
identified by the timestamp in all entries.

The MERVA Link internal conversation trace, which is supported in all MERVA
Link CICS environments and in the MERVA Link IMS APPC environment
(APPC/MVS) as a weak trace (this means, no application data is traced), is always
written. It cannot be disabled. The control information contained in an internal
conversation trace entry and the layout of that entry is individually specified by
each MERVA Link message transfer program.

The internal conversation trace contains only communication commands issued in
one task. A trace entry is written as soon as control is returned to the MTP after
issuing the corresponding APPC command.

The MERVA Link message transfer programs that write an internal conversation
trace are listed in Table 6.

Table 6. MERVA Link Message Transfer Programs

MTP Name Description

EKATS10 A sending MTP that supports APPC in the MERVA ESA CICS
environment.

EKATR10 A receiving MTP that supports APPC in the MERVA ESA CICS
environment.

EKATPO1 A sending MTP that supports APPC/MVS in the MERVA ESA IMS
environment.

EKATPI1 A receiving MTP that supports APPC/MVS and APPC/IMS in the
MERVA ESA IMS environment.

The Back-to-Back TP Mirror EKATM10 does not issue APPC conversation
commands, and therefore does not support an internal conversation trace.

EKATS10 Internal Conversation Trace
The length of the internal conversation trace area of the MERVA Link sending MTP
in the CICS environment is 4096 bytes. It is identified by the eye catcher EKATS10
INTERNAL CONV TRACE AREA in a storage dump of a MERVA Link CICS
sending task.

The length of a conversation trace entry is 64 bytes. The length, layout, and
contents are the same as a weak external conversation trace entry (see Table 5 on
page 139). The maximum number of entries in the EKATS100 conversation trace
area is 64.

EKATR10 Internal Conversation Trace
The length of the internal conversation trace area of the MERVA Link sending MTP
in the CICS environment is 4096 bytes. It is identified by the eye catcher EKATR10
INTERNAL CONV TRACE AREA in a storage dump of a MERVA Link CICS
receiving task.

The length of a conversation trace entry is 64 bytes. The length, layout, and
contents are the same as a weak external conversation trace entry (see Table 5 on
page 139). The maximum number of entries in the EKATR10 conversation trace
area is 64.

146 Advanced MERVA Link

|
|
|

|
|

||

||

||
|

||
|

||
|

||
|
|

|
|

EKATPO1 Internal Conversation Trace
The length of the internal conversation trace area of the MERVA Link sending MTP
in the IMS APPC/MVS environment is 2048 bytes. It is identified by the eye
catcher EKATPO1 INTERNAL CONV TRACE AREA in a storage dump of a
MERVA Link IMS APPC sending task.

The length of a conversation trace entry is 32 bytes. The maximum number of
entries in the EKATPO1 conversation trace area is 64.

The format of a conversation trace entry, this is, the displacement of its fields in
the entry, the field lengths, and a description of each field is shown in Table 7.

Table 7. EKATPO1 Conversation Trace Entry

Displ. Length Field Description

00 1 Command Identifier (see Table 3 on page 136)

01 1 Reserved

02 4 Application Data Identifier in characters

06 2 Bytes 2 and 3 of the ATB_RETURN_CODE

08 8 Relative Time in the format SSS.FFF- (seconds and milliseconds)

16 8 Command Duration in the format -SS.FFF- (seconds and
milliseconds)

24 8 Diagnostic control information (optional)

Figure 9 shows a sample internal conversation trace written by EKATPO1 during
the transfer of two application messages from APPC/MVS to CICS/ESA (R).

An allocate command in the APPC/MVS environment covers the functionality of
both an allocate command and a connect process command in the CICS
environment. That is why you cannot see an entry for a connect process command
in conversation trace of program EKATPO1.

The diagnostic control information of the internal conversation trace records for an
AMPDU Heading (PDU identifier X’0120’) shows the total body data length within
four bytes. It is X’00000354’ in that example.

0008C7E0 C5D2C1E3 D7D6F140 C9D5E3C5 D9D5C1D3 40C3D6D5 E540E3D9 C1C3C540 C1D9C5C1 *EKATPO1 INTERNAL CONV TRACE AREA*
0008C800 C100F0F0 F0F00000 F4F5F94B F8F1F760 60F0F14B F5F1F860 00000000 00000000 *A.0000..459.817..01.518.........*
0008C820 E200F0F1 F0F00000 F4F6F14B F3F3F560 60F0F04B F1F0F660 00000000 00000000 *S.0100..461.335..00.106.........*
0008C840 E500F8F1 C6C60000 F4F6F14B F4F4F260 60F0F04B F4F1F160 00000000 00000000 *V.81FF..461.442..00.411.........*
0008C860 E200F0F1 F0F20000 F4F6F24B F0F2F560 60F0F04B F0F0F060 00000000 00000000 *S.0102..462.025..00.000.........*
0008C880 E200F0F1 F2F00000 F4F6F24B F0F2F660 60F0F04B F0F0F060 00000354 00000000 *S.0120..462.026..00.000.........*
0008C8A0 E200F8F1 F2F20000 F4F6F24B F0F2F760 60F0F04B F0F0F060 00000000 00000000 *S.8122..462.027..00.000.........*
0008C8C0 E300F8F1 C6C60000 F4F6F24B F0F2F860 60F0F04B F0F0F260 00000000 00000000 *T.81FF..462.028..00.002.........*
0008C8E0 E200F0F1 F0F20000 F4F6F24B F4F2F260 60F0F04B F0F0F160 00000000 00000000 *S.0102..462.422..00.001.........*
0008C900 E200F0F1 F2F00000 F4F6F24B F4F2F460 60F0F04B F0F0F060 00000354 00000000 *S.0120..462.424..00.000.........*
0008C920 E200F8F1 F2F20000 F4F6F24B F4F2F560 60F0F04B F0F0F060 00000000 00000000 *S.8122..462.425..00.000.........*
0008C940 E300F8F1 C6C60000 F4F6F24B F4F2F560 60F0F04B F0F0F460 00000000 00000000 *T.81FF..462.425..00.004.........*
0008C960 E500F0F0 F0F00000 F4F6F24B F5F0F260 60F0F04B F2F3F560 00000000 00000000 *V.0000..462.502..00.235.........*
0008C980 C600F0F0 F0F00000 F4F6F24B F9F6F360 60F0F04B F0F4F560 00000000 00000000 *F.0000..462.963..00.045.........*

Figure 9. EKATPO1 Conversation Trace: Send Two Application Messages

Chapter 12. MERVA Link ESA Conversation Traces 147

|
|
|

EKATPI1 Internal Conversation Trace
The length of the internal conversation trace area of the MERVA Link receiving
MTP in the IMS APPC/MVS environment is 2048 bytes. It is identified by the eye
catcher EKATPI1 INTERNAL CONV TRACE AREA in a storage dump of a
MERVA Link APPC/MVS receiving task.

The length of a conversation trace entry is 32 bytes. The maximum number of
entries in the EKATPI1 conversation trace area is 64.

The format of a conversation trace entry, that is, the displacement of its fields in
the entry, the field lengths, and a description of each field is shown in Table 8.

Table 8. EKATPI1 Conversation Trace Entry

Displ. Length Field Description

00 1 Command Identifier (see Table 3 on page 136)

01 1 Compressed Conversation Indicators (see Table 4 on page 137)

02 4 Application Data Identifier in characters

06 1 Byte 3 of the ATB_RETURN_CODE

07 1 Byte 3 of the ATB Service Reason Code

08 8 Relative Time in the format SSS.FFF- (seconds and milliseconds)

16 8 Command Duration in the format -SS.FFF- (seconds and
milliseconds)

24 8 Compressed conversation indicators in characters or additional
control information (optional)

Figure 10 shows a sample internal conversation trace written by EKATPI1 during
the transfer of two acknowledgment messages from CICS/ESA to APPC/MVS.

029057C0 C5D2C1E3 D7C9F140 C9D5E3C5 D9D5C1D3 40C3D6D5 E540E3D9 C1C3C540 C1D9C5C1 *EKATPI1 INTERNAL CONV TRACE AREA*
029057E0 D910F0F1 F0F00000 F2F5F74B F6F6F360 60F0F04B F0F0F060 F1F00000 00000000 *R.0100..257.663..00.000.10......*
02905800 D908F8F1 C6C60000 F2F5F74B F6F6F460 60F0F04B F0F0F060 F0F80000 00000000 *R.81FF..257.664..00.000.08......*
02905820 C310F0F0 F0F00000 F2F5F94B F7F9F660 60F0F04B F0F0F360 F1F00000 00000000 *C.0000..259.796..00.003.10......*
02905840 D910F0F1 F0F20000 F2F5F94B F8F0F060 60F0F04B F0F8F660 F1F00000 00000000 *R.0102..259.800..00.086.10......*
02905860 D910F0F1 F2F00000 F2F5F94B F8F8F660 60F0F04B F0F0F060 F1F00000 00000000 *R.0112..259.886..00.000.10......*
02905880 D910F8F1 C6C60000 F2F5F94B F8F8F760 60F0F04B F0F0F060 F1F00000 00000000 *R.81FF..259.887..00.000.10......*
029058A0 D910F0F1 F0F20000 F2F6F04B F0F6F960 60F0F04B F0F0F060 F1F00000 00000000 *R.0102..260.069..00.000.10......*
029058C0 D910F0F1 F2F00000 F2F6F04B F0F6F960 60F0F04B F0F0F060 F1F00000 00000000 *R.0112..260.069..00.000.10......*
029058E0 D908F8F1 C6C60000 F2F6F04B F0F6F960 60F0F04B F0F0F060 F1F00000 00000000 *R.81FF..260.069..00.000.08......*
02905900 C310F0F0 F0F00000 F2F6F04B F2F3F460 60F0F04B F0F0F360 F1F00000 00000000 *C.0000..260.234..00.003.10......*
02905920 D903F0F0 F0F00000 F2F6F04B F2F3F760 60F0F04B F1F0F360 F0F30000 00000000 *R.0000..260.237..00.103.03......*
02905940 C600F0F0 F0F00000 F2F6F04B F3F4F160 60F0F04B F0F3F660 F0F00000 00000000 *F.0000..260.341..00.036.00......*

Figure 10. EKATPI1 Conversation Trace: Receive Two Acknowledgments

148 Advanced MERVA Link

|
|
|

Chapter 13. MERVA Link USS Problem Determination Aids

MERVA Link USS provides tracing and error reporting facilities for problem
determination.

Processing Trace Facility
MERVA Link USS provides a processing trace facility that can be activated by
setting values during customization, or by issuing MERVA Link application control
commands. For an inbound conversation, the receiving process (ekatpi for SNA
APPC or ekatci for TCP/IP) writes processing information to a trace file. For an
outbound conversation, the sending ASP writes processing information to a trace
file.

The information contained in a MERVA Link processing trace file is mainly the
entry and exit of the MERVA Link programs providing the services of the MERVA
Link sublayers (AS, P2, P1, and TP). However, other information that might be of
interest is written to the trace file, for example:
v The begin of received PDU segments (TPI, TCI)
v The complete PDU segments in hexadecimal and character format (P1I, P1O)
v Error data received from a partner process (TPO, TCO)

Each line in the trace file (a trace entry) begins with the name of the MERVA Link
program that inserted the trace entry. The program name is followed by a
3-character identifier of the applicable internal function (for example, EKATPI_rds
or EKAP1I_cip). The data of a trace entry is self explanatory. An excerpt from a
routing process with trace level 1 is shown in Figure 11 on page 150.

© Copyright IBM Corp. 1991, 2001 149

|

|

|
|

|
|

|
|
|
|
|
|

|
|
|
|

|

|

|

|
|
|
|
|
|

Trace File Allocation Modes
There are two modes in which the MERVA Link USS processing trace facility can
record trace data in files:

EKATPI Conversation start on Mon Oct 26 17:10:22 1998
EKATPI Partner LU name is DEIBMFD.FD0AC291 , user ID is HUS
.
.
.
EKATPI_rcv Starting a new PDU on Mon Oct 26 17:10:23 1998
EKATPI_rds PDU segment received is 004D 0100 , received length is 004D
EKATPI_rds PDU segment received is 0004 81FF , received length is 0004
EKATPI_rds Request for confirmation received
EKATPI_cmp Complete PDU rcvd on Mon Oct 26 17:10:23 1998

EKATPI_hsi Partner MERVA system type/version C410 found in Probe PDU
.
.
.
EKAP1R_rtm Recipient node HUSX1 is not the local node
EKAP1R_rtm Route inbound PDU via TCP/IP at 623.170
EKAP1R_rtm Adjacent host name is husx.bs.boeblingen.ibm.com
.
.
.
EKATCO_con Service Primitive is CONNECT.Request
EKATCO_con Partner host name is husx.bs.boeblingen.ibm.com
EKATCO_con Partner host address is 9.164.170.51
EKATCO_con Partner port number is 7110
EKATCO_con Probe Envelope start is 00710100 001C1001 0008A100

EKATCO_trm Returning from TCO with RC = 00 and RS = 00

EKAP1R_tme Activity complete at 623.791, time delta is 000.621
EKAP1R_trm Returning from P1I with RC = 00 and RS = 00

EKATPI_val Transfer confirmation requested by partner TP

EKAP1I_cip Service Primitive is ProcessPDU.Indication
EKAP1R_rtm Route request for confirmation via TCP/IP at 623.791

EKATCO_rtc Service Primitive is SendPDU.Request
EKATCO_rtc Request confirmation without data

EKATCO_rci Request confirmation at 17:10:23 with 60 sec timeout
EKATCO_rci Return from read at 17:10:24

EKATCO_trm Returning from TCO with RC = 00 and RS = 00

EKAP1R_tme Activity complete at 624.131, time delta is 000.339
EKAP1R_trm Returning from P1I with RC = 00 and RS = 00

EKATPI_cfm Probe or message window confirmed

EKATPI_rcv Starting a new PDU on Mon Oct 26 17:10:24 1998
EKATPI_rds Deallocated normal received
.
.
.
EKATPI Conversation end Mon Oct 26 17:10:24 1998
EKATPI Elapsed time is 2 seconds

Figure 11. Routing Process Trace (SNA to TCP/IP)

150 Advanced MERVA Link

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|

Sequential mode

The trace is written to a file with a name that includes a timestamp. Trace
files are never overwritten.

Trace files have names of the form

trace_name.t.MMDDhhmmss.x

where:

trace_name The name of the incoming SNA process, incoming TCP/IP
process, or ASP that is writing the trace file

MMDDhhmmss
The month, day, hour, minute, and second the trace file is
created

x An index number that is set to 1 immediately after the
generation of the ACT, incremented with each trace that is
recorded, and reset to 1 when the MERVA Link daemon is
started

Wrap-around mode

The trace is written to a file with a name that includes an index number.
This number is set to 1 for the first trace, then incremented, up to a limit,
for each new trace file. When the limit is reached, the number is reset to 1
and the process is repeated. Each time a number is reused, the old data in
the file is overwritten.

Trace files have names of the form

trace_name.trace.n

where:

trace_name The name of the incoming SNA process, incoming TCP/IP
process, or ASP that is writing the trace file

n The index number.

A different trace-file allocation mode can be specified for:
v Each sending ASP
v All receiving SNA APPC processes
v All receiving TCP/IP processes

Which mode is used is determined by the value of the trace-file wrap limit of the
corresponding resource type:
v If the wrap limit is 0, the sequential mode is used.
v If the wrap limit is 1 to 255, the wrap-around mode is used. The trace-file wrap

limit determines the maximum number of trace files.

Trace File Directory
The name of the directory to which a trace file is written is determined by a
parameter of the MERVA Link USS application control table (ACT), which is
described in “Application Control Table (ACT)” on page 97. Alternativey, you can
use an ACC command to modify the directory path manually.

If a MERVA Link USS inbound TP process cannot attach to the ACT, and:

Chapter 13. MERVA Link USS Problem Determination Aids 151

|

|
|

|

|

|

||
|

|
|
|

||
|
|
|

|

|
|
|
|
|

|

|

|

||
|

||

|

|

|

|

|
|

|

|
|

|

|
|
|
|

|

v The MERVA USS instance directory name is available, the process writes a trace
to the /trc subdirectory of the instance directory ($MERVA_DIR/trc, for example
/u/merva1/trc)

v The MERVA USS instance directory name is not available, the process writes a
trace to the /tmp file system

If the request to open a trace file fails, an inbound TP process writes a trace file to
the /tmp file system. This file has the name ekatpi.trace (for the SNA APPC
inbound TP) or ekatci.trace (for the TCP/IP inbound TP), and gives the name of
the trace file that could not be successfully opened, and the reason for the failure,
for example, that the TP process had insufficient authorization to write to the trace
directory.

If there is no more free space in the file system that contains the trace file directory,
no trace is written. A directory entry might be generated, however the file size will
be zero. A failure to write a trace does not influence the handling of messages,
which is the main task of a MERVA Link process.

Trace Levels
The amount of information that is written to a trace file is specified by the trace
level. A different trace level can be specified for:
v Each sending ASP
v All receiving SNA APPC processes
v All receiving TCP/IP processes

A trace level can be one of the following:

0 No trace is to be written. This is how you switch off tracing for a sending
process or a group of receiving processes.

1 The process activity is to be traced.

2 The process activity and the transmitted control information (PDUs
without the message text) is to be traced.

3 The process activity and the transmitted information (PDUs including the
message text) is to be traced.

9 A time trace for performance analysis is to be conducted.

The MERVA Link USS trace facility can be completely disabled with the ACC
command rtd (reset trace directory name).

Time Trace
The information contained in a MERVA Link processing trace file generated using
trace level 9 (time trace) contains the following elements:
v For a send or receive message process:

– Initial and final environment information of a processing trace at level 1
– Service primitive identification entries at the P2 layer (entry)
– Time trace entries at the P2 layer (exit)

v For a message routing process:
– Initial and final environment information of a processing trace at level 1
– Routing activity explanation entries at the P1 layer (entry)
– Time trace entries at the P1 layer (exit)

152 Advanced MERVA Link

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|

|
|

|

|

|

|

||
|

||

||
|

||
|

||

|
|

|

|
|

|

|

|

|

|

|

|

|

A time trace entry shows a relative time and a time delta, both in seconds and
milliseconds. A time trace entry with a time delta of more than one second is
marked by an arrow at the right end of the trace entry line.

PDU Segment Trace Format
PDU segments are shown in the processing trace when the trace level is 2 or 3. A
PDU segment trace consists of a block of trace entries. The first and the last entry
of that block identify the begin and the end of the traced PDU segment (PDU
envelope, PDU content, and PDU body).

Each PDU segment data trace entry displays up to 16 data bytes, and consists of
the following areas:
v The trace entry identifier (for example, EKAP1I_trc)
v The data displacement in hexadecimal format (for example, 00001A)
v The PDU data in hexadecimal character format, four groups of eight

hexadecimal digits each
v The PDU data shown in character format, enclosed within asterisks

An example of an inbound probe and the corresponding outbound probe in a
routing process trace with trace level 2 is shown below.

Trace Facility Commands
The MERVA Link USS application control command application (ACC) provides
commands for starting and stopping the MERVA Link processing trace facility, and
for setting parameters such as the directory path to which traces are written, the
trace level, and the wrap limit. These commands are described in the MERVA for
ESA Operations Guide.

Intersystem Error Reporting
MERVA Link message transfer activities are performed by:
v Sending processes (also called client processes), which connect to a partner

system and send messages

EKAP1I_trc PDU envelope data begin ---*
EKACSC_pxc 000000 004D0100 001C1001 0008A100 C3F4F1F0 * .(........x.C410 *
EKACSC_pxc 000010 0009A101 E2C4C6C3 F10007A1 02C1F4C1 * ..x.SDFC1..x.A4A *
EKACSC_pxc 000020 00141101 0009A101 C8E4E2E7 F10007A1 *x.HUSX1..x *
EKACSC_pxc 000030 02C1F1C1 00141403 0008A201 E7F1F4C1 * .A1A......s.X14A *
EKACSC_pxc 000040 0008A202 E7F4F1C1 0005B004 E3 * ..s.X41A....T *
EKAP1I_trc PDU envelope data end ---*

EKAP1R_trc PDU envelope data begin ---*
EKACSC_pxc 000000 00710100 001C1001 0008A100 C3F4F1F0 * .I........x.C410 *
EKACSC_pxc 000010 0009A101 E2C4C6C3 F10007A1 02C1F4C1 * ..x.SDFC1..x.A4A *
EKACSC_pxc 000020 00141101 0009A101 C8E4E2E7 F10007A1 *x.HUSX1..x *
EKACSC_pxc 000030 02C1F1C1 00141403 0008A201 E7F1F4C1 * .A1A......s.X14A *
EKACSC_pxc 000040 0008A202 E7F4F1C1 0005B004 E3002410 * ..s.X41A....T... *
EKACSC_pxc 000050 030007A1 0888A4A2 000CA109 4354DEEA * ...x.hus..x.dhz2 *
EKACSC_pxc 000060 A6E95A5B 0008A10A 363490DF 0005B005 * wZ!$..x...0∇.... *
EKACSC_pxc 000070 F0 * 0 *
EKAP1R_trc PDU envelope data end ---*

Figure 12. Routing Process PDU Trace Example

Chapter 13. MERVA Link USS Problem Determination Aids 153

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|

|
|
|
|

|
|

|

|

|
|

|

|
|
||

|

|
|
|
|
|

|
|

|

|
|

v Receiving processes (also called server processes), which accept an inbound
connect request and receive messages

v Routing processes, which route conversations from a client to a server system if
the client and server processes are not directly connected

An error can occur in any MERVA Link process. A failing process provides error
information to local users and administrators as specified by the local MERVA Link
installation. However, the MERVA Link system that hosts a failing process might
be a remote system. To take appropriate action for error correction, information
about the error must be made available to MERVA Link users and administrators
at the local system.

This section describes the facilities provided by MERVA Link implementations in
different operating system environments to report a routing or server process error
to a local MERVA Link user or administrator.

Standard Error Information
Standard information about the status of a MERVA Link process consists of a
status code (two numeric characters) and a diagnostic code (six alphanumeric
characters). A status code of 08 or greater indicates a process error in all MERVA
Link implementations. The diagnostic code provides information about the error in
this case.

Status Code
Status codes 08 and 12 indicate a MERVA Link process error to a client MERVA
Link user or administrator. These status code values are also used by a routing or
server process to report a MERVA Link process error to the client system. All
MERVA Link implementations (except MERVA Link OS/2) add one to the status
code when they present error information of a MERVA Link routing or server
process to a client MERVA Link user. Status codes 09 and 13 indicate a MERVA
Link process error in a MERVA Link partner system. The diagnostic code
associated with one of the latter status codes originates from a partner MERVA
Link system.

Diagnostic Code
In case of a MERVA Link process error, the diagnostic code contains information
about the specific error. The format and the meaning of this information is
specified individually by each MERVA Link implementation. A small set of
diagnostic codes that consist of a mnemonic is shared by some MERVA Link
implementations. In general, it is necessary to know the type of the originating
MERVA Link implementation, and to consult its messages and codes manual to
understand the meaning of a diagnostic code.

Extended Error Information
Additional error information is defined by the MERVA Link architecture and
supported in individual subsets by various MERVA Link implementations.

Diagnostic Code Originator Type
The reliable interpretation of a diagnostic code requires the knowlege of the type of
the MERVA Link system that generated that diagnostic code. This is why a
diagnostic code may be associated with an indicator of the type of the originating
MERVA Link system, for example, MERVA Link ESA, MERVA Link USS, or
MERVA Link AIX.

154 Advanced MERVA Link

|
|

|
|

|
|
|
|
|
|

|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|

Internal Error Code Vector
MERVA Link processes use internally a set of return codes, reason codes, and other
error codes for internal error reporting. These codes are the basis for generating a
diagnostic code that reports an error to a process external resource. However, a
subset of the available error information may be lost when the diagnostic code is
generated. This is why some MERVA Link implementations provide a MERVA Link
administrator with a set of internal codes called an error code vector (ECV). The
ECV can be used for reference and detailed error analysis. Advanced knowledge of
MERVA Link is required to interpret these error codes.

Error Explanation
The diagnostic code or the error code vector is the base information for error
analysis and explanation of a MERVA Link process error. In most cases, a MERVA
Link user or administrator must consult the appropriate MERVA Link
documentation to perform that task.

To facilitate error analysis and the interpretation of MERVA Link process error
information, some MERVA Link implementations provide error explanations in the
form of a set of short operator message text lines. The currently available MERVA
Link user interfaces do not support the display of error explanations. Error
explanations are, however, accessible to a MERVA Link system administrator in
MERVA Link traces and storage dumps.

Routing and Receiving Processes
MERVA Link routing and receiving processes that find an error use the applicable
technique to indicate a conversation error, and send a MERVA Link error report to
their partner process. Any error report contains the status code 08 or 12, and a
diagnostic code of 6 alphanumeric characters.

Additional error information is included in an error report by some MERVA Link
implementations. The related functions are described in the following separately
for the various MERVA Link implementations. MERVA Link implementations that
are not mentioned in the following provide only the minimum error report.

MERVA Link ESA Version 4
All MERVA Link receiving process implementations of MERVA ESA Version 4
(CICS ESA, CICS VSE, and IMS) support extended error reporting. The extended
error reporting functions are, however, activated only if the partner system
indicated its ability to accept an extended error report. The latter restriction
provides compatibility with backlevel client MERVA Link implementations.

Diagnostic Code Originator Type: The diagnostic code originator type is
indicated by the character E for MERVA Link ESA in the corresponding data
element of an error report. All three MERVA Link ESA implementations share the
same set of diagnostic and error codes. This is why the three MERVA Link ESA
implementations are identified by the same diagnostic code originator type value.

MERVA Link ESA Internal Error Code Vector: The receiving process error code
vector is included in the corresponding data element of an error report. It consists
of six error codes (EC1 to EC6). The error code vector contains thefollowing error
codes:
v When the error was found by an inbound TP (EKATR10 or EKATPI1), the error

code vector contains the four return, reason, and error codes at the TP level as
EC1 to EC4. EC5 and EC6 are zero.

Chapter 13. MERVA Link USS Problem Determination Aids 155

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

v When the error was found by the inbound MTSP (EKASP10), the error code
vector contains EC1 = 0008 and the four return, reason, and error codes at the
MTSP level as EC2 to EC5. EC6 is zero.

v When the error was found by the inbound AS Program (EKAAR10), the error
code vector contains EC1 = 0008, EC2 = 0008, and the four return, reason, and
error codes at the AS level as EC3 to EC6.

MERVA Link USS
The MERVA Link USS receiving process implementation supports extended error
reporting. This applies also to a routing process that is, primarily, a receiving
process that performs also sending process functions. Except the diagnostic code
originator type, the extended error reporting functions are, however, activated only
if the partner system indicated its ability to accept an extended error report. The
latter restriction provides compatibility with backlevel client MERVA Link
implementations.

A MERVA Link USS routing process does not modify an error report received from
a partner system if the client (sending) system did not indicate its ability to accept
an extended error report.

Diagnostic Code Originator Type: The Diagnostic Code Originator Type U is part
of any error report generated by a MERVA Link USS function. A minimum error
report with this additional data element is acceptable by all MERVA Link
implementations that are currently in service, and by all future MERVA Link
implementations.

Error Explanation Text: A MERVA Link receiving or routing process calls its error
explanation functions only if the partner system indicated its ability to accept an
extended error report.
v Any error that originates from a MERVA Link USS function is reported by the

standard means (status code, diagnostic code, and diagnostic code originator
type). In addition, the MERVA Link USS diagnostic code is explained in a set of
operator message lines that are included in the error report.

v An error report that originates from a partner MERVA Link ESA system may
contain the applicable originator type data element and the internal error code
vector data element. Both error information items are saved in the ACT ISC
entry that describes the originator of the error report. ACC commands provide
for displaying and explaining the error code vector.
A MERVA Link USS routing process that finds this information in an error
report and no explanation of the error, tries to explain the MERVA Link ESA
error. It adds the set of operator messages to the error report that is returned by
the MERVA Link USS function ekaxev (explain MERVA Link ESA error code
vector). The first message of this set tells that the explanation of the error code
vector has been performed by MERVA Link USS.

Sending Processes
MERVA Link sending processes are informed by their partner processes about an
error. A sending process enters the receive state, and tries to receive a MERVA Link
error report from its partner process. The data received in that situation may
actually be an error report. It can, however, be any other unidentified data.

Unidentified error data is shown, for example, in traces or dumps, but not further
analyzed. An error report received from a partner process is handled as specified
by each MERVA Link implementation. The related functions are described in the
following separately for the various MERVA Link implementations.

156 Advanced MERVA Link

|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|

|
|
|
|

MERVA Link ESA Version 4
All MERVA Link sending process implementations of MERVA ESA Version 4 (CICS
ESA, CICS VSE, and IMS) are able to receive an extended error report of about
1000 bytes from a partner system. The error report can be found in a MERVA Link
sending transaction dump. It can also be found in a MERVA Link CICS full
conversation trace.

MERVA Link USS
The MERVA Link USS sending process and the sending functions of a MERVA
Link USS routing process support extended error reporting. An error report
received from a partner system is scanned for extended error information.
Diagnostic code originator type information and a MERVA Link ESA error code
vector are saved in the applicable ACT ISC entry. ACC commands are provided to
display and explain a MERVA Link ESA error code vector.

The following information is written to the MERVA Link USS process trace (if
applicable):
v Operator message identifying the DC originator type
v Error report PDU in character and hexadecimal dump format
v One of the following, as far as available from the error report:

1. Error explanation messages found in the error report
2. MERVA Link ESA error code vector and its explanation
3. Explanation of a diagnostic code originating from MERVA Link USS
4. Explanation of a diagnostic code originating from MERVA Link AIX or

MERVA Link NT
5. Status code and diagnostic code values uninterpreted

The correctness of MERVA Link AIX and MERVA Link NT diagnostic code
explanations by MERVA Link USS is not guaranteed. A corresponding disclaimer is
included in the trace.

Error Report Log Facility
The MERVA Link USS Error Report Log Facility (ERR) provides for logging error
information received from a partner system and error reports sent to a partner
system in permanent error report log files. The error report log files are written to
the err subdirectory of the applicable MERVA instance directory. There are separate
error report log files for inbound and outbound error reports and for each partner
node.

Error Report Log File
An error report log file is created if it is not already available when an error report
log entry must be written. A failure to open the file is reported in the MERVA Link
USS processing trace.

Error report log entries are always appended to the existing entries in an error log
file. MERVA Link USS does never delete entries from an error report log file. A
system administrator may wish to delete entries or remove complete files as
appropriate.

Inbound Error Report Log File
The outbound MERVA Link USS TPs EKATPO and EKATCO append an error log
entry to the applicable error report log file when error information is received from
a partner system. The name of the error log file is the name of the partner node

Chapter 13. MERVA Link USS Problem Determination Aids 157

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|

|

|

|

|

|

|
|

|

|
|
|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

prefixed by ier (for inbound error report). The full path name of the inbound error
report log file for partner node PNODE1 reads, for example,
/u/merva1/err/ier.PNODE1.

Inbound Error Log Entry
An inbound error log entry starts with a heading that contains the time when the
error information was received from the partner system. It is followed by the error
information, an error report PDU, or unidentified error data.

The data in an error log entry is the same information that is written to the
processing trace file by the MERVA Link USS internal function ekaper(). If an error
report PDU is received, it is the PDU data in hexadecimal and character dump
format, and one of the following:
v Error explanation lines, if operator message data elements are contained in the

error report PDU
v An explanation of MERVA Link ESA receiving process error codes, if a MERVA

Link ESA error code vector is contained in the error report PDU
v An explanation of the diagnostic code contained in the error report PDU, if the

originator of this diagnostic code is MERVA Link ESA, AIX, or NT

The begin of unidentified error data is shown in three formats, hexadecimal,
EBCDIC characters, and ASCII characters.

Outbound Error Report Log File
The inbound MERVA Link USS TPs EKATPI and EKATCI append an error log
entry to the applicable error report log file when an error report is sent to a
partner system. The name of the error log file is the name of the partner node
prefixed by oer (for outbound error report). The full path name of the outbound
error report log file for partner node PNODE1 reads, for example,
/u/merva1/err/oer.PNODE1.

Outbound Error Log Entry
An outbound error log entry starts with a heading that contains the time when the
error report was about to be sent to the partner system. The error report PDU
follows in hexadecimal and character dump format.

ACC Commands That Handle Extended Error Information
The following application control command application (ACC) commands handle
extended error information:

Analyze Routing Process to P-Node
The arc command tells whether a MERVA Link ESA error code vector
(ECV) is available from the specified ACT ISC entry and, if it is, tells you
which ACC command you need to enter to display an explanation of the
ECV.

Display Status of ACT ISC Entry for P-Node
The command dsc tells whether a MERVA Link ESA error code vector
(ECV) is available from the specified ACT ISC entry. If it is available, the
dsc command output contains the ACC command that must be entered to
display an explanation of the ECV.

Explain ECV contained in an ISC entry
The command dxc partner_node explains the error code vector (ECV) of a
receiving process in a partner MERVA Link ESA node that is be contained
in a MERVA Link USS ACT ISC entry. The argument partner_node is the
name of the partner node that identifies the ISC entry.

158 Advanced MERVA Link

|
|
|

|
|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|

|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

Explain ECV for receiving process error of type AS
The command dxra as_ecv displays an explanation of the specified error
code vector (ECV) of a MERVA Link ESA receiving process error of type
AS.

If none of the error codes in the ECV are preceded by 00, you need not
specify those leading zeros. However, if any of the error codes in the ECV
are, you must specify each error code as 4 hexadecimal digits (including
the leading zeros).

Explain ECV for receiving process error of type MT
The command dxrm mt_ecv displays an explanation of the specified error
code vector (ECV) of a MERVA Link ESA receiving process error of type
MT.

If none of the error codes in the ECV are preceded by 00, you need not
specify those leading zeros. However, if any of the error codes in the ECV
are, you must specify each error code as 4 hexadecimal digits (including
the leading zeros).

Explain ECV for sending process error of type MT
The command dxsm mt_ecv displays an explanation of the specified error
code vector (ECV) of a MERVA Link ESA sending process error of type
MT.

If none of the error codes in the ECV are preceded by 00, you need not
specify those leading zeros. However, if any of the error codes in the ECV
are, you must specify each error code as 4 hexadecimal digits (including
the leading zeros).

Chapter 13. MERVA Link USS Problem Determination Aids 159

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|

160 Advanced MERVA Link

Part 5. Appendixes

© Copyright IBM Corp. 1991, 2001 161

162 Advanced MERVA Link

Appendix A. PDU Data Elements

Level-1 Data Elements
The MERVA Link conversation trace contains conversation trace records. A
conversation trace record consists of the conversation trace record prefix, the
conversation trace control data element, and level 1 PDU data elements as
conversation trace data.

A conversation trace record is a local matter. It is not transmitted to a partner
system. Its data elements are defined as follows:

ID Meaning of the Data Element

0010
8110

Conversation Trace Record
Conversation Trace Control Data

The other PDU data elements at the first level are:

ID Meaning of the Data Element

0100
0101
0102
0111
0112
0120
0202
0220
0221
8121
8122
8123
8126
8127
8132
8133
8136
8137
81FF
8221
82FF

Probe Envelope
Delivery Report Envelope
Application Message PDU Envelope
Delivery Report Content
Status Report ASPDU
IM-ASPDU Heading
Command PDU Envelope
Command Request PDU Heading
Command Response PDU Heading
IM-ASPDU Body Part Header
IM-ASPDU Body Part Data Segment (EBCDIC)
IM-ASPDU Body Part Encrypted Data Segment (EBCDIC)
IM-ASPDU Body Part Compressed Data Segment (EBCDIC)
IM-ASPDU Body Part Encrypted Compressed Data Segment (EBCDIC)
IM-ASPDU Body Part Data Segment (ASCII)
IM-ASPDU Body Part Encrypted Data Segment (ASCII)
IM-ASPDU Body Part Compressed Data Segment (ASCII)
IM-ASPDU Body Part Encrypted Compressed Data Segment (ASCII)
Message PDU Trailer
Command Response PDU Body
Command PDU Trailer

© Copyright IBM Corp. 1991, 2001 163

Contents of Implicit Data Elements

Probe Envelope
A probe envelope (ID=0100) can contain the following data elements:

ID Meaning of the Data Element

1001
1101
1403
1003
1004
B004

Originator Address
Recipient Address
MTP Trace
Client Security Information
Change Security Information
Probe Function

AMPDU Envelope
An AMPDU envelope (ID=0102) can contain the following data elements:

ID Meaning of the Data Element

1001
1101
9200
9201
9301
1403
B000
B001
B002
B003

Originator Address
Recipient Address
ASL Content Identifier
MPDU Identifier
Submit Time in YYMMDDHHMMSS Format
MTP Trace
Encoded Information Type
Request for Delivery Notification
Priority
Content Type

Delivery Report Envelope and Content
The support of a MERVA Link delivery report and the associated data elements
(ID=0101 and 0111) have been dropped in MERVA ESA Version 4.

Command PDU Envelope
A command PDU envelope (ID=0202) can contain the following data elements:

ID Meaning of the Data Element

1001
1101
B000

Originator Address
Recipient Address
Encoded Information Type

Originator or Recipient Address
An originator or recipient address (ID=1001 or 1101) can contain the following data
elements:

ID Meaning of the Data Element

A100
A101
A102

MERVA System Type and Version
Message Transfer Node Name
MERVA Link ASP Name

164 Advanced MERVA Link

|
|

|

|
|

|

Security Information
The security information data elements in a probe (ID=1003 or 1004) can contain
the following data elements:

ID Meaning of the Data Element

A108
A109
A10A
B005

User ID
Encrypted Password
Password Encryption Control Information
Password Encryption Method Identifier

MTP Trace
An MTP trace (ID=1403) can contain the following data elements:

ID Meaning of the Data Element

A201
A202

External Sending MTP Name
External Receiving MTP Name

IM-ASPDU Heading
An IM-ASPDU heading (ID=0120) can contain the following data elements:

ID Meaning of the Data Element

1002
1102
9202
9203
9204
9600
9601
9602
9603
9604
9605
9608
9609
9610
9611
9612
9613
9614
B000
B001
B002
C000
C001

Originator Application Descriptor
Recipient Application Descriptor
Inter-Application Messaging Message Identifier
Message Integrity Protocol Message Identifier
Message Integrity Protocol Message Sequence Number
Message Body Encryption Indicator
Message Authentication Indicator
MERVA ESA Line Format Identifier
MERVA ESA Message Type
Message Integrity Protocol Window Size
Message Body Compression Indicator
Buckslip
Subject
Application Request Data
Application Response Data
Application Acknowledgment Data
Application MAC Data
Application PAC Data
Body Part Type
Request for Receipt Notification
Priority
Message Integrity Protocol Reset Indicator
Possible Duplicate Message (PDM) Indicator

An IM-ASPDU Heading (ID=0120) can also contain application-defined data
elements at any level. These data elements are passed between cooperating
applications but they are not processed by standard MERVA Link Application
Support. These data elements can be used by customer-written application support
filters to add private information to a message heading.

Appendix A. PDU Data Elements 165

|

|
|

|||

|
|
|
|

|
|
|
|
|

|

Application Descriptor
An application descriptor (ID=1002 or 1102) can contain the following data
elements:

ID Meaning of the Data Element

A001
A101
A102

ASP Free Form Name
Message Transfer Node Name
MERVA Link ASP Name

Status Report ASPDU
A status report ASPDU (ID=0112) can contain the following data elements:

ID Meaning of the Data Element

1102
9202
9203
9204
9604
9608
9609
9611
9612
9613
9614
C000
1500

Reported Recipient Application Descriptor
Inter-Application Messaging Message Identifier
Message Integrity Protocol Message Identifier
Message Integrity Protocol Message Sequence Number
Message Integrity Protocol Window Size
Buckslip
Subject
Application Response Data
Application Acknowledgment Data
Application MAC Data
Application PAC Data
Message Integrity Protocol Reset Indicator
Report

Report Data Element
A report data element (ID=1500) can contain the following data elements:

ID Meaning of the Data Element

9301
9501
9502
9503
9605
9606
B006

Date/Time in YYMMDDHHMMSS Format
Return Code
Diagnostic Code
Report Data
MERVA Link Internal Error Code Vector
Operator Message
Diagnostic Code Originator Type

Command Request PDU Heading
A command request PDU heading (ID=0220) can contain the following data
elements:

ID Meaning of the Data Element

1002
1102
9603
9608
960A
960B
960C
B000

Originator Application Descriptor
Recipient Application Descriptor
MERVA ESA Message Type
Buckslip containing the operator command
Unique MSC Correlation Data
Specific MSC Correlation Data
Specific CMD Correlation Data
Body Part Type

166 Advanced MERVA Link

|
|
|

Command Response PDU Heading
A command response PDU heading (ID=0221) can contain the following data
elements:

ID Meaning of the Data Element

1002
1102
1500
9603
9608
960A
960B
B000

Originator Application Descriptor
Recipient Application Descriptor
Command Response Report
MERVA ESA Message Type
Buckslip containing a short operator message
Unique MSC Correlation Data
Specific MSC Correlation Data
Body Part Type

Command Response Report
A command response report (ID=1500) can contain the following data elements:

ID Meaning of the Data Element

9301
9501
9504

Date/Time in YYMMDDHHMMSS Format
Return Code
Command Processing Diagnostic Code

Application Defined Data Elements
The range of application defined data element identifiers is X'FF00' to X'FFFE' for
explicit data elements and X'7F00' to X'7FFF' for implicit data elements. MERVA
Link will not use any data element identifier starting with X'7F' or X'FF' in future
extensions of the MERVA Link data stream architecture.

ID Usage of the Data Element

7Fxx
FFxx

Application private implicit data element
Application private explicit data element

Any PDU can contain the “do not care” data element at any place on any level
higher than one.

ID Meaning of the Data Element

FFFF Do not take care of this data element

List of Implicit Data Elements
Implicit data elements are defined at levels 1 and 2.

Level-1 Implicit Data Elements
The following table lists all implicit level-1 PDU data elements defined by MERVA
Link in ascending sequence of their data element identifier.

Appendix A. PDU Data Elements 167

|

|

ID Meaning of the Data Element

0010
0100
0101
0102
0111
0112
0120
0202
0220
0221

Conversation Trace Record
Probe Envelope
Delivery Report Envelope
Application Message PDU Envelope
Delivery Report Content
Status Report ASPDU
IM-ASPDU Heading
Command PDU Envelope
Command Request PDU Heading
Command Response PDU Heading

Level-2 Implicit Data Elements
The following table lists all implicit level-2 PDU data elements defined by MERVA
Link in ascending sequence of their data element identifier.

ID Meaning of the Data Element

1001
1002
1003
1004
1101
1102
1403
1500

Originator Address
Originator Application Descriptor
Client Security Information
Change Security Information
Recipient Address
Recipient Application Descriptor
MTP Trace
Receipt Report, Error Report, Command Processing Report

List of Explicit Data Elements
Explicit data elements are defined at levels 1, 2, and 3.

Level-1 Explicit Data Elements
The following table lists all explicit level-1 PDU data elements defined by MERVA
Link in ascending sequence of their data element identifier.

ID Meaning of the Data Element

8110
8121
8122
8123
8126
8127
8132
8133
8136
8137
81FF
8220
8221
82FF

Conversation Trace Control Data
IM-ASPDU Body Part Header
IM-ASPDU Body Part Data Segment (EBCDIC)
IM-ASPDU Body Part Encrypted Data Segment (EBCDIC)
IM-ASPDU Body Part Compressed Data Segment (EBCDIC)
IM-ASPDU Body Part Encrypted Compressed Data Segment (EBCDIC)
IM-ASPDU Body Part Data Segment (ASCII)
IM-ASPDU Body Part Encrypted Data Segment (ASCII)
IM-ASPDU Body Part Compressed Data Segment (ASCII)
IM-ASPDU Body Part Encrypted Compressed Data Segment (ASCII)
Message PDU Trailer
Command Request PDU Body
Command Response PDU Body
Command PDU Trailer

168 Advanced MERVA Link

|

|
|

|
|

|

|

Level-2 and Level-3 Explicit Data Elements
The following table lists all explicit level-2 and level-3 PDU data elements defined
by MERVA Link in ascending sequence of their data element identifier.

ID Meaning of the Data Element

9200
9201
9202
9203
9204
9301
9501
9502
9503
9504
9505
9506
9600
9601
9602
9603
9604
9605
9608
9609
960A
960B
960C
9610
9611
9612
9613
9614

ASL Content Identifier
MPDU Identifier
Inter-Application Messaging Message Identifier
Message Integrity Protocol Message Identifier
Message Integrity Protocol Message Sequence Number
Date and Time in YYMMDDHHMMSS Format
Delivery or Receipt Return Code
Message Processing Diagnostic Code
Report Data
Command Processing Diagnostic Code
MERVA Link Internal Error Code Vector
Operator Message, Error Code Explanation
Message Body Encryption Indicator
Message Authentication Indicator
MERVA ESA Line Format Identifier
MERVA ESA Message Type
Message Integrity Protocol Window Size
Message Body Compression Indicator
Buckslip
Subject
Unique MSC Correlation Data
Specific MSC Correlation Data
Specific CMD Correlation Data
Application Request Data
Application Response Data
Application Acknowledgment Data
Application MAC Data
Application PAC Data

A001
A100
A101
A102
A108
A109
A10A
A201
A202

ASP Free Form Name
MERVA System Type and Version
Message Transfer Node Name
MERVA Link ASP Name
Security Information User ID
Security Information Encrypted Password
Security Information Password Encryption Control Info
External Sending MTP Name
External Receiving MTP Name

B000
B001
B002
B003
B004
B005
B006

Encoded Information Type, Body Part Type
Request for Delivery or Receipt Notification
Priority
Content Type
Probe Function
Password Encryption Method
Diagnostic Code Originator Type

C000
C001

Message Integrity Protocol Reset Indicator
Possible Duplicate Message (PDM) Indicator

Appendix A. PDU Data Elements 169

|

|
|

|
|
|
|

|

|
|
|

|
|

170 Advanced MERVA Link

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Deutschland
Informationssysteme GmbH
Department 3982
Pascalstrasse 100

© Copyright IBM Corp. 1991, 2001 171

70569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement
or any equivalent agreement between us.

The following paragraph does apply to the US only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v Advanced Peer-to-Peer Networking
v AIX
v APPN
v C/370
v CICS
v CICS/ESA
v CICS/MVS
v CICS/VSE
v DB2
v Distributed Relational Database Architecture
v DRDA
v IBM
v IMS/ESA
v Language Environment
v MQSeries
v MVS

172 Advanced MERVA Link

v MVS/ESA
v MVS/XA
v OS/2
v OS/390
v RACF
v VSE/ESA
v VTAM

Workstation (AWS) and Directory Services Application (DSA) are trademarks of
S.W.I.F.T., La Hulpe in Belgium.

Pentium is a trademark of Intel Corporation.

PC Direct is a trademark of Ziff Communications Company in the United States,
other countries, or both, and is used by IBM Corporation under license.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or
both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix B. Notices 173

174 Advanced MERVA Link

Glossary of Terms and Abbreviations

This glossary defines terms as they are used in
this book. If you do not find the terms you are
looking for, refer to the IBM Dictionary of
Computing, New York: McGraw-Hill, and the
S.W.I.F.T. User Handbook.

A
ACB. Access method control block.

ACC. MERVA Link USS application control command
application. It provides a means of operating MERVA
Link USS in USS shell and MVS batch environments.

Access method control block (ACB). A control block
that links an application program to VSAM or VTAM.

ACD. MERVA Link USS application control daemon.

ACT. MERVA Link USS application control table.

address. See SWIFT address.

address expansion. The process by which the full
name of a financial institution is obtained using the
SWIFT address, telex correspondent’s address, or a
nickname.

AMPDU. Application message protocol data unit,
which is defined in the MERVA Link P1 protocol, and
consists of an envelope and its content.

answerback. In telex, the response from the dialed
correspondent to the WHO R U signal.

answerback code. A group of up to 6 letters following
or contained in the answerback. It is used to check the
answerback.

APC. Application control.

API. Application programming interface.

APPC. Advanced Program-to-Program
Communication based on SNA LU 6.2 protocols.

APPL. A VTAM definition statement used to define a
VTAM application program.

application programming interface (API). An
interface that programs can use to exchange data.

application support filter (ASF). In MERVA Link, a
user-written program that can control and modify any
data exchanged between the Application Support Layer
and the Message Transfer Layer.

application support process (ASP). An executing
instance of an application support program. Each
application support process is associated with an ASP
entry in the partner table. An ASP that handles
outgoing messages is a sending ASP; one that handles
incoming messages is a receiving ASP.

application support program (ASP). In MERVA Link,
a program that exchanges messages and reports with a
specific remote partener ASP. These two programs must
agree on which conversation protocol they are to use.

ASCII. American Standard Code for Information
Interchange. The standard code, using a coded set
consisting of 7-bit coded characters (8 bits including
parity check), used for information interchange among
data processing systems, data communication systems,
and associated equipment. The ASCII set consists of
control characters and graphic characters.

ASF. Application support filter.

ASF. (1) Application support process. (2) Application
support program.

ASPDU. Application support protocol data unit,
which is defined in the MERVA Link P2 protocol.

authentication. The SWIFT security check used to
ensure that a message has not changed during
transmission, and that it was sent by an authorized
sender.

authenticator key. A set of alphanumeric characters
used for the authentication of a message sent via the
SWIFT network.

authenticator-key file. The file that stores the keys
used during the authentication of a message. The file
contains a record for each of your financial institution’s
correspondents.

B
Back-to-Back (BTB). A MERVA Link function that
enables ASPs to exchange messages in the local MERVA
Link node without using data communication services.

bank identifier code. A 12-character code used to
identify a bank within the SWIFT network. Also called
a SWIFT address. The code consists of the following
subcodes:
v The bank code (4 characters)
v The ISO country code (2 characters)
v The location code (2 characters)
v The address extension (1 character)

© Copyright IBM Corp. 1991, 2001 175

v The branch code (3 characters) for a SWIFT user
institution, or the letters “BIC” for institutions that
are not SWIFT users.

Basic Security Manager (BSM). A component of
VSE/ESA Version 2.4 that is invoked by the System
Authorization Facility, and used to ensure signon and
transaction security.

BIC. Bank identifier code.

BIC Bankfile. A tape of bank identifier codes supplied
by S.W.I.F.T.

BIC Database Plus Tape. A tape of financial
institutions and currency codes, supplied by S.W.I.F.T.
The information is compiled from various sources and
includes national, international, and cross-border
identifiers.

BIC Directory Update Tape. A tape of bank identifier
codes and currency codes, supplied by S.W.I.F.T., with
extended information as published in the printed BIC
Directory.

body. The second part of an IM-ASPDU. It contains
the actual application data or the message text that the
IM-AMPDU transfers.

BSC. Binary synchronous control.

BSM. Basic Security Manager.

BTB. Back-to-back.

buffer. A storage area used by MERVA programs to
store a message in its internal format. A buffer has an
8-byte prefix that indicates its length.

C
CBT. SWIFT computer-based terminal.

CCSID. Coded character set identifier.

CDS. Control data set.

central service. In MERVA, a service that uses
resources that either require serialization of access, or
are only available in the MERVA nucleus.

CF message. Confirmed message. When a sending
MERVA Link system is informed of the successful
delivery of a message to the receiving application, it
routes the delivered application messages as CF
messages, that is, messages of class CF, to an ACK wait
queue or to a complete message queue.

COA. Confirm on arrival.

COD. Confirm on delivery.

coded character set identifier (CCSID). The name of a
coded set of characters and their code point
assignments.

commit. In MQSeries, to commit operations is to make
the changes on MQSeries queues permanent. After
putting one or more messages to a queue, a commit
makes them visible to other programs. After getting
one or more messages from a queue, a commit
permanently deletes them from the queue.

confirm-on-arrival (COA) report. An MQSeries report
message type created when a message is placed on that
queue. It is created by the queue manager that owns
the destination queue.

confirm-on-delivery (COD) report. An MQSeries
report message type created when an application
retrieves a message from the queue in a way that
causes the message to be deleted from the queue. It is
created by the queue manager.

control fields. In MERVA Link, fields that are part of
a MERVA message on the queue data set and of the
message in the TOF. Control fields are written to the
TOF at nesting identifier 0. Messages in SWIFT format
do not contain control fields.

correspondent. An institution to which your
institution sends and from which it receives messages.

correspondent identifier. The 11-character identifier of
the receiver of a telex message. Used as a key to
retrieve information from the Telex correspondents file.

cross-system coupling facility. See XCF.

coupling services. In a sysplex, the functions of XCF
that transfer data and status information among the
members of a group that reside in one or more of the
MVS systems in the sysplex.

couple data set. See XCF couple data set.

CTP. MERVA Link command transfer processor.

currency code file. A file containing the currency
codes, together with the name, fraction length, country
code, and country names.

D
daemon. A long-lived process that runs unattended to
perform continuous or periodic systemwide functions.

DASD. Direct access storage device.

data area. An area of a predefined length and format
on a panel in which data can be entered or displayed.
A field can consist of one or more data areas.

data element. A unit of data that, in a certain context,
is considered indivisible. In MERVA Link, a data

176 Advanced MERVA Link

element consists of a 2-byte data element length field, a
2-byte data-element identifier field, and a field of
variable length containing the data element data.

datagram. In TCP/IP, the basic unit of information
passed across the Internet environment. This type of
message does not require a reply, and is the simplest
type of message that MQSeries supports.

data terminal equipment. That part of a data station
that serves as a data source, data link, or both, and
provides for the data communication control function
according to protocols.

DB2. A family of IBM licensed programs for relational
database management.

dead-letter queue. A queue to which a queue
manager or application sends messages that it cannot
deliver. Also called undelivered-message queue.

dial-up number. A series of digits required to
establish a connection with a remote correspondent via
the public telex network.

direct service. In MERVA, a service that uses resources
that are always available and that can be used by
several requesters at the same time.

display mode. The mode (PROMPT or NOPROMPT)
in which SWIFT messages are displayed. See PROMPT
mode and NOPROMPT mode.

distributed queue management (DQM). In MQSeries
message queuing, the setup and control of message
channels to queue managers on other systems.

DQM. Distributed queue management.

DTE. Data terminal equipment.

E
EBCDIC. Extended Binary Coded Decimal
Interchange Code. A coded character set consisting of
8-bit coded characters.

ECB. Event control block.

EDIFACT. Electronic Data Interchange for
Administration, Commerce and Transport (a United
Nations standard).

ESM. External security manager.

EUD. End-user driver.

exception report. An MQSeries report message type
that is created by a message channel agent when a
message is sent to another queue manager, but that
message cannot be delivered to the specified
destination queue.

external line format (ELF) messages. Messages that
are not fully tokenized, but are stored in a single field
in the TOF. Storing messages in ELF improves
performance, because no mapping is needed, and
checking is not performed.

external security manager (ESM). A security product
that is invoked by the System Authorization Facility.
RACF is an example of an ESM.

F
FDT. Field definition table.

field. In MERVA, a portion of a message used to enter
or display a particular type of data in a predefined
format. A field is located by its position in a message
and by its tag. A field is made up of one or more data
areas. See also data area.

field definition table (FDT). The field definition table
describes the characteristics of a field; for example, its
length and number of its data areas, and whether it is
mandatory. If the characteristics of a field change
depending on its use in a particular message, the
definition of the field in the FDT can be overridden by
the MCB specifications.

field group. One or several fields that are defined as
being a group. Because a field can occur more than
once in a message, field groups are used to distinguish
them. A name can be assigned to the field group
during message definition.

field group number. In the TOF, a number is assigned
to each field group in a message in ascending order
from 1 to 255. A particular field group can be accessed
using its field group number.

field tag. A character string used by MERVA to
identify a field in a network buffer. For example, for
SWIFT field 30, the field tag is :30:.

FIN. Financial application.

FIN-Copy. The MERVA component used for SWIFT
FIN-Copy support.

finite state machine. The theoretical base describing
the rules of a service request’s state and the conditions
to state transitions.

FMT/ESA. MERVA-to-MERVA Financial Message
Transfer/ESA.

form. A partially-filled message containing data that
can be copied for a new message of the same message
type.

G
GPA. General purpose application.

Glossary of Terms and Abbreviations 177

H
HFS. Hierarchical file system.

hierarchical file system (HFS). A system for
organizing files in a hierarchy, as in a UNIX system.
OS/390 UNIX System Services files are organized in an
HFS. All files are members of a directory, and each
directory is in turn a member of a directory at a higher
level in the HFS. The highest level in the hierarchy is
the root directory.

I
IAM. Interapplication messaging (a MERVA Link
message exchange protocol).

IM-ASPDU. Interapplication messaging application
support protocol data unit. It contains an application
message and consists of a heading and a body.

incore request queue. Another name for the request
queue to emphasize that the request queue is held in
memory instead of on a DASD.

InetD. Internet Daemon. It provides TCP/IP
communication services in the OS/390 USS
environment.

initiation queue. In MQSeries, a local queue on which
the queue manager puts trigger messages.

input message. A message that is input into the
SWIFT network. An input message has an input
header.

INTERCOPE TelexBox. This telex box supports
various national conventions for telex procedures and
protocols.

interservice communication. In MERVA ESA, a
facility that enables communication among services if
MERVA ESA is running in a multisystem environment.

intertask communication. A facility that enables
application programs to communicate with the MERVA
nucleus and so request a central service.

IP. Internet Protocol.

IP message. In-process message. A message that is in
the process of being transferred to another application.

ISC. Intersystem communication.

ISN. Input sequence number.

ISN acknowledgment. A collective term for the
various kinds of acknowledgments sent by the SWIFT
network.

ISO. International Organization for Standardization.

ITC. Intertask communication.

J
JCL. Job control language.

journal. A chronological list of records detailing
MERVA actions.

journal key. A key used to identify a record in the
journal.

journal service. A MERVA central service that
maintains the journal.

K
KB. Kilobyte (1024 bytes).

key. A character or set of characters used to identify
an item or group of items. For example, the user ID is
the key to identify a user file record.

key-sequenced data set (KSDS). A VSAM data set
whose records are loaded in key sequence and
controlled by an index.

keyword parameter. A parameter that consists of a
keyword, followed by one or more values.

KSDS. Key-sequenced data set.

L
LAK. Login acknowledgment message. This message
informs you that you have successfully logged in to the
SWIFT network.

large message. A message that is stored in the large
message cluster (LMC). The maximum length of a
message to be stored in the VSAM QDS is 31900 bytes.
Messages up to 2MB can be stored in the LMC. For
queue management using DB2 no distinction is made
between messages and large messages.

large queue element. A queue element that is larger
than the smaller of:

v The limiting value specified during the customization
of MERVA

v 32KB

LC message. Last confirmed control message. It
contains the message-sequence number of the
application or acknowledgment message that was last
confirmed; that is, for which the sending MERVA Link
system most recently received confirmation of a
successful delivery.

LDS. Logical data stream.

LMC. Large message cluster.

178 Advanced MERVA Link

LNK. Login negative acknowledgment message. This
message indicates that the login to the SWIFT network
has failed.

local queue. In MQSeries, a queue that belongs to a
local queue manager. A local queue can contain a list of
messages waiting to be processed. Contrast with remote
queue.

local queue manager. In MQSeries, the queue
manager to which the program is connected, and that
provides message queuing services to that program.
Queue managers to which a program is not connected
are remote queue managers, even if they are running
on the same system as the program.

login. To start the connection to the SWIFT network.

LR message. Last received control message, which
contains the message-sequence number of the
application or acknowledgment message that was last
received from the partner application.

LSN. Login sequence number.

LT. See LTERM.

LTC. Logical terminal control.

LTERM. Logical terminal. Logical terminal names
have 4 characters in CICS and up to 8 characters in
IMS.

LU. A VTAM logical unit.

M
maintain system history program (MSHP). A
program used for automating and controlling various
installation, tailoring, and service activities for a VSE
system.

MCA. Message channel agent.

MCB. Message control block.

MERVA ESA. The IBM licensed program Message
Entry and Routing with Interfaces to Various
Applications for ESA.

MERVA Link. A MERVA component that can be used
to interconnect several MERVA systems.

message. A string of fields in a predefined form used
to provide or request information. See also SWIFT
financial message.

message body. The part of the message that contains
the message text.

message category. A group of messages that are
logically related within an application.

message channel. In MQSeries distributed message
queuing, a mechanism for moving messages from one
queue manager to another. A message channel
comprises two message channel agents (a sender and a
receiver) and a communication link.

message channel agent (MCA). In MQSeries, a
program that transmits prepared messages from a
transmission queue to a communication link, or from a
communication link to a destination queue.

message control block (MCB). The definition of a
message, screen panel, net format, or printer layout
made during customization of MERVA.

Message Format Service (MFS). A MERVA direct
service that formats a message according to the
medium to be used, and checks it for formal
correctness.

message header. The leading part of a message that
contains the sender and receiver of the message, the
message priority, and the type of message.

Message Integrity Protocol (MIP). In MERVA Link,
the protocol that controls the exchange of messages
between partner ASPs. This protocol ensures that any
loss of a message is detected and reported, and that no
message is duplicated despite system failures at any
point during the transfer process.

message-processing function. The various parts of
MERVA used to handle a step in the
message-processing route, together with any necessary
equipment.

message queue. See queue.

Message Queue Interface (MQI). The programming
interface provided by the MQSeries queue managers. It
provides a set of calls that let application programs
access message queuing services such as sending
messages, receiving messages, and manipulating
MQSeries objects.

Message Queue Manager (MQM). An IBM licensed
program that provides message queuing services. It is
part of the MQSeries set of products.

message reference number (MRN). A unique 16-digit
number assigned to each message for identification
purposes. The message reference number consists of an
8-digit domain identifier that is followed by an 8-digit
sequence number.

message sequence number (MSN). A sequence
number for messages transferred by MERVA Link.

message type (MT). A number, up to 7 digits long,
that identifies a message. SWIFT messages are
identified by a 3-digit number; for example SWIFT
message type MT S100.

Glossary of Terms and Abbreviations 179

MFS. Message Format Service.

MIP. Message Integrity Protocol.

MPDU. Message protocol data unit, which is defined
in P1.

MPP. In IMS, message-processing program.

MQA. MQ Attachment.

MQ Attachment (MQA). A MERVA feature that
provides message transfer between MERVA and a
user-written MQI application.

MQH. MQSeries queue handler.

MQI. Message queue interface.

MQM. Message queue manager.

MQS. MQSeries nucleus server.

MQSeries. A family of IBM licensed programs that
provides message queuing services.

MQSeries nucleus server (MQS). A MERVA
component that listens for messages on an MQI queue,
receives them, extracts a service request, and passes it
via the request queue handler to another MERVA ESA
instance for processing.

MQSeries queue handler (MQH). A MERVA
component that performs service calls to the Message
Queue Manager via the provided Message Queue
Interface.

MRN. Message reference number.

MSC. MERVA system control facility.

MSHP. Maintain system history program.

MSN. Message sequence number.

MT. Message type.

MTP. (1) Message transfer program. (2) Message
transfer process.

MTS. Message Transfer System.

MTSP. Message Transfer Service Processor.

MTT. Message type table.

multisystem application. (1) An application program
that has various functions distributed across MVS
systems in a multisystem environment. (2) In XCF, an
authorized application that uses XCF coupling services.
(3) In MERVA ESA, multiple instances of MERVA ESA
that are distributed among different MVS systems in a
multisystem environment.

multisystem environment. An environment in which
two or more MVS systems reside on one or more
processors, and programs on one system can
communicate with programs on the other systems.
With XCF, the environment in which XCF services are
available in a defined sysplex.

multisystem sysplex. A sysplex in which one or more
MVS systems can be initialized as part of the sysplex.
In a multisystem sysplex, XCF provides coupling
services on all systems in the sysplex and requires an
XCF couple data set that is shared by all systems. See
also single-system sysplex.

MVS/ESA. Multiple Virtual Storage/Enterprise
Systems Architecture.

N
namelist. An MQSeries for MVS/ESA object that
contains a list of queue names.

nested message. A message that is composed of one
or more message types.

nested message type. A message type that is
contained in another message type. In some cases, only
part of a message type (for example, only the
mandatory fields) is nested, but this “partial” nested
message type is also considered to be nested. For
example, SWIFT MT 195 could be used to request
information about a SWIFT MT 100 (customer transfer).
The SWIFT MT 100 (or at least its mandatory fields) is
then nested in SWIFT MT 195.

nesting identifier. An identifier (a number from 2 to
255) that is used to access a nested message type.

network identifier. A single character that is placed
before a message type to indicate which network is to
be used to send the message; for example, S for SWIFT

network service access point (NSAP). The endpoint
of a network connection used by the SWIFT transport
layer.

NOPROMPT mode. One of two ways to display a
message panel. NOPROMPT mode is only intended for
experienced SWIFT Link users who are familiar with
the structure of SWIFT messages. With NOPROMPT
mode, only the SWIFT header, trailer, and pre-filled
fields and their tags are displayed. Contrast with
PROMPT mode.

NSAP. Network service access point.

nucleus server. A MERVA component that processes a
service request as selected by the request queue
handler. The service a nucleus server provides and the
way it provides it is defined in the nucleus server table
(DSLNSVT).

180 Advanced MERVA Link

O
object. In MQSeries, objects define the properties of
queue managers, queues, process definitions, and
namelists.

occurrence. See repeatable sequence.

option. One or more characters added to a SWIFT
field number to distinguish among different layouts for
and meanings of the same field. For example, SWIFT
field 60 can have an option F to identify a first opening
balance, or M for an intermediate opening balance.

origin identifier (origin ID). A 34-byte field of the
MERVA user file record. It indicates, in a MERVA and
SWIFT Link installation that is shared by several banks,
to which of these banks the user belongs. This lets the
user work for that bank only.

OSN. Output sequence number.

OSN acknowledgment. A collective term for the
various kinds of acknowledgments sent to the SWIFT
network.

output message. A message that has been received
from the SWIFT network. An output message has an
output header.

P
P1. In MERVA Link, a peer-to-peer protocol used by
cooperating message transfer processes (MTPs).

P2. In MERVA Link, a peer-to-peer protocol used by
cooperating application support processes (ASPs).

P3. In MERVA Link, a peer-to-peer protocol used by
cooperating command transfer processors (CTPs).

packet switched public data network (PSPDN). A
public data network established and operated by
network common carriers or telecommunication
administrations for providing packet-switched data
transmission.

panel. A formatted display on a display terminal.
Each page of a message is displayed on a separate
panel.

parallel processing. The simultaneous processing of
units of work by several servers. The units of work can
be either transactions or subdivisions of larger units of
work.

parallel sysplex. A sysplex that uses one or more
coupling facilities.

partner table (PT). In MERVA Link, the table that
defines how messages are processed. It consists of a

header and different entries, such as entries to specify
the message-processing parameters of an ASP or MTP.

PCT. Program Control Table (of CICS).

PDE. Possible duplicate emission.

PDU. Protocol data unit.

PF key. Program-function key.

positional parameter. A parameter that must appear
in a specified location relative to other parameters.

PREMIUM. The MERVA component used for SWIFT
PREMIUM support.

process definition object. An MQSeries object that
contains the definition of an MQSeries application. A
queue manager uses the definitions contained in a
process definition object when it works with trigger
messages.

program-function key. A key on a display terminal
keyboard to which a function (for example, a
command) can be assigned. This lets you execute the
function (enter the command) with a single keystroke.

PROMPT mode. One of two ways to display a
message panel. PROMPT mode is intended for SWIFT
Link users who are unfamiliar with the structure of
SWIFT messages. With PROMPT mode, all the fields
and tags are displayed for the SWIFT message.
Contrast with NOPROMPT mode.

protocol data unit (PDU). In MERVA Link a PDU
consists of a structured sequence of implicit and
explicit data elements:
v Implicit data elements contain other data elements.
v Explicit data elements cannot contain any other data

elements.

PSN. Public switched network.

PSPDN. Packet switched public data network.

PSTN. Public switched telephone network.

PT. Partner table.

PTT. A national post and telecommunication authority
(post, telegraph, telephone).

Q
QDS. Queue data set.

QSN. Queue sequence number.

queue. (1) In MERVA, a logical subdivision of the
MERVA queue data set used to store the messages
associated with a MERVA message-processing function.
A queue has the same name as the message-processing
function with which it is associated. (2) In MQSeries, an

Glossary of Terms and Abbreviations 181

object onto which message queuing applications can
put messages, and from which they can get messages.
A queue is owned and maintained by a queue
manager. See also request queue.

queue element. A message and its related control
information stored in a data record in the MERVA ESA
Queue Data Set.

queue management. A MERVA service function that
handles the storing of messages in, and the retrieval of
messages from, the queues of message-processing
functions.

queue manager. (1) An MQSeries system program that
provides queueing services to applications. It provides
an application programming interface so that programs
can access messages on the queues that the queue
manager owns. See also local queue manager and remote
queue manager. (2) The MQSeries object that defines the
attributes of a particular queue manager.

queue sequence number (QSN). A sequence number
that is assigned to the messages stored in a logical
queue by MERVA ESA queue management in
ascending order. The QSN is always unique in a queue.
It is reset to zero when the queue data set is formatted,
or when a queue management restart is carried out and
the queue is empty.

R
RACF. Resource Access Control Facility.

RBA. Relative byte address.

RC message. Recovered message; that is, an IP
message that was copied from the control queue of an
inoperable or closed ASP via the recover command.

ready queue. A MERVA queue used by SWIFT Link to
collect SWIFT messages that are ready for sending to
the SWIFT network.

remote queue. In MQSeries, a queue that belongs to a
remote queue manager. Programs can put messages on
remote queues, but they cannot get messages from
remote queues. Contrast with local queue.

remote queue manager. In MQSeries, a queue
manager is remote to a program if it is not the queue
manager to which the program is connected.

repeatable sequence. A field or a group of fields that
is contained more than once in a message. For example,
if the SWIFT fields 20, 32, and 72 form a sequence, and
if this sequence can be repeated up to 10 times in a
message, each sequence of the fields 20, 32, and 72
would be an occurrence of the repeatable sequence.

In the TOF, the occurrences of a repeatable sequence
are numbered in ascending order from 1 to 32767 and
can be referred to using the occurrence number.

A repeatable sequence in a message may itself contain
another repeatable sequence. To identify an occurrence
within such a nested repeatable sequence, more than
one occurrence number is necessary.

reply message. In MQSeries, a type of message used
for replies to request messages.

reply-to queue. In MQSeries, the name of a queue to
which the program that issued an MQPUT call wants a
reply message or report message sent.

report message. In MQSeries, a type of message that
gives information about another message. A report
message usually indicates that the original message
cannot be processed for some reason.

request message. In MQSeries, a type of message used
for requesting a reply from another program.

request queue. The queue in which a service request
is stored. It resides in main storage and consists of a set
of request queue elements that are chained in different
queues:

v Requests waiting to be processed

v Requests currently being processed

v Requests for which processing has finished

request queue handler (RQH). A MERVA ESA
component that handles the queueing and scheduling
of service requests. It controls the request processing of
a nucleus server according to rules defined in the finite
state machine.

Resource Access Control Facility (RACF). An IBM
licensed program that provides for access control by
identifying and verifying users to the system,
authorizing access to protected resources, logging
detected unauthorized attempts to enter the system,
and logging detected accesses to protected resources.

retype verification. See verification.

routing. In MERVA, the passing of messages from one
stage in a predefined processing path to the next stage.

RP. Regional processor.

RQH. Request queue handler.

RRDS. Relative record data set.

S
SAF. System Authorization Facility.

SCS. SNA character string

SCP. System control process.

182 Advanced MERVA Link

SDI. Sequential data set input. A batch utility used to
import messages from a sequential data set or a tape
into MERVA ESA queues.

SDO. Sequential data set output. A batch utility used
to export messages from a MERVA ESA queue to a
sequential data set or a tape.

SDY. Sequential data set system printer. A batch
utility used to print messages from a MERVA ESA
queue.

service request. A type of request that is created and
passed to the request queue handler whenever a
nucleus server requires a service that is not currently
available.

sequence number. A number assigned to each
message exchanged between two nodes. The number is
increased by one for each successive message. It starts
from zero each time a new session is established.

sign off. To end a session with MERVA.

sign on. To start a session with MERVA.

single-system sysplex. A sysplex in which only one
MVS system can be initialized as part of the sysplex. In
a single-system sysplex, XCF provides XCF services on
the system, but does not provide signalling services
between MVS systems. A single-system sysplex requires
an XCF couple data set. See also multisystem sysplex.

small queue element. A queue element that is smaller
than the smaller of:

v The limiting value specified during the customization
of MERVA

v 32KB

SMP/E. System Modification Program Extended.

SN. Session number.

SNA. Systems network architecture.

SNA character string. In SNA, a character string
composed of EBCDIC controls, optionally mixed with
user data, that is carried within a request or response
unit.

SPA. Scratch pad area.

SQL. Structured Query Language.

SR-ASPDU. The status report application support
PDU, which is used by MERVA Link for
acknowledgment messages.

SSN. Select sequence number.

subfield. A subdivision of a field with a specific
meaning. For example, the SWIFT field 32 has the
subfields date, currency code, and amount. A field can

have several subfield layouts depending on the way the
field is used in a particular message.

SVC. (1) Switched Virtual Circuit. (2) Supervisor call
instruction.

S.W.I.F.T. (1) Society for Worldwide Interbank
Financial Telecommunication s.c. (2) The network
provided and managed by the Society for Worldwide
Interbank Financial Telecommunication s.c.

SWIFT address. Synonym for bank identifier code.

SWIFT Correspondents File. The file containing the
bank identifier code (BIC), together with the name,
postal address, and zip code of each financial
institution in the BIC Directory.

SWIFT financial message. A message in one of the
SWIFT categories 1 to 9 that you can send or receive
via the SWIFT network. See SWIFT input message and
SWIFT output message.

SWIFT header. The leading part of a message that
contains the sender and receiver of the message, the
message priority, and the type of message.

SWIFT input message. A SWIFT message with an
input header to be sent to the SWIFT network.

SWIFT link. The MERVA ESA component used to
link to the SWIFT network.

SWIFT network. Refers to the SWIFT network of the
Society for Worldwide Interbank Financial
Telecommunication (S.W.I.F.T.).

SWIFT output message. A SWIFT message with an
output header coming from the SWIFT network.

SWIFT system message. A SWIFT general purpose
application (GPA) message or a financial application
(FIN) message in SWIFT category 0.

switched virtual circuit (SVC). An X.25 circuit that is
dynamically established when needed. It is the X.25
equivalent of a switched line.

sysplex. One or more MVS systems that communicate
and cooperate via special multisystem hardware
components and software services.

System Authorization Facility (SAF). An MVS or VSE
facility through which MERVA ESA communicates
with an external security manager such as RACF (for
MVS) or the basic security manager (for VSE).

System Control Process (SCP). A MERVA Link
component that handles the transfer of MERVA ESA
commands to a partner MERVA ESA system, and the
receipt of the command response. It is associated with a
system control process entry in the partner table.

Glossary of Terms and Abbreviations 183

System Modification Program Extended (SMP/E). A
licensed program used to install software and software
changes on MVS systems.

Systems Network Architecture (SNA). The
description of the logical structure, formats, protocols,
and operating sequences for transmitting information
units through, and for controlling the configuration and
operation of, networks.

T
tag. A field identifier.

TCP/IP. Transmission Control Protocol/Internet
Protocol.

Telex Correspondents File. A file that stores data
about correspondents. When the user enters the
corresponding nickname in a Telex message, the
corresponding information in this file is automatically
retrieved and entered into the Telex header area.

telex header area. The first part of the telex message.
It contains control information for the telex network.

telex interface program (TXIP). A program that runs
on a Telex front-end computer and provides a
communication facility to connect MERVA ESA with
the Telex network.

Telex Link. The MERVA ESA component used to link
to the public telex network via a Telex substation.

Telex substation. A unit comprised of the following:

v Telex Interface Program

v A Telex front-end computer

v A Telex box

Terminal User Control Block (TUCB). A control block
containing terminal-specific and user-specific
information used for processing messages for display
devices such as screen and printers.

test key. A key added to a telex message to ensure
message integrity and authorized delivery. The test key
is an integer value of up to 16 digits, calculated
manually or by a test-key processing program using the
significant information in the message, such as
amounts, currency codes, and the message date.

test-key processing program. A program that
automatically calculates and verifies a test key. The
Telex Link supports panels for input of test-key-related
data and an interface for a test-key processing program.

TFD. Terminal feature definitions table.

TID. Terminal identification. The first 9 characters of a
bank identifier code (BIC).

TOF. Originally the abbreviation of tokenized form, the
TOF is a storage area where messages are stored so that
their fields can be accessed directly by their field names
and other index information.

TP. Transaction program.

transaction. A specific set of input data that triggers
the running of a specific process or job; for example, a
message destined for an application program.

transaction code. In IMS and CICS, an alphanumeric
code that calls an IMS message processing program or
a CICS transaction. Transaction codes have 4 characters
in CICS and up to 8 characters in IMS.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of communication protocols that
support peer-to-peer connectivity functions for both
local and wide area networks.

transmission queue. In MQSeries, a local queue on
which prepared messages destined for a remote queue
manager are temporarily stored.

trigger event. In MQSeries, an event (such as a
message arriving on a queue) that causes a queue
manager to create a trigger message on an initiation
queue.

trigger message. In MQSeries, a message that contains
information about the program that a trigger monitor is
to start.

trigger monitor. In MQSeries, a continuously-running
application that serves one or more initiation queues.
When a trigger message arrives on an initiation queue,
the trigger monitor retrieves the message. It uses the
information in the trigger message to start a process
that serves the queue on which a trigger event
occurred.

triggering. In MQSeries, a facility that allows a queue
manager to start an application automatically when
predetermined conditions are satisfied.

TUCB. Terminal User Control Block.

TXIP. Telex interface program.

U
UMR. Unique message reference.

unique message reference (UMR). An optional
feature of MERVA ESA that provides each message
with a unique identifier the first time it is placed in a
queue. It is composed of a MERVA ESA installation
name, a sequence number, and a date and time stamp.

UNIT. A group of related literals or fields of an MCB
definition, or both, enclosed by a DSLLUNIT and
DSLLUEND macroinstruction.

184 Advanced MERVA Link

UNIX System Services (USS). A component of
OS/390, formerly called OpenEdition (OE), that creates
a UNIX environment that conforms to the XPG4 UNIX
1995 specifications, and provides two open systems
interfaces on the OS/390 operating system:

v An application program interface (API)

v An interactive shell interface

UN/EDIFACT. United Nations Standard for Electronic
Data Interchange for Administration, Commerce and
Transport.

USE. S.W.I.F.T. User Security Enhancements.

user file. A file containing information about all
MERVA ESA users; for example, which functions each
user is allowed to access. The user file is encrypted and
can only be accessed by authorized persons.

user identification and verification. The acts of
identifying and verifying a RACF-defined user to the
system during logon or batch job processing. RACF
identifies the user by the user ID and verifies the user
by the password or operator identification card
supplied during logon processing or the password
supplied on a batch JOB statement.

USS. UNIX System Services.

V
verification. Checking to ensure that the contents of a
message are correct. Two kinds of verification are:

v Visual verification: you read the message and
confirm that you have done so

v Retype verification: you reenter the data to be
verified

Virtual LU. An LU defined in MERVA Extended
Connectivity for communication between MERVA and
MERVA Extended Connectivity.

Virtual Storage Access Method (VSAM). An access
method for direct or sequential processing of fixed and
variable-length records on direct access devices. The
records in a VSAM data set or file can be organized in
logical sequence by a key field (key sequence), in the
physical sequence in which they are written on the data
set or file (entry sequence), or by relative-record
number.

Virtual Telecommunications Access Method (VTAM).
An IBM licensed program that controls communication
and the flow of data in an SNA network. It provides
single-domain, multiple-domain, and interconnected
network capability.

VSAM. Virtual Storage Access Method.

VTAM. Virtual Telecommunications Access Method
(IBM licensed program).

W
Windows NT service. A type of Windows NT
application that can run in the background of the
Windows NT operating system even when no user is
logged on. Typically, such a service has no user
interaction and writes its output messages to the
Windows NT event log.

X
X.25. An ISO standard for interface to packet switched
communications services.

XCF. Abbreviation for cross-system coupling facility,
which is a special logical partition that provides
high-speed caching, list processing, and locking
functions in a sysplex. XCF provides the MVS coupling
services that allow authorized programs on MVS
systems in a multisystem environment to communicate
with (send data to and receive data from) authorized
programs on other MVS systems.

XCF couple data sets. A data set that is created
through the XCF couple data set format utility and,
depending on its designated type, is shared by some or
all of the MVS systems in a sysplex. It is accessed only
by XCF and contains XCF-related data about the
sysplex, systems, applications, groups, and members.

XCF group. The set of related members defined to
SCF by a multisystem application in which members of
the group can communicate with (send data to and
receive data from) other members of the same group.
All MERVA systems working together in a sysplex
must pertain to the same XCF group.

XCF member. A specific function of a multisystem
application that is defined to XCF and assigned to a
group by the multisystem application. A member
resides on one system in a sysplex and can use XCF
services to communicate with other members of the
same group.

Glossary of Terms and Abbreviations 185

186 Advanced MERVA Link

Bibliography

MERVA ESA Publications
v MERVA for ESA Version 4: Application

Programming Interface Guide, SH12-6374
v MERVA for ESA Version 4: Advanced MERVA

Link, SH12-6390
v MERVA for ESA Version 4: Concepts and

Components, SH12-6381
v MERVA for ESA Version 4: Customization Guide,

SH12-6380
v MERVA for ESA Version 4: Diagnosis Guide,

SH12-6382
v MERVA for ESA Version 4: Installation Guide,

SH12-6378
v MERVA for ESA Version 4: Licensed Program

Specifications, GH12-6373
v MERVA for ESA Version 4: Macro Reference,

SH12-6377
v MERVA for ESA Version 4: Messages and Codes,

SH12-6379
v MERVA for ESA Version 4: Operations Guide,

SH12-6375
v MERVA for ESA Version 4: System Programming

Guide, SH12-6366
v MERVA for ESA Version 4: User’s Guide,

SH12-6376

MERVA ESA Components
Publications
v MERVA Automatic Message Import/Export Facility:

User’s Guide, SH12-6389
v MERVA Connection/NT, SH12-6339
v MERVA Connection/400, SH12-6340
v MERVA Directory Services, SH12-6367
v MERVA Extended Connectivity: Installation and

User’s Guide, SH12-6157
v MERVA Message Processing Client for Windows

NT: User’s Guide, SH12-6341
v MERVA Traffic Reconciliation, SH12-6392
v MERVA USE: Administration Guide, SH12-6338
v MERVA USE & Branch for Windows NT: User’s

Guide, SH12-6334
v MERVA USE & Branch for Windows NT:

Installation and Customization Guide, SH12-6335

v MERVA USE & Branch for Windows NT:
Application Programming Guide, SH12-6336

v MERVA USE & Branch for Windows NT:
Diagnosis Guide, SH12-6337

v MERVA USE & Branch for Windows NT:
Migration Guide, SH12-6393

v MERVA USE & Branch for Windows NT:
Installation and Customization Guide, SH12-6335

v MERVA Workstation Based Functions, SH12-6383

Other IBM Publications
v CICS Transaction Server for OS/390: CICS

Distributed Transaction Programming Guide,
SC33-1691

v CICS Transaction Server for OS/390: CICS
Intercommunication Guide, SC33-1695

v CICS Transaction Server for OS/390: CICS RACF
Security Guide, SC33-1701

v OS/390 MVS Writing TPs for APPC/MVS,
GC28-1775

v OS/390 MVS Planning: APPC/MVS Management,
GC28-1807

v OS/390 UNIX System Services User’s Guide,
SC28-1891

v OS/390 UNIX System Services Command
Reference, SC28-1892

v OS/390 Security Server (RACF) Introduction,
GC28-1912.

v High Level Assembler Language Reference,
SC26-4940

S.W.I.F.T. Publications
The following are published by the Society for
Worldwide Interbank Financial
Telecommunication, s.c., in La Hulpe, Belgium:
v S.W.I.F.T. User Handbook

v S.W.I.F.T. Dictionary

v S.W.I.F.T. FIN Security Guide

v S.W.I.F.T. Card Readers User Guide

© Copyright IBM Corp. 1991, 2001 187

188 Advanced MERVA Link

Index

A
ACC 96, 103, 128
ACC batch input mode 110
ACC commands for extended error

information 158
ACC conversation mode 108
accept an inbound message despite a

warning 73
ACD 95, 101, 127

starting 102
stopping 103

ACD (application control daemon) 11
ACD activity, monitoring 102
ACD activity trace, external 102
ACD activity trace, internal 102
ACD activity trace area 99
ACD process identifier 99
ACD process owner identifier 99
ACD sleep time interval 99
ACF (application communication

functionality) 5
acknowledgment message 7, 32

control information 69
correlation 17, 71
receiving 70
sending 69

ACQ (application control queue) 19, 61,
64

ACS 96, 128
ACT 95, 97

ASP section 99
generation time 98
header 98
identifier 98
IPC resources 97
ISC parameters for partner nodes,

changing 104
ISC section 100

ACT (application control table) 11
activity trace, external ACD 102
activity trace, internal ACD 102
activity trace area, ACD 99
address, originator or recipient 164
AIPRCV 74
allocate MERVA Link USS MVS data

sets 123
AMPDU 29

application message PDU 31, 35
content 38
envelope 36

AMPDU envelope 164
analyzing error information 108
APPC connection parameters 100
APPC TP, inbound SNA 131
application (description) 3
application acknowledgment data 44
application communication functionality

(ACF) 5
application control command

application 96, 103, 128

application control command application
for verification 116, 130

application control daemon 95, 101, 127
application control daemon (ACD) 11
application control daemon for

verification 114, 129
application control programs 12
application control queue (ACQ) 19, 61,

64
application control table 95, 97
application control table (ACT) 11
application defined data elements 167
application descriptor 42, 50, 51, 166
application MAC data 44
application message 7

PDU 29, 31, 35
receiving 70
waiting for acknowledgment 71

application MPDU 35
application PAC data 44
application request data 43
application response data 44
application support (AS) 4
application support fields 66
application support filter (ASF) 9
application support layer (ASL) 5
application support PDU 29
application support process 61
application support program (ASP) 5, 8
AS (application support) 4
AS control fields 66
AS layer programs 12
AS status of an ASP 61
ASF (application support filter) 9
ASL (application support layer) 5
ASL content identification 15
ASL message identification 16
ASP 61

application support process 5
application support program 5
AS status 61
automatic start 72
monitor 73
MT status 63

ASP (application support program) 8
ASP, modifying an 106
ASP monitor

ASP start criteria 79
direct transaction call 78
handling in MSC 77
overview 77
starting 77

ASP parameter sets 27
ASP section, ACT 99
ASPDU (application support PDU) 29
attached note 17
authentication 43
authentication, message text 18
automatic recovery 74

B
batch input mode, ACC 110
batch mode, CSI 114
begin inital message processing 21, 23
begin normal message processing 22
body

part 19, 42, 45
part data segment 19
type 44, 51, 53

body, message 7
body type, message 16
boundary

between layers 55
boundary function service primitives 6

MTL 56
MTP 57

boundary functions 6
buckslip 17
buckslip (attached note) 43, 50, 52

C
CA (confirmed and acknowledged) 65
cdc command 104
CF (confirmed) 65
CFG 96
change partner host name 104
change partner host port number 104
change partner password encryption

method 105
change partner symbolic destination

name 104
change partner TP name 105
changing ACT ISC parameters for partner

nodes 104
chc command 104
checking message integrity

receiving side 25
sending side 24

CLOSED (AS status) 63
cluster, send queue 21
CNRQ/CNCF 56, 57
command PDU envelope 164
command request PDU heading 166
command response PDU heading 167
command response report 167
command transfer processor (CTP) 48
commands, trace facility 153
compressed conversation indicators 136
compression 43
compression, message text 18
configuration file 96
configuration verification 13
configuration verification programs 97
confirmation, receipt 17
confirmation, submit 22
confirming a routed conversation 27
CONNECT.Request/Confirmation

(CNRQ/CNCF) 56, 57
connection, partner 16

© Copyright IBM Corp. 1991, 2001 189

connection parameters, SNA APPC 100
connection parameters, TCP/IP 100
content

CPDU 49
type 38

content, message 7
content identification, ASL 15
content type 15
control application for verification, local

security 118
Control Facility, MERVA Link USS 95
control fields 66
control information part, interpreting

the 138
control queue, move IP message to 22
conversation mode, ACC 108
conversation security application,

local 128
conversation security application,

partner 129
conversation security parameters 100
conversation security programs 96
conversation trace 135

command type 135
compressed conversation

indicators 136
control information 135
external 137
full external 139
internal 145
weak external 143

copy DLLs from HFS library to
PDSE 124

copy programs from HFS library to
PDSE 125

correlation, acknowledgment
message 17

correlation data 50, 51, 52, 70
cpc command 104
CPDU

body 53
content 49
heading 50, 51
trailer 53

cpe command 105
CSI 96, 112, 129
CSI batch mode 114
CSI standard input file 113
ctc command 105
CTP (command transfer processor) 48

D
daemon, application control 95, 127
daemon for verification, application

control 114, 129
data element

groups 32
length 7
level-1 163

data elements
explicit 33
implicit 33
overview 32
PDU 163

data elements, application defined 167

data elements, explicit
level-1 168
level-2 and level-3 169

data elements, implicit
level-1 167
level-2 168

data set, program objects 123
data set, side definitions 123
data sets, allocate MERVA Link USS

MVS 123
DCIN/DCRS 56, 57
DCRQ/DCCF 56, 57
delay information, event 101
delays, displaying information about

routing process event 105
DELIVER.Indication/Response

(DLIN/DLRS) 56
delivery, grade of 16
delivery error 73
delivery errors, recovering from 74
descriptor, application 166
diagnostic code 154
diagnostic code originator type 154

MERVA Link ESA Version 4 155
MERVA Link USS 156

DISCONNECT.Indication/Response
(DCIN/DCRS) 56, 57

DISCONNECT.Request/Confirmation
(DCRQ/DCCF) 56, 57

displaying information about routing
process event delays 105

DLIN/DLRS 56
DLLs from HFS library to PDSE,

copy 124
DR MPDU (delivery report MPDU) 31,

39
duplicate message, possible 19
dynamic MIP window size 20, 22

E
ECV 155
ekaacc 12
ekaacs 12
ekaasi 12
ekaaso 12
ekap1i 12
ekap1o 12
ekap2i 12
ekap2o 12
EKAPT macro 8
ekatci 12, 121
ekatco 12
ekatpi 12, 121
EKATPI1 internal conversation trace 148
ekatpo 12
EKATPO1 internal conversation

trace 147
EKATR10 internal conversation

trace 146
EKATS10 internal conversation trace 146
encoded information type 15
encryption 42
encryption, message text 18
envelope, AMPDU 164
envelope, command PDU 164
envelope, message 7

envelope, probe 164
environment variables 119
error code vector, internal 155
error explanation 155
error explanation text 156
error information, analyzing 108
error information, extended 101
error information, standard 154
error log entry, inbound 158
error log entry, outbound 158
error report log facility 157
error report log file 157
error report log file, outbound 158
error reporting, intersystem 153
errors, recovering from delivery 74
event delay information 101
event delays, displaying information

about routing process 105
event return code 22
explicit data elements 33

level-1 168
level-2 and level-3 169

extended error information 101, 154
extended error information, ACC

commands for 158
external ACD activity trace 102
external conversation trace 137

G
GDS (general data stream) 7
general data stream (GDS) 7
generation time, ACT 98
grade of delivery 16

H
header, ACT 98
header, message 7
heading, IM-ASPDU 41
HFS library to PDSE, copy DLLs

from 124
HFS library to PDSE, copy programs

from 125
HOLD (AS status) 62, 63

I
identifier, ACT 98
IM-ASPDU

body 45
heading 41
interapplication messaging

ASPDU 29
IM-ASPDU (interapplication messaging

ASPDU) 41
IM-ASPDU heading 165
immediate recovery 75
implementation overview

MERVA Link ESA 8
MERVA Link USS 11

implicit data elements 33
level-1 167
level-2 168

implicit data elements, contents of 164
in-process message (IP MS) 19

190 Advanced MERVA Link

inbound conversation, recipient
information in an 26

inbound error log entry 158
inbound error report log file 157
inbound message, accept despite a

warning an 73
inbound SNA APPC TP 131
inbound SNA APPC TP (ekatpi) 121
inbound TCP/IP TP (ekatci) 121
incoming message, route 24
information type, encoded 15
initial message processing, begin 21, 23
integrity, checking message

receiving side 25
sending side 24

interapplication messaging ASPDU 41
internal ACD activity trace 102
internal error code vector 155
interpreting the control information

part 138
intersystem error reporting 153
IP (in process) 65
IP message recovery 21, 24
IP MS (in-process message) 19
IPC resources, ACT 97
iprecov 75
ISC parameter sets 27
ISC parameters for partner nodes,

changing ACT 104
ISC section, ACT 100
ISC statistics information 101
ISC status information 100

J
journal support 86

K
kickoff command 72

L
last confirmed control message (LC

MS) 19
last received control message (LR

MS) 20
last-used message sequence number (LU

MSN) 22
layers 55
LC (last confirmed) 64
LC MS (last confirmed control

message) 19
level-1 data elements 163
level-1 implicit data elements 167
level-1explicit data elements 168
level-2 and level-3 explicit data

elements 169
level-2 implicit data elements 168
LIBPATH environment variable 119
line format 43
local conversation security

application 128
local conversation security application for

verification 130
local MERVA Link node name 98

local security application (ACS) 96
local security application for verification

(VCS) 97
local security control application for

verification 118
log facility, error report 157
log file, error report 157
log file, inbound error report 157
LR (last received) 65
LR MS (last received control

message) 20
LU MSN (last-used message sequence

number) 22

M
manual recovery 75
MERVA Link

AS functions 69
boundary functions 6
layers 6
message class concept 64
MIP (APPC environment) 19
peer-to-peer protocols 6
primitives, service 6
receiving messages 70
sending messages 69
service elements 15
service primitives 6

MERVA Link node name, local 98
MERVA Link USS in the OS/390 MVS

environment 123
MERVA Link USS in the OS/390 USS

environment 119
MERVA Link USS inbound SNA APPC

TP (ekatpi) 121
MERVA Link USS inbound TCP/IP TP

(ekatci) 121
MERVA Link USS program call

environment, standard 119
MERVA Link USS program call

environments 120
MERVA System Control Facility

(MSC) 11
MERVA System Control Facility

commands 61
message

accept despite a warning 73
body 7
class concept 64
content 7
envelope 7
header 7
identifier 42
journaling 86
MIP identifier 42
MIP sequence number 42
recovery 83
routing support 84
trace 85
trailer 7
type 43, 50, 52

message body type 16
message delivery error 73
message handling system 3
message handling system model 3
message identification, ASL 16

message identification, MTL 15
message identifier 22
message identifier, MIP 20
message integrity checks

receiving side 25
sending side 24

message integrity protocol (MIP) 17, 19
message PDU 29
message processing, begin inital 21, 23
message processing, begin normal 22
message recovery, IP 21, 24
message sequence number (MSN) 22
message sequence number (MSN),

MIP 20
message structure 7
message text authentication 18
message text compression 18
message text encryption 18
message trace 85
message transfer (MT) 5
message transfer layer (MTL) 5
message transfer processor (MTP) 10
message transfer program (MTP) 5, 146
message transfer service elements 16
message transfer service processor

(MTSP) 5, 10
message transfer system (MTS) 4
MFS user-exit support 81
MHS (message handling system) 3
MIP (message integrity protocol) 17, 19
MIP message identifier 20
MIP message sequence number

(MSN) 20
MIP reset indicator 44
MIP window size 43
MIP window size, dynamic 20, 22
MIP window size, static 20, 22
modifying an ASP 106
monitoring ACD activity 102
move IP message to control queue 22
MPDU

application 35
service 35

MPDU (message PDU) 29
MSC (MERVA System Control

Facility) 11
MSN (message sequence number) 20, 22
MT (message transfer) 5
MT layer programs 12
MT status 63
MTL (message transfer layer) 5
MTL boundary function service

primitives 56
MTL message identification 15
MTP

message transfer process 5
message transfer processor 5, 10
message transfer program 5

MTP boundary function service
primitives 57

MTP trace 37, 165
MTS (message transfer system) 4
MTSP (message transfer service

processor) 5, 10
MVS environment, MERVA Link USS in

the 123

Index 191

N
node name, local MERVA Link 98
node name, partner 100
NOHOLD (AS status) 62, 63
normal message processing, begin 22
notation of protocol definitions 33
Notices 171
NOTIFY.Indication/Response

(NTIN/NTRS) 56
NTIN/NTRS 56

O
OPEN (AS status) 62
operable (ASP status) 74
originator 17
originator or recipient address 164
originator type, diagnostic code 154
OS/390 MVS environment, MERVA Link

USS in the 123
OS/390 USS environment, MERVA Link

USS in the 119
outbound error log entry 158
outbound error report log file 158

P
P1 (protocol) 5, 7, 35
P1 routing 16
P1 routing facility 26
P1 routing parameters 27
P2 (protocol) 5, 7, 41
P3 (protocol) 8, 48
partner connection 16
partner conversation security

application 129
partner node name 100
partner nodes, changing ACT ISC

parameters for 104
partner security application (CSI) 96
partner security control application 112
partner table (PT) 8
PATH environment variable 119
PDM

indicator 45
PDM (possible duplicate message) 19
PDSE, copy DLLs from HFS library

to 124
PDSE, copy programs from HFS library

to 125
PDU

data elements 32, 163
hierarchy 29
trailer 35
types 30

PDU (protocol data unit) 7
PDU segment trace format 153
PDUs 29
peer-to-peer protocols 6, 29
possible duplicate message (PDM) 19
PPDU/PPRS 57
primitives,

MTL boundary function service 56
MTP boundary function service 57

priority 16, 18, 38, 44
probe 7

probe commands, send 107
probe envelope 164
PROBE envelope 7
PROBE PDU 39
problem determination aids 135

MERVA Link USS 149
process event delays, displaying

information about routing 105
process identifier, ACD 99
process owner identifier, ACD 99
processing, begin normal message 22
processing trace facility 149
processing trace parameters 99
ProcessPDU.Indication, RFC in a 27, 28
ProcessPDU.Indication/Response

(PPDU/PPRS) 57
program call environment, standard

MERVA Link USS 119
program call environments, MERVA Link

USS 120
program objects data set 123
programs from HFS library to PDSE,

copy 125
protocol data unit (PDU) 7
protocol data units 29
protocol definitions, notation of 33
protocol P1 35
protocols, peer-to-peer 6
PT (partner table) 8

Q
queue cluster, send 21

R
RC (recovered and copied) 65, 83
receipt confirmation 17, 44
receipt report 17
receiving ASP 23
receiving process status information,

unsolicited 99
recipient 17
recipient address 164
recipient information in an inbound

conversation 26
recovering from delivery errors 74
recovery

automatic 74
manual 75

recovery, immediate 75
recovery, IP message 21, 24
report 52, 53
report data element 47, 166
request for confirmation in a

ProcessPDU.Indication 27, 28
reset indicator (MIP) 44
return code, event 22
RFC in a ProcessPDU.Indication 27, 28
RI (recovered and moved) 66, 83
RM (immediately removed) 66
route incoming message 24
routed conversation, confirming a 27
routing and receiving processes, errors

in 155
routing facility, P1 26

routing parameters, P1 27
routing process event delays, displaying

information about 105
routing table 84
RR (rerouted) 66
RS (rerouted) 66, 83

S
SEC 96
security control application, partner 112
security control application for

verification, local 118
security file 96
security information data element 165
security parameters, conversation 100
security programs, conversation 96
segment trace format, PDU 153
send probe commands 107
send queue cluster 21
send T-probe 107
sending ASP 63
sending processes, errors in 156
SendPDU.Request/Confirmation

(SPDU/SPCF) 57
service elements 15
service message PDU 29
service MPDU 35
service primitive filter (SPF) 10
service primitives 55
service primitives, MERVA Link 6
shared memory region (SHM) 97
shell, USS 120
SHM (shared memory region) 97
side definitions data set 123
sleep time interval, ACD 99
SMPDU (service message PDU) 29
SNA APPC connection parameters 100
SNA APPC TP, inbound 131
SPDU/SPCF 57
SPF (service primitive filter) 10
SR-ASPDU (status report ASPDU) 29,

32, 46
standard error information 154
standard input file, CSI 113
standard MERVA Link USS program call

environment 119
start inital message processing 21, 23
starting the ACD 102
static MIP window size 20, 22
statistics information, ISC 101
status code 154
status information, ISC 100
status information, unsolicited receiving

process 99
status report 17, 46
status report ASPDU 166
stopping the ACD 103
subject 17, 43
submission time-stamp 15
submit confirmation 22
SUBMIT.Request/Confirmation

(SURQ/SUCF) 56
SURQ/SUCF 56
System Control Facility commands 61

192 Advanced MERVA Link

T
T-probe, send 107
TCP/IP connection parameters 100
TEST.Indication/Response

(TSIN/TSRS) 56
test message 7
time-stamp, submission 15
time trace 152
TPDU (transfer PDU) 29
TPI 131
trace

command type 135
compressed conversation

indicators 136
control information 135
conversation 135
external conversation 137
internal conversation 145
MERVA ESA message 85

trace, external ACD activity 102
trace, internal ACD activity 102
trace, time 152
trace facility, processing 149
trace facility commands 153
trace file allocation modes 150
trace file directory 151
trace format, PDU segment 153
trace levels 152
trace parameters, processing 99
trailer, message 7
transfer PDU 29
TSIN/TSRS 56
typed body 16

U
unsolicited receiving process status

information 99
user exit 5, 81
USS Control Facility, MERVA Link 95
USS functions, MERVA Link 95
USS shell 120

V
VCC 97, 116, 130
VCD 97, 114, 129
VCS 97, 118, 130
vector, internal error code 155
verification

application control command
application for 116, 130

application control daemon for 114,
129

local conversation security application
for 130

local security control application
for 118

verification, configuration 13
verification programs, configuration 97

W
window size, dynamic MIP 20
window size, MIP dynamic 22

window size, static MIP 20, 22

Index 193

194 Advanced MERVA Link

MERVA Requirement Request

Use the form overleaf to send us requirement requests for the MERVA product. Fill
in the blank lines with the information that we need to evaluate and implement
your request. Provide also information about your hardware and software
environments and about the MERVA release levels used in your environment.

Provide a detailed description of your requirement. If you are requesting a new
function, describe in full what you want that function to do. If you are requesting
that a function be changed, briefly describe how the function works currently,
followed by how you are requesting that it should work.

If you are a customer, provide us with the appropriate contacts in your
organization to discuss the proposal and possible implementation alternatives.

If you are an IBM employee, include at least the name of one customer who has
this requirement. Add the name and telephone number of the appropriate contacts
in the customer’s organization to discuss the proposal and possible implementation
alternatives. If possible, send this requirement online to MERVAREQ at SDFVM1.

For comments on this book, use the form provided at the back of this publication.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

Send the fax to:

To: MERVA Development, Dept. 5640 Fax Number: +49-7031-16-4881
Attention: Gerhard Stubbe Internet address:

mervareq@de.ibm.com
IBM Deutschland Entwicklung GmbH
Schoenaicher Str. 220
D-71032 Boeblingen
Germany

© Copyright IBM Corp. 1991, 2001 195

MERVA Requirement Request

To: MERVA Development, Dept. 5640 Fax Number: +49-7031-16-4881
Attention: Gerhard Strubbe Internet address:

mervareq@de.ibm.com
IBM Deutschland Entwicklung GmbH
Schoenaicher Str. 220
D-71032 Boeblingen Germany

Page 1 of ______

Customer’s Name __

Customer’s Address __

__

__
Customer’s
Telephone/Fax __

Contact Person at __
Customer’s Location
Telephone/Fax __

MERVA
Version/Release __

Operating System __
Sub-System
Version/Release __

Hardware __

Requirement
Description __

__

__

__

__

__

__

Expected Benefits __

__

__

196 Advanced MERVA Link

Readers’ Comments — We’d Like to Hear from You

MERVA for ESA
Advanced MERVA Link
Version 4 Release 1

Publication No. SH12-6390-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SH12-6390-01

SH12-6390-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH
Information Development, Dept. 0446
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5648-B29

SH12-6390-01

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
M

ER
VA

fo
r

E
SA

Ad
va

nc
ed

M
ER

VA
L

in
k

Ve
rs

io
n

4
R

el
ea

se
1

	Contents
	About This Book
	Who This Book Is For
	What You Need to Know to Understand This Book
	How to Use This Book

	Summary of Changes
	What Has Been Added
	MERVA Link UNIX System Services

	What Has Been Modified
	MERVA Link P1 and P2 Protocols
	MERVA Link Conversation Trace Events

	What Has Been Removed
	MERVA Link Asynchronous Communication
	MERVA Link APPC/MVS Mirror
	MERVA Link Internals

	Part 1. The MERVA Link Message Handling System
	Chapter 1. Introduction
	The Model of the MERVA Link Message Handling System
	Functional View of the Model
	Layered Representation of the Model

	Boundary Functions
	MERVA Link Boundaries
	Boundary Function Service Primitives

	Peer-to-Peer Protocols
	Message Transfer and Application Support Protocols (P1 andP2)
	Command Transfer Protocol (P3)

	Implementation Overview
	MERVA Link ESA Implementation Overview
	MERVA Link Partner Table
	MERVA Link Application Support Program
	MERVA Link Application Support Filter
	MERVA Link Service Primitive Filter
	MERVA Link Message Transfer Service Processor
	MERVA Link Message Transfer Processor
	MERVA System Control Facility

	MERVA Link USS Implementation Overview
	Application Control Table (ACT) and Application Control Daemon(ACD)
	AS Layer Programs
	MT Layer Programs
	Application Control Programs
	Configuration Verification

	Chapter 2. Service Elements
	The Message Transfer Service
	Content Type Indication
	MTL Message Identification
	ASL Content Identification
	Encoded Information Type Indication
	Submission Timestamp Indication
	Partner Connection
	Grade of Delivery Indication (Priority)
	P1 Routing

	The Application Support Service
	Message Transfer Service Elements
	ASL Message Identification
	Typed Body
	Receipt Confirmation
	Acknowledgment Message Correlation
	Originator/Recipient Indication
	Subject Indication
	Buckslip (Attached Note)
	Message Integrity Protocol
	Message Text Encryption Indication
	Message Text Encryption
	Message Text Authentication Indication
	Message Text Authentication
	Message Text Compression Indication
	Priority Indication
	Possible Duplicate Message Indication
	Body Part

	The MERVA Link Message Integrity Protocol (MIP)
	Message Integrity Protocol Terms
	Description of the MIP at the Sending Side
	The Send Queue Cluster
	Begin Initial Message Processing
	Check the Integrity of IP Messages
	Begin Normal Message Processing
	Assign Message Sequence Number and Message Identifier
	Move IP Message to the Control Queue
	Assign Dynamic MIP Window Size
	Submit the Message and Handle the Submit Confirmation
	No More Messages to Be Transferred

	Description of the MIP at the Receiving Side
	Receiving ASP
	Begin Inital Message Processing
	Check the Integrity of IP Messages
	Route Incoming Message

	Message Integrity Checks at the Sending Side
	Message Integrity Checks at the Receiving Side

	P1 Routing Facility
	Recipient Information in an Inbound Conversation
	P1 Routing Parameters
	Confirming a Routed Conversation
	Request for Confirmation (RFC) Parameter in aProcessPDU.Indication
	Handling a request for confirmation (RFC) in aProcessPDU.Indication

	Chapter 3. Peer-to-Peer Protocols
	MERVA Link Protocol Data Units (PDUs)
	MERVA Link Message Handling System PDU Hierarchy
	MERVA Link MHS PDU Types
	Probe PDU
	Delivery Report MPDU (DR MPDU)
	AMPDU containing an Application Message (IM-ASPDU)
	AMPDU containing an Acknowledgment Message (SR-ASPDU)

	MERVA Link PDU Data Elements
	Notation of the P1, P2, and P3 Protocol Definitions
	Definition of the Message Transfer Protocol (P1)
	PDU Trailer
	Application Message PDU (AMPDU)
	AMPDU Envelope
	Address
	AMPDU Content

	Delivery Report MPDU (DR MPDU)
	Probe PDU
	Probe Envelope
	Security Information

	Definition of the Application Support Protocol (P2)
	Interapplication Message ASPDU (IM-ASPDU)
	IM-ASPDU Heading
	IM-ASPDU Body

	Status Report ASPDU (SR-ASPDU)
	Report

	Definition of the Command Transfer Protocol (P3)
	Command Transfer PDU Envelope (CPDUEnvelope)
	Command Transfer PDU Content (CPDUContent)
	Command Request PDU (CRqPDU)
	Command Request Heading
	Command Response PDU (CRsPDU)
	Command Response Heading
	Command Response Body
	Command PDU Trailer
	Command Error Report

	Chapter 4. Boundary Function Service Primitives
	MTL Boundary Function Service Primitives
	MTP Boundary Function Service Primitives

	Part 2. MERVA Link ESA Application Support
	Chapter 5. Application Support Concepts and Resources
	MERVA Link Application Control Queue (ACQ)
	MERVA Link Sending ASP AS Status
	AS Status OPEN-NOHOLD
	AS Status OPEN-HOLD
	AS Status CLOSED-NOHOLD
	AS Status CLOSED-HOLD

	MERVA Link Sending ASP MT Status
	MERVA Link Message Class Concept
	MERVA Link Application Support Control Fields

	Chapter 6. Application Support Functions
	Sending Messages
	Acknowledgment Control Information
	Inserting Acknowledgment Information in Outgoing Messages

	Receiving Application Messages
	Receiving Acknowledgment Messages
	Merging an ACK with the Original Message
	Correlation Data
	Application Message in the ACK Wait Queue
	ACK Correlation Process
	ACK Correlation Failure
	MIP Considerations during ACK Processing

	Automatically Starting an Inoperable ASP
	Sending an ASP Kickoff from a Receiving ASP
	Retry to Start an Inoperable Sending ASP
	ASP Monitor

	Handling Message Delivery Errors
	Accept an Inbound Message Despite a Warning
	Recovering from Delivery Errors
	Automatic Recovery
	Manual Recovery

	Recovering from a Recovery Process Interrupt
	Immediate Recovery

	Chapter 7. The MERVA Link CICS ASP Monitor
	Operating the ASP Monitor
	Automatic ASP Monitor Start
	ASP Monitor Handling within MSC
	MSC Commands for the ASP Monitor
	Monitoring the ASP Monitor

	Direct ASP Monitor Transaction Call

	ASP Monitor Functions
	ASP Kickoff Criteria
	Automatic ASP Start Requested
	Sending ASP Not Active
	ASP Not Closed or On Hold
	ASP Permanently Inoperable
	ASP not Recently Active

	Restart Time Interval Considerations

	Chapter 8. Support of MERVA ESA Facilities in MERVA Link
	MERVA ESA MFS User Exit Support
	Ready-to-Send Messages
	Outgoing Messages
	Confirmed Messages
	Incoming Application Messages
	Incoming Acknowledgment Messages
	Recovered Messages

	MERVA ESA Routing Table Support
	Route Ready-to-Send Messages to Another Send Queue
	Route Confirmed Outgoing Messages
	Route Incoming Acknowledgment or Acknowledged Messages
	Route Incoming Application Messages

	MERVA ESA Message Trace Support
	Move Message from the Send Queue to the ACQ
	Route Confirmed Message (Synchronous Confirmation)
	Route Incoming Application Message
	Route Acknowledgment or Acknowledged Message
	Route Ready-to-Send Message to Another Send Queue
	Copy In-Process Message to Another Send Queue

	MERVA ESA Journal Support
	Classes of MERVA Link Entries in the MERVA ESA Journal
	Class-1 Journal Entries
	Class-2 Journal Entries
	Class-3 Journal Entries

	General Layout of a MERVA Link Journal Record
	Types of MERVA Link Entries in the MERVA ESA Journal
	Outgoing Application Message Journal Entry (ID=70)
	Outgoing Acknowledgment Message Journal Entry (ID=71)
	Incoming Application Message Journal Entry (ID=72)
	Incoming Acknowledgment Message Journal Entry (ID=73)
	Delivery Notification Journal Entry (ID=74)
	Recovered Message Journal Entry (ID=78)
	MERVA System Control Facility Command Journal Entry(ID=7F)

	Part 3. MERVA Link USS Functions
	Chapter 9. The MERVA Link USS Control Facility
	Control Facility Overview
	Application Control Table (ACT)
	Application Control Daemon (ACD)
	Application Control Command Application (ACC)
	Configuration and Security Files (CFG, SEC)
	Conversation Security Programs (ACS and CSI)
	Configuration Verification Programs (VCD, VCC, and VCS)

	Application Control Table (ACT)
	ACT IPC Resources
	ACT Header
	ACT Identifiers
	ACT Generation Time
	Local MERVA Link Node Name
	ACD Process Identifier
	ACD Process Owner Identifier
	ACD Sleep Time Interval
	ACD Activity Trace Area
	Processing Trace Parameters
	Unsolicited Receiving Process Status Information

	ACT ASP Section
	ACT ISC Section
	Partner Node Name
	SNA APPC Connection Parameters
	TCP/IP Connection Parameters
	Conversation Security Parameters
	ISC Status Information
	Extended Error Information
	ISC Statistics Information
	Event Delay Information

	Application Control Daemon (ACD)
	Starting the ACD
	External ACD Activity Trace
	Internal ACD Activity Trace

	Monitoring ACD Activity
	Stopping the ACD

	Application Control Command Application (ACC)
	ACC Command Format
	Changing ACT ISC Parameters for Partner Nodes
	Displaying Information about Routing Process Event Delays
	Modifying an ASP
	Send Probe Commands
	Analyzing and Explaining Error Information
	ACC Conversation Mode
	Start ACC Conversation Mode
	ACC Command Echo
	Effective ACC Command
	A Way to Make It Easier to Enter ACC Commands
	ACC Command Execution
	End ACC Conversation Mode

	ACC Batch Input Mode
	Start ACC Batch Input Mode
	ACC Command Execution
	End ACC Batch Input Mode
	Execution Environments of ACC in Batch Input Mode
	ACC Batch Job Samples

	Partner Security Control Application (CSI)
	The CSI Program
	The CSI Execution Environment
	The CSI Execution Modes
	The CSI Command Parameters
	Security Information Parameters
	Sample CSI Commands

	The CSI Standard Input File
	The CSI Batch Mode

	Application Control Daemon for Verification (VCD)
	Starting the VCD
	Examples of Using USS Shell Scripts to Issue the VCDCommand

	Function of the VCD
	Verifying the VCD Command Parameters
	Verifying the Configuration File Syntax
	Verifying the Configuration File Data

	Stopping the VCD

	Application Control Command Application for Verification (VCC)
	Examples of the MERVA Instance Owner Using VCC
	Examples of Another USS User Using VCC

	Local Security Control Application for Verification (VCS)
	The VCS Program
	The VCS Execution Environment
	The VCS Execution Modes and Command Parameters
	The VCS Function

	Chapter 10. MERVA Link USS in the OS/390 USS Environment
	Standard MERVA Link USS Program Call Environment
	MERVA USS Environment Variables
	PATH and LIBPATH Environment Variables

	MERVA Link USS Program Call Environments
	MERVA Link USS Programs Called in a USS Shell
	MERVA Link USS Inbound SNA APPC TP (ekatpi)
	MERVA Link USS Inbound TCP/IP TP (ekatci)

	Chapter 11. MERVA Link USS in the OS/390 MVS Environment
	Allocate MERVA Link USS MVS Data Sets
	Side Definitions Data Set
	Program Objects Data Set

	Copy DLLs from HFS Library to PDSE
	Copy DLL Procedure
	Copy DLL Job Sequence
	Sample Copy DLL Job Steps

	Copy Programs from HFS Library to PDSE
	Copy Program Procedure
	Copy Program Job Sequence
	Sample Copy Program Job Steps

	Execute Programs in the OS/390 MVS Environment
	Application Control Daemon (ACD)
	Application Control Command Application (ACC)
	Local Conversation Security Application (ACS)
	Partner Conversation Security Application (CSI)
	Application Control Daemon for Verification (VCD)
	Application Control Command Application for Verification(VCC)
	Local Conversation Security Application for Verification (VCS)
	Inbound SNA APPC TP (TPI)

	Part 4. MERVA Link Problem Determination Aids
	Chapter 12. MERVA Link ESA Conversation Traces
	Conversation Trace Control Information
	The Conversation Command Type
	Compressed Conversation Indicators

	The External Conversation Trace
	Using the External Conversation Trace
	Interpreting the Control Information Part

	External Conversation Trace Samples
	Full External Conversation Trace Samples
	Example 1: Send Two Application Messages
	Example 2: Receive Two Acknowledgments

	Weak External Conversation Trace Samples
	Example 3: Receive Two Application Messages
	Example 4: Send Two Acknowledgment Messages

	The Internal Conversation Trace
	EKATS10 Internal Conversation Trace
	EKATR10 Internal Conversation Trace
	EKATPO1 Internal Conversation Trace
	EKATPI1 Internal Conversation Trace

	Chapter 13. MERVA Link USS Problem Determination Aids
	Processing Trace Facility
	Trace File Allocation Modes
	Trace File Directory
	Trace Levels
	Time Trace
	PDU Segment Trace Format
	Trace Facility Commands

	Intersystem Error Reporting
	Standard Error Information
	Status Code
	Diagnostic Code

	Extended Error Information
	Diagnostic Code Originator Type
	Internal Error Code Vector
	Error Explanation

	Routing and Receiving Processes
	MERVA Link ESA Version 4
	MERVA Link USS

	Sending Processes
	MERVA Link ESA Version 4
	MERVA Link USS

	Error Report Log Facility
	Error Report Log File
	Inbound Error Report Log File
	Inbound Error Log Entry
	Outbound Error Report Log File
	Outbound Error Log Entry

	ACC Commands That Handle Extended Error Information

	Part 5. Appendixes
	Appendix A. PDU Data Elements
	Level-1 Data Elements
	Contents of Implicit Data Elements
	Probe Envelope
	AMPDU Envelope
	Delivery Report Envelope and Content
	Command PDU Envelope
	Originator or Recipient Address
	Security Information
	MTP Trace
	IM-ASPDU Heading
	Application Descriptor
	Status Report ASPDU
	Report Data Element
	Command Request PDU Heading
	Command Response PDU Heading
	Command Response Report
	Application Defined Data Elements

	List of Implicit Data Elements
	Level-1 Implicit Data Elements
	Level-2 Implicit Data Elements

	List of Explicit Data Elements
	Level-1 Explicit Data Elements
	Level-2 and Level-3 Explicit Data Elements

	Appendix B. Notices
	Trademarks

	Glossary of Terms and Abbreviations
	Bibliography
	MERVA ESA Publications
	MERVA ESA ComponentsPublications
	Other IBM Publications
	S.W.I.F.T. Publications

	Index
	MERVA Requirement Request
	Readers’ Comments — We'd Like to Hear from You

