
IBM VisualAge TeamConnection Enterprise Server

Administrator’s Guide
Version 3.0

SC34-4551-01

IBM

IBM VisualAge TeamConnection Enterprise Server

Administrator’s Guide
Version 3.0

SC34-4551-01

IBM

September 1999

Note
Before using this document, read the general information under “Notices” on page ix.

This edition applies to fixpack 3.0.3, hotfix 1 of the licensed program IBM TeamConnection and to all subsequent
releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for
the level of the product.

Order publications by phone or fax. The IBM Software Manufacturing Company takes publication orders between
8:30 a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800)
284-4721.

You can also order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

A form for comments appears at the back of this publication. If the form has been removed, address your comments
to:

IBM Corporation
Attn: Information Development
Department T99B/Building 062
P.O. Box 12195
Research Triangle Park, NC, USA 27709-2195

You can fax comments to (919) 254-0206.

If you have comments about the product, address them to:

IBM Corporation
Attn: Department TH0/Building 062
P.O. Box 12195
Research Triangle Park, NC, USA 27709-2195

You can fax comments to (919) 254-4914.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1992, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|
|
|

Contents

Figures vii

Notices ix

Trademarks xi

About this book xiii
Who should read this book. xiv
Conventions and terminology used in this
book xiv
Prerequisite and related information xv
How to send your comments xvi

Part 1. Introducing IBM VisualAge
TeamConnection Enterprise Server . 1

Chapter 1. An introduction to
TeamConnection 3
TeamConnection definitions 4

TeamConnection’s client/server architecture 4
TeamConnection database 4
Families 5
User access to families 5
Components 6
Releases 7
Processes 7

Hardware and software requirements 8
Interfaces 8

Chapter 2. Administrator Tasks 11
System Administrators 12
Family Administrators 13
Build Administrators 14

Part 2. Setting up a
TeamConnection server 15

Chapter 3. Planning your families 17
Updating TCP/IP files 17
Setting up login IDs 21
DB2 considerations. 22

DB2 instances 22
Database naming conventions 23

Database configuration parameters . . . 24
DB2 kernel changes for UNIX platforms . 25

Chapter 4. Creating your TeamConnection
family 29
Setting up the family administrator 29
Creating a family 30
Using the family properties notebook . . . 32

Required 32
Configurable fields. 35
Processes 35
User exits 36
Groups. 36

Adding an existing family to the Family
Administrator window 37

Chapter 5. Starting and stopping the
servers 39
Specifying the number of daemons to start. . 39
Setting up the mail facility 40
Starting the servers 41
Stopping the servers 43

Chapter 6. Setting up the client interface 45
Customizing TeamConnection home pages . . 48

Changing index.html 49
Changing the actions, menus, and views 49

Chapter 7. Setting up Asset Locator . . . 53
Setting up Asset Locator on UNIX platforms 54
Setting up Asset Locator on Windows NT . . 55

DB2 Text Extender 56
WebSphere Application Server 56
Setting up Asset Locator configuration files 58
Starting the Asset Locator Administrator 64
Solving problems with Asset Locator. . . 64

Part 3. Putting your
TeamConnection server to work. . 69

Chapter 8. Setting up your family structure 71
Planning your components 71

Organizing the component hierarchy. . . 71
Determining component ownership . . . 73

© Copyright IBM Corp. 1992, 1999 iii

||

Naming the components 74
Determining access to components . . . 74

Planning your releases 75
Relating releases with components . . . 75
Selecting serial or concurrent development 76
Release options that control database
growth 76
Sharing parts between releases 78
Naming your releases 78

Planning your processes 79
Component processes 79
Release processes 80
How processes might change during
development 83
Using the driver subprocess. 83

Creating components and releases 84
Creating components 84
Creating releases 85
Creating a new release from an old release 87
Changing the development mode of a
release 87

Chapter 9. Setting up user access to a
family 89
Planning for user authentication 89

Security levels and logins 89
Creating logins 91
Planning for password security 93

Adding and modifying passwords . . . 93
Login managers 94

Planning for host-list security 94
Creating host list entries 95

Setting up authority groups 97
What are the TeamConnection authority
levels? 98
What are authority groups? 99
Displaying authority groups 99
Creating or modifying authority groups. . 99
Granting authority to users 101

Setting up interest groups 106
What are the TeamConnection interest
levels? 107
What are interest groups? 107
Displaying interest groups 108
Creating or modifying interest groups 108
Working with notification lists 110

Chapter 10. Setting up and implementing
configurable fields 115
Defining configurable field types. 117

Defining regular expressions 120
Defining dependent relationships between
configurable field types 121
Defining configurable fields 122

Creating and modifying configurable
fields 123
Displaying configurable field properties 125

Changing report formats 125
The stanza report 125
The table report 128

Chapter 11. Configuring component and
release processes 131
Planning your changes 131
Modifying or creating configurable processes 131

Chapter 12. Providing user exits 135
Registering user exit programs 136
Environment file 138
The userExit file 139
Writing user exit programs. 140
Sample user exit programs 141

Chapter 13. TeamConnection shadows 143
Shadow types 143
Shadow properties 144
Shadow actions 146
When does shadowing happen 147
Writing shadowing programs 148

Shadowing program interface 148
Shadowing program requirements . . . 149
Shadowing program output 150
Sample shadowing program 150

Part 4. Maintaining your
TeamConnection server 151

Chapter 14. Maintaining your
TeamConnection family 153
Displaying the current version of
TeamConnection code 154
Changing the age of defects and features 154

The age utility 155
The resetAge utility 156

Resolving TeamConnection errors 156
Using the system error log (syslog.log) 156
Using the audit log (audit.log) 156
Using the trace facility 164

iv Administrator’s Guide

Chapter 15. Maintaining your
TeamConnection DB2 database 167
Backing up the TeamConnection database 168
Updating your database tables and views 169

For Intel 169
For UNIX 169

Reorganizing your database tables and views 169
Rebinding the family database 170

Chapter 16. Enhancing SQL performance 171
Updating catalog statistics using the
RUNSTATS utility 171
Analyzing statistics 172
Reorganizing table data 174
Applying these techniques to
TeamConnection 175

When REORG, RUNSTATS, and REBIND
do not improve performance 175
Table spaces and buffer pools 175

Configuration and tuning 176
Techniques for optimizing queries 177

Constructing efficient queries 177
Introducing indexes 179

Chapter 17. Monitoring family use . . . 181
Using the server daemon monitor 181

Using the monitor on the Family Servers
window 181
Using the monitor command 183
Monitoring the activity of the server
daemons 185
Detecting time-consuming requests . . . 186
Monitoring server daemon problems . . 186

Using the license monitor 187
How the license monitor counts users . . 188
Using the tclicmon command 189

Chapter 18. Server tools 195
Using tcqry 195
Using tcupdb 196

Part 5. Using the server
command-line interface 197

Chapter 19. Creating, starting and
stopping a family 199
Creating a family database 199

Preserving table indexes 200
Creating an initial superuser for a family 200

Starting your family 201
Starting teamcd as a Windows NT service 204
Stopping your family 206

Chapter 20. Configurable field commands 207
Defining configurable field types. 207
Reloading the config table 210
Updating .tbl files 211
Updating database views with new
configurable field information. 213

Updating TargetView and ConfigPartView 214
Changing report formats 214

Updating TargetView and ConfigPartView
Reports 218

Chapter 21. Configuring component or
release processes 219
Editing the comproc.ld and relproc.ld files 219
Reloading the configurable process tables 220

Chapter 22. Setting up user exits 223
Editing the userExit file 223
Creating customized parameter lists . . . 224

Chapter 23. Creating and modifying
authority and interest groups 227
Creating or modifying authority groups . . 227

Editing the authorit.ld file 227
Reloading the authority table 228

Creating or modifying interest groups . . . 229
Editing the interest.ld file 229
Reloading the interest table 230

Authorizing teamc part -exec commands . . 231

Part 6. Appendixes 233

Appendix A. Authority and notification for
TeamConnection actions 235

Appendix B. Worksheets 253
Authority groups worksheet 253
Interest groups worksheet 258
Configurable processes worksheets 264

Appendix C. Environment Variables . . . 267
Setting environment variables. 276

Appendix D. Configurable field types . . 277
Configurable field types 277

Contents v

Appendix E. User exit parameters . . . 289
Parameters passed to user exit programs . . 289
User exit parameter definitions 317

Appendix F. TeamConnection NLS and
DBCS considerations 331
Overview of TeamConnection NLS and
DBCS support 331

Language and culture sensitive
information in TeamConnection 331
Supported locales (languages and code
pages) 333

Characteristics and limitations of NLS and
DBCS support 339

No conversion of code points when
exchanging data 339
Exceptions to the handling of characters
in TeamConnection 341
All clients in the same host must use the
same language (Intel only) 343
Untraslated strings that are visible to the
users 343
DBCS Limitations 343

Installation, administration, and runtime
issues 345

Installation issues related to NLS and
DBCS 345
Family administration issues 347
Client runtime issues 348

Services and Support 351
VisualAge TeamConnection Services and
Support 351

Bibliography 353
IBM VisualAge TeamConnection Enterprise
Server library 353
TeamConnection technical reports 353
DB2 354
Related publications 355

Glossary 357

Index 367

Readers’ Comments — We’d Like to Hear
from You 373

vi Administrator’s Guide

Figures

1. A sample TeamConnection client/server
network 4

2. Sample of a component hierarchy . . . 6
3. Parts, releases, and components 7
4. Family Properties notebook 32
5. TeamConnection home page 48
6. Action string in a TeamConnection

home page 50
7. A hierarchy representing product

organization 72
8. A hierarchy showing parallel

components 72
9. Components with more than one parent 73

10. A hierarchy showing component
ownership 74

11. The release-component relationship 75
12. Using the driver subprocess 84
13. Granting authority to other users 97
14. Sample stanza report displayed after

adding configurable fields 126
15. Sample table report displayed after

adding configurable fields 128
16. Sample of an audit log file 158
17. Sample report format after adding

configurable fields. 217

© Copyright IBM Corp. 1992, 1999 vii

viii Administrator’s Guide

Notices

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only that IBM product, program, or service
may be used. Subject to IBM’s valid intellectual property or other legally
protectable rights, any functionally equivalent product, program, or service
may be used instead of the IBM product, program, or service. The evaluation
and verification of operation in conjunction with other products, except those
expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood,
NY, USA 10594.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact the Site
Counsel, IBM Corporation, P.O. Box 12195, 3039 Cornwallis Road, Research
Triangle Park, NC 27709-2195, USA. Such information may be available,
subject to appropriate terms and conditions, including in some cases, payment
of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement.

This document is not intended for production use and is furnished as is
without any warranty of any kind, and all warranties are hereby disclaimed
including the warranties of merchantability and fitness for a particular
purpose.

IBM may change this publication, the product described herein, or both. These
changes will be incorporated in new editions of the publication.

This publication contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include
the names of individuals, companies, brands, and products. All of these

© Copyright IBM Corp. 1992, 1999 ix

names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

x Administrator’s Guide

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States and/or other countries:

AIX® OS/390
C/370™ OS/400
DB2® PowerPC
IBM® RISC System/6000
MVS™ RS/6000
MVS/ESA™ SP2
MVS/XA™ TalkLink
OpenEdition® TeamConnection™

OS/2® VisualAge®

Lotus and Lotus Notes are registered trademarks and Domino is a trademark
of Lotus Development Corporation.

Tivoli, Tivoli Management Environment, and TME 10 are trademarks of Tivoli
Systems Inc. in the United States and/or other countries.

The following terms are trademarks of other companies:

HP-UX 9.*, 10.0 and 10.01 for HP 9000 Series 700 and 800 computers are
X/Open Company UNIX 93 branded products. HP-UX 10.10 and 10.20 for HP
9000 Series 700 and 800 computers are X/Open Company UNIX 95 branded
products.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Intel and Pentium are registered trademarks of Intel Corporation.

Microsoft, Windows, Windows NT and the Windows logo are registered
trademarks of Microsoft Corporation.

Java, HotJava, Network File System, NFS, Solaris and the Sun logo are
trademarks or registered trademarks of Sun Microsystems, Inc. in the United
States and other countries.

Netscape Navigator is a U.S. trademark of Netscape Communications
Corporation.

© Copyright IBM Corp. 1992, 1999 xi

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Acrobat Reader, and
PostScript are trademarks of Adobe Systems Incorporated.

Other company, product, and service names may be trademarks or service
marks of others.

xii Administrator’s Guide

About this book

This book is part of the documentation library supporting the IBM VisualAge
TeamConnection Enterprise Server licensed programs. It is written for persons
who need to perform the following tasks:
v Use the TeamConnection Familiy Administrator (tcadmin) to perform the

following tasks:
– Create and set up TeamConnection families.
– Create and modify authority and interest groups.
– Create and modify release and component processes.
– Create and administer configurable fields and user exits.

v Use the TeamConnection client to perform the following administrative
tasks:
– Create user IDs and authorize users to access the TeamConnection family

database.
– Set up and use programs that shadow TeamConnection parts to a file

system.
v Use other TeamConnection and DB2 tools to maintain your

TeamConnection family database, including:
– Manage TeamConnection defects, features, and logs.
– Collect statistics about and tune your database.
– Use the server daemon and license monitors to keep track of server

activity and use.

This book contains the following sections:
“Part 1. Introducing IBM VisualAge TeamConnection Enterprise Server”
on page 1 presents an overview of the IBM VisualAge TeamConnection

Enterprise Server product. The information in this section should be read
and understood by everyone who is going to work with TeamConnection.
“Part 2. Setting up a TeamConnection server” on page 15 is intended for
the family administrator who needs to plan how the IBM VisualAge
TeamConnection Enterprise Server product is going to be used in the
company’s development environment. After the planning stage, the family
administrator will use this section to learn how to do TeamConnection
administrative tasks. Before reading this section, you should be familiar
with the TeamConnection terminology and concepts presented in “Part 1.
Introducing IBM VisualAge TeamConnection Enterprise Server” on page 1.

© Copyright IBM Corp. 1992, 1999 xiii

“Part 4. Maintaining your TeamConnection server” on page 151 contains
information on maintaining your TeamConnection database and
monitoring family use.

This book also contains several appendixes providing more information for
performing TeamConnection administrative tasks and worksheets that can
help you plan your TeamConnection families.

Information on customer service, a bibliography, and a glossary are included
at the back of this book.

This book is available in PDF format. Because production time for printed
manuals is longer than production time for PDF files, the PDF files may
contain more up-to-date information. The PDF files are located in directory
path nls\doc\enu (Intel) or softpubs/en_US (UNIX). To view these files, you
need a PDF reader such as Acrobat.

Who should read this book

This book is for TeamConnection family administrators. It assumes familiarity
with the objects, actions, and processes involved in using a TeamConnection
database. You should read the TeamConnection User’s Guide, SC34-4499, before
you use the TeamConnection product. It introduces the fundamentals of the
configuration management, version control, change control, and problem tracking
features in the TeamConnection licensed programs. It also defines the concepts
that are the foundation of TeamConnection actions and establishes their
interrelationships. You should be familiar with your operating system because
you access the TeamConnection licensed programs through that environment.

TeamConnection administrators need to be skilled in operating system and
database administration. It is also highly recommended that administrators be
skilled in DB2 tuning and performance.

Conventions and terminology used in this book

This book uses the following highlighting conventions:
v Italics are used to indicate the first occurrence of a word or phrase that is

defined in the glossary. They are also used for information that you must
replace.

v Bold is used to indicate items on the GUI.
v Monospace font is used to indicate exactly how you type the information.
v File names follow Intel conventions: mydir\myfile.txt. AIX, HP-UX, and

Solaris users should render this file name mydir/myfile.txt.

xiv Administrator’s Guide

Tips or platform specific information is marked in this book as follows:

Shortcut techniques and other tips

IBM VisualAge TeamConnection Enterprise Server for OS/2

IBM VisualAge TeamConnection Enterprise Server for Windows/NT

IBM VisualAge TeamConnection Enterprise Server for Windows 95

IBM VisualAge TeamConnection Enterprise Server for AIX

IBM VisualAge TeamConnection Enterprise Server for HP-UX

IBM VisualAge TeamConnection Enterprise Server for Solaris

The tasks explained in this book can be performed from three different
interfaces. For some tasks you need to use the TeamConnection family
administrator interface. Others require the TeamConnection client interface.
Each of these tasks can also be performed from the TeamConnection
command-line interface. Whenever instructions require a specific interface to
be used, they are flagged as follows:

Tasks to be performed from the TeamConnection client interface.

Tasks to be performed from the TeamConnection family administrator.

Tasks to be performed from the TeamConnection command-line interface.

Prerequisite and related information

Before using this book, refer to the TeamConnection Installation Guide, available
in softcopy format on the installation CD. The Installation Guide contains
instructions for installing a TeamConnection server.

This book assumes familiarity with the DB2 Universal Database, version 5,
which TeamConnection uses as its data repository. Refer to the bibliography at
the back of this book for a list of publications you can use to install and
administer your DB2 database system.

Note: It is not recommended that you make changes to your database by
issuing INSERT, UPDATE, or DELETE statements or by changing or

About this book xv

deleting database tables or the columns defined in TeamConnection
database tables. Changing your database in these ways, through the
DB2 administrator tools, the DB2 command line processor, the
TeamConnection migration tools, or the tcupdb tool can corrupt your
TeamConnection database. Any such changes are made at your own
risk. Please contact your IBM representative for information on the
terms of IBM customer support.

How to send your comments

Your feedback is important in helping to provide the most accurate and
highest quality information. If you have any comments about this book or any
other IBM VisualAge TeamConnection Enterprise Server documentation fill
out one of the forms at the back of this book and return it by mail, by fax, or
by giving it to an IBM representative.

xvi Administrator’s Guide

Part 1. Introducing IBM VisualAge TeamConnection
Enterprise Server

© Copyright IBM Corp. 1992, 1999 1

2 Administrator’s Guide

Chapter 1. An introduction to TeamConnection

TeamConnection is a team programming environment that helps you manage
and control your development projects, increase team productivity, and
increase software quality. You can use TeamConnection to communicate with
and share information among team members to keep up with the many tasks
in the development life cycle, from planning through maintenance.

TeamConnection helps you streamline the following tasks:
v Configuration management: the process of identifying, organizing, managing,

and controlling software modules as they change over time. This includes
controlling access to your software modules and providing notification to
team members as software modules change.

v Release management: the logical organization of objects that are related to an
application. The release provides a logical view of objects that must be
built, tested, and distributed together. Releases are versioned, built, and
packaged.

v Version control: the tracking of relationships among the versions of the
various parts that make up an application. Version control enables you to
build your product using stable levels of code, even if the code is
constantly changing. It provides control over which changes are available to
everyone and, optionally, allows more than one developer at a time to
update a part.

v Change control: the controlling of changes to parts that are stored in
TeamConnection. TeamConnection keeps track of any part changes you
make and the reasons you make them. Your development team can build
releases with accuracy and efficiency, even as the parts evolve. The product
ensures that the change process is followed and that the changes are
authorized. After changes are made, it allows you to integrate the changes
and build the application. TeamConnection tracks all changes to the parts
across multiple products and environments.
The change control process is configurable. Your team can decide how strict
the change control should be, from loose to very tight. You can also adjust
the level of control as you move through a development cycle.

v Build support: the function that enables you to define the structure of your
application and then to create it within TeamConnection from your input
parts. Independent steps in a build can run in parallel on different servers,
thus reducing your build time. You can build applications for platforms in
addition to the one TeamConnection runs on—currently, you can use
TeamConnection to build applications on AIX, HP-UX, OS/2, Windows NT,
Windows 95, Solaris, MVS, and MVS OpenEdition.

© Copyright IBM Corp. 1992, 1999 3

v Packaging support: the preparation of your application for electronic
distribution to other users.

TeamConnection definitions

The following sections define TeamConnection concepts and objects that relate
to family administration. For more information on TeamConnection concepts
and objects that relate to end-user tasks, refer to the User’s Guide.

TeamConnection’s client/server architecture
Figure 1 is an example of a network of TeamConnection clients and servers.

The TeamConnection server consists of the underlying database software, the
server administration tools, and the communication software required to
connect to the clients.

A TeamConnection client gives team members access to the development
information and parts stored on the server.

TeamConnection database
TeamConnection is built on the IBM DB2 Universal Database. DB2 is shipped
with the TeamConnection server, and you can install DB2 when you install the
TeamConnection server. Please refer to the DB2 documentation listedc in this
document’s “Bibliography” on page 353 for detailed information on DB2
database configuration, administration, and utilities.

Figure 1. A sample TeamConnection client/server network

4 Administrator’s Guide

Families
The TeamConnection database controls all information within the
TeamConnection environment. An individual TeamConnection database is
called a family. The TeamConnection documentation refers to the database
variously as the family, the family database, the server, the family server, or
the database.

A family represents a complete and self-contained collection of
TeamConnection users and development information. A TeamConnection
family corresponds to a DB2 database instance. Information within a family is
completely isolated from information in all other families. One family cannot
share information with another. Information stored in a family includes the
following:
v Text parts, such as source code and product documentation
v Binary parts, such as compiled code
v Modeled parts that are stored in the information model by tools such as

VisualAge Generator
v Defects and features that record problems or suggested enhancements to

your applications or products
v Components, releases, drivers, and workareas, which help you to organize,

manage, and work with parts, defects, and features
v Users, logins, host lists, access lists, and notification lists, which help you to

control user access to information stored in the family
v Other TeamConnection objects that manage and describe the other objects

See “Chapter 8. Setting up your family structure” on page 71 for more
information about families.

User access to families
Users are given access to the TeamConnection family through their user IDs.
Each family has at least one superuser, who has privileged access to the
family.The superuser gives other users the authority to perform some set of
actions on particular objects. This book assumes that the TeamConnection
family administrator has superuser status.

Depending on the authority granted to a user, that user might in turn be able
to grant some equal or lesser level of authority to other users. However, the
ability to grant authority for some actions is reserved to the superuser. There
are no actions which the superuser cannot perform.

TeamConnection can use two types of security to ensure that only authorized
users access the TeamConnection family. For host-based authentication, each
user ID is associated with a host list, which is a list of client machine
addresses from which the user can access TeamConnection when using that
ID. A single user can access TeamConnection from multiple systems or login

Chapter 1. An introduction to TeamConnection 5

IDs. Likewise, a single system login ID can act on behalf of multiple users.
The set of authorized login IDs for a TeamConnection user ID makes up the
user’s host list.

For password-based authentication, users must login to the TeamConnection
family and specify the correct password. This type of security provides users
the flexibility of accessing TeamConnection from any workstation, provided
that they login with the proper password.

See “Chapter 9. Setting up user access to a family” on page 89 for more
information about authorizing TeamConnection user IDs.

Components
Within each family, development information is organized into groups called
components. The component hierarchy of each family includes a single top
component, called root, and descendants of that root. Each child component has
at least one parent component; a child can have multiple parents.

The following figure depicts a component hierarchy.

TeamConnection uses components to organize development information,
control access to the information, and notify users when certain actions occur.
Descendant components inherit access and notification information from
ancestor components. Information about the components is stored in the
database, including:
v The component’s position in its family hierarchy.
v The user who owns the component. The component owner is responsible for

managing information related to it, including defects or features.
v The users who have access to the component and the level of access each

user has. This information makes up the component’s access list.
v The users who are to be notified about changes to the component. This set

of users is called the notification list.
v The process by which the component handles defects and features.

Figure 2. Sample of a component hierarchy

6 Administrator’s Guide

See “Planning your components” on page 71 for more information about
components.

Releases
An application is likely to contain parts from more than one component.
Because you probably want to use some of the same parts in more than one
application, or in more than one version of an application, TeamConnection
also groups parts into releases. A release is a logical organization of all parts
that are related to an application; that is, all parts that must be built, tested,
and distributed together. Each time a release is changed, a new version of the
release is created. Each version of the release points to the correct version of
each part in the release.

Each part in TeamConnection is managed by at least one component and
contained in at least one release. One release can contain parts from many
components; a component can span several releases.Figure 3 shows the
relationships between parts, the releases that contain them, and the
components that manage them.

Each time a new development cycle begins, you can define a separate release.
Each subsequent release of an application can share many of the same parts as
its predecessor. Thus maintenance of an older release can progress at the same
time as development of a newer one. Each release follows a process by which
defects and features are handled.

See “Planning your releases” on page 75 for more information about releases.

Processes
An application changes over time as developers add features or correct
defects. TeamConnection controls these changes according to the processes you
choose for your application’s components and releases. A process enforces a
specific level of control to part changes and ensures that actions occur in a
specific order.

Figure 3. Parts, releases, and components

Chapter 1. An introduction to TeamConnection 7

Two separate types of processes are defined: component processes, which can
be different for each component within a family, and release processes, which
apply to all activities associated with a given release. Component or release
processes are built from a number of lower-level processes, or subprocesses,
that are included with the TeamConnection product.

TeamConnection is shipped with several predefined processes. If these do not
apply to your organization, you can configure your own processes by defining
different combinations of subprocesses.

See “Planning your processes” on page 79 for a description of
TeamConnection processes and instructions for setting and changing them.

Hardware and software requirements

For a current list of hardware and software requirements for VisualAge
TeamConnection enterprise Server, open your Web browser on the following
Web address:

http://www.software.ibm.com/ad/teamcon/about/

Select either Software Requirements or Hardware Requirements.

Interfaces

TeamConnection provides a number of interfaces that you can use to access
information:
v A web-client interface that gives you access to the server through a web

browser.
v A command-line client that lets you type TeamConnection commands from

an operating system prompt.
v A family administrator graphical user interface that you use to create and

customize a TeamConnection family.
v A server command-line interface that lets you type TeamConnection family

administrator commands from an operating system prompt or automate
family administrator functions.

The client interfaces are available from a server or client machine, but the
server interfaces are available only on machines on which you have installed
the TeamConnection server code.

You perform some administrator functions, such as creating and authorizing
user IDs and creating components and releases, from the client interfaces.
Most administrator functions, however, require you to use the family

8 Administrator’s Guide

administrator GUI or the server line commands. In this book, the interface
you should use for each task is identified by one ofhte following flags:

Tasks to be performed from the TeamConnection client interface.

Tasks to be performed from the TeamConnection family administrator.

Tasks to be performed from the TeamConnection command-line interface.

You may find that some administrator activities are best performed from the
family administrator GUI and others from the sever command line interface.
If you want to create a family, modify its properties, and customize the family
(such as modifying authorization groups, adding a configurable field, or
adding a user exit), you can use the family administrator GUI. You can also
manually start and stop the family and notification daemons using the family
administrator GUI.

If you want to automate certain routine administrator tasks, such as nightly
family backups (which require you to stop the family, backup the database,
and restart the family), you should use the server line commands. Otherwise,
you will need somebody to be at the console to click the appropriate buttons
in the family administrator GUI. The server line commands are explained in
“Chapter 5. Starting and stopping the servers” on page 39 and “Part 5. Using
the server command-line interface” on page 197.

“Chapter 2. Administrator Tasks” on page 11 explains the various
TeamConnection administrative tasks, the interfaces you use to perform them,
and where to find instructions for performing them.

Chapter 1. An introduction to TeamConnection 9

10 Administrator’s Guide

Chapter 2. Administrator Tasks

This chapter briefly describes the tasks that a TeamConnection administrator
performs. Administrators’ responsibilities vary widely according to the needs
of your development environment and the size and complexity of your
network. TeamConnection administrators need to be skilled in operating
system and database administration. It is also highly recommended that
administrators be skilled in DB2 tuning and performance.

The tasks explained in this book can be performed by a single system
administrator or by two or more administrators. One way to distinguish
administrators’ roles is by function, as follows:

System administrator
Has superuser access to the family server and database administration
access to the database management system. This administrator is
responsible for the following:
v Installing and maintaining the TeamConnection server
v Maintaining and backing up the database used by TeamConnection

Note: On UNIX systems, the system administrator must also have
root access to the TeamConnection server.

Family administrator
Has superuser access to the family server and database administration
access to the database management system. This administrator is
responsible for the following:
v Planning and configuring TeamConnection for one or more families
v Managing user access to one or more families
v Creating and updating configurable fields
v Configuring release and component processes for a family
v Creating and updating user exits
v Monitoring the user activity of a family
v Maintaining one or more families

Build administrator
This administrator is responsible for the following:
v Setting up and maintaining build servers
v Planning for builds
v Creating builders and parsers
v Starting and stopping build servers

© Copyright IBM Corp. 1992, 1999 11

v Defining pools

v Monitoring build performance
v Creating driver members
v Committing and completing drivers
v Extracting releases
v Packaging and distributing applications

System Administrators

System administrators are responsible for installing the TeamConnection
server software, creating user accounts for TeamConnection families, updating
network and services configuration files for TCP/IP and socket addresses
used by families and build servers, preparing the TeamConnection client
software for LAN installation (if your installation plans to make the client
software available over a LAN), starting and stopping the servers,
maintaining the TeamConnection databases, and performing database
backups.

These responsibilities span the boundaries between TeamConnection, the
operating system, and the DB2 Universal Database manager. The following
table will help you determine where to find instructions for performing these
tasks.

Tasks Environment For instructions, refer to:

Installing TeamConnection Operating
system

TeamConnectionInstallation Guide

Preparing the TeamConnection
client software for LAN
installation

Operating
system

TeamConnectionInstallation Guide

Configuring TeamConnection
families

Family
administrator
GUI

“Chapter 4. Creating your
TeamConnection family” on
page 29

Starting and stopping the
TeamConnection servers

Family
administrator
GUI or server
line commands

“Chapter 5. Starting and
stopping the servers” on page 39

12 Administrator’s Guide

Tasks Environment For instructions, refer to:

Operating system tasks:

v Creating user accounts for
TeamConnection families (for
multiuser operating systems)

v Updating network and
services configuration files for
TCP/IP address and socket
port numbers used by families
and build servers

v Enabling the syslog to capture
system and database messages

Operating
system

Your operating system user’s or
administrator’s guide.

Database manager tasks:

v Installing the DB2 Universal
Database

v Starting and stopping the
database manager

v Maintaining the database

v Database backup and recovery

DB2 Universal
Database
manager

For installation instructions, refer
to the IBM DB2 Universal
Database Quick Beginnings
manual appropriate to your
platform. For database
administration, refer to the IBM
DB2 Universal Database
Administration Guide.

One particularly important function of a system administrator is
maintaining the TeamConnection databases. Your TeamConnection
database needs to be backed up regularly using the DB2 backup
utilities available from the DB2 Control Center or the command line
processor. See “Backing up the TeamConnection database” on
page 168 for instructions.
Note: It is not recommended that you make changes to your
database by issuing INSERT, UPDATE, or DELETE statements or by
changing or deleting database tables or the columns defined in
TeamConnection database tables. Changing your database in these
ways, through the DB2 administrator tools, the DB2 command line
processor, the TeamConnection migration tools, or the tcupdb tool
can corrupt your TeamConnection database. Any such changes are
made at your own risk. Please contact your IBM representative for
information on the terms of IBM customer support.

Family Administrators

If your TeamConnection environment includes more than one family, you
might consider assigning one family administrator to each family. Family
administrators are responsible for planning and creating the component
structure and releases to be used in your family, configuring the processes to
be used for the components and releases, creating user IDs and managing
their access to the family, and creating configurable fields and user exits.

Chapter 2. Administrator Tasks 13

Tasks Environment For instructions, refer to:

Planning for and creating
families

Family
administrator
GUI

“Chapter 4. Creating your
TeamConnection family” on
page 29

Preparing for users Client GUI,
client command
line interface, or
Web client GUI

“Chapter 9. Setting up user
access to a family” on page 89

Configuring fields Family
administrator
GUI

“Chapter 10. Setting up and
implementing configurable
fields” on page 115

Configuring processes Family
administrator
GUI

“Chapter 11. Configuring
component and release
processes” on page 131

Providing user exits Family
administrator
GUI

“Chapter 12. Providing user
exits” on page 135

Setting up the mail facility Family
Administrator
GUI

“Chapter 4. Creating your
TeamConnection family” on
page 29

Changing the age of defects and
features

Server
command line
interface

“Changing the age of defects
and features” on page 154

Resolving TeamConnection
errors

Operating
system and
TeamConnection
files

“Resolving TeamConnection
errors” on page 156

Maintaining the database DB2 Universal
Database
manager

“Chapter 15. Maintaining your
TeamConnection DB2 database”
on page 167

Build Administrators

TeamConnection provides build environments for most of its platforms. If you
have a large and complex project, or your development efforts require you to
build on multiple platforms, it may be beneficial for you to assign a build
administrator for TeamConnection or for each TeamConnection family. Build
administrators are responsible for installing and maintaining the build servers,
configuring your build environment, creating build scripts and parsers,
monitoring build performance, and customizing packaging and distribution
scripts.

The TeamConnection User’s Guide explains how to create and maintain a build
environment.

14 Administrator’s Guide

Part 2. Setting up a TeamConnection server

This section is intended for the family administrator who needs to plan for
how the TeamConnection product is going to be used in the company’s
development environment. After the planning stage, the family administrator
will use this section to learn how to create a family, set up various
TeamConnection services, start and stop the family, and set up the
TeamConnection home page.

Before reading this section, you should be familiar with the TeamConnection
terminology and concepts presented in “Part 1. Introducing IBM VisualAge
TeamConnection Enterprise Server” on page 1.

© Copyright IBM Corp. 1992, 1999 15

16 Administrator’s Guide

Chapter 3. Planning your families

Careful planning of the families that your organization will use is an
important first step in preparing to use TeamConnection. First, decide how
many families you will need. The following will help you decide:
v Data cannot be shared between families, so group all development projects

that share source data within the same family.
For example, you have several applications under maintenance or
development, and these applications share some source code, such as a
utility subroutine library. If you create a family for each application, each
family must maintain a copy of the source code for the library. If you create
one family for all the applications, they can share a single copy of the
source code.
When looking at the data your projects share, consider not just the data
they share today, but what they might be sharing in the future. If your
development projects are going to remain separate, create individual
families.

v You can create new families as your needs evolve over time.
v The more families you have, the more administrative work you will have.

Keep in mind that these are merely guidelines. If it is not clear whether you
need one or more than one family, consider starting with one. You can always
create another family later.

You must also decide on a name for the family. You want the name to
uniquely identify the purpose of the family. For example, you might use your
product name or an abbreviation of your product name. Another
consideration is what case to use—lower, upper, or mixed. Mixed case is not
recommended because it is more difficult to remember. You might want to ask
your users what case they prefer. See “Database naming conventions” on
page 23 for more information about database names.

Updating TCP/IP files

If you use wizards to install TeamConnection, then your TCP/IP
services and hosts files are set up for you and you can skip this
section.

© Copyright IBM Corp. 1992, 1999 17

Before you install the TeamConnection code, you must have the correct
version of TCP/IP installed on your workstation. See “Hardware and software
requirements” on page 8 for the communications software requirements for
your operating system.

After TCP/IP is installed, update your TCP/IP services and hosts files.

You can update these files using smit. In many installations, a name
server is used instead of /etc/hosts. Also, many installations
distribute /etc/services. smit can be used to make the necessary
updates.

You can update these files using sam. In many installations, a name
server is used instead of /etc/hosts. Also, many installations
distribute /etc/services. You can use the sam tool to make the
necessary updates.

Do the following steps.
1. Update the services file, which is located in \etc\services in the directory

where TCP/IP is installed.

To determine the directory name, type echo %etc% at a prompt.

If you have a services file, it is located in the system32/drivers/etc
subdirectory of the Windows NT installation directory. If the
services file does not exist, you must configure it through TCP/IP.

Include the family name and port address of the TeamConnectionserver.
The port address can be any 4-digit number, as long as it does not already
exist in your services file. You might want to ask your TCP/IP
administrator to assign you a number.

Type the following entry in your services file. Replace ffff with an
appropriate port address. Follow the line with a carriage return.
TeamConnection servers
testfam ffff/tcp # port address for the TeamConnection test family

2. Update the TCP/IP hosts file, which is located in \etc\hosts.

To determine the directory name, type echo %etc% at a prompt. If
the hosts file does not exist, you must configure it through TCP/IP.

18 Administrator’s Guide

If you have a hosts file, it is located in the system32/drivers/etc
subdirectory or the Windows NT installation directory. If the hosts
file does not exist, you must configure it through TCP/IP.

Add the following:
v IP address.
v Server name.
v Alias name of the TeamConnection family server, which is your family

name. For the initial installation of TeamConnection, the family name is
testfam.

v Alias name for the build socket. For the initial installation of
TeamConnection, use bldsock.

The following is an example of the entry you would type in your hosts
file. Follow the line with a carriage return. You can use the hostname
command to get the name of the server.
9.12.345.67 teamserv.company.com testfam bldsock

3. Do the following to verify that the hosts file is specified correctly:
v Type host family_name, where family_name is the name of your

TeamConnection family.

The tchostw.exe utility is available from the samples directory on
the TeamConnection CD-ROM.

Type tchostw family_name, where family_name is the name of your
TeamConnection family.

The tchost.hp utility is available from the misc directory on the
TeamConnection CD-ROM.

Type tchost.hp family_name, where family_name is the name of your
TeamConnection family.

The tchost.sol utility is available from the misc directory in the
CD-ROM for TeamConnection for UNIX.

Type tchost.sol family_name, where family_name is the name of
your TeamConnection family.

The information returned should match the number and name specified
in your hosts file entry. For example, using the entry given in the
previous step, the system response would be as follows:
teamserv.company.com = 9.12.345.67

v Type host ip_address, where ip_address is the IP address of your
machine.

Chapter 3. Planning your families 19

Type tchostw ip_address, where ip_address is the IP address of your
machine.

Type tchost.hp ip_address, where ip_address is the IP address of
your machine.

Type tchost.sol ip_address, where ip_address is the IP address of
your machine.

The information returned should match the number and name specified
in your hosts file entry. For example, again using the entry given in the
previous step, the system response would be as follows:
9.12.345.67 = teamserv.company.com

If you do not receive the expected response, contact your TCP/IP
administrator to solve the problem.

If the servers are defined in the domain name server, then you can
use the UNIX utility ″nslookup″ instead.

4. Do the following to verify that you can connect to your TeamConnection
family:
a. At a prompt, type ping testfam.
b. Press Ctrl+C to end the command.

a. At a prompt, type ping -s testfam.
b. Press Ctrl+C to end the command.

If you receive information that is similar to the following, you can
successfully connect to your TeamConnection family:
PING teamserv.company.com: 56 data bytes
64 bytes from 1.23.457.78: icmp_seg:0. time=0. ms
64 bytes from 1.23.456.78: icmp_seg:1. time=0. ms
64 bytes from 1.23.456.78: icmp_seg:2. time=0. ms

If you receive information that is similar to the following, you can
successfully connect to your TeamConnection family:

PINGING teamserv.company.com (9.12.345.67): with 32 bytes of data:
Reply from 9.12.345.67: bytes=32 time=10ms TTL=255
Reply from 9.12.345.67: bytes=32 time=10ms TTL=255
Reply from 9.12.345.67: bytes=32 time=10ms TTL=255
Reply from 9.12.345.67: bytes=32 time=10ms TTL=255

The PING command will send four requests and then it will stop.

20 Administrator’s Guide

If you receive the message unknown host testfam, you cannot connect to
the family. Verify that the data you entered in the hosts and services files
is correct, and then try the command again. If you still do not get the
correct response, contact your TCP/IP administrator to solve the problem.

5. Do the following to verify that you can connect to your TeamConnection
build server:
a. At a prompt, type ping bldsock.
b. Press Ctrl+C to end the command.

a. At a prompt, type ping -s bldsock.
b. Press Ctrl+C to end the command.

If you receive information that is similar to the following, you can
successfully connect to your TeamConnection family:
PING teamserv.company.com: 56 data bytes
64 bytes from 1.23.457.78: icmp_seg:0. time=0. ms
64 bytes from 1.23.456.78: icmp_seg:1. time=0. ms
64 bytes from 1.23.456.78: icmp_seg:2. time=0. ms

If you receive information that is similar to the following, you can
successfully connect to your TeamConnection family:

PINGING teamserv.company.com (9.12.345.67): with 32 bytes of data:
Reply from 9.12.345.67: bytes=32 time=10ms TTL=255
Reply from 9.12.345.67: bytes=32 time=10ms TTL=255
Reply from 9.12.345.67: bytes=32 time=10ms TTL=255
Reply from 9.12.345.67: bytes=32 time=10ms TTL=255

The PING command will send four requests and then it will stop.

If you receive the message unknown host bldsock, you cannot connect to
the build server. Verify that the data you entered in the hosts and services
files is correct, and then try the command again. If you still do not get the
correct response, contact your TCP/IP administrator to solve the problem.

Note: Do not install the TeamConnection components until the ping
commands successfully complete.

Setting up login IDs

Certain login IDs required for your TeamConnection family need to be
coordinated. You need to create a system login, and a TeamConnection initial
superuser login that are the same as your family name. In addition, the DB2
user with administrator authority needs to be the same as the
TeamConnection superuser ID. If you create a family called testfam, for
example, then you also need to create a system login called testfam, an initial
TeamConnection superuser ID (created when you create your family) called
testfam, and a DB2 user called testfam with administrator authority.

Chapter 3. Planning your families 21

|
|

|
|
|
|
|
|
|
|

For TeamConnection to function properly, you need to login to your system
and start your TeamConnection family using these coordinated login IDs. For
example, for a family called testfam on a Windows NT server, you would do
the following:
1. Login to Windows NT using the login ID testfam.
2. Grant that user ID DB2 administrator authority.
3. Create a TeamConnection family called testfam with an initial superuser

ID called testfam.
4. Start the family while logged into Windows NT as user testfam.

On UNIX platforms, the primary group ID for the VisualAge TeamConnection
family user ID must be the same as the primary group ID (the default is
db2iadm1) for the DB2 instance (the default is testfam) to be used for the
family. If this is not properly done, then the family user ID will lack authority
to create the database for the family. Use only lowercase names for user
accounts.

DB2 considerations

Before you create a TeamConnection family, you need to be aware of certain
DB2 considerations concerning DB2 instances, database naming conventions,
and database configuration parameters

DB2 instances

Each family has its own unique database. If you create more than one family
on a single machine, they use the same database manager to access the
database. If you want to install families on separate machines, you need a
TeamConnection and DB2 server on each machine.

It is recommended that the databases for each TeamConnection family be
placed in a separate DB2 instance. By following this recommendation, you can
assure that if an instance is stopped, only one TeamConnection family is
affected. It also enables you to tune the performance for one instance while
affecting only one TeamConnection family.

You need to have at least 100 MB of free disk space in the file system where
the family database is to be created.

On Intel platforms, it is recommended that you create only one DB2
instance per (physical) server. Because it is recommended that you
have only one family per instance, you should have only one family
per (physical) server.

22 Administrator’s Guide

|
|
|
|

|

|

|
|

|

|
|
|
|
|
|

On UNIX platforms, use the sample .profile for each family that you
create. This .profile contains DB2 environment variables that you
need to customize before you create a family. One of these variables,
DB2INSTANCE, defines the DB2 instance in which the family is to
be created. DB2INSTANCE must be set in the profile for the new
family and should point to the new DB2 instance. The sample
profile is located in $TC_HOME/install/$LANG/profile.family.

If you already have a family running on an existing DB2 instance, it is
necessary to create another DB2 instance for a new family. Refer to DB2 Quick
Beginnings for information on how to create a new DB2 instance.

Database naming conventions

DB2 places certain restrictions on database names. Because the
TeamConnection family name corresponds to the name of the DB2 database,
these DB2 restrictions apply to TeamConnection families as well.

The name you specify:
v Can contain 1 to 8 characters
v Cannot be any of the following:

– USERS
– ADMINS
– GUESTS
– PUBLIC
– LOCAL

v Cannot begin with the following:
– IBM
– SQL
– SYS

v Cannot include accented characters.
v To avoid potential problems, do not use the special characters @, #, and $ in

a database name if you intend to have a client remotely connect to a host
database. Also, because these characters are not common to all keyboards,
do not use them if you plan to use the database in another country.

v Be aware of case-sensitivity on your platform:
– On OS/2, use uppercase names.
– On Windows NT, use any case.
– On UNIX, use lowercase names.

The family name, the user ID name, and the DB2 database name should be
the same. If you have a family named testfam (TC_FAMILY=testfam), for

Chapter 3. Planning your families 23

|
|

example, then you should have a user ID named testfam for that family, and
there should be a directory with that name, such as /home/testfam
(TC_DBPATH=/home/testfam). Some TeamConnection tools, such as tcstop,
are designed to work according to these recommendations.

Database configuration parameters

When you create a new family, TeamConnection creates a DB2 database and
sets the following values for certain database configuration parameters. Use
caution when modifying the values to which TeamConnection sets these
parameters.

APPLHEAPSZ = 1280
This parameter defines the number of private memory pages available
to be used by the database manager on behalf of a specific agent or
subagent.

DBHEAP=2400
This parameter indicates the maximum amount of space that the
catalog cache can use from the database heap (dbheap). The catalog
cache is used to store table descriptor information that is used when a
table, view or alias is referenced during the compilation of an SQL
statement.

DLCHKTIME = 1000
This parameter defines the frequency at which the database manager
checks for deadlocks among all the applications connected to a
database.

LOGFILSIZ = 4000
This parameter determines the number of pages for each of the
configured logs. A page is 4KB in size.

LOGPRIMARY = 5
This parameter specifies the number of primary logs that will be
created.

LOGSECOND = 30
This parameter specifies the number of secondary log files that are
created and used for recovery log files (only as needed).

STMTHEAP=4096
This parameter sets the statement heap size. It is used to optimize
complex SQL statements. If the STMTHEAP parameter is not set large
enough, you may receive an SQL warning indicating that there is not
enough memory available to process the statement.

24 Administrator’s Guide

|
|
|
|

On Intel platforms, the following additional database parameters are
set when you create a family.

APP_CTL_HEAP_SZ=128
This parameter determines the maximum size, in 4 KB
pages, for the application control shared memory.
Application control heaps are allocated from this shared
memory.

CATALOGCACHE_SZ=32
This parameter sets the catalog cache size. The catalog
cache is used to store table descriptor information that is
used when a table, view or alias is referenced during the
compilation of an SQL statement.

DBHEAP=600
This parameter indicates the maximum amount of space
that the catalog cache can use from the database heap
(dbheap).

LOCKLIST=50
This parameter indicates the amount of storage that is
allocated to the lock list. There is one lock list per database
and it contains the locks held by all applications
concurrently connected to the database.

MAXAPPLS=40
This parameter specifies the maximum number of
concurrent applications that can be connected (both local
and remote) to a database.

TeamConnection leaves all other DB2 database configuration parameters at
their DB2 default values.

DB2 kernel changes for UNIX platforms

Note: These changes are not required for AIX.

Depending on your workstation’s operating system and its kernel
configuration, you may have to update the kernel configuration parameters.
Because changing the kernel in UNIX is a delicate operation, it is
recommended that you make a backup of your UNIX system before
attempting the kernel changes needed by DB2.

Recommended Values for HP-UX
The values in the following table are recommended for the HP-UX kernel
configuration parameters, based on the available Physical Memory. To
maintain the interdependency among kernel parameters, change parameters in
the same sequence in which they appear in the following table.

Chapter 3. Planning your families 25

Kernel Parameter 64MB - 128MB 128MB - 256MB 256MB+

nproc 512 768 1024

maxfiles 256 256 256

maxuprc 256 384 512

nflocks 2048 4096 8192

ninode 512 1024 2048

nfile (4 * NINODE) (4 * NINODE) (4 * NINODE)

msgseg 8192 16384 32768

msgmnb 65535 (1) 65535 (1) 65535 (1)

msgmax 65535 (1) 65535 (1) 65535 (1)

msgtql 256 512 1024

msgmap 130 258 258

msgmni 128 256 256

msgssz 16 16 16

semmns 256 512 1024

semmni 128 256 512

semmap (2 + SEMMNI) (2 + SEMMNI) (2 + SEMMNI)

semmnu 256 512 1024

shmmax 67108864 (2) 134217728 (2) 268435456 (2)

shmseg 16 16 16

shmmni 300 300 300

Notes:

1. Parameters msgmnb and msgmax must be set to 65535.
2. Parameter shmmax should be set to 134217728 or 90% of the physical

memory (in bytes), whichever is higher. For example, if you have 196 MB
of physical memory in your system, set shmmax to 184968806
(176*1024*1024). When using the sam tool, these values are actually
represented in hexadecimal:
v 67108864 = 0X40000000 (0X4 followed by 7 zeros)
v 134217728 = 0X80000000 (0X8 followed by 7 zeros)
v 268435456 = 0X100000000 (0X1 followed by 8 zeros)

Important!: Ensure that your system has the HP-UX 10 Transitional Links for
HP-UX 9, otherwise the rebuilding of the kernel will fail. The
following commands in HP-UX 10 handle the transitional links,
which are installed by default:

26 Administrator’s Guide

/opt/upgrade/bin/tllist -> lists the transitional links, if available
/opt/upgrade/bin/tlremove -> removes the transitional links
/opt/upgrade/bin/tlinstall -> establishes the transitional links

To change the values, do the following:
1. Login as root.
2. Invoke the SAM tool: /usr/sbin/sam &.
3. Select Kernel Configuration.
4. Select Configurable Parameters.
5. Highlight the parameter to be changed.
6. Select Modify Configurable Parameter from the Actions menu

and make the appropriate changes. In some cases, the
recommended value to be used with DB2 for a parameter will
replace an existing formula.

7. Repeat the previous two steps for every kernel parameter
which needs to be updated.

8. Create a new kernel by selecting Create a New Kernel from
the Actions menu.

9. Reboot the system so that the changes can take effect. Accept
the defaults from the Reboot the system window.

Recommended Values for Solaris
The values in the following table are recommended for Solaris kernel
configuration parameters, based on the available Physical Memory.

Kernel Parameter 64MB -
128MB

128MB -
256MB

256MB —
512MB

512MB+

msgsys:msginfo_msgmax 65535 (1) 65535 (1) 65535 (1) 65535 (1)

msgsys:msginfo_msgmnb 65535 (1) 65535 (1) 65535 (1) 65535 (1)

msgsys:msginfo_msgmap 130 258 258 258

msgsys:msginfo_msgmni 128 256 256 256

msgsys:msginfo_msgssz 16 16 16 16

msgsys:msginfo_msgtql 256 512 1024 1024

msgsys:msginfo_msgseg 8192 16384 32768 32768

shmsys:shminfo_shmmax 67108864 134217728 (2) 26843545 (2) 53687091
(2)

shmsys:shminfo_shmseg 16 16 16 16

shmsys:shminfo_shmmni 300 300 300 300

semsys:seminfo_semmni 128 256 512 1024

semsys:seminfo_semmap 130 258 514 1026

Chapter 3. Planning your families 27

Kernel Parameter 64MB -
128MB

128MB -
256MB

256MB —
512MB

512MB+

semsys:seminfo_semmns 256 512 1024 2048

semsys:seminfo_semmnu 256 512 1024 2048

Notes:

1. Parameters msgsys:msginfo_msgmnb and msgsys:msginfo_msgmax must
be set to 65535.

2. Parameters shmsys:shminfo_shmmax should be set to the suggested value
in the above table or 90% of the physical memory (in bytes), whichever is
higher. For example, if you have 196 MB of physical memory in your
system, set the shmsys:shminfo_shmmax 184968806 (176*1024*1024).

To change the values, do the following:
1. Login as root.
2. Just in case you have an existing /etc/system file, make a backup of it.
3. Edit the file /etc/system as follows:

To set a kernel parameter, add a line at the end of the file:
set parameter-name = value

For example, to set the value of the parameter msgsys:msginfo_msgmax,
add the following line:
set msgsys:msginfo_msgmax = 65535

4. Depending upon the amount of physical memory in your system, append
the appropriate kernel configuration parameter file to the /etc/system file.
If necessary, change the value of shmsys:shminfo_shmmax as described in
note 2.

5. After updating the /etc/system file, reboot the system:
shutdown -i6 -y -g0

28 Administrator’s Guide

Chapter 4. Creating your TeamConnection family

This chapter explains how to set up the TeamConection family administrator
interface and use it to create a TeamConnection family. The family
administrator is a graphical user interface that helps you perform the
following tasks:
v Create, delete, or copy a family
v Add an existing family to the family administrator so that you can manage

it through the family administrator interface
v Define and implement configurable fields
v Configure release and component processes
v Define user exits and determine which TeamConnection actions can trigger

them
v Set up authority and interest groups
v Start and stop your family

This chapter focuses on the first two tasks: creating a family and adding an
existing family to the family administrator. For instructions on performing the
remaining tasks, refer to the following sections of this book:

For information about this task, Go to this
page.

Defining and implementing configurable fields 115

Configuring release and component processes 131

Providing user exits 136

Setting up authority and interest groups 97

Starting or stopping a family 39

Some of these tasks can be done from the TeamConnection server
command-line interface. “Part 5. Using the server command-line interface” on
page 197explains how to use server commands.

Setting up the family administrator

TeamConnection provides a family administrator for creating families and for
performing other administrative tasks. You can access this interface only from
a family server machine. The family administrator is capable of working with
one or more families at a time. When you first install TeamConnection,
however, it is recommended that you work with only one family in the family
administrator. Later on, you can create a separate user ID just to manage the
family administrator to control multiple families.

© Copyright IBM Corp. 1992, 1999 29

Before you use the family administrator interface for the first time, you need
to do the following:
1. On Intel platforms, add the bin directory of your Java installation to your

PATH statement and classes.zip to your CLASSPATH statement.
2. Open the family administrator and set the locations for your internet

browser, your Adobe Acrobat reader, and your TeamConnection softcopy
documentation:
a. Do one of the following to display the TeamConnection family

administrator window:
v In OS/2, from the TeamConnection Group folder on the desktop,

double-click on the Family Administrator icon.
v In Windows NT 4.0, select TeamConnection Family Administrator

from the Start menu.
v Type tcadmin from a command prompt.

b. From the Help menu, select Help Settings.

c. In the Help Settings window, type the locations of your internet
browser, your Adobe Acrobat reader, and your TeamConnection
softcopy documentation. You can use the Browse buttons to help you
locate these files. The default installation path for the TeamConnection
softcopy documentation is teamc\nls\doc\enu.

Creating a family

An initial family, called testfam, is configured during the installation of the
TeamConnection server. This family usually serves as a test family so that you
can verify that TeamConnection is working properly. You can use this family
to explore and learn about TeamConnection. Eventually, you will want to
create another family for use during application development.

If you create more than one family, TeamConnection places each in a separate
directory. Each family requires its own audit log, user exit directory, mail
queue directory, and security and configurable field information, and therefore
cannot share a directory with another family.

At a minimum, you will provide the following information when you create
your family:
v The name of the family
v The fully qualified path name of the directory where you want the family

configuration information stored
v The port address of the family server
v The level of security to use for the family
v The login and client host information for the first superuser of the family

30 Administrator’s Guide

To create a TeamConnection family using the family administrator, follow
these steps. Before you begin, define your family name in the TCP/IP hosts
file and the port number for your database in the TCP/IP services file. See the
Installation Guide for information on setting up TCP/IP files.

1. Do one of the following to display the TeamConnection Family Administrator
window:

v In OS/2, from the TeamConnection Group folder on the desktop, double-click
on the Family Administrator icon.

v In Windows NT 4.0, Select TeamConnection Family Administrator from the
Start menu.

v Type tcadmin from a command prompt.

This command has several optional parameters:

-hide Starts tcadmin, but does not open the Family Administrator. You can
use this parameter in conjunction with the -start parameter to start a
family without opening the Family Administrator.

-start family
Causes the family specified to be started automatically when the Family
Administrator is started.

-f directory
Specifies the location of the configuration files needed to create a new
family. The default location of these files is \nls\cfg\$LANG from the
directory where TeamConnection is installed. If you have configured
the files differently and placed them in a different directory structure,
you can use this parameter to point to the files you want to use to
create a new family.

-log [logfilename]
When -log is specified, a log file will be generated that will contain
information on which commands are run, the output from those
commands, and error messages and stack traces for debugging
purposes. If no log file name is specified, then the file tcadmin.log will
be created. If a log file name is specified, the error log will be written to
that log file. The log file is overwritten if the same file name is specified
again.

2. Select Create Family from the Family pull-down menu.

3. When the family properties notebook appears, complete the required information
about the family. See “Required” on page 32 for instructions. After you have set the
required properties, select the OK push button.

Note: After your family is created, you can access other pages in this
notebook by selecting the family and then selecting
Family → Properties.

Chapter 4. Creating your TeamConnection family 31

Using the family properties notebook

The following sections introduce each page of the family properties notebook. Many
of these settings are discussed in greater detail in later chapters of this book.

Required
Complete the fields on the Required page of the properties notebook as
follows.

Name Type a name for your family. The name must follow the conventions
outlines in “Database naming conventions” on page 23.

Path Specify the fully-qualified path name of the directory where you want
the database configuration information stored. TeamConnection places
this information in a subdirectory of the path you specify. This
subdirectory has the same name as the family. If you specify
c:\proddev (for Intel) or /proddev (for UNIX) as the path name, for
example, TeamConnection places all files related to the family in the
directory path c:\proddev\yourDBName (Intel) or
/proddev/yourDBName (UNIX).

Figure 4. Family Properties notebook

32 Administrator’s Guide

As you fill out the Name and Path fields, the TC_DBPATH Set to
field shows you the directory path of your family database. This is a
protected field. The TC_DBPATH environment variable will be set to
the value shown in this field.

Note: If a directory for the database name you specify already exists,
you will need to delete it before you proceed. This procedure
will fail if the directory already exists.

Port Specify the TCP/IP port address that you set in your TCP/IP services
file.

Mailer
Specify the name of the mail routine you want to use to notify users
of actions they need to be informed of. See “Setting up the mail
facility” on page 40 for information on setting up the mail routine for
notification.

Security level
Select a level of security from the list box. Choose one of the
following:

Host-only
A valid combination of the system login ID, TeamConnection
user ID, and host name must be used to obtain access to the
family. This is the default level of security.

Password-only
A user must log in to and log off of TeamConnection and
supply a password in one of the following ways:
v Select Login from the File menu of the Tasks window.
v Issue the command teamc tclogin from a command

prompt.

When the user logs in to the family, the family will send back
a token associated with that user from that client. The server
will check the attached token and, if valid, will proceed to
perform the requested action.

If you specify the password-only option, you will need to
specify a password for each TeamConnection user. See
“Chapter 9. Setting up user access to a family” on page 89 for
information on creating users.

Password-or-host
The user can use either the password-only function if he or
she has a password or the host-only function if he or she has
a valid host list entry. This level of security is useful for teams
in which particular team members may be remote or mobile

Chapter 4. Creating your TeamConnection family 33

and have changing IP addresses. If the user supplies a valid
password, then TeamConnection uses the password to admit
access to the family. If the user either does not supply a
password or supplies an incorrect password, then
TeamConnection checks the user’s host list entry to admit
access.

None Any user can access TeamConnection. Neither a password nor
a valid host list entry is required.

See “Planning for user authentication” on page 89 for information on
how to set up user IDs for the security level you select. See “Login
managers” on page 94 for information on starting and stopping login
managers for password-only and password-or-host security.

Minimum password length
Use this field to set the minimum number of characters to be used for
passwords. The default password length is 8, the minimum is 1, and
the maximum length is 32.

Maximum invalid attempts
Use this field to set the number of times users can attempt to log in
before TeamConnection deactivates the user’s ID. If this happens, a
superuser must reactivate the ID before the user can attempt to log in
again.

Login Specify a user ID for the superuser for the family. For Intel platforms,
use the value set for the TC_USER environment variable. To see this
value, type the following from a command prompt and look for the
TC_USER variable:
set | more

For UNIX and Windows NT platforms, set this field to the login ID
for the user.

Userid
Specify the TeamConnection user ID for the superuser. If you omit
this parameter, it defaults to the value specified in the Login field. It
is a good idea to give the superuser an ID that is readily identifiable
as a superuser. A good way to do this is to preface the user ID with
su_, such as su_john.

Host Specify the TCP/IP host name for the family server machine, which
was set in your TCP/IP hosts file.

To see this value, type the following from a command prompt:
hostname

34 Administrator’s Guide

Note: You do not need to use the fully-qualified host name. You can,
for example, specify myServer instead of
myServer.myCompany.com.

Password
If you want to use password security, you must specify the password
to be used to verify the superuser’s access to the TeamConnection
server. If you do not specify the password for superuser access, then
no one will be able to access the database. To use password security,
you need to set the Security Level field on the Required page of the
family properties notebook to password-only or password-or-host.

The password must be a minimum of 1 character long and only
include characters from the syntactic ASCII character set.

If you anticipate the need for security past the basic level of
authentication (host-only) at any time in the future, it is recommended
that you supply a user ID and password for the initial superuser
when creating the family. Avoid modifying any fields in this portion
of the Required Properties page after you have created the family. If
you want to change the security level of a family to ″Password or
Host″, you can use this page to make this change, but do not enter a
password in the Password field. Use the TeamConnection client
Modify Password menu item or the TeamConnection Login window
to set a password for the superuser.

Confirm password
Type your password again.

Use the SuperUser fields to set the login ID, user ID, host name, and
password for the initial superuser. After you have set these values and created
the family, you cannot use this window to change them. To change any of
these values after the family is created, use the TeamConnection client
interface. “Chapter 9. Setting up user access to a family” on page 89 explains
how to change the properties of user IDs.

Configurable fields
Use the Configurable fields page of the properties notebook to define special
fields for defects, features, parts, releases, users, and workareas. See
“Chapter 10. Setting up and implementing configurable fields” on page 115 for
more information on using this section of the properties notebook.

Processes
This page of the family properties notebook provides access to two windows:
one for defining release processes and one for defining component processes.
To open one of these windows, select one of the Settings push buttons.

Chapter 4. Creating your TeamConnection family 35

Use the Release Process Settings window and the Component Process
Settings window to define processes and subprocesses for releases and
components defined in your family. Complete the fields on these windows as
follows. For more information about defining and using release processes, see
“Chapter 11. Configuring component and release processes” on page 131.
v To see the default subprocesses defined for each release process, select a

process name from the Release Process or Component Process list. The
subprocesses included will appear highlighted in the Subprocesses list.

v To add or delete subprocesses for an existing process, follow these steps:
1. Select a process from the Release Process or Component Process list.
2. To add or delete a subprocess, select it from the Subprocesses list.
3. To save your changes, select the Apply button.

v To create a new process, follow these steps:
1. Select the New push button, type the name of the new process in the

New Release Process or New Component Process window, and then
select the OK push button.

2. From the Subprocesses list, select the subprocesses you want to include
in the new process.

3. To save the new process, select the Apply push button.
v To delete a process, select it from the Release Process or Component

Process list and then select the Delete push button. When the confirm
delete window appears, select Yes.

v To rename a process, follow these steps:
1. Select a process from the Release Process or Component Process list.
2. Select the Rename push button.
3. Type a new name in the New name field of the Rename Release Process

or Rename Component Process window, and then select the Apply push
button.

User exits
Use the User Exits page of the properties notebook to define processes to be
called at certain exit points for TeamConnection actions. See “Chapter 12.
Providing user exits” on page 135 for more information on using this section
of the properties notebook.

Groups
This page of the family properties notebook provides access to two windows:
one for defining authority groups and one for defining interest groups. To
open one of these windows, select one of the Settings push buttons.

Use the Authority Group Settings window and the Interest Group Settings
window to define authority and interest groups and actions for your family.

36 Administrator’s Guide

Complete the fields on these windows as follows. For more information about
defining and using authority and interest groups, see “Chapter 9. Setting up
user access to a family” on page 89.
v To see the default actions defined for each authority or interest group, select

a group name from the Authority Group or Interest Group list. The actions
included will appear highlighted in the Actions list.

v To add or delete actions for an existing group, follow these steps:
1. Select a group from the Authority Group or Interest Group list.
2. To add or delete an action, select it from the Actions list.
3. To save your changes, select the Apply push button.

v To create a new group, follow these steps:
1. Select the New push button, type the name of the new group in New

Authority Group or New Interest Group window, and then select the
OK push button.

2. From the Actions list, select the actions you want to include in the new
group.

3. To save the new group, select the Apply push button.
v To delete a group, select it from the Authority Group or Interest Group list

and then select the Delete push button. When the confirm delete window
appears, select Yes.

v To rename a group, follow these steps:
1. Select a group from the Authority Group or Interest Group list.
2. Select the Rename push button.
3. Type a new name in the New name field of the Rename Authority

Group or Rename Interest Group window, and then select the Apply
push button.

Adding an existing family to the Family Administrator window

You can add an icon to the Family Administrator window for an existing
TeamConnectionfamily that was defined outside the GUI. To do this, follow
these steps:

Chapter 4. Creating your TeamConnection family 37

1. Select Attach icon from the Family pull-down menu. The Attach Icon to Family
window appears.

2. Complete the fields on this window as follows:

Name Type the name of your family.

Path Specify the directory path where the family was created.

As you fill out the Name and Path fields, the TC_DBPATH Set to field
shows you the directory path of your family database. This is a protected
field. The TC_DBPATH environment variable will be set to the value
shown in this field.

Port Specify the TCP/IP port address that you set in your TCP/IP services file.

Mailer Specify the name of the mail routine you want to use to notify users of
actions they need to be informed of.

3. Select OK. An icon for that family appears.

4. After you see your family icon in the Family Administrator window, you can:

v Start and stop the family and notification servers. See 41 for instructions.

v Change the default values in the database to better suit your needs. To change
the default values, select the family icon and then select Family → Properties.

38 Administrator’s Guide

Chapter 5. Starting and stopping the servers
This chapter explains how to start and stop TeamConnection servers using the family
administrator. TeamConnection also provides a line command called teamcd, which
enables you to start and stop the family server, notification server, and build server.
See “Starting your family” on page 201 for instructions on using teamcd.

For information on setting up the TeamConnection family server to
run as a Windows NT service that can be started automatically
when you start Windows NT, see “Starting teamcd as a Windows
NT service” on page 204.

TeamConnection also provides a teamcbld command for starting and stopping
build servers. For more information about this command, refer to the
TeamConnection User’s Guide.

Specifying the number of daemons to start

When you start the family server, you specify the number of daemons, one or
more, that are to be started. A daemon is a process that runs as a background
task and provides access to the TeamConnection database. Because one
daemon processes only one request at a time, the number of daemons you
have running determines how quickly requests are processed. A daemon is
not available until a request completes.

To determine the number of daemons to start, you need to understand the
types of requests your users generally issue. For example, if many of the
requests are for reports, which require longer processing, you will need more
daemons than if most of the requests process quickly, such as checking files in
and out.

Requests are queued and processed by the next available daemon. If the
queue fills up, requests are not queued and the server refuses the connection.
This is a signal that more daemons are needed.

If you do not explicitly specify the number of daemons when you start the
family server, only one daemon is started. It is recommended that you start
with five daemons. You can then use the server daemon monitor to gauge
whether you have too many or too few daemons running. If you see, from
looking at the server daemon monitor, that there is significant contention
between the daemons (the monitor shows the same set of requests for long
periods of time), restart the family server with fewer daemons. If you see that
client requests are often being queued (the monitor shows all the daemons are
in use and clients are waiting for a daemon to become available), restart the

© Copyright IBM Corp. 1992, 1999 39

family server with more daemons. “Using the server daemon monitor” on
page 181 explains how to use the server daemon monitor.

To change the number of daemons to start, you need to stop and restart the
family. You specify the number of daemons to start on the Family Servers
window of the family administrator. See 41 for instructions.

Setting up the mail facility

TeamConnection users can receive notification when certain events occur
within TeamConnection. A user’s mail address is specified when a
TeamConnection user ID is created. TeamConnection uses this mail address to
notify users when certain actions occur.

In order for users to receive notification, the notification server must be
running. When you start the notification server, you specify an executable or
command file that specifies the mail exit routine that processes mail requests.

The following mail exit routine samples are shipped with TeamConnection:
v mailexit.cmd (Intel platforms)
v mailexit.exe (Intel platforms)
v mailexit.ksh (UNIX platforms)

These samples are located in the directory where TeamConnection is installed.
These samples use the sendmail command. You can either use one of these
sample mail exits or you can use a different mail facility and write your own
routine.

The sendmail command is part of TCP/IP, and is installed when TCP/IP is
installed. If you use the sendmail function to send notification messages, you
must configure it on your network in order for TeamConnection client
workstations to receive notification messages from the server. Refer to your
TCP/IP documentation for more information.

If you use a different mail facility, refer to the shipped mail exit routine
sample, mailexit.c, to see how you can tailor TeamConnection to support your
mail facility.

In order not to lose messages when the mail exit routine fails, you can have
the exit routine return a code of 1041. This causes the notification daemon to
exit and the mail that was being processed is not deleted. If the exit routine
returns any other code, the mail that is being processed is deleted.

You set the mail facility on the Required page of the family Properties
notebook. See “Required” on page 32 for instructions.

40 Administrator’s Guide

Starting the servers

This section explains how to start the TeamConnection family server and
notification server. These processes can be started together when you start the
family server or individually.

On Windows NT, an MS/DOS window with the teamcd daemon
running in the foreground may display when the TeamConnection
family is started. You can minimize this window.

On Windows NT it is important to start your family while logged in
to the same user account under which the family was created.
Otherwise you will receive an SQL error -727. The login ID under
which the family was created is used as the table schema name
when the various tables TeamConnection uses are built. All queries
against the family expect to see this login ID.

You can follow these steps to start both the family and notification servers
from the family administrator:

Chapter 5. Starting and stopping the servers 41

|
|
|
|
|
|

1. Do one of the following to display the TeamConnection Family Administrator
window:
v From the TeamConnection Group folder on the desktop, double-click on the

Family Administrator icon.
v Type tcadmin from a prompt.

2. Double-click the family icon for the family you want to start. The Family Servers
window appears.

3. When starting the family server, specify in the Daemons field the number of
daemons you want started.

4. To start only one server, select the appropriate Start push button. To start both the
family and notification servers, select the Start Both Servers push-button.

When a server starts successfully, the message ″Press CTRL-C to stop″ appears in
the list box and the Start push button changes to Stop.

5. Minimize the Family Servers window.
Note: Do not close the Family Servers window. Closing the Family Servers
window stops the family server.

Note: If a family is started outside of the family administrator (or by another
copy of the family administrator), the GUI will not allow you to modify
or delete it and a message will appear in the Family Servers window
stating: ″The family is already running outside of tcadmin.″ There may
also be a message in the Notification Server window stating: ″If the
Notification Server was started outside of tcadmin, the output is not
available.″

42 Administrator’s Guide

Stopping the servers

If you started the family or notification servers from the family administrator,
follow these steps to stop them:

1. From the Family Servers window, select the Stop push button for the appropriate
server to stop only one server. To stop both the family and notification servers,
select the Stop Both Servers push button.

2. Close the Family Servers window.

Chapter 5. Starting and stopping the servers 43

44 Administrator’s Guide

Chapter 6. Setting up the client interface

The TeamConnection Web-based client interface provides access to your
TeamConnection family from a Web browser such as Netscape or Internet
Explorer. Once you have set up the interface, your users need only connect to
the family’s Web address, and then they can perform all TeamConnection
tasks from their Web browser.

To use the TeamConection Web-based client interface, you need one of the
following HTTP servers installed on your TeamConnection server. This
software is available on CD 3 of the TeamConnection FullPak.
v IBM HTTP Server powered by Apache (for Windows NT, AIX, or Solaris)
v Apache HTTP Server (for any platform supported by TeamConnection)

You need to install and configure your HTTP server as described in its
product documentation.

After you have created your family and installed and configured your HTTP
server, do the following.

For UNIX platforms, TeamConnection ships with a sample script
called ${TC_HOME}/samples/ksh/update_jgui_v303. This script
automates the tasks explained in this section.

1. Define your TeamConnection family to the HTTP server:

a. Edit the Web server’s httpd.conf file and add the following lines
immediately below the line that defines the /icons/ alias. These two
lines must be added in the order shown here.

Note: It is recommended that you use the version of the web servers
shipped on the TeamConnection single-box CD. If you use an
older web server, you may need to update Alias in access.conf.

Alias /icons/ "e:/httpsrv/icons/"
Alias /teamc/lib/ "<tc_home>/lib/"
Alias /teamc/ "<tc_home>/www/"

Replace <tc_home> with the directory path where TeamConnection is
installed (the value of the TC_HOME environment variable), for
example ″e:/teamc/lib″.

© Copyright IBM Corp. 1992, 1999 45

|
|
|

|
|
|

|
|
|

|
|
|

b. Add the following lines after the line #AddType application/x-httpd-
php3-source .phps:
#AddType application/x-httpd-php3-source .phps
AddType application/java-archive .jar
AddType application/octet-stream .obj

c. For Intel platforms only, add the following entry (in bold) to the
DirectoryIndex:
DirectoryIndex index.html index.htm

The index file shipped on Intel is called index.htm, not index.html.
Adding this entry to the DirectoryIndex allows your browser to
recognize index.htm as the TeamConnection home page.

d. Stop and restart the HTTP server.
2. Set up a family directory in your <tc_home>/www/ directory:

a. In the <tc_home>/www/ directory, create a subdirectory named after
your family. If your family is testfam, for example, then you should
create the following directory:
<tc_home>/www/testfam

b. Copy the folowing files from <tc_home>/www/template/ to
<tc_home>/www/<family>/:
index.html (or index.htm)
family.xml

c. Edit index.html (or index.htm) and make the following changes:
v Replace the port number 7654 with the port number or your family

(in four places)
v Change testfam in the <title> tag to the name of your family.

d.

3. Test access to your family:

a. Start your TeamConnection family according to the instructions in
“Chapter 5. Starting and stopping the servers” on page 39.

b. From a supported Web browser, open the following Web address,
where <server> is the host name or IP address of the system where the
family is running, and <family> is the name of your family:
http://<server>/teamc/<family>/

c. Download the Java plugin.
The first time you and your users connect to your family, you will
need to download the Java plugin. You can do so by selecting the
graphic at the bottom of the TeamConnection welcome page. Follow
the instructions provided on the Java plugin download site.

d. Copy identitydb.obj to your home directory.
TeamConnection ships with a Java signature file called identitydb.obj
located in the lib subdirectory of the TeamConnection installation path.

46 Administrator’s Guide

|

|
|

|

|
|
|

|

|
|
|
|

|

|
|

This file certifies TeamConnection to the Web server. You and your
users need to download this file and copy it to your home directory.
Follow the instructions provided on the TeamConnection welcome
page.

Note: On AIX, HP and OS/2, first-time users will see a series of seven
Java security dialogs when they bring up TeamConnection from
their web browsers. These dialogs will prompt them to ’Grant’
or ’Deny’ privileges to perform certain tasks on their computers.
Selecting ’Grant’ will enable the users to get the full function of
the Java Web Client. Selecting ’Deny’ will make the applet
unusable. Users can select the ’Remember this decision’
checkbox to avoid seeing the security dialogs each time they
connect to the family server.

e. Reload the TeamConnction welcome page.
After you have set up the web client and reloaded the TeamConnection
welcome page, you will be prompted to login to TeamConnection. Type
your TeamConnection login ID and password into the login window.
The TeamConnection home page opens in an applet window.

The following is an example of the TeamConnection home page. This is the
point from which you will perform TeamConnection tasks:

Chapter 6. Setting up the client interface 47

|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|

Customizing TeamConnection home pages

TeamConnection ships with a default home page. This section explains how to
change the contents of the shipped home page. Customizing a home page
involves defining TeamConnection tasks for your users to select. Before you
change any of the shipped home pages, therefore, you need to understand the
content of the TeamConnection User’s Guide.

You customize the TeamConnection home pages by altering the index.html (or
index.htm) and family.xml files, which you copied to your
<tc_home>/www/<family>/ directory when you set up the client interface. If
you want different groups of users to see different home pages when they
connect to the family, you can create several different versions of index.html
(each with a unique name) and tell your users to open their Web browsers to
these pages. If you want separate home pages for developers and testers, for
example, you can do the following:
1. Copy index.html to developers.html and make changes appropriate for

your development group. when you give your development group the
URL for the family, have them connect to
http://<server>/teamc/<family>/developers.html

Figure 5. TeamConnection home page

48 Administrator’s Guide

|
|
|
|
|
|
|
|

|
|
|
|

2. Copy index.html to testers.html and make changes appropriate for your
test group. When you give your test group the URL for the family, have
them connect to http://<server>/teamc/<family>/testers.html

After you have altered these pages to suit your needs, it is a good idea to
load them into your TeamConnection family as a backup and recovery
measure.

Changing index.html
The file index.html (or index.htm) is the TeamConnection home page. It
contains a section called ″Project Links.″ You can add to this section any links
to Web pages containing information about your development projects. The
section called ″News″ is a good place to put any information that you want
your users to see when they start TeamConnection.

If you use the Integrated Notes Database, then one addition you might want
to make to your Project Links section is a link for your Notes Database. Use
the following format:
//http:domino_server:<port>/directory/database.nsf?OpenDatabase

Where:

domino_server is the name of the Domino server on which your otes database
is located.

port is the TCP/IP port number of the Domino server. This is optional.

database is the name of your database file.

Changing the actions, menus, and views
The TeamConnection actions, menus, and views are defined in family.xml,
located in your family subdirectory of the teamc/www directory. You can
modify this file to change the actions on the home page, to prefill values for
some fields, such as release, component, or workarea, and to add or remove
columns that display for TeamConnection views. After you change this file
and the first user logs in, the changes are saved with other TeamConnection
preferences.

The changes you make to family.xml establish family defaults for the actions,
menus, and views that appear on the TeamConnection home page. Your
TeamConnection users can override the defalt values for views. If, for
example, you set up a default view for DefectView, a TeamConnection user
can add or remove columns and rearrange the columns in the views.
Whatever columns and column order a view has when the user shuts down
his or her browser is the new default for that user.

Chapter 6. Setting up the client interface 49

|
|
|

|
|
|

|
|
|
|
|
|
|

Changing an action on the home page
The following is a sample action from the home page. It shows the ″Defects I
Own″ action.
<:menuitem>:

<:text mnemonic="D">:Defects I own<:/text>:
<:URL>:/report/DefectView?where=ownerLogin+in+(''{0}'')+and+state+in+(''open'',''design'',''size'',''re

<:/menuitem>:

The text shown in italics defines the TeamConnection action to be performed
(/report/DefectView?) and the SQL string to be passed to the database with
the report request:
where=ownerLogin+in+(''{0}'')+and+state+in+(''open'',''design'',''size'',''review'',''working'')

You can add a target field to this query, for example, by adding the following
(shown in bold):
where=ownerLogin+in+(''{0}'')+and+state+in+(''open'',''design'',''size'',''review'',''working'')+and+target+in+('

The remaining parts of the action, shown below, define the menu item for the
action (enclosed in <:menuitem>: <:/menuitem>:tags) and the text users select
from the home page to perform the action (enclosed in <:text>:<:/text>:
tags). Since actions are passed to the server in the form of a URL, the action
string itself is enclosed in <:URL>:<:/URL>: tags.
<:menuitem>:

<:text mnemonic="D">:Defects I own<:/text>:
<:URL>:action string goes here<:/URL>:

<:/menuitem>:

One of the easiest ways to add actions to a home page is to generate a query
using the TeamConnection filter window and copy the action string into the
HTML tags shown above. TeamConnection displays the action strings at the
bottom of the applet window as shown below:

You can add the action string to the family.xml file by tagging it as shown in
the following example. Note that when you include an action string in a URL
definition, you need to replace spaces with plus (+) and enclose values in two
sets of single quotes.
<:menuitem>:

<:text>:Parts checked out by smazzara<:/text>:
<:URL>:/report/PartsOutView?where=USERLOGIN+=+''smazzara''<:/URL>:

<:/menuitem>:

Figure 6. Action string in a TeamConnection home page

50 Administrator’s Guide

Prefiling values
The family.xml file contains an attribute section that lets you specify attribute
values to appear on TeamConnection windows. The following is a sample
from this section. It shows a list of values for the target attribute:
<attr>

<name>TARGET</name>
<value>v303</value>
<value>v302</value>
<value>v400</value>

</attr>

Changing a view
The following is the default view definition for defects. It shows the columns
to be displayed, the width of each column, and the position of each column
(starting with 0). You can add or replace the columns that appear in the
default view, change the order of columns, or change the width allowed for
each column. Refer to the TeamConnection Commands Reference for a complete
list of TeamConnection view and column names
<view>

<name>DefectView</name>
<cols>
<col>
<name>ABSTRACT</name>
<width>162</width>
<pos>0</pos>

</col>
<col>
<name>NAME</name>
<width>110</width>
<pos>1</pos>

</col>
<col>
<name>STATE</name>
<width>75</width>
<pos>2</pos>

</col>
<col>
<name>SEVERITY</name>
<width>75</width>
<pos>3</pos>

</col>
<col>
<name>COMPNAME</name>
<width>109</width>
<pos>4</pos>

</col>
<col>
<name>RELEASENAME</name>
<width>101</width>
<pos>5</pos>

</col>
<col>

Chapter 6. Setting up the client interface 51

<name>OWNERLOGIN</name>
<width>75</width>
<pos>6</pos>

</col>
<col>
<name>ANSWER</name>
<width>75</width>
<pos>7</pos>

</col>
</cols>

</view>

52 Administrator’s Guide

Chapter 7. Setting up Asset Locator

Asset Locator is a search engine that allows users to perform free text queries
against a release. The search engine is referred to as the crawler, and the
activity of searching through the release extract is referred to as a crawl. Asset
Locator provides different analyzers for different file types in your release. An
analyzer is a module of the crawler that understands the structure and
contents of certain file types. The Java analyzer, for example, analyzes .java
files, and the HTML analyzer analyzes .html files. When you search an
extracted release, Asset Locator places the results in a DB2 database on the
same file system to which the release was extracted. This section explains the
requirements for Asset Locator and how to configure Asset Locator. Read this
section in its entirety before you begin.

The following software is required for using Asset Locator. These are installed
when you install TeamConnection FullPak 3.0.3. If you have not already
installed these requirements, refer to the file install.txt on the root directory of
CD 1 of the TeamConnection FullPak CDs.
v DB2 UDB 5.2 Text Extender
v WebSphere Application Server 2.0.2+ (specifically the servlet engine)
v HTTP Web Server 1.3.3+ (installed when you install WebSphere Application

Server)

Asset Locator has been tested on Windows NT, AIX, and Solaris platforms.

Before you can use Asset Locator, you need to configure it. Configuring Asset
Locator involves creating a DB2 instance and database that Asset Locator will
use to search a release, setting up the DB2 text extender, setting up
WebSphere Application Server, creating a TeamConnection user login with
release extract authority to perform crawls, and setting up the Asset Locator
configuration files. On UNIX platforms, many of these steps have been
automated through a series of shell scripts that prompt you for the
information needed to set up Asset Locator. Use the following table to help
you find the information you need:

For information on: Refer to page:

Setting up Asset Locator on UNIX platforms using automated shell
scripts. If you follow the instructions in this section, you can skip
the instructions for manually setting up Asset Locator.

54

Setting up Asset Locator on Windows NT platforms. This section
explains how to set up Asset Locator manually.

55

© Copyright IBM Corp. 1992, 1999 53

For information on: Refer to page:

Setting options in the Asset Locator configuration files. These steps
are required for Windows NT platforms.

58

Starting the Asset Locator Administrator to extract a release and
start the crawler.

64

Solving problems with the Asset Locator crawler or runtime. 64

Setting up Asset Locator on UNIX platforms

Asset Locator ships with a set of shell scripts and a sample profile that you
can use to configure its components. These shell scripts automate much of the
configuration. They prompt you to enter information about your
TeamConnection family and the location of release extracts for crawls. You can
obtain these shell scripts and the sample profile from the samples/ksh
directory of your TeamConnection installation path:

update_websphere_v303 Creates a DB2 instance for your Asset Locator
database, creates text extender instances, and
configures WebSphere Application Server.

profile.assetloc Updates your TeamConnection .profile with
information needed for Asset Locator.

update_assetloc_v303 Updates the Asset Locator configuration files
and starts the text extender service.

Before you begin, make sure you have done the following:
1. Installed the auxiliary software required by Asset Locator. See install.txt

from the root directory of CD 1 of the TeamConnection FullPak.
2. Created a TeamConnection family according to the instructions in

“Chapter 3. Planning your families” on page 17 and “Chapter 4. Creating
your TeamConnection family” on page 29. Be sure to follow the database
naming conventions. It is especially helpful to give your TeamConnection
family, your DB2 database, and your DB2 login the same name. These
instructions will use testfam. The primary group for the DB2 login is sys
and the secondary group is DBGROUP.

3. Created a DB2 login for the crawler. In these instructions the login is
crawler, the primary group is sys, and the secondary group is DBGROUP.
Note that the primary and secondary groups are the same for the logins
testfam and crawler.

4. In your TeamConnection family, create a user ID for the crawler with
ReleaseExtract authority. These instructions will use the user ID, crawler.
Add a host list entry for the crawler ID.

54 Administrator’s Guide

5. Ensure you have enough disk space for the release extract and the crawler
database. It is recommended that you use 200MB for the database plus the
amount of space you determine necessary for the release extract. You
might want to run a test extract to determine how much space the release
needs.

6. Create a DB2 group called smadmin. This is used by the DB2 text
extender.

To run the Asset Locator setup scripts, do the following.
1. Login as user crawler and issue the following command to update your

TeamConnection .profile:
cp ${TC_HOME}/install/en_US/profile.assetloc .profile

2. Login as user root and execute the following script:
${TC_HOME}/samples/ksh/update_websphere_v303

3. Answer the prompts to create a DB2 instance, text extender instances, and
to configure the WebSphere Application Server.

4. Login as user crawler and execute the following script:
${TC_HOME}/samples/ksh/update_assetloc_v303

5. Answer the prompts to specify your TeamConnection family, host, and
port name and the location for your release extract.

Setting up Asset Locator on Windows NT

To set up Asset Locator on Windows NT, you need to configure the following
auxiliary software required by Asset Locator:
v DB2 Text Extender
v WebSphere Application Server

You also need to set options in the Asset Locator configuration files as
described in “Setting up Asset Locator configuration files” on page 58

Before you start, make sure you have done the following:
1. Installed the auxiliary software required by Asset Locator. See install.txt

from the root directory of CD 1 of the TeamConnection FullPak.
2. Created a TeamConnection family according to the instructions in

“Chapter 3. Planning your families” on page 17 and “Chapter 4. Creating
your TeamConnection family” on page 29. Be sure to follow the database
naming conventions. It is especially helpful to give your TeamConnection
family, your DB2 database, and your DB2 login the same name. These
instructions will use testfam. The primary group for the DB2 login is sys
and the secondary group is DBGROUP.

Chapter 7. Setting up Asset Locator 55

3. Created a DB2 login for the crawler. In these instructions the login is
crawler, the primary group is sys, and the secondary group is DBGROUP.
Note that the primary and secondary groups are the same for the logins
testfam and crawler.

4. In your TeamConnection family, create a user ID for the crawler with
ReleaseExtract authority. These instructions will use the user ID, crawler.
Add a host list entry for the crawler ID.

5. Ensure you have enough disk space for the release extract and the crawler
database. It is recommended that you use 200MB for the database plus the
amount of space you determine necessary for the release extract. You
might want to run a test extract to determine how much space the release
needs.

DB2 Text Extender
To set up the DB2 text extender on Windows NT, do the following:
1. Configure DB2 to run the DB2 instance. (If you have already created a

TeamConnection family, this will have been done already.)
2. Set environment variable DB2DBDFT=assetloc as a System environment

variable.
3. Start DB2 using the db2start command, if not started automatically.
4. Start the text extender server using the txstart.exe command.

You can set this up to start automatically when you start Windows NT by
creating a shortcut for txstart.exe and placing it in your startup folder.

5. Create the Asset Locator database using the following command:
db2 create database assetloc

6. Update the following DB2 configuration parameters. These parameter
settings will improve DB2 performance with Asset Locator:

UDF_MEM_SZ = 1024
APPLHEAPSZ = 512

WebSphere Application Server
Do the following to set up WebSphere application Server for Asset Locator:
1. Configure the WebSphere Application Server to load the Asset Locator

servlet (EColabraQueryServlet) used to perform the queries against the
assetloc database. The EColabraQueryServlet will be invoked by the
TeamConnection Web client when using the Asset Locator dialog to
perform queries against crawled data. There are two different ways to
perform this servlet configuration:
v Using the WebSphere Administrator. For instructions see “Using the

WebSphere Administrator” on page 57.
v Directly edit the Websphere Application Server properties files. For

instructions see “Editing the WebSphere properties files” on page 58.

56 Administrator’s Guide

You only need to follow the instructions in one of these sections. After you
have configured WebSphere to load the Asset Locator servlet, contine wth
the next step.

2. Modify WebSphere Servlet Service to run as the NT User where the
assetloc database will exist. This is necessary for the Servlet engine to have
the proper database privileges:
a. Select WebSphere Servlet Service from the list of NT Services.
b. Select the Startup button.
c. Change Log On As information to log on as the appropriate NT user.

You must stop the Servlet Engine to pick up any changes made to the Servlet
configuration. You should also stop the WebServer as well and then restart it.
Using the NT Services window from the NT Control Panel, stop the
WebSphere Servlet Service. You do not have to restart the servlet service, the
WebServer will restart the servlet engine on first request. Using the NT
Services window from the Control Panel, stop and restart the IBM HTTP
Server.

Using the WebSphere Administrator
To configure the WebSphere Application Server to load the Asset Locator
servlet using the WebSphere Administrator, do the following:
1. Open a Web browser on the following Web address:

http://hostname:9527, where hostname is the TCP/IP host name for the
machine where WebSphere is installed.

2. Login to the WebSphere Administrator. The default user ID and password
are admin/admin.

3. Set the Application Server classpath to include Asset Locator classes:
a. Select Java Engine
b. Modify Application Server classpath to include Asset Locator jar file,

for example, d:\teamc\lib\assetloc.jar.
c. Ensure that db2java.zip is also in Application Server classpath, for

example, d:\db2\java\db2java.zip.
4. Add Asset Locator servlet (EColabraQueryServlet) to Servlet engine:

a. Select Servlet Configuration
b. Add EColabraQueryServlet with the following settings and select OK:

Servlet Name = EColabraQueryServlet
Servlet Class = com.ibm.ecolabra.runtime.EColabraQueryServlet
Bean Servlet = no

c. Set Load at startup to yes.
d. Add the following servlet properties:

Name Value

Chapter 7. Setting up Asset Locator 57

|
|
|

AssetLocatorConfig \configDirectory\AssetLocator.cfg (e.g,
d:\teamc\config\AssetLocator.cfg)

RunTimeConfig \configDirectory\runtime.cfg (e.g,
d:\teamc\config\runtime.cfg)

e. Save servlet add.

Editing the WebSphere properties files
To configure the WebSphere Application Server to load the Asset Locator
servlet by editing the properties files directly, do the following:
1. Change to the drive WebSphere is installed on.
2. Edit \WebSphere\AppServer\properties\bootstrap.properties and modify

java.classpath to include assetloc.jar and db2java.zip (if it does not already
include these).

3. Edit
\WebSphere\AppServer\properties\server\servlet\servletservice\servlets.properties
as follows:
a. Add servlets.startup=EColabraQueryServlet to the section # servlets to

be loaded at startup.
b. Add the following to the section # Servlets added by the user. (These

three entries are shown wrapped, but your entries need to be on one
line):

servlet.EColabraQueryServlet.code=
com.ibm.ecolabra.runtime.EColabraQueryServlet

servlet.EColabraQueryServlet.description=
servlet.EColabraQueryServlet.initArgs=

RunTimeConfig=\configDirectory\runtime.cfg,
AssetLocatorConfig=\configDirectory\AssetLocator.cfg

Setting up Asset Locator configuration files

To set up the Asset Locator configuration files, you need to edit the following
files located in the /config directory. On Windows NT, this directory is located
in the teamc directory, for example d:\teamc\config. On UNIX platforms, this
directory is located in the home directory of the crawler user ID, for example
home/crawler/config. It is strongly recommend that you create a backup
copy of these files before editing them. You can refer to the comments in the
files themselves or to this section for configuration information.

File name Contents and purpose

admin.cfg The primary file for the Asset Locator crawler,
in which you will configure the appropriate
crawl roots, scheduling of the crawl, the
location for the release extract, and the
location of log files. The file is divided into

58 Administrator’s Guide

sections, designated by a section title in open
and closed brackets ([]), for example,
[FileSystemRoots].

AssetLocator.cfg Contains login information for both DB2 and
TeamConnection. It also contains the database
schema for each of the DB2 tables that are
created by the crawler. There is a separate
database table for each analyzer (for example,
JAVA_TABLE, CPP_TABLE.) The only need for
an administrator to update the schema portion
of this file would be to identify the columns
(and ordering of the columns) displayed in the
result or AssetView (that is, if you want to
change the default columns).

runtime.cfg The configuration file for the servlet (or the
runtime). The servlet is executed when you
perform a query using Asset Locator from the
TeamConnection Web-based client interface.

Configuring admin.cfg
The file admin.cfg is the main configuration file. The following sections
explain the purpose of each section of admin.cfg, the options you can set in
each section, and examples for each option.

[ResourceMapping]: Use this section to specify the file extensions that each
analyzer is to search. The currently-supported analyzers are Java, C/C++,
COBOL, HTML, and XML.

The following entries specify that file types .java and .jav are to be searched
by the Java analyzer:

java = Java
jav = Java

[LogFiles]: Use this section to specify the name and location of log files and
a test wrap option for the files. The log files display information about the
crawl. You can specify the following options:

EventLogFile Contains information about tasks performed
by the Asset Locator crawler.

ErrorLogFile Contains error messages that occurred during
the crawl.

CrawlerStateLogFile Contains a detailed description of the
crawler’s progress.

Chapter 7. Setting up Asset Locator 59

wrapLongLines Specifies that each line in the log files should
be wrapped after 80 characters. Specify true or
false.

The log file paths you specify must exist. The following are examples of these
options:
EventLogFile = d:\assetloc\log\event.log
ErrorLogFile = d:\assetloc\log\error.log
CrawlerStateLogFile = .\log\crawler.log
wrapLongLines = true

[Crawler]: Use this section to set options that control how the crawler
functions.

GUIMode Indicates whether to use the crawler from the
GUI or the command line. Specify true or
false.

MaxLocalDepth Sets the maximum number of directories to
crawl.

ShouldUseTimer Indicates whether or not to use scheduled
crawls. Specify true or false. This option
works in conjunction with the TimeToCrawl
option. If you set this option to true, the
crawler operates on the schedule set in the
TimeToCrawl option. If you set this option to
false, the crawler operates immediately. If you
are working with a large family, you may
want to specify a time when there are fewer
users logged in to TeamConnection.

TimeToCrawl Sets the time to crawl. specify three values
separated by spaces to indicate the minute
(0-59), hour (0-23), and day of the week (0-6,
where 0 is Sunday and 6 is Saturday). Each
value can be given in the form of a number
(9), a list of numbers (1,3,6), a range of
numbers 0-3,4,7-9 or an asterisk to indicate
that all discrete values are set. If you specify a
list or a range of numbers, do not include
spaces in the list or range. The following are
examples:

TimeToCrawl=0 12 * crawls every day at noon
TimeToCrawl=0 0 0,6 crawls Sunday and Saturday at midnight
TimeToCrawl=0,30 * 1-5 crawls weekdays every half hour

60 Administrator’s Guide

[FileSystemRoots]: Use this section to specify the file system root directories
to be crawled. Specify a name and the directory path, for example, mySrc =
c:\myProject\mySource.

[WebDAVRoots]: Use this section to specify a list of WebDAV roots to be
crawled. Specify a name and the Web address, for example, myComponent =
http://root/mainComponent/subComponent.

[TCRoots]: Use this section to specify a list of TeamConnection families and
releases to crawl. Specify a name and the TeamConnection family, host, port,
and release, for example, testfam = testfam@hostname@5000@rel1.

[TCGeneral]: Use this section to specify general attributes for a crawl

ReleaseExtractDirectory The name of the directory where you want the
release extracted to.

Configuring AssetLocator.cfg
The configuration file AssetLocator.cfg contains login information for both
DB2 and TeamConnection. It also contains the database schema for each of the
DB2 tables that are created by the crawler. There is a separate database table
for each analyzer (for example, JAVA_TABLE, CPP_TABLE, and so on.).

At most installations you will want to modify only the login portions of this
file. It is recommended that you leave the schema portions as shipped. The
only need for an administrator to update the schema portion of this file
would be to identify the columns (and ordering of the columns) displayed in
the result or AssetView. The schema portions of the file are identified as
[table1], [table2], [table3], and so on. The file contains one table definition for
each file type that Asset Locator supports (Java, C++, HTML, XML, Cobol).
You should modify these table schemas only if you are well-versed in DB2.
Table 6 defines the schema for a table that stores information about your
TeamConnection family. Do not modify table 6.

To change the columns that display in an AssetView, modify the Visual field
of the table and field sections. To hide a column, set the Visual field to 0. To
reorder the columns, specify a number corresponding to the order in which
you want the column to appear, Visual=1 for the first column, Visual=2 for the
second, and so on. The following is a brief example. It shows the FREE_TEXT
and TIME fields of table 1 hidden, the Date field as the first column, and the
PROJECT_NAME field as the second column:
[table1_field17]
Name = FREE_TEXT
Type = CLOB (1 M)
Key = false
AllowNull = true
Visual = 0

Chapter 7. Setting up Asset Locator 61

[table1_field18]
Name = DATE
Type = DATE
Key = false
AllowNull = true
Visual = 1

[table1_field19]
Name = TIME
Type = TIME
Key = false
AllowNull = true
Visual = 0

[table1_field20]
Name = PROJECT_NAME
Type = VARCHAR(100)
Key = false
AllowNull = true
Visual = 2

The following sections describe the TeamConnection and DB2 options that
you can modify in AssetLocator.cfg.

[AnalyzerLimits]: Use this section to set limits on how the analyzer
functions. The analyzers in Asset Locator are capable of analyzing parts that
are not complete or that have syntax errors in them. You can set the
maximum number of errors the analyzer encounters before stopping the
analysis of the current part. You can also limit the number of seconds the
analyzer can spend crawling each kilobyte of file data. The following are
examples of these options:
MaxErrorsAllowed = 50
MaxTimePerKB = 2

[TeamConnection]: Use this section to specify TeamConnection options:

useLogin Should always be set to true, even if your
family’s security level is host-only.

user Specifies the TeamConnection login ID
required to login. This option is always
required. The ID you specify must have
release extract authority for the
TeamConnection family.

password Specifies the password for the
TeamConnection login ID specified in user. If
the TeamConnection security level is
Host-only, this option is not required.

connectionTimeout Specifies the maximum number of seconds

62 Administrator’s Guide

allowed to connect to the TeamConnection
server. The crawler skips the current TCRoot if
a connection is not made within this time
limit.

pingInterval During the release extract, the analyzer pings
the TeamConnection server periodically to
ensure the connection is still active. This
option specifies the number of seconds
between pings.

[Database]: Use this section to specify the DB2 database name and login ID
for the search results table:

name Defines the DB2 system, driver name, and
database name for the search result table. The
format for the name is system:driver
name:database. The following is an example:
name = jdbc:db2:assetloc

useLogin Specifies whether or not DB2 login is required.
Specify true or false. When you run the
crawler on the same machine as the DB2
database manager, no login is required.

user The user ID to login. This option is required
only when useLogin=true.

password The password for the user specified in the
user option.

Configuring runtime.cfg
The runtime.cfg configuration file contains a pointer to the log file created by
the Asset Locator servlet and a list of error messages passed to the servlet
engine.

ErrorLogFile Specifies the pointer to the log file. The
following is an example:
ErrorLogFile = d:\assetloc\log\runtime.log

MaxResultsInReply Specifies the maximum number of results that
will be returned by a query. The default value
is -1, which indicates that there is no limit to
the results.

Chapter 7. Setting up Asset Locator 63

Starting the Asset Locator Administrator

The Asset Locator Administrator is a graphical user interface that you use to
perform the release extract and start the crawler. Before your users can search
a release using Asset Locator, you need to start the release extract and the
crawler using the Administrator.

To start and use the Asset Locator Administrator, do the following:
1. Start DB2 using the db2start command.
2. Start the DB2 text extender using the txstart command.
3. Start your Web server, if it has not already been started.

On UNIX platforms, you need to ensure the root ID has the correct DB2
environment set before starting the WebServer. Do the following.
a. Login as the root user and type ksh to ensure you are in a korn shell

environment.
b. ″Source in″ the profile environment for the crawler user into root’s

environment. For example, if user crawler’s home directory is
/home/crawler, type the following command as user root:

. /home/crawler/.profile

c. Check the environment by typing env | grep DB2. If you see several
DB2 environment variables you have successfully ″sourced in″ the
crawler’s profile into root.

d. Start the WebServer using one of the following commands from the
HTTP Server installation directory:

On AIX
/usr/lpp/HTTPServer/sbin/apachectl start

On Solaris 2.6
/opt/HTTPServer/sbin/apachectl start

4. Start the Asset Locator Administrator using the assetadm command.
5. Press start to begin the Crawl. Crawler logging will display both in the

GUI and in the log files stored in the log file paths you set in admin.cfg.
When completed, the assetloc database will contain information gathered
by the crawler. At this point, users can perform queries against crawled
data by selecting Locate Assets from the TeamConnection Web-based
client.

Solving problems with Asset Locator

This section addresses some of the problems that can arise during Asset
Locator configuration, particularly if you are required to deviate from the

64 Administrator’s Guide

|

Asset Locator configuration instructions documented in the previous sections.
There are two primary components to be configured for Asset Locator, the
crawler and the runtime.

Addressing crawler problems
When attempting to diagnose problems that occur during Asset Locator
crawling, always check the error and event log files to see more specific detail
of the problem. The following is a list of symptoms and steps you can take to
address them:

Symptom Possible Solution(s)

Unable to create log files Verify the following:

v admin.cfg contains valid information for location of the
event, error, and crawler state log files

v The directory path identified to hold the log files exists
and , in UNIX, has the necessary permissions for the
Asset Locator crawler to create the log files

v Log file settings include both directory and the log file
name. (e.g., d:\log\event.log or /tmp/log/event.log)

Unable to connect to
TeamConnection server

Verify the following:

v AssetLocator.cfg contains valid information in
[TeamConnection]: useLogin=true, User =

v There is a valid TeamConnection Host List entry for the
current family for the User identified above

v admin.cfg contains a valid TCRoot entry pointing to the
family: family@host@port@release

Chapter 7. Setting up Asset Locator 65

Symptom Possible Solution(s)

Unable to perform
TeamConnection release
extract

In addition to the potential solutions for connectivity
problems, verify that you can perform the following
release extract independent of the Crawler. Execute the
following command from a command-line prompt with
the same permissions from which you were attempting the
Asset Locator Crawl. If you can perform this command
successfully, then the crawler should function as well.

teamc release -extract releaseName
-family family@host@port -root extract-dir
-become user -scan -erase

Substitute the following values in this command:

releaseName The release specified in the TCRoots
option of admin.cfg.

family@host@port The family, host, and port specified in
the TCRoots option of admin.cfg.

extract-dir The directory path specified in the
ReleaseExtractDirectory option of
admin.cfg.

user The TeamConnection user ID specified in
the user option of the {TeamConnection}
section of AssetLocator.cfg.

A Java
OutOfMemoryError
exception occurs during
a crawl

Modify the command used to launch the Asset Locator
Administrator GUI in assetadm.cmd to increase the heap
and stack size used by the JVM. Note that AssetLocator
already increases the default values for these, but they
should be increased even more if you continually
encounter this error. Asset Locator initially sets these
values to mx50m, ms20m, oss20m, for max heap size,
initial heap size, and max java stack size, respectively.

Unable to perform
update index

Verify that the DB2 Text Extender is running. Issue the
command txstart.exe to restart the Text Extender service.

Addressing runtime problems
Runtime is the portion of Asset Locator executed when users perform queries
using the Asset Locator function invoked from the TeamConnection
Web—based client interface. The Runtime is implemented by a servlet that is
invoked by the WebSphere Application Server’s servlet engine.

Note: It is important that you stop the WebSphere Servlet Service after every
change that is made during any troubleshooting activity to ensure that
the Asset Locator servlet is reloaded and picks up any configuration
changes you have made. On UNIX, it is important that you kill the

66 Administrator’s Guide

servlet engine process that will continue to run even after WebServer is
stopped. Issue the following command to find and then stop the Java
Servlet process:
ps -ef | grep java

Symptom Possible Solution(s)

User reports that Asset
Locator query fails

v Look at the runtime log file (location/filename specified
in runtime.cfg). The runtime log file should contain any
problems that were encountered by the Asset Locator
servlet (EColabraQueryServlet).

v Verify that the log file directories and log files of the
HTTP Server and Application Server have the
permissions necessary for the crawl account to update.

No runtime log file
generated

Verify the following:

v runtime.cfg contains valid information for location of
the runtime log file, for example, d:\log\runtime.log for
NT or /tmp/log/runtime.log for UNIX.

v Directory path identified to hold the log file exists and
has the necessary permissions for Asset Locator servlet
to create the log file. If trouble persists, specify
/tmp/runtime.log for log file location (UNIX only).

v EColabraQueryServlet is properly configured in the
WebSphere Application Server according to instructions
in previous sections of this chapter.

v The initialization parameters properly point to the Asset
Locator configuration files

Database exceptions
logged in runtime log
file

Verify the following:

v The database manager has been started (using the
db2start command)

v The Text Extender service is started (using the txstart
command)

v db2java.zip is configured in the Application Server
classpath in
Websphere_install_dir/properties/bootstrap.properties

v WebSphere Application Server is started with necessary
database environment set. Ensure that root id has the
DB2 environment set before starting the WebServer (e.g.,
/usr/lpp/HTTPServer/sbin/apachectl start). One way
to do this is to su root from the Asset Locator crawler
account as described in the configuration
documentation. This will allow root to inherit the
necessary environment (UNIX only).

Chapter 7. Setting up Asset Locator 67

Symptom Possible Solution(s)

Results empty or
inaccurate for attribute
specific queries

Verify that the database configuration parameters have
been configured for the Asset Locator database instance
and assetloc database as described in the Administration
Guide.

Specifically, if the udf_mem_sz instance parameter is not
set to at least 1024, you can receive exceptions in the
runtime log file attempting to perform Asset Locator
queries against attributes with a database schema of type
LONG VARCHAR.

General Asset Locator
query failure

If problems still persist after attempting above solutions,
look at the log files generated by the IBM HTTP Server
and/or the WebSphere Application Server to see if there is
some error occurring independent of the Asset Locator.

68 Administrator’s Guide

Part 3. Putting your TeamConnection server to work

This section provides information you need to plan how you will set up your
TeamConnection family and which TeamConnection functions you will use. It
explains how to define users to TeamConnection, how to create and use
configurable fields, how to configure TeamConnection processes, how to
implement user exits, and how to set up and enable shadowing..

© Copyright IBM Corp. 1992, 1999 69

70 Administrator’s Guide

Chapter 8. Setting up your family structure

Before you begin to use your family, it is important that you think about the
following:
v How to arrange your component structure
v How to organize your releases
v What processes you want to use

This chapter helps you determine how you want to organize your family and
then explains how to do it.

You need to understand what families, components, releases, and processes
are and what their purpose is within TeamConnection. If you have not
already done so, read “Chapter 1. An introduction to TeamConnection” on
page 3, before continuing.

The following table directs you to the task you need:

For information about this task, Go to this
page.

Planning your component structure 71

Planning your releases 75

Planning your processes 79

Creating your components and releases 84

Planning your components

This section discusses how you can organize your component hierarchy to
support your configuration management needs.

Organizing the component hierarchy

You can organize your component hierarchy several ways. For example, one
component hierarchy might mirror the application development organization
hierarchy, such as department, section, team, or unit of development. Another
hierarchy might reflect the software architecture of the applications under
development, such as application, GUI, database.

When you set up your component hierarchy, consider that all defects and
features are recorded by component, and the owner of a component becomes
the default owner of the defects and features for that component. This is

© Copyright IBM Corp. 1992, 1999 71

important because defect and feature owners automatically receive a
considerable amount of authority over the defects and features they own. To
see the actions that defect and feature owners can perform, refer to the
authority and notification table in the TeamConnection User’s Guide.

If you create your component hierarchy to store software or documentation
source files, it is best to reflect the product organization at the top level. You
can then create descendant components to reflect the development or
maintenance responsibilities. Figure 7 gives an example of this type of
structure.

Your component hierarchy can consist of several parallel hierarchies so that
you can easily restrict access to certain related components. For example, if
you have vendors working on your development team, you might want to
restrict their access to certain information. You can create a parallel hierarchy
that contains only the information that they require. Figure 8 represents this
type of structure.

Components can have more than one parent. A component that has more than
one parent inherits authority and notification from both. In Figure 9 on
page 73, the component optics groups both the optics_v and optics_d

Figure 7. A hierarchy representing product organization

Figure 8. A hierarchy showing parallel components

72 Administrator’s Guide

components for the development project, giving the optics_v components two
parents. The optics component manages notification for the entire optics team.
Access control is managed separately for the vendors and the internal users
through the lower-level components, optics_v and optics_d.

Your initial component hierarchy is not necessarily going to be the same as
your hierarchy a year from now. It will change as your organization grows
and as your needs change. Remember that you can change the parents of a
component as well as delete or rename the component.

When you plan your component hierarchy, you might find it helpful to first
sketch it on paper. You can then use this sketch to help you make a table in
which you note information about each component, such as the type of parts
you want to control with the component, what releases a component will
manage, and which processes each component and release will initially follow.

Determining component ownership

Each component in the hierarchy has an owner. Initially that owner is the
person who creates the component. After the component is created, the owner
can, at any time, transfer ownership to another person.

Ownership of a component is critical. A component owner has authority to
perform a wide variety of actions on that component and the parts contained
in that component, as well as on all its descendant components and their
parts. For example, the owner has authority to give other users access to the
component and its parts and to delete the component.

You might create many of the initial components for your development
organization, but you probably will not want to remain the owner of them all.
As you are planning your component hierarchy, determine whom you want to
own each component. The owner of the root component, the component at the
top of the hierarchy, should be the person with overall responsibility for the
project. If several other people have responsibility for various pieces of the

Figure 9. Components with more than one parent

Chapter 8. Setting up your family structure 73

development project, you might want those people to own the descendant
components that relate to their piece of the project.

The owner of a parent component has the same level of authority for all of its
descendant components.

Figure 10 shows a portion of a component hierarchy that Sam, a family
administrator, created. Sam transferred ownership of many of the components
to other members of the team. However, he kept ownership of the root
component because he has overall responsibility for the project.

Naming the components

During the planning stage, it is helpful to decide on a component naming
convention. Do you want each component name to reflect the type of data it
is managing? If so, you need to understand the content, function, execution
platform, or other characteristics of the parts the component will manage. For
example, the name for a component that manages data for the graphical user
interface of your application might begin with the characters gui. Do you
want component names to be in all lowercase characters, all uppercase
characters, or in mixed case? The database is case sensitive. Therefore, when
you are consistent with how your components are named, your users will
have less difficulty finding objects in the database. The names you use must
be unique within the family.

Other TeamConnection users will be able to create components, so you will
want to publicize your naming convention so that everyone can adhere to it.
TeamConnectionusers need to access TeamConnection data, and that data can
be difficult to find if they do not understand and follow your naming
convention.

Determining access to components
Each component has an access list that controls access to development data.
Access authority is inherited for all descendant components, but can be
explicitly restricted in the descendant components. See “Setting up authority

Figure 10. A hierarchy showing component ownership

74 Administrator’s Guide

groups” on page 97 for instructions. If you need to restrict access to several
components for most users, you might need to redesign your component
hierarchy.

Planning your releases

After you decide how you are going to organize your components, determine
the releases that you will initially create.

Basically, a release is a logical grouping of parts. This group of parts makes
up a single version of a product, or part of a product, that is built separately,
such as documentation or test cases. One release can group parts that are
managed by many components.

Relating releases with components
Every release is associated with a component that manages which users can
access the parts in the release and which users are notified when certain
actions occur. Before you can create a release, you need to create a component
to manage the release. The only relationship between a release and the
component from which it was created is to use the access list of that
component. You can create parts in the release that belong to another
component.

For example, Figure 11 shows the component hierarchy for a development
project. Keith owns the component robot. He creates the release robot_control
to contain all the parts that pertain to the first version of the application they
are developing. When Keith created the release, he specified robot as the
managing component, but he did not specify an owner. Therefore, Keith is the
release owner by default.

Keith decides that Doug should own release robot_control. As owner of the
release, Doug has authority to perform most actions against the release.
However, access and notification for the release are managed by component
robot and are controlled by Keith, the owner of robot. In this way, Keith can

Figure 11. The release-component relationship

Chapter 8. Setting up your family structure 75

maintain access and notification control of the release, even though he has
delegated the management responsibilities to Doug.

If Keith wants to give Doug the ability to control the access to release
robot_control, he can add Doug’s user ID to the component’s access list and
specify an authority group, such as componentlead, that contains the
authority to add users to access lists. Both Doug and Keith would then have
the authority to add entries to the access list of component robot.

You can learn more about access lists and authority groups in “Setting up
authority groups” on page 97.

Selecting serial or concurrent development
The release can be set up for developing in serial development or in
concurrent development mode. In serial development, a part is locked when a
user checks it out, and no one else can update the part as long as it is checked
out. In concurrent development, more than one user can simultaneously have
the same part checked out. When TeamConnection detects that someone else
has made changes to a part that another is checking in, it notifies the user that
a collision has occurred. The user can reconcile the changes using the
TeamConnection merge program.

You specify the mode in which your users will work when you create the
release. Be aware, however, that after the mode is set to concurrent, you can
change it to serial mode only if all workareas and drivers in the release are
committed. You can change the development mode from serial to concurrent
at any time.

Release options that control database growth
To optimize TeamConnection performance, you can control the size of your
database in the following ways:
v Automatically by setting options when you create a release
v Manually by pruning a release

The following sections explain these methods of controlling database growth.
The IBM DB2 Universal Database Administration Guide contains more
information about managing the size and growth of your database.

Controlling database size automatically
You can help control the size of your family database by requesting the
following options when creating a release:
v Automatic pruning of workareas
v Maximum number of build output versions

These options let you reclaim database space without extra work.

76 Administrator’s Guide

Automatic pruning of workareas: To understand automatic pruning of
workareas, it helps to understand the basics of workarea versioning. Every
time you freeze a workarea, TeamConnection saves a revision level of the
workarea. When you freeze workarea 123, for example, a version called 123:2
is created. This version contains information about each part in the workarea
and its current version at the time the workarea was frozen. It may contain
version 1 of part optics.c, for example. If you freeze the workarea again later,
a new version called 123:3 is created with information about the versions of
the parts in the workarea when it was frozen. This version may contain
version 2 of part optics.c. Each of these workarea versions is saved in the
database and you can retrieve the versions of the parts they contain before
you integrate the workarea into the release.

Automatic pruning enables you to delete all versions of workareas after you
have integrated the most current version of the workarea into a release. You
can indicate whether you want automatic pruning of workareas by doing one
of the following:

Select Automatic version pruning on the Create Releases window when you create
the release.

Use the +autopruning flag with the release command.

These options tell TeamConnection to destroy workarea versions when a user
integrates a workarea or commits a driver to the release. Be aware that when
workareas are destroyed, most of their change tracking information is also
destroyed and it will be more difficult for you to go back to previous
versions.

Maximum committed output versions: You can also indicate the maximum
number of committed build output versions you want kept. When that
number is reached, TeamConnection discards the oldest one. Otherwise, all
build outputs are saved. You can set the maximum committed build output
versions by doing one of the following:

Specify the number you want kept in the Maximum number of output versions field
on the Create Releases window.

Use the -outputVersions flag in the release command.

Controlling database size manually
If you choose not to use autopruning to control database size, you can still
prune your releases manually as follows:

Chapter 8. Setting up your family structure 77

1. From the Actions menu, select Release→Prune.

2. In the Name field of the Prune Release window, type the name of the Release you
want to prune.

3. In the Branch point field of the Prune Release window, type the name of the first
version of the workarea you want to prune and then select OK. This version and
all versions created from it will be deleted.

Sharing parts between releases
TeamConnection has a coupling mechanism that enables two releases to share
the exact same parts. You can enable this mechanism by linking the parts in
one release to another release. Once a part is shared, then any changes that
you make to it in one release must also be made in the other release.

When you create a release, you can control how tightly it is coupled to other
releases with which it shares parts. You do so by selecting one of the
following coupling options:

Default
When a release shares a part in common with another release, it must
be checked in and checked out (or changed in any other way, such as
renamed, deleted, or recreated) in both releases at the same time. To
break the common link and allow the part to be changed in only one
release, you have to use a force option.

With this option, you must always deliberately break links using the
force option.

Loose Loose coupling allows you to break the common link between parts
without using the force option. Any time you change the part in the
release without specifying the common releases, TeamConnection
breaks the link to the other releases. TeamConnection provides a
common option that allows you to override the loose coupling and
maintain links to the release.

With this option, you must always deliberately maintain links using
the common option.

LooseRestr
LooseRestr coupling allows you to break the common link without
using the force option and prevents you from maintaining the
common link using the common option.

With this option, links are always broken and cannot be deliberately
maintained.

Naming your releases

Next, decide how you are going to name the releases you create. You might
want to name your releases according to the product or object you are

78 Administrator’s Guide

building. For example, prod1r1 for release 1.1 of your application, or using1r1
for the book files for release 1.1 of your application. To make it easier on your
users, continue using the basic naming convention that you are using for your
components. The names you use must be unique within the family.

Planning your processes

Before you create your family’s components and releases, decide what
processes you are going to use during initial development.

A TeamConnection process is used to enforce a specific level of control of
components and releases. TeamConnection is shipped with a set of predefined
processes for both components and releases, so you provide different
processes for each to follow. You can use these processes, or you can configure
your own processes using some of the predefined subprocesses. “Chapter 11.
Configuring component and release processes” on page 131 explains how you
configure TeamConnection processes.

You probably already have a process for tracking problems as well as a
process for tracking suggested improvements to your applications. If you
want to continue to use those processes, determine how you can best group
the TeamConnectionsubprocesses to reflect your current process. If you do not
have an existing method, decide how tightly you want to control part changes
and track defects and features.

The poster, Staying on Track with TeamConnection Processes, explains the various
states that different TeamConnection objects can go through depending on the
process that is being followed. You might want to study this information
before you determine how you want to use TeamConnection processes.

Component processes

A component’s process determines how much planning and designing is
required before work on a defect or feature begins and whether the originator
is required to verify that the work was done correctly.

When choosing a process for a component to follow, think about the type of
data within the component. For example, the parts within one component
might contain complex code that is time-consuming to fix. Before any defects
or features are accepted, the work needs to be designed and sized, so the
preship process is followed. Parts within another component contain code that
is relatively easy to fix and test. The defects and features for this component
do not need to be designed and sized, so the prototype process, which contains
no subprocesses, is followed.

Chapter 8. Setting up your family structure 79

For components, you can require users to follow any, all, or none of the
following predefined subprocesses:

dsrDefect
Design, size and review fixes to be made for defects

verifyDefect
Verify that the fixes work

dsrFeature
Design, size, and review changes to be made for features

verifyFeature
Verify that the features have been implemented correctly

The following table lists the component processes that are supplied by IBM.
Each process combines a set of TeamConnection subprocesses. An X under the
TeamConnection subprocess indicates that the corresponding process includes
it.

Table 1. Shipped component processes

Shipped TeamConnectioncomponent process

TeamConnectionsubprocesses

dsrDefect dsrFeature verifyDefect verifyFeature

default x x x

development x

emergency_fix

maintenance x x

preship x x x x

prototype

test x x x

Release processes

A release’s process determines to what extent part changes are tracked and
the procedure for integrating changed parts into a build. Release processes
control the day-to-day work that is involved in producing the product-fixing
defects and implementing features, as well as building the product. The type
of process control you want to enforce on a release is likely to change over
time.

For releases, you can require any, all, or none of the following predefined
subprocesses:

track This subprocess is TeamConnection’s way of relating all part changes
to a specific defect or feature and a specific release. Each workarea
gathers all the parts modified for the specified defect or feature in one

80 Administrator’s Guide

release and records the status of the defect or feature. The workarea
moves through successive states during its life cycle. The
TeamConnection actions that you can perform against a workarea
depend on its current state.

You must use the track subprocess if you want to use any of the other
release subprocesses.

approval
This subprocess ensures that a designated approver agrees with the
decision to incorporate changes into a particular release and
electronically signs a record. As soon as approval is given, the changes
can be made.

fix This subprocess ensures that as users check in parts associated with a
workarea, an action is taken to indicate that they have completed their
portion. When everyone finishes, the owner of the fix record (usually
the component owner) can change the fix record to complete. The
parts are then ready for integration.

driver A driver is a collection of all the workareas that are to be integrated
with each other and with the unchanged parts in the release at a
particular time. The driver subprocess allows you to include these
changes incrementally so that their impact can be evaluated and
verified before additional changes are incorporated. Each workarea
that is included in a driver is called a driver member.

test The test subprocess guarantees that testing occurs prior to verifying
that the fix is correct within the release.

Another level of control is to use release process attributes, which alter the
automatic state changes applied to a workarea.

trackfixhold
With the trackfixhold attribute and the fix subprocess a workarea will
remain in the fix state rather than moving to the integrate state when
the final Fix -complete command has been issued. To move the
workarea to integrate state, issue a Workarea -integrate command.

trackcommithold
With the trackcommithold attribute a workarea will remain in the
commit state when
v a Driver -complete command is issued for a release with a driver

subprocess.
v the final Fix -complete command is issued for a release without a

driver subprocess and with the fix subprocess.
v the WorkArea -integrate command is issued for a release without a

driver subprocess and without the fix subprocess.

Chapter 8. Setting up your family structure 81

To move the workarea to test state, issue a Workarea -test command.

tracktesthold
With the tracktesthold attribute and the test subprocess a workarea
will remain in the test state rather than move to the complete state
when the final test is marked. To move the workarea to complete
state, issue a Workarea -complete command.

To add these attributes to your release process, add the following to your
relproc.ld file and then reload it.
track_test|trackfixhold
track_test|trackcommithold
track_test|tracktesthold

See “Chapter 21. Configuring component or release processes” on page 219 for
instructions on editing and reloading relproc.ld.

The following table lists the release processes that are supplied by IBM. Each
process combines different sets of TeamConnection subprocesses. An X under
the TeamConnection subprocess indicates that the corresponding process
includes it.

Table 2. Shipped release processes

Shipped TeamConnectionrelease processes

TeamConnectionsubprocesses

track approval fix driver test

prototype

development x x x

test x x x x

preship x x x x x

maintenance x x x x

emergency_fix x x

track_only x

track_driver x x x

track_approval x x x x

track_test x x x x

track_full x x x x x

no_track

It is important that your users understand the meaning of each process and
the type of control it enforces. For example, if a stringent release process such

82 Administrator’s Guide

as track_full is selected, actions have to occur in a precise order. Compare this
to the no_track process where users can freely check parts in and out of
TeamConnection.

How processes might change during development
TeamConnection provides different processes for components and releases.
The processes you choose depend on how tightly you want to control changes
and how you want to handle defects and features. Your choices, of course,
will vary depending on where you are in your current development cycle.
You can change your processes during a development effort to reflect different
phases. For example, you might do the following:
v During the requirements gathering phase, you create a component that

manages the requirements documentation. You want minimal defect or
feature processing against the parts managed by this component, so you
select a process, such as prototype, that is not strict. The release would also
follow a relaxed process, such as prototype.

v After the requirements are settled and design work begins, you want to
control changes to the requirements data but not to the rapidly evolving
design data. For the requirements component, you change to a process that
includes review and verification, such as the default process. You also create
a new component to manage the design documentation and you select a
process that is not strict. You continue to use the prototype process for the
release.

v When coding begins, you change the process for the design component to
one that includes review and verification, such as development. You also
create a new component to manage the code files. Because you will be
loading files into TeamConnection rapidly, you select a process that is not
strict, such as prototype.
You also change to a release process, such as development, that tracks the
resolution of defects and features.

v After all the code files that are managed by a given component pass unit
test, you change that component’s process to one that includes review and
verification, such as default. You also change the release process to one with
tight control, such as track_full, so that you can carefully manage code
changes.

v Ninety days before your delivery date, you change all the components to a
very stringent process, such as preship, to ensure that all new features or
defects are reviewed for impact to the delivery schedule.

Using the driver subprocess
The driver subprocess is a way to better control the building and testing of
your application code. As you develop your application program, you will
probably have many drivers within a release, and you can have multiple
overlapping releases during a development cycle.

Chapter 8. Setting up your family structure 83

For example, let’s say you are developing a robot application and you send
monthly updates to customers for their feedback. You do regular driver builds
of your application. You use the driver subprocess to help you control the
integration of changes that occur between builds. At some point during the
month you cut off changes to the current release r9504 for system testing. You
are then ready to create a new release called r9505. Using TeamConnection,
you can link the parts in r9504 to the new release r9505. During the follow-on
development work, release r9504 is still there. At the end of the month you
send your final build and tested driver of release r9504 to your customers.

The following figure depicts this process graphically. In this illustration,
releases are labeled ryymm, where yy represents the year (such as 95 for 1995)
and mm represents the month (such as 04 for April). Drivers are labeled dmdd,
where m represents the month (such as 4 for April) and dd represents the day
of the month.

Creating components and releases

Now that you have gone through the planning phase and have your structure
on paper, you are ready to create the components and releases that your
organization will use.

Creating components
For each family you create, TeamConnection creates the top component called
root. Therefore, at least the first component you create has root as the parent.
Do not change the name of the root component.

To create a component, do one of the following:

Figure 12. Using the driver subprocess

84 Administrator’s Guide

1. From the Actions menu, select Component → Create. The Create Components
window appears.

2. Type the component name, the name of the parent component, and the name of
the process you want the component to follow. Other information on this window
is optional.

3. Select OK to create the component.
From a command line, type:

teamc component -create componentName -parent parentName
-process processName

For more information about the component command, refer to the Commands Reference.

Creating releases
Before creating a release, you need to create a component to manage access to
the release. See “Planning your releases” on page 75 for more information. To
create a release, do one of the following.

Chapter 8. Setting up your family structure 85

1. From the Actions menu, select Releases → Create. The Create Releases window
appears.

2. Type the release name and the name of the managing component, and select the
process you want the release to follow. See “Release processes” on page 80 for
more information about release processes.

3. To enable automatic pruning of workarea versions, select yes in the Auto prune
field. See “Automatic pruning of workareas” on page 77 for more infomration
about automatic pruning.

4. Select either serial or concurrent in the Development mode field. See “Selecting
serial or concurrent development” on page 76 for more information about the
development mode of a release.

After the mode is set to concurrent, you can change it to serial mode only if all
workareas and drivers in the release are committed. You can change the
development mode from serial to concurrent at any time.

5. Select default, loose, or looseRestr in the Coupling field. See “Sharing parts
between releases” on page 78 for more information about release coupling options.

All other fields are optional and many of them are related to the release process
you have selected.

6. Select OK to create the release.86 Administrator’s Guide

From a command line, type:

teamc release -create releaseName -component componentName
-process processName [-concurrent] [+autopruning]
[-outputVersions number] [-coupling default|loose|looseRestr]

For more information about the release command, refer to the Commands Reference.

Creating a new release from an old release

A TeamConnection family contains the work of many individuals for one
product or project. Within that family, several releases can be created.

For example, currently, a team is working in the release robot_control. After
this team finishes with the current edition of the robot project, the next team
might work on a follow-on release of the robot product. That team could
create a new release called robot_v2 in which to work. Another possibility is a
team that wants to implement the robot_control program on a different type
of robot (similar to developing the same application for a different operating
system). The team could create a release called robot_mk5 in which to work.
These various releases in a family are used to isolate changes to a similar code
base.

These examples illustrate that the various releases in a family will often share
a code base from another release. Administrators can link releases in order to
share code between the linked releases.

For example, to create a new release called robot_v2 that links to release
robot_control, do the following using either the GUI or command line
interface:
1. Create the new release robot_v2.
2. Create a workarea.
3. Link the existing robot_control release to the new release robot_v2 using

the workarea that was just created.
4. Integrate the workarea with the new release.

Changing the development mode of a release

You can change the development mode from serial to concurrent at any time.
You can change it from concurrent to serial mode only if all workareas and
drivers in the release are committed.

Chapter 8. Setting up your family structure 87

To change the development mode of a release, you can issue the teamc release
-modify command with the -serial or -concurrent attribute.

The following command changes the development mode of a release from serial to
concurrent:

teamc release -modify myRelease -concurrent

The following command changes the development mode of a release from concurrent
to serial:

teamc release -modify myRelease -serial

88 Administrator’s Guide

Chapter 9. Setting up user access to a family

This chapter helps you determine how to set up user authentication for the
security level in use by your family, how to identify your users to
TeamConnection, and how to set up authority groups and interest groups.

Before you start defining users, make sure you have read “Chapter 4. Creating
your TeamConnection family” on page 29 and understand how your
TeamConnection installation implements security for families.

Planning for user authentication

Each user must have a TeamConnection login that uniquely identifies the user
to TeamConnection and gives the user access to TeamConnection objects.
TeamConnection uses the following terms and objects to identify users and
control their access to TeamConnection information:

TeamConnection login
The name by which TeamConnection knows you and assigns access
authority to you, and the name under which you issue
TeamConnection commands. This name is the one specified by the
TC_BECOME environment variable or on the Become user field of the
TeamConnection settings notebook.

System login
This term is most meaningful in a multiuser environment, such as
AIX, HP-UX, Solaris, or Windows NT. The system login is the ID that
you use to log in to your workstation and is specified on the System
login field of the TeamConnection settings notebook. In single-user
environments, such as OS/2, the system login is the one specified by
the TC_USER environment variable. In Windows 95, the system login
is used if one is specified, otherwise, the TC_USER environment
variable is used.

Security levels and logins
Other information that TeamConnection uses to authenticate users varies
according to the security level in use by your family.

Host only
If your family uses host-only security, then each user requires a valid
combination of the system login, TeamConnection login, and host name to
access the family. This is the default level of security. To set up user
authentication for host only security, you need to do the following
1. Create a login for each user as described in “Creating logins” on page 91

© Copyright IBM Corp. 1992, 1999 89

2. Create a host-list entry for each login as described in “Planning for
host-list security” on page 94

Host lists associate logins and host names. If you are using host-list security,
each TeamConnection user has a host list that controls which logins and host
names he or she can use to access TeamConnection.

If the hosts in your site use IP addresses that are assigned dynamically, then
the host-only authentication level will not work. In this case, you can use the
password-only authentication level.

Password only
Password-only security requires a user to log in to and log off of
TeamConnection and supply a password in one of the following ways:

Select the login icon from the main toolbar.

Issue the command teamc tclogin from a command prompt.

When the user logs in to the family, the family sends back a token associated
with that user from that client. The server checks the attached token and, if
valid, performs the requested action.

Use password-only security if the hosts in your site use IP addresses that are
assigned dynamically.

To set up user authentication for password-only security, you need to do the
following:
1. Create logins for each user according to the instructions in “Creating

logins” on page 91.
2. Create a password for each user according to the instructions in “Adding

and modifying passwords” on page 93.

For information on how TeamConnection’s login manager works, see “Login
managers” on page 94.

Password or host
If your family uses password-or-host security, users can either login to the
family with a password or access the family with a valid host list entry. This
level of security is useful for teams in which particular team members may be
remote or mobile and have changing IP addresses. If the user supplies a valid
password, then TeamConnection uses the password to admit access to the
family. If the user either does not supply a password or supplies an incorrect
password, then TeamConnection checks the user’s host list entry to admit
access.

90 Administrator’s Guide

For information on how TeamConnection’s login manager works, see “Login
managers” on page 94.

None
If your family does not use any level of security (if you specified None for the
security-level option), users can access TeamConnection from any client
without entering a password. Though all TeamConnection users need a login
to access the family, when the security level is None, TeamConnection does
not require the login to have a password or a host list entry.

Use this authentication level with caution and only when absolutely necessary.
For example, if the superuser forgets his or her password and the
authentication level is password only, then the superuser can stop the family,
change the authentication level to None, restart the family, modify the
password, stop the family, change the authentication level back to password
only, and restart the family. Do not use this authentication level for normal
operations.

Creating logins

You can use a number of methods to assign logins to your users. For instance,
you can have each user’s TeamConnection login match the user’s system
login. This is easy to do because each user already has a system login. This
method can be ideal if your users use the same login across their different
systems, but it’s confusing if they do not. For example, if Chris Wright has
access to two workstations and logs in to one as chris and the other as wright,
then identifying all the objects that belong to Chris Wright is more
complicated. If you use this method, when a user moves on to another
project, you will have to transfer the ownership of objects from that user to
another user. Using this method can make additional work for you on a
project where people move around a lot.

Another method is to assign logins according to the roles that people have,
such as proj_lead, writer1, tester_mvs, and manager. When you use this
method, ownership remains the same when people leave the project.
However, it can be more difficult to identify the person who owns a particular
login. For example, it is easier to identify Chris Wright as the user of the login
cwright than it is to identify him as the owner of the login writer1.

You must have superuser or admin authority to create logins. To create a new
login in TeamConnection, do one of the following:

Chapter 9. Setting up user access to a family 91

1. Select User → Create from the Actions menu. The Create User window appears.

2. Type the user’s login and electronic mailing address. Other information on this
window is optional.

If the mail address you enter in this window is unreachable from the server, you
will receive an error message.For more information, select Help from the Create
User window.

3. Select OK.
From a command line, type:

teamc user -create -login login -name name -address mailAddress

For more information about the user command, refer to the Commands Reference book.

Superuser privilege is granted to one login when a TeamConnection family is
created. This privilege is required so that at least one person has privileged
access to the family to perform special tasks, such as creating and deleting
other logins. The person with superuser privilege can perform all possible
actions in your TeamConnection family. This is an authority level that you

92 Administrator’s Guide

definitely want to limit to only a very few individuals. In fact, individuals
who have a superuser login should also have another login that has less
authority, which is the login they will use when doing their normal work. The
user can switch between the two logins by setting the Become user option in
their TeamConnection settings (or by changing the TC_BECOME environment
variable).

To give a user superuser privilege, include the +super flag with the user
command, or set the Superuser field to yes when creating a user. When
creating superuser logins, you might want to begin the login with su_. This
prefix provides an easily identifiable flag for logins with superuser privilege.
You must have superuser privilege yourself in order to give this authority to
someone else.

Note: If you are using password security, you must add a password to the
user’s login. “Adding and modifying passwords” provides more
information. If you are using host-list security, you must add at least
one host address entry to the user’s host list to enable TeamConnection
to recognize a new user. “Planning for host-list security” on page 94
provides more information.

Planning for password security

If your family uses password-only or password-or-host security, then you
need to create a password for each TeamConnection login.

Adding and modifying passwords

If you are using password-only or password-or-host security, you will need to
modify the logins you have created to add passwords to them. To add or
modify a user’s password, follow these steps:

1. Select User → Modify → Password from the Actions menu. The Modify Password
window appears.

2. Type the login in the Login field.

3. Type the password in the New password and Verify password fields.
Note: The default minimum password length is 8 character. To determine if the
minimum password length for a family is something other than the default, check
the Required page of the properties notebook for the family.

4. If you are modifying an existing password, type the old password in the Old
password field.

5. Select the OK push button.
From a command line, type:

teamc user -modify -login login -password password

For more information about the user command, refer to the Commands Reference.

Chapter 9. Setting up user access to a family 93

Login managers

To enable users to execute as many commands as possible without
authenticating before each command, they must log into the family server
under one of the following conditions:
v The server is running in password-only mode.
v The server is running in password-or-host mode, and the user is attempting

to access the server from a host that is not defined in a host list for that
user.

When the user logs in, the server generates a token for that user, and each
TeamConnection command authenticates itself to the server by passing that
token to the server. When the user logs out, the server discards the token and
will no longer accept it. In order to ″remember″ the token for each client
command issued, the client automatically starts a login manager to perform
the login operation and to remember the token.

When the user issues a TeamConnection command, the command requests the
token from the login manager and then forwards the token to the server.
When the user logs out of the family server, the login manager exits normally.

On single-user operating systems, only one login manager will ever be
running, but on multiuser systems, such as AIX, HP-UX, Solaris, and
Windows NT, by default, one login manager will run for each user logged
into a family. Running multiple login managers can strain resources. To avoid
this situation, the superuser can start a global login manager that will act as
the login manager for every user.

The global login manager must be started by root (UNIX platforms) or someone with
system administrator authority (Windows NT) and with TeamConnection superuser
authority. To start the global login manager, execute the following command:

teamc tclogin -START_TCLOGINMGR

To stop the global login manager, execute the following command:

teamc tclogin -KILL_TCLOGINMGR

Planning for host-list security

When host-list security is in effect, each login is associated with a host list,
which is a list of client machine addresses from which the user can access
TeamConnection when using that login. Users must have at least one entry on
their host lists so that TeamConnection will recognize them as valid users.

A user named Chris Wright has the following TeamConnection
responsibilities:

94 Administrator’s Guide

v Develops code for a product
v Performs superuser tasks for the family in which the product is developed
v Supervises builds of the product

Chris has a workstation with the TCP/IP host name cwright.company.com. This
workstation is used for Chris’s daily programming activities and for superuser
activities. For day-to-day programming work, Chris uses the TeamConnection
login cwright from host name cwright.company.com. For superuser activities,
Chris uses the TeamConnection login su_cwright from host name
cwright.company.com. For build activities, Chris has access to a workstation
with the TCP/IP host name build.company.com. Chris logs into
build.company.com as cwright and extracts files from TeamConnection as user
build. To enable Chris to perform each of these activities with the proper
TeamConnection authority, Chris needs the following TeamConnection host
list entries:

Table 3. Host list entries for a sample user

System login Host name
TeamConnection
login

cwright cwright.company.com cwright

cwright cwright.company.com su_cwright

cwright build.company.com build

With these host list entries, Chris can do the following:
v Access TeamConnection as login cwright to perform daily programming

tasks from workstation cwright.company.com.
v Access TeamConnection as login su_cwright to perform superuser tasks

from workstation cwright.company.com.
v Access TeamConnection as login build to perform build activities from

workstation build.company.com.

A superuser or someone with admin authority must create the initial host
entry for a user. After the initial entry is created, users can add host list
entries for themselves. Additional entries in a host list let a user access
TeamConnection from other client machines.

Creating host list entries

The initial host list entry for each user must be created by someone with
superuser or admin authority. To create a host list entry in TeamConnection,
do one of the following:

Chapter 9. Setting up user access to a family 95

1. Select User → Host → Add host from the Actions menu. The Add Host window
appears.

2. Type the TeamConnection login, the system login, and the name of the client
machine from which the user will access TeamConnection.

3. Select OK.
From a command line, type:

teamc host -create login@hostName -login login

The login value following -create is the system login (TC_USER) with the host name
appended to it, while the -login attribute flag is the TeamConnection login
(TC_BECOME). The value of the user’s login is case sensitive, so type it exactly as it
was typed when the user was created.

For more information about the host command, refer to the Commands Reference.

96 Administrator’s Guide

Setting up authority groups

As soon as a TeamConnection login and a password (for password security)
or host list entry (for host-list security) are created for a user, that user
automatically has the authority to perform certain basic actions within the
family. This authority is referred to as base authority. Beyond base authority,
authority to access TeamConnection data is managed by the components that
you create. Each component has an access list that controls access to
development data. Authority granted in an access list is called explicit
authority. Explicit authority is inherited by descendant components. So when a
user has authority to perform actions within one component, that authority is
inherited for all its descendant components. Explicit authority and how it is
inherited is discussed in “Granting authority to users” on page 101.

TeamConnection users also get authority to perform additional actions when
they own TeamConnection objects. Authority granted by ownership is called
implicit authority. Because this authority is inherited, you need to be careful
when assigning component ownership and when granting access authority to
your users.

Figure 13 shows Doug as the owner of the optics component. As owner, Doug
has the implicit authority to perform most TeamConnection actions against the
objects that are managed by the optics component. Doug wants Greg to be
able to perform many of the same actions, so he gives him explicit releaselead
authority through the component’s access list. Because authority is inherited
by descendant components, Doug and Greg have releaselead authority in the
optics_v and base_h components.

Look at your component hierarchy before granting access authority. Do you
want that user to have the authority to perform the same set of actions in all
of the descendant components? If the answer is no for only one or two of the
components, you can restrict the user from inheriting authority for those
components. See “Granting or restricting access” on page 103 for instructions

Figure 13. Granting authority to other users

Chapter 9. Setting up user access to a family 97

on restricting access to a component. If the answer is no for many of the
descendant components, you might not want to give the user that level of
authority.

What are the TeamConnection authority levels?
The authority to perform various TeamConnection actions is based on four
types of authority levels: base authority, implicit authority, explicit authority,
and superuser privilege. These types of authority are described as follows. For
a summary of the authority required for performing TeamConnection actions,
refer to “Appendix A. Authority and notification for TeamConnection actions”
on page 235.

Base authority
All users defined to TeamConnection have authority to perform the
following actions:
v Open defects and features
v Modify the information for their login
v Display information about any login
v Add notes to existing defects and features
v Search for information within TeamConnection to create reports

(some information may be filtered out if you are not authorized to
see it)

Implicit authority
Many TeamConnection objects, such as a component, part, or defect,
have an owner. The object owner automatically receives authority to
perform certain actions. For example, when a defect is opened, the
owner has the authority to accept the defect or reassign ownership of
the defect. Similarly, the owner of a component, a release, or a feature
has authority related specifically to those objects. Sometimes authority
is given based on an action the user takes. For example, when
someone checks a part out of TeamConnection, that person is given
the authority to check it back in.

Explicit authority
Some users need additional authority to perform actions against
objects that they do not own. For example, users other than the
component owner will need to check parts out of TeamConnection.
The component owners give additional authority to users by adding
their names to the component’s access list.

When a user is assigned to be the owner of a component it is a good
idea to give explicit componentlead authority to that user. In that way,
the user can grant the componentlead authority to other users.
Otherwise, the owner of a component cannot grant the
componentlead authority to others.

See “Granting authority to users” on page 101 for more information
about access lists.

98 Administrator’s Guide

Superuser privilege
A user with TeamConnection superuser privilege can perform any
TeamConnection action. Only an individual with superuser privilege
can add, delete, or recreate a login, as well as grant superuser
privilege to another user. Only a few users in your organization
should have this privilege.

See page 92 for information about granting this privilege.

What are authority groups?

There are many actions that users can perform against TeamConnection
objects. It would be tedious to grant one action at a time to each of your
users. Instead, you can grant a user the authority to perform a group of
actions, called an authority group. For example, the managers of a project
might want to view only the status of certain TeamConnection objects, while
the developers need to view objects and also check in, check out, and extract
parts. You can grant access to an authority group for either of these jobs.

The family administrator is responsible for the authority groups that your
organization uses. TeamConnection ships with a set of default authority
groups. Determine whether these meet your needs or whether you need to
change them. As your organization grows and as your needs change, you will
probably want to revise your authority groups.

Displaying authority groups
If you do not know what authority groups your organization uses, you can
either display the groups on the Show Authority Actions window:

1. Select Lists → Access → Show Authority Actions from the Actions menu. The Show
Authority Actions window appears.

2. To see a list of the actions that are contained in a group, highlight one or more
group names, and then select OK.

Creating or modifying authority groups

When a family is first created, the authority table contains default values for
authority groups. If the default authority groups are not adequate for your

Chapter 9. Setting up user access to a family 99

development organization, you can create new authority groups or modify
existing groups. Authority groups can be created or modified at any time
during your development cycle.

First, decide what group of actions the intended users are required to
perform. If there is a shipped authority group that closely matches your
needs, you might want to modify that group or use it to prime a new group
with actions. To help you keep track of the authority groups that the family
uses, add the name of each authority group you create to the worksheet
provided in “Appendix B. Worksheets” on page 253.

We recommend you use the family administrator to create or modify
authority groups; however, if you prefer to do this manually, see page 227.

Before you do this task, we recommend that you stop the family server (see
page “Stopping the servers” on page 43 for instructions).

100 Administrator’s Guide

1. From the Family menu, select Properties. The properties notebook appears.

2. Select the Groups page and then select the Settings push button under Authority
to display the authority group settings.

3. Do one of the following:

v To change an existing group, highlight the group from the Authority Group list,
and then select or deselect the appropriate actions from the Actions list.

v To create a new group, follow these steps:

a. Select the New push button and type the name of the new group in New
Authority Group field.

b. To prime the new authority group with actions from an existing group, select
a group from the Prime with Actions from list.

This step initializes your new authority group with the same actions in the
group you select. After the new group is created, you can use the Authority
Group Settings window to change the actions or add actions to the group.

c. Select the OK push button to save your new group.

v To delete a group, select it from the Authority Group list and then select the
Delete push button. When the conform delete window appears, select Yes.

v To rename a group, follow these steps:

a. Select a group from the Authority Group list.

b. Select the Rename push button.

c. Type a new name in the New name field of the Rename Authority Group
window, and then select the Apply push button.

4. When you finish making changes to your notebook pages, select OK to save your
changes and exit from the notebook.

The changes will not take effect until you start the family server.

Granting authority to users
Each component has an access list that controls access to development data.
Each entry in an access list contains a login, the name of an authority group,
and whether the authority is granted or restricted for that access group. A
user whose login appears in the component’s access list either has authority to

Chapter 9. Setting up user access to a family 101

perform any action or is restricted from performing any action listed in the
specified authority group. A login can appear in a component’s access list
more than once.

There are three actions you can perform on the entries on a component’s
access list:
v Add a new granted entry to the access list. This action grants a user a

certain level of authority to access the component.
v Add a new restricted entry to the access list. This action blocks a user from

a certain level of authority to access the component.
v Remove an entry from the access list. This action removes a user’s granted

or restricted authority to access the component. This action can have one of
the following effects:
– If the user has only one entry in the component’s access list and has no

inherited access to the component, then all access is rescinded.
– If the user has another entry in the access list or has inherited access to

the component, then that user’s access is controlled by the other entries
or by entries in the parent component’s list.

Restricting a user from an authority group is useful when a user has inherited
access that you want to rescind. If login doug, for example, has releaselead
access to component optics, and if component base_h is a child of component
optics, then doug also has inherited releaselead access to component base_h.
TeamConnection allows you to restrict doug’s releaselead access to base_h, so
that doug no longer has that level of access to the component. You can also
create another access list entry for doug to grant him a lower level of access,
developer, for example, to base_h. Such actions would result in an access list
as follows:

Component Login Authority Type

base_h doug releaselead restricted

base_h doug developer granted

Before you grant access authority to users, you should understand the
following:
v Each component has only one access list.
v The authority groups in the access list must exist in the family.
v Each entry on an access list grants or restricts one user’s authority to

perform the actions in the specified authority group for the development
data managed by that component.

v The authority granted on an access list also grants the specified authority to
the user for any descendant components unless the authority has been
explicitly restricted from any of those components.

102 Administrator’s Guide

v The total authority a user has is based on the combination of the different
authority groups that are associated with the user. For example, a user that
has been granted developer+ and writer authority can perform all the
actions listed in those groups.
You can create new authority groups that will build on existing groups. For
example, you might create a group called creator that contains two actions:
compCreate and releaseCreate. You could then grant certain users creator
authority that would give them this additional authority without
duplicating actions that are in their other groups.

v Only the following users can grant or restrict access authority:
– A superuser
– The component owner
– Users with accessCreate or accessRestrict authority

v You cannot grant authority greater than the authority that you have for a
component. For example, if you have releaselead authority for the
component optics, you cannot grant componentlead authority to another
user. However, if you had componentlead authority, you could grant that
same authority to another user.

v A user with superuser authority can grant any authority to any user on any
access list.

Granting or restricting access
To grant or restrict access, do one of the following:

Chapter 9. Setting up user access to a family 103

1. Select Lists → Access from the Actions menu, and then select either Add or
Restrict. The Add Access or Restrict Access window appears.

2. Type the name of the component and the logins of the users, and then select the
authority group that you want to add them to or restrict them from.

3. Select OK.
From the command line:
v Use the access -create command to grant authority.
v Use the access -restrict command to restrict authority.

For example, to give writer authority to a user with a login of bruce for component
robot_dev, type the following command:

teamc access -create -login bruce -authority writer -component robot_dev

For more information about the access command, refer to the Commands Reference
book.

Removing an entry from an access list
To remove an entry from an access list, do one of the following:

104 Administrator’s Guide

1. Select Lists → Access → Remove from the Actions menu. The Remove Access
window appears.

2. Type the name of the component, the logins of the users, and then select the
authority group that you want to remove from the access list.

3. To remove all users from the component’s access list, select the All Users
checkbox.

4. Select OK.
Use the access -delete command to remove an entry from an access list. For example,
to remove the entry that grants writer authority to a user with a login of bruce for
component robot_dev, type the following command:

teamc access -delete -login bruce -authority writer -component robot_dev

Setting up report security
You can restrict users’ access to certain TeamConnection reports by enabling
report access checking. With this option, TeamConnection checks a
component’s access list before allowing a user to view a component, defect,

Chapter 9. Setting up user access to a family 105

feature, or part. Only users who are granted authority in an authority group
that includes the CompView, DefectView, FeatureView, and PartView actions
can view reports for the component.

Report access checking is available for the following views. For more
information about these views, refer to the Commands Reference.

View name Menu access Command-line access

CompView Objects→Components→Components teamc report -view CompView

DefectView Objects→Defects→Defects teamc report -view DefectView

FeatureView Objects→Features→Features teamc report -view FeatureView

PartView Objects→Parts→Parts teamc report -view PartView

PartFullView Objects→Parts→PartFull teamc report -view PartFullView

PartsOutView Objects→Parts→PartsOut teamc report -view
PartsOutView

BPartView (not available from GUI) teamc report -raw -view
BPartView

To set up report access checking, do the following:
1. Set the environment variable TC_REPORT_CHECKACCESS=1.

You can turn off report access checking by setting this environment
variable to 0.

2. To give report access to a user, open the component’s access list and add
an entry for that user in an authority group with CompView, DefectView,
FeatureView, or PartView authority.

3. To restrict report access for a user, either remove the user’s entry from the
access list, add a restricted entry for an authority group with CompView,
DefectView, FeatureView, or PartView authority, or change the authority
group to one without CompView, DefectView, FeatureView, or PartView
authority.

See “Granting or restricting access” on page 103 and “Removing an entry from
an access list” on page 104 for instructions on adding and removing entries
from access lists.

Setting up interest groups

TeamConnection notifies users when certain actions are performed on certain
objects. Notification messages are sent to an electronic mailing address that is
specified when the user’s login is created. (See “Setting up the mail facility”
on page 40 for more information.)

106 Administrator’s Guide

Some notification is automatic. For example, a user receives notification when
someone adds the user’s login to an access list.

Users can receive additional notification. For example, a manager might want
to be notified whenever a defect is opened against a component. The
component owner can explicitly request that TeamConnection send the
manager notification.

Each component has a notification list that controls who is notified of what
actions. Notification is inherited by descendant components. When a user is to
be notified that a specific action occurred within one component, that user
will also be notified when that action occurs in any of the descendant
components. Unlike authority, notification cannot be restricted for a specific
component.

What are the TeamConnection interest levels?
Notification for TeamConnection actions is based on two types of interest
levels: implicit notification and explicit notification. These types of interest are
described as follows. For a summary of the interest levels for specific
TeamConnection actions, see “Appendix A. Authority and notification for
TeamConnection actions” on page 235.

Implicit notification
Many TeamConnection objects, such as a component, defect, or
feature, have an owner. Other objects are treated as though they have
owners under certain circumstances. For example, when a user locks a
part, that user is treated as the part’s owner for notification purposes.
The object owner automatically receives notification when actions are
performed against it. For example, when a defect is opened, the
owner of the component against which it is opened is notified.
Similarly, if a user locks a part and someone else with superuser
authority unlocks it, the user who locked it is notified.

Explicit notification
Some users need additional notification for objects that they do not
own. For example, project managers might want to know when
defects are closed for all components even when they do not own all
components. The component owners give additional notification to
users by adding their names to the component’s notification list.

See “Working with notification lists” on page 110 for more information
about notification lists.

What are interest groups?

There are many actions that users can be notified of. It would be tedious to
request one action notification at a time for each of your users. Instead, you

Chapter 9. Setting up user access to a family 107

can request that a user receive notification for a group of actions, called an
interest group. Each interest group is a group of actions that a certain type of
user might want to be notified of.

For example, a developer might want to be notified when defects are opened
or closed, while the lead developer needs to be notified not only when defects
are opened, modified, or closed, but also when defects are sized or verified.

When planning for notification, you need to be familiar with what type of
user is automatically notified when specific actions occur. This information is
listed in “Appendix A. Authority and notification for TeamConnection
actions” on page 235. Interest groups are composed of a subset of these
TeamConnection actions.

The family administrator is responsible for the interest groups that your
organization uses. TeamConnection ships with a set of default interest groups.
Determine whether these meet your needs or whether you need to change
them. As your organization grows and as your needs change, you will
probably want to revise your interest groups.

Displaying interest groups

If you do not know what interest groups your organization uses, you can
display the groups on the Show Interest Actions window:

1. Select Lists → Notify → Show interest actions from the Actions menu. The Show
Interest Actions window appears.

2. To see a list of the actions that are contained in a group, select one or more group
names, and then select OK.

Creating or modifying interest groups

When the family is first created, the interest table contains the default values
for the interest groups. If you find that the default interest groups are not
adequate, you can create new interest groups or modify existing groups.
Interest groups can be created or modified at any time during your
development cycle.

108 Administrator’s Guide

First, decide what group of actions the intended users want to be notified of.
See if there is a shipped interest group that closely matches your needs. If
there is, you might want to modify that group or create a new group and
prime it with actions from an existing group. To help you keep track of the
interest groups that the family uses, add the name of each interest group you
create to the worksheet provided in “Appendix B. Worksheets” on page 253.

We recommend you use the family administrator to create or modify interest
groups; however, if you prefer to do this manually, see page 229.

Follow these steps to create or modify interest groups from the family
administrator. Before you do this task, we recommend that you stop the
family server (see page “Stopping the servers” on page 43 for instructions).

Chapter 9. Setting up user access to a family 109

1. From the Family menu, select Properties. The properties notebook appears.

2. Select the Groups page and then select the Settings push button under Interest to
display the interest group settings.

3. Do one of the following:

v To change an existing group, highlight the group from the Interest Group list,
and then select or deselect the appropriate actions from the Actions list.

v To create a new group, follow these steps:

a. Select the New push button and type the name of the new group in New
Interest Group field.

b. To prime the new interest group with actions from an existing group, select a
group from the Prime with Actions from list.

This step initializes your new interest group with the same actions in the
group you select. After the new group is created, you can use the Interest
Group Settings window to change the actions or add actions to the group.

c. Select the OK push button to save your new group.

v To delete a group, select it from the Interest Group list and then select the
Delete push button. When the confirm delete window appears, select Yes.

v To rename a group, follow these steps:

a. Select a group from the Interest Group list.

b. Select the Rename push button.

c. Type a new name in the New name field of the Rename Interest Group
window, and then select the Apply push button.

4. When you finish making changes to your notebook pages, select OK to save your
changes and exit from the notebook.

The changes will not take effect until you start the family server.

Working with notification lists

Each component has a notification list that controls who gets notified of what
actions. Each entry in a notification list contains a login and the name of an
interest group. An interest group defines the actions that each user in the
group is to be notified of.

110 Administrator’s Guide

Before working with notification lists, you should understand the following:
v Each component has only one notification list.
v The interest groups listed in the notification list must exist in the family.
v The total notification a user has is based on the combination of the different

interest groups that are associated with the user. For example, a user that
has been granted med and builder notification will receive notification on
actions listed only in those groups.
You can create new interest groups that build on existing groups. For
example, you might create a group called size that contains two actions:
defectSize and featureSize. You could then add certain users to the size
group for a component to give them this additional notification without
duplicating actions that are in their other groups.

v Each entry on a notification list ensures that the user will be notified when
those actions in the specified interest group occur.

v The user receives notification when actions in the specified interest group
occur in any descendant components.

v You cannot restrict notification as you can access authority.

Adding an entry to a notification list
To add an entry to a component’s notification list, do one of the following:

Chapter 9. Setting up user access to a family 111

1. Select Lists → Notify → Add from the Actions menu. The Add Notification window
appears.

2. Type the name of the component and the logins of the users, and then select the
interest group that you want to add them to.

3. Select OK.
From a command line, use the notify -create command. For example, to add
notification to the developer interest group in the robot_dev component for the
owners of logins korn and kotora, type the following:

teamc notify -create -login korn kotora -interest developer
-component robot_dev

For more information about the notify command, refer to the Commands Reference
book.

Removing an entry from a notification list
To remove an entry from a component’s notification list, do one of the
following:

112 Administrator’s Guide

1. Select Lists → Notify → Remove from the Actions menu. The Remove Notification
window appears.

2. Type the name of the component and the logins of the users, and then select the
interest group that you want to remove them from.

3. To remove all users from the component’s notification list, select the All Users
checkbox.

4. Select OK.
From a command line, use the notify -delete command. For example, to remove
notification from the developer interest group in the robot_dev component for the
owners of logins korn and kotora, type the following:

teamc notify -delete -login korn kotora -interest developer
-component robot_dev

Chapter 9. Setting up user access to a family 113

114 Administrator’s Guide

Chapter 10. Setting up and implementing configurable
fields

Many of the attributes for defects and features are configurable.
TeamConnectionallows you to customize them so that they more closely
match the needs of your development environment. Some examples of
attributes that you can customize include the following:

Defects
prefix, phaseFound, phase inject, priority, symptom, target

Features
prefix, priority, target

“Appendix D. Configurable field types” on page 277 contains complete lists of
attributes that you can customize. These are referred to as configurable fields.

You can also create and add your own configurable fields to defects, features,
parts, releases, workareas,and users. For example, you might want to add a
field called PubImpact to defects and features. Programmers can then use this
field to notify the writing team as to whether or not a defect or feature affects
the accuracy of the product documentation.

TeamConnection uses two types of objects to make configurable fields work:
configurable field types and configurable fields.

A configurable field type defines possible values for a field, the default value,
and a description of each value. Configurable field types are required only
when you want to specify a list of possible values for a configurable field or a
default value. They are not required if you want to create a configurable field
for text entry. The configurable field type, priority, for example, which is
shipped with TeamConnection, is defined as follows. This configurable field
type is used to define the values for the priority field for features and defects.

Table 4. Definition of configurable field type priority

Possible values Description

mustfix Defect or feature must be resolved in this
release

candidate Defect or feature is a candidate if time
permits

deferred Defect or feature deferred to next release

easy Defect or feature is easy to solve or
implement

© Copyright IBM Corp. 1992, 1999 115

Table 4. Definition of configurable field type priority (continued)

Possible values Description

moderate Defect or feature is moderately difficult to
resolve

difficult Defect or feature is difficult to solve or
implement

n/a Priority does not apply to this defect or
feature

A configurable field defines how the configurable field type is to be used by the
object for which it is defined. A configurable field definition includes the
following information:
v Whether or not the field is active
v Whether it is required or optional
v Whether you can set its value on Create or Open windows, or just modify

it on Modify Property windows
v The configurable field type that defines the possible values for the field, if a

field can have one value from multiple choices
v The attribute name to be used for the field on TeamConnection commands
v The label to be used for the field on Create, Open, and Modify Property

windows
v The title to be used for the field in reports and in Features, Defects, Parts,

Releases, Users, and Workareas windows
v Whether the owner or originator of defects, features, parts, and users can

modify the field
v Whether the field is included on Defect Accept or Feature Accept windows
v Dependent relationships between configurable fields

Features and defects use the priority field type differently, for example, and
the difference between the two is determined by how the configurable field is
defined. The following table shows how options set for priority differ for
features and defects.

Table 5. Definition of priority field in features and defects

Option Features Defects

Active Yes Yes

Required No No

Allow on Create/Open No Yes

Field Type priority priority

Attribute priority priority

Field Label Priority Priority

Title Priority Priority

116 Administrator’s Guide

If you want to create a text-entry configurable field that does not require a list
of possible values or a default value, then you can create a configurable field
without specifying a configurable field type. If you do want to specify a list of
possible values or a default value, then you must specify a configurable field
type when you create the field. If you do not want to use an existing field
type, you must create the type before you create the field.

For example, if you create a PubImpact field, you might want to create a new
configurable field type called PubImpact (the configurable field type can have
the same name as the field). If you assign the attributes of yes, no, and maybe
to this field, writers can use the GUI interface or issue a TeamConnection
command to see a list of all defects or features that affect the publications. If
you also add a value of done, the writers can indicate when they have
finished updating the documentation. The following is an example of a
TeamConnection command to query such a field.

teamc report -view DefectView -where "PubImpact in ('done')"

Defining configurable field types

For the defect and feature tables, TeamConnection ships configurable field
types that have defined values. You can use the default field types as is or
change their attributes. For example, TeamConnection defines a field named
Severity. This field has valid values of 1, 2, 3, and 4 (see the table on page
277). You could add an additional value of 5, or you could change the
description of what the value 2 represents.

Note: The maximum size for the value of a configurable field type when
entering single-byte characters is 15 with a maximum of 7 characters
when entering double-byte characters.

You can also create new configurable field types for the defect, feature, part,
release, workarea,and user tables. This allows you to structure problem
tracking information for your development environment. You can create new
types or change the attributes of the existing types at any time during your
development cycle. TeamConnection stores configurable field types in a file
called config.ld. “Defining configurable field types” on page 207 describes the
config.ld file.

It is recommended that you use the family administrator to create or modify
configurable field types; however, if you prefer to do this manually, see page
207. Always backup your database before adding or changing configurable
fields or configurable field types.

Chapter 10. Setting up and implementing configurable fields 117

Note: The family administrator does not support configurable fields for
TargetView and ConfigPartView. To add configurable fields to these
views, follow the instructions in “Updating TargetView and
ConfigPartView” on page 214.

Follow these steps to create or modify configurable field types from the family
administrator. Before you do this task, stop the family server (refer to page
“Stopping the servers” on page 43 for instructions).

118 Administrator’s Guide

1. Display the family icon’s pop-up menu; then select Properties. The properties
notebook appears.

2. Select the Configurable Fields page.

3. Under the section labeled Configurable Field Types, select the Settings push
button to open the Field Type window. The following figure shows the Field Type
window.

4. From this window, you can do the following:

v To create a new field type, follow these steps:
a. Select the New Type push button beside the Displayed list to open the New

Field Type window. Type a name for the new field type.

The name cannot exceed 15 characters (7 for DBCS) and cannot contain
spaces.

The name that you specify becomes a column name for the DB2 database
table for any object (defect, feature, part, release, user, or workarea) that you
add the field type to as a configurable field. DB2 requires that all column
names be unique. You cannot, therefore, use any name that is already
defined as a column for the table. The DefectView table, for example, has a
column named ″state.″ This column records the current state of a defect
(open, working, closed, canceled, and so on). You cannot add another
configurable field called ″state″ to the DefectView table.

Refer to the appendix of the Commands Reference for a list of column names
defined for defects, features, parts, releases, users, and workareas.

b. Use the Resolve by Matching radio buttons to determine the rules for
specifying values for the field type. Select one of the following:

A unique name value
Only one value can be specified for the field.

Multiple name values
One or more values can be specified for the field.

An Expression
The value specified must match specific rules (6–digit numeric
value, for example) defined for the configurable field type. This
option is available only on UNIX platforms. See “Defining regular
expressions” on page 120 for an example of how to specify a UNIX
regular expression.

Chapter 10. Setting up and implementing configurable fields 119

your changes and close the window.

Defining regular expressions

This section applies to UNIX platforms only.

Instead of setting specific values for configurable field types, you can set rules
for the format of values that can be entered for configurable fields. You do
this by specifying a UNIX regular expression for the value of the configurable
field type.

A UNIX regular expression sets limits on the type of characters (letters or
numbers, for example), the length, and any required special characters for the
value of a configurable field. The following gives examples of shipped
configurable field types that are regular expressions and explains how to
interpret them:

Configurable
field type

Regular expression Meaning

serial |[0-9]\{6\}$ The value entered for the configurable
field must contain six numerals:

v The characters | and $ enforce the field
length of the value that users can enter
for the configurable field.

v [0-9] indicates that valid characters for
the value are 0 through 9.

v \{6\} indicates that the value contains
six digits.

120 Administrator’s Guide

Configurable
field type

Regular expression Meaning

phone |TL-[0-9]\{3\}-[0-9]\{4\}$ The value entered for the configurable
field must be a phone number with the
format TL-PPP-NNNN, where P and N
are numerals:

v The characters | and $ enforce the field
length of the value that users can enter
for the configurable field.

v TL- indicates that the phone number
must begin with the characters ″TL-″.

v [0-9]\{3\}- indicates that the first three
digits must be numerals between 0 and
9 followed by -.

v [0-9]\{4\} indicates that the last four
digits must be numerals between 0 and
9.

Refer to your UNIX operating system reference for information on specifying
UNIX regular expressions.

Defining dependent relationships between configurable field types

You can set up dependencies between configurable field types. A dependency
relationship between configurable field types enables you to use one
configurable field type to constrain the values that can be set for another
configurable field type. In this type of relationship, one configurable field type
is the driver and the others are its dependents.

One example of using dependent configurable field types is for setting values
for a company’s division and department numbers. You can define a
configurable field type called division as a driver. The range of values that can
be set for its dependent field type, department is constrained to departments
that are part of the division number to which the field division has been set.

Note: You can define dependent relationships between any shipped
configurable field type except the defect configurable fields, prefix and
severity and the feature configurable field, prefix. These can be defined
as driver types only.

To define a dependent relationship between two configurable field types,
follow these steps:

Chapter 10. Setting up and implementing configurable fields 121

1. Display the family icon’s pop-up menu; then select Properties. The properties
notebook appears.

2. Select the Configurable Fields page.

3. Under the section labeled Configurable Field Types, select the Settings push
button to open the Field Type window.

4. On the Field Type window, select the Set Condition push button. The following
figure shows the Set Condition window.

5. From the Driver Types field, select a configurable field type to be the driver; then,
in the list box below the Driver Types field, select the specific value of the field
that will control the values of the dependent type.

6. From the Dependent Types field, select the dependent configurable field type;
then, in the list box below the Dependent Types field, select the values that are
valid for the driver value you selected. Select the Apply button to save your
changes.

7. Repeat these last two steps until you have set up all the dependent relationships
you need, then select the OK push button to save your changes.

Defining configurable fields

Default configurable fields are shipped by IBM and are installed when the
TeamConnectionserver is configured. If you do not want to use these defaults,
you can change them at any time after the family database is created.

The following conditions apply to the use of configurable fields:
v Defect, feature, part, release, workarea, and user objects can have up to 20

configurable fields each.
v Fields for defect and feature objects are effective on open, accept, and

modify actions. Fields for part, release, workarea and user objects are
effective on create and modify actions.

122 Administrator’s Guide

v You can use the data from configurable fields to search the database and
display information in reports, but TeamConnection does not use the data.
For example, if you have a field called PubImpact, TeamConnection cannot
change the state of a defect based on the value of this field, but users can
sort all defects and features by whether or not they impact the publications.

v When you add fields, TeamConnection displays them on the GUI like any
predefined field. However, the help information for configurable fields for
the GUI and the commands do not reflect your new or changed fields.

v Whenever you create or modify a configurable field, your client users need
to do one of the following to make the new field appear on the GUI:
– Close the GUI and reopen it
– Use the settings notebook to change the family and then change it back

Refreshing the GUI in this way is particularly important if the new field is
required. Otherwise, your users will receive errors, but will have no way to
enter information in the required fields.

v The data type for all configurable fields is character.

Creating and modifying configurable fields

We recommend you use the family administrator to create or modify
configurable fields; however, if you prefer to do this manually, see “Part 5.
Using the server command-line interface” on page 197.

Follow these steps to create or modify configurable fields from the family
administrator. Before you do this task, stop the family server (refer to page
“Stopping the servers” on page 43 for instructions).

Chapter 10. Setting up and implementing configurable fields 123

1. Display the family icon’s pop-up menu; then select Properties. The properties
notebook appears.

2. Select the Configurable Fields page.

The Configurable Fields section of this page has a list box from which you can
select the following objects: Defect, Feature, Part, Release, Workarea,and User.

3. Select one of these objects and then select the Settings push button to open the
configurable field settings for that object.

This window has three notebook pages that you can use to do the following:

Fields Define configurable fields to be used for the object.

Table Define the table report for the object.

Stanza Define the stanza report for the object.

4. Select the Fields page of the configurable fields window.

From this page, you can do the following:

v To create a new configurable field, follow these steps:
a. Select the New push button under the list of configurable fields to open the

New Field window.

124 Administrator’s Guide

The changes do not take effect until you start the family server.

Displaying configurable field properties
To display the properties of the active configurable fields for an object, type
one of the following commands from a prompt:

v teamc defect -configInfo -family familyName [-raw]

v teamc feature -configInfo -family familyName [-raw]

v teamc part -configInfo -family familyName [-raw]

v teamc release -configInfo -family familyName [-raw]

v teamc user -configInfo -family familyName [-raw]

v teamc workarea -configInfo -family familyName [-raw]

These commands show you exactly what has been defined and let you verify
that the fields were loaded correctly.

If the -raw flag is used, the information is organized in a fixed ASCII table
format as follows:
Field Label|Title|Attribute|DB Column Name|Create|Required|Field Type|
OwnerMod|OrigMod|ShowOnAccept|ReqOnAccept|Driver

Note: The properties of both the Prefix and Severity configurable fields are
displayed for defects, whereas only the Prefix field is displayed for
features.

Changing report formats

TeamConnection users can view or print reports about an object. When you
create a field, TeamConnection adds the new field to the report. You can
choose the field information that you want to present to the user and the
place on the report where the information appears.

Reports are displayed in two formats: stanza and table. The following sections
describe these formats and explain how you can change them using the
Family Administrator GUI.

Note: The family administrator does not support modifying reports for
TargetView and ConfigPartView. To modify these reports, follow the
instructions in “Updating TargetView and ConfigPartView Reports” on
page 218.

The stanza report
Figure 14 on page 126 shows an example of a stanza report. Each line in the
report represents one or more attributes of the object.

Chapter 10. Setting up and implementing configurable fields 125

From the client interface, select Defects → View from the Actions pull-down menu.
When the View Defect Information window appears, type the defect name.

To display the report from a command prompt, type the following command. This
example displays information about defect 3168.

teamc report -view DefectView -where "name='3168'" -stanza

The following is an example of a stanza report:

We recommend you use the family administrator to change the stanza report
formats; however, if you prefer to do this manually, see page 214.

Follow these steps to change the position of the field, or to change or delete
the format specification from the family administrator. Before you do this task,
stop the family server (refer to page “Stopping the servers” on page 43 for
instructions).

prefix d
name 3168
reference testcase_099
abstract Compilation error occurred.
duplicate

state open priority
severity 2 target driver_020
age 9

compName demoComponent answer
release demoRelease symptom compile_failed
envName phaseFound prototyping
level level_019 phaseInject

addDate 93/04/01 11:32:47 assignDate 93/04/04 18:45:41
lastUpdate 93/04/13 11:54:15 responseDate 93/04/03 11:29:59
endDate
ownerLogin annHar originLogin martin
ownerName Ann Harrison originName Martin Karland
ownerArea Development originArea Testing

developer johnDoe

Figure 14. Sample stanza report displayed after adding configurable fields

126 Administrator’s Guide

1. Display the family icon’s pop-up menu; then select Properties. The properties
notebook appears.

2. Select the Configurable Fields page.

3. Select the object whose report format you want to change and then select the
Settings push button.

4. Select the Stanza page of the configurable fields window.

5. Do one of the following:

v The columns labeled Report label are input fields. You can either type into these
fields to change the report labels, or select a configurable field type to display in
these fields.

v The columns labeled Attribute specify the configurable field types you want
displayed. You can either type into these fields, or select a configurable field
type to display in these fields. To select a configurable field type, do the
following:

a. Select the field.

b. Select the drop-down button to display a list of configurable field types.

c. Select the type you want to use.

The number of characters that are displayed in the Report label and Attribute
columns of the stanza report varies according to how you use them:

– If you select a configurable field type for the first column and leave all
remaining columns blank, there is no limit to the number of characters that
will display in the stanza report.

– If you select a configurable field type to display in both columns, the first
column is limited to 25 characters and the second column to 20.

– If you select a configurable field type to display in the second column and
leave the first column blank, the second column is limited to 20 characters.

v Use the Insert push button to add blank lines into which you can insert new
fields.

v Use the Delete push button to remove a field from the report. This button
removes all fields on the selected line. If the line defines fields in columns one
and three, then both fields are deleted.

6. Use the up and down arrow buttons to change the position of a line.

Chapter 10. Setting up and implementing configurable fields 127

changes and exit from the notebook.

Note: When changing the Part stanza format, only the partView table is
changed, not the partFullView table. To manually change the
partFullView table, see page 214.

Refer to Appendix A in the Commands Reference if you are not familiar with
the differences between these two views.

The changes do not take effect until you start the family server.

The table report
Figure 15 is an example of a table report. Each row of the table represents a
different object, and the value of each attribute for that object is displayed in
columns.

The following is an example of the command to display the report.

teamc report -view DefectView -where "name='3168'" -table

The following is an example of the table format for defects. This example
shows a table report to which a developer field has been added.

It is recommended that you use the family administrator to change the table
formats; however, if you prefer to do this manually, see page 214.

Follow these steps to change the columns you want displayed, their position
in the table, or the width of the columns. Before you do this task, stop the
family server (refer to page “Stopping the servers” on page 43 for
instructions).

pref name compName state originLo ownerLog sev age prio abstract developer
---- -------- -------------- ------- -------- -------- --- --- ---- ----------------- ---------
d 3168 demoComponent open martin annHar 2 009 Compilation error johnDoe

Figure 15. Sample table report displayed after adding configurable fields

128 Administrator’s Guide

1. Do one of the following from a server machine to display the TeamConnection
Family Administrator window:

v From the TeamConnection Group folder on the desktop, double-click on the
Family Administrator icon.

v Type tcadmin from a prompt.

2. Display the family icon’s pop-up menu; then select Properties. The properties
notebook appears.

3. Select the Configurable Fields page.

4. Select the object whose report format you want to change and then select the
Settings push button.

5. Select the Table page of the configurable fields window.

6. Do one of the following:

v To change the position of a column, select it and then select the up or down
arrow repeatedly until the column name is in the correct position.

v To remove a column from the table, select the column label from the Displayed
list box and then select the right arrow button to move the column to the
Hidden list box.

v To add a column to the table, select the column label from the Hidden list box
and then select the left arrow button to move the column to the Displayed list
box. The label is placed at the bottom of the list; you can change its position.

v To move all columns between the Displayed and Hidden list boxes, use the
double-left and double-right arrow buttons.

v To change the width of a column, select the column label and then select the up
or down arrow in the Column width field.

7. When you finish making changes to your notebook pages, select OK to save your
changes and exit from the notebook.

Chapter 10. Setting up and implementing configurable fields 129

Note: When changing the Part table format, only the partView table is
changed, not the partFullView table. To manually change the
partFullView table, see page 214.

Refer to Appendix A in the Commands Reference if you are not familiar with
the differences between these two views.

The changes do not take effect until you start the family server.

130 Administrator’s Guide

Chapter 11. Configuring component and release processes

TeamConnection is shipped with several predefined processes for both
components and releases. If these processes do not meet the needs of your
development organization, you can create your own processes. You do this by
combining some of the predefined subprocesses that IBM provides.

This chapter explains how you configure new processes or change existing
processes. If you are not familiar with TeamConnection processes and how
they are used, read “Planning your processes” on page 79.

Planning your changes

Consider the following before configuring your processes:
v To avoid confusion for end users, do not modify processes after they are in

use. If you must add or delete subprocesses in an existing process, consider
instead creating a new process.

v Do not delete a process that is being used by any component or release in
your family.

v Changes to processes do not take effect until one of the following occurs:
– A component or release is modified using the process name
– A component or release is created using the process name

The processes shipped by IBM are explained to your users in on-line help.
Any processes you configure are not explained in on-line help. Therefore, you
will need to provide this type of information to your users.

Tables are provided in “Configurable processes worksheets” on page 264 for
you to record the processes you configure.

Modifying or creating configurable processes

Your first step in configuring a process is to give the process a name. The
name you choose can be up to 15 characters in length with no blanks, tabs, or
vertical separators. To help you keep track of the processes that you configure
for your family, add the name of each process you create to the worksheet
provided in “Configurable processes worksheets” on page 264.

We recommend you use the family administrator to modify or create
configurable processes; however, if you prefer to do this manually, see page
219.

© Copyright IBM Corp. 1992, 1999 131

Follow these steps from a server machine to configure component or release
processes from the family administrator. Before you do this task, we
recommend that you stop the family server (refer to page “Stopping the
servers” on page 43 for instructions). The changes you make do not take effect
until you restart your family.

132 Administrator’s Guide

1. Do one of the following to display the TeamConnection Family Administrator
window:

v From the TeamConnection Group folder or the Start menu on the desktop,
double-click on the Family Administrator icon.

v Type tcadmin from a command prompt.

2. Display the family icon’s pop-up menu, then select Properties. The properties
notebook appears.

3. Select Processes.

This page of the family properties notebook provides access to two windows: one
for defining release processes and one for defining component processes. To open
one of these windows, select one of the Settings push buttons.

Use the Release Process Settings window and the Component Process Settings
window to define processes and subprocesses for releases and components defined
in your family. Complete the fields on these windows as follows.

v To see the default subprocesses defined for each release or component process,
select a process name from the Release Process or Component Process list. The
subprocesses included will appear highlighted in the Subprocesses list.

v To add or delete subprocesses for an existing process, follow these steps:

a. Select a process from the Release Process or Component Process list.

b. To add or delete a subprocess, select it from the Subprocesses list.

c. To save your changes, select the Apply button.

v To create a new process, follow these steps:

a. Select the New push button, type the name of the new process in New
Release Process or New Component Process window, and then select the OK
push button.

b. From the Subprocesses list, select the subprocesses you want to include in
the new process.

c. To save the new process, select the Apply push button.

v To delete a process, select it from the Release Process or Component Process list
and then select the Delete push button. When the confirm delete window
appears, select Yes.

v To rename a process, follow these steps:

a. Select a process from the Release Process or Component Process list.

b. Select the Rename push button.

c. Type a new name in this New name field of the Rename Release Process or

Chapter 11. Configuring component and release processes 133

changes and exit from the notebook.

134 Administrator’s Guide

Chapter 12. Providing user exits

TeamConnection provides a highly configurable set of processes so that you
can adapt the tool to your specific needs. However, there are many cases
where you might want to make further process adjustments or add automated
steps. User exits allow you to enhance the TeamConnection processes to
perform tasks like the following:
v Ensuring that code files meet formatting requirements, such as the

including keywords that identify the name and version of the file
v Creating a new defect when a verification record is rejected on a current

defect
v Analyzing a build failure and removing any workareas from a driver that

include changes to files that failed to compile (if the build fails the driver
remains in restrict state, however if it succeeds the driver can be
committed)

v Ensuring that the right information is in a sizing record before it is accepted
v Automatically generating management reports when a driver is committed

This chapter describes user exits, how to use them, and how to implement
them for each TeamConnection family. User exits are not necessary for the
operation of TeamConnection; they are optional and can be configured for
each family.

With user exits, you can specify additional actions that you want performed
before completing or proceeding with a specific TeamConnection command
action. A user exit enables the TeamConnection server to call a user-defined
program during the processing of TeamConnection actions. The program can
be an executable file or a command file. Thus, you can use TeamConnection
as a trigger to start non-TeamConnection processing. You can also use user
exits to restrict certain TeamConnection actions based on external
considerations. For example, you might have a user exit scan C source files to
ensure that the source code conforms to the standards defined by your
development process.

TeamConnection provides two ways to register user exits. You can use the
User Exits page of the family administrator to specify the following:
v The action you want to add a user exit to
v The point at which the user exit is to be triggered (before, during, or after

the action or if the action fails)
v The name of the user exit program
v The name of an environment file containing parameters to be passed to the

user exit program

© Copyright IBM Corp. 1992, 1999 135

This information is stored in a file called userExit. You can also edit the
userExit file directly to provide this information. For instructions on editing
the userExit file directly, see “Chapter 22. Setting up user exits” on page 223.
The recommended way to register user exits, however, is through the family
administrator.

User exits are provided for most TeamConnection actions. The actions that
support user exits are listed in “Appendix E. User exit parameters” on
page 289.

Registering user exit programs

When you register a user exit program with TeamConnection, you provide the
following information:
v The action you want to add a user exit to
v The point at which the user exit is to be triggered (before, during, or after

the action or if the action fails)
v The name of the user exit program
v The name of an environment file containing parameters to be passed to the

user exit program

You can provide this information to TeamConnection using the User Exits
page of the family administrator.

When you want TeamConnection to start a user exit, you must associate the
user exit program with TeamConnection actions. We recommend you use the
family administrator to associate the actions with the program; however, if
you prefer to do this manually, see 223.

Before you do this task, we recommend that you stop the family server (refer
to page “Stopping the servers” on page 43 for instructions). The changes you
make to the user exit settings do not take effect until you restart the family
server.

136 Administrator’s Guide

1. Select the family and then select Properties from the Family menu. The properties
notebook appears.

2. Select the User Exits page and then select the Settings push button to open the
User Exit Settings window.

3. Select the action that you want to associate the user exit with, then select one of
the following push buttons at the bottom of the settings window to specify when
you want the user exit to start.

Open Pre-check
To execute the user exit before any initialization or access checking takes
place

Open Pre-action
To execute the user exit after all checks are made and TeamConnection is
ready to process the action

Open Post-action
To execute the user exit after the action is completed and all database or
library updates have been committed

Open Failure
To execute the user exit when a previous user exit with an exit ID of 0 or
1 is not successful, or when the action is not successful. The user exit
program executed after a failure can clean up what the other user exit
programs started

Selecting one of these push buttons opens a window that you can use to specify
the program and parameters to use for the user exit. The following is an example
of the Pre-Check window. The Pre-action, Post-action, and Failure windows have
the same fields.

Chapter 12. Providing user exits 137

changes and close the windows.

Environment file

The environment file is a temporary binary file containing the name and value
for all parameters to be passed to a user exit from a TeamConnection. It is
created when the user exit is started. The parameters to be passed are selected
from one of the following user exit windows:
v Pre-check
v Pre-action
v Post-action
v Failure

Each time a user exit is started, a temporary environment file is generated and
the name of the file is passed to the user exit as the second positional
parameter. Therefore, the user exit program has direct access to the data in the
environment file. The name of each parameter is now known to
TeamConnection. This allows the administrator to specify each parameter to
be passed in the environment file by name.

One of the parameters that is of particular interest to administrators is
something called ″configurable fields″. There are a predetermined number of
configurable fields in TeamConnection. An administrator can turn these fields
on or off, as well as change their names. TeamConnection allows the
administrator to get the value of any configurable field by name (just like any
other parameter). When the administrator checks for the value of a specific
configurable field in the environment file, he or she gets a zero length value if
the user did not specify that configurable field when the TeamConnection
action was invoked.

The following is what happens when a TeamConnection user issues a
command for which a user exit has been written:
1. The TeamConnection server gathers the information required by the user

exit, including the parameters selected for the environment file and their
values, into a newly created temporary environment file.

2. The user exit program is called and is passed the user-defined parameter
string, the name of the environment file, and all of the parameters defined
for the user exit.

3. The user exit program opens the environment file, searches for a
parameter by name, reads the length of the parameter value, then reads
the value.

You need to include in your user exit program the code for searching and
reading the environment file. TeamConnection is packaged with sample user
exits viewexit.c, viewexit.ksh, viewexit.cmd and teamcenv.c that demonstrate

138 Administrator’s Guide

how to access the environment file. Specifically, teamcenv.c is a tool that
searches the environment file for a specific parameter name and returns the
value of that parameter. “Appendix E. User exit parameters” on page 289
contains a list of parameter names used for the environment file.

The userExit file

TeamConnection stores the values you enter into the user exit windows in a
file called userExit in the config directory of TC_DBPATH. The following is
the format of the userExit file:
ActionName WhenInvoked UserExitName UserDefinedParameters EnvironmentFileParameters Comment

ActionName
The TeamConnection with which the user exit is associated
(corresponds to TeamConnection Action on the User Exit Settings
window.

WhenInvoked
The point in processing the action when the user exit program is
called. The userExit file identifies when the user exit is to be invoked
by the numerals 0, 1, 2, 3, as follows:

In userExit file Corresponds to

0 Pre-check

1 Pre-action

2 Post-action

3 Failure

UserExitName
The full path name of the user exit program (corresponds to Program
on the Pre-check, Pre-action, Post-action, or Failure windows).

UserDefinedParameters
The user defined parameter string passed as the first parameter to the
user exit program (corresponds to User-Defined Parameter on the
Pre-check, Pre-action, Post-action, or Failure windows).
TeamConnection adds quotation marks to the parameter when it
writes it to the userExit file. If your user exit is written in REXX, you
need to strip these quotation marks. The sample program
samples\viewexit.cmd performs this process. You can use
viewexit.cmd as a model.

EnvironmentFileParameters
The list of parameters, specified by name, to be included in the
environment file when it is passed to the user exit program
(corresponds to Environment Variable File listbox on the Pre-check,
Pre-action, Post-action, or Failure windows). When a user does not

Chapter 12. Providing user exits 139

enter a value in an optional GUI field or command line parameter, the
user exit puts ″″ in its place. If your user exit is written in REXX, you
need to strip these quotation marks. The sample program
samples\viewexit.cmd performs this process. You can use
viewexit.cmd as a model.

Comment
A comment describing the user exit (corresponds to Comment on the
Pre-check, Pre-action, Post-action, or Failure windows).

The following shows two sample lines from a userExit file:
PartAdd 0 copyrightCheck "1991 1992" # sample 1
PartAdd 0 copyrightCheck "1991 1992" ENV=(component,release) # sample 2

The first entry (sample 1) invokes the user exit ″copyrightCheck″ before
TeamConnection performs any verification checks (0) for the part creation
command (PartAdd). It is passed the user-defined parameter ″1991 1992″. The
second entry (sample 2) includes a list of parameters to be selected from an
environment file and passed to the user exit program.

Writing user exit programs

When you write user exit programs, you need to account for the following:
v When a user does not enter a value in an optional GUI field or command

line parameter, the user exit puts "" in its place. This is also true for
user-defined parameters. This is According to the calling conventions of
most high-level languages like C and DOS batch, TeamConnection adds
quotation marks to parameters before passing them to the user exit
program. If your user exit is written in REXX, you must strip these
quotation marks. The sample program samples\viewexit.cmd provides a
model for doing this.

v Positional parameters that pass true or false values, such as Break common
link (force flag), return the following:
True 1
False 0

v A nonzero return code from a user exit program for Pre-check and
Pre-action (exit ID 0 or 1) terminates the TeamConnection command.
Nonzero return codes do not affect TeamConnection commands for
Post-action or Failure (exit ID 2 or 3).

Follow these guidelines when you write user exit programs:
v Not all TeamConnection commands can be used in a user exit. Some may

cause a database deadlock to occur.
v User exit programs do not permit user interaction (for example, from a user

exit program, you cannot prompt a user with a read command).

140 Administrator’s Guide

v Define only one user exit program for each TeamConnection action and exit
ID combination. If you define more than one program, TeamConnection
uses the last one you define.

v You are limited to a total of 40,000 bytes of total output from all user exits,
plus warnings, for each TeamConnection action (except teamc report and
-view actions).

v Limit the length of time that the user exit program runs.

Sample user exit programs

TeamConnection is shipped with the following sample user exit programs:

samples/teamcenv.c
A program that lets you read the entire environment file and display
the contents of each variable stored, or extract the value of a specific
variable based on the name. It can be called from viewexit.c or any
user exit programs written in C.

samples/viewexit.c, samples/viewexit.ksh, and samples/viewexit.cmd.
A program that displays the output of a user exit, identifying the user
exit command, the environment file, the user-defined parameter, and
each of the positional parameters. Also, parameters that are null or
were truncated because they would make the command string too
long are identified. There is also a function that was derived from
teamcenv (above) to display the contents of the environment file (if
one was specified). Each of these samples shows the following
information:
v Parameter 0: Executable name
v Parameter 1: User defined parameters
v Parameter 2: Environment variable file name (generated by

TeamConnection and deleted automatically after the daemons are
brought down)

The samples are provided in C, Korn shell, and REXX.

The list of available user exits and their parameters can be viewed by a
superuser issuing the following command:
teamc report -userExitInfo

Adding the -long flag will also display the user exits currently configured and
the environment variables to be written to the environment file.

Chapter 12. Providing user exits 141

142 Administrator’s Guide

Chapter 13. TeamConnection shadows
TeamConnection currently provides no support for working with shadows from its
graphical user interfaces. To work with shadows, you need to use TeamConnection’s
command-line interface.

A shadow is a collection of parts in a file system that reflects the contents of a
workarea, driver, or release. The shadow could be a simple directory structure
on a network server, or a file system on a completely different computer
platform. You can use shadows to build your product, or they can simply be a
place where developers can go to search through code. Shadowing is similar
to extracting in that the purpose of each is to provide a set of files that reflect
the version of a TeamConnection object.

TeamConnection does not do shadowing all by itself. It implements a
framework that requires you to provide the ″shadowing program″ to perform
the actual file system updates. This shadowing program can be one you create
yourself, or a sample that is shipped with TeamConnection. When commands
are issued that change the contents or properties of a part, TeamConnection
determines what needs to be updated in the shadows. TeamConnection then
extracts the parts and calls the ″shadowing program″ to update the file
system.

TeamConnection stores information about the shadowed parts in the
TeamConnection database. Subsequent shadowing actions ″remember″ what is
already in the shadow to avoid doing unnecessary updates. For example,
assume a driver exists with many driver members. When a new workarea is
added to the driver, only those files that have been changed on the new
workarea are extracted and placed in the shadow.

This chapter describes shadows and how to implement them for your
families. Shadow properties and shadow actions are described. The
requirements and interfaces that shadowing programs must implement are
also defined.

Note: Shadows are not necessary for the operation of TeamConnection; they
are optional and can be configured for each family.

Shadow types

A shadow type is an association between a name you define and a shadowing
program. A shadow type has the following properties:

© Copyright IBM Corp. 1992, 1999 143

name The name you choose for the type. The name must be unique within
the family.

description
The description of the shadow type.

program name
The program that TeamConnection will call to perform the shadowing
actions. This name should be a fully qualified path to the program.
The TeamConnection server must be able to access and run this
program. This program can be a sample shipped with
TeamConnection, or one that you write yourself.

Shadow properties

Shadows have the following properties.

name The name of the shadow. The name must be unique within the
release.

type A type that has been defined for the family.

release
The release for the shadow.

mode The mode of the shadow. The mode can have two possible values:
v manual - Shadows are updated only when explicitly requested by

authorized users with the shadow -synchronize command.
v synchronous - Shadows are updated as the contents of workareas,

drivers, and releases are changed.

state A shadow has two possible states:
v disabled - The shadow is not able to perform shadowing actions. A

shadow can be disabled if, for example, the file system has run out
of space. After the problem with the shadow has been corrected, the
shadow can be enabled.

v enabled - The shadow is able to perform shadowing actions.

location

The location of the shadow. This is text that defines where each part
should be placed in the shadow. The location text supports the
following substitution variables.

Note: On UNIX platforms, to bypass the UNIX shell, use the escape
character \ with the $ macros.

v $N - the name of the workarea, driver, or release that is being
shadowed.

144 Administrator’s Guide

v $P - the path name of the part being shadowed.
v $B - the base name of the part being shadowed.
v $F - the family name.
v $R - the release name of the part being shadowed.
v $C - the component name of the part being shadowed.
v $S - the name of the shadow.
v $V - the version SID of the part being shadowed.
v $$ - used to define the literal ″$″.

This property can contain any text. This information is passed to the
shadowing program after the values for any variables are substituted.
The contents of this property are defined, validated, and implemented
by the shadowing program.

For example, the location could be specified as some directory that the
TeamConnection family server can access, such as:
/home/tcparts/$R/$N/$P

or it could be a combination of machine name, port, and directory:
hostname.ibm.com 1300 /home/tcparts/$R/$N/$P

The location property should be defined so that parts from workarea,
driver, and release versions do not resolve to the same location. For
example, if the location was specified as /tcparts/$R/$P, the same
part in two different workareas would resolve to the same location.
You should always include the name of the object ($N) and the path
($P) in the location to avoid this situation.

drivers
Indicates whether the specified shadow contains drivers. Valid values
are yes and no.

workareas
Indicates whether the specified shadow contains workareas. Valid
values are yes and no.

release
Indicates whether the specified shadow contains release versions.
Valid values are yes and no.

crlf Indicates whether a crlf (carriage return / line feed) conversion
should be performed. Valid values are yes and no. When this value is
yes, both a ″cr″ and a ″lf″ character are used to indicate the end of a
line in a file. Generally, a crlf value of yes means that the shadow is
primarily used by Intel-based clients, and a value of no indicates
AIX/UNIX users. This property only applies to text parts.

Chapter 13. TeamConnection shadows 145

keys Indicates whether TeamConnection keywords embedded in parts will
be expanded. Valid values are yes and no. This property only applies
to text parts.

timestamp
Indicates which timestamp should be used on files extracted from
TeamConnection. This property can have the following values:
v preserve - The timestamp of the part will be set to the timestamp

maintained by TeamConnection as set when the part was checked
in. This is the same timestamp that you would see if you extracted
the part.

v current - The timestamp of the part will be the current time. That
is, the time when the part is shadowed.

priority
A positive integer number that indicates the shadow’s priority within
the release. Shadows are processed from the highest priority shadow
to the lowest. This property applies only to synchronous shadows. For
manual shadows, this is set to zero (0).

parameters
Additional parameters to pass to the shadowing program. These are
parameters that the shadowing program defines and knows how to
implement. The format is any text. This property supports the same
substitution variables that are supported by the location property. For
example:
-component $C -version $V -language English

Shadow actions

The following actions can be performed with the TeamConnection shadow
command.
v define - Define a shadow type.
v redefine - Update the properties of an existing shadow type.
v undefine - Delete a shadow type.
v create - Create a shadow of a specific type for a release.
v modify - Modify the properties of a shadow.
v disable - Disable a shadow. This will temporarily turn a shadow off.
v enable - Enable a previously disabled shadow.
v delete - Delete a shadow. This action only affects the shadowing

information in the TeamConnection database. It does not delete the files in
the shadow.

v view - View the shadow properties.

146 Administrator’s Guide

v synchronize - Synchronize a shadow to the state of the TeamConnection
database. A shadow is out of sync with TeamConnection when the contents
of the parts in the shadow are not the same as the contents of the parts in
TeamConnection. The shadow could be out of sync if a prior attempt at
shadowing failed. Synchronizing the shadow will attempt to update the
shadow to reflect the current state of the TeamConnection objects (release,
drivers, workareas). The synchronize action has a report option that will
only report the parts that are out of sync.

v verify - Verifying a shadow will synchronize a shadow. Additionally,
TeamConnection will verify that the timestamps of the parts in the shadow
match the timestamps that TeamConnection stored when the parts were
placed in the shadow. This action is typically required when your shadow
has been damaged from unexpected problems. For example, in the case of a
disk crash, the shadow could be restored from backup. Then the verify
action could be used to update any parts that have changed since the
backup.

See the Command Reference for more details on each of these actions.

When does shadowing happen

For manual mode shadows, shadowing occurs only when the shadows are
explicitly synchronized with the shadow -synchronize command. This action
will update the shadows to reflect the current state of the TeamConnection
release, driver, or workarea that you are synchronizing.

For synchronous mode shadows, shadowing occurs as the contents of
releases, drivers, and workareas change. The following actions will trigger
shadowing for each of the objects.
v Releases

Driver -commit
Workarea -integrate (if the driver subprocess is not included in the
release process.)

v Drivers
DriverMember -create/-delete

v WorkAreas
Workarea -refresh/-undo/-cancel
Part -checkin/-create/-rename/-undo/-build/-delete/-link/-modify/-
recreate/-refresh/-rename

The Driver -commit and WorkArea -integrate commands will trigger
shadowing for all of the parts on the specified driver or workarea. The
DriverMember commands will trigger shadowing for all of the parts on the

Chapter 13. TeamConnection shadows 147

specified driver that are not current. The workarea -refresh, -undo, and -cancel
commands will trigger shadowing for all of the parts on the specified
workarea that are not current. A part command will only trigger shadowing
for the specified parts in the specified workareas.

Writing shadowing programs

When TeamConnection determines that a shadow needs to be updated, it will
call a shadowing program to perform the actual updates to the file system.
The shadowing program is called once for each file in the shadow that needs
to be updated. For example, on a Part -create action, the shadowing program
will be called once for the part. For a DriverMember -create action, the
shadowing program will be called once for each part in the workarea that was
added to the driver.

Shadowing program interface
The shadowing program must implement the following interface to copy,
delete, and verify parts in the shadow:
-chmod -family Name -release Name -shadow Name -path Name -location Text

-fmode Name -parameters Text

-copy -family Name -release Name -shadow Name -path Name
-location Text -type [text | binary] -fmode Name
-sourcefile Name -parameters Text

-delete -family Name -release Name -shadow Name -path Name
-location Text -parameters Text

-verify -family Name -release Name -shadow Name -path Name
-location Text -timestamp Timestamp -parameters Text

Attributes:

Attribute Description
-family Name The family for which this program is being called.
-release Name The release for which this program is being called.
-shadow Name The name of the shadow.
-path Name The full pathname of the part being shadowed.
-location Text The location as defined for the shadow with all variables

replaced by their actual value.
-type [text | binary] The type of the file.
-fmode Name The filemode of the file.
-timestamp TimeStamp The timestamp of the file in the form YYYY/MM/DD

HH:MM:SS
-sourcefile Name The full pathname of a file that contains the contents of the

part. This is a temporary copy of the part that
TeamConnection extracts. After the shadowing has finished,
this file will be removed.

148 Administrator’s Guide

Attribute Description
-parameters Text The parameters defined for the shadow with all variables

replaced by their actual value. This is always passed as the
last parameter to the program.

Your shadowing program must also implement a validate function. Every
time a shadow is created or modified, this function is called with the
properties of the shadow. When a shadow is created, the shadow properties
are determined by overriding the default property values with those explicitly
specified on the command. When a shadow definition is modified, the
shadow properties are determined by overriding the current property values
with those specified on the command. The syntax for the validate action is:
-validate -shadow Name -type Name -release Name -location Text

-contents [drivers] [workareas] [release]
-mode { synchronous | manual } -crlf { yes | no }
-keys { yes | no } -timestamp { preserve | current }
-priority Number -parameters Parameters

The shadowing program should validate the values specified. In particular,
the -location and -parameters value should be checked to see if they have
been specified properly (since these parameters are implemented by the
shadowing program, TeamConnection does not perform any validation on
them). If the parameters are valid, this function should return a zero, and
TeamConnection will store the updates. If the parameters are not valid,
display an error message and return a nonzero return code. The updates will
not be stored.

Shadowing program requirements
This section defines the minimal requirements that each of the shadowing
actions should implement. Your shadowing program may perform more than
what is required here. It all depends on the needs and characteristics of your
installation. Since shadowing programs will be run frequently on the
TeamConnection family server, you should keep performance in mind when
writing shadowing programs. Try to keep the time required to perform
shadowing as short as possible. Use compiled programs rather than
interpretive languages (command files, shells, or scripts).

The -chmod function of the program should modify the file mode of location
to the fmode value. Note that when you create your shadowing program, you
should only change the mode when you are shadowing to file systems that
support file modes (AIX, HP-UX, and Solaris). If the function is successful,
return zero, otherwise return a nonzero return code.

The -copy function of the program should copy the contents of the sourcefile to
the location. The timestamp of the part in the shadow must be the same as the

Chapter 13. TeamConnection shadows 149

timestamp on the sourcefile. This enables the shadow to be verified at a later
time. If the function is successful, return zero, otherwise return a nonzero
return code.

The -delete function should delete the part from the location. If the function is
successful, return zero, otherwise return a nonzero return code.

The -verify function should validate that the timestamp of the file in the
location is the same as the timestamp parameter. If the timestamp is the same,
a return code of zero should be returned. If the timestamp is not the same
and you want the timestamp to be refreshed, return a one. For other errors,
return any other nonzero return code.

Note: For the -chmod, -copy, and -delete functions, a shadowing failure does
not cause the TeamConnection command to fail. For example, if on a
part -checkin, the shadowing fails, the part is still checked in to
TeamConnection and unlocked from your user ID. This results in the
shadow being out of sync with TeamConnection. The shadow can be
synchronized after the problem with the shadow has been corrected.

Shadowing program output
Any error messages that are displayed from within the shadowing program
are returned to the user as part of the command output. TeamConnection will
display a warning message stating that the command was successful, but
shadowing errors occurred.

Sample shadowing program
A sample shadowing program named TCshadow.c is shipped with
TeamConnection. It implements a simple shadow on a file system that the
TeamConnection server can access directly. Included in the sample are
routines for parsing and validating the parameters passed to the shadow
program. You can compile this and use it as is, or use it as the basis for
creating your own shadow programs.

150 Administrator’s Guide

Part 4. Maintaining your TeamConnection server

This section contains information on maintaining your TeamConnection
database, tuning database performance, and monitoring family use.

© Copyright IBM Corp. 1992, 1999 151

152 Administrator’s Guide

Chapter 14. Maintaining your TeamConnection family

This chapter tells you how to use several TeamConnection tools for the
following:
v Displaying the current version of TeamConnection code
v Changing the age of defects and features
v Taking care of returned mail
v Resolving TeamConnection errors

As the family or database administrator for a TeamConnection family, you
will also need to perform maintenance and tuning operations on the DB2
database that stores your TeamConnection family. For information on
administering a DB2 database, refer to the following DB2 Universal Database
administration manuals:
v Administration Getting Started (S10J-8154–00)

An introductory guide to basic administration tasks and the DB2
administration tools.

v SQL Getting Started (S10J-8156–00)
Discusses basic concepts of DB2 SQL.

v Administration Guide (S10J-8157–00)
A complete guide to administration tasks and the DB2 administration tools.

v SQL Reference (S10J-8165–00)
A reference to DB2 SQL for programmers and database administrators.

v Troubleshooting Guide (S10J-8169–00)
A guide to identifying and solving problems with DB2 servers and clients
and to using the DB2 diagnostic tools.

v Messages Reference (S10J-8168–00)
Provides detailed information about DB2 messages.

v Command Reference (S10J-8166–00)
Provides information about DB2 system commands and the command line
processor.

v Replication Guide (S10J-0999–00)
Describes how to plan, configure, administer, and operate IBM replication
tools available with DB2.

v System Monitor Guide and Reference (S10J-8164–00)
Describes how to monitor DB2 database activity and analyze system
performance.

© Copyright IBM Corp. 1992, 1999 153

v Glossary

A comprehensive glossary of DB2 terms.

More information on administering a TeamConnection DB2 family database
may be available in technical reports on the IBM VisualAge TeamConnection
Enterprise Server Library home page. To access this home page, select Library
from the IBM VisualAge TeamConnection home page at Web address
http://www.software.ibm.com/ad/teamcon.

Displaying the current version of TeamConnection code

TeamConnection provides a tool called tclevel that displays the current
version of TeamConnection installed on your computer. If you have problems
using TeamConnection, the TeamConnection service or support personnel may
ask you to use this tool to determine the level of code you are running. To use
this tool, do the following:

From a command prompt, issue the following command:

tclevel

TeamConnection displays information like the following:

(C) Copyright IBM Corp.,1996,1999
Platform: AIX tcaix02 2 4 000044289000
Release: v302
Driver: N1999-06-30
HotFix: 3

This information includes a copyright statement, the platform on which you are
running TeamConnection, and the current TeamConnection release number, driver
date, and hotfix applied.

Changing the age of defects and features

TeamConnection provides two aging utilities: age and resetAge. Use these
utilities to update the age value of defects and features while work is in
progress. If you do not use these utilities, the age value for each defect and
feature remains at zero.

Before you use the age utilities, make sure you have set the TC_DBPATH and
TC_FAMILY environment variables in your config.sys file as follows:

154 Administrator’s Guide

v Set TC_DBPATH to the directory where the family database is. Make sure that you
do not include a semicolon (;) or backslash (\) at the end of this path.

v Set TC_FAMILY to the family name.

The following is an example for a family database named testfam:

SET TC_DBPATH=c:\teamc\testfam
SET TC_FAMILY=testfam

With these environment variables, the age utilities will change the defect and feature
ages of the TeamConnection family database testfam in the directory
c:\teamc\testfam.

The age utility
Use the age utility to increment the age value by 1 for each defect or feature
that is in a specified state.

The age utility is shipped in one of the following files:

UNIX platforms
age

OS/2 age.cmd

Windows
age.bat

The file is located in bin subdirectory of the directory where the
TeamConnection server is installed. Initially, the file is set up to update the
age of defects that are in one of the following states:
v open
v working
v design
v size
v review

You can edit the file to delete one or more of these states or to add any of the
following states:
v canceled
v returned
v closed
v verify

Run the age utility from a server machine using the following command:

age

Chapter 14. Maintaining your TeamConnection family 155

The resetAge utility
Use the resetAge utility to reset the age of defects and features based on their
state (open, working, design, size, and review), the date they were opened,
and the selected aging increment.

Run the resetAge utility from a server machine using the following command.

resetage ageIncr

Where ageIncr is one of the following:

fullweek
Ages the defects and features according to a 7-day schedule.

workweek
Ages the defects and features according to a 5-day work week schedule.

Resolving TeamConnection errors

The TeamConnection error log and audit log can help you resolve
TeamConnection error messages. This section explains how to use these two
logs and briefly explains the trace facility.

Using the system error log (syslog.log)

Severe errors that are encountered by the family server are recorded in the
syslog.log file. Use this file to help you better understand and resolve the
error. This log usually provides more information than what is found in the
initial message. There is only one syslog.log file, so if you have multiple
families, error information for each family is recorded in the same file.

Because the syslog facility is not a native application for OS/2 and Windows
NT, TeamConnection provides an application specific syslog. The syslog file
resides in the same location where the TeamConnection Family Server
(teamcd.exe) resides, and it is called syslog.log.

Refer to the Installation Guide for instructions on activating the syslog (on
UNIX platforms).

Using the audit log (audit.log)

For each family, TeamConnection provides an audit log that contains an entry
for every action performed since the family was created. The audit.log file is
located in the directory where your family database is installed (your
TC_DBPATH).

The audit log file contains information about both successful and unsuccessful
transactions, making it useful for determining the source of a problem. It also

156 Administrator’s Guide

includes an entry whenever an unauthorized attempt is made to access the
TeamConnection server. This can help you audit your system’s security.

The following information is recorded in the audit log for each transaction:
v For authorized transactions:

– Process ID number of the family server
– TeamConnection action
– Whether the transaction was successful or not
– Date of the transaction
– Time the transaction started
– Time the transaction ended
– For failure transactions, status phase information showing the C++

method being executed by the TeamConnection action name
– User ID of the person who requested the action
– The name of the host system from which the user is accessing

TeamConnection
– Additional information for successful transactions, or error messages for

unsuccessful transactions. See page 158 for the additional information
about each TeamConnection action.

v For unauthorized transactions:
– Process ID number of the family server
– User ID of the person who requested the action
– The name of the host system from which the user is accessing

TeamConnection
– Notification that the request was unauthorized
– Date and time of the transaction request
– For failure transactions, status phase information showing the C++

method being executed by the TeamConnection action name
– Error message

The following is an example of information as it appears in the audit.log file.

Chapter 14. Maintaining your TeamConnection family 157

The following table lists the additional information that is provided for each
TeamConnection action.

TeamConnection
Action

Additional information

AccessCreate TeamConnection user ID, component name, authority group
name

AccessDelete TeamConnection user ID, component name

AccessRestrict TeamConnection user ID, component name, authority group
name

ApprovalAbstain Release name, defect or feature name, approver’s name

ApprovalAccept Release name, defect or feature name, approver’s name

ApprovalAssign Release name, defect or feature name, new approver’s name

ApprovalCreate Defect or feature name, release name, approver’s name

ApprovalDelete Defect or feature name, release name, approver’s name

ApprovalReject Release name, defect or feature name, approver’s name

ApproverCreate TeamConnection user ID, release name

ApproverDelete TeamConnection user ID, release name

CompCreate New component name

CompDelete Component name

CompLink Component name, new parent component name

CompModify Component name

31436,ReleaseCreate,SUCCESS,1998/03/17,11:32:50,11:33:00,tcserv,tcserv,
alexm.ral.ibm.com,robot_v2

31449,PartLink,SUCCESS,1998/03/17,11:33:41,11:33:42,tcserv,tcserv,
alexm.ral.ibm.com,FILEH1.bin,relH1,robot_v2,1.2

31249,PartCheckOut,SUCCESS,1998/03/17,11:35:08,11:35:08,tcserv,tcserv,
alexm.ral.ibm.com,FILEH1.bin,robot_v2,1.3

31259,PartCheckIn,SUCCESS,1998/03/17,11:35:18,11:35:18,tcserv,tcserv,5
alexm.ral.ibm.com,FILEH1.bin,relI1,1.4

24942,Transaction from joe/tcserv@tcserv.ral.ibm.com was UNAUTHORIZED,03/18/95,09:43:11,
0010-100 User joe was not found.

68256,PartExtract,FAILURE,1998/02/06,10:35:45,10:35:46,beville,beville,ausaix18.austin.ibm.com,
statusphase = getListByBaseName
6021-140 There is no committed version of part junk.c visible to release r2.

To view the part, specify a workarea that has a visible version of the part.
Recovery:
- Verify that the correct release name and part name were specified.
- Specify a valid workarea which has a visible version of the part.

Figure 16. Sample of an audit log file

158 Administrator’s Guide

TeamConnection
Action

Additional information

CompRecreate Component name

CompUnlink Component name, parent component name

CompView Component name

CoreqCreate Release name, first defect or feature name, second defect or
feature name

CoreqDelete Release name, defect or feature name

DefectAccept Defect name

DefectAssign Defect name

DefectCancel Defect name

DefectClose **This action is not audited**

DefectComment Defect name

DefectDesign Defect name

DefectModify Defect name

DefectOpen Defect name

DefectReopen Defect name

DefectReturn Defect name

DefectReview Defect name

DefectSize Defect name

DefectVerify Defect name

DefectView Defect name

DriverAssign Driver name, release name, new driver owner’s
TeamConnection user ID

DriverCheck Driver name, release name

DriverCommit Driver name, release name

DriverComplete Driver name, release name

DriverCreate Driver name, release name

DriverDelete Driver name, release name

DriverExtract Driver name, release name

DriverModify Driver name, release name

DriverView Driver name, release name

EnvCreate Tester’s TeamConnection user ID, release name, environment
name

EnvDelete Environment name, release name

Chapter 14. Maintaining your TeamConnection family 159

TeamConnection
Action

Additional information

EnvModify Tester’s TeamConnection user ID, release name, environment
name

FeatureAccept Feature name

FeatureAssign Feature name

FeatureCancel Feature name

FeatureClose **This action is not audited**

FeatureComment Feature name

FeatureDesign Feature name

FeatureModify Feature name

FeatureOpen Feature name

FeatureReopen Feature name

FeatureReturn Feature name

FeatureReview Feature name

FeatureSize Feature name

FeatureVerify Feature name

FeatureView Feature name

FixActive Defect or feature name, release name, component name

FixAssign Defect or feature name, release name, component name

FixComplete Defect or feature name, release name, component name

FixCreate Defect or feature name, release name, component name

FixDelete Defect or feature name, release name, component name

HostCreate TeamConnection user ID, host name, user login on host

HostDelete TeamConnection user ID, user login on host, host name

MemberCreate Driver name, defect or feature name, release name

MemberDelete Driver name, defect or feature name, release name

NotifyCreate TeamConnection user ID, component name, interest group

NotifyDelete TeamConnection user ID, component name

PartAdd Path name, release name, SID

PartCheckIn Path name, release name, SID

PartCheckOut Path name, release name, SID

PartDelete Path name, release name

PartExtract Path name, release name, SID

PartForceIn **Audited via PartCheckIn**

160 Administrator’s Guide

TeamConnection
Action

Additional information

PartForceOut **Audited via PartCheckOut**

PartLink Path name, release name, new release name, SID

PartLock Path name, release name, SID

PartLockForce **Audited via PartLock**

PartMark Path name, release name, SID

PartMerge Path name, release name, workarea name, source release name,
**Also audited via underlying PartCheckOut, PartCheckIn, and
PartExtract actions**

PartModify Path name, release name

PartOverrideR Path name, release name, cancel flag, workarea name, User ID

PartReconcile Path name, release name, workarea name, **Also audited via
underlying PartCheckOut, PartCheckIn, and PartExtract
actions**

PartRecreate Path name, release name

PartRecreaForce **Audited via PartRecreate**

PartRename Path name, new path name, release name

PartRenameForce **Audited via PartRename**

PartResolve Base name, release name

PartRestrict Path name, release name, cancel flag

PartUndo Path name, release name, undo type, SID

PartUndoForce **Audited via PartUndo**

PartUnlock Path name, release name

PartView Path name, release name

ReleaseCreate New release name

ReleaseDelete Release name, new release name

ReleaseExtract Release name, new release name

ReleaseLink Release name, new release name

ReleaseMerge Release name, workarea name, source release name, **Also
audited via underlying PartCheckOut, PartCheckIn, and
PartExtract actions**

ReleaseModify Release name, new release name

ReleaseRecreate Release name, new release name

ReleaseView Release name, new release name

Chapter 14. Maintaining your TeamConnection family 161

TeamConnection
Action

Additional information

Report **With -where flag: view name, criteria **With -help flag: help,
none **With -testClient flag: test, none **With -testServer flag:
test, none

ShadowCreate Shadow name, release name

ShadowDefine Type name

ShadowDelete Shadow name, release name

ShadowDisable Shadow name, release name

ShadowEnable Shadow name, release name

ShadowModify Shadow name, release name

ShadowRedefine Type name

ShadowSync Shadow name, release name, workarea or driver name

ShadowUndefine Type name

ShadowVerify Shadow name, release name, workarea or driver name

ShadowView Shadow name, release name

SizeAssign Defect or feature name, component name, release name

SizeAccept Defect or feature name, component name, release name

SizeCreate Defect or feature name, component name, release name

SizeDelete Defect or feature name, component name, release name

SizeReject Defect or feature name, component name, release name

TestAbstain Defect name, release name, environment name, tester’s
TeamConnectionuser ID

TestAccept Defect name, release name, environment name, tester’s
TeamConnectionuser ID

TestAssign Defect name, environment name, new tester’s TeamConnection
user ID

TestCreate Defect name, environment name, release name, tester’s
TeamConnectionuser ID

TestDelete Defect name, environment name, release name

TestReject Defect name, release name, environment name, tester’s
TeamConnectionuser ID

WorkareaAssign Defect or feature name, release name, new workarea owner’s
TeamConnectionuser ID

WorkareaCancel Defect or feature name, release name

WorkareaCheck Defect or feature name, release name, driver name

WorkareaCommit Defect or feature name, release name

162 Administrator’s Guide

TeamConnection
Action

Additional information

WorkareaComplet Defect or feature name, release name

WorkareaCreate Defect or feature name, release name

WorkareaExtract workarea name, release name

WorkareaFix Defect or feature name, release name

WorkareaIntegra Defect or feature name, release name

WorkareaModify Defect or feature name, release name, target

WorkareaReconcile Release name, workarea name, **Also audited via underlying
PartCheckOut, PartCheckIn, and PartExtract actions**

WorkareaTest Defect or feature name, release name

WorkareaView Defect or feature name, release name

UserCreate New user ID

UserDelete User ID

UserRecreate User ID

UserModify User ID

UserView **No additional information is audited**

VerifyAbstain Defect or feature name, TeamConnection user ID

VerifyAccept Defect or feature name, TeamConnection user ID

VerifyAssign Defect or feature name, TeamConnection user ID of the new
verification record owner

VerifyReject Defect or feature name, TeamConnection user ID

Cleaning up the audit log

The tccleanu utility is not available on Windows NT.

TeamConnection continually appends information to the end of the audit log. To keep
this file from growing too large, type the following from a command line in the
directory containing your TeamConnection audit log. If you need to maintain the
audit.log for more than one TeamConnection family, then type this command from the
directory where each audit log is located. Before issuing this command, stop the
family server (refer to page “Stopping the servers” on page 43).

tccleanu fileSize

Where fileSize is the size of the specified file in bytes. If you do not specify the size,
the default is 256000.

TeamConnection creates a backup file called audit1.log. It places this file in
the directory where the audit log is located and from which you issue the

Chapter 14. Maintaining your TeamConnection family 163

tccleanu command. You can rename this file to any name you want for
archive purposes. If you do not rename the file, TeamConnection keeps three
backup logs in addition to the current log: audit2.log, audit3.log, and
audit4.log. Each time you run the tccleanu program, TeamConnection moves
the contents of each log file as follows:
1. audit3.log information is moved to audit4.log.
2. audit2.log information is moved to audit3.log.
3. audit1.log information is moved to audit2.log.
4. audit.log information is moved to audit1.log.

After this command is issued, the audit.log file is empty and ready to log new
information.

Using the trace facility
TeamConnection provides environment variables for trace. Modify the trace
environment variables only when directed to do so by an IBM service
representative.

The names of the TeamConnection trace environment variables, the purpose
they serve, and the TeamConnection component that uses the environment
variable are listed in the following table:

Environment variable Purpose Used by

TC_TRACE Specifies the variable that lets the
user designate which parts
should be traced. Files names are
separated from each other using
commas or spaces and wild cards
(both * and ?) are supported.
Also supported is the ! operator
which indicates files not to be
traced. You should modify this
environment variable only when
directed to do so by an IBM
service representative. Otherwise
it is set to null. The following are
examples of the TC_TRACE
environment variable:

TC_TRACE=fhg*.C, !fhgtrace.C - trace everything meeting the specification fhg*.C but
TC_TRACE=* - trace everything
TC_TRACE=src\foo* - trace everything in the src\foo directory

Client and family and
build servers

164 Administrator’s Guide

Environment variable Purpose Used by

TC_TRACEATTEMPTS Specifies the maximum number
of failed trace attempts accepted
before giving up, for example,
TC_TRACEATTEMPTS=20. If the
trace gives up, a line is written to
another file, named tcover.err,
saying that an overflow occured.
The default setting is 10. You
should modify this only when
directed to do so by an IBM
service representative.

Client and family and
build servers

TC_TRACEDELAY Specifies the amount of time in
seconds that TeamConnection
waits, when a trace attempt fails,
before attempting another trace,
for example,
TC_TRACEDELAY=2. The
default is 1 second. You should
modify this only when directed
to do so by an IBM service
representative.

Client and family and
build servers

TC_TRACEFILE Specifies the the file you want
the trace result written to, for
example,
TC_TRACEFILE=mytrace.txt. The
default is tctrace. You can also
point to stdout and stderr, for
example,
TC_TRACEFILE=stdout.

Client and family and
build servers

TC_TRACEOPTS Instructs the trace facility to write
its output to another machine, for
example,
TC_TRACEOPTS=/hgtm9@8888.

Client and family and
build servers

TC_TRACEPEEK Inbstructs the trace facility to
print the source file name and
line number to stderr
immediately before attempting a
full trace. This environment
variable helps to track down
trace statements that cause the
program to trap (as in
TRACE(″this breaks %s″, 123);).
To turn on trace peek set
TC_TRACEPEEK=1.

Client and family and
build servers

Chapter 14. Maintaining your TeamConnection family 165

Environment variable Purpose Used by

TC_TRACEQUICK Instructs the trace facility to print
the source file name and line
number to the log. This speeds
up the trace and helps you find
out quicky what area of code is
causing a problem. To turn on
quick tracing set
TC_TRACEQUICK=1.

Client and family and
build servers

TC_TRACESAFE Set this variable to 1 (for
example, TC_TRACESAFE=1) for
the highest level of concurrency
control using semaphores. This
slows down the trace facility
considerably, so only use it when
absolutely necessary. The default
setting is <null>.

Client and family and
build servers

TC_TRACESIZE Specifies the maximum size of
the trace file in bytes. If this size
is reached, wrapping occurs. The
default is one million bytes. You
can set this to a different number,
for example,
TC_TRACESIZE=20000000.

Client and family and
build servers

166 Administrator’s Guide

Chapter 15. Maintaining your TeamConnection DB2
database

This chapter tells you how to use several TeamConnection and DB2 tools for
the following:
v Backing up the TeamConnection database
v Updating TeamConnection tables and views
v Reorganizing your database tables and views
v Rebinding your database

Note: It is not recommended that you make changes to your database by
issuing INSERT, UPDATE, or DELETE statements or by changing or
deleting database tables or the columns defined in TeamConnection
database tables. Changing your database in these ways, through the
DB2 administrator tools, the DB2 command line processor, the
TeamConnection migration tools, or the tcupdb tool can corrupt your
TeamConnection database. Any such changes are made at your own
risk. Please contact your IBM representative for information on the
terms of IBM customer support.

As the family or database administrator for a TeamConnection family, you
will need to perform maintenance and tuning operations on the DB2 database
that stores your TeamConnection family. For information on administering a
DB2 database, refer to the following DB2 Universal Database administration
manuals:
v Administration Getting Started (S10J-8154–00)

An introductory guide to basic administration tasks and the DB2
administration tools.

v SQL Getting Started (S10J-8156–00)
Discusses basic concepts of DB2 SQL.

v Administration Guide (S10J-8157–00)
A complete guide to administration tasks and the DB2 administration tools.

v SQL Reference (S10J-8165–00)
A reference to DB2 SQL for programmers and database administrators.

v Troubleshooting Guide (S10J-8169–00)
A guide to identifying and solving problems with DB2 servers and clients
and to using the DB2 diagnostic tools.

v Messages Reference (S10J-8168–00)

© Copyright IBM Corp. 1992, 1999 167

Provides detailed information about DB2 messages.
v Command Reference (S10J-8166–00)

Provides information about DB2 system commands and the command line
processor.

v Replication Guide (S10J-0999–00)
Describes how to plan, configure, administer, and operate IBM replication
tools available with DB2.

v System Monitor Guide and Reference (S10J-8164–00)
Describes how to monitor DB2 database activity and analyze system
performance.

v Glossary

A comprehensive glossary of DB2 terms.

More information on administering a TeamConnection DB2 family database
may be available in technical reports on the IBM VisualAge TeamConnection
Enterprise Server Library home page. To access this home page, select Library
from the IBM VisualAge TeamConnection home page at Web address
http://www.software.ibm.com/ad/teamcon.

Backing up the TeamConnection database

Your TeamConnection database needs to be backed up regularly using the
DB2 backup utilities available from the DB2 Control Center or the following
command from the command line processor:

db2 backup database family_name to backup_directory

Substitute your family name for family_name and a directory path for your backed up
database for backup_directory. The DB2 backup utility will place a compressed version
of the database in the backup directory path. Be sure to set file permissions for the
backup directory such that the compressed backup file is accessible. It is
recommended that you copy this backup file to an external backup media (i.e. tape) to
protect against file system failures. Refer to the IBM DB2 Universal Database
Administration Guide for details on this process.

TeamConnection provides a backup utility in the samples directory that you
can use to backup your database. This utility, called tcbackup and available on
all platforms, stops your TeamConnection family, creates a directory called
db2backup, and runs the DB2 backup command. To use this utility, type the
following at a command prompt. Replace familyName with the name of your
TeamConnection family.
tcbackup familyName

168 Administrator’s Guide

Updating your database tables and views

TeamConnection includes a utility that you can use to integrate database
schema changes (changes to the tables and views that define TeamConnection
objects such as users, parts, defects, and so on). It may be necessary to run
this utility when you install a TeamConnection fixpack. The utility, called
fhcirt, adds new tables, adds new columns to existing tables, and populates
the tables where necessary. “Creating a family database” on page 199 explains
the syntax of the fhcirt command. The following sections show examples of
using fhcirt to update tables and views on Intel and UNIX platforms.

For Intel
On Intel platforms, to update the testfam database on drive f:, set
TC_FAMILY=testfam, set TC_DBPATH=f:\testfam, and issue the following
command:

fhcirt f:\teamc\nls\cfg*.dd* f:\teamc\nls\cfg*.bnd

Note: If you have added indexes to the TeamConnection tables, you will also need to
include the full path name of your .ddx files. See “Preserving table indexes” on
page 200 for more information.
Note: The directory path \teamc\nls\cfg is the default installation path on Intel for
the TeamConnection DB2 files needed to create tables and views and bind the family
database. If you specify an installation path other than the default, make sure the path
you specify for the loadfiles parameter contains the TeamConnection DB2 files.

For UNIX
On UNIX platforms, to update the testfam database, set the TC_FAMILY
environment variable to your family name (using export TC_FAMILY=), set
the TC_DBPATH environment variable to your database path name (using
export TC_DBPATH=), and then issue the following command:

fhcirt $TC_HOME/nls/cfg/*.dd* $TC_HOME/nls/cfg/*.bnd

Where $TC_HOME is the directory name where TeamConnection is installed.
Note: If you have added indexes to the TeamConnection tables, you will also need to
include the full path name of your .ddx files. See “Preserving table indexes” on
page 200 for more information.

Reorganizing your database tables and views

TeamConnection ships with a database reorganizing script, called tcrstats in
the samples directory, that you should use after making significant changes to
a family. Significant changes include loading the family, adding many new
parts, or making numerous part changes. You should also run the
reorganizing script after running the fhcirt command described in “Updating
your database tables and views”.

Chapter 15. Maintaining your TeamConnection DB2 database 169

This process should produce the optimal statistics and performance.
Sometimes, rather than running the reorganizing script, it is sufficient just to
do a runstat and rebind the database. In any event, the reorganizing script
will reorganize any tables or indexes that were flagged by DB2 as needing
reorganization.

Rebinding the family database

After doing certain administrative tasks with the family database, such as
installing patches for TeamConnection or for DB2 and after performing the
DB2 REORG action, you wil need to rebind the DB2 plans to the family
database in order to resynchronize the consistency token and avoid a runtime
error SQLCODE -818. You can rebind the DB2 plans to the family database
using the tcrebind script found in the samples directory

170 Administrator’s Guide

Chapter 16. Enhancing SQL performance

The performance of SQL applications can be impaired after many updates,
deletes, or inserts have been made. Generally, newly inserted rows cannot be
placed in a physical sequence that is the same as the logical sequence defined
by the index. This means that the database manager must perform additional
physical reads to access the data, because logically sequential data may be on
different data pages.

In general, reorganizing a table takes more time than running statistics.
Performance may be improved sufficiently by obtaining the current statistics
for your data and rebinding your applications, so try this first. If this does not
improve performance, the data in the tables and indexes may not be arranged
efficiently, so reorganization may help.

For more details on using RUNSTATS and reorganizing table data, see the
DB2 Universal Database Administration Guide and Command Reference.

Updating catalog statistics using the RUNSTATS utility

The RUNSTATS utility updates statistics in the system catalog tables to help
with the query optimization process. Without these statistics, the database
manager could make a decision that would adversely affect the performance
of an SQL statement. The RUNSTATS utility allows you to collect statistics on
the data contained in the tables, indexes, or both tables and indexes.

Use the RUNSTATS utility to collect statistics based on both the table and the
index data to provide accurate information to the access plan selection process
in the following situations:
v When a table has been loaded with data, and the appropriate indexes have

been created.
v When a table has been reorganized with the REORG utility.
v When there have been extensive updates, deletions, and insertions that

affect a table and its indexes. (Extensive in this case may mean that 10 to 20
percent of the table and index data has been affected.)

v Before binding application programs whose performance is critical
v When comparison with previous statistics is desired. Running statistics on a

periodic basis permits the discovery of performance problems at an early
stage, as described below.

v When the prefetch quantity is changed.
v When you have used the REDISTRIBUTE NODEGROUP utility.

© Copyright IBM Corp. 1992, 1999 171

TeamConnection provides a sample script, called tcrstats in the samples
directory, that will update the catalog statistics for all TeamConnection tables
and their indexes. TeamConnection also provides a sample script, called
tcrebind in the samples directory, that will rebind all of the TeamConnection
packages.

Analyzing statistics

Analyzing the statistics can indicate when reorganization is necessary. Some of
these indications are:
v Clustering of indexes

Index scans that are not index-only accesses might perform better with
higher cluster ratios. A low cluster ratio leads to more I/O for this type of
scan, since after the first access of each data page, it is less likely that the
page is still in the buffer pool the next time it is accessed. Increasing the
buffer size can improve the performance of an unclustered index. (See for
information about how the database manager can improve index scan
performance for indexes with low cluster ratios and the optimizer uses
index statistics.)
If the table data was initially clustered with respect to a certain index, and
the above clustering information indicates that the data is now poorly
clustered for that same index, you may wish to reorganize the table to
re-cluster the data with respect to that index.

v Overflow of rows
The overflow number indicates the number of rows that do not fit on their
original pages. This can occur when VARCHAR columns are updated with
longer values. In such cases, a pointer is kept at the row’s original location.
This can hurt performance, because the database manager must follow the
pointer to find the row’s contents, which increases the processing time and
may also increase the number of I/Os.
As the number of overflow rows grows higher, the potential benefit of
reorganizing your table data also increases. Reorganizing the table data will
eliminate the overflowing of rows.

v Comparison of file pages
The number of pages with rows can be compared with the total number of
pages that a table contains. Empty pages will be read for a table scan.
Empty pages can occur when entire ranges of rows are deleted.
As the number of empty pages grows higher, so does the need for a table
reorganization. Reorganizing the table can compress the amount of space
used by a table, by reclaiming these empty pages. In addition to more
efficient use of disk space, reclaiming unused pages can also improve the
performance of table scan, since fewer pages will be read into the buffer
pool.

172 Administrator’s Guide

v Number of leaf pages
The number of leaf pages predicts how many index page I/Os are needed
for a complete scan of an index.
Random update activity can cause page splits to occur that increase the size
of the index beyond the minimum amount of space required. When indexes
are rebuilt during the reorganization of a table, it is possible to build each
index with the minimum amount of space possible.

Note: A default of ten percent free space is left on each index page when
the indexes are rebuilt. The environment variable DB2_INDEX_FREE can
be used to establish a value other than the default for the amount of
free space for each index page. The maximum amount of free space
for each index page is sixty percent.

RUNSTATS can also help you determine how performance is related to
changes in your database. The statistics show the data distribution within a
table. When used routinely, RUNSTATS provides data about tables and
indexes over a period of time, thereby allowing performance trends to be
identified for your data model as it evolves over time.

Ideally, you should rebind application programs after running statistics,
because the query optimizer may choose a different access plan given the new
statistics. See “Rebinding the family database” on page 170 for instructions on
rebinding the TeamConnection database.

If you do not have enough time available to collect all of the statistics at one
time, you may choose to periodically run RUNSTATS to update only a portion
of the statistics that could be gathered.

However, you should periodically use RUNSTATS to gather both table and
index statistics at once, to ensure that the index statistics are synchronized
with the table statistics. Index statistics retain most of the table and column
statistics collected from the last run of RUNSTATS. If the table has been
modified extensively since the last time its table statistics were gathered,
gathering only the index statistics for that table will leave the two sets of
statistics out of synchronization.

You may wish to collect statistics based only on index data in the following
situations:
v A new index has been created since the utility was performed and you do

not want to re-collect statistics on the table data.
v There have been a lot of changes to the data that affect the first column of

an index.

Chapter 16. Enhancing SQL performance 173

The RUNSTATS utility allows you to collect varying levels of statistics. For
tables, you can collect basic level statistics or you can also collect distribution
statistics for the column values within a table. For indexes, you can collect
basic level statistics or you can also collect detailed statistics which can help
the optimizer better estimate the I/O cost of an index scan.

Note: Statistics are not collected for LONG or large object (LOB) columns.

Reorganizing table data

The REORGCHK command returns information about the physical
characteristics of a table, and whether or not it would be beneficial to
reorganize that table. This command can be used through the command line
processor. See the Command Reference for more information, including how to
interpret the command output.

The REORG utility optionally rearranges data into a physical sequence
according to a specified index. REORG has an option to specify the order of
rows in a table with an index, thereby clustering the table data according to
the index and improving the CLUSTERRATIO or CLUSTERFACTOR statistics
collected by the RUNSTATS utility. As a result, SQL statements requiring rows
in the indexed order can be processed more efficiently. REORG also stores the
tables more compactly by removing unused, empty space.

You may wish to consider the following factors to determine when to
reorganize your table data:
v The volume of insert, update, and delete activity
v Any significant change to the performance of queries which use an index

with a high cluster ratio
v Running statistics (RUNSTATS) does not improve the performance of

queries
v The REORGCHK command indicates a need to reorganize your table
v The cost of reorganizing your table, including the CPU time, the elapsed

time, and the reduced concurrency resulting from the REORG utility
locking the table until the reorganization is complete.

To execute the REORG utility, you must have SYSADM, SYSMAINT,
SYSCTRL or DBADM authority, or CONTROL privilege on the table.

174 Administrator’s Guide

Applying these techniques to TeamConnection

TeamConnection is a diverse SQL application whose performance
characteristics can be very sensitive to the statistics available to DB2 at the
time the access plan for a given SQL statement is built. TeamConnection uses
both dynamic SQL (as in a report) and static SQL, which means that some
access plans are built dynamically when queries are encountered, while others
are statically bound at bind time.

When you encounter a TeamConnection performance problem, the first
approach should be to determine how recently RUNSTATS was performed
against your family, and whether TeamConnection was then re-bound to
refresh the access plans. If the performance problems persists after refreshing
the statistics and access plans, use REORGCHK to determine which tables
would benefit from reorganization, and then reorganize (using the REORG
utility) those tables.

TeamConnection is designed such that the primary key index is the preferred
index to organize a table. Primary key indexes are those with an index name
that begins with PK. Refer to the product softcopy documentation and
readme.txt file for any exceptions to this guideline.

When REORG, RUNSTATS, and REBIND do not improve performance
If a performance problem persists, DB2 provides numerous tuning parameters
that an administrator can update. Caution should be used in modifying any of
these parameters. It is recommended that you modify a single parameter (or a
small, related set of parameters) at time, and then run a representative
workload to determine the impact of the modification. Many of these changes
are not applied immediately, so it is advisable to stop and restart the DB2
instance after changing the DB2 configuration. It is also recommended to
rebind the eamConnection packages (SQL access plans) after any
configuration change. you can use the sample script tcrebind to rebind the
TeamConnection packages.

See the DB2 Universal Database Administration Guide, particularly the sections
that discuss getting and updating the database manager and database
configurations, for details about configuration and tuning opportunities.

Table spaces and buffer pools
The Data Definition Language (DDL) used to define the TeamConnection
database schema describes a number of table spaces for the tables that contain
your TeamConnection family’s data. If you assign those tables to separate I/O
devices and separate I/O cards, you can improve the degree of I/O
parallelism that DB2 provides TeamConnection.

Chapter 16. Enhancing SQL performance 175

By assigning these tablespaces to separate buffer pools and tuning the buffer
pools for your system configuration, you can also improve the overall
performance of your TeamConnection family.

Configuration and tuning

The optimal values for the DB2 configuration and tuning parameters will be
unique to each TeamConnection family and system.

When you create a new family, TeamConnection creates a DB2 database and
sets the following values for certain database configuration parameters. Use
caution when modifying the values to which TeamConnection sets these
parameters.

APPLHEAPSZ = 1280
This parameter defines the number of private memory pages available
to be used by the database manager on behalf of a specific agent or
subagent.

DBHEAP=2400
This parameter indicates the maximum amount of space that the
catalog cache can use from the database heap (dbheap). The catalog
cache is used to store table descriptor information that is used when a
table, view or alias is referenced during the compilation of an SQL
statement.

DLCHKTIME = 1000
This parameter defines the frequency at which the database manager
checks for deadlocks among all the applications connected to a
database.

LOGFILSIZ = 4000
This parameter determines the number of pages for each of the
configured logs. A page is 4KB in size.

LOGPRIMARY = 5
This parameter specifies the number of primary logs that will be
created.

LOGSECOND = 30
This parameter specifies the number of secondary log files that are
created and used for recovery log files (only as needed).

STMTHEAP=4096
This parameter sets the statement heap size. It is used to optimize
complex SQL statements. If the STMTHEAP parameter is not set large
enough, you may receive an SQL warning indicating that there is not
enough memory available to process the statement.

176 Administrator’s Guide

On Intel platforms, the following additional database parameters are
set when you create a family.

APP_CTL_HEAP_SZ=128
This parameter determines the maximum size, in 4 KB
pages, for the application control shared memory.
Application control heaps are allocated from this shared
memory.

CATALOGCACHE_SZ=32
This parameter sets the catalog cache size. The catalog
cache is used to store table descriptor information that is
used when a table, view or alias is referenced during the
compilation of an SQL statement.

DBHEAP=600
This parameter indicates the maximum amount of space
that the catalog cache can use from the database heap
(dbheap).

LOCKLIST=50
This parameter indicates the amount of storage that is
allocated to the lock list. There is one lock list per database
and it contains the locks held by all applications
concurrently connected to the database.

MAXAPPLS=40
This parameter specifies the maximum number of
concurrent applications that can be connected (both local
and remote) to a database.

TeamConnection leaves all other DB2 database configuration parameters at
their DB2 default values.

Techniques for optimizing queries

Another way to increase performance of the family database is to ensure that
queries issued by users are as efficient as possible. The following sections
suggest two ways to accomplish this:
v By carefully considering how queries are constructed
v By introducing indexes for common predicates specifies often on queries
v

Constructing efficient queries
TeamConnection users can optimize performance of the family database by
carefully considering how they construct queries. The following examples
show techniques for constructing queries that can increase performance:

Chapter 16. Enhancing SQL performance 177

Limiting the result set

One of the best ways to increase efficiency is to limit the result set to only the
objects you are interested in. PartView, for example, has attributes that you
can combine to find only the file names you want. The following example
shows a PartView query that limits the result set to file names that begin with
″tx″ and end with the extensions ″cpp″ or ″hpp″:
teamc report -view partView -where "baseName like 'tx%' and

extension in ('cpp','hpp')" -raw -release v303
-workarea 12345

It also improves performance to use the table and view attributes that best
suit your intent. The following query, for example, uses the baseName
attribute to return all parts with the extension ″exe″:
teamc report -view partView -raw -where "baseName like '%.exe'"

-release v303"

You can improve the performance of this query by using the extension
attribute of PartView:
teamc report -view partView -raw -where "extension='exe'" -release v303

The best optimizations can be done by users expressing focused queries.
There is a direct correspondence in response time with the size of the result
set. So providing a predicate that limits the result set to just those objects
which are of interest is beneficial. For example, if the query for the cpp and
hpp files were really just interested in files in a particular directory then it
could be expressed as:
teamc report -view partView -where "nuPathName like 'src/server/tx%' and

extension in ('cpp','hpp')" -raw -release v303 -workarea 12345

Reducing columns selected from views

Another optimization technique is to reduce the attributes (columns) selected
from a particular view. For example, if a user querying a PartFullView were
interested only in the pathName, releaseName, currentVersion,
committedVersion, revisionName, versionID, changeType, addDate, dropDate,
and lastUpdate of parts, then he or she can issue the following command:
teamc report -general partFullView -select "pathName, releaseName,

currentVersion, committedVersion, revisionName, versionID,
changeType, addDate, dropDate, lastUpdate" -where "extension='exe'
and releaseName='v303' and workareaID is null"

This command allows DB2 to recognize that some of the joins (the table
containing configurable fields, for example) do not need to be performed to
compute the result set.

178 Administrator’s Guide

Introducing indexes

Another technique for improving the performance of queries is to introduce
indexes for commonly and frequently used predicates. If administrators notice
common predicates being specified on queries which do not appear to be
performing well, then an index can be introduced to aid in the evaluation of
those queries. For example, if you see a lot of predicates which specify the
target attribute, as follows:
teamc report -view defectView -raw -where "state='open' and (target='v303' or

target is NULL) and addDate>'1999/07/01' order by severity, ownerLogin"

and which produces an audit.log entry like the following:
0197472,Report,SUCCESS,1999/07/15,19:27:02,19:27:04,aUser,aUser,aHost.raleigh.ibm.com,
defectView,state='open' and (target='v303' or target is NULL) and addDate>'1999/07/01'
order by severity, ownerLogin,performance,,

You might choose to create one of the following indexes. In this example
target is a configurable field which is an alias for the 5th configurable column
in fhcConfFieldDefect.
db2 "create index dfctCfgTrgt on fhcConfFieldDefect(c5, oid)"
db2 "runstats on table .fhcConfFieldDefect for index .dfctCfgTrgt"

db2 "create index dfctCfg on fhcDefect(addDate, state, osrelConfFieldDid)"
db2 "runstats on table .fhcDefect for index .dfctCfg"

Note: If you choose to create your own indexes into TeamConnection tables
and views, be sure to store them in a .ddx file. The TeamConnection
fhcirt command, which you use to update your TeamConnection tables
and views, can drop indexes. If you have stored your indexes in .ddx
files, then you can reload them when you issue the fhcirt command.
See “Preserving table indexes” on page 200 for more information.

Chapter 16. Enhancing SQL performance 179

180 Administrator’s Guide

Chapter 17. Monitoring family use

TeamConnection provides monitoring tools that enable you to keep track of
how family servers are being used:
v A daemon monitor accessible from the family administrator GUI or a line

command (monitor) for monitoring the activity of the TeamConnection
server daemons in real time.

v A license monitor command (tclicmon) for gathering information from the
audit log concerning the number of users who have contacted a
TeamConnection family in a given time interval.

Using the server daemon monitor

The TeamConnection server daemon monitor permits you to monitor the
activity of the TeamConnection server daemons. It makes use of the server’s
shared memory space. Each TeamConnection daemon, as well as the monitor
itself, attaches to the same shared memory segment. Each time a
TeamConnection server daemon services a request, the shared memory
segment for that particular server daemon is updated with information
regarding the user who has requested the work and the nature of the request.

You can use the server daemon monitor in a number of ways:
v To determine the activity of the server
v To determine which users issue time-consuming requests
v To determine the total number of requests serviced by the TeamConnection

server and the number serviced by each server daemon since it was started
v To determine if there is a problem with one or more of the server daemons

Using the monitor on the Family Servers window

The Family Servers window provides a family monitor area that you can use
to monitor the TeamConnection family daemons. To open this window, follow
these steps. To start the server daemon monitor, you must start the family you
want to monitor on the TeamConnection server machine.

© Copyright IBM Corp. 1992, 1999 181

1. Double-click the family icon for the family you want to start. The Family Servers
window appears.

The monitor section of this window has the following fields:

Hits This text area displays the total number of requests processed by all
family daemons.

Refresh Interval
This text box displays the interval in seconds at which the information
in the Family Monitor window is updated. Use the up and down
buttons to increase or decrease the refresh interval.

For best results, decrease the refresh interval down to 1 second. If you
do not intend to use the monitor information, increase the refresh
interval to a large number.

Daemon information

This table displays the following status information for each family
daemon.

Hits The number of requests processed by the daemon.

Index The position of the daemon. If you have five daemons
running, for example, each one is numbered 01 through 05.

182 Administrator’s Guide

PID The operating system process ID for the daemon.

Status Line
The current command being executed by the daemon.

Using the monitor command

To start the server daemon monitor, you must start the family you want to
monitor on the TeamConnection server machine. The server daemon monitor
program is located in the teamcInstallPath\bin directory.

To start the server daemon monitor, issue the following command:

monitor refreshInterval [width] [-raw]

Where:

v refreshInterval indicates the time in seconds between successive screen updates. If
you start the monitor with a refresh interval of 2, for example, then the activity
monitor screen is updated with new information every 2 seconds. A refresh interval
of 0 displays the monitor information once and then terminates.

Set the refresh interval to a number low enough to capture requests as they are
issued and processed. If you set the refresh interval too high, you may never see
any activity occurring because the server daemon would have received and
processed the request before the screen is updated. A refresh interval of 1 or 2
seconds is usually sufficient.

v width indicates the number of characters of status information to display for each
TeamConnection server daemon. The default is 132 characters. The maximum is also
132 characters.

v -raw causes the monitor to display information in a raw format. The -raw option
also causes the width parameter to be ignored. The raw format is separated by |
characters, as in the following example:

*|25|1|1|
01|01234|00025| | |
..

The asterisk in the first column marks the start of information for the family. The
next three columns represent the total hits that the family has received, the daemon
count, and the number of active daemons. The subsequent lines show information
for each daemon: the index, process ID, hits for each daemon, phase (60 characters),
and status line (256 characters). The final line of output for each family is a line of
periods. This output will be displayed every refresh interval.

After you issue this command, an activity monitor screen displays, showing
which server daemons are running and which are servicing requests. To exit
the server daemon monitor, press any key.

The following is an example of a TeamConnection server daemon monitor
screen showing 3 TeamConnection server daemons running. Two of these

Chapter 17. Monitoring family use 183

daemons are servicing requests. This example shows formatted output. See
the description of the -raw parameter, above, for an example of raw output.
3 of 3 teamcd daemons running. Shared mem size is 1088.
Press any key to quit.
Total hits = 441

01,16504,00143,

02,15454,00152,statusphase = getListByBaseName,1998/02/26,08:56:54,
Report,ksloop,ksloop,ksloop1.raleigh,DefectVi
ew,state not in ('returned','canceled','verify','cl

03,12364,00146,

v The first line shows that all three of the TeamConnection server daemons
are running and that the monitor and the server daemons are using 1088
bytes of shared memory.

v The second line indicates the total number of requests serviced by the
server daemons since it was last started.

v The remaining lines show one status line for each server daemon. The
status lines consist of comma-separated columns showing the following
information for each daemon. If a daemon is not currently servicing
requests, then only the first three columns of information are displayed. The
amount of information displayed is also controlled by the width option
specified with the monitor command. If you issue the monitor command
without the width option, 132 characters of information are shown.

Column number
Information displayed

1 Daemon index. The index number of the TeamConnection server
daemon in the shared memory segment. If a server daemon is
stopped normally while the server daemon monitor is running, then
-- appears in this column instead of a process ID. If a server
daemon is stopped abruptly or abnormally while the server
daemon monitor is running, then >> appears in this column. In
either case, the information about hte request that was being
processed when the daemon was stopped remains on the screen.
After a daemon is started again, its process ID appears in this
column.

2 Daemon process ID. The process ID of the TeamConnection server
daemon.

3 The number of requests serviced by the daemon since it was
started.

4 Status phase information, indicating the C++ method being
executed.

184 Administrator’s Guide

5 The date the last request to the server daemon was issued. The
format is mm/dd/yy.

6 The time the last request to the server daemon was issued. The
format is hh:mm:ss.

7 The TeamConnection request that is being serviced.

8 The TeamConnection user ID that issued the request.

9 The login ID of the TeamConnection user who issued the request.

10 The hostname of the machine from which the request was issued.

11 Additional information about the request being serviced. This can
include, for example, details about a TeamConnection query.

Monitoring the activity of the server daemons
You can use the TeamConnection server daemon monitor to determine if you
have enough server daemons running for a family:
v If you find that all daemons are constantly in use, then you may need to

increase the number of daemons you start when you start the family server.
Each TeamConnection family server daemon can process only one request
at a time. If all daemons are busy processing requests, new requests are
rejected. Users whose requests are rejected receive a message like the
following:
0010-250 A connection cannot be established with family or port testfam at

node testfam on port 9001.

An error occurred while processing the connect system function on the
TeamConnection server. The connection request has been rejected by
the TeamConnection server.

Recovery:

- Verify that the connection information displayed in the
message is correct and that the TeamConnection server
is running.

- If the error occurs frequently, the TeamConnection server
daemons may be overloaded by incoming requests.
Increase the number of TeamConnection server daemons
to alleviate this problem.

- If the problem persists, contact the system administrator or
the family administrator.

Usually a request can be processed very quickly, but some requests can take
several seconds to complete if the information being requested is lengthy or
the action is complex, as in a driver -commit request. If your server is

Chapter 17. Monitoring family use 185

having trouble processing requests, you may want to stop the server and
then restart it with more deamons, provided your license agreement
permits you to do so.

v If you find that one or more daemons are rarely used, then you may need
to decrease the number of daemons you start when you start the family
server.

Detecting time-consuming requests
If you notice that a specific request of a server daemon takes a long time to
complete, then you can cancel the request by recycling the daemon.

To recycle a server daemon, issue one of the following commands, replacing pid with
the process ID of the daemon.

kill pid

Refer to your Windows NT documentation.

kill -1 pid

kill -1 pid

kill -1 pid

See “Stopping the servers” on page 43 for more information on recycling
server daemons.

Monitoring server daemon problems
Column 3 of the server daemon monitor screen displays the number of
requests serviced by each server daemon. Requests should be nearly evenly
distributed among the daemons. If one or more daemons shows an unusually
low number of requests processed, then there may be a problem with that
daemon. There can be one or more reasons for a low processing rate for a
daemon:
v A request can take a long time to process. Actions such as driver -commit,

driver -check -long, driver -extract, release -extract, and report can
be time consuming.

v A request may be held pending the release of a lock on a database table.
Certain actions, such as driver -commit, need to lock some of the database
tables so that other users do not damage the data integrity before the
request completes. If a database table is locked and an update request for
that table is received, then the request will be held until the database table
is unlocked. An update request is any request that alters the contents of the

186 Administrator’s Guide

information in a database table. Requests that query the contents of a
locked database table can still be completed.

Using the license monitor

Use the TeamConnection license monitor to obtain a snapshot of the number
of users who have contacted a TeamConnection family in a given time
interval. The license monitor obtains family use information from the audit
log. By default, only the audit.log for the current family is processed, but you
can request information for another family on the same server.

Note: The license monitor needs to use an audit log file that is not currently
in use by a family server. If the audit log is in use, stop the family
server before running the license monitor.

The license monitor is a command that allows TeamConnection family
administrators to monitor compliance with the terms of your license
agreement by showing the number of concurrent uses of TeamConnection for
a given time period. It is assumed that the family administrators know how
many licenses the company obtained for TeamConnection.

The number of concurrent users is defined as the number of users who have
contacted a TeamConnection family in a given amount of time. The default is
15 minutes. If, for example, you have 30 licenses and a total pool of 100 users,
then up to 30 users can work with a TeamConnection family for any given
period of 15 minutes.

The license monitor command does not enforce the limit of the number of
licenses. Even if the number of actual users exceeds the number of licenses for
TeamConnection, no attempt is made to limit access to a TeamConnection
family. It is the responsibility of the family administrator to monitor the
license usage and if the number of concurrent users exceeds the number of
licenses for TeamConnection, then the family administrator should contact
IBM to obtain more licenses. The number of licenses and the highest actual
number of concurrent users should match.

The license monitor command is invoked from the directory of the family you
want to monitor. It uses the contents of the audit.log to determine how many
users (defined by each unique combination of user ID, login ID, and host
name) have contacted the TeamConnection family in a given date and time
interval, according to periods of a given duration (also called histograms). If,
for example, use is to be monitored for two hours from 08:00 to 10:00, then
the license monitor checks the audit log for users each 15 minutes (the
default): four times per hour or eight times in the two-hour interval.

Chapter 17. Monitoring family use 187

The following is an example of how family use might be reported for this
two-hour period:
From 08:00:01 to 08:15:00, actual users: 1
From 08:15:01 to 08:30:00, actual users: 5
From 08:30:01 to 08:45:00, actual users: 5
From 08:45:01 to 09:00:00, actual users: 10
From 09:00:01 to 08:15:00, actual users: 8
From 09:15:01 to 09:30:00, actual users: 5
From 09:30:01 to 09:45:00, actual users: 3
From 09:45:01 to 10:00:00, actual users: 4

The highest amount of users in a given period is ten.

How the license monitor counts users
A user is any unique combination of user ID, login ID, and host name. If, a
user accesses the family using two user IDs from a single host name, for
example, then that is counted as two separate users.

If more than one period in the interval being monitored has the same highest
number of users, then only the first occurrence of that number is reported. If,
for example, you monitor family use for three hours and the highest number
of uses reaches twenty for two separate fifteen-minute periods, only the first
occurrence is reported.

Because most TeamConnection transactions have a short duration, only the
starting time for the transaction is considered by the license monitor
command. When a long transaction starts in one time period and ends in
another time period, the license monitor counts that use only once. It ignores
the user’s transaction for the second time period. A transaction in the audit
log is processed only for those entries with a status of SUCCESS.

188 Administrator’s Guide

Using the tclicmon command

You can issue the license monitor command any time, but it is recommended that you
issue it at least once a day, especially before or after the daily backup of the family.

When you issue the command, you specify values for the dates and times that mark
the interval you want to monitor. Use the following format for dates and times in the
license monitor command:

yyyy/mm/dd,hh:mm:ss

The comma between the date and the time is required. The default value for the begin
date and time is today at 00:00:01, and the default value for the end date and time is
today at the current time.

The license monitor command has three action flags:

tclicmon -highest
Displays only a summary of the report of concurrent users. The main element
of the report is the time period that had the maximum use.

tclicmon -report
Displays a full report of use for all time periods between the -begin date and
the -end date for the duration specified in the -timePeriod attribute. You can
request the report in several different formats.

tclicmon -help
Displays a summary of the command, showing some examples and the
defaults. To see help for the syntax, enter the command without any
arguments.

Note: The order of the arguments for the tclicmon command needs to follow the
sequence described in the syntax. For example, if you want to use a long report
format with a begin date, then the order is:

-report -long -begin

If you change the order of the command arguments as follows:

-report -begin -long

the command will not be executed and a usage message will appear.

Reporting highest uses
To display the highest use for an interval, issue the following command from
the directory containing the family you want to monitor:

Chapter 17. Monitoring family use 189

tclicmon -highest
[-begin yyyy/mm/dd,hh:mm:ss]
[-end yyyy/mm/dd,hh:mm:ss]
[-timePeriod minutes]
[-input fileName]

Where:

v -begin yyyy/mm/dd,hh:mm:mm is the date and time of the beginning of the interval.
The default is today at 00:00:01.

v -end yyyy/mm/dd,hh:mm:ss is the date and time of the end of the interval. The
default is today at the current time.

v -timePeriod minutes is the duration of each time period, in minutes. The minimum
value is five minutes. The default is 15 minutes.

v -input fileName is the full path name of the file that contains the audit log. The
default is the file name ″$TC_DBPATH/audit.log″ (for AIX, HP-UX, and Solaris) or
″d:\%TC_DBPATH%\audit.log″ (for OS/2 or Windows NT), where TC_DBPATH: is
the top directory for the family.

To obtain the default report of only the highest use, type the following,
tclicmon -highest

If the current date and time when the command is issued is July 31, 1998,
08:15:59 and the current directory for the family is k:\testfam, then the result
shown in the standard output might be as follows:
*** TeamConnection License Monitor ***

Begin date:
1998/07/31,00:00:01

End date:
1998/07/31,08:15:59

Length of each time period, in minutes:
15

Audit file:
K:\testfam\audit.log

The period that has the highest number of concurrent users is:
beginDate endDate concurrentUsers
------------------- ------------------- ---------------
1998/07/31,07:00:00 1998/07/31,07:15:00 3

Displaying a full use report
To display a full use report for an interval, issue the following command from
the directory containing the family you want to monitor:

190 Administrator’s Guide

tclicmon -report [-outputFormat]
[-begin yyyy/mm/dd,hh:mm:ss]
[-end yyyy/mm/dd,hh:mm:ss]
[-timePeriod minutes]
[-input fileName]

Where:

v -outputFormat is one of the following:

-csv Produces an output in comma-separated-values (CSV) format. This format
can be used to prepare charts with software that can import data in CSV
format.
– Each row corresponds to one time period.
– The fields are separated by a comma, and the dates are enclosed

between quotes, for example:

"1998/10/01,00:00:01","1998/10/01,14:30:15",10

-long This is the default format for the -report action. Produces an output with a
header and a footer, and the time periods are shown in the following table
format.
– Each field is displayed as a column heading.
– Field values appear under respective column heading.
– Each row corresponds to one time period.

-raw Produces an output in raw format:
– Each row corresponds to one time period.
– The fields are separated by a vertical bar, for example:

1998/10/01,00:00:01|1998/10/01,14:30:15|10

-stanza Produces an output that is equivalent to the long format.

-table Produces an output without a header or a footer, and the time periods are
shown in the following table format:
– Each field is displayed as a column heading.
– Field values appear under respective column heading.
– Each row corresponds to one time period.

v -begin yyyy/mm/dd,hh:mm:mm is the date and time of the beginning of the interval.
The default is today at 00:00:01.

v -end yyyy/mm/dd,hh:mm:ss is the date and time of the end of the interval. The
default is today at the current time.

v -timePeriod minutes is the duration of each time period, in minutes. The minimum
value is five minutes. The default is 15 minutes.

v -input fileName is the full path name of the file that contains the audit log. The
default is the file name ″$TC_DBPATH/audit.log″ (for AIX, HP-UX, and Solaris) or
″d:\%TC_DBPATH%\audit.log″ (for OS/2 or Windows NT), where TC_DBPATH: is
the top directory for the family.

Examples:

v To obtain a default detailed report (-long) on family use, type the following
command:

Chapter 17. Monitoring family use 191

tclicmon -report -begin 1998/07/31,04:00:01

If the current date and time is July 31, 1998, 08:15:59, the starting time is
04:00 and the current directory for the family is k:\testfam, the result
shown in the standard output might be as follows:
*** TeamConnection License Monitor ***

Begin date:
1998/07/31,04:00:01

End date:
1998/07/31,08:15:59

Length of each time period, in minutes:
15

Audit file:
K:\testfam\audit.log

beginDate endDate concurrentUsers
------------------- ------------------- ---------------
1998/07/31,04:00:01 1998/07/31,04:15:00 2
1998/07/31,04:15:00 1998/07/31,04:30:00 1
1998/07/31,04:30:00 1998/07/31,04:45:00 0
1998/07/31,04:45:00 1998/07/31,05:00:00 0
1998/07/31,05:00:00 1998/07/31,05:15:00 0
1998/07/31,05:15:00 1998/07/31,05:30:00 0
1998/07/31,05:30:00 1998/07/31,05:45:00 0
1998/07/31,05:45:00 1998/07/31,06:00:00 0
1998/07/31,06:00:00 1998/07/31,06:15:00 2
1998/07/31,06:15:00 1998/07/31,06:30:00 1
1998/07/31,06:30:00 1998/07/31,06:45:00 0
1998/07/31,06:45:00 1998/07/31,07:00:00 0
1998/07/31,07:00:00 1998/07/31,07:15:00 3
1998/07/31,07:15:00 1998/07/31,07:30:00 0
1998/07/31,07:30:00 1998/07/31,07:45:00 0
1998/07/31,07:45:00 1998/07/31,08:00:00 1
1998/07/31,08:00:00 1998/07/31,08:15:00 0

The period that has the highest number of concurrent users is:
beginDate endDate concurrentUsers
------------------- ------------------- ---------------
1998/07/31,07:00:00 1998/07/31,07:15:00 3

v To obtain a detailed report on family use in table format (without the
header and footer), type the following command:
tclicmon -report -table -begin 1998/07/31,04:00:01

If the current date and time is July 31, 1998, 08:15:59, the starting time is
04:00, and the current directory for the family is k:\testfam, the result
shown in the standard output might be as follows:
beginDate endDate concurrentUsers
------------------- ------------------- ---------------
1998/07/31,04:00:01 1998/07/31,04:15:00 2
1998/07/31,04:15:00 1998/07/31,04:30:00 1

192 Administrator’s Guide

1998/07/31,04:30:00 1998/07/31,04:45:00 0
1998/07/31,04:45:00 1998/07/31,05:00:00 0
1998/07/31,05:00:00 1998/07/31,05:15:00 0
1998/07/31,05:15:00 1998/07/31,05:30:00 0
1998/07/31,05:30:00 1998/07/31,05:45:00 0
1998/07/31,05:45:00 1998/07/31,06:00:00 0
1998/07/31,06:00:00 1998/07/31,06:15:00 2
1998/07/31,06:15:00 1998/07/31,06:30:00 1
1998/07/31,06:30:00 1998/07/31,06:45:00 0
1998/07/31,06:45:00 1998/07/31,07:00:00 0
1998/07/31,07:00:00 1998/07/31,07:15:00 3
1998/07/31,07:15:00 1998/07/31,07:30:00 0
1998/07/31,07:30:00 1998/07/31,07:45:00 0
1998/07/31,07:45:00 1998/07/31,08:00:00 1
1998/07/31,08:00:00 1998/07/31,08:15:00 0

v To obtain a detailed report on family use in raw format (without the header
and footer), type the following command:
tclicmon -report -raw -begin 1998/07/31,04:00:01

If the current date and time is July 31, 1998, 08:15:59, the starting time is
04:00, and the current directory for the family is k:\testfam, the result
shown in the standard output might be as follows:
1998/07/31,04:00:01|1998/07/31,04:15:00|2
1998/07/31,04:15:00|1998/07/31,04:30:00|1
1998/07/31,04:30:00|1998/07/31,04:45:00|0
1998/07/31,04:45:00|1998/07/31,05:00:00|0
1998/07/31,05:00:00|1998/07/31,05:15:00|0
1998/07/31,05:15:00|1998/07/31,05:30:00|0
1998/07/31,05:30:00|1998/07/31,05:45:00|0
1998/07/31,05:45:00|1998/07/31,06:00:00|0
1998/07/31,06:00:00|1998/07/31,06:15:00|2
1998/07/31,06:15:00|1998/07/31,06:30:00|1
1998/07/31,06:30:00|1998/07/31,06:45:00|0
1998/07/31,06:45:00|1998/07/31,07:00:00|0
1998/07/31,07:00:00|1998/07/31,07:15:00|3
1998/07/31,07:15:00|1998/07/31,07:30:00|0
1998/07/31,07:30:00|1998/07/31,07:45:00|0
1998/07/31,07:45:00|1998/07/31,08:00:00|1
1998/07/31,08:00:00|1998/07/31,08:15:00|0

v To obtain a detailed report on family use in comma-separated-values format
(without the header and footer), type the following command:
tclicmon -report -csv -begin 1998/07/31,04:00:01

If the current date and time is July 31, 1998, 08:15:59, the starting time is
04:00, and the current directory for the family is k:\testfam, the result
shown in the standard output might be as follows:
"1998/07/31,04:00:01","1998/07/31,04:15:00",2
"1998/07/31,04:15:00","1998/07/31,04:30:00",1
"1998/07/31,04:30:00","1998/07/31,04:45:00",0
"1998/07/31,04:45:00","1998/07/31,05:00:00",0
"1998/07/31,05:00:00","1998/07/31,05:15:00",0

Chapter 17. Monitoring family use 193

"1998/07/31,05:15:00","1998/07/31,05:30:00",0
"1998/07/31,05:30:00","1998/07/31,05:45:00",0
"1998/07/31,05:45:00","1998/07/31,06:00:00",0
"1998/07/31,06:00:00","1998/07/31,06:15:00",2
"1998/07/31,06:15:00","1998/07/31,06:30:00",1
"1998/07/31,06:30:00","1998/07/31,06:45:00",0
"1998/07/31,06:45:00","1998/07/31,07:00:00",0
"1998/07/31,07:00:00","1998/07/31,07:15:00",3
"1998/07/31,07:15:00","1998/07/31,07:30:00",0
"1998/07/31,07:30:00","1998/07/31,07:45:00",0
"1998/07/31,07:45:00","1998/07/31,08:00:00",1
"1998/07/31,08:00:00","1998/07/31,08:15:00",0

194 Administrator’s Guide

Chapter 18. Server tools

The following tools are provided on the TeamConnection server. Generally,
they are run from the family directory and expect that all environment
variables needed to run the family server are set. The PATH environment
variable should include the path containing the tools since some tools will use
another.

Note: It is not recommended that you make changes to your database by
issuing INSERT, UPDATE, or DELETE statements or by changing or
deleting database tables or the columns defined in TeamConnection
database tables. Changing your database in these ways, through the
DB2 administrator tools, the DB2 command line processor, the
TeamConnection migration tools, or the tcupdb tool can corrupt your
TeamConnection database. Any such changes are made at your own
risk. Please contact your IBM representative for information on the
terms of IBM customer support.

tcqry A standalone version of the teamc report command.

tcupdb
A standalone routine to update a non-TeamConnection table in the
TeamConnection database.

Using tcqry

The tcqry tool is a standalone routine that issues a TeamConnection database
query. It is essentially the teamc report -general command, but bypasses the
client/server interface. The following is the syntax for the tcqry command:

tcqry -g tabspec [-s selspec] [-w whereClause] [-c colspec]

Where:

v -g tabspec is the table specification.

v -s selspec specifies the columns to select. If omitted, ″select *″ is assumed.

v -w whereClause is the where clause criteria.

v -c colspec is a series of numbers giving the minimum column widths for displaying
the selected columns in a tabular format. The last number will be propagated if
there are more columns than numbers. If omitted, a ″raw″ format is used with the
″|″ character separating the data columns.

The following example lists the user id, login and name of users defined to be
superusers in TeamConnection.

© Copyright IBM Corp. 1992, 1999 195

tcqry-g users -s id,login,name -w "superuser='yes'" -c 5,12

Using tcupdb

The tcupdb is a standalone routine that issues a database command to modify
a non-TeamConnection table in the TeamConnection database. The following
are options for the syntax of the tcupdb command:

tcupdb -g tabspec -s setClause [-w whereClause]

tcupdb -g tabspec -d [-w whereClause]

tcupdb -g tabspec -i insertClause

Where:

v -g tabspec is the table specification.

v -s setClause modifies the table with the given criteria.

v -w whereClause is the where clause criteria.

v -d [w whereClause] deletes the selected rows from the table.

v -i insertClause inserts rows into the table.

The following example deletes all rows of table mytab where the column col1
has a value less than 1.
tcupdb -g mytab -d -w "col1<1"

The following example inserts a new row into table mytab with col1 = 5 and
col2 = 7.
tcupdb -g mytab -i "(col1, col2) values (5, 7)"

The following example adds one to col2 of table mytab for rows with col1 = 5.
tcupdb -g mytab -s "col2 = col2 + 1" -w "col1 = 5"

196 Administrator’s Guide

Part 5. Using the server command-line interface

This section explains how to perform administrative functions using the
TeamConnection server command-line interface. Doing these tasks from the
command line sometimes requires extra steps and is more prone to error. For
these reasons, it is recommended that you perform most functions using the
family administrator graphical user interface. The commands in this section,
however, can help you to automate TeamConnection tasks.

© Copyright IBM Corp. 1992, 1999 197

198 Administrator’s Guide

Chapter 19. Creating, starting and stopping a family

Creating a family database

You can create a family database from a command line prompt using the
fhcirt command, as follows:

fhcirt [-family familyName] [-c [-f]] [-d databaseLocation] [loadfiles] [-v]

Where:
v -family familyName specifies the name of the family to create or update. If

you do not include this parameter, fhcirt uses the family name set in the
TC_FAMILY environment variable.

v -c [-f] causes the DB2 database to be dropped (if it already exists) and
created. If you also include the -f parameter, the database is dropped
without prompting you for confirmation.

v -d databaseLocation specifies the location where the database should be
created. On Intel platforms, specify a drive, such as e:. On UNIX platforms,
specify a directory path, such as /disk2/database. If you omit this
parameter, the database will be created where DB2 is installed.

v loadfiles are the DB2 files to be loaded into the database. On Intel platforms,
specify the drive and directory path where the TeamConnection DB2 table
definitions, view definitions, and bind files are installed. The default
directory path is \teamc\nls\cfg. On UNIX platforms, specify the directory
path where the TeamConnection DB2 table definitions, view definitions, and
bind files are installed. The default directory path is $TC_HOME/nls/cfg.
For both platforms, the files you need are *.ddl (table definitions), *.ddv
(view definitions), and *.bnd (bind files).

Note: If you have added indexes to the TeamConnection tables, you will
also need to include the full path name of your .ddx files. See
“Preserving table indexes” on page 200 for more information.

v -v displays detailed information about the updates made to your tables and
views. This parameter is optional.

To create a family database named family1 on drive d:, issue the following
command:
fhcirt -family family1 -c -d d: f:\teamc\nls\cfg*.ddl f:\teamc\nls\cfg*.ddv

f:\teamc\nls\cfg*.bnd

Note: The directory path \teamc\nls\cfg is the default installation path on
Intel for the TeamConnection DB2 files needed to create tables and

© Copyright IBM Corp. 1992, 1999 199

views and bind the family database. If you specify an installation path
other than the default, make sure the path you specify for the loadfiles
parameter contains the TeamConnection DB2 files.

Preserving table indexes

During an upgrade fhcirt might drop indexes on some of the tables in a
TeamConnection family. If some of the TeamConnection tables have been
reorganized and you are upgrading to a new level of TeamConnection code,
this function eliminates unnecessary indexes. If you have added your own
indexes to TeamConnection tables, however, fhcirt drops these indexes as well.
You need to preserve your indexes before updating your tables using fhcirt.

To preserve your indexes, add them to a .ddx file and include this file name
with the list of loadfiles that you pass to the fhcirt command.

The fhcirt command displays all of the dropped indexes with the following
warning message

Note: The following indexes were dropped. If any of these were created by
the family administrator please make sure they are re-created. In the
future non-standard TeamConnection indexes should be placed in a
’ddx’ file, and that filename passed to the fhcirt command during the
upgrade process.

Creating an initial superuser for a family

Before you can define users, components, and releases for a family, you need
to create a user ID with superuser access to the family. From a command line,
you can do this using the fhchdf command. Before you can use this
command, you need to create the family database and make sure the
environment variable TC_DBPATH is set. You can issue this command only
once for each family. After the initial superuser ID has been created, use the
TeamConnection GUI or line commands to modify or create additional users.
If the family database has a component called ″root,″ then the fhchdf
command will not execute.

fhchdf -create
-user Name
-login Name
-address Name
-family Name
[-name Text]
[-area Name]
[-password Name]

Where:

200 Administrator’s Guide

v -user Name is the TeamConnection user ID for the superuser. If you omit
this parameter, it defaults to the value specified for the -login parameter. It
is a good idea to give the superuser an ID that is readily identifiable as a
superuser. A good way to do this is to preface the user ID with su_, such as
-user su_john.

Note: This parameter is used only in single-user environments, such as
OS/2.

v -login Name is the login ID for the superuser. This parameter is used in
multiuser environments, such as AIX, HP-UX, Solaris, and Windows NT, to
identify the user account to which the TeamConnection superuser ID is
assigned. It is a good idea to give the superuser an ID that is readily
identifiable as a superuser. A good way to do this is to preface the ID with
su_, such as -login su_john. Single-user environments, such as OS/2, do not
define a separate login ID. If you omit the -user parameter, it defaults to the
value specified for the -login parameter.

v -address Name is the hostname of the family server from which the
superuser will be authorized to access the family, such as -address tcserver.

v -family Name is the name of the family for which you are defining the
superuser. The family must have already been created. An example is
-family testfam.

v -name Text is the real name of the superuser, such as -name ″John Smith″.
This attribute is optional.

v -area Name is the development area in which the superuser works, such as
-area ″User interface″. This attribute is optional.

v -password Name is the password that must be used by the initial superuser.
A password is required only if you created the family with the
password-only or password-or-host level of security. Under these security
levels, if a password is not created, then no one will have access to the
database.

The following example creates a superuser ID for John Smith on the family
server tcserver for the family named robot:
fhchdf -create -user su_john -login jsmith -address tcserver

-family robot -name "John Smith" -area "User interface"
-password f5asdfjk

Starting your family

You can use the teamcd command to start the family server, notification
server, and build servers together or to start any one of these by itself.

Family server and, optionally, all servers

To start the family server from the command line, type the following
from a prompt:

Chapter 19. Creating, starting and stopping a family 201

teamcd [-b bldsrvr -n mailexit -m] family n

Where:
v -b bldsrvr starts a build server and specifies the name of a file that

describes the build servers that you want to start. Refer to the
TeamConnection User’s Guide for information about creating this file.
You can also use the TC_BUILD_RSSBUILDS_FILE environment
variable to set this value.

v -n mailexit starts a notification server and specifies the executable or
command file to process mail requests. You can also use the
TC_NOTIFY_DAEMON environment variable to set this value.

v -m starts the family in maintenance mode. While in maintenance
mode, the family is locked into read-only mode and prevents users
from updating the database while maintenance is being performed.
You can issue report queries and extract parts when the
TeamConnection server is running in maintenance mode, but you
cannot issue any commands that update the database. If you
attempt a command that updates the database while the server is
running in maintenance mode, you will receive an error message.
You can supplement the text of this standard error message. In the
server’s /config directory, create a text file named maintMsg and
place in it any appropriate text, such as ″This TeamConnection
family is down for backups from 2am to 4am daily.″

v family is the name of the family you are starting.
v n is the number of daemons that you want to start. When starting

the family server, if this value is not typed, the default is 1. When
starting only build servers or the notification server, specify 0 for
this parameter.

It is recommended that you use this command to start your build
servers. However, you can start the build server separately as
described in the TeamConnection User’s Guide.

Build server only
TeamConnection provides build servers on the following platforms:
AIX, HP-UX, Solaris, OS/2, Windows NT, Windows 95, MVS, and
MVS/OpenEdition.

Other than MVS and MVS/OE build servers, you can start build
servers using either the teamcd or teamcbld command. We
recommend you use the teamcd command as it provides better
process and memory management of the build servers.

To use the teamcd command to start a build server apart from starting
the family server (on the same machine), type the following from a
prompt:

202 Administrator’s Guide

teamcd -b bldsrvr family 0

Where:
v bldsrvr is the name of a file that describes the build servers that you

want to start. Refer to the TeamConnection User’s Guide for
information about creating this file. You can also use the
TC_BUILD_RSSBUILDS_FILE environment variable to set this
value.

v family is the name of the family for which you are starting the build
server.

v 0 indicates that only the build server, and not the family server, is
to be started. When you want to start only a build server, you must
specify 0 as the number of daemons, otherwise TeamConnection
will start one family daemon.

Note:

For information on starting the build sever using the teamcbld
command, refer to the TeamConnection User’s Guide.

An MVS or MVS/OE build server cannot be started using the
teamcd command. Refer to the TeamConnection User’s Guide for
instructions on starting an MVS build server.

Notification server only
You can use the teamcd command to start the notification server apart
from starting the family server by typing one of the following
commands from a prompt:
notifyd family mailexit

teamcd -n mailexit family 0

Where:
v family is the name of your family.
v mailexit is the executable or command file that specifies the exit

routine to process mail requests. You can also use the
TC_NOTIFY_DAEMON environment variable to set this value.

v 0 on the teamcd command indicates that only the notification
server, and not the family server, is to be started. When you want
to start only a notification server, you must specify 0 as the number
of daemons on the teamcd command, otherwise TeamConnection
will start one family daemon.

Chapter 19. Creating, starting and stopping a family 203

Starting teamcd as a Windows NT service

You can set up teamcd to run as a Windows NT service as follows. Before you
follow the instructions below, take note of the following limitations:
v If the user account used to log on the service is logged off of NT, SRVANY

will continue to run, but the teamcd daemons will be killed when DB2
detects the user logoff. When another user (or even the same user) logs
onto NT, SRVANY will still be running, but the teamcd daemons will not be
regenerated.

v Stopping the teamcd service does not stop the family. To stop the family,
issue the following command from the command prompt:
kill teamcd

v Since TeamConnection is not currently designed to run specifically as an
NT service, some of the standard NT service benefits (such as system
service logging) will not be performed

To set up and run teamcd as an NT service, do the following:
1. Install the NT Resource Kit, either Workstation or Server. This kit

contains the SRVANY application, which allows other applications to run
as an NT service.

2. Install SRVANY to run the TeamConnection service. From a command
prompt, type the following command. Replace TC_Service with the name
you want to assign to the service and d:\dirpath\ with the full path to
SERVANY.EXE.
instsrv TC_Service d:\dirpath\srvany.exe

3. In the Control Panel, double-click the Services icon to open the Services
dialog box.

4. Select TC_Service and click the Startup button to open the Service
window. Complete the fields on this window as follows:

For this field:
Select or specify:

Startup Type
Automatic

Log On As
This Account

In the text entry field next to it, specify the user account the
service will use to log on. This account should have NT
Administrator authority as well as the authority to start the
TeamConnection family server and logon to DB2.

Note: Do not set Log On As to the System Account. When the service is
started with this specified, NT will pass ’SYSTEM’ as the login ID

204 Administrator’s Guide

to TeamConnection and TeamConnection will attempt to logon to
DB2 with this ID. The DB2 logon will fail and the service will not
be started.

5. Create a command file called StartTC.cmd with the following three lines:
set tc_dbpath=familypath
db2start
start " TeamC -family" /min teamcd family daemons

Replace the values shown in this example as follows:

Command:
Function:

set tc_dbpath=familypath
Sets the TC_DBPATH environment variable. Replace familypath
with the location and name of the family database.

db2start
Starts the DB2 database manager. If DB2 is already running, DB2
will return with a message indicating this and the processing of
the command file will not be affected.

start ″TeamC -family″ /min teamcd family daemons
Starts the teamcd process under the name you provide. This
command has the following parts:

″TeamC - family″
The name of the process you wish to use.

/min Starts the teamcd process minimized.

family The name of your family. (The family name, TCP/IP host
name, and port number must be properly defined in the
TCP/IP hosts and services files. See “Updating TCP/IP
files” on page 17 for instructions.)

daemons
The number of teamcd family server daemons to start.
(See “Specifying the number of daemons to start” on
page 39 for guidelines on the number of daemons to
start.)

6. To start the Registry Editor, type the following command at a command
prompt:
regedt32

7. Make the following changes in the Registry Editor:

8. Under HKEY_LOCAL_MACHINE, open the following folders:

Chapter 19. Creating, starting and stopping a family 205

SYSTEM
CurrentControlSet
Services
TC_Service

9. In the TC_Service folder, select Edit → Add Key to create a key named
Parameters with a class of REG_SZ.

10. Open the Parameters key folder and select Edit → Add Value to create a
value with the name Application and data type REG_SZ.

11. In the String Editor, type the full path name of your StartTC command
file, as in the following example:
C:\StartTC.cmd

After you have followed these steps, TC_Service is configured to start when
NT boots. Your TeamConnection family will start automatically whenever you
start your NT system.

Stopping your family

If you started the family server from a command line, type the following at a
prompt. Substitute the name of the family you want to stop for familyName.

tcstop familyName

If more than one TeamConnection family has been created on an NT
server, tcstop will only stop the first family created. You may have
to use the NT Task Manager to stop the second family (or enter
CTRL-C).

206 Administrator’s Guide

Chapter 20. Configurable field commands

Defining configurable field types

This section provides instructions for manually editing the config.ld file to
define configurable field types. When you change the config.ld file, you must
also reload the contents of the config table.

Instructions for using the family administrator to define field types are on
page 117.

Before you define field types, you should be familiar with the information in
“Defining configurable field types” on page 117.

It is recommended that you keep the config.ld file in the family directory. If
you want to maintain common configurable field definitions for more than
one family, however, you can store this file in a common directory; but you
will need to specify the fully-qualified path name for it when you load it
using the fhclcnfg command.

Note: Be careful not to include duplicate entries in this file. If you attempt to
load this file with duplicate entries, you will receive an SQL error from
DB2 with a message similar to the following:

SQLMessage: One or more values in the INSERT statement,
UPDATE statement or foreign key update caused by a DELETE
statement are not valid because they would produce duplicate
rows for a table with a primary key, unique constraint or
unique index.

When adding entries to the file, follow the existing format of the file:
fieldType|value|default|kind|driver|driverSeq|dependent|dependSeq|choiceOrder|
description|helpText

Information about configurable field types is stored in the config table. After
you modify the config table, you must reload it (see “Reloading the config
table” on page 210).

The config table consists of the following information:

fieldType
Identifies the types of configurable fields that are defined for your
family. You specify one of these types when you configure a new
field. You can create new types, and you can configure the acceptable

© Copyright IBM Corp. 1992, 1999 207

values for each type. You must have at least one value for each type.
The type field can have up to 15 characters (7 for DBCS), but it cannot
contain blank spaces or tabs.

The name that you specify becomes a column name for the DB2
database table for any object (defect, feature, part, release, user, or
workarea) that you add the field type to as a configurable field. DB2
requires that all column names be unique. You cannot, therefore, use
any name that is already defined as a column for the table. The
DefectView table, for example, has a column named ″state.″ This
column records the current state of a defect (open, working, closed,
canceled, and so on). You cannot add another configurable field called
″state″ to the DefectView table.

Refer to the appendix of the Commands Reference for a list of column
names defined for defects, features, parts, releases, users, and
workareas.

“Appendix D. Configurable field types” on page 277 describes the
configurable field types that are shipped by TeamConnection.

value This field represents the choices the user has for the configurable field.
You can add choices to the default fields shipped by TeamConnection
and to the fields created specifically for your family. The value can
have up to 85 single-byte characters or 65 double-byte characters; but
it cannot contain spaces or tabs. If you want to enable users to set this
configurable field type to the value null, include the value null among
the possible values.

Note: Because a user can abbreviate these values from the command
line, you cannot define a value that can be an abbreviation of
another value of the same type. For example, you cannot add a
value of build to the phase type, because a value of building
already exists. Also, if a value of 1 exists for the severity type,
you cannot add a severity value of 12.

default This field indicates whether the defined name is used as the default
when the user does not enter a value for the configuration type. Valid
values are either yes or no, and only one name for each configuration
type can have the default field set to yes.

kind This field defines the method of resolving the configured value. A
kind of 0 is resolved by matching the (abbreviated) input value to a
unique name value for the type. For a kind of 1, the input may
contain a list of any of the values in the value field separated by
blanks. No abbreviations may be used. For a kind of 2, the input must
match specific rules (6-digit numeric value, for example) defined in
the value field. This kind enables you to define a UNIX regular
expression for the configurable field type instead of a specific value. It

208 Administrator’s Guide

is available on UNIX platforms only. See “Defining regular
expressions” on page 120 for examples of UNIX regular expressions.

The next four fields are used to define dependencies between different
parameters. One parameter for a configurable object (Defect, Feature, etc.) can
be defined to be a ″driver.″ Other parameters may be defined to be dependent
on the driver.

One example of using dependent configurable field types is for setting values
for a company’s division and department numbers. You can define a
configurable field type called division as a driver. The range of values that can
be set for its dependent field type, department is constrained to departments
that are part of the division number to which the field division has been set.

This dependency is set up by using non-zero values in the driver and
dependent fields. The values that can be selected for the dependent field are
restricted by the value selected for the driver. The values for the driver and
dependent fields must be the same for all rows of a given fieldType. The type
with a given non-zero value in the dependent field is dependent on the
parameter that has that same value in its driver field. The value that is
selected for a driver field has some number in its driverSeq field. If the
driverSeq is zero, any name values of a dependent field can be selected. If the
driverSeq is not zero, then values that can be selected for the dependent
parameter must have a dependSeq value that is the same as the driverSeq value
or zero.

driver The driver field for a dependent field.

driverSeq
The driver sequence number that associates a driver field with its
dependent fields.

dependent
The dependent field.

dependSeq
The dependent sequence number that associates a dependent field
with its driver field.

choiceOrder
The order in which the value is shown in the GUI.

description
This field contains the description of each value. The description field
cannot contain more than 63 characters, but it can be set to blank. The
description with the defined values appears on the GUI window
when the field is displayed.

Chapter 20. Configurable field commands 209

helpText
A long description of the value. This description is displayed if the
user requests help for the value requested. A row in the config table
with a null value for the name may supply general help text for the
config type. The help text cannot contain newline characters if the
field is enclosed in quotes. The preferred (by the GUI) format of help
text is:
"xyz: This is help for the value xyz."

The default configuration field types, along with their attributes, that IBM
ships are listed starting on page 277.

Reloading the config table

When you edit the config.ld file and change any values, you must reload the
contents of the config table so that TeamConnection recognizes the changes.

You can reload the config table as often as necessary. It is recommended that
you stop the family server before you reload the table (see page “Stopping the
servers” on page 43 for instructions).

To reload the config table, issue the following command from the server
machine. Before issuing this command, ensure that the TC_FAMILY
environment variable is set to the correct family name and TC_DBPATH is set
to the correct database path name.

fhclcnfg path\config.ld

Where:
v path\config.ld is the path name of the configurable fields definition file. If

you specify a fully-qualified path name, TeamConnectionlooks for the file in
the path you specify. If you specify only the file name with no directory
path, TeamConnection looks for the file in the directory specified by the
TC_DBPATH environment variable.

Changing values in the config table does not change any values that are
already in the database for existing records.

To verify that the command successfully modified the config table, use the
report command to generate a report. To do this, type the following from an
OS/2 or TeamConnection command line:

teamc report -view config

210 Administrator’s Guide

If the config table did not load correctly, make the necessary changes to the
config.ld file and run the command again.

For more information, about the report -view command, refer to the
Commands Reference.

Updating .tbl files

To add a configurable field type to a TeamConnection object, you need to
update the .tbl file for that object. The following objects support configurable
fields and can have a .tbl file associated with them. These files are located in
the cfgField directory of your family directory (TC_DBPATH). As shipped,
only the Defect.tbl and Feature.tbl files have contents because only defects
and features have configurable fields.

Object Associated .tbl file

Defects Defect.tbl

Features Feature.tbl

Parts Part.tbl

Releases Release.tbl

Users User.tbl

Workareas Workarea.tbl

A .tbl file consists of one or more records containing up to 10 fields separated
by vertical bars (|). Each field represents a configurable field setting (such as
the field type or whether or not it is required). The fields are positional; that
is, the field’s position in the record determines which setting its value applies
to. If no value is defined for a field (the field is null), its place is held by two
vertical bars side-by-side (||).

The following is an example of a configurable field record in a .tbl file:
yes|priority|priority|Priority|Priority|no|no|priority|no|no

The following table explains each field, its corresponding field on the
configurable fields settings window in the family administrator, acceptable
values, and a description of its function.

Field Configurable
Field Setting

Values Function

Field 1 Active yes
no

Whether or not the field is
available to users.

Chapter 20. Configurable field commands 211

Field Configurable
Field Setting

Values Function

Field 2 Field Name Any text string containing
up to 15 characters (7 for
DBCS). The string cannot
contain spaces. This field is
required.

How the field is identified
in the family administrator.

Field 3 Attribute Any text string containing
up to 15 characters (7 for
DBCS). The string cannot
contain spaces.

The command-line attribute
for the field. If you do not
specify a value for this
field, the field is not
available from the
command-line interface.

Field 4 Field Label Any text string containing
up to 15 characters (7 for
DBCS). The string cannot
contain spaces.

The field label that appears
in the user interface, such
as on filter windows.

Field 5 Title Any text string containing
up to 15 characters (7 for
DBCS). The string cannot
contain spaces.

The field label that appears
on column headings for
reports.

Field 6 Show on
Create/Open

yes
no

Whether or not the field
appears on Create or Open
windows.

Field 7 v Required on
Create/Open

v Required on
Accept

yes
acc
|| (null)

Whether or not the field is
required to create, open, or
accept the object. The
values for his field have
the following meaning:

yes Required on
Create/Open

acc Required on
Accept (valid for
defects and
features only)

|| (null)
Not required

Field 8 Field Type Either a configurable field
type defined in config.ld or
|| (null).

Determines whether the
user selects a value defined
by the field type or enters
text for the field.

212 Administrator’s Guide

Field Configurable
Field Setting

Values Function

Field 9 Owner
Modifiable

yes
no

Whether or not the owner
of the object can modify
the field.

Field 10 Originator
Modifiable

yes
no

Whether or not the
originator of the object can
modify the field. The value
″yes″ is valid only for
defects and features. For all
other objects, the value
must be ″no.″

The following is the Defect.tbl file shipped with TeamConnection. This file
defines five configurable fields for defects:
yes|symptom|symptom|Symptom||yes|yes|symptom|yes|yes
yes|phaseFound|phaseFound|Phase found||yes|yes|phase|yes|yes
yes|phaseInject|phaseInject|Phase injected||no|no|phase|yes|yes
yes|priority|priority|Priority|Priority|no|no|priority|no|no
yes|target|target|Target|Target|no|no||yes|no

Notice the following about these configurable fields:
v Records 1 through 3, the ″symptom,″ ″phaseFound,″ and ″phaseInject″

fields, have no labels for report column headings. These columns will not
appear in defect reports.

v Record 5, the ″target″ field, is a text field. It has no associated configurable
field type, so users enter text for this field.

Updating database views with new configurable field information

After you reload the contents of the config table (update the .tbl files), you
must also update the database views so that the new configurable fields
appear in the GUI.

It is recommended that you stop the family server before you update the
database views (see “Stopping the servers” on page 43 for instructions).

To update the database views, issue the following command from the server
machine. Before issuing this command, ensure that the TC_FAMILY
environment variable is set to the correct family name and TC_DBPATH is set
to the correct database path name.

fhcfupdv configFile view

Chapter 20. Configurable field commands 213

Where:
v configFile is the name of the configurable field table (.tbl file) with which the

view is to be updated. TeamConnection looks for the file in the directory
specified by the TC_DBPATH environment variable.

v view is the database view to be updated. The following are the views you
can specify with this command. Refer to the TeamConnection Commands
Reference for a full description of each of these views.
– DefectView
– Feature View
– DefectDownView
– FeatureDownView
– Users
– PartView
– PartFullView
– WorkAreaView
– ReleaseView

Updating TargetView and ConfigPartView
The TeamConnection Family Administrator GUI does not support adding
configurable fields to TargetView and ConfigPartView. To add configurable
fields to these views, follow these steps. You can perform this procedure any
time after the database is created.
1. Copy tcsource.tbl from the samples directory to the cfgField directory.
2. Edit tcsource.tbl for any new fields to be added. By default, these fields

contain definitions for only one configurable field: externalVersion.
3. To update TargetView with the configurable field information, issue the

following command from a command line prompt:

fhcfupdv tcsource.tbl TargetView

4. To update ConfigPartView with the configurable field information, issue
the following command from a command line prompt:

fhcfupdv tcsource.tbl ConfigPartView

Changing report formats

This section explains how you can manually change the position of report
fields on the reports TeamConnection generates for the user, defect, feature,
partFullView, and partView objects.

214 Administrator’s Guide

Instructions for using the family administrator to change the reports are on
page 125.

You can use the system editor to edit the following files. Before you change
the report formats, you might want to make backup copies of these files.
v cfgfield\Defect.fmt
v cfgfield\Feature.fmt
v cfgfield\Part.fmt
v chgfield\Partview.fmt
v cfgfield\Release.fmt
v cfgfield\User.fmt
v cfgfield\Workarea.fmt

Each .fmt file is divided into five sections, separated by colons. The sections
are:
v StanzaViewFormat
v StanzaViewColumn
v TableViewFormat
v TableViewColumn
v TableViewHeader

The column sections describe the column name of each of the labels specified
in the format sections. The header section specifies how the columns appear
in the table format.

The format sections specify the layout of the report. For example, a format
specification of %3$-25.25s indicates the following:
% Start of format specification.
3 The sequence number of the field that is generated by

TeamConnection. The dollar sign must appear after the sequence
number.

Note: If you add a new field to the report, you must adjust all
sequence numbers for fields that appear after the new field. If
you create a new configurable field and place it in position 3,
for example, then you must increase the sequence number of
the field that was previously defined in position 3 to 4 and
increase the sequence number for all remaining fields.

- The output is left-justified. If you do not include this character, the
output is right-justified.

25 The minimum number of characters (bytes) of output.
.25 The maximum number of characters (bytes) printed for all or part of

the output field, or minimum number of digits printed for integer
values.

Chapter 20. Configurable field commands 215

If you do not want the field displayed, type 0.0. For example, you
have three sequence fields: 1, 2, and 3. If you do not want sequence 2
displayed, you type:
%1$-4.4s %2$-0.0s %3$-15.15s

s Type of data:
s for strings
ld for integers

You can specify only a data type of s for configurable fields. Use ld to
display existing values, such as defect age.

You can also change or delete the format specification. Before you change a
format specification, be aware of the following:
v A format specification in the stanza view does not have to match the format

specification for the same field in the table view.
v Information in a stanza report appears in columns. When you specify the

identical minimum and maximum number of characters for all fields
appearing in a column, the report columns are left-justified. For example,
Figure 17 on page 217 shows all the fields in the first column defined as
25.25.

v When you change a format specification in the table view, adjust the
matching heading length in the table view header section. Otherwise,
information will not appear correctly under the headings when users
display the table.

Figure 17 on page 217 shows a sample report format for the defect table after
configurable fields have been added. The changes are noted in bold font and
are described following the figure.

216 Administrator’s Guide

In Figure 17, the format of the shipped defect report was modified as follows:
v Added a new label, developer, at the end of the StanzaViewFormat section,

and the format specification %30$-25.25s
v Added the column name, developer, as the last entry in the

StanzaViewColumn section

Note: When you edit the StanzaViewColumn, you must maintain a
continuous line of text. Control characters are ignored and appear as
output in the report.

StanzaViewFormat

prefix %01$s
name %02$s
reference %03$s
abstract %04$s
duplicate %05$s

state %06$-25.25s priority %07$-20.20s
severity %08$-25.25s target %09$-20.20s
age %10$s

compName %11$-25.25s answer %12$-20.20s
release %13$-25.25s symptom %14$-20.20s
envName %15$-25.25s phaseFound %16$-20.20s
driver %17$-25.25s phaseInject %18$-20.20s

addDate %19$-25.25s assignDate %20$-20.20s
lastUpdate %21$-25.25s responseDate %22$-20.20s
endDate %23$-25.25s

ownerLogin %24$-25.25s originLogin %25$-20.20s
ownerName %26$-25.25s originName %27$-20.20s
ownerArea %28$-25.25s originArea %29$-20.20s

developer %30$-25.25s

:
StanzaViewColumn
NOTE: please leave this section in English
prefix,name,reference,abstract,duplicate,state,priority,severity,
target,age,compName,answer,releaseName,symptom,envName,phaseFound,
driverName,phaseInject,addDate,assignDate,lastUpdate,responseDate,
endDate,ownerLogin,originLogin,ownerName,originName,ownerArea,
originArea,developer
:
TableViewFormat
%-4.4s %-15.15s %-15.15s %-8.8s %-8.8s %-8.8s %-3.3s %-3.3s %-4.4s %-55.55s %30$-9.
9s
:
TableViewColumn
NOTE: please leave this section in English
prefix,name,compName,state,originLogin,ownerLogin,severity,age,
priority,abstract,developer
:
TableViewHeader
pref name compName state originLo ownerLog sev age prio abstract developer
:

Figure 17. Sample report format after adding configurable fields

Chapter 20. Configurable field commands 217

v Added %30$-9.9s in the corresponding position for the developer entry in
the TableViewFormat section

v Added the column name developer in the TableViewColumn section
v Added a new label, developer, in the TableViewHeader section and added

the corresponding dashes in the next line

If the developer field had been added to the middle of the reports instead of
to the end, its sequence number and the sequence number of all remaining
fields would need to be adjusted.

Updating TargetView and ConfigPartView Reports
The TeamConnection Family Administrator GUI does not support modifying
reports for TargetView and ConfigPartView. To modify the reports for these
views, follow these steps. You can perform this procedure any time after the
database is created.
1. Copy target.fmt from the samples directory to the cfgField directory.
2. Edit target.fmt for any new fields to be added. By default, these fields

contain definitions for only one configurable field: externalVersion.

218 Administrator’s Guide

Chapter 21. Configuring component or release processes

This section provides instructions for manually editing the comproc.ld and
relproc.ld files to configure processes. When you change the .ld files, you
must also reload the contents of the configurable process tables.

Instructions for using the family administrator to configure processes are on
page 131.

Before you configure processes, you should be familiar with the information
in “Chapter 11. Configuring component and release processes” on page 131.

Editing the comproc.ld and relproc.ld files

Information about configurable processes for components is stored in the
comproc.ld file. Information about configurable processes for releases is stored
in the relproc.ld file. When the family is created, the configurable process
tables are created, based on the settings in the comproc.ld and relproc.ld files.
If you modify the configurable process tables after the family is created, edit
the .ld files and then run the fhclproc command.

To add new processes or change existing processes, edit the comproc.ld file
for component processes or the relproc.ld file for release processes. It is
recommended that you keep the comproc.ld and relproc.ld files in the family
directory. If you want to maintain common process definitions for more than
one family, however, you can store these files in a common directory; but you
will need to specify the fully-qualified path name for them when you load
them using the fhclproc command.

Note: Be careful not to include duplicate entries in this file. If you attempt to
load this file with duplicate entries, you will receive an SQL error from
DB2 with a message similar to the following:

SQLMessage: One or more values in the INSERT statement,
UPDATE statement or foreign key update caused by a DELETE
statement are not valid because they would produce duplicate
rows for a table with a primary key, unique constraint or
unique index.

Add entries to the file using the following format:
ProcessName|SubprocessName

© Copyright IBM Corp. 1992, 1999 219

ProcessName
The name of the process you are creating. The name can be up to 15
characters in length; it cannot contain blanks, tabs, or vertical
separators.

SubprocessName
The name of a TeamConnection subprocess. You can specify only one
of the following subprocesses for each entry. If you want to include
more than one subprocess, you must have an entry for each
subprocess. Type the name exactly as it appears in the database.

The following are the subprocesses for components:
v none
v dsrDefect
v dsrFeature
v verifyDefect
v verifyFeature

The following are the subprocesses for releases:
v none
v approval
v fix
v driver
v test
v track
v trackfixhold
v tracktesthold
v trackcommithold

See “Release processes” on page 80 for an explanation of these subprocesses.

Reloading the configurable process tables

After you edit an .ld file, use the fhclproc command to reload the contents of
the configurable component or release process tables with the changed values.
Before issuing this command, ensure that the TC_FAMILY environment
variable is set to the correct family name and TC_DBPATH is set to the correct
database path name. The format of the fhclproc command when reloading the
component process table is:

fhclproc path\comproc.ld c

The format of the fhclproc command when reloading the release process table
is:

220 Administrator’s Guide

fhclproc path\relproc.ld r

Where:
v path\comproc.ld or path\relproc.ld is the path name of the process

definition file. If you specify a fully-qualified path name, TeamConnection
looks for the .ld file in the path you specify. If you specify only the file
name with no directory path, TeamConnection looks for the file in the
directory specified by the TC_DBPATH environment variable.

v c indicates that you are reloading the component process table.
v r indicates that you are reloading the release process table.

To verify that the command successfully modified the tables, use the report
command to generate a report. To do this, type one of the following
commands:

teamc report -view Cfgcomproc
teamc report -view Cfgrelproc

If the table did not load correctly, make the necessary changes to the
comproc.ld or relproc.ld file and run the command again.

For more information about the report -view command, refer to the Commands
Reference.

Chapter 21. Configuring component or release processes 221

222 Administrator’s Guide

Chapter 22. Setting up user exits

This section provides instructions for manually updating the userExit file to
add entries that call user-defined programs during the processing of
TeamConnection actions.

Instructions for using the family administrator to set up user exits are on page
136.

Before you edit the userExit file, you should be familiar with the information
in “Chapter 12. Providing user exits” on page 135.

Note: The userExit file is copied to your family database directory from a file
located in the language subdirectory of the nls\cfg directory path in the
TeamConnection installation directory, for example, teamc\nls\cfg\enu.
The version of the userExit file in this location contains comments that
are not copied when the family is created using the family
administrator.

Editing the userExit file

The userExit file has no defined actions until you add entries for the user exits
that your organization will use. The entries you add specify the programs that
you want started for specific TeamConnection actions. For each user exit, add
an entry using the following format:
Action ExitID UEprogram UEparameter ENV=() #Comments

Use one or more blank spaces to separate each field in the entry. A line that
begins with a # sign is a comment. You can have blank lines in the file.

The userExit file is located in the config subdirectory of the directory where
your family’s database is installed.

A description of each field in the entry follows:

Action
The name of the TeamConnection action that causes the user exit to
start. You must type the name exactly as it appears in the database.
See the list of actions in “Appendix B. Worksheets” on page 253 for
the correct spelling and capitalization. For a list of actions that
support user exits, see the User Exits page of the Settings notebook
for your family.

© Copyright IBM Corp. 1992, 1999 223

ExitID Identifies when the user exit program is started during the course of
the TeamConnection action. Valid values are 0, 1, 2, and 3. The value
indicates that the user exit program does one of the following:

0 Starts at the beginning of the TeamConnection action, before
any initialization or access checking takes place.

1 Starts after all TeamConnection checks are made and
TeamConnection is ready to process the command.

2 Starts after the TeamConnection action is completed. At this
point, the action has been submitted to TeamConnection, and
all database or library updates have been committed.

3 Starts when a previous user exit with an exit ID of 0 or 1 is
not successful, or when the TeamConnection action is not
successful. This exit ID allows the user exit program to clean
up what the other user exit programs started.

UEprogram
The name of the user exit program. The program must exist in a
directory defined in the PATH statement of your config.sys file (for
OS/2 or Windows platforms).

UEparameter
A variable-length list of character string parameters provided to the
user exit program.

ENV=()
The customized parameter list for the user exit. See “Creating
customized parameter lists” for more information on passing a
customized parameter list to a user exit program.

#Comments
A comment about the user exit program. This field is optional.

TeamConnection does not recognize the updates to the userExit file until you
stop and restart the TeamConnection server.

Creating customized parameter lists

To create a customized parameter list for a user exit program, include the
ENV=() field in the definition for the user exit in the userExit file. The
ENV=() field consists of a comma-separated list of the parameters or
configurable fields to be passed to the user exit program. To pass the
component and release parameters of a PartAdd action to a user exit, for
example, include the ENV=() field as follows:
ENV=(component,release)

224 Administrator’s Guide

See “Appendix E. User exit parameters” on page 289 for a list of parameters
that can be passed to a user exit program for each action’s exit IDs.

To include a configurable field in a customized parameter list, identify it by
its attribute name.

Chapter 22. Setting up user exits 225

226 Administrator’s Guide

Chapter 23. Creating and modifying authority and interest
groups

Creating or modifying authority groups

When a TeamConnection family is created, the authority table is primed with
default information contained in the authorit.ld file. This section provides
instructions for manually editing the authorit.ld file to create new authority
groups or change information about existing authority groups. When you
change the authorit.ld file, you must also reload the contents of the authority
table in the TeamConnection database.

Instructions for using the family administrator to create or modify authority
groups are on page 99.

Before you create or modify authority groups, you should be familiar with the
information in “Setting up authority groups” on page 97.

Editing the authorit.ld file
To add new authority groups or to add actions to an existing authority group,
edit the authorit.ld file. It is recommended that you keep the authorit.ld file in
the family directory. If you want to maintain common authority group
definitions for more than one family, however, you can store this file in a
common directory; but you will need to specify the fully-qualified path name
for the authorit.ld file when you load it using the fhclauth command.

Note: Be careful not to include duplicate entries in this file. If you attempt to
load this file with duplicate entries, you will receive an SQL error from
DB2 with a message similar to the following:

SQLMessage: One or more values in the INSERT statement,
UPDATE statement or foreign key update caused by a DELETE
statement are not valid because they would produce duplicate
rows for a table with a primary key, unique constraint or
unique index.

Add entries to the file using the following format:
AuthorityGroup|ActionName

AuthorityGroup
This is the name of an existing authority group or the name of a
group that you are creating. The name can be 15 characters long; it
cannot contain blanks, tabs, or vertical separators. For an existing

© Copyright IBM Corp. 1992, 1999 227

authority group, type the name exactly as it appears in the database
table. The default names provided by IBM use all lowercase
characters.

ActionName
This is the name of an existing TeamConnection action. Specify only
one action per entry. You must type the name exactly as it appears in
the database table. Refer to the list of actions in the TeamConnection
User’s Guide for the correct spelling and capitalization. Certain actions
cannot be included in an authority group. These actions are noted in
the table found in “Appendix B. Worksheets” on page 253.

As shipped, the sample authorit.ld file provided with TeamConnection does
not include the PartExec action. To add this action to your authority groups,
edit and reload authorit.ld.

Reloading the authority table

Whenever you change the authorit.ld file, you must reload the contents of the
authority table before your users can use the new and changed authority
groups.

You can reload the authority table as often as necessary. We recommend that
you stop the family server before you reload the authority table (see page
“Stopping the servers” on page 43 for instructions).

To reload the authority table, issue the following command from the server
machine. Before issuing this command, ensure that the TC_FAMILY
environment variable is set to the correct family name and TC_DBPATH is set
to the correct database path name.

fhclauth path\authorit.ld

Where:
v path\authorit.ld is the path name of the authorit.ld file. If you specify a

fully-qualified path name, TeamConnection looks for the authorit.ld file in
the path you specify. If you specify only authorit.ld with no directory path,
TeamConnection looks for the file in the directory specified by the
TC_DBPATH environment variable.

To verify that the authority table loaded correctly, use the report command to
generate a report on the authority table. For example, to verify that a new
authority group named general was added to the table, issue the following
command:

228 Administrator’s Guide

teamc report -view authority -where "name='general'"

If the table loaded correctly, information about the general authority group
appears. If the authority table did not load correctly, make the necessary
changes to the authorit.ld file and run the fhclauth command again.

For more information about the report -view command, refer to the Commands
Reference.

Creating or modifying interest groups

This section provides instructions for manually editing the interest.ld file to
create or modify interest groups. When you change the interest.ld file, you
must also reload the contents of the interest table.

Instructions for using the family administrator to create or modify interest
groups are on page 108.

Before you create or modify interest groups, you should be familiar with the
information in “Setting up interest groups” on page 106.

Editing the interest.ld file

To add new interest groups or to add actions to an existing interest group,
edit the interest.ld file. It is recommended that you keep the interest.ld file in
the family directory. If you want to maintain common interest group
definitions for more than one family, however, you can store this file in a
common directory; but you will need to specify the fully-qualified path name
for the interest.ld file when you load it using the fhclintr command.

Note: Be careful not to include duplicate entries in this file. If you attempt to
load this file with duplicate entries, you will receive an SQL error from
DB2 with a message similar to the following:

SQLMessage: One or more values in the INSERT statement,
UPDATE statement or foreign key update caused by a DELETE
statement are not valid because they would produce duplicate
rows for a table with a primary key, unique constraint or
unique index.

Add entries to the file using the following format:
InterestGroup|ActionName

InterestGroup
This is the name of an existing interest group or the name of a group
that you are creating. The name can be up to 15 characters; it cannot

Chapter 23. Creating and modifying authority and interest groups 229

contain blanks, tabs, or vertical separators. For an existing interest
group, type the name exactly as it appears in the database table. The
default names provided by IBM use all lowercase characters.

ActionName
This is the name of an existing TeamConnection action. Specify only
one action per entry. You must type the name exactly as it appears in
the database table. Refer to the list of actions in the TeamConnection
User’s Guide for the correct spelling and capitalization. Certain actions
cannot be included in an interest group. These actions are noted in the
table found in “Appendix B. Worksheets” on page 253.

Reloading the interest table

Whenever you change the interest.ld file, you must reload the contents of the
interest table before your users can use the new and changed interest groups.

You can reload the interest table as often as necessary. We recommend that
you stop the family server before you reload the interest table (see page
“Stopping the servers” on page 43 for instructions).

To reload the interest table, issue the following command from the server
machine in the directory where the interest.ld file is stored. Before issuing this
command, ensure that the TC_FAMILY environment variable is set to the
correct family name and TC_DBPATH is set to the correct database path
name.

fhclintr path\interest.ld

Where:
v path\interest.ld is the path name of the interest.ld file. If you specify a

fully-qualified path name, TeamConnection looks for the interest.ld file in
the path you specify. If you specify only interest.ld with no directory path,
TeamConnection looks for the file in the directory specified by the
TC_DBPATH environment variable.

To verify that the interest table loaded correctly, use the report command to
generate a report on the interest table. For example, to verify that a new
interest group named general was added to the table, issue the following
command:

teamc report -view interest -where "name='general'"

If the interest table loaded correctly, information about the general interest
group appears. If the interest table did not load correctly, make the necessary
changes to the interest.ld file and run the command again.

230 Administrator’s Guide

For more information about the report -view command, refer to the Commands
Reference.

Authorizing teamc part -exec commands

You can authorize the commands that can be passed to the server by the
teamc part -exec action by placing the them in a file called
%TC_DBPATH%/execcmds.ld. This file is automatically loaded by the server
whenever the teamc part -exec command is issued. Only the commands that
appear in this file can be issued using teamc part -exec. The following is an
example of the contents of the execcmds.ld file for a UNIX platform:
/usr/bin/grep
/usr/bin/wc

The format of this file is a simple list of executable file names, one file per
line. The path for each executable should be specified for security, but the
server does search for the command in its path. Users must specify the name
of the executable exactly as it appears in execcmds.ld. If the full path is in
execcmds.ld, the user must specify the full path. If a relative path is specified,
the user must specify a relative path. If no path is specified (the executable
can be found in the server’s path or current working directory), then the user
must specify the file without the path. Lines preceded by # are comments and
are ignored by the server. Each command line is limited to 260 bytes.

This list should not contain commands that can execute a user-specified
command supplied as an argument (such as ksh, csh, sh, find, rexec, and
command.com). These commands allow the user to execute commands not
listed in this file and, therefore, bypass this security mechanism.

On OS/2 the executable must be in the server’s current working
directory or in its path. You cannot specify a directory path on the
teamc part -exec command itself (for example, you cannot specify
teamc part -exec ″d:\usr\bin\grep . . . ″. The OS/2 implementation
of the teamc part -exec action does not support batch and command
files.

You cannot specify multiple commands in the -exec command string. The
teamc part -exec action accepts only one command. If you want to allow
multiple commands to be executed, you must write a shell script that
performs the commands you want to issue and add the name of the shell
script to the list of allowed commands in execcmds.ld.

Note: Servers running Windows NT should not have batch or command files
(.bat or .cmd) listed in the execcmds.ld file. In this situation, the user
supplied command line, in its entirety, is interpreted by the command
interpreter. Therefore, pipes (|), redirection (>), multiple commands

Chapter 23. Creating and modifying authority and interest groups 231

(following &), and so on, are all evaluated and acted on by the
interpreter, allowing this security mechanism to by subverted. For
example, the following action will execute mybatfile and the format
command and will perform the IO redirection:

teamc part -exec "mybatfile.bat { } d:\lotus\notes\data*.id & format c:>d:\tmp\a"

The following action, in contrast, will execute the grep and pass the
remainder of the arguments directly to grep, uninterpreted because
grep can be executed without involving the command interpreter:

teamc part -exec "grep a {} & format c:>d:\tmp\a & format e:"

To grant users access to the teamc part -exec action itself, you need to add the
PartExec action to any authority group in the authority table, authorit.ld and
update the table in your TeamConnection database as described in “Creating
or modifying authority groups” on page 227. As shipped, the sample
authorit.ld file provided with TeamConnection does not include the PartExec
action.

232 Administrator’s Guide

Part 6. Appendixes

© Copyright IBM Corp. 1992, 1999 233

234 Administrator’s Guide

Appendix A. Authority and notification for TeamConnection
actions

TeamConnection ships with IBM-supplied authority groups, interest groups,
component processes, and release processes. Your family administrator can
modify these preconfigured authority groups, interest groups, and processes
to fit the needs of your organization.

Each authority group consists of actions normally performed by a particular
type of user. Your family administrator can modify these groups or create new
ones to reflect the needs of your organization.

Authority groups provide explicit authority to perform the actions included in
each group. You might also have implicit authority to perform certain actions
according to the objects that you own. Authority groups are defined in a file
called authorit.ld.

To determine your authority groups, from the Actions pull-down menu, select
Lists → Access lists → Show authority actions. On the Show authority actions
window select an action.

Each notification group consists of actions normally of interest to a particular
type of user. Your family administrator can modify these groups or create new
ones to reflect the needs of your organization. Interest groups are defined in a
file called interest.ld.

To determine your interest notification groups, from the Actions pull-down
menu, select Lists → Notification lists → Show interest actions. On the Show
authority actions window select an action.

Notification for TeamConnection actions can be implicit or explicit. For
example, the owner of an object receives implicit notification if an action is
performed on an object, while users on a notification list receive explicit
notification. (See the Administrator’s Guide for more information.)

The following table lists all of the TeamConnection actions, the required level
of implicit and explicit authority to perform the action, and the users who are
notified when an action is performed. To explicitly assign authority to a user,
add the user’s ID to a component’s access list.

Note: The user who performs the action is excluded from the notification that
is sent out after the action is successfully completed.

© Copyright IBM Corp. 1992, 1999 235

For this action These users have authority These users are notified

AccessCreate v Component owner

v Explicitly defined for the component where
access is being added

User being given new access,
subscribers

AccessDelete v Component owner

v Explicitly defined for the component where
access is being altered

User whose access was deleted,
subscribers

AccessRestrict v Component owner

v Explicitly defined for the component where
access is being restricted

User whose access is being
restricted, subscribers

ApprovalAbstain v Approval record owner

v Explicitly defined for the component that
manages the associated release

Approval record owner,
subscribers

ApprovalAccept v Approval record owner that manages the
associated release

Approval record owner,
subscribers

ApprovalAssign v Approval record owner

v Explicitly defined for the component that
manages the associated release

New and original approval
record owners, subscribers

ApprovalCreate v Workarea owner

v Explicitly defined for the component that
manages the associated release

New approval record owner,
subscribers

ApprovalDelete v Explicitly defined for the component that
manages the associated release

Approval record owner,
subscribers

ApprovalReject v Approval record owner

v Explicitly defined for the component that
manages the associated release

Approval record owner,
subscribers

ApproverCreate v Release owner

v Explicitly defined for the component that
manages the associated release

New approver, subscribers

ApproverDelete v Release owner

v Explicitly defined for the component that
manages the associated release

Deleted approver, subscribers

BuilderCreate v Explicitly defined for the component that
manages the associated release

Subscribers

BuilderDelete v Explicitly defined for the component that
manages the associated release

Subscribers

236 Administrator’s Guide

For this action These users have authority These users are notified

BuilderExtract v Explicitly defined for the component that
manages the associated release

Not applicable

BuilderModify v Explicitly defined for the component that
manages the associated release

Subscribers

BuilderView v Explicitly defined for the component that
manages the associated release

Not applicable

CollisionAccept v Component owner

v Explicitly defined for the component that
manages the associated release

Release owner, subscribers

CollisionReconc v Component owner

v Explicitly defined for the component that
manages the associated release

Release owner, subscribers

CollisionReject v Component owner

v Explicitly defined for the component that
manages the associated release

Release owner, subscribers

CompCreate v Parent component owner

v Explicitly defined for the parent component

New component owner

CompDelete v Component owner

v Explicitly defined for the component being
removed

Component owner, subscribers

CompLink v Component owner of the component being
linked

v Explicitly defined for the component being
linked

Owners of both components,
subscribers

CompModify v Component owner

v Explicitly defined for the component being
modified

New component owner if
applicable, subscribers

CompRecreate v Parent component owner

v Explicitly defined for the parent component

Owners of both components,
subscribers

CompUnlink v Component owner of the component being
unlinked

v Explicitly defined for the component being
unlinked

Owners of both components,
subscribers

CompView v Component owner

v Explicitly defined for the component being
viewed

Not applicable

Appendix A. Authority and notification for TeamConnection actions 237

For this action These users have authority These users are notified

CoreqCreate v Workarea owner of all specified workareas

v Explicitly defined for the component
managing the associated workarea and
release

Not applicable

CoreqDelete v Workarea owner of all specified workareas

v Explicitly defined for the component
associated with the release

Not applicable

DefectAccept v Defect owner for the component associated
with the defect

Defect owner, defect originator,
duplicate defect originators,
subscribers

DefectAssign v Defect owner, defect originator

v Explicitly defined for the component
associated with the defect

Note: Originators who do not have
DefectAssign authority can reassign the defect
only when it is in the open state.

New owner, defect originator,
duplicate defect originators,
subscribers

DefectCancel v Defect originator

v Explicitly defined for the component
associated with the defect

Defect owner, defect originator,
duplicate defect originators,
subscribers

DefectClose Automatic action; no authority is required Defect owner, defect originator,
duplicate defect originators,
subscribers

DefectConfiginfo Not applicable; this is a base authority that can
be performed by all users in the family

Defect owner, defect originator,
duplicate defect originators,
subscribers

DefectDesign v Defect owner

v Explicitly defined for the component
associated with the defect

Defect owner, defect originator,
duplicate defect originators,
subscribers

238 Administrator’s Guide

For this action These users have authority These users are notified

DefectModify v Defect owner can modify:

– answer, abstract, environment, driver,
prefix, reference, release, and all
configurable fields

v Defect originator can modify:

– originator, severity, name, abstract,
environment, driver, prefix, reference,
release, and all configurable fields

v Explicitly defined for the component
associated with the defect, these users can
modify:

– abstract, answer, name, environment,
driver, originator, prefix, reference, release,
severity, phaseFound*, phaseInject*,
priority*, symptom*, and target*

*If these fields have been configured by the
family administrator, the field names might
differ from those shown.

Defect owner, defect originator,
duplicate defect originators,
subscribers

DefectOpen Not applicable; this is a base authority that can
be performed by all users in the family

Component owner, subscribers

DefectReopen v Defect originator

v Explicitly defined for the component
associated with the defect

Defect owner, defect originator,
duplicate defect originators,
subscribers

DefectReturn v Defect owner

v Explicitly defined for the component
associated with the defect

Defect originator, duplicate
defect originators, subscribers

DefectReview v Defect owner

v Explicitly defined for the component
associated with the defect

Defect owner, defect originator,
duplicate defect originators,
subscribers

DefectSize v Defect owner

v Explicitly defined for the component
associated with the defect

Defect owner, defect originator,
duplicate defect originators,
subscribers

DefectVerify v Defect owner

v Explicitly defined for the component
associated with the defect

Defect owner, defect originator,
duplicate defect originators,
subscribers

DefectView v Defect owner, defect originator

v Explicitly defined for the component
associated with the defect

Not applicable

Appendix A. Authority and notification for TeamConnection actions 239

For this action These users have authority These users are notified

DriverAssign v Driver owner

v Explicitly defined for the component
associated with the release

New owner, subscribers

DriverCheck v Driver owner

v Explicitly defined for the component
associated with the release

Not applicable

DriverCommit v Explicitly defined for the component
associated with the release

Subscribers

DriverComplete v Explicitly defined for the component
associated with the release

Subscribers

DriverCreate v Release owner

v Explicitly defined for the component
associated with the release

Subscribers

DriverDelete v Driver owner

v Explicitly defined for the component
associated with the release

Subscribers

DriverExtract v Driver owner

v Explicitly defined for the component
associated with the release

Not applicable

DriverFreeze v Driver owner

v Explicitly defined for the component
associated with the release

Driver owner, subscribers

DriverModify v Driver owner

v Explicitly defined for the component
associated with the release

Driver owner, subscribers

DriverRefresh v Explicitly defined for the component
associated with the release

Component owner, subscribers

DriverRestrict v Driver owner

v Explicitly defined for the component
associated with the release

Driver owner, subscribers

DriverView v Driver owner

v Explicitly defined for the component
associated with the release

Not applicable

EnvCreate v Release owner

v Explicitly defined for the component
associated with the release

Tester, subscribers

240 Administrator’s Guide

For this action These users have authority These users are notified

EnvDelete v Release owner

v Explicitly defined for the component
associated with the release

Subscribers

EnvModify v Release owner

v Explicitly defined for the component
associated with the release

Tester, subscribers

FeatureAccept v Feature owner

v Explicitly defined for the component
associated with the feature

Feature owner, feature
originator, duplicate feature
originators, subscribers

FeatureAssign v Feature owner

v Explicitly defined for the component
associated with the feature

New owner, feature originator,
duplicate feature originators,
subscribers

FeatureCancel v Feature originator

v Explicitly defined for the component
associated with the feature

Feature owner, feature
originator, duplicate feature
originators, subscribers

FeatureClose Occurs automatically; no authority is required Feature owner, feature
originator, duplicate feature
originators, subscribers

FeatureComment Not applicable; this is a base authority that can
be performed by all users in the family

Feature owner, feature
originator, duplicate feature
originators, subscribers

FeatureDesign v Feature owner

v Explicitly defined for the component
associated with the feature

Feature owner, feature
originator, duplicate feature
originators, subscribers

Appendix A. Authority and notification for TeamConnection actions 241

For this action These users have authority These users are notified

FeatureModify v Feature owner can modify:

– abstract, prefix, reference, and all
configurable fields

v Feature originator can modify:

– abstract, name, prefix, reference, and all
configurable fields

v Explicitly defined for the component
associated with the feature, these users can
modify:

– abstract, name, originator, prefix,
reference, priority*, and target*

*If these fields have been configured by the
family administrator, the field names might
differ from those shown.

Feature owner, feature
originator, duplicate feature
originators, subscribers

FeatureOpen Not applicable; this is a base authority that can
be performed by all users in the family

Component owner, subscribers

FeatureReopen v Feature originator

v Explicitly defined for the component
associated with the feature

Feature owner, feature
originator, duplicate feature
originators, subscribers

FeatureReturn v Feature owner

v Explicitly defined for the component
associated with the feature

Feature owner, feature
originator, duplicate feature
originators, subscribers

FeatureReview v Feature owner

v Explicitly defined for the component
associated with the feature

Feature owner, feature
originator, duplicate feature
originators, subscribers

FeatureSize v Feature owner

v Explicitly defined for the component
associated with the feature

Feature owner, feature
originator, duplicate feature
originators, subscribers

FeatureVerify v Feature owner

v Explicitly defined for the component
associated with the feature

Feature owner, feature
originator, duplicate feature
originators, subscribers

FeatureView v Feature owner

v Explicitly defined for the component
associated with the feature

Not applicable

242 Administrator’s Guide

For this action These users have authority These users are notified

FixActive v Fix record owner, component owner,
workarea owner

v Explicitly defined for the component
associated with the fix record

Subscribers

FixAssign v Fix record owner, component owner,
workarea owner

v Explicitly defined for the component
associated with the fix record

New fix record owner,
subscribers

FixComplete v Fix record owner, component owner,
workarea owner

v Explicitly defined for the component
associated with the fix record

Subscribers

FixCreate v Defect or feature owner, workarea owner

v Explicitly defined for the component
associated with the defect or feature

Subscribers

FixDelete v Defect or feature owner, workarea owner

v Explicitly defined for the component
associated with the defect or feature

Subscribers

HostCreate v Owner of the user ID for which a host list
entry is being created or deleted

v Superuser

Not applicable

HostDelete v Owner of the user ID for which a host list
entry is being deleted

v Superuser

Not applicable

MemberCreate v Driver owner

v Explicitly defined for the component
associated with the release

Driver owner, subscribers

MemberCreateR v Driver owner

v Explicitly defined for the component
associated with the release

Driver owner, subscribers

MemberDelete v Driver owner

v Explicitly defined for the component
associated with the release

Driver owner, subscribers

MemberDeleteR v Driver owner

v Explicitly defined for the component
associated with the release

Driver owner, subscribers

Appendix A. Authority and notification for TeamConnection actions 243

For this action These users have authority These users are notified

NotifyCreate v Component owner

v Explicitly defined for the component
associated with the notification list

Not applicable

NotifyDelete v Component owner

v Owner of user ID

v Explicitly defined for the component
associated with the notification list
Note: Users can delete themselves from a
notification list without requiring any
authority

Not applicable

ParserCreate v Explicitly defined for the component
associated with the release

Subscribers

ParserDelete v Explicitly defined for the component
associated with the release

Subscribers

ParserModify v Explicitly defined for the component
associated with the release

Subscribers

ParserView v Explicitly defined for the component
associated with the release

Not applicable

PartAdd v Component owner

v Explicitly defined for the component
associated with the part

Subscribers

PartBuild v Component owner

v Explicitly defined for the component
associated with the part

Subscribers

PartCheckIn v User who checked out or locked the part
originally, component owner

v Explicitly defined for the component
associated with the part

Note: The user who is explicitly given this
authority can check in a part that is checked
out by someone else.

Subscribers

PartCheckOut v Component owner

v Explicitly defined for the component
associated with the part

Subscribers

PartChildInfo v Component owner

v Explicitly defined for the component
associated with the part

Not applicable

244 Administrator’s Guide

For this action These users have authority These users are notified

PartConnect v Component owner

v Explicitly defined for the component
associated with the part

Subscribers

PartDelete v Component owner

v Explicitly defined for the component
associated with the part

Subscribers

PartDeleteForce v Component owner

v Explicitly defined for the component
associated with the part

Subscribers

PartExtract v Component owner

v Explicitly defined for the component
associated with the part

Not applicable

PartForceIn v Component owner

v Explicitly defined for the component
associated with the part

Subscribers

PartForceOut v Component owner

v Explicitly defined for the component
associated with the part

Subscribers

PartLink v Component owner

v Explicitly defined for the component
associated with the part

Subscribers

PartLock v Component owner

v Explicitly defined for the component
associated with the part

Subscribers

PartLockForce v Component owner

v Explicitly defined for the component
associated with the part

Subscribers

PartMark v Component owner

v Explicitly defined for the component
associated with the part

Subscribers

PartMerge v Component owner

v Explicitly defined for the component
associated with the part

Subscribers

PartModify v Component owner

v Explicitly defined for the component
associated with the part

Subscribers

Appendix A. Authority and notification for TeamConnection actions 245

For this action These users have authority These users are notified

PartOverrideR Explicitly defined for the component associated
with the release

Subscribers, user granted the
override (if a user specified)

PartReconcile v Component owner

v Explicitly defined for the component that
manages the associated release

Subscribers

PartRecreateForce v Component owner

v Explicitly defined for the component
associated with the part

Subscribers

PartRecreate v Component owner

v Explicitly defined for the component
associated with the part

Subscribers

PartRefresh v Component owner

v Explicitly defined for the component
associated with the part

Subscribers

PartRename v Component owner

v Explicitly defined for the component
associated with the part

Subscribers

PartRenameForce v Component owner

v Explicitly defined for the component
associated with the part

Subscribers

PartResolve Not applicable; this is a base authority that can
be performed by all users in the family

Not applicable

PartRestrict Explicitly defined for the component associated
with the release

Subscribers

PartTouch v Component owner

v Explicitly defined for the component
associated with the part

Subscribers

PartUndo v Component owner

v Explicitly defined for the component
associated with the part

Subscribers

PartUndoForce v Component owner

v Explicitly defined for the component
associated with the part

Subscribers

PartUnlock v User who checked out or locked the part
originally, component owner

v Explicitly defined for the component
associated with the part

Subscribers

246 Administrator’s Guide

For this action These users have authority These users are notified

PartView v Component owner

v Explicitly defined for the component
associated with the part

Not applicable

PartViewMsg v Component owner

v Explicitly defined for the component
associated with the part

Not applicable

PrereqCreate v Workarea owner of all specified workareas

v Explicitly defined for the component
managing the associated workarea and
release

Not applicable

PrereqDelete v Workarea owner of all specified workareas

v Explicitly defined for the component
managing the associated workarea and
release

Not applicable

ReleaseCreate v Explicitly defined for the component
associated with the new release

New release owner, component
owner, subscribers

ReleaseDelete v Release owner

v Explicitly defined for the component
associated with the release

Release owner, component
owner, subscribers

ReleaseExtract v Release owner

v Explicitly defined for the component
associated with the release

Not applicable

ReleaseLink v Release owner

v Explicitly defined for the component
associated with the release

Release owner, subscribers

ReleaseMerge v Release owner

v Explicitly defined for the component
associated with the release

Release owner, subscribers

ReleaseModify v Release owner

v Explicitly defined for the component
associated with the release

Note: To identify a new component to
manage the release, you must have
ReleaseCreate in an authority group in the
component that you are modifying

Release owner, subscribers, new
owner (if applicable)

Appendix A. Authority and notification for TeamConnection actions 247

For this action These users have authority These users are notified

ReleasePrune v Release owner

v Explicitly defined for the component
associated with the release

Subscribers

ReleaseRecreate v Release owner

v Explicitly defined for the component
associated with the release

Release owner, component
owner, subscribers

ReleaseView v Release owner

v Explicitly defined for the component
associated with the release

Not applicable

Report Not applicable; this is a base authority that can
be performed by all users in the family

Not applicable

ShadowCreate Explicitly defined for the component associated
with the release

Not applicable

ShadowDefine Superuser Not applicable

ShadowDelete Explicitly defined for the component associated
with the release

Not applicable

ShadowDisable Explicitly defined for the component associated
with the release

Not applicable

ShadowEnable Explicitly defined for the component associated
with the release

Not applicable

ShadowModify Explicitly defined for the component associated
with the release

Not applicable

ShadowRedefine Superuser Not applicable

ShadowSync Explicitly defined for the component associated
with the release

Not applicable

ShadowUndefine Superuser Not applicable

ShadowVerify Explicitly defined for the component associated
with the release

Not applicable

ShadowView Explicitly defined for the component associated
with the release

Not applicable

SizeAccept v Sizing record owner

v Explicitly defined for the component
associated with the sizing record

Subscribers

SizeAssign v Sizing record owner

v Explicitly defined for the component
associated with the sizing record

New sizing record owner,
defect/feature owner,
subscribers

248 Administrator’s Guide

For this action These users have authority These users are notified

SizeCreate v Defect/feature owner

v Explicitly defined for the component
associated with the defect/feature

Component owner,
defect/feature owner,
subscribers

SizeDelete v Defect/feature owner

v Explicitly defined for the component
associated with the defect/feature

Subscribers, sizing record
owner, defect/feature owner

SizeReject v Sizing record owner

v Explicitly defined for the component
associated with the sizing record

Subscribers

TestAbstain v Test record owner

v Explicitly defined for the component
associated with the test record’s release

Subscribers

TestAccept v Test record owner

v Explicitly defined for the component
associated with the test record’s release

Subscribers

TestAssign v Test record owner

v Explicitly defined for the component
associated with the test record’s release

New test record owner,
subscribers

TestReady v Test record owner

v Explicitly defined for the component
associated with the test record’s release

Subscribers

TestReject v Test record owner

v Explicitly defined for the component
associated with the test record’s release

Subscribers

UserCreate Superuser New user

UserDelete Superuser Not applicable

UserModify v Owner of the user object can modify all
characteristics except the superuser privilege

v Must be a superuser to grant the superuser
privilege

Not applicable

UserRecreate Superuser Not applicable

UserView Not applicable; this is a base authority that can
be performed by all users in the family

Not applicable

VerifyAbstain v Verification record owner

v Explicitly defined for the component
associated with the verification record’s
defect or feature

Subscribers

Appendix A. Authority and notification for TeamConnection actions 249

For this action These users have authority These users are notified

VerifyAccept v Verification record owner

v Explicitly defined for the component
associated with the verification record’s
defect or feature

Subscribers

VerifyAssign v Verification record owner

v Explicitly defined for the component
associated with the verification record’s
defect or feature

New verification record owner,
subscribers

VerifyReady Takes place automatically; no authority is
required

Verification record owners

VerifyReject v Verification record owner

v Explicitly defined for the component
associated with the verification record’s
defect or feature

Subscribers

WorkAreaAssign v Workarea owner

v Explicitly defined for the component
associated with the release

New workarea owner,
subscribers

WorkAreaCancel v Defect or feature owner (if either exists),
otherwise workarea owner

v Explicitly defined for the component
associated with the defect or feature

Subscribers, owners of approval
records for workarea being
canceled

WorkAreaCheck v Workarea owner

v Explicitly defined for the component
associated with the release

Not applicable

WorkAreaCommit v Workarea owner

v Explicitly defined for the component
associated with the release

Subscribers

WorkAreaComplet v Workarea owner

v Explicitly defined for the component
associated with the release

Subscribers

WorkAreaCreate v Defect or feature owner

v Explicitly defined for the component
associated with the defect or feature

Workarea owner, subscribers

WorkAreaFix v Workarea owner

v Explicitly defined for the component
associated with the release

Subscribers

250 Administrator’s Guide

For this action These users have authority These users are notified

WorkAreaFreeze v Workarea owner

v Explicitly defined for the component
associated with the release

Subscribers

WorkAreaIntegra v Workarea owner

v Explicitly defined for the component
associated with the release

Subscribers

WorkAreaModify v Workarea owner

v Explicitly defined for the component
associated with the release

Subscribers

WorkAreaReconcile v Workarea owner

v Explicitly defined for the component
associated with the release

Workarea owner, subscribers

WorkAreaRefresh v Workarea owner

v Explicitly defined for the component
associated with the release

Workarea owner, subscribers

WorkAreaTest v Workarea owner

v Explicitly defined for the component
associated with the release

Subscribers

WorkAreaUndo v Defect or feature owner (if either exists),
otherwise workarea owner

v Explicitly defined for the component
associated with the release

WorkAreaView v Workarea owner

v Explicitly defined for the component
associated with the release

Not applicable

Appendix A. Authority and notification for TeamConnection actions 251

252 Administrator’s Guide

Appendix B. Worksheets

Authority groups worksheet

The following table lists TeamConnection actions. Use this table to record the
authority groups for your family if you are using groups other than those
supplied by IBM. Those TeamConnection actions that cannot be included in
an authority group are marked with information about how they can be
performed.

TeamConnection
action

Authority groups for family:_________________

AccessCreate

AccessDelete

AccessRestrict

ApprovalAbstain

ApprovalAccept

ApprovalAssign

ApprovalCreate

ApprovalDelete

ApprovalReject

ApproverCreate

ApproverDelete

BuilderCreate

BuilderDelete

BuilderExtract

BuilderModify

BuilderView

CollisionAccept

CollisionReconc

CollisionReject

CompCreate

CompDelete

CompLink

© Copyright IBM Corp. 1992, 1999 253

TeamConnection
action

Authority groups for family:_________________

CompModify

CompRecreate

CompUnlink

CompView

CoreqCreate

CoreqDelete

DefectAccept

DefectAssign

DefectCancel

DefectClose Automatic action

DefectComment Base authority

DefectDesign

DefectModify

DefectOpen Base authority

DefectReopen

DefectReturn

DefectReview

DefectSize

DefectVerify

DefectView

DriverAssign

DriverCheck

DriverCommit

DriverComplete

DriverCreate

DriverDelete

DriverExtract

DriverFreeze

DriverModify

DriverRefresh

DriverRestrict

DriverView

254 Administrator’s Guide

TeamConnection
action

Authority groups for family:_________________

EnvCreate

EnvDelete

EnvModify

FeatureAccept

FeatureAssign

FeatureCancel

FeatureClose Automatic action

FeatureComment Base authority

FeatureDesign

FeatureModify

FeatureOpen Base authority

FeatureReopen

FeatureReturn

FeatureReview

FeatureSize

FeatureVerify

FeatureView

FixActive

FixAssign

FixComplete

FixCreate

FixDelete

HostCreate Superuser, admin, or owner implicit authority

HostDelete Superuser, admin, or owner implicit authority

MemberCreate

MemberCreateR

MemberDelete

MemberDeleteR

NotifyCreate

NotifyDelete

ParserCreate

ParserDelete

Appendix B. Worksheets 255

TeamConnection
action

Authority groups for family:_________________

ParserModify

ParserView

PartAdd

PartBuild

PartCheckIn

PartCheckOut

PartChildInfo

PartConnect

PartDelete

PartDeleteForce

PartDisconnect

PartExtract

PartForceIn

PartForceOut

PartLink

PartLock

PartLockForce

PartMark

PartModify

PartOverrideR

PartRecreate

PartRecreaForce

PartRename

PartRenameForce

PartResolve Base authority

PartRestrict

PartTouch

PartUndo

PartUndoForce

PartUnlock

PartView

PartViewmsg

256 Administrator’s Guide

TeamConnection
action

Authority groups for family:_________________

PrereqCreate

PrereqDelete

ReleaseCreate

ReleaseDelete

ReleaseExtract

ReleaseLink

ReleaseModify

ReleasePrune

ReleaseRecreate

ReleaseView

Report Base authority

ShadowCreate

ShadowDefine Superuser

ShadowDelete

ShadowDisable

ShadowEnable

ShadowModify

ShadowRedefine Superuser

ShadowSync

ShadowUndefine Superuser

ShadowVerify

ShadowView

SizeAccept

SizeAssign

SizeCreate

SizeDelete

SizeReject

TestAbstain

TestAccept

TestAssign

TestReady Automatic action

TestReject

Appendix B. Worksheets 257

TeamConnection
action

Authority groups for family:_________________

UserCreate Superuser implicit or admin authority

UserDelete Superuser implicit or admin authority

UserModify Superuser, admin, or owner implicit authority

UserRecreate Superuser implicit or admin authority

UserView

VerifyAbstain

VerifyAccept

VerifyAssign

VerifyReady Automatic action

VerifyReject

WorkAreaAssign

WorkAreaCancel

WorkAreaCheck

WorkAreaCommit

WorkAreaComplet

WorkAreaCreate

WorkAreaFix

WorkAreaFreeze

WorkAreaIntegra

WorkAreaModify

WorkAreaRefresh

WorkAreaTest

WorkAreaView

Interest groups worksheet

The following table lists the TeamConnection actions. Use this table to record
the interest groups for your family if you are using groups other than those
supplied by IBM. Those TeamConnection actions that cannot be included in
an interest group are marked with information about how users are notified.

TeamConnection actions

Interest groups for family: _________

AccessCreate .

258 Administrator’s Guide

TeamConnection actions

Interest groups for family: _________

AccessDelete

AccessRestrict .

ApprovalAbstain

ApprovalAccept

ApprovalAssign

ApprovalCreate

ApprovalDelete

ApprovalReject

ApproverCreate

ApproverDelete

BuilderCreate

BuilderDelete

BuilderExtract No notification

BuilderModify

BuilderView No notification

CollisionAccept

CollisionReconc

CollisionReject

CompCreate New owner implicit notification

CompDelete

CompLink

CompModify

CompRecreate

CompUnlink

CompView No notification

CoreqCreate No notification

CoreqDelete No notification

DefectAccept

DefectAssign

DefectCancel

DefectClose

DefectComment

Appendix B. Worksheets 259

TeamConnection actions

Interest groups for family: _________

DefectDesign

DefectModify

DefectOpen

DefectReopen

DefectReturn

DefectReview

DefectSize

DefectVerify

DefectView No notification

DriverAssign

DriverCheck No notification

DriverCommit

DriverComplete

DriverCreate

DriverDelete

DriverExtract No notification

DriverFreeze

DriverModify

DriverRefresh No notification

DriverRestrict Owner implicit notification

DriverView No notification

EnvCreate

EnvDelete

EnvModify

FeatureAccept

FeatureAssign

FeatureCancel

FeatureClose

FeatureComment

FeatureDesign

FeatureModify

FeatureOpen

260 Administrator’s Guide

TeamConnection actions

Interest groups for family: _________

FeatureReopen

FeatureReturn

FeatureReview

FeatureSize

FeatureVerify

FeatureView No notification

FixActive

FixAssign

FixComplete

FixCreate

FixDelete

HostCreate No notification

HostDelete No notification

MemberCreate

MemberCreateR New owner implicit notification

MemberDelete

MemberDeleteR Owner implicit notification

NotifyCreate No notification

NotifyDelete No notification

ParserCreate

ParserDelete

ParserModify

ParserView No notification

PartAdd

PartBuild owner implicit notification

PartCheckIn

PartCheckOut

PartConnect

PartDelete

PartDisconnect

PartExtract No notification

PartForceIn

Appendix B. Worksheets 261

TeamConnection actions

Interest groups for family: _________

PartForceOut

PartLink

PartLock

PartLockForce PartLock subscribers

PartMark

PartModify

PartOverrideR

PartRecreaForce PartRecreate subscribers

PartRecreate

PartRename

PartRenameForce PartRename subscribers

PartResolve No notification

PartRestrict

PartTouch No notification

PartUndo

PartUndoForce PartUndo subscribers

PartUnlock

PartView No notification

PartViewmsg No notification

PrereqCreate New owner implicit notification

PrereqDelete Owner implicit notification

ReleaseCreate

ReleaseDelete

ReleaseExtract No notification

ReleaseLink

ReleaseModify

ReleaseRecreate

ReleaseView No notification

Report No notification

ShadowCreate No notification

ShadowDefine No notification

ShadowDelete No notification

262 Administrator’s Guide

TeamConnection actions

Interest groups for family: _________

ShadowDisable No notification

ShadowEnable No notification

ShadowModify No notification

ShadowRedefine No notification

ShadowSync No notification

ShadowUndefine No notification

ShadowVerify No notification

ShadowView No notification

SizeAccept

SizeAssign

SizeCreate

SizeDelete

SizeReject

TestAbstain

TestAccept

TestAssign

TestCreate

TestDelete

TestReady Owner implicit notification

TestReject

UserCreate New user implicit notification

UserDelete No notification

UserModify No notification

UserUnDelete No notification

UserView No notification

VerifyAbstain

VerifyAccept

VerifyAssign

VerifyReady Owner implicit notification

VerifyReject

WorkAreaAssign

WorkAreaCancel

Appendix B. Worksheets 263

TeamConnection actions

Interest groups for family: _________

WorkAreaCheck No notification

WorkAreaCommit

WorkAreaComplet

WorkAreaCreate

WorkAreaExtract

WorkAreaFix

WorkAreaFreeze Owner implicit notification

WorkAreaIntegra

WorkAreaModify

WorkAreaRefresh

WorkAreaTest

WorkAreaView No notification

Configurable processes worksheets

The following worksheets list the TeamConnection subprocesses. Use these
worksheets to record the processes that you have created for your family.
Separate worksheets are provided for component and release processes. For
more information on configuring processes, see “Chapter 11. Configuring
component and release processes” on page 131.

TeamConnection component
subprocesses

Component processes for _____________

dsrDefect

dsrFeature

verifyDefect

verifyFeature

none

TeamConnection release
subprocesses

Release processes for _____________

track

approval

264 Administrator’s Guide

TeamConnection release
subprocesses

Release processes for _____________

fix

driver

test

trackfixhold

trackcommithold

tracktesthold

none

Appendix B. Worksheets 265

266 Administrator’s Guide

Appendix C. Environment Variables

You can set environment variables to describe the TeamConnection
environment in which you are working. Environment variables provide
default settings and behaviors for many TeamConnection actions and
processes. You can override the value you set for many of these variables by
using the corresponding flag in a TeamConnection command or field on the
TeamConnection GUI.

Some environment variables can be set either by your operating system (such
as in your config.sys file or .profile) or by the TeamConnection Settings
notebook. When an environment variable has a Settings notebook equivalent,
TeamConnectionuses the two as follows:
v The environment variable controls the command line interface.
v The Settings notebook controls the graphical user interface.

If there is no Settings notebook equivalent for the environment variable, then
the environment variable takes effect regardless of the interface you are using.
See “Setting environment variables” on page 276 for more information about
setting environment variables.

You are not required to set your TC_FAMILY environment variable for the
TeamConnectionclient command line interface. However, if the TC_FAMILY
environment variable is not set, the -family must be specified for every client
command.

The following table lists the names of the TeamConnection environment
variables, the purpose they serve, the equivalent TeamConnection
command-line flag, the equivalent Settings notebook field, and the
TeamConnection component that uses each environment variable.

Table 6. TeamConnection environment variables

Environment variable Purpose Flag Setting Used by

LANG Specifies the
language-specific message
catalog.

Client, family
server

NLSPATH Specifies the search path
for locating message files.

NLS path Client, family
server

PATH Specifies where tcadmin is
to search for the family
create utilities.

Client, build
server, family
server

© Copyright IBM Corp. 1992, 1999 267

Table 6. TeamConnection environment variables (continued)

Environment variable Purpose Flag Setting Used by

TC_BACKUP Controls whether or not
the following commands
create backup files when a
read-only copy of the file
already exists on your
workstation. If this
environment variable is set
to off or OFF, the
commands do not create
backup files.

v builder -extract

v part -checkout

v part -extract

v part -merge

v part -reconcile

Family server

TC_BACKUPCHAR Specifies the character to be
interted in the file name
extension when
TeamConnection creates a
backup copy of a file
during checkout and
extract actions. The default
backup characters are $ on
Intel platforms and _ on
UNIX platforms. If you
check out or extract a file
called myfile.ext, for
example, and a read-only
copy of this file already
exists on your workstation,
TeamConnection creates a
backup copy called
myfile.$ext or myfile._ext.
On file systems requiring
8.3 file names (such as FAT
file systems), the file
extension is truncated to
three characters (myfile.$ex
or myfile._ex).

Family server

268 Administrator’s Guide

Table 6. TeamConnection environment variables (continued)

Environment variable Purpose Flag Setting Used by

TC_BECOME Identifies the user ID you
want to issue
TeamConnectioncommands
from, if the user ID differs
from your login. You
assume the access authority
of the user ID you specify.

-become Become
user

Client, build
server (except
mvs)

TC_BUILDENVIRONMENT Specifies the build
environment name, such as
OS/2 or MVS. The value
you specify here can be
anything you like, but it
must exactly match the
environment specified for a
builder in order for the
builder to use this build
agent. This value is
case-sensitive.

-e Build server

TC_BUILDMINWAIT Minimum amount of time
to wait (in seconds)
between queries for new
jobs. Default setting is 5,
minimum setting is 3.

Build server

TC_BUILDMAXWAIT Maximum amount of time
to wait (in seconds)
between queries for new
jobs. Default setting is 15,
maximum setting is 300.

Build server

Appendix C. Environment Variables 269

Table 6. TeamConnection environment variables (continued)

Environment variable Purpose Flag Setting Used by

TC_BUILDOPTS Specifies build options for
sending build log file
messages to the screen, and
setting the logging level. If
you do not specify any of
these options, then the
build server writes build
messages to the build log
file (teamcbld.log), and
writes a minimum level of
messages to the log file.
Some possible values are:
v TOSCREEN (-s) sends

the teamcbld.log file to
the screen in addition to
sending it to a file.

v USEENVFILE (-n)
– writes the changed

environment variables
to a file called
tcbldenv.lst instead of
setting them in
program’s
environment. The
format of the file is
variable=value.

– writes the list of input
files to a file called
tcbldin.lst. One file
per line, format is
pathName type.

– writes the list of
output files to a file
called tcbldout.lst.
One file per line,
format is pathName
type.

-s, -n Build server

TC_BUILDPOOL Specifies the build pool
name.

-p Pool Build server

TC_BUILD_RSSBUILDS_FILE Specifies the name of
startup files to be used to
provide information about
build servers to the build
process.

Build server

270 Administrator’s Guide

Table 6. TeamConnection environment variables (continued)

Environment variable Purpose Flag Setting Used by

TC_CASESENSE Changes the case of the
arguments in commands,
not in queries.

Case Client

TC_CATALOG Specifies a specific file for
the
TeamConnectionmessage
catalog. Sometimes,
depending upon the
operating system
environment, the catalog
open command will only
look in a particular
directory for the catalog. If
the host is running
multiple versions of
TeamConnection, this
variable may be used. To
set this environment
variable, specify the file
path name of the message
catalog as in the following
example:

TC_CATALOG=
"/family/msgcat/teamc.cat"

Family server,
oe build server

TC_COMPONENT Specifies the default
component.

-component Component Client, make
import tool

TC_DBPATH Specifies the database
directory path. Family
specific database files
reside here.

Family server

TC_FAMILY Identifies the
TeamConnection family
you work with.

-family Family Build server,
client, family
server, make
import tool

Appendix C. Environment Variables 271

Table 6. TeamConnection environment variables (continued)

Environment variable Purpose Flag Setting Used by

TC_MAKEIMPORTRULES Specifies the name of the
rules file that
TeamConnection uses when
importing the makefile
data into TeamConnection.
If you set this environment
variable, then you do not
have to use the /u option
with the fhomigmk
command (Intel only).
Specify the full path name
of the rules file. If neither
this environment variable
nor the /u option is used,
TeamConnection uses
default rules.

Make import
tool

TC_MAKEIMPORTTOP Strips off the leading part
of the directory name when
importing parts into
TeamConnection. For
example, you have parts
with the following
directory structure:
g:\octo\src\inc\. To create
these parts without the
g:\octo structure, you can
set
TC_MAKEIMPORTTOP=g:\octo
before you invoke the
make import tool. The
parts created in
TeamConnection have the
directory structure of
src\inc\.

Make import
tool

TC_MAKEIMPORTVERBOSE Causes the -verbose flag to
be added to part
commands created by
fhomigmk.

Make import
tool

TC_MIGRATERULES Specifies the name of a file
containing the rules to be
applied for migration of
makefiles if the name is not
supplied on the fhomigmk
command (Intel only) line
as a parameter.

Client

272 Administrator’s Guide

Table 6. TeamConnection environment variables (continued)

Environment variable Purpose Flag Setting Used by

TC_MODELS Specifies which models to
load beyond the base
TeamConnection models.
Use thisd environment
variable to enable tools that
extend the TeamConnection
model. The following list
shows the values to set for
TC_MODELS for other
tools supported by
TeamConection:

DataAtlas
TC_MODELS=″_ewswsdd
_ewswhll
_ewswims″

This environment variable
is also used to specify
which models to load in
the TeamConnection
Breditor (a tool offered by
the ToolBuilder’s
Development Kit). The
following are appropriate
Breditor settings for each
TeamConnection platform:

OS/2 fhcbred

Windows NT
fhmbred

AIX fhcbred

Solaris fhcbred

HP-UX fhcbred

Sever

Appendix C. Environment Variables 273

Table 6. TeamConnection environment variables (continued)

Environment variable Purpose Flag Setting Used by

TC_MODPERM Controls whether or not
the read-only attribute is
set after a part is created,
checked in or unlocked in
TeamConnection. To cause
the read-only attribute to
be set, specify
TC_MODPERM=ON. To
prevent the read-only
attribute from being set,
specify
TC_MODPERM=OFF. The
default is
TC_MODPERM=ON.

Client

TC_NOTIFY_DAEMON An alternate way of
starting notifyd with the
teamcd command. If you
set this environment
variable, then you do not
have to use the -n option
with the teamcd command.
Specify the full path name
of the mail exit to use with
notifyd.

Family server

TC_RELEASE Specifies a release. -release Release Client, make
import tool

TC_REPORT_CHECKACCESS Enables report access
checking. With this option,
TeamConnection checks a
component’s access list
before allowing a user to
view a component, defect,
feature, or part. Only users
who are granted authority
in an authority group that
includes the CompView,
DefectView, FeatureView,
and PartView actions can
view reports for the
component.Set
TC_REPORT_CHECKACCESS=1
to enable or
TC_REPORT_CHECKACCESS=0
to disable this function.

Family server

274 Administrator’s Guide

Table 6. TeamConnection environment variables (continued)

Environment variable Purpose Flag Setting Used by

TC_TOP Specifies the source
directory.

-top Top Client

TC_TRACE Specifies the variable that
lets the user designate
which parts should be
traced. You should modify
this only when directed to
do so by an IBM service
person. Otherwise it is set
to null. To trace all parts,
specify TC_TRACE=*.

Client, family
server, build
server

TC_TRACEFILE Specifies the output (part
path and name) of the trace
that the user designates
using TC_TRACE. The
default trace file name is
tctrace. For the MVS build
server, the default trace file
is stdout.

Client, family
server, build
server

TC_TRACESIZE Specifies the maximum size
of the trace file in bytes. If
the maximum is reached,
wrapping occurs. The
default is one million bytes.

Client, family
server, build
server

TC_USER Specifies the user login ID
for single-user
environments OS/2 and
Windows 95 (if not using
the login facility). This
environment variable is not
used in multiuser
environments AIX, HP-UX,
Solaris, MVS, MVS/OE,
and Windows NT. If a user
is using the Windows 95
login facility, this
environment variable is not
used.

User ID Client, build
server

TC_WORKAREA Specifies the default
workarea name.

-workarea Workarea Client, make
import tool

TC_WWWPATH Specifies the path for the
HTML helps and image
files for Web client.

Client, family
server

Appendix C. Environment Variables 275

Table 6. TeamConnection environment variables (continued)

Environment variable Purpose Flag Setting Used by

TC_WWWDISABLED Disables the Web client. Family server

The following environment variables are dynamically set by the teamcbld
processor before the build script is invoked:

Table 7. TeamConnection dynamically set build environment variables

Environment variable Purpose Flag Setting Used by

TC_BUILD_USER Login of user who initiated
the part -build command.

Build server

TC_INPUT List of input files
(separated by spaces).

Build server

TC_INPUTTYPE List of input file types
(such as TCPart).

Build server

TC_OUTPUT List of output files. Build server

TC_OUTPUTTYPE List of output file types. Build server

TC_LOCATION Directory where build
script is invoked.

Build server
(except MVS
build server)

Setting environment variables

For methods of setting your environment variables, refer to your operating
system documentation. For example, you can use the following command to
set the TC_FAMILY environment variable:
v OS/2 - SET TC_FAMILY=familyName@hostname@portnumber

v UNIX - export TC_FAMILY=familyName@hostName@portNumber

276 Administrator’s Guide

Appendix D. Configurable field types

This appendix describes the configurable field types shipped with
TeamConnection. It also contains information that may help you determine
how options that define configurable field types and configurable fields in the
TeamConnection GUI, command line interface, and SQL interface correspond.

Configurable field types

The following tables show the configuration table values under the following
column headings:

Field type
Configuration field types that are supported by TeamConnection.

Value Values for the various configuration field types that are shipped with
TeamConnection.

Note: Your TeamConnection family administrator can add names for
each configuration field type.

Description
A description of each value shipped with TeamConnection.

Note: Your TeamConnection family administrator can add
descriptions for fields.

There are no default values specified for most of the field types that IBM
ships. However, your TeamConnection family administrator can set defaults
for your family. For information on setting defaults, see “Defining
configurable field types” on page 117.

Priority levels for defects and features

Field Type Value Description

priority mustfix Defect or feature must be resolved in this
release

priority candidate Defect or feature is a candidate if time
permits

priority deferred Defect or feature deferred to next release

priority easy Defect or feature is easy to solve or
implement

© Copyright IBM Corp. 1992, 1999 277

Field Type Value Description

priority moderate Defect or feature is moderately difficult to
resolve

priority difficult Defect or feature is difficult to solve or
implement

priority n/a Priority does not apply to this defect or
feature

The type of driver

Field Type Value Description

drivertype development Development driver

drivertype production Production driver

drivertype integration Integration driver

drivertype prototype Prototype driver

drivertype other Other type of driver

The severity of the problem that a defect was opened to resolve

Field Type Value Description

severity 1 Wrong results or failure; critical to
program execution

severity 2 Wrong results; not critical to program
execution

severity 3 Unexpected behavior

severity 4 Suggestion or enhancement request

The type of defect or feature

Field Type Value Description

defectPrefix c Defect reported by a customer

defectPrefix d Defect reported by internal users

featurePrefix s Suggestion made by customer

featurePrefix f Feature requested by internal users

The symptom of the problem a defect was opened to resolve

Field Type Value Description

symptom incorrect_i/o Incorrect or unexpected input or output

symptom program_defect Program defect

278 Administrator’s Guide

Field Type Value Description

symptom design_wrong Original design is incorrect; redesign
required

symptom function_needed Additional function is required

symptom plans_incorrect Plans need to be changed or enhanced

symptom docs_incorrect Documentation is incorrect

symptom prog_suspended Program suspended during normal
operation

symptom core_dump Core dump occurred during normal
operation

symptom lost_data Data loss occurred during normal
operation

symptom usability Program or application is not usable as is

symptom test_failed Test failed

symptom build_failed Build, compile, or module integration
failed

symptom install_failed Installation failed

symptom obsolete_code Remove obsolete code

symptom intgr_problem Integration problems with other
applications

symptom performance Performance problems; code needs to be
optimized

symptom reliability Reliability problems; code needs more
work

symptom non-standard Coding practices or program execution is
non-standard

symptom not_to_spec Program or application does not function
as specified

The development phase in progress when a defect was found or injected

Field Type Value Description

phase design Design Phase

phase planning Planning Phase

phase strategy Strategic Planning Phase

phase prototyping Prototyping Phase

phase development Development Phase

phase documenting Documentation or Publication Phase

Appendix D. Configurable field types 279

Field Type Value Description

phase inspections Inspection Phase

phase maintenance Maintenance Phase

phase building Building, Compiling or Module
Integration Phase

phase unit_test Unit Test

phase functional_test Functional Test

phase regression_test Regression Test

phase install_test Installation Test

phase config_test Configuration Test

phase integrate_test Integration Test

phase quality_test Quality Assurance Test

phase usability_test Usability Test

phase ship_test Ship Test

phase beta_test Beta Test

phase n/a Not applicable to any particular phase

The reason a defect or feature is being accepted

Field Type Value Description

answerAccept program_defect The problem was due to a program error

answerAccept docs_defect Documentation needs to be changed

answerAccept docs_change Documentation needs to address new
features

answerAccept plans_change Plans or schedules need to be changed

answerAccept new_function New function will be added

answerAccept redesign Current function needs to be redesigned

answerAccept fix_testcase Testcase needs to be fixed

answerAccept remove_code Obsolete code needs to be removed

answerAccept remove_support Nonsupported functions need to be
removed

answerAccept comply_with Coding practices and operation needs to
comply with standards

The reason a defect or feature is being returned

Field Type Value Description

answerReturn fixed The problem is already fixed

280 Administrator’s Guide

Field Type Value Description

answerReturn future Future releases or versions will address
the defect or feature

answerReturn duplicate This is a duplicate of an existing defect or
feature

answerReturn usage_error The problem is caused by incorrect usage

answerReturn hardware_error The problem is caused by a hardware
error

answerReturn info_needed More information is required

answerReturn limitation This problem is a current limitation

answerReturn suggestion This problem is a suggestion, not an error

answerReturn unrecreatable The problem cannot be re-created

answerReturn as_designed The program works as designed

answerReturn deviation Code or documentation will deviate from
the standards

The relationship of a part to the translation process

Field Type Value Description

translation no Part is not involved in translation

translation yes Part is translated into other languages

translation related Part is not translated but is related to
translation process

Reasons for returning a feature

Field Type Value Description

featureReturn fixed The feature is already implemented

featureReturn future Future releases or versions will address
the feature

featureReturn duplicate This is a duplicate of an existing feature

featureReturn info_needed More information is required

featureReturn deviation Code or documentation will deviate from
the standards

featureReturn null Null

Appendix D. Configurable field types 281

Reasons for accepting a feature

Field Type Value Description

featureAccept docs_change Documentation needs to address new
features

featureAccept new_function New function will be added

featureAccept redesign Current function needs to be redesigned

featureAccept null Null

Fields for specifying expressions

Configurable field types for specifying expressions, such as serial
and phone, are not supported on Windows NT servers.

Field Type Value Description

serial |NULL$ Null value

serial |[0-9]\{6\}$ Six-numeral serial number

Phone numbers

Field Type Value Description

phone |NULL$ Null value

phone |TL-[0-9]\{3\}-[0-9]\{4\}$ Phone format TL-PPP-NNNN, P and N
are numerals

A list from which more than one item can be selected

Field Type Value Description

list item1 Item to be selected from a list

list item2 Item to be selected from a list

list item3 Item to be selected from a list

list item4 Item to be selected from a list

list item5 Item to be selected from a list

Field for noting code development iterations

Field Type Value Description

iteration base_code Base Code/Prior Release

iteration 01 First iteration

iteration 02 Second iteration

iteration 03 Third iteration

282 Administrator’s Guide

Field Type Value Description

iteration 04 Fourth iteration

iteration 05 Fifth iteration

iteration 06 Sixth iteration

iteration 07 Seventh iteration

iteration 08 Eighth iteration

iteration 09 Ninth iteration

iteration 10 Tenth iteration

iteration 11 Eleventh iteration

iteration 12 Twelfth iteration

iteration 13 Thirteenth iteration

iteration 14 Fourteenth iteration

iteration 15 Fifteenth iteration

Describes the activity in progress when a defect was discovered

Field Type Value Description

activityODC review Review or inspection

activityODC ut/ft Unit Test or Functional Test

activityODC st System Test

activityODC id Information Development

activityODC customer Customer use

Identify specific intents or purposes for which an activity that triggered a
defect was being performed

Field Type Value Description

triggerODC design Design Nonconformance

triggerODC flow Understanding Flow

triggerODC backward Backward Compatibility

triggerODC lateral Lateral Compatibility

triggerODC concurrency Concurrency

triggerODC document Internal Document
Consistency/Completeness

triggerODC language Language Dependencies

triggerODC side Side Effects

triggerODC rare Rare Situation

Appendix D. Configurable field types 283

Field Type Value Description

triggerODC simple Simple Path

triggerODC complex Complex Path

triggerODC coverage Test Coverage

triggerODC variation Test Variation

triggerODC sequencing Test Sequencing

triggerODC interaction Test Interaction

triggerODC workload Workload Volume/Stress

triggerODC recover Recovery/Exception

triggerODC startup Startup/Restart

triggerODC hw Hardware Configuration

triggerODC sw Software Configuration

triggerODC normal Normal Mode

triggerODC accuracy The information does not describe the
product correctly

triggerODC clarity The information is confusing or difficult
to understand

triggerODC completeness Necessary information is missing

triggerODC organization The relationship between parts or
between a part and the whole is not
conveyed

triggerODC retrievability The information is difficult to find

triggerODC style The manner of expression is
inappropriate or difficult to understand

triggerODC task The presentation of why and how to
perform a task is inappropriate

triggerODC aesthetics The appearance and layout of the
information is inappropriate

The impact a defect might have on customers if not fixed

Field Type Value Description

impactODC installability The ability of the customer to prepare
and place the software in position for use

impactODC security The protection of systems, programs, and
data from inadvertent or malicious
destruction, alteration, or disclosure

284 Administrator’s Guide

Field Type Value Description

impactODC performance The speed of the software as perceived by
the customer and the customer’s end
users, in terms of their ability to perform
their tasks

impactODC maintenance The ease of applying preventive or
corrective fixes to the software

impactODC serviceability The ability to diagnose failures easily and
quickly, with minimal impact to the
customer

impactODC migration The ease of upgrading to a current release

impactODC documentation The degree to which the publication aids
provided for understanding the structure
and intended uses of the software are
correct and complete

impactODC usability The degree to which the software and
publication aids enable the product to be
easily understood and conveniently
employed by its end user

impactODC standards The degree to which the software
complies with established pertinent
standards

impactODC reliability The ability of the software to consistently
perform its intended function without
unplanned interruption

impactODC requirements A customer expectation, with regard to
capability, which was not known,
understood, or prioritized as a
requirement for the current product or
release

impactODC capability The ability of the software to perform its
intended functions, and satisfy known
requirements

The aspect of the product that a defect is intended to address

Field Type Value Description

targetODC requirements Customer, market, or technical
requirements

targetODC design Product design

targetODC code Product code

Appendix D. Configurable field types 285

Field Type Value Description

targetODC build Problems encountered during the driver
build process, in library systems, or with
management of change or version control

targetODC information Information/User Documentation

targetODC ui User Interface

targetODC nls National Language Support

Represents the actual correction that was made

Field Type Value Description

defTypeODC assignment Value(s) assigned incorrectly or not
assigned at all

defTypeODC checking Errors caused by missing or incorrect
validation of parameters or data in
conditional statements

defTypeODC algorithm Efficiency or correctness problems that
affect the task and can be fixed by
(re)implementing an algorithm or local
data structure without the need for
requesting a design change

defTypeODC function The error should require a formal design
change

defTypeODC timing Necessary serialization of shared resource
was missing

defTypeODC interface Communication problem between
product components

defTypeODC relationship Problems related to associations among
procedures, data structures and objects

defTypeODC editorial Defects relates to grammar, spelling,
punctuation, organization, etc.

defTypeODC technical Defects related to the description of a
product and its interfaces

defTypeODC navigational Defects that prevent users from finding
needed information about a product

defTypeODC GUI Graphical User Interface

defTypeODC cmdline Command Line Interface

defTypeODC panels Panels

defTypeODC na Not Available

286 Administrator’s Guide

Indication of whether the defect was an omission, a commission, or
extraneous

Field Type Value Description

qualifierODC missing The defect was to due to an error of
omission

qualifierODC incorrect The defect was to due to an error of
commission

qualifierODC extraneous The defect was to due to something not
relevant or pertinent to the document or
code

The source of the code or information that was fixed

Field Type Value Description

sourceODC here A defect is in code which was developed
in house

sourceODC reused A defect is encountered using a part of a
standard reuse library

sourceODC outsourced A defect is in a part provided by a
vendor

sourceODC reference Defect contained in detailed descriptive
information

sourceODC tasks Defect contained in guidance information

sourceODC presentation Defect contained in graphical and other
elements used to present the information

sourceODC concepts Defect contained in high level overview
and conceptual information

sourceODC examples Examples

sourceODC na Not available or not applicable

The history of the code or information that was fixed

Field Type Value Description

srcHistoryODC base The defect is in part of the product which
has not been modified by the current
project and is not part of a standard reuse
library

srcHistoryODC new The defect is in a function which was
created by and for the current project and
which introduces new function

Appendix D. Configurable field types 287

Field Type Value Description

srcHistoryODC rewritten The defect was introduced as a direct
result of redesign and/or rewrite of old
function in an attempt to improve its
design or quality

srcHistoryODC refixed The defect was introduced by the solution
provided to fix a previous defect

288 Administrator’s Guide

Appendix E. User exit parameters

The following table shows the parameters passed to each user exit program
defined for a specific TeamConnection action and ExitID. A description of the
parameters follows the table on page 317.

Note: Parameters are not shown for exit ID 3. The parameters for exit ID 3
are the same as those passed to exit ID 0, with an additional parameter
at the end to indicate the last user exit ID that has been executed
successfully, for example, 0 or 1.The msgBuff parameter will always be
null for exit ID 0, but will probably not be null for exit ID 3.

A parameter name followed by not used indicates that TeamConnection passes
an empty string.

See “Chapter 12. Providing user exits” on page 135 for more information on
user exits.

Parameters passed to user exit programs

The figure that follows shows the parameters passed to each user exit
program defined for a specific TeamConnection action and exit ID.

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

AccessCreate 0 NewOwner, component, authority, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 NewOwner, component, authority, effectiveUserID, VerboseFlag

2 NewOwner, component, authority, effectiveUserID, VerboseFlag

AccessDelete 0 OldOwner, component, authority, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 OldOwner, component, authority, effectiveUserID, VerboseFlag

2 OldOwner, component, authority, effectiveUserID, VerboseFlag

AccessRestrict 0 NewOwner, component, authority, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 NewOwner, component, authority, effectiveUserID, VerboseFlag

2 NewOwner, component, authority, effectiveUserID, VerboseFlag

© Copyright IBM Corp. 1992, 1999 289

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

ApprovalAbstain 0 release, WorkAreaName, ApproverName, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 release, WorkAreaName, DefectOrFeatureName, ApproverName,
workareaType, effectiveUserID, VerboseFlag

2 release, WorkAreaName, DefectOrFeatureName, ApproverName,
workareaType, effectiveUserID, VerboseFlag

ApprovalAccept 0 release, WorkAreaName, ApproverName, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 release, WorkAreaName, DefectOrFeatureName, ApproverName,
workareaType, effectiveUserID, VerboseFlag

2 release, WorkAreaName, DefectOrFeatureName, ApproverName,
workareaType, effectiveUserID, VerboseFlag

ApprovalAssign 0 release, WorkAreaName, OldOwner, NewOwner, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 release, WorkAreaName, DefectOrFeatureName, OldOwner, NewOwner,
workareaType, effectiveUserID, VerboseFlag

2 release, WorkAreaName, DefectOrFeatureName, OldOwner, NewOwner,
workareaType, effectiveUserID, VerboseFlag

ApprovalCreate 0 release, WorkAreaName, ApproverName, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 release, WorkAreaName, DefectOrFeatureName, ApproverName,
workareaType, effectiveUserID, VerboseFlag

2 release, WorkAreaName, DefectOrFeatureName, ApproverName,
workareaType, effectiveUserID, VerboseFlag

ApprovalDelete 0 release, WorkAreaName, ApproverName, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 release, WorkAreaName, DefectOrFeatureName, ApproverName,
workareaType, effectiveUserID, VerboseFlag

2 release, WorkAreaName, DefectOrFeatureName, ApproverName,
workareaType, effectiveUserID, VerboseFlag

ApprovalReject 0 release, WorkAreaName, ApproverName, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 release, WorkAreaName, DefectOrFeatureName, ApproverName,
workareaType, effectiveUserID, VerboseFlag

290 Administrator’s Guide

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

2 release, WorkAreaName, DefectOrFeatureName, ApproverName,
workareaType, effectiveUserID, VerboseFlag

ApproverCreate 0 NewOwner, release, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 NewOwner, release, effectiveUserID, VerboseFlag

2 NewOwner, release, effectiveUserID, VerboseFlag

ApproverDelete 0 OldOwner, release, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 OldOwner, release, effectiveUserID, VerboseFlag

2 OldOwner, release, effectiveUserID, VerboseFlag

BecomeCreate 0 login, becomeLogin, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 login, becomeLogin, effectiveUserID, VerboseFlag

2 login, becomeLogin, effectiveUserID, VerboseFlag

BecomeDelete 0 login, becomeLogin, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 login, becomeLogin, effectiveUserID, VerboseFlag

2 login, becomeLogin, effectiveUserID, VerboseFlag

BuilderCreate 0 name, transmitFlag, temporaryfileonserver, release, condition, value,
script, filetype, buildparameters, targetenvironment, timeout,
processoroptions, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 name, temporaryfileonserver, release, condition, value, script, filetype,
buildparameters, targetenvironment, timeout, processoroptions,
effectiveUserID, VerboseFlag

2 name, temporaryfileonserver, release, condition, value, script, filetype,
buildparameters, targetenvironment, timeout, processoroptions,
effectiveUserID, VerboseFlag

BuilderDelete 0 name, release, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 name, release, effectiveUserID, VerboseFlag

2 name, release, effectiveUserID, VerboseFlag

BuilderExtract 0 name, release, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

Appendix E. User exit parameters 291

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

1 name, release, effectiveUserID, VerboseFlag

2 name, temporaryfileonserver, release, condition, value, script, filetype,
buildparameters, targetenvironment, timeout, effectiveUserID, VerboseFlag

BuilderModify 0 name, transmitFlag, temporaryfileonserver, release, condition, value,
script, filetype, buildparameters, targetenvironment, timeout,
processoroptions, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 name, temporaryfileonserver, release, condition, value, script, filetype,
buildparameters, targetenvironment, timeout, processoroptions,
effectiveUserID, VerboseFlag

2 name, temporaryfileonserver, release, condition, value, script, filetype,
buildparameters, targetenvironment, timeout, processoroptions,
effectiveUserID, VerboseFlag

BuilderView 0 name, release, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 name, release, effectiveUserID, VerboseFlag

2 name, release, effectiveUserID, VerboseFlag

CollisionAccept 0 pathName, WorkAreaName, release, state, alternateversion, workareaType,
typename, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 pathName, WorkAreaName, release, typename, effectiveUserID,
VerboseFlag

2 pathName, WorkAreaName, release, typename, effectiveUserID,
VerboseFlag

CollisionReconc 0 pathName, WorkAreaName, release, state, alternateversion, workareaType,
typename, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 pathName, WorkAreaName, release, typename, effectiveUserID,
VerboseFlag

2 pathName, WorkAreaName, release, typename, effectiveUserID,
VerboseFlag

CollisionReject 0 pathName, WorkAreaName, release, state, alternateversion, workareaType,
typename, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 pathName, WorkAreaName, release, typename, effectiveUserID,
VerboseFlag

2 pathName, WorkAreaName, release, typename, effectiveUserID,
VerboseFlag

292 Administrator’s Guide

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

CompCreate 0 component, parentcomponent, owner, componentprocess, description,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 newcomponent, parentcomponent, owner, newcomponentprocess,
description, effectiveUserID, VerboseFlag

2 newcomponent, parentcomponent, owner, newcomponentprocess,
description, effectiveUserID, VerboseFlag

CompDelete 0 component, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 component, effectiveUserID, VerboseFlag

2 component, effectiveUserID, VerboseFlag

CompLink 0 component, parentcomponent, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 component, parentcomponent, effectiveUserID, VerboseFlag

2 component, parentcomponent, effectiveUserID, VerboseFlag

CompModify 0 component, newcomponent, NewOwner, newdescription,
newcomponentprocess, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 component, newcomponent, OldOwner, NewOwner, olddescription,
newdescription, oldcomponentprocess, newcomponentprocess,
dateoflastupdate, effectiveUserID, VerboseFlag

2 name, newcomponent, NewOwner, description, process, effectiveUserID,
VerboseFlag

CompRecreate 0 component, parentcomponent, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 component, parentcomponent, olddropDate, effectiveUserID, VerboseFlag

2 component, parentcomponent, olddropDate, effectiveUserID, VerboseFlag

CompUnlink 0 component, parentcomponent, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 component, parentcomponent, effectiveUserID, VerboseFlag

2 component, parentcomponent, effectiveUserID, VerboseFlag

CompView 0 component, displaytype, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 component, displaytype, effectiveUserID, VerboseFlag

Appendix E. User exit parameters 293

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

2 component, displaytype, effectiveUserID, VerboseFlag

CoreqCreate 0 release, primeworkareaname, secondworkareaname, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 release, primeworkareaname, secondworkareaname, primeworkareatype,
secondworkareatype, effectiveUserID, VerboseFlag

2 release, primeworkareaname, secondworkareaname, primeworkareatype,
secondworkareatype, effectiveUserID, VerboseFlag

CoreqDelete 0 release, WorkAreaName, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 release, WorkAreaName, workareaType, effectiveUserID, VerboseFlag

2 release, WorkAreaName, workareaType, effectiveUserID, VerboseFlag

DefectAccept 0 defectname, originaldefectname, answer, remarks, StdStr, ConfStr,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 defectname, answer, remarks, configFields, effectiveUserID, VerboseFlag

2 defectname, originaldefectname, answer, remarks, effectiveUserID,
VerboseFlag

DefectAssign 0 defectname, newcomponent, NewOwner, remarks, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 defectname, newcomponent, NewOwner, remarks, effectiveUserID,
VerboseFlag

2 defectname, newcomponent, NewOwner, remarks, effectiveUserID,
VerboseFlag

DefectCancel 0 defectname, originaldefectname, answer, remarks, stdStr, confStr,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 defectname, remarks, effectiveUserID, VerboseFlag

2 defectname, originaldefectname, answer, remarks, effectiveUserID,
VerboseFlag

DefectComment 0 defectname, remarks, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 defectname, remarks, effectiveUserID, VerboseFlag

2 defectname, remarks, effectiveUserID, VerboseFlag

DefectDesign 0 defectname, originaldefectname, answer, remarks, stdStr, confStr,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

294 Administrator’s Guide

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

1 defectname, remarks, effectiveUserID, VerboseFlag

2 defectname, originaldefectname, answer, remarks, effectiveUserID,
VerboseFlag

DefectModify 0 defectname, newdefectname, severity, environmentname, prefix, reference,
drivername, abstract, originator, answer, remarks, release, configFields,
notesDB, notesID, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 defectname, newdefectname, severity, environmentname, prefix, reference,
drivername, abstract, originator, answer, remarks, release, configFields,
dateoflastupdate, notesDB, notesID, effectiveUserID, VerboseFlag

2 defectname, newdefectname, severity, environmentname, prefix, reference,
drivername, abstract, originator, answer, remarks, release, configFields,
notesDB, notesID, effectiveUserID, VerboseFlag

DefectOpen 0 component, prefix, severity, reference, environmentname, remarks,
drivername, abstract, release, configFields, defectname, MessageBuffer,
notesDB, notesID, effectiveUserID, TeamcUserID, VerboseFlag

1 component, prefix, severity, reference, environmentname, remarks,
drivername, abstract, release, configFields, defectname, effectiveuserarea,
notesDB, notesID, effectiveUserID, VerboseFlag

2 component, prefix, severity, reference, environmentname, remarks,
drivername, abstract, release, configFields, defectname, effectiveuserarea,
notesDB, notesID, effectiveUserID, VerboseFlag

DefectReopen 0 defectname, originaldefectname, answer, remarks, stdStr, confStr,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 defectname, remarks, effectiveUserID, VerboseFlag

2 defectname, originaldefectname, answer, remarks, effectiveUserID,
VerboseFlag

DefectReturn 0 defectname, originaldefectname, answer, remarks, stdStr, confStr,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 defectname, originaldefectname, answer, remarks, effectiveUserID,
VerboseFlag

2 defectname, originaldefectname, answer, remarks, effectiveUserID,
VerboseFlag

DefectReview 0 defectname, originaldefectname, answer, remarks, stdStr, confStr,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 defectname, remarks, effectiveUserID, VerboseFlag

Appendix E. User exit parameters 295

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

2 defectname, originaldefectname, answer, remarks, effectiveUserID,
VerboseFlag

DefectSize 0 defectname, originaldefectname, answer, remarks, stdStr, confStr,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 defectname, remarks, effectiveUserID, VerboseFlag

2 defectname, originaldefectname, answer, remarks, effectiveUserID,
VerboseFlag

DefectVerify 0 defectname, originaldefectname, answer, remarks, stdStr, confStr,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 defectname, remarks, effectiveUserID, VerboseFlag

2 defectname, originaldefectname, answer, remarks, effectiveUserID,
VerboseFlag

DefectView 0 defectname, displaytype, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 defectname, displaytype, effectiveUserID, VerboseFlag

2 defectname, displaytype, effectiveUserID, VerboseFlag

DriverAssign 0 drivername, release, NewOwner, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 drivername, release, NewOwner, driverstate, drivertype, effectiveUserID,
VerboseFlag

2 drivername, release, NewOwner, driverstate, drivertype, effectiveUserID,
VerboseFlag

DriverCheck 0 drivername, release, longFlag, dupFlag, basename, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 drivername, release, longFlag, driverstate, drivertype, basename,
effectiveUserID, VerboseFlag

2 drivername, release, longFlag, driverstate, drivertype, basename,
effectiveUserID, VerboseFlag

DriverCommit 0 drivername, release, forceFlag, ignoreFlag, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 drivername, release, drivertype, effectiveUserID, VerboseFlag

2 drivername, release, drivertype, effectiveUserID, VerboseFlag

296 Administrator’s Guide

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

DriverComplete 0 drivername, release, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 drivername, release, drivertype, effectiveUserID, VerboseFlag

2 drivername, release, drivertype, effectiveUserID, VerboseFlag

DriverCreate 0 drivername, release, drivertype, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 drivername, release, drivertype, effectiveUserID, VerboseFlag

2 drivername, release, drivertype, effectiveUserID, VerboseFlag

DriverDelete 0 drivername, release, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 drivername, release, driverstate, drivertype, effectiveUserID, VerboseFlag

2 drivername, release, driverstate, drivertype, effectiveUserID, VerboseFlag

DriverExtract 0 drivername, release, root, nokeysFlag, ExtractType, fmask, dmask, crlfFlag,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 drivername, release, root, nokeysFlag, ExtractType, fmask, dmask, crlfFlag,
driverstate, drivertype, effectiveUserID, VerboseFlag

2 drivername, release, root, nokeysFlag, ExtractType, fmask, dmask, crlfFlag,
driverstate, drivertype, effectiveUserID, VerboseFlag

DriverFreeze 0 drivername, release, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 drivername, release, driverstate, drivertype, effectiveUserID, VerboseFlag

2 drivername, release, driverstate, drivertype, effectiveUserID, VerboseFlag

DriverMerge 0 drivername, release, workareaname, fromDriver, fromRelease,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 drivername, release, workareaname, fromDriver, fromRelease,
effectiveUserID, VerboseFlag

2 drivername, release, workareaname, fromDriver, fromRelease,
effectiveUserID, VerboseFlag

DriverModify 0 drivername, newdrivername, release, newdrivertype, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 drivername, newdrivername, release, oldtype, newtype, driverstate,
dateoflastupdate, effectiveUserID, VerboseFlag

Appendix E. User exit parameters 297

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

2 drivername, newdrivername, release, oldtype, newtype, driverstate,
effectiveUserID, VerboseFlag

DriverRefresh 0 drivername, release, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 drivername, release, driverstate, drivertype, effectiveUserID, VerboseFlag

2 drivername, release, driverstate, drivertype, effectiveUserID, VerboseFlag

DriverRestrict 0 drivername, release, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 drivername, release, drivertype, effectiveUserID, VerboseFlag

2 drivername, release, drivertype, effectiveUserID, VerboseFlag

DriverView 0 drivername, release, displaytype, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 drivername, release, displaytype, driverstate, drivertype, effectiveUserID,
VerboseFlag

2 drivername, release, displaytype, driverstate, drivertype, effectiveUserID,
VerboseFlag

MemberCreate 0 drivername, release, WorkAreaName, forceFlag, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 drivername, release, WorkAreaName, DefectOrFeatureName,
workareastate, workareaType, drivertype, effectiveUserID, VerboseFlag

2 drivername, release, WorkAreaName, DefectOrFeatureName,
workareastate, workareaType, drivertype, effectiveUserID, VerboseFlag

MemberDelete 0 drivername, release, numberofworkareas, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 drivername, release, drivertype, effectiveUserID, VerboseFlag

2 drivername, release, drivertype, effectiveUserID, VerboseFlag

EnvCreate 0 environmentname, release, testersname, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 environmentname, release, testersname, effectiveUserID, VerboseFlag

2 environmentname, release, testersname, effectiveUserID, VerboseFlag

EnvDelete 0 environmentname, release, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

298 Administrator’s Guide

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

1 environmentname, release, effectiveUserID, VerboseFlag

2 environmentname, release, effectiveUserID, VerboseFlag

EnvModify 0 environmentname, release, newtestersname, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 environmentname, release, newtestersname, effectiveUserID, VerboseFlag

2 environmentname, release, newtestersname, effectiveUserID, VerboseFlag

FeatureAccept 0 featurename, originalfeaturename, remarks, StandardFields, configFields,
answer, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 featurename, remarks, configFields, answer, effectiveUserID, VerboseFlag

2 featurename, originalfeaturename, remarks, answer, effectiveUserID,
VerboseFlag

FeatureAssign 0 featurename, newcomponent, NewOwner, remarks, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 featurename, newcomponent, NewOwner, remarks, effectiveUserID,
VerboseFlag

2 featurename, newcomponent, NewOwner, remarks, effectiveUserID,
VerboseFlag

FeatureCancel 0 featurename, originalfeaturename, remarks, StandardFields, configFields,
answer, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 featurename, remarks, effectiveUserID, VerboseFlag

2 featurename, originalfeaturename, remarks, answer, effectiveUserID,
VerboseFlag

FeatureComment 0 featurename, remarks, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 featurename, remarks, effectiveUserID, VerboseFlag

2 featurename, remarks, effectiveUserID, VerboseFlag

FeatureDesign 0 featurename, originalfeaturename, remarks, StandardFields, configFields,
answer, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 featurename, remarks, effectiveUserID, VerboseFlag

2 featurename, originalfeaturename, remarks, answer, effectiveUserID,
VerboseFlag

Appendix E. User exit parameters 299

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

FeatureModify 0 featurename, newfeaturename, prefix, reference, abstract, originator,
remarks, configFields, MessageBuffer, answer, release, notesDB, notesID,
effectiveUserID, TeamcUserID, VerboseFlag

1 featurename, newfeaturename, prefix, reference, abstract, originator,
remarks, configFields, dateoflastupdate, answer, release, notesDB, notesID,
effectiveUserID, VerboseFlag

2 featurename, newfeaturename, prefix, reference, abstract, originator,
remarks, configFields, answer, release, notesDB, notesID, effectiveUserID,
VerboseFlag

FeatureOpen 0 component, prefix, reference, remarks, abstract, configFields, featurename,
release, notesDB, notesID, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 component, prefix, reference, remarks, abstract, configFields, featurename,
release, notesDB, notesID, effectiveUserID, VerboseFlag

2 component, prefix, reference, remarks, abstract, configFields, featurename,
release, notesDB, notesID, effectiveUserID, VerboseFlag

FeatureReopen 0 featurename, originalfeaturename, remarks, StandardFields, configFields,
answer, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 featurename, remarks, effectiveUserID, VerboseFlag

2 featurename, originalfeaturename, remarks, answer, effectiveUserID,
VerboseFlag

FeatureReturn 0 featurename, originalfeaturename, remarks, StandardFields, configFields,
answer, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 featurename, originalfeaturename, remarks, answer, effectiveUserID,
VerboseFlag

2 featurename, originalfeaturename, remarks, answer, effectiveUserID,
VerboseFlag

FeatureReview 0 featurename, originalfeaturename, remarks, StandardFields, configFields,
answer, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 featurename, remarks, effectiveUserID, VerboseFlag

2 featurename, originalfeaturename, remarks, answer, effectiveUserID,
VerboseFlag

FeatureSize 0 featurename, originalfeaturename, remarks, StandardFields, configFields,
answer, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 featurename, remarks, effectiveUserID, VerboseFlag

300 Administrator’s Guide

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

2 featurename, originalfeaturename, remarks, answer, effectiveUserID,
VerboseFlag

FeatureVerify 0 featurename, originalfeaturename, remarks, StandardFields, configFields,
answer, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 featurename, remarks, effectiveUserID, VerboseFlag

2 featurename, originalfeaturename, remarks, answer, effectiveUserID,
VerboseFlag

FeatureView 0 featurename, displaytype, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 featurename, displaytype, effectiveUserID, VerboseFlag

2 featurename, displaytype, effectiveUserID, VerboseFlag

FixActive 0 WorkAreaName, release, component, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 WorkAreaName, DefectOrFeatureName, release, component, type,
effectiveUserID, VerboseFlag

2 WorkAreaName, DefectOrFeatureName, release, component, type,
effectiveUserID, VerboseFlag

FixAssign 0 WorkAreaName, release, component, NewOwner, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 WorkAreaName, DefectOrFeatureName, release, component, NewOwner,
type, effectiveUserID, VerboseFlag

2 WorkAreaName, DefectOrFeatureName, release, component, NewOwner,
type, effectiveUserID, VerboseFlag

FixComplete 0 WorkAreaName, release, component, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 WorkAreaName, DefectOrFeatureName, release, component, type,
effectiveUserID, VerboseFlag

2 WorkAreaName, DefectOrFeatureName, release, component, type,
effectiveUserID, VerboseFlag

FixCreate 0 WorkAreaName, release, component, NewOwner, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 WorkAreaName, DefectOrFeatureName, release, component, NewOwner,
type, effectiveUserID, VerboseFlag

Appendix E. User exit parameters 301

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

2 WorkAreaName, DefectOrFeatureName, release, component, NewOwner,
type, effectiveUserID, VerboseFlag

FixDelete 0 WorkAreaName, release, component, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 WorkAreaName, release, component, type, effectiveUserID, VerboseFlag

2 WorkAreaName, release, component, type, effectiveUserID, VerboseFlag

HostCreate 0 NewOwner, login@hostname, loginType, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 NewOwner, login@hostname, effectiveUserID, VerboseFlag

2 NewOwner, login@hostname, effectiveUserID, VerboseFlag

HostDelete 0 OldOwner, login@hostname, loginType, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 OldOwner, login@hostname, effectiveUserID, VerboseFlag

2 OldOwner, login@hostname, effectiveUserID, VerboseFlag

NotifyCreate 0 NewOwner, component, interestgroupname, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 NewOwner, component, interestgroupname, effectiveUserID, VerboseFlag

2 NewOwner, component, interestgroupname, effectiveUserID, VerboseFlag

NotifyDelete 0 OldOwner, component, interestgroupname, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 OldOwner, component, interestgroupname, effectiveUserID, VerboseFlag

2 OldOwner, component, interestgroupname, effectiveUserID, VerboseFlag

ParserCreate 0 description, release, parsercommand, paths, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 description, release, parsercommand, paths, effectiveUserID, VerboseFlag

2 description, release, parsercommand, paths, effectiveUserID, VerboseFlag

ParserDelete 0 description, release, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 description, release, effectiveUserID, VerboseFlag

2 description, release, effectiveUserID, VerboseFlag

302 Administrator’s Guide

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

ParserModify 0 description, release, parsercommand, paths, workAreaName,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 description, release, parsercommand, paths, effectiveUserID, VerboseFlag

2 description, release, parsercommand, paths, effectiveUserID, VerboseFlag

ParserView 0 description, release, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 description, release, effectiveUserID, VerboseFlag

2 description, release, effectiveUserID, VerboseFlag

PartAdd 0 partpathName, transmitFlag, filenameonclient, temporaryfileonserver,
release, component, filetype, textBuff, WorkAreaName, fMode,
parentname, parsername, buildername, relationtoparent, buildparameters,
parttype, parenttype, temporaryFlag, StandardFields, configFields,
translation, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, temporaryfileonserver, release, component, filetype,
WorkAreaName, remarks, fMode, parentname, parsername, buildername,
relationtoparent, buildparameters, parttype, parenttype, temporaryFlag,
configFields, translation, effectiveUserID, VerboseFlag

2 partpathName, temporaryfileonserver, release, component, filetype,
WorkAreaName, remarks, fMode, parentname, parsername, buildername,
relationtoparent, buildparameters, parttype, parenttype, temporaryFlag,
configFields, translation, effectiveUserID, VerboseFlag

PartBuild 0 partpathName, release, WorkAreaName, buildmode, poolname,
buildparameters, cancelFlag, detailfilename, clientportname, parttype,
buildResourceName, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 partpathName, WorkAreaName, release, component, buildmode,
poolname, buildparameters, cancelFlag, detailfilename, clienthostname,
clientportname, parttype, effectiveUserID, VerboseFlag

2 partpathName, WorkAreaName, release, component, buildmode,
poolname, buildparameters, cancelFlag, detailfilename, clienthostname,
clientportname, parttype, effectiveUserID, VerboseFlag

PartCheckIn 0 partpathName, transmitFlag, filenameonclient, temporaryfileonserver,
release, forceFlag, textBuff, WorkAreaName, commonFlag, filetype,
parttype, retainlockFlag, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

Appendix E. User exit parameters 303

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

1 partpathName, temporaryfileonserver, release, component, forceFlag,
WorkAreaName, remarks, commonreleases, filetype, parttype,
retainlockFlag, configFields, effectiveUserID, VerboseFlag

2 partpathName, temporaryfileonserver, release, component, versionname,
forceFlag, WorkAreaName, remarks, commonreleases, filetype, parttype,
retainlockFlag, configFields, effectiveUserID, VerboseFlag

PartCheckOut 0 partpathName, release, forceFlag, WorkAreaName, parttype,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, temporaryfileonserver, release, filetype, component,
versionname, forceFlag, workareaname, parttype, configFields,
effectiveUserID, VerboseFlag

2 partpathName, temporaryfileonserver, release, filetype, component,
versionname, forceFlag, workareaname, parttype, configFields,
effectiveUserID, VerboseFlag

PartChildInfo 0 partpathName, release, versionname, WorkAreaName, displaytype,
relationtoparent, parttype, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 partpathName, release, versionname, WorkAreaName, displaytype,
relationtoparent, parttype, effectiveUserID, VerboseFlag

2 partpathName, release, versionname, WorkAreaName, displaytype,
relationtoparent, parttype, effectiveUserID, VerboseFlag

PartConnect 0 partpathName, release, WorkAreaName, parentname, relationtoparent,
parttype, parenttype, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 partpathName, release, WorkAreaName, component, parentname,
relationtoparent, parttype, parenttype, effectiveUserID, VerboseFlag

2 partpathName, release, WorkAreaName, component, parentname,
relationtoparent, parttype, parenttype, effectiveUserID, VerboseFlag

PartDelete 0 partpathName, release, forceFlag, WorkAreaName, commonFlag, parttype,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, release, forceFlag, WorkAreaName, commonFlag,
component, parttype, commonRelBuffer, effectiveUserID, VerboseFlag

2 partpathName, release, forceFlag, WorkAreaName, commonFlag,
component, parttype, commonRelBuffer, effectiveUserID, VerboseFlag

PartDisconnect 0 partpathName, release, WorkAreaName, parentname, parttype,
parenttype, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

304 Administrator’s Guide

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

1 partpathName, release, WorkAreaName, component, parentname,
parttype, parenttype, effectiveUserID, VerboseFlag

2 partpathName, release, WorkAreaName, component, parentname,
parttype, parenttype, effectiveUserID, VerboseFlag

PartExec 0 execCmd, criteria, parent, parentType, release, WorkAreaName,
versionname, numVersions, MessageBuffer, effectiveUserId, TeamcUserID,
VerboseFlag

1 execCmd, criteria, release, WorkAreaName, versionname, numVersions,
configFields, effectiveUserId

2 execCmd, criteria, release, WorkAreaName, versionname, numVersions,
configFields, effectiveUserId

PartExtract 0 partpathName, release, nokeysFlag, WorkAreaName, versionname,
parttype, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, temporaryfileonserver, release, nokeysFlag,
WorkAreaName, versionname, component, parttype, configFields,
effectiveUserID, VerboseFlag

2 partpathName, temporaryfileonserver, release, nokeysFlag,
WorkAreaName, versionname, component, parttype, configFields,
effectiveUserID, VerboseFlag

PartLink 0 partpathName, sourcerelease, release, sourceworkareaname, sourceversion,
parttype, targetworkareaname, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 partpathName, sourceworkareaname, sourcerelease, targetrelease,
sourceversion, component, parttype, targetworkareaname, effectiveUserID,
VerboseFlag

2 partpathName, sourceworkareaname, sourcerelease, targetrelease,
sourceversion, component, parttype, targetworkareaname, effectiveUserID,
VerboseFlag

PartLock 0 partpathName, release, forceFlag, WorkAreaName, parttype,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, release, forceFlag, WorkAreaName, filetype, component,
versionname, parttype, configFields, effectiveUserID, VerboseFlag

2 partpathName, release, forceFlag, WorkAreaName, filetype, component,
versionname, parttype, configFields, effectiveUserID, VerboseFlag

PartMark 0 partpathName, release, versionname, WorkAreaName, translationstate,
parttype, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

Appendix E. User exit parameters 305

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

1 partpathName, release, versionname, WorkAreaName, translationstate,
component, parttype, configFields, effectiveUserID, VerboseFlag

2 partpathName, release, versionname, WorkAreaName, translationstate,
component, parttype, configFields, effectiveUserID, VerboseFlag

PartMerge 0 partpathName, driver, release, WorkAreaName, fromDriver, FromRelease,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, driver, release, WorkAreaName, fromDriver, FromRelease,
effectiveUserID, VerboseFlag

2 partpathName, driver, release, WorkAreaName, fromDriver, FromRelease,
effectiveUserID, VerboseFlag

PartModify 0 partpathName, release, newcomponent, newfMode, configFields,
WorkAreaName, filetype, parsername, buildername, buildparameters,
parttype, temporaryfilename, translation, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 partpathName, release, oldcomponent, newcomponent, oldfMode,
newfMode, configFields, WorkAreaName, dateoflastupdate, filetype,
parsername, buildername, buildparameters, parttype, temporaryFlag,
translation, effectiveUserID, VerboseFlag

2 partpathName, release, oldcomponent, newcomponent, oldfMode,
newfMode, configFields, WorkAreaName, dateoflastupdate, filetype,
parsername, buildername, buildparameters, parttype, temporaryFlag,
translation, effectiveUserID, VerboseFlag

PartReconcile 0 partpathName, release, WorkAreaName, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 partpathName, release, WorkAreaName, effectiveUserID, VerboseFlag

2 partpathName, release, WorkAreaName, effectiveUserID, VerboseFlag

PartRecreate 0 partpathName, release, forceFlag, WorkAreaName, commonFlag, parttype,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, release, forceFlag, WorkAreaName, commonFlag,
component, olddropDate, parttype, commonRelBuffer, effectiveUserID,
VerboseFlag

2 partpathName, release, forceFlag, WorkAreaName, commonFlag,
component, olddropDate, parttype, commonRelBuffer, effectiveUserID,
VerboseFlag

PartRefresh 0 partpathName, sourcerelease, release, sourceworkareaname, sourceversion,
parttype, targetworkareanum, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

306 Administrator’s Guide

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

1 partpathName, sourceworkareaname, sourcerelease, targetrelease,
sourceversion, component, parttype, targetworkareaname, effectiveUserID,
VerboseFlag

2 partpathName, sourceworkareaname, sourcerelease, targetrelease,
sourceversion, component, parttype, targetworkareaname, effectiveUserID,
VerboseFlag

PartRename 0 partpathName, release, nuPartPathName, forceFlag, WorkAreaName,
commonFlag, parttype, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 partpathName, release, nuPartPathName, forceFlag, WorkAreaName,
commonFlag, component, parttype, commonRelBuffer, effectiveUserID,
VerboseFlag

2 partpathName, release, nuPartPathName, forceFlag, WorkAreaName,
commonFlag, component, parttype, commonRelBuffer, effectiveUserID,
VerboseFlag

PartTouch 0 partpathName, release, forceFlag, WorkAreaName, commonFlag, parttype,
creatChangeFlag, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 partpathName, release, forceFlag, WorkAreaName, commonFlag,
component, parttype, effectiveUserID, VerboseFlag

2 partpathName, release, forceFlag, WorkAreaName, commonFlag,
component, parttype, effectiveUserID, VerboseFlag

PartUndo 0 partpathName, release, forceFlag, WorkAreaName, commonFlag, parttype,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, release, forceFlag, WorkAreaName, commonFlag,
component, versionname, parttype, commonRelBuffer, timeNow,
effectiveUserID, VerboseFlag

2 partpathName, release, forceFlag, WorkAreaName, commonFlag,
component, versionname, parttype, commonRelBuffer, timeNow,
effectiveUserID, VerboseFlag

PartUnlock 0 partpathName, WorkAreaName, release, parttype, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, WorkAreaName, release, component, parttype,
configFields, effectiveUserID, VerboseFlag

2 partpathName, WorkAreaName, release, component, parttype,
configFields, effectiveUserID, VerboseFlag

Appendix E. User exit parameters 307

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

PartView 0 partpathName, release, versionname, WorkAreaName, displaytype,
parttype, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, release, versionname, WorkAreaName, displaytype,
parttype, effectiveUserID, VerboseFlag

2 partpathName, release, versionname, WorkAreaName, displaytype,
parttype, effectiveUserID, VerboseFlag

PartViewmsg 0 partpathName, release, versionname, WorkAreaName, parttype,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, release, component, versionname, WorkAreaName,
parttype, effectiveUserID, VerboseFlag

2 partpathName, release, component, versionname, WorkAreaName,
parttype, effectiveUserID, VerboseFlag

PartRestrict 0 partpathName, release, cancelFlag, parttype, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, release, cancelFlag, component, parttype, effectiveUserID,
VerboseFlag

2 partpathName, release, cancelFlag, component, parttype, effectiveUserID,
VerboseFlag

PartOverrideR 0 partpathName, release, WorkAreaName, login, cancelFlag, parttype,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 partpathName, release, WorkAreaName, login, cancelFlag, component,
parttype, effectiveUserID, VerboseFlag

2 partpathName, release, WorkAreaName, login, cancelFlag, component,
parttype, effectiveUserID, VerboseFlag

PrereqCreate 0 release, primeworkareaname, secondworkareaname, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 release, primeworkareaname, secondworkareaname, primeworkareatype,
secondworkareatype, effectiveUserID, VerboseFlag

2 release, primeworkareaname, secondworkareaname, primeworkareatype,
secondworkareatype, effectiveUserID, VerboseFlag

PrereqDelete 0 release, primeworkareaname, secondworkareaname, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 release, primeworkareaname, secondworkareaname, primeworkareatype,
secondworkareatype, effectiveUserID, VerboseFlag

308 Administrator’s Guide

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

2 release, primeworkareaname, secondworkareaname, primeworkareatype,
secondworkareatype, effectiveUserID, VerboseFlag

ReleaseCreate 0 release, component, newreleaseprocess, environmentname, testersname,
ApproverName, description, releaseowner, autoprune, developmentmode,
releasedatabasename, outputversions, StandardFields, configFields,
coupling, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 release, component, newreleaseprocess, environmentname, testersname,
ApproverName, description, releaseowner, coupling, effectiveUserID,
VerboseFlag

2 release, component, newreleaseprocess, environmentname, testersname,
ApproverName, description, releaseowner, coupling, effectiveUserID,
VerboseFlag

ReleaseDelete 0 release, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 release, effectiveUserID, VerboseFlag

2 release, effectiveUserID, VerboseFlag

ReleaseExtract 0 release, root, nokeysFlag, committedFlag, date, fmask, dmask, complist,
crlfFlag, versionname, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 release, root, nokeysFlag, committedFlag, date, fmask, dmask, crlfFlag,
complist, effectiveUserID, VerboseFlag

2 release, root, nokeysFlag, committedFlag, date, fmask, dmask, crlfFlag,
complist, effectiveUserID, VerboseFlag

ReleaseLink 0 release, FromRelease, WorkAreaName, newworkareaname,
fromversionname, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 release, FromRelease, WorkAreaName, fromworkareaname,
fromversionname, effectiveUserID, VerboseFlag

2 release, FromRelease, WorkAreaName, fromworkareaname,
fromversionname, effectiveUserID, VerboseFlag

ReleaseMerge 0 release, WorkAreaName, FromRelease, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 release, WorkAreaName, FromRelease, effectiveUserID, VerboseFlag

2 release, WorkAreaName, FromRelease, effectiveUserID, VerboseFlag

Appendix E. User exit parameters 309

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

ReleaseModify 0 release, newrelease, component, description, newreleaseprocess,
environmentname, testersname, ApproverName, NewOwner, autoprune,
outputversions, StandardFields, configFields, coupling, developmentMode,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 release, newrelease, oldcomponent, newcomponent, olddescription,
newdescription, oldreleaseprocess, newreleaseprocess, environmentname,
testersname, ApproverName, OldOwnerName, NewOwner,
dateoflastupdate, coupling, effectiveUserID, VerboseFlag

2 release, newrelease, component, description, newreleaseprocess,
environmentname, testersname, ApproverName, NewOwner, coupling,
effectiveUserID, VerboseFlag

ReleasePrune 0 release, versionname, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 release, versionname, effectiveUserID, VerboseFlag

2 release, versionname, effectiveUserID, VerboseFlag

ReleaseRecreate 0 release, environmentname, testersname, ApproverName, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 release, lastdropdate, environment, testersname, ApproverName,
effectiveUserID, VerboseFlag

2 release, lastdropdate, environment, testersname, ApproverName,
effectiveUserID, VerboseFlag

ReleaseView 0 release, reporttype, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 release, reporttype, effectiveUserID, VerboseFlag

2 release, reporttype, effectiveUserID, VerboseFlag

Report 0 viewname, reportcriteria, parent, release, WorkAreaName, versionname,
reporttype, parenttype, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 viewname, reportcriteria, parent, effectiveUserID, VerboseFlag

2 viewname, reportcriteria, parent, effectiveUserID, VerboseFlag

ReportGeneral 0 dbobjnames, selspec, reportcriteria, colspec, queryopt, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 viewname, reportcriteria, selspec, colspec, queryChar, effectiveUserID,
VerboseFlag

310 Administrator’s Guide

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

2 viewname, reportcriteria, selspec, colspec, queryChar, effectiveUserID,
VerboseFlag

SizeAccept 0 WorkAreaName, component, release, sizetext, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 WorkAreaName, component, release, sizetext, sizetype, effectiveUserID,
VerboseFlag

2 WorkAreaName, component, release, sizetext, sizetype, effectiveUserID,
VerboseFlag

SizeAssign 0 WorkAreaName, component, release, NewOwner, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 WorkAreaName, component, release, NewOwner, sizetype,
effectiveUserID, VerboseFlag

2 WorkAreaName, component, release, NewOwner, sizetype,
effectiveUserID, VerboseFlag

SizeCreate 0 WorkAreaName, component, release, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 WorkAreaName, component, release, sizetype, effectiveUserID,
VerboseFlag

2 WorkAreaName, component, release, sizetype, effectiveUserID,
VerboseFlag

SizeDelete 0 WorkAreaName, component, release, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 WorkAreaName, component, release, sizetype, effectiveUserID,
VerboseFlag

2 WorkAreaName, component, release, sizetype, effectiveUserID,
VerboseFlag

SizeReject 0 WorkAreaName, component, release, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 WorkAreaName, component, release, sizetype, effectiveUserID,
VerboseFlag

2 WorkAreaName, component, release, sizetype, effectiveUserID,
VerboseFlag

TargetCreate 0 targetName, status, targetDate, active, criteria, configFields,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

Appendix E. User exit parameters 311

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

1 targetName, status, targetDate, active, criteria, configFields,
effectiveUserID, VerboseFlag

2 targetName, status, targetDate, active, criteria, configFields,
effectiveUserID, VerboseFlag

TargetDelete 0 criteria, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 criteria, MessageBuffer, effectiveUserID, VerboseFlag

2 criteria, MessageBuffer, effectiveUserID, VerboseFlag

TargetModify 0 status, targetDate, active, criteria, configFields, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 status, targetDate, active, criteria, configFields, MessageBuffer,
effectiveUserID, VerboseFlag

2 status, targetDate, active, criteria, configFields, MessageBuffer,
effectiveUserID, VerboseFlag

TargetView 0 criteria, type, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 criteria, type, MessageBuffer, effectiveUserID, VerboseFlag

2 criteria, type, MessageBuffer, effectiveUserID, VerboseFlag

TestAbstain 0 WorkAreaName, TesterName, release, environmentname, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 WorkAreaName, DefectOrFeatureName, TesterName, release,
environmentname, type, effectiveUserID, VerboseFlag

2 WorkAreaName, DefectOrFeatureName, TesterName, release,
environmentname, type, effectiveUserID, VerboseFlag

TestAccept 0 WorkAreaName, TesterName, release, environmentname, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 WorkAreaName, DefectOrFeatureName, TesterName, release,
environmentname, type, effectiveUserID, VerboseFlag

2 WorkAreaName, DefectOrFeatureName, TesterName, release,
environmentname, type, effectiveUserID, VerboseFlag

TestAssign 0 WorkAreaName, OldOwner, NewOwner, release, environmentname,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 WorkAreaName, DefectOrFeatureName, OldOwner, NewOwner, release,
environmentname, workareaType, effectiveUserID, VerboseFlag

312 Administrator’s Guide

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

2 WorkAreaName, DefectOrFeatureName, OldOwner, NewOwner, release,
environmentname, workareaType, effectiveUserID, VerboseFlag

TestCreate 0 WorkAreaName, TesterName, release, environmentname, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 WorkAreaName, TesterName, release, environmentname, type,
effectiveUserID, VerboseFlag

2 WorkAreaName, TesterName, release, environmentname, type,
effectiveUserID, VerboseFlag

TestDelete 0 DefectOrFeatureName, release, environmentname, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 DefectOrFeatureName, release, environmentname, type, effectiveUserID,
VerboseFlag

2 DefectOrFeatureName, release, environmentname, type, effectiveUserID,
VerboseFlag

TestReject 0 WorkAreaName, TesterName, release, environmentname, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 WorkAreaName, DefectOrFeatureName, TesterName, release,
environmentname, type, effectiveUserID, VerboseFlag

2 WorkAreaName, DefectOrFeatureName, TesterName, release,
environmentname, type, effectiveUserID, VerboseFlag

UserCreate 0 login, usersfullname, area, sendmailaddress, superuserprivilegeFlag,
configFields, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 login, usersfullname, area, sendmailaddress, superuserprivilegeFlag,
configFields, effectiveUserID, VerboseFlag

2 login, usersfullname, area, sendmailaddress, superuserprivilegeFlag,
configFields, effectiveUserID, VerboseFlag

UserDelete 0 login, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 login, usersfullname, effectiveUserID, VerboseFlag

2 login, usersfullname, effectiveUserID, VerboseFlag

UserModify 0 login, newlogin, newusersfullname, newarea, newuserssendmailaddress,
newsuperuserprivilegeFlag, configFields, passwordlength, oldpassword,
newpassword, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

Appendix E. User exit parameters 313

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

1 login, newlogin, oldusersfullname, newusersfullname, oldarea, newarea,
oldsendmailaddress, newsendmailaddress, oldsuperuserprivilegeFlag,
newsuperuserprivilegeFlag, configFields, dateoflastupdate,
effectiveUserID, VerboseFlag

2 login, newlogin, newusersfullname, newarea, newuserssendmailaddress,
newsuperuserprivilegeFlag, configFields, effectiveUserID, VerboseFlag

UserRecreate 0 login, MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 login, usersfullname, olddropDate, effectiveUserID, VerboseFlag

2 login, usersfullname, olddropDate, effectiveUserID, VerboseFlag

UserView 0 login, displaytype, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 login, displaytype, effectiveUserID, VerboseFlag

2 login, displaytype, effectiveUserID, VerboseFlag

VerifyAbstain 0 defectname, login, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 defectname, login, type, effectiveUserID, VerboseFlag

2 defectname, login, type, effectiveUserID, VerboseFlag

VerifyAccept 0 WorkAreaName, login, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 WorkAreaName, login, type, effectiveUserID, VerboseFlag

2 WorkAreaName, login, type, effectiveUserID, VerboseFlag

VerifyAssign 0 WorkAreaName, OldOwner, NewOwner, MessageBuffer, effectiveUserID,
TesterName, VerboseFlag

1 WorkAreaName, OldOwner, NewOwner, type, effectiveUserID,
VerboseFlag

2 WorkAreaName, OldOwner, NewOwner, type, effectiveUserID,
VerboseFlag

VerifyReject 0 WorkAreaName, login, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 WorkAreaName, login, type, effectiveUserID, VerboseFlag

2 WorkAreaName, login, type, effectiveUserID, VerboseFlag

314 Administrator’s Guide

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

WorkAreaAssign 0 release, WorkAreaName, NewOwner, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 WorkAreaName, release, DefectOrFeatureName, NewOwner,
workareaType, effectiveUserID, VerboseFlag

2 WorkAreaName, release, DefectOrFeatureName, NewOwner,
workareaType, effectiveUserID, VerboseFlag

WorkAreaCancel 0 release, WorkAreaName, forceFlag, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 WorkAreaName, release, DefectOrFeatureName, workareaType,
effectiveUserID, VerboseFlag

2 WorkAreaName, release, DefectOrFeatureName, workareaType,
effectiveUserID, VerboseFlag

WorkAreaCheck 0 release, WorkAreaName, driver, nodupFlagChar, MessageBuffer,
effectiveUserID, TeamcUserID, VerboseFlag

1 release, WorkAreaName, drivername, workareaType, effectiveUserID,
VerboseFlag

2 release, WorkAreaName, drivername, workareaType, effectiveUserID,
VerboseFlag

WorkAreaCommit 0 release, WorkAreaName, forceFlag, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 WorkAreaName, release, DefectOrFeatureName, workareaType,
effectiveUserID, VerboseFlag

2 WorkAreaName, release, DefectOrFeatureName, workareaType,
effectiveUserID, VerboseFlag

WorkAreaComplet 0 release, WorkAreaName, forceFlag, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 WorkAreaName, release, DefectOrFeatureName, workareaType,
effectiveUserID, VerboseFlag

2 WorkAreaName, release, DefectOrFeatureName, workareaType,
effectiveUserID, VerboseFlag

WorkAreaCreate 0 release, WorkAreaName, DefectOrFeatureName, target, workareaOwner,
StandardFields, configFields, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 WorkAreaName, release, DefectOrFeatureName, target, workareaOwner,
workareaType, effectiveUserID, VerboseFlag

Appendix E. User exit parameters 315

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

2 WorkAreaName, release, DefectOrFeatureName, target, workareaOwner,
workareaType, effectiveUserID, VerboseFlag

WorkAreaExtract 0 WorkAreaName, release, root, nokeysFlag, type, fmask, dmask, crlfFlag,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 WorkAreaName, release, root, nokeysFlag, fmask, dmask, crlfFlag,
effectiveUserID, TeamcUserID, VerboseFlag

2 WorkAreaName, release, root, nokeysFlag, fmask, dmask, crlfFlag,
effectiveUserID, TeamcUserID, VerboseFlag

WorkAreaFix 0 release, WorkAreaName, forceFlag, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 WorkAreaName, release, DefectOrFeatureName, workareaType,
effectiveUserID, VerboseFlag

2 WorkAreaName, release, DefectOrFeatureName, workareaType,
effectiveUserID, VerboseFlag

WorkAreaFreeze 0 release, WorkAreaName, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 release, WorkAreaName, workareatarget, workareaType, effectiveUserID,
VerboseFlag

2 release, WorkAreaName, workareatarget, workareaType, effectiveUserID,
VerboseFlag

WorkAreaIntegra 0 release, WorkAreaName, forceFlag, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 WorkAreaName, release, DefectOrFeatureName, workareaType,
effectiveUserID, VerboseFlag

2 WorkAreaName, release, DefectOrFeatureName, workareaType,
effectiveUserID, VerboseFlag

WorkAreaModify 0 release, WorkAreaName, newtarget, StandardFields, configFields,
MessageBuffer, effectiveUserID, TeamcUserID, VerboseFlag

1 WorkAreaName, release, oldtarget, newtarget, DefectOrFeatureName,
workareaType, effectiveUserID, VerboseFlag

2 WorkAreaName, release, oldtarget, newtarget, DefectOrFeatureName,
workareaType, effectiveUserID, VerboseFlag

WorkAreaReconci 0 release, WorkAreaName, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 release, WorkAreaName, effectiveUserID, VerboseFlag

316 Administrator’s Guide

TeamConnection
action Exit ID

Parameters passed to the user exit program (see page 317 for
definitions)

2 release, WorkAreaName, effectiveUserID, VerboseFlag

WorkAreaRefresh 0 release, WorkAreaName, source, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 release, WorkAreaName, source, workareaType, effectiveUserID,
VerboseFlag

2 release, WorkAreaName, source, workareaType, effectiveUserID,
VerboseFlag

WorkAreaTest 0 release, WorkAreaName, forceFlag, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 WorkAreaName, release, DefectOrFeatureName, workareaType,
effectiveUserID, VerboseFlag

2 WorkAreaName, release, DefectOrFeatureName, workareaType,
effectiveUserID, VerboseFlag

WorkAreaUndo 0 release, WorkAreaName, MessageBuffer, effectiveUserID, TeamcUserID,
VerboseFlag

1 release, WorkAreaName, target, workareaType, effectiveUserID,
VerboseFlag

2 release, WorkAreaName, target, workareaType, effectiveUserID,
VerboseFlag

WorkAreaView 0 release, WorkAreaName, reporttype, MessageBuffer, effectiveUserID,
TeamcUserID, VerboseFlag

1 release, WorkAreaName, reporttype, workareaType, effectiveUserID,
VerboseFlag

2 release, WorkAreaName, reporttype, workareaType, effectiveUserID,
VerboseFlag

User exit parameter definitions

The following list provides definitions for most of the parameters passed to
user exit programs. Parameters are listed in alphabetical order. Parameter
names are in lowercase, except where they are the name of a field in a
TeamConnection database table. For more information on these and other
parameters, refer to the Commands Reference.

abstract
Defect or feature abstract.

Appendix E. User exit parameters 317

alternateversion
Specifies the name of a version of a driver, release, or workarea where
the conflicting version of a part is visible.

answer
Specifies the reason for an action taken on a defect.

ApproverName
Approver’s TeamConnection user ID.

area Department or area in which the user works.

authority
Specifies a user’s authority group.

autoprune
Whether or not to automatically prune workareas that have not been
integrated with the release. Valid values are yes and no.

buildername
The name of the builder used to create an output part.

buildmode
The mode in which the build runs. The following values are valid:

1 force

2 normal

3 unconditional

4 report

buildparameters
Specifies the parameters passed to the build script.

cancelFlag
This flag is used with PartBuild actions to cancel a build request.

clienthostname
The name of the system where the client command originated.

clientportname
The port number used for the build pool.

committedFlag
This flag is used with ReleaseExtract and ReleaseLink actions to
specify whether the user wants the last committed (as opposed to the
current) versions of parts in the release. A value of 0 means to use the
current version; 1 means to use the last committed version.

commonFlag
Indicates whether the part is common with other releases or not. A
value of 0 indicates no, 1 indicates yes.

318 Administrator’s Guide

commonreleases
For a common part, this parameter specifies the other releases the part
is common with (on the partCheckIn action). Release names are
separated by blanks.

component
Specifies the name of a component.

componentprocess
Specifies the process to be used for a component in CompCreate
actions.

condition
This parameter is used with the value parameter to determine if a
build event was successful.

configFields
This parameter has the format:
attribute name content
attribute name content

...

null string

For exit ID 0, the attribute name can appear in abbreviated form, as it
is not processed by TeamConnection.

creatChangeFlag
This flag is used by PartTouch to specify the write permissions of the
part: 0200 permits write by the owner; 0000 does not allow write. This
parameter is defined numerically, in octal notation. The fMode code is
constructed by combing the logical OR of the following values:
4000 setuid
2000 setgid
0400 Permits read by owner
0200 Permits write by owner
0100 Permits execute or search by owner
0040 Permits read by group
0020 Permits write by group
0010 Permits execute or search by group
0004 Permits read by all others
0002 Permits write by all others
0001 Permits execute or search by all others

For example, 0755 would permit read, write, and execute for the
owner and read and execute for all others.

Appendix E. User exit parameters 319

crlfFlag
This flag is used by DriverExtract and ReleaseExtract to handle crlf
conversions when extracting Intel-based files to a UNIX-based
platform.

date Enables you to extract only files from a release that are older than the
specified date.

dateoflastupdate
Specifies the date in modify actions.

defectname
Indicates the name of the defect.

DefectOrFeatureName
Indicates the name of the defect or feature for approval record, fix
record, test record, driver member, or workarea actions.

description
Specifies a description of an object.

detailfilename
Specifies the file in which all build messages for a part are collected.

developmentmode
Valid values are serial and concurrent.

displaytype
This parameter is used on all view actions. The type of view format
requested, where:
0 stanza
1 raw
2 table
3 long
4 process

dmask
Specifies the read, write, and execute directory permissions for the
extracted parts in octal notation.

driver, drivername
Specifies the name of the driver for defect, driver, driver member, and
workarea actions.

driverstate
Values can be working, integrate, commit, or complete.

drivertype
Specified by the user when a driver is created, for example,
development, production, or prototype.

320 Administrator’s Guide

effectiveUserID
The TeamConnection user ID that initiated the transaction. This is the
value of the TC_BECOME environment variable or the -become
attribute flag. In OS/2, Windows 3.1, and Windows 95 environments,
if this variable is not set and the -become attribute is not specified, it
is the value of the TC_USER environment variable.

environment, environmentname
Specifies the environment in which the testing is to be done if the test
subprocess is included in the release process. (The tester/environment
name combination becomes an entry on the environment list for the
release.)

ExtractType
Indicates whether this is a full or delta driver extract. 0 indicates
delta; 1 indicates full.

featurename
Specifies the name of the feature for feature actions.

filenameonclient
The name of the source file from which a TeamConnection part is
created using the PartAdd or PartCheckin action.

filetype
Specifies one of the following file types with the PartAdd action:

0 none

1 text

2 binary

Part type for the other part actions is text for text parts, and binary for
binary parts.

fmask Specifies the read, write, and execute file permissions for the extracted
parts in octal notation. Refer to the Commands Reference for details.

fMode
Specifies the write permissions of the part: 0200 permits write by the
owner; 0000 does not allow write. This parameter is defined
numerically, in octal notation. The fMode code is constructed by
combing the logical OR of the following values:
4000 setuid
2000 setgid
0400 Permits read by owner
0200 Permits write by owner
0100 Permits execute or search by owner
0040 Permits read by group
0020 Permits write by group

Appendix E. User exit parameters 321

0010 Permits execute or search by group
0004 Permits read by all others
0002 Permits write by all others
0001 Permits execute or search by all others

For example, 0755 would permit read, write, and execute for the
owner and read and execute for all others.

forceFlag
Indicates whether the force option was chosen on part actions (0
indicates no and 1 indicates yes). The force option is used to force a
break between common parts when using PartLock, PartCheckOut,
PartCheckIn, PartDelete, PartRecreate, PartRename, and PartUndo
actions.

FromRelease
Specifies the name of the release to be linked from in ReleaseLink
actions.

fromversionname
Specifies the version of the release to be linked from in ReleaseLink
actions.

fromworkareaname
Specifies the name of the workarea to be linked from in ReleaseLink
actions.

gid Specifies ownership of extracted parts by identifying the internal
number that uniquely identifies the group to the system.

interestgroupname
Specifies the name of an interest group in a NotifyCreate or
NotifyDelete action.

lastdropdate
Specifies the date on which a release to be recreated using the
ReleaseRecreate action was deleted.

login The system login ID for a user. In single-user environments, such as
OS/2, Windows 3.1 and Windows 95, this parameter is the TC_USER
environment variable.

login@hostname
Specifies a host list entry in HostCreate and HostDelete actions.

longFlag
Indicates whether the -long flag is specified or not specified. A value
of 0 indicates not specified; 1 indicates specified. The -long flag is
available on some of the view actions and is used to display more

322 Administrator’s Guide

detailed information of the object being viewed. The -long flag on the
driverCheck action displays details about prerequisites and
corequisites.

name Specifies the name of a builder in Builder actions. In the CompModify
action, this parameter specifies the current component name.

newarea
Specifies a new area or department in which a user works.

newcomponent
Specifies a new name for a component.

newcomponentprocess
Specifies a new process to be used for a component.

newdefectname
Specifies a new name for a defect in a DefectModify action.

newdescription
Specifies a new description for an object.

newdrivername
Specifies a new name for a driver in a DriverModify action.

newdrivertype
Specifies a new type for the driver in DriverModify actions. Valid
types include development, production, or prototype.

newfeaturename
Specifies a new name for a feature in a FeatureModify action.

newfMode
Specifies a new write permission for a PartModify action. See fmode
for a list of values.

newlogin
Specifies a new login ID for a user.

NewOwner
Specifies the new owner of an object in actions that create, modify, or
assign owners to objects.

newrelease
Specifies a new release name for ReleaseModify actions.

newreleaseprocess
Specifies the release process to be used for ReleaseCreate or
ReleaseModify actions.

newsendmailaddress
Specifies a new email address for a user’s notification messages.

Appendix E. User exit parameters 323

newsuperuserprivilegeflag
Specifies the user’s superuser status for UserModify actions. Specify 0
to deny superuser status or 1 to grant superuser status.

newtarget
Specifies a new target for workareas.

newtestersname
Specifies the full name of a new tester in an EnvModify action.

newtype
Specifies a new driver type for DriverModify actions. Valid types
include development, production, or prototype.

newusersfullname
Specifies the new full name for a user in UserModify actions.

newuserssendmailaddress
Specifies the new mail address for a user in UserModify actions.

newworkareaname
Specifies the workarea to be linked to in ReleaseLink actions.

node Specifies a remote host on which to place the extracted part tree.

nokeysFlag
For extract actions, indicates whether you want to substitute assigned
values in place of keywords imbedded in the extracted parts. 0 means
not to substitute assigned values; 1 means to substitute assigned
values.

numberofworkareas
Specifies the number of workareas to be deleted in a MemberDelete
action.

nuPartPathName
Specifies the new path name for PartRename actions.

oldcomponentprocess
Specifies the process of a component to be modified.

olddescription
Specifies the description of an object to be modified.

olddropDate
Specifies the date on which a component, part, or user to be recreated
using the CompRecreate, PartRecreate, or UserRecreate action was
deleted.

oldfMode
Specifies the old write permission for a PartModify action. See fmode
for a list of values.

324 Administrator’s Guide

OldOwner
Specifies the old owner of an object in actions that modify or assign
owners to objects.

oldreleaseprocess
Specifies the old release process to be changed by a ReleaseModify
action.

oldsendmailaddress
Specifies an email address to be changed for a user’s notification
messages.

oldsuperuserprivilegeflag
Specifies the user’s superuser status to be changed by a UserModify
action. Specify 0 if the user currently does not have superuser status
or 1 if he or she currently does have superuser status.

oldtarget
Specifies a target to be changed for workareas.

oldtype
Specifies the driver type to be changed by a DriverModify action.
Valid types include development, production, or prototype.

oldusersfullname
Specifies the full name for the user to be changed by a UserModify
action.

originaldefectname
The name of a defect for which the current defect is a duplicate.

originalfeaturename
The name of a feature for which the current feature is a duplicate.

originator
The TeamConnection user ID of the user who opens the defect or
feature.

outputversions
Specifies the number of versions of build output parts to be retained
in ReleaseCreate or ReleaseModify actions.

owner Specifies the component owner in CompCreate actions.

parent Specifies the parent of the part to generate a report on using the
Report -view PartView action.

parentcomponent
Specifies the parent component for Component actions.

parentname
Specifies the parent of a part in a build tree in PartAdd, PartConnect,
and PartDisconnect actions.

Appendix E. User exit parameters 325

parenttype
Specifies the part type of the parent of a part in a build tree in
PartAdd, PartConnect, and PartDisconnect actions. In Report actions,
this parameter specifies the part type of the parent of the part to
generate a report on using the Report -view PartView action.

parsername
Specifies the name of the parser used to create an output part.

parsercommand
Specifies the command file you want to associate with the parser. This
can be an .exe, a .com, a .cmd, or a .bat file. The executable file needs
to be in the execution path of the TeamConnection family server.

partpathName
Specifies the path name of a part in Part actions.

parttype
Specifies the type of a part, such as TCPart or vgdata.

pathName
Specifies the path name of parts in Collision actions.

paths Specifies a concatenated set of paths that define where the parser
looks for parts when processing the set of dependencies returned from
the command file. These dependencies come in two types:
v A dependency in which the file is stored in the TeamConnection

database. For example, hello.c includes hello.h, and both files are
stored in the TeamConnection database. During a build, these
dependencies must be extracted to a path accessible by the build
processor.

v A dependency on a file that is not stored in the TeamConnection
database. An example of such a dependency is stdio.h, which is
typically stored in a compiler’s include path and not in the
TeamConnection database.

poolname
Specifies the build pool used to build a part.

prefix Defect or feature prefix.

primeworkareaname
Prime corequisite workarea name.

process
Specifies the component process in CompModify actions.

processoroptions
Parameters specified for passing to a builder upon builder -create.

326 Administrator’s Guide

reference
Defect or feature reference.

relationtoparent
How a part is related to its parent in the build tree, where:
1 input
2 output
3 dependent

release
Name of the release.

releasedatabasename
Name of a separate database for the part data (the contents of each
part) in a release.

releaseowner
Specifies the owner of a release.

remarks
For defect or feature actions, this is defect remarks or feature remarks.
For part actions, this is part remarks added when a new version is
created.

reportcriteria
The criteria entered as the -where clause for a Report action.

reporttype
The type of report format requested, where:
0 stanza
1 raw
2 table
3 long
4 process
5 html

User exit messages are not displayed if the -raw format is selected.

retainlockFlag
Specifies that a part is to remain locked after is it checked in.

root This is the specified directory on the designated host where the
extracted part tree is to be placed.

script Specifies the name of the build script.

secondworkareaname
Second corequisite workarea name.

sendmailaddress
The e-mail address to which a user’s notification messages are sent.

Appendix E. User exit parameters 327

severity
Defect severity driver.

sizetext
The sizing information for a defect or feature.

sizetype
Specifies whether the sizing record is associated with a defect or a
feature.

source Specifies the name of a workarea with which abnother workarea is
refreshed.

sourcerelease
Specifies the original release of a part to be linked using the PartLink
action.

sourceversion
Specifies the original version of a part to be linked using the PartLink
action.

sourceworkareaname
Specifies the original workarea of a part to be linked using the
PartLink action.

StandardFields
Contains any fields abbreviated by users, requiring interpretation and
verification on the TeamConnection server. Actions with configurable
fields allow for the ambiguity in parameter names that requires
intervention by the server.

state Specifies the state of parts in Collision actions.

superuserprivilegeflag
A value of yes indicates on; a value of no indicates off.

target Specifies the value of the workarea target field for a WorkareaUndo
action.

targetenvironment
Specifies the environment for which build output is generated.

targetrelease
Specifies the new release of a part to be linked using the PartLink
action.

targetworkareaname
Specifies the new workarea of a part to be linked using the PartLink
action.

TeamcUserID
The user’s TeamConnection user ID on the client workstation. In AIX,
HP-UX, Solaris, and Windows NT environments, this is the login ID.

328 Administrator’s Guide

In OS/2, Windows 3.1, and Windows 95 environments, this is the
value of the TC_USER environment variable.

temporaryfilename
Indicates if the -temporary flag is used on a Part -modify command.

temporaryfileonserver
For some part actions, the contents of the file on the client are copied
to a temporary file on the server. This parameter is the name for the
temporary file on the server.

temporaryFlag
Indicates the part is a temporary part on PartAdd and PartModify
actions.

testersname, TesterName
Specifies the full name of the person responsible for testing an object.

timeout
Specifies the amount of time that the build processor waits for a build
script to complete before assuming a failure has occurred. The default
is 1440 minutes (24 hours).

translation
Specifies how the part is related to the translation process. For
example, a part might be translated into another language, used while
translating other parts, or completely unrelated to translation.

translation state
Specifies the translation state of the part. Valid values are notReady
and ready.

transmitFlag
Indicates whether the builder part is to be copied from the client to
the server or not. Specify 0 or 1.

type Specifies whether the sizing record is associated with a defect or a
feature on Test actions.

typename
Specifies the type of parts being handled by Collision actions.

uid Specifies ownership of extracted parts by identifying the internal
number that uniquely identifies the user to the system.

usersfullname
Specifies the full name of a user.

value This parameter is used with the consition parameter to determine if a
build event was successful.

VerboseFlag
Specifies that you want to see a confirmation message after you issue

Appendix E. User exit parameters 329

this action. 0 indicates off; 1 indicates on. The user exit program can
use this flag to include confirmation or status messages only when the
-verbose flag is on.

versionname
Part version name.

viewname
The name of the view (for example, partView) that is being reported
on.

WorkAreaName
Specifies the name of a workarea.

workareaOwner
Specifies the owner of a workarea.

workareastate
The value can be approve, fix, integrate, commit, test, or complete.

workareatarget
Specifies the target field used when creating or modifying a workarea
in WorkAreaFreeze actions.

workareaType
The value can be defect or feature.

330 Administrator’s Guide

Appendix F. TeamConnection NLS and DBCS
considerations

This appendix describes how to use IBM VisualAge TeamConnection
Enterprise Server Version 3 in situations that require National Language
Support (NLS) and Double-Byte Character Sets (DBCS) in all the supported
platforms.

The following topics are addressed in this appendix:
v The overview of the NLS and DBCS support provided by IBM VisualAge

TeamConnection Enterprise Server Version 3, such as usage of locale XPG/4
I18N programming model, and the supported locales and platforms.
The locale support is already provided by the UNIX operating systems.
However, in OS/2 and Windows 32-bit, the locale support is not provided
by these operating system, instead it is provided by TeamConnection
during the installation process.

v The main characteristics and limitations related to NLS/DBCS, such as the
interoperability between clients and server, and special cases for the
manipulation of data by TeamConnection.

v The main issues related to installation, administration and runtime, such as
directory structure of the installed code, and why you should not change
the code page of an existing TeamConnection family.

More information on NLS and DBCS considerations for TeamConnection may
be available in technical reports on the IBM VisualAge TeamConnection
Enterprise Server Library home page. To access this home page, select Library
from the IBM VisualAge TeamConnection home page at Web address
http://www.software.ibm.com/ad/teamcon.

Overview of TeamConnection NLS and DBCS support

Language and culture sensitive information in TeamConnection
VisualAge TeamConnection supports the I18N (Internationalization) locale
model proposed by XPG/4 (X/Open Portability Guide, issue 4) in which the
language and culture sensitive information are not hard coded in the
executable files; instead, they are provided as system resources by means of a
″locale″ that the user can specify at run-time.

One of the components of a locale is the code page in which the characters
will be handled. For example, in AIX 4, the default locale is ″en_US″ which is
for the English language used in the USA and the associated code page is

© Copyright IBM Corp. 1992, 1999 331

ISO8859-1, which is different than the default code page used for English in
OS/2 (code page IBM-850) but the ISO8859-1 code page is similar to the one
used for English in Windows (code page MS-1252 Latin 1).

The locale model for XPG/4 establishes several environment variables that
can be used for controlling the culture sensitive information. Table 8 describes
these environment variables, their function and how TeamConnection deals
with them.

Table 8. How TeamConnection handles the locale environment variables

Locale environment
variable

Function How TeamConnection
uses it

LANG Specifies the installation
default locale.

It is an identifier that is
used to resolve the
complete path where the
message catalogs and other
language-sensitive files are
located in the system. The
specification for
TeamConnection is shown
in note (3).

NLSPATH Specifies the full path for
the message catalog file.

It is the specification of the
full path where the
message catalog file is
located. The specification
for TeamConnection is
shown in note (4).

LC_ALL Overrides the value of
other LC_* environment
variables.

It is not explicitly exploited
by TeamConnection.

LC_COLLATE Determines the
character-collation or
string-collation rules.

It is ignored by
TeamConnection. (See Note
1).

LC_CTYPE Determines the character
handling rules governing
the interpretation of
sequences of bytes of text
data characters and
classification of characters.

It is ignored by
TeamConnection. However,
if LANG is not defined,
then the value of
LC_CTYPE is used by the
UNIX operating system.
The default value is the C
locale.

LC_MESSAGES Determines the rules
governing affirmative and
negative responses, and the
locale for messages and
menus.

It is ignored by
TeamConnection.

332 Administrator’s Guide

Table 8. How TeamConnection handles the locale environment variables (continued)

Locale environment
variable

Function How TeamConnection
uses it

LC_MONETARY Determine the rules
governing monetary-related
formatting.

It is ignored by
TeamConnection, because it
does not handle this kind
of information.

LC_NUMERIC Determine the rules
governing non-monetary
numeric formatting.

It is ignored by
TeamConnection, because it
handles only integer
numbers with no
separation for thousands.

LC_TIME Determine the rules
governing date and time
formatting.

It is ignored by
TeamConnection. There is
no special processing for
the date and time
information. (See Note 2).

Notes:

1. TeamConnection itself does not perform any sorting of data. Instead, the
sorting is performed by the database.

2. The date and time in TeamConnection is represented as YYYY/mm/dd
hh:mm:ss, where YYYY is the year, mm is the month, dd is the day, hh is the
hour, mm is the minute, and ss is the second. Because four digits are used
to represent a year, TeamConnection is compliant with the Year 2000
specifications.

3. The specification for LANG for TeamConnection is (Korn shell):
export LANG=en_US

4. The specification for NLSPATH for TeamConnection is (Korn shell):
export NLSPATH=/usr/teamc/nls/msg/%L/%N

Specify %L and %N as shown in uppercase. The placeholder %L is for all
practical purposes a synonym for the value of the variable LANG, and the
placeholder %N is used by the TeamConnection code to specify during
run-time the name of the file that has the messages to be displayed
(message catalog).

Supported locales (languages and code pages)
VisualAge TeamConnection Version 3 provides support for the following
locales (which include the translated message catalogs):
v Single-Byte Character Set (SBCS) locales; see “Supported Single-Byte

Character Set (SBCS) locales” on page 334.
v Double-Byte Character Set (DBCS) locales; see “Supported Double-Byte

Character Set (DBCS) locales” on page 335.

Appendix F. TeamConnection NLS and DBCS considerations 333

The majority of the locale names follow a format similar to en_US, where the
first 2 characters represent the abbreviation for language names defined in
ISO 639 (such as ″en″ for English) and the last 2 characters represent the
abbreviations for country names defined in ISO 3166 (such as ″US″ for the
United States of America).

In some cases, the locale names may have a suffix which represents a special
identification, such as the HP-UX locale ″zh_TW.big5″.

Locales supported by DB2 Universal Database (UDB) Version 5
TeamConnection uses DB2 Universal Database (UDB) Version 5 which is
enabled to handle DBCS, regardless of the locale. The installation of
TeamConnection also includes the installation of DB2 UDB V5 and its
corresponding locales. Most of the information in the following tables was
obtained from Table 101 ″Supported Languages and Code Sets″ from
Appendix M, ″National Language Support,″ in the DB2 UDB V5
Administration Guide.

Supported Single-Byte Character Set (SBCS) locales
VisualAge TeamConnection supports the following Single-Byte Character Set
(SBCS) locales. It is important to emphasize that the locales ″En_US″ (code
page 850) and ″en_US″ (code page ISO8859-1) are different. For example, if
you use a TeamConnection family in AIX with the ISO locale en_US (code
page ISO8859-1), and a TeamConnection client in OS/2 with the En_US locale
(code page IBM-850), then you will see ″code page incompatibility″ problems
(in which some characters will NOT be shown or will not look OK).

United States of America: The relevant codes for United States of America
are:

Country Name
United States of America

Country Codes
1, US

Language Codes
enu, en

The supported code pages and locales for United States of America are shown
below.

Table 9. United States of America - supported code pages and locales

Code Page Code Set Locale Operating
System

Notes

819 ISO8859-1 en_US AIX

850 IBM-850 En_US AIX

334 Administrator’s Guide

Table 9. United States of America - supported code pages and locales (continued)

Code Page Code Set Locale Operating
System

Notes

819 iso8859-1 en_US.iso88591 HP-UX

1051 roman8 en_US.roman8 HP-UX

819 ISO8859-1 en_US Solaris

437 IBM-437 En_US OS/2

850 IBM-850 En_US OS/2

1252 1252 en_US Win32 (1)

37 IBM-037 - OS/390

Notes:

1. The Microsoft Latin code page 1252 is very similar to ISO8859-1 (Latin 1).
This code page is only used in the TeamConnection GUI tools. For details
on the conversion of code pages in Windows, see “No conversion of code
points when exchanging data” on page 339.

Supported Double-Byte Character Set (DBCS) locales
VisualAge TeamConnection supports the following Double-Byte Character Set
(DBCS) locales. It is important to emphasize that the locales ″Ja_JP″ and
″ja_JP″, and ″Zh_TW″ and ″zh_TW″ are different. For example, if you use a
TeamConnection family in AIX with the EUC locale ja_JP (code page
IBM-eucJP), and a TeamConnection client in OS/2 with the Ja_JP locale (code
page IBM-932) then you will see ″code page incompatibility″ problems (in
which some characters will NOT be shown or will not look OK).

Japan: The relevant codes for Japan are:

Country Name
Japan

Country Codes
81, JP

Language Codes
jap, ja

The supported code pages and locales for Japan are shown below.

Table 10. Japan - supported code pages and locales

Code Page Code Set Locale Operating
System

Notes

954 IBM-eucJP ja_JP AIX

932 IBM-932 Ja_JP AIX

Appendix F. TeamConnection NLS and DBCS considerations 335

Table 10. Japan - supported code pages and locales (continued)

Code Page Code Set Locale Operating
System

Notes

954 eucJP ja_JP.eucJP HP-UX

5039 SJIS ja_JP.SJIS HP-UX

954 eucJP ja Solaris

932 IBM-932 Ja_JP OS/2 (1)

942 IBM-942 Ja_JP OS/2 (1)

943 IBM-943 Ja_JP OS/2 (1)

943 IBM-943 Ja_JP Win32 (1)

930 IBM-930 - OS/390

939 IBM-939 - OS/390

5026 IBM-5026 - OS/390

5035 IBM-5035 - OS/390

Notes:

1. The Japanese IBM-932, IBM-942 and IBM-943 code pages have very small
differences between them, but generally speaking, they are compatible
with each other.

South Korea: The relevant codes for South Korea are:

Country Name
South Korea

Country Codes
82, KR

Language Codes
kor, ko

The supported code pages and locales for South Korea are shown below.

Table 11. South Korea - supported code pages and locales

Code Page Code Set Locale Operating
System

Notes

970 IBM-eucKR ko_KR AIX

970 eucKR ko_KR.eucKR HP-UX

970 eucKR ko_KR Solaris

949 IBM-949 ko_KR OS/2 (1)

1363 1363 ko_KR Win32 (1)

933 IBM-933 - OS/390

336 Administrator’s Guide

Notes:

1. The Korean code page for Windows NT/95 is called UHC (Unified
Hangeul Code). The 1363 code page extends IBM-949 by adding missing
Hangeul characters with no change of assignments in code points for
IBM-949.

People’s Republic of China (PRC): The relevant codes for People’s Republic
of China (PRC) are:

Country Name
People’s Republic of China (PRC)

Country Codes
86, CN

Language Codes
chs (Simplified), zh

The supported code pages and locales for People’s Republic of China (PRC)
are shown below.

Table 12. People’s Republic of China (PRC) - supported code pages and locales

Code Page Code Set Locale Operating
System

Notes

1383 IBM-eucCN zh_CN AIX

1386 GBK Zh_CN.GBK AIX

1383 eucCN zh_CN.hp15CN HP-UX

1383 eucCN zh Solaris

1381 IBM-1381 Zh_CN Win32

1386 GBK Zh_CN Win32 (1)

935 IBM-935 - OS/390

1381 IBM-1381 Zh_CN OS/2

1386 GBK Zh_CN OS/2 (1)

Notes:

1. The code page for Simplified Chinese for Windows NT/95 is called GBK
(Guo Biao Kuo). The IBM-1386 code page is equivalent to Microsoft 936.
The IBM-1386 code page extends IBM-1381 by adding missing Unicode
characters with no change of assignments in code points for IBM-1381.

2. The EUC code page for Traditional Chinese (IBM-eucTW) for AIX 4.1 has
been enhanced with respect to AIX 3.2, but it keeps the same locale name
(zh_TW). This means that if the user in AIX 4.1 exploits the new characters
in the enhanced locale version, there could be compatibility problems
when the user uses the old locale version.

Appendix F. TeamConnection NLS and DBCS considerations 337

Taiwan, Republic of China (ROC): The relevant codes for Taiwan, Republic
of China (ROC) are:

Country Name
Taiwan, Republic of China (ROC)

Country Codes
886, TW

Language Codes
cht (Traditional), zh

The supported code pages and locales for Taiwan, Republic of China (ROC)
are shown below.

Table 13. Taiwan, Republic of China (ROC) - supported code pages and locales

Code Page Code Set Locale Operating
System

Notes

938 IBM-938 - OS/2 old?

948 IBM-948 - OS/2 old?

950 big5 Zh_TW OS/2 (1)

950 big5 Zh_TW AIX (1)

964 IBM-eucTW zh_TW AIX (2)

950 big5 zh_TW.big5 HP-UX (1)

964 eucTW zh_TW.eucTW HP-UX

950 big5 big5 Solaris (1,3)

964 eucTW zh_TW Solaris

950 big5 Zh_TW Win32 (1)

937 IBM-937 - OS/390

Notes:

1. The PC code page for Traditional Chinese is called Big-5.
2. The EUC code page for Traditional Chinese (IBM-eucTW) for AIX 4.1 has

been enhanced with respect to AIX 3.2, but it keeps the same locale name
(zh_TW). This means that if the user in AIX 4.1 exploits the new characters
in the enhanced locale version, there could be compatibility problems
when the user uses the old locale version.

3. The Solaris code page 950 (Taiwan) does not support certain characters
from the IBM-850 code page.

338 Administrator’s Guide

Characteristics and limitations of NLS and DBCS support

No conversion of code points when exchanging data
The TeamConnection clients and servers do not alter the code points of the
data. This means that the data is NOT converted from one code page to
another when entered by the user, when stored in the database used by the
family or when exchanged between a client and the server. :p. The
information about the code page in which the data was entered is not stored
with TeamConnection objects; furthermore, there is no exchange of
information between the client and the server to indicate which code page is
being used by each of them.

No impact if using English characters
Because most code pages have the same code points for the first 128
characters, which includes all the characters used in the English alphabet, then
in practice there is no effect in using different code pages between clients and
servers, if using only English characters.

As an example, the default multilingual code page for OS/2 is IBM-850, for
Windows is MS-1252 Latin 1, and for AIX Version 4 is ISO8859-1. In these
code pages the first 128 characters are the same, and thus, there is no impact
in code points the English characters are used when remarks are entered for a
defect in the OS/2 client, stored in the AIX server and retrieved by the
Windows client.

For example, the code point value of 100 is the lower case letter ″d″ which has
the same graphic representation in most of the code pages, as exemplified in
the following table.

Table 14. Graphical representation of code point 100 in several code pages

Platform Locale Code Page Representation

OS/2 English IBM-437 lower case ’d’

OS/2 English IBM-850 lower case ’d’

Windows, DOS
mode

English MS-437 lower case ’d’

Windows, DOS
mode

English MS-850 lower case ’d’

Windows, Graphical English MS-1252 lower case ’d’

AIX En_US IBM-850 lower case ’d’

AIX en_US ISO8859-1 lower case ’d’

OS/2 Japanese IBM-932 lower case ’d’

Windows Japanese MS-932 lower case ’d’

Appendix F. TeamConnection NLS and DBCS considerations 339

Table 14. Graphical representation of code point 100 in several code
pages (continued)

Platform Locale Code Page Representation

AIX ja_JP IBM-eucJP lower case ’d’

Impact if using non-English characters
However, if the customer wants to use non-English characters, which are
characters with code points greater than 128, such as accented characters,
umlauts, double-byte characters, then the code pages differ greatly in this
respect.

For example, the character with code point value of 252 (which can be entered
by pressing ALT and typing 2, 5 and 2 from the numeric keypad in most
systems) has the following different representations, as shown in the following
table.

Table 15. Graphical representation of code point 100 in several code pages

Platform Locale Code Page Representation

OS/2 English IBM-437 superscript ’n’

OS/2 English IBM-850 superscript ’3’

Windows, DOS
mode

English MS-437 superscript ’n’

Windows, DOS
mode

English MS-850 superscript ’3’

Windows, Graphical English MS-1252 lower case ’u’ with
dieresis

AIX En_US IBM-850 superscript ’3’

AIX en_US ISO8859-1 lower case ’u’ with
dieresis

OS/2 Japanese IBM-932 First byte of DBCS
character

Windows Japanese MS-932 First byte of DBCS
character

AIX ja_JP IBM-eucJP First byte of DBCS
character

In the above case, a German customer using Windows in Graphical Mode,
with code page MS-1252 may enter a string that contains the u with umlaut
and store it in TeamConnection, but the same customer when retrieving the
data from OS/2 using IBM-850 code page, the character in the string will be
shown as the number 3 in superscript.

340 Administrator’s Guide

To maximize compatibility, use same/similar code page
As shown in “Impact if using non-English characters” on page 340, it is
important that the customers who are using multiple platforms with
TeamConnection, must understand the implications of using different code
pages when dealing with non-English characters.

If possible, the customer should use the same (or similar) code page in the
TeamConnection client and in the server.

Once a family is created, do not change the code page
To avoid compatibility problems, if a family is created and used with a given
code page, then this code page should not be changed later on.

For example, if a family is created with the Japanese IBM-932 code page in
OS/2 and then migrated to the Japanese IBM-eucJP code page in AIX, then
there might be several DBCS characters that are valid in the IBM-932 code
page that will not be displayed properly when using the IBM-eucJP code
page.

Using UNICODE in the future to solve incompatibilities
In the future, once the support for the UNICODE code page is widespread
and available in all the platforms supported by TeamConnection, then the
customer could choose to use the UNICODE code page for the clients and the
server, and in this way, avoid the current incompatibility between different
code pages.

Another alternative that we studied to solve to this incompatibility problem
between code pages was to add an extra field for EVERY SINGLE piece of
data that is handled by TeamConnection in order to identify the code page
that was used when the data was originated; then, this would require that the
TeamConnection server should get the code page used by each client that is
requesting a service, and then do the necessary conversions when exchanging
the data. Because this alternative is very expensive to implement and has a lot
of ramifications, and because UNICODE is the right way for the long term,
we are not implementing this alternative to tag each piece of data.

Exceptions to the handling of characters in TeamConnection

The ¦ split vertical bar character could be changed
The ¦ (split vertical bar) character is used to separate the fields in the ″teamc
report -raw″ command. Thus, if this character is found in a field that is shown
by this command, such as in the abstract of a defect, then the character is
changed to ″!″ (exclamation point) by the TeamConnection client. Thus, the
server does not see these split vertical bar characters.

The reason for this change is to avoid confusion during the parsing of the
-raw output because the split vertical bar is used to separate the fields. If in

Appendix F. TeamConnection NLS and DBCS considerations 341

the output to be parsed there is a split vertical bar character that is NOT
intended to be a separator of a field, then the parsing routine will not be able
to guess that this particular split vertical bar should not be considered as a
field separator. In other words, ALL split vertical separator bars are
considered to be field separators, and thus, any such characters in the abstract
will not be parsed appropriately.

For example, when opening a defect, if the abstract field is left blank then the
first 63 characters of the remarks field will be placed in the abstract. The
abstract is a field that is shown with the ″teamc report -raw″ command, but
the remarks field is not shown with this command. Thus, if the first 63
characters of the remarks have split vertical bar characters they will be left
untouched in the actual remarks, but they will be converted to ″!″ in the
abstract.

Keyword expansion
TeamConnection supports the expansion of certain keywords embedded in the
text during the extraction of text files. The routines that handle the expansion
are NLS and DBCS enabled.

The important characteristic to remember is that the expansion is done by the
TeamConnection family server and not by the client.

CR (carriage return) and LF (line feed)
Although this is not an NLS issue, this is another topic that is worth including
in this technical report, because some users may think, incorrectly, that this
could be caused by code conversion processing done by TeamConnection.

The end of a line of text in OS/2 or in Windows is represented by the
character pair CR-LF (carriage return and line feed), whereas in UNIX is
represented simply by the character LF (line feed).

In TeamConnection, the model of what-you-see-is-what-you-get is used. This
means that if a user creates a file in TeamConnection, regardless of the
platform of the server, then TeamConnection will NOT do any conversion of
LF or CRLF on that file. There are choices in the -extract action to allow for
more fine tuning of these on-the-fly-conversions. For example, an AIX user
may wish to extract with only LF a file that was stored originally from OS/2
that has CRLF.

The following file will be the source file to be used in the rest of the examples
in this section:
This is line 1
This is line 2
This is line 3

342 Administrator’s Guide

If the source file is created from an OS/2 client and later on is extracted into a
UNIX client without CRLF conversion, then the resulting file will have the CR
character at the end of each line and the file would look like:
This is line 1|M
This is line 2|M
This is line 3|M

If the source file is created from a UNIX client and later on is extracted into
an OS/2 client without CRLF conversion, then the resulting file will not have
the CR character at the end of each line and the file would look like:
This is line 1

This is line 2
This is line 3

All clients in the same host must use the same language (Intel only)
For OS/2 and Windows NT clients, all the TeamConnection clients that
execute from one single host must use the same language if they run at the
same time.

This limitation is due to the inherent limitation of these platforms in which
ONLY ONE version of given DLL can be loaded at the same time, and
because these platforms are not fully compliant with the XPG/4 model that
allows usage of multiple locales. If there are different versions of some DLLs
for each language, and if the English version of the DLL is loaded, the
Japanese one cannot be loaded at the same time. This precludes having clients
that have different languages to run at the same time.

Untraslated strings that are visible to the users
There are certain kinds of strings that are visible to the user that are not
translatable:
v command, action and flag names
v state names
v database table and view names
v database table column headings
v action name used in the audit log, the mail notifications, and the authority

and interest tables
v the type field in the config database table

DBCS Limitations
The following limitations apply to DBCS character sets:
1. The administration tools for the TeamConnection Server expect SBCS

characters as the reply for Yes (y) and No (n).
2. The administration tools for the TeamConnection Server have the

following limitations for DBCS:

Appendix F. TeamConnection NLS and DBCS considerations 343

a. The *.ld files (authority, interest, cfgcomproc and cfgrelproc) in the
family account can accept DBCS characters in the first field for each
entry. The maximum size for this field is 15 bytes.

b. The config.ld file in the family account can accept DBCS characters in
the following fields (the positions are defined from left to right):
v Field position 1 (″Field Type″): limit is 15 bytes
v Field position 2 (″Value″): limit is 15 bytes
v Field position 6 (″Description″): limit is 63 bytes

c. The tcadmin program can accept only SBCS characters in the following
fields related to configurable fields:
v CMD attribute
v DB Column Name

d. The tcadmin program can accept DBCS characters in the following
fields related to configurable fields:
v Field label: limit is 15 bytes
v Title label: limit is 15 bytes
v Type: must be a valid type defined in config.ld (limit is 15 bytes).

3. The TeamConnection Commands Reference manual, in Appendix A,
″Querying the TeamConnection database″, shows the datatype and the size
limit for the attributes of the TeamConnection objects; however, the actual
size limit for many of the character attributes is smaller than the specified
limit. For example, the field ″login″ in the ″Users″ table shows that the
limit is 31 bytes, but in reality only 15 characters (SBCS or DBCS) can be
stored in that field. The fields affected are usually related to names, such
as the User login, the Component name, etc.
If you specify a string that has DBCS characters and that the size of the
string goes beyond the limit, then the following error message will be
displayed by the TeamConnection server:
0010-149 Your request cannot be completed.
The attribute flag argument xxx is not valid.

4. Warning on the use of 0x7C as a second byte in a DBCS character
The Ox7C character corresponds to the vertical bar (’|’) which in
TeamConnection is interpreted as a field separator when dealing with
reports and with handling windows and fields in the GUI.
You can use this value as the 2nd byte of a DBCS character, however,
when the data that contains this 2nd byte is handled in a TeamConnection
client that has an SBCS code page (and not a DBCS code page), then, the
output shown by the client may be displaced, that is, the 0x7C value will
be interpreted as the field separator. Moreover, this situation will apply for
any string in the *.ld files and in the configurable fields.

344 Administrator’s Guide

Installation, administration, and runtime issues

Installation issues related to NLS and DBCS
The installation process for TeamConnection is similar in UNIX, in OS/2 and
Windows with respect to NLS. The similarities and the differences are
explained in the following sections.

After the installation process, the executable code and the language related
files will be installed in separate directories that are system wide, that is, they
are not exclusive to one account.

When a TeamConnection family is created, several files are copied into the
directory for the TeamConnection family; several of these files contain
language sensitive information (such as the config.ld file and the files in the
chfField directory). The family administrator can modify these files for the
specific family; these files are not shared with other families.

Using a similar directory structure across all the platforms
Even though there are differences in the NLS facilities that are available from
the UNIX and the Intel (OS/2 and Windows) platforms the installation of
TeamConnection in these platforms creates a similar directory structure whose
top directory is shown below (using the default directory):

AIX 4 /usr/teamc

HP-UX 10
/opt/teamc

Solaris
/opt/teamc

OS/2 c:\teamc

Windows NT and 95
c:\Program Files\TeamConnection

Storing the language-independent files: The language-independent files for
the TeamConnection code are stored in similar directories, as shown in the
following example. The teamc server daemon (teamcd) is located in the
subdirectory ″bin″, from the TeamConnection top directory as shown below:

AIX 4 /usr/teamc/bin

HP-UX 10
/opt/teamc/bin

Solaris
/opt/teamc/bin

OS/2 c:\teamc\bin

Appendix F. TeamConnection NLS and DBCS considerations 345

Windows NT and 95
c:\Program Files\TeamConnection\bin

Storing the language-dependent files: In a similar way, the
language-dependent files for the TeamConnection code are stored in a similar
subdirectory structure, which is the subdirectory ″nls″ as parent and then the
″msg″ for messages and ″cfg″ for configuration items.

For example, the ISO US English message catalog will be stored as shown
below, using the default location:

AIX 4 /usr/teamc/nls/msg/en_US

HP-UX 10
/opt/teamc/nls/msg/C (which really is a symbolic link to
/usr/lib/nls/msg/C)

Solaris
/opt/teamc/nls/msg/C (which really is a symbolic link to
/usr/lib/nls/msg/C)

OS/2 c:\teamc\nls\msg\enu

Windows NT and 95
c:\Program Files\TeamConnection\nls\msg\enu

List of language-dependent files: The ″nls″ directory (see previous section
for the complete path) contains the following subdirectories and files:

nls/msg/<locale>/
All message catalog files, such as teamcv3.cat; all help files; all
resource DLLs for the GUI that are specific to a language.

nls/doc/<locale>/
All documentation: PDF, HTML, etc.

nls/cfg/<locale>/
All configuration files, such as config.ld, and files for the configurable
fields; the original teamcv3.ini file.

Installation issues for UNIX
During the installation process for TeamConnection in UNIX, it is necessary to
select the appropriate language version to install. The code is not bundled
together with the language sensitive information. That is, there is an
individual installable package just for the language sensitive information that
could be installed independently.

346 Administrator’s Guide

Because AIX 4 and HP-UX 10 operating systems already include the explicit
support for the XPG/4 I18N locale model, the TeamConnection installation
process will not install additional files for this matter (as in OS/2 and
Windows).

The message catalog that contains the language sensitive information is
located by the executable code by means of the combination of the NLSPATH
and LANG environment variable. By default, this variable is set as follows:
set NLSPATH=/usr/lib/nls/msg/%L/%N

Where:
v %L is a variable that at runtime represents the value of the LANG

environment variable; it must be in uppercase.
v %N is a variable that at runtime represents the name of the message catalog

to be used; it must be in uppercase.

Installation issues with OS/2 and Windows
During the installation process for TeamConnection in OS/2 and Windows, it
is necessary to select the appropriate language version to install. The code and
the language sensitive information is bundled together in a package and it is
installed appropriately. That is, there is not an individual package just for the
language sensitive information that can be installed independently.

Because the OS/2 and Windows operating systems do not include at this
moment explicit support for the XPG/4 I18N locale model, the
TeamConnection installation process will install any necessary support for this
model.

The message catalog that contains the language sensitive information is
located by the executable code by means of the NLSPATH environment
variable. By default, this variable is set as follows:
set NLSPATH=:\teamc\nls\%N

Where:
v :\teamc represents the appropriate drive and top directory where the

TeamConnection code is installed in your system
v nls is the directory that contains the NLS related files
v %N is a variable that at runtime represents the name of the message catalog

to be used; it must be in uppercase.

Family administration issues

A family should use the same language all the time
Although technically it could be possible for a family to be created using the
en_US locale and then change it later on to another language, we consider

Appendix F. TeamConnection NLS and DBCS considerations 347

that this process has the potential to cause a lot of confusion with the users,
especially for the mapping of code points.

Therefore, this is treated as a limitation and if the customers try it, it is at
their own risk and we will not help them. However, the customer may decide
to delete the family, change the language by reinstalling the code for Intel and
specify the new language, or to install the new language message catalogs for
UNIX and change the LANG variable, and then create a new family to use the
new setting.

This decision affects the arrangement of the subdirectories of a family: there is
no provision in either UNIX or Intel to have language dependent directories
inside the family directory.

The following sections contain examples that will clarify this point.

UNIX: An AIX customer installed the TeamConnection server, using the
en_US locale. The config.ld file (which is language dependent) resides in
/usr/lib/nls/cfg/enu/config.ld. The ″testfam″ TeamConnection family is
created, and the config.ld file is copied from the system directory to the top
directory of the family, /home/testfam/config.ld There is no
″/home/testfam/enu/config.ld″ path.

Intel: An OS/2 customer installed the TeamConnection server, using the
en_US locale. The config.ld file (which is language dependent) resides in
c:\teamc\nls\cfg\enu\config.ld. The ″testfam″ TeamConnection family is
created, and the config.ld file is copied from the system directory mentioned
above into the top directory of the family, c:\testfam\config.ld. Notice that
there is no ″c:\testfam\enu\config.ld″ path.

Client runtime issues

A client should use the same language all the time
Although technically it could be possible for a TeamConnection client to be
installed with one language (such as the IBM-850 code page in OS/2 or the
en_US locale in AIX) and then change the language in the middle, this process
has the potential to cause a lot of confusion with the users, specially for the
mapping of code points with the teamcv3.ini file, as explained below.

In the UNIX platforms, thanks to the use of the LANG variable, it would be
possible to install additional message catalogs for other languages and the
user could setup the language to use by setting the variable LANG. However,
the teamcv3.ini file for the GUI will NOT be changed, and this file may
contain characters that were valid in the original setup but that cannot be
displayed in the new setup.

348 Administrator’s Guide

Because the Intel platforms do not provide the LANG variable, then it is not
possible to have message catalogs for multiple languages for TeamConnection.
This means that if the customer decides to change the language then it is
necessary to reinstall the code specifying the new language.

The following sections contain examples that will clarify this point.

UNIX:

1. A Japanese AIX customer installs the TeamConnection client using the
ja_JP and en_US message catalogs. The teamcv3.ini files (which are
language dependent) reside in /usr/lib/nls/cfg/ja_JP/teamcv3.ini and
/usr/lib/nls/cfg/enu/teamcv3.ini.

2. The customer uses the Japanese GUI for the first time (LANG=ja_JP), and
the GUI detects that the following file does not exist:
:$HOME/teamcv3.ini.

3. The customer uses the GUI and creates several entries written in Japanese
in the task list which are stored in the teamcv3.ini file.

4. The customer exits the GUI.
5. The user invokes the GUI again, and the GUI detects that the teamcv3.ini

file exists in $HOME and therefore the GUI uses it, and does not try to
overwrite it with the file in the directory /usr/lib/nls/cfg/ja_JP.

6. The customer decides then to switch the locale to en_US, by setting
LANG=en_US, exits and logs in again.

7. The user brings up the English TeamConnection GUI and now the task list
shows entries that may not be legible because their original code points
were set with the ja_JP locale.

Intel:

1. A Japanese OS/2 customer installs the TeamConnection client and specifies
the jpn language only, because she cannot install multiple languages. The
code page is IBM-932. The PATH and the NLSPATH variables point to the
jpn directories. The teamcv3.ini file (which is language dependent) resides
in c:\teamc\nls\cfg\jpn\teamcv3.ini.

2. The customer uses the Japanese GUI for the first time (LANG=jpn), and
the GUI detects that the following file does not exist: c:\os2\teamcv3.ini.
The GUI copies the original teamcv3.ini file from the appropriate jpn
directory, c:\teamc\nls\cfg\jpn\teamcv3.ini, into c:\os2\teamcv3.ini.

3. The customer uses the GUI and creates several entries written in Japanese
in the task list, and this list is stored in the teamcv3.ini file.

4. The customer exits the GUI.
5. The user invokes the GUI again, and the GUI detects that the teamcv3.ini

file exists in c:\os2 and therefore the GUI uses it, and does not try to
overwrite it with the file in the directory c:\teamc\nls\cfg\jpn.

Appendix F. TeamConnection NLS and DBCS considerations 349

6. The customer decides then to switch the locale to enu, by uninstalling the
TeamConnection client and reinstalling it again specifying now the
language enu, and reboots. The PATH and the NLSPATH variables are
updated and they do not point to the non-existing jpn directories, but
point to the new enu directories.

7. If the customer keeps the same code page, IBM-932, then when the user
brings up the English TeamConnection GUI, the task list shows entries
that are legible because their original code points were set with the
IBM-932 code page. If the customer changes the code page, let’s say to
IBM-850, then when the user brings up the English TeamConnection GUI
the task list shows entries that may not be legible because their original
code points were set with the IBM-932 code page.

350 Administrator’s Guide

Services and Support

VisualAge TeamConnection Services and Support

Services

IBM consultants are available to help you, from planning to production and
everything in between. For information about these services, please visit the
following web site:
<http://www.software.ibm.com/ad/teamcon/services/>

If you are interested in VisualAge TeamConnection Services, contact IBM
Software Development Services via e-mail at:
websphere_consulting@us.ibm.com

Support

If you have a question or problem regarding VisualAge TeamConnection, you
can find support information and our telephone numbers at the following
web site:
<http://www.software.ibm.com/ad/teamcon/support/>

Newsgroup

You can access VisualAge TeamConnection technical information, exchange
messages with other VisualAge TeamConnection users, and receive
information regarding the availability of FixPaks by visiting our newsgroup
at:
news://news.software.ibm.com/ibm.software.teamcon

© Copyright IBM Corp. 1992, 1999 351

352 Administrator’s Guide

Bibliography

IBM VisualAge TeamConnection Enterprise Server library

The following is a list of the TeamConnection publications. For a list of other
publications about TeamConnection, including white papers, technical reports,
a product fact sheet, and the product announcement letter, refer to the IBM
VisualAge TeamConnection Enterprise Server Library home page. To access
this home page, select Library from the IBM VisualAge TeamConnection
Enterprise Server home page at Web address
<http://www.software.ibm.com/ad/teamcon>.
v License Information:

Contains license, service, and warranty information.
v Verifying Installation of TeamConnection:

Explains how to verify that TeamConnection has been installed correctly.
Guides you through the process of creating an initial test family.

v Administrator’s Guide:

Provides instructions for configuring the TeamConnection family server and
administering a TeamConnection family.

v User’s Guide:

A comprehensive guide for TeamConnection administrators and client users
that helps them install and use TeamConnection.

v Commands Reference:

Describes the TeamConnection commands, their syntax, and the authority
required to issue each command. This book also provides examples of how
to use the various commands.

TeamConnection technical reports

The following is a list of technical reports available for TeamConnection. Refer
to the IBM VisualAge TeamConnection Enterprise Server Library home page
for the most up-to-date list of technical reports. To access this home page,
select Library from the IBM VisualAge TeamConnection Enterprise Server
home page at Web address <http://www.software.ibm.com/ad/teamcon>.

29.2147 SCLM Guide to TeamConnection Terminology
29.2196 Using REXX Command Files with TeamConnection MVS Build Scripts
29.2231 TeamConnection Interoperability with MVS and SCLM
29.2235 Using REXX Command Files with TeamConnection MVS Build Scripts

for PL/I Programs

© Copyright IBM Corp. 1992, 1999 353

|
|
|
|
|
|
|

|

|

|

|
|

|

|
|

|

|
|

|

|
|
|

|

29.2266 TeamConnection frequently asked questions: National Language Support
(NLS) and Double-Byte Character Sets (DBCS)

29.2307 Data Driven TeamConnection User Exits
29.2333 Evolution of a New TeamConnection Family, Common Dos and Don’ts
29.2357 Evolution of a New VisualAge TeamConnection Family: Taking

Advantage of Automation
29.3076 Configuration and Administration of DB2 Universal Database V5 by

Users of VisualAge TeamConnection Enterprise Server V3
29.3088 Moving a VisualAge TeamConnection Version 3 Family
29.3090 Evolution of a VisualAge TeamConnection family: Using the Web and

Shadowing to Build and to Distribute
29.3094 VisualAge TeamConnection 3: How to Do Routine Operating System

Tasks
29.3096 Comparison Between CMVC 2.3.1 and VisualAge TeamConnection

Enterprise Server 3
29.3098 VisualAge TeamConnection Version 3: Simple Build Function in UNIX
29.3099 VisualAge TeamConnection V3 Frequently Asked Questions: GUI and

Line Command Clients for UNIX, OS/2, and Windows 32-bit
29.3113 Migrating CMVC 2.3.1 to VisualAge TeamConnection V3

DB2

The following publications are part of the IBM DB2 Universal Database
library of documents for DB2 administration. DB2 publications are available in
HTML format from the DB2 Product and Service Technical Library at the
following Web address:
<http://www.software.ibm.com/data/db2/library/>

v Administration Getting Started (S10J-8154–00)
An introductory guide to basic administration tasks and the DB2
administration tools.

v SQL Getting Started (S10J-8156–00)
Discusses basic concepts of DB2 SQL.

v Administration Guide (S10J-8157–00)
A complete guide to administration tasks and the DB2 administration tools.

v SQL Reference (S10J-8165–00)
A reference to DB2 SQL for programmers and database administrators.

v Troubleshooting Guide (S10J-8169–00)
A guide to identifying and solving problems with DB2 servers and clients
and to using the DB2 diagnostic tools.

v Messages Reference (S10J-8168–00)
Provides detailed information about DB2 messages.

v Command Reference (S10J-8166–00)

354 Administrator’s Guide

Provides information about DB2 system commands and the command line
processor.

v Replication Guide (S10J-0999–00)
Describes how to plan, configure, administer, and operate IBM replication
tools available with DB2.

v System Monitor Guide and Reference (S10J-8164–00)
Describes how to monitor DB2 database activity and analyze system
performance.

v Glossary

A comprehensive glossary of DB2 terms.

Related publications

v Transmission Control Protocol/Internet Protocol (TCP/IP)
– TCP/IP 2.0 for OS/2: Installation and Administration (SC31-6075)
– TCP/IP for MVS Planning and Customization (SC31-6085)

v MVS
– MVS/XA JCL User’s Guide (GC28-1351)
– MVS/XA JCL Reference (GC28-1352)
– MVS/ESA JCL User’s Guide (GC28-1830)
– MVS/ESA JCL Reference (GC28-1829)

v NLS and DBCS
– AIX 4, General Programming Concepts: Writing and Debugging Programs.

(SC23-2533-02). See chapter 16 ″National Language Support″ for an
updated contents of the AIX 3 material (see below).

– AIX 4, System Management Guide: Operating System and Devices
(SC23-2525-03). See chapter 10, ″National Language Support″ for system
tasks.

– AIX Version 3.2 for RISC System/6000, National Language Support
(GG24-3850).

– Internationalization of AIX Software, A Programmer’s Guide (SC23-2431).
– National Language Design Guide Volume 1 (SE09-8001-02). This manual

contains very good information on how to enable an application for
NLS.

– National Language Design Guide Volume 2 (SE09-8002-02). This manual
provides information on the IBM language codes (consult the ″Language
codes″ chapter).

Bibliography 355

356 Administrator’s Guide

Glossary

This glossary includes terms and definitions
from the IBM Dictionary of Computing, 10th
edition (New York: McGraw-Hill, 1993). If
you do not find the term you are looking
for, refer to this document’s index or to the
IBM Dictionary of Computing.

This glossary uses the following
cross-references:

Compare to
Indicates a term or terms that have
a similar but not identical meaning.

Contrast with
Indicates a term or terms that have
an opposed or substantially
different meaning.

See also
Refers to a term whose meaning
bears a relationship to the current
term.

A

absolute path name. A directory or a part
expressed as a sequence of directories followed
by a part name beginning from the root
directory.

access list. A set of objects that controls access
to data. Each object consists of a component, a
user, and the authority that the user is granted or
is restricted from in that component. See also
authority, granted authority, and restricted authority.

action. A task performed by the
TeamConnection server and requested by a
TeamConnection client. A TeamConnection action
is the same as issuing one TeamConnection
command.

agent. See build agent.

alternate version ID. In collision records, the
database ID of the version of a driver, release, or
workarea where the conflicting version of a part
is visible.

approval record. A status record on which an
approver must give an opinion of the proposed
part changes required to resolve a defect or
implement a feature in a release.

approver. A user who has the authority to mark
an approval record with accept, reject, or abstain
within a specific release.

approver list. A list of user IDs attached to a
release, representing the users who must review
part changes that are required to resolve a defect
or implement a feature in that release.

attribute. Information contained in a field that
is accessible to the user. TeamConnectionenables
family administrators to customize defect,
feature, user, and part tables by adding new
attributes.

authority. The right to access development
objects and perform TeamConnection commands.
See also access list, base authority, explicit authority,
granted authority, implicit authority, restricted
authority, and superuser privilege.

authority group. A group of TeamConnection
actions that a member of the authority group is
authorized to perform.

B

base authority. The set of actions granted to a
user when a user ID is created within a
TeamConnection family. See also authority.
Contrast with implicit authority and explicit
authority.

© Copyright IBM Corp. 1992, 1999 357

base name. The name assigned to the part
outside of the TeamConnection server
environment, excluding any directory names. See
also path name.

base part tree. The base set of parts associated
with a release, to which changes are applied over
time. Each committed driver or workarea for a
release updates the base part tree for that release.

build. The process used to create applications
within TeamConnection.

build associate. A TeamConnection part that is
not an input to or an output from a build. An
example of such a part is a read.me file.

build cache. A directory that the build
processor uses to enhance performance.

build dependent. A TeamConnection part that
is needed for the compile operation to complete,
but it will not be passed directly to the compiler.
An example of this is an include file. See also
dependencies.

builder. An object that can transform one set of
TeamConnection parts into another by invoking
tools such as compilers and linkers.

build event. An individual step in the build of
an application, such as the compiling of hello.c
into hello.obj.

build input. A TeamConnection part that will
be used as input to the object being built.

build output. A TeamConnection part that will
be generated output from a build, such as an .obj
or .exe file.

build pool. A group of build servers that
resides in an environment. The environment in
which several build servers operate. Typically,
several servers are set up for each environment
that the enterprise develops applications for.

build scope. A collection of build events that
implement a specific build request. See also build
event.

build script. An executable or command file
that specifies the steps that should occur during
a build operation. This file can be a compiler, a
linker, or the name of a .cmd file you have
written.

build server. A program that invokes the tools,
such as compilers and linkers, that construct an
application.

build target. The name of the part at the top of
the build tree which is the final output of a
build. TeamConnection uses the build target to
determine the scope of the build. See also build
tree.

build tree. A graphical representation of the
dependencies that the parts in an application
have on one another. If you change the
relationship of one part to another, the build tree
changes accordingly.

C

change control process. The process of limiting
and auditing changes to parts through the
mechanism of checking parts in and out of a
central, controlled, storage location. Change
control for individual releases can be integrated
with problem tracking by specifying a process
for the release that includes the tracking
subprocess.

check in. The return of a TeamConnection part
to version control.

check out. The retrieval of a version of a part
under TeamConnection control. In
non-concurrent releases, the check out operation
does not allow a second user to check out a part
until the first user has checked it back in.

child component. Any component in a
TeamConnection family, except the root
component, that is created in reference to an
existing component. The existing component is
the parent component, and the new component
is the child component. A parent component can
have more than one child component, and a

358 Administrator’s Guide

child component can have more than one parent
component. See also component and parent
component.

child part. Any part in a build tree that has a
parent defined. A child part can be input, output,
or dependent. See also part and parent part.

client. A functional unit that receives shared
services from a server. Contrast with server.

collision record. A status record associated with
a workarea or driver, a part, and one of the
following:
v The workarea or driver’s release
v Another workarea

TeamConnection generates a collision record
when a user attempts to replace an older version
of a part with a modified version, another user
has already modified that part, and the first
user’s modification is not based on this latest
version of the part.

command. A request to perform an operation or
run a program from the command line interface.
In TeamConnection, a command consists of the
command name, one action flag, and zero or
more attribute flags.

command line. (1) An area on the Tasks
window or in the TeamConnection Commands
window where a user can type TeamConnection
commands. (2) An area on an operating system
window where you can type TeamConnection
commands.

committed version. The revision of a part that
is visible from the release.

common part. A part that is shared by two or
more releases, and the same version of the part is
the current version for those releases.

comparison operator. An operator used in
comparison expressions. Comparison operators
used in TeamConnection are > (greater than), <
(less than), >= (greater than or equal to), <= (less
than or equal to), = (equal to), and <> (different
from).

component. A TeamConnection object that
organizes project data into structured groups,
and controls configuration management
properties. Component owners can control access
to data and notification of TeamConnection
actions. Components exist in a parent-child
hierarchy, with descendant components
inheriting access and notification information
from ancestor components. See also access list
and notification list.

concurrent development. Several users can
work on the same part at the same time.
TeamConnection requires these users to reconcile
their changes when they commit or integrate
their workareas and drivers with the release.
Contrast with serial development. See also workarea.

configurable field. A field that a family
administrator can add to certain TeamConnection
objects to customize the kind of information that
TeamConnection stores in relation to those
objects.

configuration management. The process of
identifying, managing, and controlling software
modules as they change over time.

connecting parts. The process of linking parts
so that they are included in a build.

context. The current workarea or driver used
for part operations.

corequisite workareas. Two or more workareas
designated as corequisites by a user so that all
workareas in the corequisite group must be
included as members in the same driver, before
that driver can be committed. If the driver
process is not used in the release, then all
corequisite workareas must be integrated by the
same command. See also prerequisite workareas.

current version. The last visible modification of
a part in a driver, release, or workarea.

current working directory. (1) The directory
that is the starting point for relative path names.
(2) The directory in which you are working.

Glossary 359

D

daemon. A program that runs unattended to
perform a standard service. Some daemons are
triggered automatically to perform their task;
others operate periodically.

database. A collection of data that can be
accessed and operated upon by a data processing
system for a specific purpose.

default. A value that is used when an
alternative is not specified by the user.

default query. A database search, defined for a
specific TeamConnection window, that is issued
each time that TeamConnection window is
opened. See also search.

defect. A TeamConnection object used to
formally report a problem. The user who opens a
defect is the defect originator.

delete. If you delete a development object, such
as a part or a user ID, any reference to that
object is removed from TeamConnection. Certain
objects can be deleted only if certain criteria are
met. Most objects that are deleted can be
re-created.

delta part tree. A directory structure
representing only the parts that were changed in
a specified place.

dependencies. In TeamConnection builds there
are two types of dependencies:

v automatic. These are build dependencies that a
parser identifies.

v manual. These are build dependencies that a
user explicitly identifies in a build tree.

See also build dependent.

descendant. If you descendant a development
object, such as, a part or a user ID, any reference
to that object is removed from TeamConnection.
Certain objects can be descendant only if certain
criteria are met. Most objects that are
descendants can be re-created.

disconnecting parts. The process of unlinking
parts so that they are not included in a build.

driver. A collection of workareas that represent
a set of changed parts within a release. Drivers
are only associated with releases whose processes
include the track and driver subprocesses.

driver member. A workarea that is added to a
driver.

E

end user. See user.

environment. (1) A user-defined testing domain
for a particular release. (2) A defect field, in
which case it is the environment where the
problem occurred. (3) The string that matches a
build server with a build event.

environment list. A TeamConnection object
used to specify environments in which a release
should be tested. A list of environment-user ID
pairs attached to a release, representing the user
responsible for testing each environment. Only
one tester can be identified for an environment.

explicit authority. The ability to perform an
action against a TeamConnection object because
you have been granted the authority to perform
that action. Contrast with base authority and
implicit authority.

extract. A TeamConnection action you can
perform on a builder, part, driver or release
builder. An extraction results in copying the
specified builder, part, or parts contained in the
driver or release to a client workstation.

F

family. A logical organization of related data. A
single TeamConnection server can support
multiple families. The data in one family cannot
be accessed from another family.

family administrator. A user who is responsible
for all nonsystem-related tasks for one or more
TeamConnection families, such as planning,
configuring, and maintaining the

360 Administrator’s Guide

TeamConnection environment and managing
user access to those families.

family server. A workstation running the
TeamConnection server software.

FAT. See file allocation table.

feature. A TeamConnection object used to
formally request and record information about a
functional addition or enhancement. The user
who opens a feature is the feature originator.

file. A collection of data that is stored by the
TeamConnection server and retrieved by a path
name. Any text or binary file used in a
development project can be created as a
TeamConnection file. Examples include source
code, executable programs, documentation, and
test cases.

file allocation table (FAT). The DOS-, OS/2-,
Windows 95-, and Windows NT-compatible file
system that manages input, output, and storage
of files on your system. File names can be up to
8 characters long, followed by a file extension
that can be up to 3 characters.

fix record. A status record that is associated
with a workarea and that is used to monitor the
phases of change within each component that is
affected by a defect or feature for a specific
release.

freeze. The freeze action saves changed parts to
the workarea. Thus, TeamConnectiontakes a
snapshot of the workarea, including all of the
current versions of parts visible from that
workarea, and saves this image of the system.
The user can always come back to this stage of
development in the workarea. Note, however,
that a freeze action does not make the changes
visible to the other people working in the release.

Compare with refresh.

full part tree. A directory structure representing
a complete set of active parts associated with the
release.

G

Gather. A tool to organize files for distribution
into a specified directory structure. This tool can
be used as a prelude to further distribution, such
as using CD-ROM or through electronic means
like NetView DM/2. It can also be used by itself
for distributing file copies to network-attached
file systems.

GID. A number which uniquely identifies a
file’s group to a UNIX system.

granted authority. If an authority is granted on
an access list, then it applies for all objects
managed by this component and any of its
descendants for which the authority is not
restricted. See also access list, authority, and
inheritance. Contrast with restricted authority.

graphical user interface (GUI). A type of
computer interface consisting of a visual
metaphor of a real-world scene, often as a
desktop. Within that scene are icons, representing
actual objects, that the user can access and
manipulate with a pointing device.

GUI. Graphical user interface.

H

high-performance file system (HPFS). In the
OS/2 operating system, an installable file system
that uses high-speed buffer storage, known as a
cache, to provide fast access to large disk
volumes. The file system also supports the
existence of multiple, active file systems on a
single personal computer, with the capacity of
multiple and different storage devices. File
names used with HPFS can have as many as 254
characters.

host. A host node, host computer, or host
system.

host list. A list associated with each
TeamConnection user ID that indicates the client
machine that can access the family server and act
on behalf of the user. The family server uses the
list to authenticate the identity of a client
machine when the family server receives a

Glossary 361

command. Each entry consists of a login, a host
name, and a TeamConnection user ID.

host name. The identifier associated with the
host computer.

HPFS. See high-performance file system.

I

implicit authority. The ability to perform an
action on a TeamConnection object without being
granted explicit authority. This authority is
automatically granted through inheritance or
object ownership. Contrast with base authority
and explicit authority.

import. To bring in data. In TeamConnection, to
bring selected items into a field from a matching
TeamConnection object window.

inheritance. The passing of configuration
management properties from parent to child
component. The configuration management
properties that are inherited are access and
notification. Inheritance within each
TeamConnection family or component hierarchy
is cumulative.

integrated problem tracking. The process of
integrating problem tracking with change control
to track all reported defects, all proposed
features, and all subsequent changes to parts. See
also change control.

interest group. The list of actions that trigger
notification to the user IDs associated with those
actions listed in the notification list.

J

job queue. A queue of build scopes. One job
queue exists for each TeamConnection family.

L

local version ID. In collision records, the
database ID of the version of the current
workarea.

lock. An action that prevents editing access to a
part stored in the TeamConnectiondevelopment
environment so that only one user can change a
part at a time.

login. The name that identifies a user on a
multi-user system, such as AIX or HP-UX,
Solaris, or Windows NT. In OS/2 and Windows
95, the login value is obtained from the
TC_USER environment variable.

M

map. The process of reassigning the meaning of
an object.

metadata. In databases, data that describe data
objects.

N

name server. In TCP/IP, a server program that
supplies name-to-address translation by mapping
domain names to Internet addresses.

National Language Support (NLS). The
modification or conversion of a United States
English product to conform to the requirements
of another language or country. This can include
the enabling or retrofitting of a product and the
translation of nomenclature, MRI, or
documentation of a product.

Network File System (NFS). The Network File
System is a program that enables you to share
files with other computers in networks over a
variety of machine types and operating systems.

notification list. An object that enables
component owners to configure notification. A
list attached to a component that pairs a list of
user IDs and a list of interest groups. It
designates the users and the corresponding
notification interest that they are being granted
for all objects managed by this component or any
of its descendants.

notification server. A server that sends
notification messages to the client.

NTFS. NT file system.

362 Administrator’s Guide

NVBridge. A tool for automatic electronic
distribution of TeamConnection software
deliverables within a NetView DM/2 network.

O

operator. A symbol that represents an operation
to be done. See also comparison operators.

originator. The user who opens a defect or
feature and is responsible for verifying the
outcome of the defect or feature on a verification
record. This responsibility can be reassigned.

owner. The user who is responsible for a
TeamConnection object within a TeamConnection
family, either because the user created the object
or was assigned ownership of the object.

P

parent component. All components in each
TeamConnection family, except the root
component, are created in reference to an
existing component. The existing component is
the parent component. See also child component
and component.

parent part. Any part in a build tree that has a
child defined. See also part and child part.

parser. A tool that can read a source file and
report back a list of dependencies of that source
file. It frees a developer from knowing the
dependencies one part has on other parts to
ensure a complete build is performed.

part. A collection of data that is stored by the
family server and retrieved by a path name.
They include text objects, binary objects, and
modeled objects. These parts can be stored by
the user or the tool, or they can be generated
from other parts, such as when a linker generates
an executable file.

path name. The name of the part under
TeamConnection control. A path name can be a
directory structure and a base name or just a
base name. It must be unique within each
release. See also base name.

pool. See build pool.

pop-up menu. A menu that, when requested,
appears next to the object it is associated with.

prerequisite workareas. If a part is changed to
resolve more than one defect or feature, the
workarea referenced by the first change is a
prerequisite of the workarea referenced by later
changes. A workarea is a prerequisite to another
workarea if:

v Part changes are checked in, but not
committed, for the first workarea.

v One or more of the same parts are checked
out, changed, and checked in again for the
second workarea.

problem tracking. The process of tracking all
reported defects through to resolution and all
proposed features through to implementation.

process. A combination of TeamConnection
subprocesses, configured by the family
administrator, that controls the general
movement of TeamConnection objects (defects,
features, workareas, and drivers) from state to
state within a component or release. See also
subprocess and state.

Q

query. A request for information from a
database, for example, a search for all defects
that are in the open state. See also default query
and search.

R

raw format. Information retrieved on the report
command that has the vertical bar delimiter
separating field information, and each line of
output corresponds to one database record.

refresh. This TeamConnection action updates a
workarea with any changes from the release, and
it also freezes the workarea, if it is not already
frozen.

Glossary 363

relative path name. The name of a directory or
a part expressed as a sequence of directories
followed by a part name, beginning from the
current directory.

release. A TeamConnection object defined by a
user that contains all the parts that must be built,
tested, and distributed as a single entity.

restricted authority. The limitation on a user’s
ability to perform certain actions at a specific
component. Authority can be restricted by the
superuser, the component owner, or a user with
AccessRestrict authority. See also authority.

root component. The initial component that is
created when a TeamConnection family is
configured. All components in a TeamConnection
family are descendants of the root component.
Only the root component has no parent
component. See also component, child component,
and parent component.

S

search. To scan one or more data elements of a
set in a database to find elements that have
certain properties.

serial development. While a user has parts
checked out from a workarea, no one else on the
team can check out the part. The user develops
new material without interacting with other
developers on the project. TeamConnection
provides the opportunity to hold the part until
the user is sure that it integrates with the rest of
the application. Thus, the lock is not released
until the workarea as a whole is committed.
Contrast with concurrent development. See also
workarea.

server. A workstation that performs a service
for another workstation.

shadow. A collection of parts in a filesystem
that reflects the contents of a TeamConnection
workarea, driver, or release.

shared part. A part that is contained in two or
more releases.

shell script. A series of commands combined in
a file that carry out a function when the file is
run.

SID. The name of a version of a driver, release,
or workarea.

sizing record. A status record created for each
component-release pair affected by a proposed
defect or feature. The sizing record owner must
indicate whether the defect or feature affects the
specified component-release pair and the
approximate amount of work needed to resolve
the defect or implement the feature within the
specified component-release pair.

stanza format. Data output generated by the
Report command in which each database record
is a stanza. Each stanza line consists of a field
and its corresponding values.

state. workareas, drivers, features, and defects
move through various states during their life
cycles. The state of an object determines the
actions that can be performed on it. See also
process and subprocess.

subprocess. TeamConnection subprocesses
govern the state changes for TeamConnection
objects. The design, size, review (DSR) and verify
subprocesses are configured for component
processes. The track, approve, fix, driver, and test
subprocesses are configured for release processes.
See also process and state.

superuser. This privilege lets a user perform
any action available in the
TeamConnectionfamily.

system administrator. A user who is responsible
for all system-related tasks involving the
TeamConnection server, such as installing,
maintaining, and backing up the
TeamConnectionserver and the database it uses.

T

TCP/IP. Transmission Control Protocol/Internet
Protocol.

364 Administrator’s Guide

TeamConnection client. A workstation that
connects to the TeamConnection server by a
TCP/IP connection.

TeamConnection part. A part that is stored by
the TeamConnection server and retrieved by a
path name, release, type, and workarea. See also
part, common part, and type.

TeamConnection superuser. See superuser.

tester. A user responsible for testing the
resolution of a defect or the implementation of a
feature for a specific driver of a release and
recording the results on a test record.

test record. A status record used to record the
outcome of an environment test performed for a
resolved defect or an implemented feature in a
specific driver of a release.

track subprocess. An attribute of a
TeamConnection release process that specifies
that the change control process for that release
will be integrated with the problem tracking
process.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of communications protocols
that support peer-to-peer connectivity functions
for both local and wide area networks.

type. All parts that are created through the
TeamConnection GUI or on the command line
will show up in reports with the type of TCPart
as the part type. The TeamConnection GUI and
command line can only check in, check out, and
extract parts of the type TCPart.

U

user exit. A user exit allows TeamConnection to
call a user-defined program during the
processing of TeamConnection transactions. User
exits provide a means by which users can specify
additional actions that should be performed
before completing or proceeding with a
TeamConnection action.

user ID. The identifier assigned by the system
administrator to each TeamConnection user.

V

verification record. A status record that the
originator of a defect or a feature must mark
before the defect or feature can move to the
closed state. Originators use verification records
to verify the resolution or implementation of the
defect or feature they opened.

version. (1) A specific view of a driver, release,
or workarea. (2) A revision of a part.

version control. The storage of multiple
versions of a single part along with information
about each version.

view. An alternative and temporary
representation of data from one or more tables.

W

workarea. An object in TeamConnection that
you create and associate with a release. When the
workarea is created, you see the most current
view of the release and all the parts that it
contains. You can check out the parts in the
workarea, make modifications, and check them
back into the workarea. You can also test the
modifications without integrating them. Other
users are not aware of the changes that you
make in the workarea until you integrate the
workarea to the release. While you work on files
in a workarea, you do not see subsequent part
changes in the release until you integrate or
refresh your workarea.

working part. The checked-out version of a
TeamConnection part.

Y

year 2000 ready. IBM VisualAge
TeamConnection Enterprise Server is Year 2000
ready. When used in accordance with its
associated documentation, TeamConnection is
capable of correctly processing, providing and/or
receiving date data within and between the
twentieth and twenty-first centuries, provided
that all products (for example, hardware,

Glossary 365

software and firmware) used with the product
properly exchange accurate date data with it.

366 Administrator’s Guide

Index

Special Characters
*.bnd files 170

A
access command

creating example 104
access list 101
actions

Show Authority Actions
window 99

Show Interest Actions
window 108

user exit parameters for 289
Add Host window 96
Add Notification window 112
Adobe Acrobat reader 30
age utility, for defects and

features 155
APP_CTL_HEAP_SZ 25, 177
APPLHEAPSZ 24
approval subprocess 81
audit log

cleaning up 163
description of 156
example of 157
information contained in 158

authorit.ld 228
authority 97

basic
reloading 228
verify loading of 228

example of granting 97
granting to users 101
inheritance of 102
instructions for granting and

restricting 103
planning for 97
Remove Access window 104
restricting 97, 103
types of 98

authority groups 99
Authority Group Settings

window 101
creating from command line 227
creating or changing 99
definition of 99
display list of 99
priming with actions from an

existing geoup 101

authority groups 99 (continued)
worksheet 253

Authority Groups Settings
page 101

authority table 227
automatic pruning of workareas 76

B
backing up the database 168
base authority 98
bind files 170
BUFFPAGE 24
build administrator 11
build function

keeping build output
versions 76

C
CATALOGCACHE_SZ 25, 177
change control 3
CLASSPATH statement 30
client

definition 4
command line interface

configuring processes 219
creating authority groups 227
creating interest groups 229
starting family server 201
starting notification server 203

commands
fhchdf 200
fhcirt 199
fhclauth 228
fhclcnfg 210, 213
fhclintr 230
fhclproc 220
notifyd 203
sendmail 40
tcadmin 29
tccleanu 163
tclicmon 187
teamcd 201

component command
example of creating 85

Component Process Settings
window 133

components
creating 84
definition of 6
example of hierarchy 6

components (continued)
example of using processes 83
information stored about 6
list of processes 80
list of subprocesses 80
naming 74
organizing hierarchy 71
ownership 73
planning 71
planning processes for 79
processes, configuring 219

comproc.ld 219
concurrent development

difference from serial 76
config.ld 207
config table

column descriptions 207
editing the config.ld file 207
modifying 207
reloading 210, 213
verify loading of 210

ConfigPartView 118, 125
configurable field dependencies 121
configurable processes,

worksheet 264
configuration management 3
configuring

fields
changing field types 118
changing field values 117
creating or changing 123
deleting 122, 124
displaying properties of 125

processes
about 131
editing the .ld files 219
reloading the config

table 220
using the GUI 132

user exits 136
worksheet 264

Create Components window 85
Create Releases window 86
Create User window 92

D
daemon

number of 39
daemons

monitoring 39

© Copyright IBM Corp. 1992, 1999 367

daemons (continued)
number to start 39

database
backing up 168
controlling size of 76
creating with fhcirt 199
size restriction 76

DB2 configuration parameters 24
DB2 database administration

tasks 12
DB2 database maintenance 153, 167
DB2 instances 22
DB2 naming conventions 23
DB2 plans 170
DBHEAP 24, 25, 177
default component process 80
defect.fmt 215
defects

changing age of 154
dependent configurable field 121
development component process 80
development mode 76

changing 87
selecting serial or concurrent 76

displaying TeamConnection version
information 154

DLCHKTIME 24
driver configurable field 121
driver member

definition of 81
driver subprocess 81

definition of 81
example of 84
how to use 83

dsrDefect subprocess 80
dsrFeature subprocess 80

E
emergency_fix component

process 80
ENV=() 224
environment variable 267

setting 276
used for trace 164

error log 156
errors 156
examples of

audit log 157
changing processes 83
client/server network 4
component hierarchy 6, 72, 73,

74
driver subprocess 84
granting authority to users 97
linking releases 87

examples of (continued)
release-component

relationship 75
report formats 216
showing part/release/component

relationship 7
stanza report 126
table format 128

execcmds.ld 231
explicit authority 98

F
family

creating
using fhcirt command 199
using GUI 30

definition of 5
planning 17

family administrator
responsibilities 11
tasks 197

changing report formats 214
configuring processes 219
creating a family 199
creating an initial

superuser 200
creating or modifying

authority groups 227
creating or modifying interest

groups 229
defining configurable field

types 207
editing authorit.ld 227
editing comproc.ld 219
editing interest.ld 229
editing relproc.ld 219
editing userExit 223
license monitoring 187
reloading configurable process

tables 220
reloading the authority

table 228
reloading the config

table 210, 213
reloading the interest

table 230
setting up user exits 223

family server
specifying daemons 39
starting 41
stopping 43, 206

Family Servers window 181
Family Settings page 32
feature.fmt, editing 215
features

changing age of 154

fhcfupdv 213
fhchdf command 200
fhcirt 170
fhcirt command 199
fhclauth command 228
fhclcnfg command 210, 213
fhclintr command 230
fhclproc command 219, 220
fhomigmk command 271, 272
Field Type window 119
field types

creating or changing 118
fields

configurable 115
changing field types 118
changing field values 117
conditions of 122
creating, using GUI 123
deleting 122, 124
displaying properties of 125
modifying, using GUI 123

files
authorit.ld 227
comproc.ld 219
config.ld 207
defect.fmt 215
execcmds.ld 231
feature.fmt 215
interest.ld 229
part.fmt 215
relproc.ld 219
user.fmt 215
userExit 223

fix subprocess 81

G
GUI

family administrator
to add user exit

programs 136
to change authority

groups 100
to change configurable field

types 118
to change configurable

processes 132
to change interest

groups 109
to change report formats 126
to change table formats 128
to create family 30
to create or change

configurable fields 123
to start family server 41
to start notification server 41
to stop family server 43

368 Administrator’s Guide

GUI (continued)
to stop notification server 43

H
help settings 30
hierarchy

component example 6, 72, 73
component ownership

example 74
release-component

relationship 75
host command

creating example 96
host lists

Add Host window 96
creating entries 95
planning for 94

host-only security 33

I
implicit authority 98
indexes 179

creating 179
preserving 200

Interest Group Settings
window 110

interest groups
creating

using command line 229
using GUI 108
with actions from an existing

group 110
definition of 107
display list of 108
Interest Group Settings

window 110
types of 107

explicit 107
implicit 107

worksheet 258
interest.ld 229
interest table

reloading 230
verify loading of 230

interfaces
description of 8

internet browser 30

J
Java settings 30

L
LANG 267, 268, 269, 270, 271, 272,

273, 274, 275, 276
license monitoring 187
location 30

Adobe Acrobat reader 30

location 30 (continued)
internet browser 30

LOCKLIST 25, 177
LOGFILSIZ 24
login manager

global 94
individual 94

LOGPRIMARY 24
LOGSECOND 24

M
mail exit routines 40
mail facility 33, 38, 40
maintaining the DB2 database 13
maintenance component process 80
manual shadowing 147
MAXAPPLS 25, 177
mode 76
monitor command 183
monitoring family server

daemons 39
monitoring server daemons 181

N
naming

components 74
releases 78

network 4
NLSPATH 267
notification

Add Notification window 112
adding for users 110
planning for 106
restricting 111
setting up mail facility 33, 38,

40
notification list 110
notification server

starting 41
stopping 43, 206

notify command
example of 112

notifyd command 203
number of daemons to start 39

P
part.fmt 215
PartExec 231

authority 232
authorizing commands passed

to 231
password-or-host security 33
passwords 33, 35, 93, 201
PATH 267
PATH statement 30
planning

component hierarchy 71

planning (continued)
for authority to access data 97
for host lists 94
for notification 106
for user access 97
for user IDs 75, 89
planning 79

preship component process 80
priming authority groups 101
priming interest groups 110
processes

configuring 131
definition of 7
example of using 83
for components

definition of 79
shipped 80
subprocesses 80

for releases
definition of 80
shipped 82
subprocesses 80

planning 79
worksheet 264

properties of shadows 144
prototype component process 80
pruning 76

Q
queries

limiting the result set 178
optimixing 177
reducing columns selected 178

R
rebinding the database 170
regular expressions 120
release command

creating example 87
Release Configurable Fields

window 124
release management 3
release process attributes 81
releases

creating 85
creating from an old release 87
definition of 7
example of linking releases 87
example of relationship with

other objects 7
example of using processes 83
list of processes 82
list of subprocesses 80
naming 78
planning 75
planning processes for 80

Index 369

releases (continued)
processes, configuring 219
selecting serial or concurrent

development 76
relproc.ld 219
Remove Access window 104
reports

changing format of 125
editing .fmt files 214
using GUI 126, 128

description of format
sections 215

example of format 216
table format example 128

resetAge utility 156
return codes

from user exit program 140
root component

owner 73

S
sample files shipped

mail exit routines 40
security 35, 93, 201
sendmail command 40
serial development

difference from concurrent 76
server daemon monitor 181
servers

definition 4
family server

definition 4
specifying daemons 39
starting 41

notification server 41
Settings notebook

Family Properties notebook 32
shadow actions 146
shadow types 143
shadows 143
Show Authority Actions

window 99
Show Interest Actions window 108
SQLCODE –818 170
stanza report

changing format of 126
example of 126

Stanza View Format Settings
page 127

starting
family server 41
notification server 41

STMTHEAP 24
subprocesses

for components 80

subprocesses (continued)
for releases 80
using driver subprocess 83

superuser
creating others 92
creating using fhchdf 200
definition of 5, 98

synchronous shadowing 147
system administrator,

responsibilities 11

T
table report

changing format of 128
displaying 128
example of 128

Table View Format Settings
page 129

TargetView 118, 125
TC_BACKUP 267
TC_BACKUPCHAR 268
TC_BECOME 268

setting for superuser access 93
TC_BUILD_RSSBUILDS_FILE 270
TC_BUILD_USER 276
TC_BUILDENVIRONMENT 269
TC_BUILDMAXWAIT 269
TC_BUILDMINWAIT 269
TC_BUILDOPTS 269
TC_BUILDPOOL 270
TC_CASESENSE 270
TC_CATALOG 271
TC_COMPONENT 271
TC_DBPATH 170, 200, 203, 271
TC_FAMILY 170, 271, 276
TC_INPUT 276
TC_INPUTTYPE 276
TC_LOCATION 276
TC_MAKEIMPORTRULES 271
TC_MAKEIMPORTTOP 272
TC_MAKEIMPORTVERBOSE 272
TC_MIGRATERULES 272
TC_MODELS 272
TC_MODPERM 273
TC_NOTIFY_DAEMON 202, 203,

274
TC_OUTPUT 276
TC_RELEASE 274
TC_REPORT_CHECKACCESS 274
TC_TOP 274
TC_TRACE 164, 165, 166, 275
TC_TRACEATTEMPTS 164
TC_TRACEDELAY 165
TC_TRACEFILE 165, 275
TC_TRACEOPTS 165
TC_TRACEPEEK 165

TC_TRACEQUICK 165
TC_TRACESAFE 166
TC_TRACESIZE 166, 275
TC_USER 275
TC_WORKAREA 275
TC_WWWDISABLED 275
TC_WWWPATH 275
tcadmin command 29
tccleanu command 163
tclevel 154
tclicmon command 187
TCP/IP

sendmail command 40
tcqry 195
tcupdb 196
teamcd

running as a Windows NT
service 39

teamcd command 201
TeamConnection

introducing 3
TeamConnection version

information 154
test component process 80
test subprocess 81
trace 164
track subprocess 80
trackcommithold 81
trackfixhold 81
tracktesthold 81

U
UNIX regular expressions 120
user command

creating example 92
User Exit Settings page 137
user exits

configuring 136
customizing parameters for 224
editing userExit file 223
nonzero return codes 140
parameters of 289
tips for writing 140

user.fmt 215
user IDs

creating 91
initial superuser 200
planning for 89

userExit file 136
users

notification 106
preparing for 89
to have data access 97

370 Administrator’s Guide

V
verifyDefect subprocess 80

verifyFeature subprocess 80

version control 3

version information 154

W
window examples

Add Host 96
Add Notification 112
Authority Group Settings

window 101
Component Process Settings 133
Configurable Fields for Defects

Settings 124
Configurable Fields Settings 119
Create Components 85
Create Releases 86
Create User 92
Family Settings 32
Interest Groups 110
Remove Access 104
Show Authority Actions 99
Show Interest Actions 108
Stanza View Format

Settings 127
Table View Format Settings 129
User Exit Settings 137

Windows NT service 39

workarea

automatic pruning of 76

Index 371

372 Administrator’s Guide

Readers’ Comments — We’d Like to Hear from You

IBM VisualAge TeamConnection Enterprise Server
Administrator’s Guide

Publication No. SC34-4551-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC34-4551-01

SC34-4551-01

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Information Development
Department G7IA / Bldg 062
P.O. Box 12195
Research Triangle Park, NC

27709-2195

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Part Number: 30L9312
Program Number: 5622-717

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-4551-01

30
L9

31
2

