
IBM VisualAge TeamConnection Enterprise Server

Commands Reference
Version 3.0

SC34-4501-03

IBM

IBM VisualAge TeamConnection Enterprise Server

Commands Reference
Version 3.0

SC34-4501-03

IBM

Fourth Edition (September 1999)

Note
Before using this document, read the general information under “Notices” on page ix.

This edition applies to fixpack 3.0.3 of the licensed program IBM VisualAge TeamConnection Enterprise Server and
to all subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the
correct edition for the level of the product.

Order publications by phone or fax. The IBM Software Manufacturing Company takes publication orders between
8:30 a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800)
284-4721.

You can also order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

A form for comments appears at the back of this publication. If the form has been removed, address your
comments to:

IBM Corporation
Attn: Information Development
Department T99B/Building 062
P.O. Box 12195
Research Triangle Park, NC, USA 27709-2195

You can fax comments to (919) 254-0206.

If you have comments about the product, address them to:

IBM Corporation
Attn: Department TH0/Building 062
P.O. Box 12195
Research Triangle Park, NC, USA 27709-2195

You can fax comments to (919) 254-4914.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1992, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|

Contents

Notices ix

Trademarks xi

About this book xiii
Who should read this book xiii
Conventions and terminology used in this book . . xiv
Prerequisite and related information xiv
How to send your comments xv

Chapter 1. General command
information 1
TeamConnection commands 1
Flags 2

Action flags. 2
Attribute flags 3
Flag arguments 3
Using standard input for arguments 5

Return codes 6
Environment variables 6

Setting environment variables 12
Authority requirements 12

Base authority 13
Superuser privilege 13
Implicit authority 13
Explicit authority 13
Restricted authority. 13

How to read syntax statements 14

Chapter 2. Access 15
Command summary 15
Command syntax 15
Command actions 15

access -create 15
access -delete 16
access -restrict 17

Related information 19

Chapter 3. Approval 21
Command summary 21
Command syntax 21
Command actions 22

approval -abstain 22
approval -accept 22
approval -assign 23
approval -create 24
approval -delete 25
approval -reject 25

Related information 26

Chapter 4. Approver 27
Command summary 27
Command syntax 27
Command actions 27

approver -create 27
approver -delete 28

Related information 29

Chapter 5. Builder 31
Command summary 31
Command syntax 31
Command actions 32

builder -create Name 32
builder -delete Name 34
builder -extract Name 34
builder -modify Name. 35
builder -view Name 36

Related information 37

Chapter 6. Collision 39
Command summary 39
Command syntax 40
Command actions 40

collision -accept 40
collision -reconcile 41
collision -reject 42

Related Information 44

Chapter 7. Component 45
Command summary 45
Command syntax 46
Command actions 46

component -create Name 46
component -delete Name 47
component -link Name 48
component -modify Name 48
component -recreate Name 49
component -unlink Name 50
component -view Name 50

Related information 51

Chapter 8. Coreq 53
Command summary 53
Command syntax 53
Command actions 53

coreq -create 53
coreq -delete 54

Related information 55

Chapter 9. Defect 57
Command summary 57
Command syntax 57
Command actions 58

defect -accept Name 58
defect -assign Name 59
defect -cancel Name 60
defect -configInfo 61
defect -design Name 62

© Copyright IBM Corp. 1992, 1999 iii

||

defect -modify Name 62
defect -note Name 65
defect -open 66
defect -reopen Name 68
defect -return Name 69
defect -review Name 70
defect -size Name 71
defect -verify Name 71
defect -view Name 72

Related information 73

Chapter 10. Driver 75
Command summary 75
Command syntax 76
Command actions 77

driver -assign Name 77
driver -check Name 78
driver -commit Name 78
driver -complete Name 79
driver -create Name 79
driver -delete Name 80
driver -export Name 81
driver -extract Name 81
driver -freeze Name 83
driver -modify Name 84
driver -refresh Name 84
driver -restrict Name 85
driver -view Name 86

Related information 86

Chapter 11. DriverMember 89
Command summary 89
Command syntax 89
Command actions 89

driverMember -create 89
driverMember -delete 91

Related information 92

Chapter 12. Environment 93
Command summary 93
Command syntax 93
Command actions 93

environment -create Name 93
environment -delete Name 94
environment -modify Name 95

Related information 95

Chapter 13. Feature 97
Command summary 97
Command syntax 97
Command actions 98

feature -accept Name 98
feature -assign Name 99
feature -cancel Name 100
feature -configInfo. 101
feature -design Name 102
feature -modify Name 103
feature -note Name 104
feature -open 105
feature -reopen Name 107

feature -return Name 107
feature -review Name 108
feature -size Name 109
feature -verify Name 110
feature -view Name 110

Related information 111

Chapter 14. Fix 113
Command summary 113
Command syntax 114
Command actions 114

fix -activate 114
fix -assign 115
fix -complete 116
fix -create. 117
fix -delete. 117

Related information 118

Chapter 15. Host 119
Command summary 119
Command syntax 119
Command actions 120

host -create Name 120
host -delete Name 121

Related information 122

Chapter 16. Notify 123
Command summary 123
Command syntax 123
Command actions 123

notify -create 123
notify -delete 124

Related information 125

Chapter 17. Parser 127
Command summary 127
Command syntax 127
Command actions 127

parser -create Name 127
parser -delete Name 128
parser -modify Name. 129
parser -view Name 130

Related information 130

Chapter 18. Part 131
Command summary 131

Characteristics of parts 131
What you can do with parts 132
Working with parts 133
Common parts in releases 136

Command syntax 137
Command actions 140

part -build Name 140
part -build Name -cancel 142
part -checkin Name 143
part -checkout Name 144
part -childInfoView Name 146
part -configInfo. 147
part -connect Name 148
part -create Name 149

iv Commands Reference

part -delete Name 152
part -disconnect Name 152
part -exec Text 153
part -export Name 157
part -extract Name 157
part -link Name 159
part -lock Name 160
part -mark Name 161
part -modify Name 162
part -overrideRestrict Name 164
part -recreate Name 165
part -refresh Name 166
part -rename Name 167
part -resolve Name 168
part -restrict Name 169
part -touch Name 170
part -undo Name 170
part -unlock Name 171
part -view Name 172
part -viewmsg Name 173

Related information 174

Chapter 19. Prereq 175
Command summary 175
Command syntax 175
Command actions 175

prereq -create Name 175
prereq -delete Name 176

Related information 176

Chapter 20. Release 177
Command summary 177
Command syntax 179
Command actions 180

release -configInfo 180
release -create Name 181
release -delete Name 182
release -export Name 183
release -extract Name 183
release -link Name 186
release -modify Name 186
release -prune Name 188
release -recreate Name 189
release -view Name 189

Related information 190

Chapter 21. Report 191
Command summary 191
Command syntax 192
Command actions 192

report -general Tclause 192
report -help 194
report -testClient 194
report -testServer 195
report -userExitInfo 196
report -view Name 197
report -view partView 202
report -view TargetView 204

Related information 205

Chapter 22. Shadow 207
Command summary 207
Command syntax 208
Command actions 209

shadow -create Name 209
shadow -define Name 210
shadow -delete Name 211
shadow -disable Name 211
shadow -enable Name 212
shadow -modify Name 212
shadow -redefine Name 214
shadow -synchronize Name 214
shadow -undefine Name 215
shadow -verify 216
shadow -view Name 216

Related information 217

Chapter 23. Size 219
Command summary 219
Command syntax 219
Command actions 220

size -accept 220
size -assign 220
size -create 221
size -delete 222
size -reject 223

Related information 224

Chapter 24. Target 225
Command summary 225

Context for target/status processing 225
Supporting tables and views 225

Command syntax 225
Command actions 226

target -create Name 226
target -delete 227
target -modify 227
target -view 228

Related information 229

Chapter 25. Tclogin 231
Command summary 231
Command syntax 231
Command actions 231

tclogin -login 231
tclogin -logout 232
tclogin -view 232

Related information 233

Chapter 26. Test 235
Command summary 235
Command syntax 235
Command actions 236

test -abstain 236
test -accept 237
test -assign 237
test -create 238
test -delete 239
test -reject 240

Related information 240

Contents v

Chapter 27. User 241
Command summary 241
Command syntax 241
Command actions 241

user -create 241
user -configInfo 242
user -delete Name 243
user -modify Name 243
user -recreate Name 245
user -view Name 245

Related information 246

Chapter 28. Verify 247
Command summary 247
Command syntax 247
Command actions 247

verify -abstain 247
verify -accept 248
verify -assign 249
verify -reject 249

Related information 250

Chapter 29. Workarea 251
Command summary 251
Command syntax 252
Command actions 253

workarea -assign Name 253
workarea -cancel Name 254
workarea -check Name 254
workarea -commit Name 255
workarea -complete Name 256
workarea -configInfo 257
workarea -create 257
workarea -export Name 258
workarea -extract Name 259
workarea -fix Name 261
workarea -freeze Name 262
workarea -import Name 262
workarea -integrate Name 263
workarea -modify Name 264
workarea -refresh Name 264
workarea -test Name 265
workarea -undo Name 266
workarea -view Name 266

Related information 267

Chapter 30. AutoMerge 269
Command summary 270
Parameters 271
Examples 272
Program Status 273

Appendix. Querying the
TeamConnection database 275
Constructing queries 275
Rules for defining queries 276
Views and report output 277
AccessDownView** 278
AccessFastView. 278
AccessNInheritView 279

AccessTable 279
AccessUpView 279
AccessView** 279
Approvals 280
ApprovalView** 280
Approvers 281
ApproverView** 281
Authority** 281
BchangeView** 281
BcompView** 282
BpartView** 282
Builders 284
BuilderView** 284
Cfgcomproc** 285
Cfgrelproc** 285
ChangeExtractView 285
ChangeView** 286
Changes 287
Collectors 287
Collisions. 287
CollisionView**. 287
CompMembers 288
CompMemberView 288
Components. 289
CompView** 289
Config** 290
ConfigPartView** 290
Coreqs 291
CoreqView**. 291
DefectDownView** 291
Defects 292
DefectView** 293
DriverMembers. 294
DriverMemberView**. 294
Drivers 295
DriverView** 295
EnvView** 296
FeatureDownView** 296
FeatureView** 297
Files** 298
FixDownView 299
FixView**. 299
HistoryView. 300
Hosts 300
HostView** 300
Interest** 301
Notes 301
NoteView** 301
Notification 301
NotifyDownView** 302
NotifyUpView** 302
NotifyView** 302
OVersions 303
Parsers 303
ParserView** 303
PartFullView** 304
Parts 305
PartsOutView**. 305
PartOverrideRView 306
PartView** 306
Path 307

vi Commands Reference

||

Prereqs 308
PrereqView** 308
Releases 308
ReleaseView** 309
Sequence 310
Shadows 310
ShadowView** 310
ShadowTypes** 311
ShadowParts 311
ShadowPartView**. 311
Sizes 312
SizeView** 312
TargetView** 312
Tests 313
TestView** 313
Tracks 314
Users** 314
VerifyView**. 314
Versions 315
VersionView** 316
Workareas 316

WorkAreaView** 316

Services and Support 319
VisualAge TeamConnection Services and Support 319

Bibliography 321
IBM VisualAge TeamConnection Enterprise Server
library. 321
TeamConnection technical reports 321
DB2 322
Related publications 322

Glossary 325

Index 333

Readers’ Comments — We’d Like to
Hear from You 335

Contents vii

viii Commands Reference

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Subject to
IBM’s valid intellectual property or other legally protectable rights, any
functionally equivalent product, program, or service may be used instead of the
IBM product, program, or service. The evaluation and verification of operation in
conjunction with other products, except those expressly designated by IBM, are the
responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY, USA 10594.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact the Site Counsel, IBM
Corporation, P.O. Box 12195, 3039 Cornwallis Road, Research Triangle Park, NC
27709-2195, USA. Such information may be available, subject to appropriate terms
and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement.

This document is not intended for production use and is furnished as is without
any warranty of any kind, and all warranties are hereby disclaimed including the
warranties of merchantability and fitness for a particular purpose.

IBM may change this publication, the product described herein, or both. These
changes will be incorporated in new editions of the publication.

This publication contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

© Copyright IBM Corp. 1992, 1999 ix

x Commands Reference

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States and/or other countries:

AIX® OS/390
C/370™ OS/400
DB2® PowerPC
IBM® RISC System/6000
MVS™ RS/6000
MVS/ESA™ SP2
MVS/XA™ TalkLink
OpenEdition® TeamConnection™

OS/2® VisualAge®

Lotus and Lotus Notes are registered trademarks and Domino is a trademark of
Lotus Development Corporation.

Tivoli, Tivoli Management Environment, and TME 10 are trademarks of Tivoli
Systems Inc. in the United States and/or other countries.

The following terms are trademarks of other companies:

HP-UX 9.*, 10.0 and 10.01 for HP 9000 Series 700 and 800 computers are X/Open
Company UNIX 93 branded products. HP-UX 10.10 and 10.20 for HP 9000 Series
700 and 800 computers are X/Open Company UNIX 95 branded products.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Intel and Pentium are registered trademarks of Intel Corporation.

Microsoft, Windows, Windows NT and the Windows logo are registered
trademarks of Microsoft Corporation.

Java, HotJava, Network File System, NFS, Solaris and the Sun logo are trademarks
or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Netscape Navigator is a U.S. trademark of Netscape Communications Corporation.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Acrobat Reader, and PostScript
are trademarks of Adobe Systems Incorporated.

Other company, product, and service names may be trademarks or service marks
of others.

© Copyright IBM Corp. 1992, 1999 xi

xii Commands Reference

About this book

This book is part of the documentation library supporting the IBM VisualAge
TeamConnection Enterprise Server licensed program. It describes the following:
v How to issue teamc commands and teamc command syntax.
v How to use the automerge tool to automatically merge files or directories of

files.
v How to query the TeamConnection database using the teamc report -view or

teamc report -general command.

With the information in this book you will be able to issue teamc commands from
an operating system command prompt, the TeamConnection command line
interface, the Edit Task List window, or the Query field on filter windows.

Thic book does not contain TeamConnection administrator line commands (such as
teamcd and fhcirt) or build server line commands (such as teamcbld). For
instructions on using these and other family and build server commands, refer to
the TeamConnection Administrator’s Guide or the TeamConnection User’s Guide.

Read “Chapter 1. General command information” on page 1 for an overview of the
TeamConnection commands and an explanation of the command syntax. The
remaining chapters, which are in alphabetical order according to command name,
describe the commands in detail. Each chapter describes one command and
includes:

v Description of the command and an overview of its purpose
v Syntax statements of the command, one statement per action flag
v Action flags you can use with the command
v Attribute flags that apply to the command
v Examples of the command
v Related information

The appendix describes the fields for various TeamConnection views and tables,
including the order that is output by the -raw option of the report command.

This book is available in PDF format. Because production time for printed manuals
is longer than production time for PDF files, the PDF files may contain more
up-to-date information. The PDF files are located in directory path nls\doc\enu
(Intel) or softpubs/en_US (UNIX). To view these files, you need a PDF reader such
as Acrobat.

Who should read this book

This book assumes familiarity with the objects, actions, and processes involved in
using a TeamConnection database. You should read the TeamConnection User’s
Guide , SC34-4499, before you use the TeamConnection product. It introduces the
fundamentals of the configuration management, version control, change control, and
problem tracking features in the TeamConnection licensed programs. It also defines
the concepts that are the foundation of TeamConnection actions and establishes
their interrelationships. You should be familiar with your operating system because
you access the TeamConnection licensed programs through that environment.

© Copyright IBM Corp. 1992, 1999 xiii

Conventions and terminology used in this book

This book uses the following highlighting conventions:
v Italics are used to indicate the first occurrence of a word or phrase that is

defined in the glossary. They are also used for information that you must
replace.

v Bold is used to indicate items on the GUI.
v Monospace font is used to indicate exactly how you type the information.
v File names follow Intel conventions: mydir\myfile.txt. AIX, HP-UX, and Solaris

users should render this file name mydir/myfile.txt.

Tips or platform specific information is marked in this book as follows:

Shortcut techniques and other tips

IBM VisualAge TeamConnection Enterprise Server for OS/2

IBM VisualAge TeamConnection Enterprise Server for Windows/NT

IBM VisualAge TeamConnection Enterprise Server for Windows 95

IBM VisualAge TeamConnection Enterprise Server for AIX

IBM VisualAge TeamConnection Enterprise Server for HP-UX

IBM VisualAge TeamConnection Enterprise Server for Solaris

Prerequisite and related information

Information on customer service, a glossary, and a bibliography are included at the
back of this book.

IBM VisualAge TeamConnection Enterprise Server uses DB2 Universal Database,
Enterprise Edition, version 5. Refer to the bibliography at the back of this book for
a list of publications you can use to install and administer your DB2 database
system.

Note: It is not recommended that you make changes to your database by issuing
INSERT, UPDATE, or DELETE statements or by changing or deleting
database tables or the columns defined in TeamConnection database tables.
Changing your database in these ways, through the DB2 administrator tools,
the DB2 command line processor, the TeamConnection migration tools, or
the tcupdb tool can corrupt your TeamConnection database. Any such
changes are made at your own risk. Please contact your IBM representative
for information on the terms of IBM customer support.

xiv Commands Reference

How to send your comments

Your feedback is important in helping to provide the most accurate and highest
quality information. If you have any comments about this book or any other IBM
VisualAge TeamConnection Enterprise Server documentation fill out one of the
forms at the back of this book and return it by mail, by fax, or by giving it to an
IBM representative.

About this book xv

xvi Commands Reference

Chapter 1. General command information

This chapter introduces the TeamConnection commands that you can issue from
the command line. This chapter also does the following:
v Outlines the authority required to issue commands
v Explains how to use action and attribute flags with the commands
v Explains how to use TeamConnection environment variables
v Explains how to read the command syntax found in this book

TeamConnection commands

When you type TeamConnection commands, start with teamc, followed by the
command, the action flag and argument, and the attribute flag and argument. The
following command, for example, contains each of these elements:
teamc user -modify myUserID -login myLoginID

user The command

-modify myUserID
The action flag and argument

-login myLoginID
An attribute flag and argument

The purpose of each TeamConnection command is shown in the following table:

Table 1. TeamConnection commands
Command Purpose
Access Updates the access lists for a component, identifying the user IDs that have

explicit authority to perform actions on it.
Approval Marks approval records with approvers’ opinions about proposed changes

in a release.
Approver Updates the list of approvers for a release.
Builder Creates and maintains builders, which are used in the build function.
Collision Enables you to accept, reject, or reconcile collision records during

concurrent development.
Component Creates and maintains components in a family. Defines a component

hierarchy.
Coreq Identifies work areas as corequisites, that is, work areas that must be

included in the same driver or integrated into the release at the same
time.

Defect Monitors the reporting, evaluation, and resolution of problems.
Driver Defines and works with a collection of work area changes within a

release.
DriverMember Adds work areas to or deletes work areas from a driver.
Environment Updates the environment list for a release, identifying the test

environments and the names of testers.
Feature Monitors the suggestion, evaluation, and implementation of design

changes and enhancements.
Fix Marks the fix records for a component identifying user IDs that receive

notification of actions on the component.
Host Identifies client access on the host list associated with a user ID.
Notify Identifies notification interest for user IDs using component notification

lists.
Parser Creates and maintains parsers. Use this for the build function.

© Copyright IBM Corp. 1992, 1999 1

Table 1. TeamConnection commands (continued)
Command Purpose
Part v Places parts in the TeamConnection environment and lets users work

with them.
v Starts or stops the build function.
v Manages the build tree.

Prereq Create and delete prerequisite relationships between two or more work
areas that are in the fix or integrate state.

Release Creates and maintains releases to group project-related parts.
Report Searches database tables for information on TeamConnection objects.
Shadow Define, setup, manipulate, and view TeamConnection shadows. A

shadow is a collection of files in a filesystem that reflect the contents of
a workarea, driver, or release.

Size Updates the sizing records for defects and features.
Target Maintains target and status information for part versions.
Tclogin Logs users in and off of TeamConnection families that use password

security.
Test Updates environment test records, identifying testers’ opinions about test

results.
User Creates user IDs and maintains information about the owners.
Verify Updates verification records, indicating the outcome of defects and

features.
Workarea Creates, maintains, freezes, and refreshes work areas.

For information about commands used for the family and build servers, such as
teamcd, notifyd, teamcpak, and teamcbld, refer to the User’s Guide and the
Administrator’s Guide

This book also explains how to use the TeamConnection automerge tool for
automatically merging files or directories of files. See “Chapter 30. AutoMerge” on
page 269 for additional information.

Flags

Two types of flags are associated with commands: action flags and attribute flags.
You can type the names of flags in any order on the command line.

A flag is a negative (-) or a positive (+) symbol followed by a word, often in
lowercase, on the command line. The positive or negative symbols associated with
each flag cannot be interchanged. If a flag has a positive symbol, it can only have a
positive symbol associated with it.

You can abbreviate both action and attribute flags; however, the number of letters
required to make a flag unique within a command depends on the names of all of
the other flags, both action and attribute flags, associated with that command.

For example, you can abbreviate the verbose flag by typing verb. However, you
could not abbreviate it with ver because that would not differentiate it from the
version flag, whose minimum abbreviation is vers.

Action flags

Every command has action flags associated with it. These action flags represent the
actions that you can perform for a command. When you use the command line to

Introduction

2 Commands Reference

perform a TeamConnection action, you must specify one command and only one
action flag. You do not have to type the action flag directly after the command.

For example, you can perform six actions using the user command. Each of these
tasks requires one of the following action flags:

teamc user -configInfo Displays configurable field properties for users
teamc user -create Creates a new user ID
teamc user -delete Deletes an existing user ID
teamc user -recreate Re-creates a previously deleted user ID
teamc user -modify Changes information related to a user ID
teamc user -view Displays current information for a user ID

Attribute flags

Some action flags have required attribute flags associated with them; others have
optional attribute flags.

For example, the -login and -address attribute flags are required when you use
the -create action flag for the user command. The other attribute flags are
optional.
teamc user -create -login billyb -address williamb@vroom1.raleigh.ibm.com
-name "William Bronson" -area Dept450 +super

You get the same results if you rearrange the order of the flags and abbreviate
some of them.
teamc user -login billyb -name "William Bronson" -ad
williamb@vroom1.raleigh.ibm.com -create -ar Dept450 +super

Syntax indicates the attribute flags that are required.

Flag arguments

In most cases, you must type additional information for an action or attribute flag.
This additional information is an argument. The seven types of arguments, their
format and their restrictions, are listed in the following table:

Table 2. Flag arguments

Argument Format Example Restrictions

Date yyyy/mm/dd 1995/04/29 Only numbers separated by
slashes are permitted.

Name Alphanumeric string 42tool You cannot use blanks, vertical
bars (|), or ASCII control
characters.*

Name ... One or more
alphanumeric strings

prod1 prod2
prod3

You cannot use vertical bars (|)
or ASCII control characters.*
Blanks are permitted to
separate unique strings.

Number Numeric string² 823 You must use numbers. Blanks
are not permitted.

Number . . . One or more numeric
strings³

411 1124 1 362 You must use numbers. Blanks
are permitted to separate
unique strings.

Introduction

Chapter 1. General command information 3

Table 2. Flag arguments (continued)

Argument Format Example Restrictions

Octal_Number Numeric string 750 You must use numbers from 0
to 7. Blanks are not permitted.

Text Alphanumeric strings
enclosed in quotation
marks

“Not able to
verify.”

You cannot use vertical bars (|)
or ASCII control characters.*

Note:
* For information on the ASCII control characters you use, refer to your
operating system documentation.
² When used with a -defect or -feature flag, an alphanumeric string is
acceptable and, consequently, the restrictions for Name apply.
³ When used with a -defect or -feature flag, one or more alphanumeric
strings are acceptable and, consequently, the restrictions for Name . . .
apply.
If the positive (+) or negative (-) symbol is the first character of the
argument then the symbol must be entered twice. For example: to
display numeric string +1234 as an argument, it must be entered as
++1234.

If you specify a list of arguments for more than one flag, the action is performed
for every possible combination of arguments. For example:
teamc fix -create -workarea 1 2 -release one two

creates four fix records, as shown in the following table.

Work area Release
1 one
1 two
2 one
2 two

Null keyword

You can use the keyword null on some of the TeamConnection -modify flags to
reset attribute contents to zero characters. For example, you can reset the reference
field for a defect as follows:
teamc defect -modify 247 -reference null

Using null in the preceding example changes the contents to zero characters; thus,
the reference field is effectively blank.

The following table lists the commands and attributes that accept the null
keyword.

Table 3. TeamConnection attributes that accept null
Command Attribute Flag(s)
Builder -parameters
Component -description
Defect -driver -environment -reference -release
Feature -reference
Parser -include
Part -builder -parameter -parser
User -area -name

Introduction

4 Commands Reference

Table 3. TeamConnection attributes that accept null (continued)
Command Attribute Flag(s)
Workarea -target

Octal numbers for directory and file permissions

The driver -extract Name . . ., part -extract Name . . ., and release -extract Name
. . . actions use -dmask and -fmask attributes to enable you to set directory and
file access permissions for parts that you extract from TeamConnection. These
attributes take as their argument an octal number that sets three categories of
permissions:
v User
v Group
v Others

For each category, there are three types of permission:
v Read
v Write
v Execute

Permissions are expressed in octal notation as shown in the following table:

Table 4. Values for file and directory permissions
Value Read Write Execute

0 no no no
1 no no yes
2 no yes no
3 no yes yes
4 yes no no
5 yes no yes
6 yes yes no
7 yes yes yes

Permissions for all three categories are expressed using a 3-digit number in octal
notation:
v The left number represents user access.
v The middle number represents group access.
v The right number represents access for others.

For example, parts that are created using TeamConnection have permissions 644.
This octal number represents read/write permission for user, read permission for
others in the user’s group, and read permission for all other users. Permission 764
represents read/write/execute permission for user, read/write permission for
others in the user’s group, and read permission for all other users.

For parts that are extracted to an OS/2 system, only the file permissions
specified for the user category are relevant. The execute file permission
is ignored, as are all part permissions for the group and others
categories.

Using standard input for arguments

To specify an argument using standard input, use a negative symbol (-) as the
argument type. You can specify only one flag per command in this way. The
following example of standard input from a keyboard illustrates the remarks flag
argument:

Introduction

Chapter 1. General command information 5

teamc defect -open -component debugr -sev 3 -remarks -

Press Enter to create additional lines on which to type the text. When you are
finished entering the text, press Enter to create a new line and then press Ctrl Z to
end standard input.

In the following example of standard input from a part, the -remarks argument is
equivalent to the contents of the part you specified:
teamc defect -open -component debugr -sev 3 -remarks - < \tmp\defect.des

Return codes

TeamConnection line commands return 0 when they complete successfully and
(usually) 1 when they fail. Sometimes the failing return code is different, but any
nonzero return code indicates failure.

Environment variables

You can set environment variables to describe the TeamConnection environment in
which you are working. Environment variables provide default settings and
behaviors for many TeamConnection actions and processes. You can override the
value you set for many of these variables by using the corresponding flag in a
TeamConnection command or field on the TeamConnection GUI.

Some environment variables can be set either by your operating system (such as in
your config.sys file or .profile) or by the TeamConnection Settings notebook. When
an environment variable has a Settings notebook equivalent, TeamConnectionuses
the two as follows:
v The environment variable controls the command line interface.
v The Settings notebook controls the graphical user interface.

If there is no Settings notebook equivalent for the environment variable, then the
environment variable takes effect regardless of the interface you are using. See
“Setting environment variables” on page 12 for more information about setting
environment variables.

You are not required to set your TC_FAMILY environment variable for the
TeamConnectionclient command line interface. However, if the TC_FAMILY
environment variable is not set, the -family must be specified for every client
command.

The following table lists the names of the TeamConnection environment variables,
the purpose they serve, the equivalent TeamConnection command-line flag, the
equivalent Settings notebook field, and the TeamConnection component that uses
each environment variable.

Table 5. TeamConnection environment variables

Environment variable Purpose Flag Setting Used by

LANG Specifies the language-specific
message catalog.

Client, family
server

NLSPATH Specifies the search path for
locating message files.

NLS path Client, family
server

Introduction

6 Commands Reference

|
|

|
|
|

Table 5. TeamConnection environment variables (continued)

Environment variable Purpose Flag Setting Used by

PATH Specifies where tcadmin is to
search for the family create
utilities.

Client, build
server, family
server

TC_BACKUP Controls whether or not the
following commands create
backup files when a read-only
copy of the file already exists
on your workstation. If this
environment variable is set to
off or OFF, the commands do
not create backup files.

v builder -extract

v part -checkout

v part -extract

v part -merge

v part -reconcile

Family server

TC_BACKUPCHAR Specifies the character to be
interted in the file name
extension when
TeamConnection creates a
backup copy of a file during
checkout and extract actions.
The default backup characters
are $ on Intel platforms and _
on UNIX platforms. If you
check out or extract a file
called myfile.ext, for example,
and a read-only copy of this
file already exists on your
workstation, TeamConnection
creates a backup copy called
myfile.$ext or myfile._ext. On
file systems requiring 8.3 file
names (such as FAT file
systems), the file extension is
truncated to three characters
(myfile.$ex or myfile._ex).

Family server

TC_BECOME Identifies the user ID you want
to issue
TeamConnectioncommands
from, if the user ID differs
from your login. You assume
the access authority of the user
ID you specify.

-become Become
user

Client, build
server (except
mvs)

TC_BUILDENVIRONMENT Specifies the build
environment name, such as
OS/2 or MVS. The value you
specify here can be anything
you like, but it must exactly
match the environment
specified for a builder in order
for the builder to use this
build agent. This value is
case-sensitive.

-e Build server

Introduction

Chapter 1. General command information 7

Table 5. TeamConnection environment variables (continued)

Environment variable Purpose Flag Setting Used by

TC_BUILDMINWAIT Minimum amount of time to
wait (in seconds) between
queries for new jobs. Default
setting is 5, minimum setting
is 3.

Build server

TC_BUILDMAXWAIT Maximum amount of time to
wait (in seconds) between
queries for new jobs. Default
setting is 15, maximum setting
is 300.

Build server

TC_BUILDOPTS Specifies build options for
sending build log file messages
to the screen, and setting the
logging level. If you do not
specify any of these options,
then the build server writes
build messages to the build log
file (teamcbld.log), and writes
a minimum level of messages
to the log file. Some possible
values are:
v TOSCREEN (-s) sends the

teamcbld.log file to the
screen in addition to
sending it to a file.

v USEENVFILE (-n)
– writes the changed

environment variables to
a file called tcbldenv.lst
instead of setting them in
program’s environment.
The format of the file is
variable=value.

– writes the list of input
files to a file called
tcbldin.lst. One file per
line, format is pathName
type.

– writes the list of output
files to a file called
tcbldout.lst. One file per
line, format is pathName
type.

-s, -n Build server

TC_BUILDPOOL Specifies the build pool name. -p Pool Build server

TC_BUILD_RSSBUILDS_FILE Specifies the name of startup
files to be used to provide
information about build
servers to the build process.

Build server

TC_CASESENSE Changes the case of the
arguments in commands, not
in queries.

Case Client

Introduction

8 Commands Reference

Table 5. TeamConnection environment variables (continued)

Environment variable Purpose Flag Setting Used by

TC_CATALOG Specifies a specific file for the
TeamConnectionmessage
catalog. Sometimes, depending
upon the operating system
environment, the catalog open
command will only look in a
particular directory for the
catalog. If the host is running
multiple versions of
TeamConnection, this variable
may be used. To set this
environment variable, specify
the file path name of the
message catalog as in the
following example:

TC_CATALOG=
"/family/msgcat/teamc.cat"

Family server, oe
build server

TC_COMPONENT Specifies the default
component.

-component Component Client, make
import tool

TC_DBPATH Specifies the database directory
path. Family specific database
files reside here.

Family server

TC_FAMILY Identifies the TeamConnection
family you work with.

-family Family Build server,
client, family
server, make
import tool

TC_MAKEIMPORTRULES Specifies the name of the rules
file that TeamConnection uses
when importing the makefile
data into TeamConnection. If
you set this environment
variable, then you do not have
to use the /u option with the
fhomigmk command (Intel
only). Specify the full path
name of the rules file. If
neither this environment
variable nor the /u option is
used, TeamConnection uses
default rules.

Make import tool

TC_MAKEIMPORTTOP Strips off the leading part of
the directory name when
importing parts into
TeamConnection. For example,
you have parts with the
following directory structure:
g:\octo\src\inc\. To create
these parts without the g:\octo
structure, you can set
TC_MAKEIMPORTTOP=g:\octo
before you invoke the make
import tool. The parts created
in TeamConnection have the
directory structure of src\inc\.

Make import tool

Introduction

Chapter 1. General command information 9

Table 5. TeamConnection environment variables (continued)

Environment variable Purpose Flag Setting Used by

TC_MAKEIMPORTVERBOSE Causes the -verbose flag to be
added to part commands
created by fhomigmk.

Make import tool

TC_MIGRATERULES Specifies the name of a file
containing the rules to be
applied for migration of
makefiles if the name is not
supplied on the fhomigmk
command (Intel only) line as a
parameter.

Client

TC_MODELS Specifies which models to load
beyond the base
TeamConnection models. Use
thisd environment variable to
enable tools that extend the
TeamConnection model. The
following list shows the values
to set for TC_MODELS for
other tools supported by
TeamConection:

DataAtlas
TC_MODELS=″_ewswsdd
_ewswhll _ewswims″

This environment variable is
also used to specify which
models to load in the
TeamConnection Breditor (a
tool offered by the
ToolBuilder’s Development
Kit). The following are
appropriate Breditor settings
for each TeamConnection
platform:

OS/2 fhcbred

Windows NT
fhmbred

AIX fhcbred

Solaris fhcbred

HP-UX fhcbred

Sever

TC_MODPERM Controls whether or not the
read-only attribute is set after
a part is created, checked in or
unlocked in TeamConnection.
To cause the read-only
attribute to be set, specify
TC_MODPERM=ON. To
prevent the read-only attribute
from being set, specify
TC_MODPERM=OFF. The
default is TC_MODPERM=ON.

Client

Introduction

10 Commands Reference

||
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

||

|
|

||

||

||
|

|||

Table 5. TeamConnection environment variables (continued)

Environment variable Purpose Flag Setting Used by

TC_NOTIFY_DAEMON An alternate way of starting
notifyd with the teamcd
command. If you set this
environment variable, then you
do not have to use the -n
option with the teamcd
command. Specify the full path
name of the mail exit to use
with notifyd.

Family server

TC_RELEASE Specifies a release. -release Release Client, make
import tool

TC_REPORT_CHECKACCESS Enables report access checking.
With this option,
TeamConnection checks a
component’s access list before
allowing a user to view a
component, defect, feature, or
part. Only users who are
granted authority in an
authority group that includes
the CompView, DefectView,
FeatureView, and PartView
actions can view reports for
the component.Set
TC_REPORT_CHECKACCESS=1
to enable or
TC_REPORT_CHECKACCESS=0
to disable this function.

Family server

TC_TOP Specifies the source directory. -top Top Client

TC_TRACE Specifies the variable that lets
the user designate which parts
should be traced. You should
modify this only when
directed to do so by an IBM
service person. Otherwise it is
set to null. To trace all parts,
specify TC_TRACE=*.

Client, family
server, build
server

TC_TRACEFILE Specifies the output (part path
and name) of the trace that the
user designates using
TC_TRACE. The default trace
file name is tctrace. For the
MVS build server, the default
trace file is stdout.

Client, family
server, build
server

TC_TRACESIZE Specifies the maximum size of
the trace file in bytes. If the
maximum is reached,
wrapping occurs. The default
is one million bytes.

Client, family
server, build
server

Introduction

Chapter 1. General command information 11

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|||

Table 5. TeamConnection environment variables (continued)

Environment variable Purpose Flag Setting Used by

TC_USER Specifies the user login ID for
single-user environments OS/2
and Windows 95 (if not using
the login facility). This
environment variable is not
used in multiuser
environments AIX, HP-UX,
Solaris, MVS, MVS/OE, and
Windows NT. If a user is using
the Windows 95 login facility,
this environment variable is
not used.

User ID Client, build
server

TC_WORKAREA Specifies the default workarea
name.

-workarea Workarea Client, make
import tool

TC_WWWPATH Specifies the path for the
HTML helps and image files
for Web client.

Client, family
server

TC_WWWDISABLED Disables the Web client. Family server

The following environment variables are dynamically set by the teamcbld processor
before the build script is invoked:

Table 6. TeamConnection dynamically set build environment variables

Environment variable Purpose Flag Setting Used by

TC_BUILD_USER Login of user who initiated the
part -build command.

Build server

TC_INPUT List of input files (separated by
spaces).

Build server

TC_INPUTTYPE List of input file types (such as
TCPart).

Build server

TC_OUTPUT List of output files. Build server

TC_OUTPUTTYPE List of output file types. Build server

TC_LOCATION Directory where build script is
invoked.

Build server
(except MVS build
server)

Setting environment variables

For methods of setting your environment variables, refer to your operating system
documentation. For example, you can use the following command to set the
TC_FAMILY environment variable:
v OS/2 - SET TC_FAMILY=familyName@hostname@portnumber

v UNIX - export TC_FAMILY=familyName@hostName@portNumber

Authority requirements

Different authority requirements are attached to each of the actions in the
TeamConnection product. Five types of authority control the actions you can or
cannot perform.

Introduction

12 Commands Reference

Base authority

If you have a valid TeamConnection user ID, you can perform these unrestricted
base authority actions:
v Open defects and features
v Modify the information associated with your user ID
v View information associated with any user ID
v Add notes to existing defects or features
v Generate reports

Superuser privilege

If you have been granted TeamConnection superuser privilege by a family
administrator or someone else with superuser privilege, you can perform all
possible actions in your TeamConnection family. Only a superuser can do the
following:
v Create a user ID
v Create the first host list entry for a user ID
v Delete a user ID
v Re-create a user ID
v Grant superuser privilege to a user ID

Implicit authority

You have implicit authority to perform actions on the basis of ownership. For
example, if you open a defect, you are the originator of the defect and have the
implicit ability to perform certain actions, such as canceling the defect or verifying
its outcome. Similarly, if you own a component, a release, or a feature, you have
implicit authority related specifically to those roles. You have implicit authority
until you relinquish ownership of the object in question.

Explicit authority

Explicit authority is specified for a user for a component. Granting explicit
authority is a method for limiting who can perform certain actions for the
component.

Your family administrator can group sets of actions according to access authority
groups. You are assigned to one or more of these groups by a component owner.
The authority groups you belong to for any given component are inherited for all
descendant components unless the components are restricted.

For specific actions used to create access authority groups, refer to the
TeamConnection User’s Guide . For a list of the preconfigured authority groups
shipped with this product, which your family administrator might use, refer to the
TeamConnection User’s Guide

Restricted authority

A user can be restricted from performing certain actions in a specific component by
someone with AccessRestrict authority who wants to control which users inherit
authority from the parent components. The authority can be restricted for specific
users in the authority group or for all users in the group. The TeamConnection
product notifies you if your specific authority is restricted.

Introduction

Chapter 1. General command information 13

Note: Restricted authority is not inherited, and it does not affect implicit authority
or superuser privilege.

For more information on authority requirements, refer to the TeamConnection User’s
Guide

How to read syntax statements

The style conventions listed in the following table apply to the command syntax:

Table 7. Style conventions for TeamConnection syntax statements

Style Usage

First letter of an
argument is
capitalized.

You must supply these values. For example, Name or Text.

. . . Parameter can be repeated on the command line. For example,
-login Name. . . means that you can enter more than one argument
for the -login flag.

[] Optional parameters are enclosed in square brackets. For example,
[-description Text].

{ } There is more than one parameter choice, but one is required.

| Choose one parameter only. [a|b] indicates that you can choose a
or b, or neither a nor b. {a|b} indicates that you must choose either
a or b.

− Standard input.

Note: The syntax statements in this document use a single asterisk (*) to denote
the default and a double asterisk (**) to denote a restriction. Do not type the
asterisk as part of the command.

Introduction

14 Commands Reference

Chapter 2. Access

Command summary

Use the access command to create entries on the component access list, delete
entries from this list, and restrict authority for entries (including those normally
inherited from ancestor components) on the list. Each entry associates a user ID
with an access authority group. The authority group specifies the set of actions a
user ID has the authority to perform in relation to the component. A family
administrator can modify existing authority groups and define new ones. For
details of the access authority groups shipped with the TeamConnection product,
refer to the TeamConnection User’s Guide.

A user ID can have more than one entry on the access list for a given component.
A user ID inherits explicit authority from all ascendant components for that
component and has the accumulation or superset of all authority groups defined
for those ascendant components, unless the authority is restricted.

You cannot grant another user any access authority that is not defined for your
own user ID.

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the access command are:

teamc access -create -login Name ... -authority Name -component Name
-family Name [-become Name] [-verbose]

teamc access -delete { -login Name ... | -inherited } -authority Name
-component Name -family Name [-become Name] [-verbose]

teamc access -restrict { -login Name ... | -inherited } -authority Name
-component Name -family Name [-become Name] [-verbose]

Command actions

access -create

Adds entries to a component access list.

© Copyright IBM Corp. 1992, 1999 15

The access -create command has these associated attribute flags.

Attribute Description
-authority Name A preconfigured access authority group for the user ID.

For more details about the access authority groups shipped
with TeamConnection, refer to the TeamConnection User’s
Guide.

The default is 750 (read, write and execute access for
directory owner, read and execute access for others in the
owner’s group, and no access for all other users).

-become Name The user ID you want to issue TeamConnection commands
from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-component Name The component associated with the object. Different
components can manage different versions of the same
object.

(Environment variable: TC_COMPONENT.)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-login Name . . . One or more TeamConnection user IDs. Specify only one
of -inherited or -login.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command gives developer access authority to TeamConnection user
ID barbara, for the graphix component and all its descendants. This command
creates an entry on the access list associated with the graphix component giving
user ID barbara the authority to perform all actions included in the developer
access authority group.
teamc access -create -login barbara -authority developer -component graphix

The following command gives writer access authority to TeamConnection user IDs
barbara and john for the graphix component and all its descendants. This
command creates two entries on the access list associated with the graphix
component.
teamc access -create -login barbara john -authority writer -component graphix

access -delete

Deletes entries from a component list or deletes the restriction on authority for
entries on a component access list.

Access

16 Commands Reference

The access -delete command has these associated attribute flags.

Attribute Description
-authority Name A preconfigured access authority group for the user ID.

For more details about the access authority groups shipped
with TeamConnection, refer to the TeamConnection User’s
Guide.

The default is 750 (read, write and execute access for
directory owner, read and execute access for others in the
owner’s group, and no access for all other users).

-become Name The user ID you want to issue TeamConnection commands
from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-component Name The component associated with the object. Different
components can manage different versions of the same
object.

(Environment variable: TC_COMPONENT.)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-inherited All users in the TeamConnection family who inherit the
specified authority group from all parents of the specified
component. Specify only one of -inherited or -login.

-login Name . . . One or more TeamConnection user IDs. Specify only one
of -inherited or -login.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command removes writer access from user ID barbara for the
graphix component. This command deletes the entry from the access list.
teamc access -delete -login barbara -authority writer -component graphix

The following command removes the restricted authority group releaselead for all
users inheriting this access authority group from all parents of the confidential
component. This command deletes the entry from the access list and permits users
with the releaselead authority in parent components of the confidential
component to perform all actions in the releaselead access authority group at the
confidential component.
teamc access -delete -inherited -authority releaselead
-component confidential

access -restrict

Restricts authority (including inherited authority) for entries on a component
access list.

Access

Chapter 2. Access 17

The access -restrict command has these associated attribute flags.

Attribute Description
-authority Name A preconfigured access authority group for the user ID.

For more details about the access authority groups shipped
with TeamConnection, refer to the TeamConnection User’s
Guide.

The default is 750 (read, write and execute access for
directory owner, read and execute access for others in the
owner’s group, and no access for all other users).

-become Name The user ID you want to issue TeamConnection commands
from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-component Name The component associated with the object. Different
components can manage different versions of the same
object.

(Environment variable: TC_COMPONENT.)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-inherited All users in the TeamConnection family who inherit the
specified authority group from all parents of the specified
component. Specify only one of -inherited or -login.

-login Name . . . One or more TeamConnection user IDs. Specify only one
of -inherited or -login.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command restricts the actions in the access authority group
developer+ for the TeamConnection user ID richard in the graphix component.
This command creates an entry on the access list associated with the graphix
component restricting the user ID richard from performing all actions included in
the developer+ access authority group.
teamc access -restrict -login richard -authority developer+
-component graphix

The following command restricts the actions in the access authority group
releaselead for all users inheriting the releaselead access authority group from all
parents of the confidential component. This command creates an entry on the
access list associated with the confidential component restricting all users who
inherited the releaselead access authority group from performing actions in the
releaselead access authority group.
teamc access -restrict -inherited -authority releaselead -component
confidential

Access

18 Commands Reference

Related information

See the following related commands:
Component
Report

Use the report command to obtain more information on existing authority groups:
v teamc report -view authority
v teamc report -view authority -where ″name =’developer’ ″
v teamc report -view authority -where ″action =’PartCheckIn’ ″

For a list of the access authority groups shipped with TeamConnection, refer to the
TeamConnection User’s Guide.

See your family administrator, or refer to the Administrator’s Guide, for information
about configuring new access authority groups and modifying existing ones.

Access

Chapter 2. Access 19

20 Commands Reference

Chapter 3. Approval

Command summary

Use the approval command to record approvers’ opinions on approval records
about proposed changes to parts in a release. You can use this command only for a
work area in the approve state. The approval command provides greater control
over changes made to releases as final deadlines approach.

Approval records are created automatically every time a work area is created for a
release that has an approver list. You can also create additional approval records
for a work area, with the approval command, without changing the approver list
associated with the release. For information on changing the approver list, see
“Chapter 4. Approver” on page 27. You can also use the approval command to
delete work area approval records or to assign them to other users.

Owners of an approval record must indicate on it whether they accept or reject the
changes proposed by the work area. An abstain option is available.

The state of the approval record controls whether the associated work area can
move to the fix state. If the release process includes the approval process, then
when all approval records are in the accept or abstain state, the work area moves
automatically to the fix state. If an approval record is in the reject state, the work
area cannot move to the fix state. Refer to the TeamConnection User’s Guide for
descriptions of the various processes and states.

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the approval command are:

teamc approval -abstain -release Name ... -family Name [-become Name]
-workarea Name ... [-approver Name] [-verbose]

teamc approval -accept -release Name ... -family Name [-become Name]
-workarea Name ... [-approver Name] [-verbose]

teamc approval -assign -to Name -release Name ... -family Name
[-verbose] -workarea Name ... [-approver Name] [-become Name]

teamc approval -create -approver Name -release Name ... -family Name
-workarea Name ... [-become Name] [-verbose]

teamc approval -delete -approver Name -release Name ... -family Name
-workarea Name ... [-become Name] [-verbose]

© Copyright IBM Corp. 1992, 1999 21

teamc approval -reject -release Name ... -family Name [-become Name]
-workarea Name ... [-approver Name] [-verbose]

Command actions

approval -abstain

Lets users refrain from accepting or rejecting the proposed part changes for the
specified work area.

The approval -abstain command has these associated attribute flags.

Attribute Description
-approver Name The user ID of the approver.

-become Name The user ID you want to issue TeamConnection commands
from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

approval -accept

Approves the proposed part changes for the specified work area.

The approval -accept command has these associated attribute flags.

Attribute Description
-approver Name The user ID of the approver.

-become Name The user ID you want to issue TeamConnection commands
from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

Approval

22 Commands Reference

Attribute Description
-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

You own an approval record that is in the ready state. It refers to the changes
proposed for a work area named 179 to monitor changes for feature 179 in the
release specified in your TC_RELEASE environment variable. The following
command indicates that you approve of the proposed changes for work area 179.
The approval record moves to the accept state. You do not have to specify the
-release flag because the TC_RELEASE environment variable was set.
teamc approval -accept -workarea 179

approval -assign

Assigns an existing approval record to another user ID. The owner of that user ID
becomes the owner of the approval record.

The approval -assign command has these associated attribute flags.

Attribute Description
-approver Name The user ID of the approver.

-become Name The user ID you want to issue TeamConnection commands
from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-to Name The user ID to which you want to reassign the object. The
user ID you specify becomes the owner of the object.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Approval

Chapter 3. Approval 23

Examples

You own two approval records, one for the work required to resolve defect 9122 in
release 10graphix and the other for the work required to resolve the same defect in
release 20graphix. The name of the work area is 9122 in both releases. The
following command assigns both of these approval records to pam, type:
teamc approval -assign -release 10graphix 20graphix -workarea 9122
-to pam

approval -create

Creates an approval record for a work area. This action does not change the
approver list.

For a user to perform this action, the associated release’s process must include the
approval subprocess.

The approval -create command has these associated attribute flags.

Attribute Description
-approver Name The user ID of the approver.

-become Name The user ID you want to issue TeamConnection commands
from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

Work area 147 in release 20graphix is in the approve state. The following
command creates an approval record so that jack must approve the proposed
changes for that work area. An approval record is created and its owner is jack.
When you specify a value for the -release flag, any existing value set for the
TC_RELEASE environment variable is ignored. This action can be done only for
releases that have an approver list, even though the action does not modify the list.
For releases without approver lists, work areas are created with an initial state of
fix; only when a work area is in the approve state can approval records be created
or acted upon in such a release.
teamc approval -create -release 20graphix -workarea 147 -approver jack

Approval

24 Commands Reference

approval -delete

Deletes an existing approval record for a specified user ID and work area.

The approval -delete command has these associated attribute flags.

Attribute Description
-approver Name The user ID of the approver.

-become Name The user ID you want to issue TeamConnection commands
from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

You have superuser privilege. The following command deletes the approval record
owned by maria for a work area 2431B addressing feature 2431 in release
10graphix, type: The work area must still be in the approve state for a superuser to
be able to delete the approval record.
teamc approval -delete -release 10graphix -workarea 2431B
-approver maria

approval -reject

Lets users refuse to accept the proposed changes for the specified work area and
keep the work area in the approve state. This prevents the work area from moving
to the fix state. Work areas that are not approved can be canceled.

The approval -reject command has these associated attribute flags.

Attribute Description
-approver Name The user ID of the approver.

-become Name The user ID you want to issue TeamConnection commands
from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

Approval

Chapter 3. Approval 25

Attribute Description
-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Related information

See the following related commands:
Approver
Release
Report
Workarea

Refer to the TeamConnection User’s Guide for descriptions of the various processes
and states.

Approval

26 Commands Reference

Chapter 4. Approver

Command summary

Use the approver command to create entries on, and delete entries from, a release
approver list. Each entry associates a user ID with a release, making the owner of
the user ID an approver for any proposed changes to address defects or features in
the specified release. The release approver list provides greater control over
changes made to releases as final deadlines approach.

Every time a work area is created for a release to address a defect or a feature,
approval records are created for each of the user IDs on the approver list
associated with that release (providing that the release’s process includes the
approval subprocess). Each approval record refers to one defect or feature in one
release and is owned by one approver. Approvers must use the approval command
to accept or reject the proposed changes. Modifying an approver list does not
change existing approval records.

Approval records that are accepted allow the work area to move to the fix state. If
one or more approvers reject an approval record, the work area cannot move to the
fix state.

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the approver command are:

teamc approver -create -login Name ... -release Name -family Name
[-become Name] [-verbose]

teamc approver -delete -login Name ... -release Name -family Name
[-become Name] [-verbose]

Command actions

approver -create

Adds user IDs to a release approver list.

The approver -create command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

© Copyright IBM Corp. 1992, 1999 27

Attribute Description

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-login Name . . . One or more TeamConnection user IDs. Specify only one
of -inherited or -login.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command makes the owners of user IDs jack and smitty approvers
for any changes that may be proposed for the 10debugr release. Two entries are
added to the approver list for the 10debugr release. Approval records are created
for jack and smitty when new work areas are created in reference to the 10debugr
release.
teamc approver -create -login jack smitty -release 10debugr

The following command adds user IDs maria, john, and kevin to the approver list
associated with the release you have specified in your TC_RELEASE environment
variable, type: Three entries are made to the approver list for the release set in
your environment variable, one for each of the user IDs you specified.
teamc approver -create -login maria john kevin

approver -delete

Deletes user IDs from a release approver list.

You cannot delete the last entry in an approver list if it is associated with a release
whose process includes the approval subprocess.

The approver -delete command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-login Name . . . One or more TeamConnection user IDs. Specify only one
of -inherited or -login.

Approver

28 Commands Reference

Attribute Description
-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command deletes the approver list entry identifying the owner of
user ID maria as an approver for the tools release.
teamc approver -delete -login maria -release tools

Related information

See the following related commands:
Approval
Defect
Feature
Release
Report
Workarea

Refer to the TeamConnection User’s Guide for descriptions of the various processes
and states.

Approver

Chapter 4. Approver 29

30 Commands Reference

Chapter 5. Builder

Command summary

Use the builder command to create, view, modify, extract, or delete builders.

A builder is an object that can transform one set of TeamConnection parts into
another by invoking tools such as compilers and linkers. For example, one builder
might transform a COBOL source file into an object file. Another might transform
a set of object files into an executable file. Builders use build scripts to invoke the
tools that actually transform TeamConnection parts.

For more information about the builder command and build scripts, and for
sample builder commands, refer to the TeamConnection User’s Guide.

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the builder command are:

teamc builder -create Name
-release Name
-family Name
-from ScriptFilespec**
-script Name
-environment Name
-value RCValue
-condition RCExpression
[-text* | -binary | -none]
[-parameters Parameters]
[-timeout Number]
[-sqltext sqlExpression]
[-become UserName] [-verbose]

teamc builder -modify Name
-release Name
-family Name
{-from ScriptFilespec**
-script Name
-environment Name
-value RCValue
-condition RCExpression
[-text | -binary | -none]
[-sqltext sqlExpression]
-parameters Parameters
-timeout Number}
[-become UserName] [-verbose]

© Copyright IBM Corp. 1992, 1999 31

teamc builder -delete Name -release Name -family Name
[-become UserName] [-verbose]

teamc builder -view Name -release Name -family Name
[-become UserName] [-verbose]

teamc builder -extract Name
-release Name -family Name
-to ScriptFilespec
[-become UserName] [-verbose]

*text is the default
**from is required for file type of text or binary

and is prohibited for file type none

Command actions

builder -create Name

The builder -create Name command creates a new builder.

When you create a builder, you must specify a build script. The build script
actually invokes the transformation tool and passes it parameters defined in the
-parameter attribute of the builder command.

Together with the contents of the build script and the tools you use (the compilers,
linkers, and so on), a builder’s attributes define how a transformation takes place.
v If the build script is simple enough to be expressed in one line, you can specify

it in the -script attribute when you create the builder, and specify a file type of
-none. At minimum, the script must specify the name of the transformation tool.
For example, to invoke the VisualAge C++ compiler, you might specify these
attributes:
-none -script icc

v If the build script is more complex, you must first create a separate file
containing it. Refer to the TeamConnection User’s Guide for more information
about how to write a build script. Specify the fully qualified path name of your
file as the source file, and specify the file type as -text or -binary. If you omit the
-text or -binary attribute, TeamConnectioncan detect the file type and create the
build script in the proper format.
When the builder is created, this source file is stored as part of the builder in the
TeamConnection database; during a build, the build processor creates and runs a
local version of this file. Specify the name you want for this local file using the
-script attribute flag. For example, you might specify these attributes:
-text -script c_compile.cmd -source c:\src\c_compile.cmd

When this builder is created, the contents of c:\src\c_compile.cmd are stored in
the builder. When this builder is invoked, TeamConnection creates a file named
c_compile.cmd, writes the build script into this file, and then runs it.

Builder

32 Commands Reference

The builder -create command has these associated attribute flags.

Attribute Description
-become UserName The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-binary Specifies that the object is a binary file. Specify only one of
-binary, -none, or -text. If you specify none of these
attributes, -text is the default.

-condition RCExpression Together with the -value flag, makes up a Boolean
expression that defines the criteria used to decide whether
a specific build event was successfully accomplished, when
evaluated against the value returned by the build script.
The values allowed for this flag are as follows:

v EQ or == - Equals

v LT or < - Less than

v LE or <= - Less than or equals

v GT or > - Greater than

v GE or >= - Greater than or equals

v NE or != - Not equal to

-environment environment Specifies the target environment this builder builds for.
Note, the environment string should match the one
specified on the build agent that you want to handle the
build events performed by this builder.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-from ScriptFilespec Specifies the location of the file contents.

-none Specifies that the build script is not stored in the
TeamConnection product. Specify only one of -binary,
-none, or -text. If you specify none of these attributes, -text
is the default.

-parameters Specifies the parameters passed to the build script. For
more information about parameters and build scripts, refer
to the TeamConnection User’s Guide.

In UNIX environments, you need to include an escape
character before the $: \$(variable_name). The following is
an example: \$(TC_INPUT).

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-script name Specifies the name of the build script. It can also identify
the translator when the -none flag is specified. To specify
no build script, use -script ″ ″ or -script NULL and set the
file type to none.

Builder

Chapter 5. Builder 33

Attribute Description
-text Specifies that the object is a text file. If you specify neither

-binary, -none, nor -text, -text is the default.

-timeout minutes Specifies the amount of time that the build processor waits
for a build script to complete before assuming a failure has
occurred. The default is 1440 minutes (24 hours).

-value RCValue Together with the -condition flag, makes up a Boolean
expression that defines the criteria used to decide whether
a specific build event was successfully accomplished, when
evaluated against the value returned by the build script.
The -value can be any positive integer. An example of a
Boolean expression formed from these two attributes is
return_value LE 4, meaning that the build event is
considered a success if the build script returns a value less
than or equal to four.

-verbose TeamConnection displays a confirmation message after
you issue the command.

builder -delete Name

Deletes the specified builder from the database.

The builder -delete command has these associated attribute flags.

Attribute Description
-become UserName The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

builder -extract Name

Extracts the build script of an existing builder so that you can modify it.

If a read-only copy of the part already exists on your workstation, it is renamed
and saved as a backup copy. TeamConnection adds an extra character ($ on Intel
platforms or _ on UNIX platforms) to the file name extension of the backup copy.
The file myfile.ext, for example, is renamed to myfile.$ext or myfile._ext. If your
file system supports only 8.3 file names (as on FAT file systems), the file name
extension is truncated to three characters (myfile.$ex or myfile._ex). If a backup
copy already exists, it is deleted.

Builder

34 Commands Reference

The environment variables TC_BACKUP, TC_BACKUPCHAR and TC_MODPERM
control the backup and read-only options. If the environment variable
TC_BACKUP is set to either off or OFF this command will not create a backup file.
See “Environment variables” on page 6 for more information about the
TC_BACKUP, TC_BACKUPCHARS, and TC_MODPERM environment variables.

The builder -extract command has these associated attribute flags.

Attribute Description
-become UserName The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-to filespec Specifies the location (file name) to extract the contents to.

-verbose TeamConnection displays a confirmation message after
you issue the command.

builder -modify Name

Modifies an existing builder.

The builder -modify command has these associated attribute flags.

Attribute Description
-become UserName The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-binary Specifies that the object is a binary file. Specify only one of
-binary, -none, or -text. If you specify none of these
attributes, -text is the default.

-condition RCExpression Together with the -value flag, makes up a Boolean
expression that defines the criteria used to decide whether
a specific build event was successfully accomplished, when
evaluated against the value returned by the build script.
The values allowed for this flag are as follows:

v EQ or == - Equals

v LT or < - Less than

v LE or <= - Less than or equals

v GT or > - Greater than

v GE or >= - Greater than or equals

v NE or != - Not equal to

Builder

Chapter 5. Builder 35

Attribute Description

-environment environment Specifies the target environment this builder builds for.
Note, the environment string should match the one
specified on the build agent that you want to handle the
build events performed by this builder.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-from ScriptFilespec Specifies the location of the file contents.

-none Specifies that the build script is not stored in the
TeamConnection product. Specify only one of -binary,
-none, or -text. If you specify none of these attributes, -text
is the default.

-parameters Specifies the parameters passed to the build script. For
more information about parameters and build scripts, refer
to the TeamConnection User’s Guide.

In UNIX environments, you need to include an escape
character before the $: \$(variable_name). The following is
an example: \$(TC_INPUT).

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-script name Specifies the name of the build script. It can also identify
the translator when the -none flag is specified. To specify
no build script, use -script ″ ″ or -script NULL and set the
file type to none.

-text Specifies that the object is a text file. If you specify neither
-binary, -none, nor -text, -text is the default.

-timeout minutes Specifies the amount of time that the build processor waits
for a build script to complete before assuming a failure has
occurred. The default is 1440 minutes (24 hours).

-value RCValue Together with the -condition flag, makes up a Boolean
expression that defines the criteria used to decide whether
a specific build event was successfully accomplished, when
evaluated against the value returned by the build script.
The -value can be any positive integer. An example of a
Boolean expression formed from these two attributes is
return_value LE 4, meaning that the build event is
considered a success if the build script returns a value less
than or equal to four.

-verbose TeamConnection displays a confirmation message after
you issue the command.

builder -view Name

Gets the settings for an existing builder.

Builder

36 Commands Reference

The builder -view command has these associated attribute flags.

Attribute Description
-become UserName The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

Related information

See the following related commands:
Part
Release

Builder

Chapter 5. Builder 37

Builder

38 Commands Reference

Chapter 6. Collision

Command summary

Use the collision command to determine what should be done with a version of a
part that is not integrated when another user has already integrated a new version
of the same part in a concurrent release.

The TeamConnection product enables you to work with parts in a release in
concurrent development mode. This means that multiple users can work on the
same part at the same time. This is in contrast to serial mode, in which only one
user can work on a part at a time.

Concurrent development mode is turned on when a release is created. In
concurrent mode, from your work area, you can modify and build parts without
the parts being visible to other users of the release. You make the parts visible to
other users of the release when you integrate your work area. Use the release
-modify command to change the mode of the release.

If any other users in the release have integrated the same parts that you are
working on and you try to integrate the parts in your work area, or you add a
driverMember to a driver, the integration or add driver may fail due to those same
parts having a conflict. When you refresh your workarea the TeamConnection
product generates collision records from the failure. The collision records identify
the parts that are in conflict. You must compare the two files and determine how
the collisions should be reconciled. The TeamConnection product provides a tool,
called Automerge, that enables you to selectively merge two files into one.
However, the Automerge tool is only valid for merging parts with the type of
TCPart.

For example, assume that you have modified a part x.c in your work area wa2 and
in release rel3v2. Another user, Jon, who is also working in this concurrent release,
has also modified part x.c. Jon integrates his work area and part x.c. You attempt
to integrate your work area wa2, but you receive a message that you need to
refresh your work area because the TeamConnection product has detected a
collision. When you refresh your work area, the TeamConnection product generates
a collision record for part x.c.

The collision -reject command rejects the newly integrated version (found in
rel3v2:3) and says that the version in work area wa2 should supersede the version
in release rel3v2. You and Jon decide that your work area should supersede his. To
integrate your work area wa2 to the release, and to supersede Jon’s version, type:
teamc collision -reject -path x.c -altversion rel3v2:3 -workarea wa2
-release rel3v2 -verbose

Now you can try to integrate your part again.

© Copyright IBM Corp. 1992, 1999 39

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the collision command are:

teamc collision -accept -path Name -altversion Name -release Name
-workarea Name ... -family Name [-top Name] [-type Name]
[-become Name] [-verbose]

teamc collision -reconcile -path Name -altversion Name -release Name
-workArea Name ... -family Name [-top Name] [-type Name]
[-become Name] [-verbose]

teamc collision -reject -path Name -altversion Name -release Name
-workArea Name ... -family Name [-top Name] [-type Name]
[-become Name] [-verbose]

-type will default to file if not specified.

Command actions

collision -accept

The integrated part stays in the release, while the uncommitted part never gets in.

The collision -accept command has these associated attribute flags.

Attribute Description
-altversion Name An ID of the view of the system containing the conflicting

version of the part.

-become Name The user ID you want to issue TeamConnection commands
from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-path Name The path name of the part. Part names, consisting of the
base name and the path name, must be unique within a
release.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

Collision

40 Commands Reference

Attribute Description
-top Name Specifies the leading portion of the path name that is a

subset of the current working directory on the client
machine.

(Environment variable: TC_TOP)

-type Name The type of the parts. The default is TCPart.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

In these examples, assume that you have refreshed work area w1 from the release
R1. You have collision records for part x1.c, part x2.c, and part x3.c. Also assume
that the altversion for the collisions is R1:3.

The following command replaces your version of part x1.c with the committed
version of the part, type:
teamc collision -accept -path x1.c -altversion R1:3 -workarea w1
-release R1 -verbose

collision -reconcile

The latest part that is not integrated takes precedence over the committed part,
only if a new version of the part has been checked in since the TeamConnection
product detected the collision.

When you reconcile parts using the TeamConnection command line, you must go
through the following steps:
1. Check out the part in the area that has the collision.
2. Extract the part specified at the alternate version with another name.
3. Run the merge program against the two parts.
4. Check in the resultant file.
5. Mark the collision record as reconciled.

However, on the graphical user interface (GUI), the reconcile command
automatically does the preceding steps for you.

The collision -reconcile command has these associated attribute flags.

Attribute Description
-altversion Name An ID of the view of the system containing the conflicting

version of the part.

-become Name The user ID you want to issue TeamConnection commands
from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

Collision

Chapter 6. Collision 41

Attribute Description
-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-path Name The path name of the part. Part names, consisting of the
base name and the path name, must be unique within a
release.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-top Name Specifies the leading portion of the path name that is a
subset of the current working directory on the client
machine.

(Environment variable: TC_TOP)

-type Name The type of the parts. The default is TCPart.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

In these examples, assume that you have refreshed work area w1 from the release
R1. You have collision records for part x1.c, part x2.c, and part x3.c. Also assume
that the altversion for the collisions is R1:3.

To merge your current version of part x3.c in work area w1 with the committed
version of x3.c, follow these steps:
1. Check out part x3.c from work area w1, using the following command:

teamc part -checkout x3.c -workarea w1 -release R1 -verbose

2. Extract the committed version of part x3.c as part x3.tmp, using the following
command:
teamc part -extract x3.c -version R1:3 -release R1 -fmask 777 -verbose
rename x3.c x3.tmp

3. Merge part x3.tmp with part x3.c, using the TeamConnection Merge tool. (You
can use another merge tool if you choose.) To merge the parts, type:
tcmerge x3.tmp x3.c

4. Check part x3.c into work area w1.
5. Mark the collision as reconciled, using the following command:

teamc collision -reconcile -path x3.c -altversion R1:3 -workarea w1
-release R1 -verbose

This example assumes that you store the merged file as x3.c.

collision -reject

The part that is not integrated takes precedence over the integrated part.

Collision

42 Commands Reference

The integrated version of the part will be overwritten by the version that is not
integrated when the work area or driver is integrated into the release.

The collision -reject command has these associated attribute flags.

Attribute Description
-altversion Name An ID of the view of the system containing the conflicting

version of the part.

-become Name The user ID you want to issue TeamConnection commands
from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-path Name The path name of the part. Part names, consisting of the
base name and the path name, must be unique within a
release.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-top Name Specifies the leading portion of the path name that is a
subset of the current working directory on the client
machine.

(Environment variable: TC_TOP)

-type Name The type of the parts. The default is TCPart.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

In these examples, assume that you have refreshed work area w1 from the release
R1. You have collision records for part x1.c, part x2.c, and part x3.c. Also assume
that the altversion for the collisions is R1:3.

The following command keeps your current version of part x2.c in work area w1,
type:
teamc collision -reject -path x2.c -altversion R1:3 -workarea w1
-release R1 -verbose

Collision

Chapter 6. Collision 43

Related Information

See the following related commands:
Part
Release
Workarea

Collision

44 Commands Reference

Chapter 7. Component

Command summary

Use the component command to create and maintain a component structure for
project control and management. The component structure or hierarchy consists of
a top-level component called root. Every component below root is linked to one or
more parent components and zero or more child components. Use -link and -unlink
to redefine an existing component structure.

You can create, delete, and re-create components, modify their properties, or view
information about them.

When you create a component, you become its owner and have implicit authority
to define the access list and the notification list for that component. Although you
have implicit authority to define the access list, you cannot add to that list until
you have some level of authority defined on the access list. Therefore, when you
first become the owner of a component, someone with enough authority must give
you authority to create access for additional users. When you become the owner of
a component, you might want to ask the component creator to give you access
authority so that you can add other users to the access list. The access and
notification list entries for a component apply to all descendant components via
inheritance, unless access has been specifically restricted. As component owner,
you also have implicit authority to manage that component and other objects
relating to it.

When creating a component, you must specify a process for the component using
the -process flag. A process groups different combinations of TeamConnection
subprocesses. TeamConnection subprocesses determine the states that apply to the
defects and features associated with a component. For component processes, the
design, size, review (DSR) and verify subprocesses can be specified for defects,
features, or both. Processes are configured by your family administrator, who can
modify current processes or define new ones. For a list of the valid component
processes and the TeamConnection subprocesses they include, use the report -view
cfgcomproc command. You can change the process for an existing component
using the -modify flag. For more information on how TeamConnection
subprocesses relate to the states of TeamConnection objects, refer to the
TeamConnection User’s Guide.

You can delete a component only if there are no parts, child components, releases,
active features, active defects, or active sizing records associated with it. The
component’s access and notification lists are deleted when it is deleted, and the
component is detached from its parents. You cannot reuse the name of a deleted
component to create another component; however, you can re-create a deleted
component.

When you re-create a deleted component, you have to create new access and
notification lists for it. The original access and notification lists are not re-created;
however, the re-created component does inherit the access and notification
information from all of the components above it in the hierarchy.

© Copyright IBM Corp. 1992, 1999 45

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the component command are:

teamc component -create Name ... -parent Name -process Name
-family Name [-owner Name] [-description Text]
[-become Name] [-verbose]

teamc component -delete Name ... -family Name [-become Name] [-verbose]

teamc component -link Name ... -parent Name -family Name [-become Name]
[-verbose]

teamc component -modify Name ... -family Name { -process Name
-owner Name -name Name -description Text }
[-become Name] [-verbose]

teamc component -recreate Name ... -parent Name -family Name
[-become Name] [-verbose]

teamc component -unlink Name ... -parent Name -family Name
[-become Name] [-verbose]

teamc component -view Name ... -family Name [-processInfo | -long]
[-become Name] [-verbose]

Command actions

component -create Name . . .

Creates components with the specified names. Component names must be unique
within a family.

The component -create command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-description Text Specifies a description of the object.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-owner Name Specifies the user ID of the owner of the object.

Component

46 Commands Reference

Attribute Description
-parent Name Specifies the parent of the object.

-process Name Specifies a process setting and current subprocesses for the
component. Your family administrator configures
processes. For a list of the valid component processes and
the TeamConnection subprocesses they include, use the
report -view cfgcomproc command.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command creates a new child component called docs for the
existing graphix component, and assigns the IBM shipped process preship to it.
The docs component inherits the access and notification defined at the graphix
component and at all components above it in the hierarchy provided access has
not been restricted.

Note: The access and notification lists for the docs component do not show the
inherited access and notification information. Additional access and
notification can be defined by creating access and notification lists for the
docs component.

teamc component -create docs -parent graphix -description "Technical Info"
-process preship

component -delete Name . . .

Deletes the specified components. You cannot delete the root component..

The component -delete command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command deletes a component called archive01. The component
called archive01 is deleted only if it has no child components, releases, associated
parts, active defects, active features, or no active sizing records referencing it.
teamc component -delete archive01

Component

Chapter 7. Component 47

component -link Name . . .

Attaches components to an existing component. The components you list with this
flag become child components of the component you specify with the -parent
attribute flag.

The component -link command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-parent Name Specifies the parent of the object.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command links two existing components, docs and etc, so that etc is
the parent component to the docs component. The component docs becomes a
child component of the component etc. The docs component inherits access and
notification information from the etc component. It does not lose existing access
and notification information from its own access and notification lists.
teamc component -link docs -parent etc

component -modify Name . . .

Modifies properties of the specified components.

The component -modify command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-description Text Specifies a description of the object. Specify either
-description or one of -name, -owner, or -process.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-name Name Specifies a name for the object. Specify either -description
or one of -name, -owner, or -process.

Component

48 Commands Reference

Attribute Description
-owner Name Specifies the user ID of the owner of the object. Specify

either -description or one of -name, -owner, or -process.

-process Name Specifies a process setting and current subprocesses for the
component. Your family administrator configures
processes. For a list of the valid component processes and
the TeamConnection subprocesses they include, use the
report -view cfgcomproc command. Specify either
-description or one of -name, -owner, or -process.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command gives pam ownership of the graphix component.
teamc component -modify graphix -owner pam

The following command changes the name, description, and process of the existing
component called graphix, type: The component graphix is renamed to graphix00.
The description indicates that this component refers to version 00 graphix files.
The process for the component is changed to prototype.
teamc component -modify graphix -name graphix00 -description
"Version 00 of graphix files" -process prototype

component -recreate Name . . .

Re-creates components as child components of the parent component. Use the
-parent flag to specify the parent.

The component -recreate command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-parent Name Specifies the parent of the object.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command re-creates the deleted tools component so that it exists as
a child component of the graphix00 component. It inherits the access and
notification information from the graphix00 component.
teamc component -recreate tools -parent graphix00

Component

Chapter 7. Component 49

component -unlink Name . . .

Detaches components from a parent component. The components being unlinked
must still be linked to at least one parent component.

The component -unlink command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-parent Name Specifies the parent of the object.

-verbose TeamConnection displays a confirmation message after
you issue the command.

component -view Name . . .

Shows all current information for the specified components.

The component -view command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-long Displays detailed information for the specified objects.
Specify only one of -long or -processInfo.

-processInfo Displays the current process setting and associated
TeamConnection subprocesses for the specified
components when used with the -view action flag. Specify
only one of -long or -processInfo.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command displays information about an existing component called
debugr, type:
teamc component -view debugr

Component

50 Commands Reference

Related information

See the following related commands:
Access
Notify
Part
Report

Use the report command to obtain more information on existing components:
v teamc report -view CompView
v teamc report -view CompView -where ″name =’myComponent’ ″

For a list of the valid component processes and the TeamConnection subprocesses
they include, use the report -view cfgcomproc command.

See your family administrator, or refer to the Administrator’s Guide, for information
about creating new components and modifying existing ones.

Component

Chapter 7. Component 51

52 Commands Reference

Chapter 8. Coreq

Command summary

Use the coreq command to create and delete corequisite relationships between two
or more work areas that are in the fix or integrate state. The work areas you
identify as corequisites must all apply to the same release to be built together.
Work areas defined as prerequisites by the TeamConnection product must also be
built and committed together. For a discussion of prerequisite work areas, refer to the
TeamConnection User’s Guide.

Identify corequisite relationships between work areas to indicate that work being
done in one or more work areas is dependent on changes to parts associated with
changes in another work area. These work areas must therefore be built together
(committed together) so that the resulting code works correctly. This action ensures
that a driver that includes one or more groups of corequisite work areas cannot be
committed unless all the work areas in the corequisite group are included in the
driver.

After you identify two or more work areas as corequisites, you can add additional
work areas to that corequisite group without identifying all of the work areas
already in the group. You have to specify only one work area from the existing
group and the new work area or work areas you want to add to the group. If you
specify one work area from each of two or more groups of corequisites, the
associated groups are merged into one corequisite group.

When you delete one work area from a corequisite group containing only two
work areas, no corequisite group remains. You must have at least two work areas
to create a corequisite group of work areas.

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the coreq command are:

teamc coreq -create -workarea Name ... -release Name
-family Name [-become Name] [-verbose]

teamc coreq -delete -workarea Name ... -release Name
-family Name [-become Name] [-verbose]

Command actions

coreq -create

Creates a corequisite relationship between the specified work areas.

© Copyright IBM Corp. 1992, 1999 53

The coreq -create command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

Work areas, with the same names as the features and defects, exist for feature 318,
defect A329, and defect B312 in reference to the graphix11 release. The following
command establishes these three work areas as corequisites.
teamc coreq -create -workarea 318 A329 B312 -release graphix11

The following command adds work area 322 to the group of corequisite work areas
created in the previous example. By naming one of the work areas from the
existing corequisite group along with a new work area, you identify the new work
area as a corequisite of each of the work areas in the existing group.
teamc coreq -create -workarea A329 322 -release graphix11

coreq -delete

Deletes the specified work areas from an existing group of corequisite work areas.

The coreq -delete command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

Coreq

54 Commands Reference

Attribute Description
-verbose TeamConnection displays a confirmation message after

you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

The following command deletes the work area 318 in the release defined by the
TC_RELEASE environment variable from its corequisite group.
teamc coreq -delete -workarea 318

Related information

See the following related commands:
Prereq
Report
Workarea

For more information about corequisite and prerequisite relationships, refer to the
TeamConnection User’s Guide.

Coreq

Chapter 8. Coreq 55

56 Commands Reference

Chapter 9. Defect

Command summary

Use the defect command to report problems by opening defects. Also use this
command to modify properties of defects, change the state of defects, and view
information about defects.

When you open a defect, you become the originator of the reported defect. You
must describe the problem you think needs to be resolved and the primary
component affected by the problem. By default the component owner is the owner
of the defect if it is not assigned. That person must respond to the defect by
accepting it, returning it, or assigning it to a different component or user ID. If the
design, size, and review (dsrDefect) subprocess is included in the managing
component’s process, then the defect owner must respond to it by designing it,
returning it, or assigning it to a different component or user ID.

As the originator of the defect, you can cancel or reopen it if it is returned by the
defect owner, and you can modify selected properties of a defect.

Originators of duplicate defects are also notified when the corresponding active
defect or feature is closed or canceled. They can either cancel or reopen the
duplicate defect, as appropriate.

The states a defect moves through depends on the TeamConnection subprocesses
included in its associated component process. A component process can include the
dsrDefect or verifyDefect subprocesses, or none at all. For more information on the
defect states and their relationship to TeamConnectionsubprocesses, refer to the
TeamConnection User’s Guide.

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the defect command are:

teamc defect -accept Name ... -family Name [-answer Name]*
[-remarks Text] [-become Name] [-verbose]

teamc defect -assign Name ... -family Name
{ -component Name -owner Name }
[-remarks Text] [-become Name] [-verbose]

teamc defect -cancel Name ... -family Name [-remarks Text]
[-become Name] [-verbose]

teamc defect -configInfo -family Name [-become Name] [-raw]

teamc defect -design Name ... -family Name [-remarks Text]

© Copyright IBM Corp. 1992, 1999 57

[-become Name] [-verbose]

teamc defect -modify Name ... -family Name
{ -severity Name -answer Name
-environment Name -reference Name -priority Name -symptom Name
-release Name -originator Name -target Name -driver Name
-abstract Text -phaseFound Name -phaseInject Name
-prefix Name -name Name} [-remarks Text] [-become Name]
[-verbose] [-notesDB Path] [-notesID Name]

teamc defect -note Name ... -remarks Text -family Name [-become Name]
[-verbose]

teamc defect -open -remarks Text -component Name -family Name
[-name Name] [-prefix Name]* [-environment Name]
[-severity Name]* [-reference Name] [-symptom Name]*
[-phaseFound Name]* [-driver Name] [-abstract Text] [-release Name]
[-raw] [-become Name] [-verbose] [-notesDB Path] [-notesID Name]

teamc defect -reopen Name ... -family Name [-remarks Text]
[-become Name] [-verbose]

teamc defect -return Name ... -family Name
[-answer Name | -duplicate Name]*
[-remarks Text] [-become Name] [-verbose]

teamc defect -review Name ... -family Name [-remarks Text]
[-become Name] [-verbose]

teamc defect -size Name ... -family Name [-remarks Text]
[-become Name] [-verbose]

teamc defect -verify Name ... -family Name [-remarks Text]
[-become Name] [-verbose]

teamc defect -view Name ... -family Name [-processInfo | -long]
[-become Name] [-verbose]

* required when no default value is set for the TeamConnection family

Command actions

defect -accept Name . . .

Accepts defects, in the open or review state, depending on the subprocess
configuration of the component so that problems can be resolved. You can specify
fields to be user-configurable using the -configField attribute overriding field
defaults.

Because your family administrator can modify or delete certain configurable fields
and create new fields, the attributes for this action might be different from those in
your family or might not appear at all. Those listed here represent the shipped
default fields only. For a list of the field properties and flags in use in your family,
use the -configInfo command or see your family administrator. For more
information on configurable fields, refer to the Administrator’s Guide.

Defect

58 Commands Reference

The defect -accept command has these associated attribute flags.

Attribute Description
-answer Name Specifies an answer code when accepting, modifying, or

returning a defect or feature. If no default has been set for
this attribute, then you must include it with the command.
This attribute is configurable.

-become Name The user ID you want to issue TeamConnection commands
from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-remarks Text Describes the change being requested, the actual design for
the defect or feature, or the reason for modifying or
changing the state of the defect or feature. Remarks are
limited to 29,999 characters. If you need to include more
than this limit, break your remarks into smaller files and
load them from these files. After you issue a command
that adds remarks, you cannot change the remarks (that is,
you cannot use the -modify action to change the remarks).
Note: To move a defect or feature to the size state, you
must have entered some design text using the -remarks
flag with the -design action.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

Assume that you own a component against which someone opened defect 4312.
The following command accepts defect 4312 and associates it with the answer code
your family administrator has configured to represent an enhancement (enh).
Defect 4312 moves to the working state with an answer code for enhancement.
Defect answer codes are defined by the family administrator.
teamc defect -accept 4312 -answer enh

defect -assign Name . . .

Reassigns defects to another owner or another component. The owner of the user
ID or component becomes the new defect owner.

The defect -assign command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

Defect

Chapter 9. Defect 59

Attribute Description
-component Name The component associated with the object. Different

components can manage different versions of the same
object.

(Environment variable: TC_COMPONENT.)

-component Name The component associated with the object. Different
components can manage different versions of the same
object. Either -component or -owner is required.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-owner Name Specifies the user ID of the owner of the object. Either
-component or -owner is required.

-remarks Text Describes the change being requested, the actual design for
the defect or feature, or the reason for modifying or
changing the state of the defect or feature. Remarks are
limited to 29,999 characters. If you need to include more
than this limit, break your remarks into smaller files and
load them from these files. After you issue a command
that adds remarks, you cannot change the remarks (that is,
you cannot use the -modify action to change the remarks).
Note: To move a defect or feature to the size state, you
must have entered some design text using the -remarks
flag with the -design action.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command assigns defect 4312 to the graphix component. The owner
of the graphix component becomes the owner of defect 4312.
teamc defect -assign 4312 -component graphix

defect -cancel Name . . .

Cancels defects that are in the open or returned state.

The defect -cancel command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

Defect

60 Commands Reference

Attribute Description
-remarks Text Describes the change being requested, the actual design for

the defect or feature, or the reason for modifying or
changing the state of the defect or feature. Remarks are
limited to 29,999 characters. If you need to include more
than this limit, break your remarks into smaller files and
load them from these files. After you issue a command
that adds remarks, you cannot change the remarks (that is,
you cannot use the -modify action to change the remarks).
Note: To move a defect or feature to the size state, you
must have entered some design text using the -remarks
flag with the -design action.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

Assume that you are the originator of defect 4298 and this defect is currently in the
returned state. The following command cancels this defect. As the originator, you
could have also canceled this defect if it was in the open state.
teamc defect -cancel 4298 -remarks "This was a user error."

defect -configInfo

The defect -configInfo action shows configurable field properties for defects in the
specified family. The information is returned in a fixed ASCII table format.

The defect -configInfo command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-raw Displays configurable field information in raw format.

Examples
v The following command displays the configurable fields defined for the defects

in family rdev.
teamc defect -configInfo -family rdev

The following is an example of the output provided for this command.
Attribute DB Column Create/ Own/Orig Accept/
Name Name Required Type Modify Required Driver

----------- ------------ -------- -------- -------- -------- ------
symptom symptom yes/yes symptom yes/yes yes/no
phaseFound phaseFound yes/yes phase yes/yes yes/no

Defect

Chapter 9. Defect 61

phaseInject phaseInject no/no phase yes/yes yes/no
priority priority no/no priority no/no yes/no
target target no/no yes/no yes/no

v The following command displays the configurable fields defined for users in
family rdev in raw format.
teamc defect -configInfo -family rdev -raw

The following is an example of the output provided for this command.
Prefix:|Prefix|prefix|prefix|yes|yes|defectPrefix|yes|yes|yes|no|0|
Severity:|Severity|severity|severity|yes|yes|severity|no|yes|yes|no|0|
Symptom||symptom|symptom|yes|yes|symptom|yes|yes|yes|no|0|
Phase found||phaseFound|phaseFound|yes|yes|phase|yes|yes|yes|no|0|
Phase injected||phaseInject|phaseInject|no|no|phase|yes|yes|yes|no|0|
Priority|Priority|priority|priority|no|no|priority|no|no|yes|no|0|
Target|Target|target|target|no|no||yes|no|yes|no|0|

defect -design Name . . .

Moves defects to the design state or specifies design text. Defects can move to the
design state from the open, returned, size, or review state.

The defect -design command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-remarks Text Describes the change being requested, the actual design for
the defect or feature, or the reason for modifying or
changing the state of the defect or feature. Remarks are
limited to 29,999 characters. If you need to include more
than this limit, break your remarks into smaller files and
load them from these files. After you issue a command
that adds remarks, you cannot change the remarks (that is,
you cannot use the -modify action to change the remarks).
Note: To move a defect or feature to the size state, you
must have entered some design text using the -remarks
flag with the -design action.

-verbose TeamConnection displays a confirmation message after
you issue the command.

defect -modify Name . . .

The defect -modify Name . . . action modifies the following defect properties. At
least one of these attributes is required with the defect -modify Name . . . action.

-abstract
-answer
-driver
-environment

Defect

62 Commands Reference

-name
-originator
-phaseFound*
-phaseInject*
-prefix
-priority*
-reference
-release
-severity
-symptom*
-target*

You cannot modify existing remarks in a defect.

*Because your family administrator can modify or delete certain configurable fields
and create new fields, the attributes for the -modify action might be different from
those in your family or might not appear at all. Those listed here represent the
shipped default fields only. For a list of the field properties and flags in use in
your family, use the teamc defect -configInfo command or see your family
administrator. For more information on configurable fields, refer to the
Administrator’s Guide.

The defect -modify command has these associated attribute flags.

Attribute Description
-abstract Text Lets users enter concise text to summarize a defect or

feature. Up to 63 characters are allowed. This text appears
in reports and notification messages. If this flag is not
specified when you are opening a defect or feature, the
first 63 characters or the text up to the first new-line
character of the -remarks flag serves as the abstract.

-answer Name Specifies an answer code when accepting, modifying, or
returning a defect or feature. If no default has been set for
this attribute, then you must include it with the command.
This attribute is configurable.

-become Name The user ID you want to issue TeamConnection commands
from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-driver Name Specifies the driver for which the command is issued.

v For defects this is the driver in which the defect was
discovered.

v For driver members and work areas this is the driver in
which the member is created or modified.

-environment environment Specifies the environment where a defect was discovered,
for example, the OS/2 environment.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

Defect

Chapter 9. Defect 63

Attribute Description
-name Name Specifies the defect or feature identifier. Up to 15

alphanumeric characters are allowed for user-generated
IDs. The TeamConnection product checks the uniqueness
of the ID. If the ID already exists in the TeamConnection
product, the action fails and you receive a message
indicating that the identifier is not unique. You must then
enter a new identifier or let the TeamConnection product
generate one.

-notesDB Used by the Lotus Notes integration and should not be
used by end users.

-notesID Used by the Lotus Notes integration and should not be
used by end users.

-notesID Used by the Lotus Notes integration and should not be
used by end users.

-originator Name Specifies the user ID of the new originator when you
modify a defect or feature. The previous originator’s
verification record is automatically reassigned to the new
originator.

-phaseFound Name When opening or modifying a defect, specifies the
development phase in progress when the defect was
discovered. If no default has been set for this attribute,
then you must include it with the command. This attribute
is configurable.

-phaseInject Name When modifying a defect, specifies the development phase
in progress when the defect was injected in the code. This
attribute is configurable.

-prefix Name Identifies a prefix that categorizes the defect or feature by
type. This value precedes the identifier in report output. If
no default has been set for this attribute, then you must
include it with the command. This attribute is
configurable.

-priority Name When modifying a defect, specifies the timing or
scheduling requirements for resolving a defect. This
attribute is configurable.

-reference Name Assigns a value, name, or keyword to a defect or feature.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

Defect

64 Commands Reference

Attribute Description
-remarks Text Describes the change being requested, the actual design for

the defect or feature, or the reason for modifying or
changing the state of the defect or feature. Remarks are
limited to 29,999 characters. If you need to include more
than this limit, break your remarks into smaller files and
load them from these files. After you issue a command
that adds remarks, you cannot change the remarks (that is,
you cannot use the -modify action to change the remarks).
Note: To move a defect or feature to the size state, you
must have entered some design text using the -remarks
flag with the -design action.

-severity Name Specifies the severity of the problem that the defect was
opened to resolve. When creating a defect, if no default
has been set for this attribute, you must include it with the
command. This attribute is configurable.

-symptom Name Specifies the symptom associated with the defect. If no
default has been set for this attribute, then you must
include it with the command. This attribute is
configurable.

-target Name Specifies a target (such as, a driver or a date) for defect
resolution or availability.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command changes the severity rating for defect 4312 and to change
the existing value in the reference field, type: The severity of the defect 4312 is
changed to 3, and the reference is changed to BADMSG.
teamc defect -modify 4312 -sev 3 -reference BADMSG

defect -note Name . . .

Adds remarks to defects. These notes cannot be modified or deleted once they are
in the system.

The defect -note command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

Defect

Chapter 9. Defect 65

Attribute Description
-remarks Text Describes the change being requested, the actual design for

the defect or feature, or the reason for modifying or
changing the state of the defect or feature. Remarks are
limited to 29,999 characters. If you need to include more
than this limit, break your remarks into smaller files and
load them from these files. After you issue a command
that adds remarks, you cannot change the remarks (that is,
you cannot use the -modify action to change the remarks).
Note: To move a defect or feature to the size state, you
must have entered some design text using the -remarks
flag with the -design action.

-verbose TeamConnection displays a confirmation message after
you issue the command.

defect -open

Opens a defect. A unique identifier is generated by the TeamConnection product to
identify the new defect, unless you specify an identifier using the optional -name
flag.

Because your family administrator can modify or delete certain configurable fields
and create new fields, the attributes for this action might be different from those in
your family or might not appear at all. Those listed here represent the shipped
default fields only. For a list of the field properties and flags in use in your family,
use the -configInfo command or see your family administrator. For more
information on configurable fields, refer to the Administrator’s Guide.

The defect -open command has these associated attribute flags.

Attribute Description
-abstract Text Lets users enter concise text to summarize a defect or

feature. Up to 63 characters are allowed. This text appears
in reports and notification messages. If this flag is not
specified when you are opening a defect or feature, the
first 63 characters or the text up to the first new-line
character of the -remarks flag serves as the abstract.

-become Name The user ID you want to issue TeamConnection commands
from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-component Name The component associated with the object. Different
components can manage different versions of the same
object.

(Environment variable: TC_COMPONENT.)

-driver Name Specifies the driver for which the command is issued.

v For defects this is the driver in which the defect was
discovered.

v For driver members and work areas this is the driver in
which the member is created or modified.

Defect

66 Commands Reference

Attribute Description
-environment environment Specifies the environment where a defect was discovered,

for example, the OS/2 environment.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-name Name Specifies the defect or feature identifier. Up to 15
alphanumeric characters are allowed for user-generated
IDs. The TeamConnection product checks the uniqueness
of the ID. If the ID already exists in the TeamConnection
product, the action fails and you receive a message
indicating that the identifier is not unique. You must then
enter a new identifier or let the TeamConnection product
generate one.

-notesDB Used by the Lotus Notes integration and should not be
used by end users.

-notesID Used by the Lotus Notes integration and should not be
used by end users.

-notesID Used by the Lotus Notes integration and should not be
used by end users.

-phaseFound Name When opening or modifying a defect, specifies the
development phase in progress when the defect was
discovered. If no default has been set for this attribute,
then you must include it with the command. This attribute
is configurable.

-prefix Name Identifies a prefix that categorizes the defect or feature by
type. This value precedes the identifier in report output. If
no default has been set for this attribute, then you must
include it with the command. This attribute is
configurable.

-raw Displays configurable field information in raw format.

-reference Name Assigns a value, name, or keyword to a defect or feature.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-remarks Text Describes the change being requested, the actual design for
the defect or feature, or the reason for modifying or
changing the state of the defect or feature. Remarks are
limited to 29,999 characters. If you need to include more
than this limit, break your remarks into smaller files and
load them from these files. After you issue a command
that adds remarks, you cannot change the remarks (that is,
you cannot use the -modify action to change the remarks).
Note: To move a defect or feature to the size state, you
must have entered some design text using the -remarks
flag with the -design action.

Defect

Chapter 9. Defect 67

Attribute Description
-severity Name Specifies the severity of the problem that the defect was

opened to resolve. When creating a defect, if no default
has been set for this attribute, you must include it with the
command. This attribute is configurable.

-symptom Name Specifies the symptom associated with the defect. If no
default has been set for this attribute, then you must
include it with the command. This attribute is
configurable.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

Assume default values are set for phaseFound, symptom, and prefix. The following
command opens a defect with a severity rating of 3 against the debugr component,
using the text from an existing file to describe the defect, type: The negative
symbol (-) after the -remarks flag indicates the location of the redirected input. The
redirection symbol (<) indicates that the file \tmp\defect.descr contains the
remarks, that is, the description of the problem. The first 63 characters are used as
the abstract.

The defect identifier is displayed on the screen when the command is completed
successfully.

The person issuing the command is the originator of this defect, and the
component owner is the owner of the defect.
teamc defect -open -component debugr -sev 3
-remarks - < \tmp\defect.descr

defect -reopen Name . . .

Reopens defects that are in the returned or the canceled state.

The defect -reopen command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

Defect

68 Commands Reference

Attribute Description
-remarks Text Describes the change being requested, the actual design for

the defect or feature, or the reason for modifying or
changing the state of the defect or feature. Remarks are
limited to 29,999 characters. If you need to include more
than this limit, break your remarks into smaller files and
load them from these files. After you issue a command
that adds remarks, you cannot change the remarks (that is,
you cannot use the -modify action to change the remarks).
Note: To move a defect or feature to the size state, you
must have entered some design text using the -remarks
flag with the -design action.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

Assume that you are the originator of defect 1424. It is returned to you by the
defect owner. The following command reopens defect 1424. Defect 1424 moves to
the open state.
teamc defect -reopen 1424
-remarks "Disagree with restriction classification."

defect -return Name . . .

Returns defects that are in the open, design, size, review, or working states. A
working defect can be returned only if it does not have work areas associated with
it.

The defect -return command has these associated attribute flags.

Attribute Description
-answer Name Specifies an answer code when accepting, modifying, or

returning a defect. Specify either -answer or -duplicate. If
no default has been set, then one of these attributes is
required. This attribute is configurable.

-become Name The user ID you want to issue TeamConnection commands
from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-duplicate Name Specifies that another defect (that is not canceled, returned,
or closed) already exists to address the defect being
returned. Specify either -answer or -duplicate. If no default
has been set, then one of these attributes is required.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

Defect

Chapter 9. Defect 69

Attribute Description
-remarks Text Describes the change being requested, the actual design for

the defect or feature, or the reason for modifying or
changing the state of the defect or feature. Remarks are
limited to 29,999 characters. If you need to include more
than this limit, break your remarks into smaller files and
load them from these files. After you issue a command
that adds remarks, you cannot change the remarks (that is,
you cannot use the -modify action to change the remarks).
Note: To move a defect or feature to the size state, you
must have entered some design text using the -remarks
flag with the -design action.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

Assume that you are a defect owner. The following command returns a defect
someone opened against your component because it is a duplicate of a defect that
is currently in the working state. Defect 4245 is associated with defect 4197 as a
duplicate. Defect 4245 is moved to the returned state, and its answer code becomes
duplicate. A verification record is created for the originator of defect 4245 and it
exists in reference to defect 4197. Originators of all duplicate defects and features
must complete verification records when the active defect is in the verify state.
teamc defect -return 4245 -duplicate 4197

defect -review Name . . .

Moves defects from the size state to the review state so that the proposed design
implementation and sizing information can be reviewed.

The defect -review command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-remarks Text Describes the change being requested, the actual design for
the defect or feature, or the reason for modifying or
changing the state of the defect or feature. Remarks are
limited to 29,999 characters. If you need to include more
than this limit, break your remarks into smaller files and
load them from these files. After you issue a command
that adds remarks, you cannot change the remarks (that is,
you cannot use the -modify action to change the remarks).
Note: To move a defect or feature to the size state, you
must have entered some design text using the -remarks
flag with the -design action.

Defect

70 Commands Reference

Attribute Description
-verbose TeamConnection displays a confirmation message after

you issue the command.

defect -size Name . . .

Moves defects from the design state to the size state for sizing. Design text must
first be entered using defect -design -remarks.

The defect -size command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-remarks Text Describes the change being requested, the actual design for
the defect or feature, or the reason for modifying or
changing the state of the defect or feature. Remarks are
limited to 29,999 characters. If you need to include more
than this limit, break your remarks into smaller files and
load them from these files. After you issue a command
that adds remarks, you cannot change the remarks (that is,
you cannot use the -modify action to change the remarks).
Note: To move a defect or feature to the size state, you
must have entered some design text using the -remarks
flag with the -design action.

-verbose TeamConnection displays a confirmation message after
you issue the command.

defect -verify Name . . .

Moves defects from the working state to the verify state. If the verify subprocess is
not on, this moves the defect to the closed state.

The defect -verify command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

Defect

Chapter 9. Defect 71

Attribute Description
-remarks Text Describes the change being requested, the actual design for

the defect or feature, or the reason for modifying or
changing the state of the defect or feature. Remarks are
limited to 29,999 characters. If you need to include more
than this limit, break your remarks into smaller files and
load them from these files. After you issue a command
that adds remarks, you cannot change the remarks (that is,
you cannot use the -modify action to change the remarks).
Note: To move a defect or feature to the size state, you
must have entered some design text using the -remarks
flag with the -design action.

-verbose TeamConnection displays a confirmation message after
you issue the command.

defect -view Name . . .

Shows all current information for the specified defects.

The defect -view command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-long Displays detailed information for the specified objects.
Specify only one of -long or -processInfo.

-processInfo Displays the current process setting and associated
TeamConnection subprocesses for the specified
components when used with the -view action flag. Specify
only one of -long or -processInfo.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command displays information about defect 4244, including its
history, notes, work areas, verification records, process name, and associated
subprocess settings.
teamc defect -view 4244 -long

Defect

72 Commands Reference

Related information

See the following related commands:
Feature
Fix
Report
Size
Verify
Workarea

Use the report command to get more information on existing configuration table
values:
v teamc report -view config
v teamc report -view config -where ″name = ’symptom’ ″

To see the defect state diagrams, refer to the TeamConnection User’s Guide.

Defect

Chapter 9. Defect 73

74 Commands Reference

Chapter 10. Driver

Command summary

Use the driver command to:
v Create and delete drivers
v Commit the part changes related to drivers
v Extract the part tree represented by drivers
v Obtain information about existing drivers
v Merge parts of the driver with parts of another driver

A driver is a set of part changes for a release. To create a driver, you assign a name
to it and relate it to a release. You then define a set of work areas as driver members.
For information on how to define work areas as driver members, see “Chapter 11.
DriverMember” on page 89. These work areas contain the parts that you want in a
driver. If you create a driver, you become the driver owner by default; however,
you can reassign ownership of the driver to another user.

A driver can be extracted to the client at any time after work areas are added as
driver members. A delta part tree, which contains only the parts that have been
changed for the driver, is extracted by default. You can also extract a full part tree
that contains all of the parts for the driver after the driver has been committed.

If a driver is committed, you can extract a full part tree that includes all the parts
in the associated release at the version that was current when the driver was
committed. You can also process and distribute a committed driver for testing.
After a driver has been committed, however, you can change only its type; you
cannot otherwise modify the driver or the part changes associated with that driver.

Combining the delta part tree for a current driver with a full part tree for the last
committed driver results in a complete directory structure of all parts in a release.
This directory structure incorporates the new part changes. The process of making
part changes, extracting a delta part tree and a full part tree, combining the two
into a new directory structure, and compiling the directory structure can be
repeated as needed.

Parts of a driver can be merged with parts of another driver in the same or
another release, as well as, merging individual parts at a driver level. The driver
-merge Name command will merge all parts of the specified driver with parts of
another driver in the same or another release. Optionally, upon successful
execution, the workarea where action is performed can be integrated and even
added to the driver.

To make permanent all part changes associated with the driver, you move the
driver to the commit state. Before you can do this:

v All driver members must be in the integrate or commit state.
v All prerequisite and corequisite work areas must be included in the driver,

unless the -ignore attribute is specified. The requisites will still be checked if the
-ignore attribute flag is specified, however, the driver can still be committed if
there are missing requisites.

v You must have explicit access authority or be a superuser.

© Copyright IBM Corp. 1992, 1999 75

If you have explicit access authority, you can indicate when a driver is ready for
formal testing by specifying that the driver is complete. This action changes the
state of the associated work areas to the test state if an environment list exists for
the release associated with the work areas. Otherwise, the work areas move to the
complete state.

If an environment list exists for the release associated with the work areas, the
automatic transition to the test state can be disabled by including the
workareacommithold subprocess in the release process. If workareacommithold is
part of the release process, a workarea -test command must be issued to move the
workarea into the test state.

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the driver command are:

teamc driver -assign Name ... -to Name -release Name -family Name
[-become Name] [-verbose]

teamc driver -check Name ... [-long] -release Name [-noduplicates]
-family Name [-driver Name] [-become Name] [-verbose]

teamc driver -commit Name ... -release Name
-family Name [-force] [-ignore] [-become Name]
[-verbose]

teamc driver -complete Name ... -release Name -family Name
[-become Name] [-verbose]

teamc driver -create Name ... -release Name -family Name [-type Name]*
[-become Name] [-verbose]

teamc driver -delete Name ... -release Name -family Name
[-become Name] [-verbose]

teamc driver -export Name -family Name -release Name
-file Name [-become Name] [-verbose]

teamc driver -extract Name ... -release Name -root Name
-family Name [-full] [-nokeys] [-fmask Octal_number]
[-dmask Octal_number] [-crlf] [-version Name]**
[-component Name ...] [-become Name] [-verbose]
[-exclude filename] [-include filename] [-report]
[-scan] [-erase]

teamc driver -freeze Name ... -release Name -family Name
[-become Name] [-verbose]

teamc driver -modify Name ... -release Name -family Name { -name Name
-type Name } [-become Name] [-verbose]

Driver

76 Commands Reference

teamc driver -refresh Name ... -release Name -family Name
[-become Name] [-verbose]

teamc driver -restrict Name ... -release Name -family Name
[-become Name] [-verbose]

teamc driver -view Name ... [-long] -release Name -family Name
[-become Name] [-verbose]

* required when no default value is set for the TeamConnection family
** use this to extract versions other than the latest version of the

driver. Don’t specify the -version to get the latest version

Command actions

driver -assign Name . . .

Assigns ownership of drivers to another user ID.

The driver -assign command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-to Name The user ID to which you want to reassign the object. The
user ID you specify becomes the owner of the object.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

Assume that you own driver b1992 and that your TC_RELEASE environment
variable is set to the release associated with that driver. The following command
assigns the driver to user ID sara. The person with the TeamConnection user ID
sara becomes the new owner of the driver b1992 for the release defined by the
TC_RELEASE environment variable. If the environment variable were set
differently, you would have had to use the -release attribute flag to specify the
appropriate release for the driver.
teamc driver -assign b1992 -to sara

Driver

Chapter 10. Driver 77

driver -check Name . . .

Lists the outstanding prerequisite and corequisite work areas for the specified
drivers.

The driver -check command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-driver Name When used with the -check action, this flag identifies a
base committed driver against which requisites are
determined. Requisites are determined as if the base driver
were the last committed driver. Workareas that have been
committed after the base driver will be listed as requisites.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-long Displays detailed information for the specified objects.

-noduplicates When this flag is used, a requiste workarea will only be
listed once. The first reason encountered for its being a
requisite will be returned.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

Assume driver 9032 is in the integrate state. The following command checks
whether any outstanding prerequisites or corequisites exist in driver 9032 for
release 21debugr. Any existing unsatisfied prerequisite and corequisite work areas
required for driver 9032 for the 21debugr release are listed.
teamc driver -check 9032 -release 21debugr

driver -commit Name . . .

The driver -commit Name . . . action moves the specified drivers to the commit
state. After a driver is committed only its type can be modified. All part changes
associated with driver members become permanent.

Before you can commit a driver to which you have added work areas in fix state,
you must integrate the work areas and then add them to the driver again.

To perform this action, the associated release’s process must include the driver
subprocess.

Driver

78 Commands Reference

The driver -commit command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-force Continues with the operation even if build outputs are
out-of-date.

-ignore Allows a driver to be committed even if there are missing
requisites.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

driver -complete Name . . .

Moves the specified drivers to the complete state where they are ready to be
tested. All driver members change to the test or complete state.

The driver -complete command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

driver -create Name . . .

Creates drivers with the specified names. The user who creates a driver is the
driver owner by default.

Driver

Chapter 10. Driver 79

To perform this action, the associated release’s process must include the driver
subprocess.

The driver -create command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-type Name Specifies the type of driver when creating a driver. If no
default has been set for this attribute, then you must
include it with the command. You can use the report
command to find out what the types of drivers are. This
attribute is configurable.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

Assume that driver type has a default value. The following command creates a
driver called 9032 for the 21debugr release. The person who issues this command
is the driver owner and it is in the working state. Use the DriverMember
command to add work areas to the driver.
teamc driver -create 9032 -release 21debugr

driver -delete Name . . .

Deletes the specified drivers before they are committed. This command also deletes
all driver members associated with the driver.

The driver -delete command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

Driver

80 Commands Reference

Attribute Description

-verbose TeamConnection displays a confirmation message after
you issue the command.

driver -export Name . . .

The driver -export Name . . . command exports the parts in the driver (or drivers)
specified by the Name argument to the file name specified in the -file attribute.

This function is useful for exporting information from one family into another. You
can export the information from one family into a CDF file and then import the
CDF file into another family.

Note: You cannot use the import and export functions to migrate information from
CMVC to TeamConnection or from one release of TeamConnection to
another. Refer to the Administrator’s Guide for information on the
TeamConnection migration tool.

The driver -export command has these associated attribute flags.

Attribute Description
-file filename Specifies the name of the file to which the part or parts are

to be exported. The information is exported to the file in
CDF format.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

driver -extract Name . . .

Creates a part tree by extracting the parts defined by the member work areas of
specified drivers. The default is to extract only changed parts.

When extracting multiple drivers, you must specify the driver names in the
chronological order in which they were committed or created.

TeamConnection has the capability to perfrom a ″smart″ extract.″ Smart extract
extracts from the database only the parts whose date/time stamp differ from the
corresponding files in the target path of the file system. This function improves
performance by extracting only parts that do not already exist on the taret file
system or are outdated on the target file system.

The driver -extract command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

Driver

Chapter 10. Driver 81

|
|
|
|
|

Attribute Description

-component Name The components whose parts you want to extract. This
attribute restricts the extract action to the components you
include with the attribute.

-crlf Provides transparent file conversion between UNIX- and
Intel-based operating systems. This attribute enables parts
shared between UNIX and Intel platforms to have the
proper format for the platform to which they are extracted.
When parts are extracted to an Intel platform, the -crlf
attribute will add carriage-returns, expand tabs, and add
end-of-file characters (if the parts do not already have EOF
characters). When parts are extracted to a UNIX platform,
the -crlf attribute will remove carriage-returns, replace
spaces with tabs, and remove end-of-file characters.

If you omit this attribute, no file format conversion is
performed.

-dmask Octal_number Specifies the read, write, and execute directory permissions
for extracted parts in octal notation.

The default is 750 (read, write and execute access for
directory owner, read and execute access for others in the
owner’s group, and no access for all other users).

While the OS/2 client accepts -dmask, it has no effect.

-erase Erases stale or extra files from the target file system. This
attribute is used for smart extract.

-exclude Name Specifies the name of a file containing a list of parts to
exclude from the extract. This attribute is used for smart
extract.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-fmask Octal_number Specifies the read, write, and execute file permissions for
extracted parts in octal notation. The default is the file’s
mode less the write permission for the part owner, others
in the owner’s group and all others.

-full Includes all of the parts in a release in the extracted part
tree. Use to extract a full part tree.

-include Paths Specifies the name of a file containing a list of parts to
include in the extract. This attribute is used for smart
extract.

-lock Locks parts that are extracted. This attribute is used for
smart extract.

Name . . . Specify a list of parts to extract in addition to the parts in
the include list. This attribute is used for smart extract.
*-- -->

Driver

82 Commands Reference

Attribute Description

-nokeys Indicates that you do not want to substitute assigned
values in place of keywords embedded in the extracted
parts.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-report Gives a preview of the parts that will be extracted, but
does not actually extract the parts. This attribute is used
for smart extract.

-root Name Specifies a directory on the client where the extracted part
tree is to be placed.
Note: You can mount a directory from another machine to
the client machine, so that the client machine will treat that
directory as a local directory.

-scan Scans the target file system and checks the date/time
stamps of parts in the the target directory. Only outdated
parts are extracted. This attribute is used for smart extract.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-version Name Specifies the version of the object.

Examples

Assume that you want to extract all of the parts for the committed driver 9032 to a
specific directory and host. Also assume that the directory \tmp has been exported
on a host with write permission given to the TeamConnection client and that the
directory is mounted on the client using NFS, Netware, IBM LAN Server, or
another LAN product. The following command places the full part tree in the
\tmp directory. A full part tree produces a snapshot of all the parts in a release at
the time the driver was committed.
teamc driver -extract 9032 -release 21debugr -full -root \tmp

The following command extracts all parts, stale or otherwise, except *.exe and *.dll
files from driver D. The file excludelist contains *.exe\n*.dll:
teamc driver -extract D -family test -release v300 -exclude excludelist

driver -freeze Name . . .

Saves the state of a driver.

The driver -freeze command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

Driver

Chapter 10. Driver 83

Attribute Description

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

driver -modify Name . . .

Changes the name or type of the specified drivers. Type is configured by family.
Use the report command to find out the driver types for your family.

After a driver has been committed, only its type can be changed.

The driver -modify command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-name Name Specifies a name for the object. Either -name or -type is
required.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-type Name Specifies the type of driver when creating or modifying a
driver. If no default has been set for this attribute and the
-name attribute is nor specified, then you must include it
with the command. You can use the report command to
find out what the types of drivers are. Either -name or
-type is required. This attribute is configurable.

-verbose TeamConnection displays a confirmation message after
you issue the command.

driver -refresh Name . . .

Refreshes a driver from the release. This is sometimes necessary where the driver
was created earlier and now needs to pick up changes committed to the release.

Driver

84 Commands Reference

The driver -refresh command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

driver -restrict Name . . .

The driver -restrict Name . . . command moves a driver from the integrate state to
the restrict state. When a driver is in restrict state, users must have
MemberCreateR or MemberDeleteR access to the driver to add or delete members
from the driver. You can, however, check, commit, extract, freeze, refresh, or view
drivers in restrict state.

The driver -restrict command will automatically move the associated workareas
from the integrate state to the restrict state. There is no explicit command to move
a workarea from the restrict state back to the integrate state; instead, if the driver
member for the workarea is removed from the driver, then automatically the
workarea will be moved from the restrict state to the integrate state.

There is no explicit command to move a driver from the restrict state to the
integrate state. However, when all the driver members are removed from a driver
in restrict state, then the driver automatically will be moved from the restrict state
to the working state(bypassing the integrate state).

The driver -restrict command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

Driver

Chapter 10. Driver 85

|
|
|
|
|

|
|
|
|

Attribute Description
-verbose TeamConnection displays a confirmation message after

you issue the command.

Examples

The driver -restrict Name . . . command is especially useful if your installation
performs highly automated builds. You can issue the driver -restrict Name . . .
command prior to building to prevent any changes to the content of the driver. If
the build succeeds, the driver is committed; if it fails, the build administrator
(provided he or she has MemberCreateR or MemberDeleteR access to the driver)
can remove the work areas that caused the build to fail. The following command
moves driver b1992 release debugr from the integrate state to the restrict state.
teamc driver -restrict b1992 -release debugr -verbose

driver -view Name . . .

Shows all current information for the specified drivers.

The driver -view command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-long Includes in the reported requisites those workareas that
ARE in the driver. Without -long only requisite workareas
NOT in the driver are reported.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command displays information about driver b1992 for release
debugr, including all of its driver members.
teamc driver -view b1992 -release debugr -long

Related information

See the following related commands:
Defect
DriverMember
Feature

Driver

86 Commands Reference

Part
Report
Workarea

For a list of supported keywords, refer to the TeamConnection User’s Guide.

Parts that are deleted or renamed in the current driver must be deleted
from an extracted part tree. TeamConnection creates a part named .gone
that specifies the full path name of each part deleted or renamed that
has not already been committed. This part is extracted with the files in a
delta tree extraction. Extracting the delta part tree of an uncommitted
driver extracts all parts listed in the .gone part.

After merging a delta tree with a base part tree, or when extracting uncommitted
drivers, run the following command from the top of the extracted part tree to
remove deleted and renamed parts from the tree:
xargs rm < .gone

In this command, .gone is a part created as part of the extraction that contains the
names of all of the deleted and renamed parts.

When you extract a committed driver, any parts that were contained in that driver
when it was committed are accessed.

Driver

Chapter 10. Driver 87

88 Commands Reference

Chapter 11. DriverMember

Command summary

Use the driverMember command to specify the work areas you want to include in
a given driver. Driver members are used only if the release has the driver process
turned on. The work areas can be in the integrate, fix, or committed state. A single
work area can be a member of more than one driver. After a work area is
committed in a driver, the other drivers in which it is a member ignore the
committed work area.

By making a work area part of a driver, you associate the parts changed in relation
to that work area with the specified driver. These parts must be members of the
release associated with the driver. The work areas must also be members of the
release associated with the driver.

You cannot create driver members for, or delete driver members from, a driver
after it is committed.

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the driverMember command are:

teamc driverMember -create -driver Name -release Name -family Name
-workarea ... [-force] [-become Name] [-verbose]

teamc driverMember -delete -driver Name -release Name -family Name
[-workarea ... | -version ...] [-become Name] [-verbose]

Command actions

driverMember -create

Creates work areas as members of a specific driver. If the work area is in integrate
state, the latest version of the work area is added to the driver. If the driver is in
the restrict state, then you must have MemberCreateR access to the driver to issue
this command. Superusers and driver owners have implicit MemberCreateR
authority.

You can add a work area in fix state to a driver. When a work area in fix state is
added to a driver, the latest frozen version of the work area is added. If there is no
frozen version of the work area, TeamConnection returns an error. If you update
the work area after freezing it and adding it to a driver, you can issue another
driverMember -create command to refresh the driver with the updated work area.
If a driver has multiple driver members for the same work area, you can use the
-version attribute to identify a specific version of the work area in the driver.

© Copyright IBM Corp. 1992, 1999 89

Before you can commit a driver to which you have added work areas in fix state,
you must integrate the work areas and then add them to the driver again.

Note: If you have recently migrated from CMVC to TeamConnection, please be
aware of differences between adding work areas in fix state to drivers and
adding tracks in fix state to levels. In CMVC, when a track in fix state is
added to a level, all current and future changes to the track are considered
part of the level. In TeamConnection, when you add a work area in fix state
to a driver, only the current frozen version of the work area is considered
part of the driver. To include any further changes to the work area, you
need to freeze the work area again and issue another driverMember -create
command to add the further changes to the work area.

If adding a driver member to a driver would result in collision records, the
driverMember -create action will fail. The collision records need to be resolved
before adding the workarea as a driver member.

To perform a driverMember -create action, the associated release’s process must
include the driver subprocess.

The driverMember -create command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-driver Name Specifies the driver for which the command is issued.

v For defects this is the driver in which the defect was
discovered.

v For driver members and work areas this is the driver in
which the member is created or modified.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-force Continues with the operation even if build outputs are
out-of-date.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

Assume that driver 9012 already exists and that you own it. The following
command creates driver members using the work areas 8761 and 8690 in release

DriverMember

90 Commands Reference

21graphix. All parts changed in reference to the work areas 8761 and 8690 in the
release 21graphix are included in driver 9012. Driver 9012 must be associated with
release 21graphix.
teamc driverMember -create -workarea 8761 8690 -release 21graphix
-driver 9012

driverMember -delete

The driverMember -delete action deletes work areas as members of a specific
driver.

If the driver is in the restrict state, then you must have MemberDeleteR access to
the driver to issue this command. Superusers and driver owners have implicit
MemberDeleteR authority.

If you added a work area to a driver when the work area was in fix state, then to
delete it you must use the -version attribute to specify the work area to be deleted
rather than the -workarea attribute.

The driverMember -delete command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-driver Name Specifies the driver for which the command is issued.

v For defects this is the driver in which the defect was
discovered.

v For driver members and work areas this is the driver in
which the member is created or modified.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

-version Name Specifies the version of the object. Specify either -version
or -workarea or both.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

Assume that you own driver 9010. The following command deletes driver
members, specifically work areas 8744 and 8759 in the release defined in the

DriverMember

Chapter 11. DriverMember 91

TC_RELEASE environment variable. Driver 9010 must be associated with the
release defined in the TC_RELEASE environment variable.
teamc driverMember -delete -workarea 8744 8759 -driver 9010

Related information

See the following related commands:
Driver
Part
Report
Workarea

DriverMember

92 Commands Reference

Chapter 12. Environment

Command summary

Use the environment command to create and modify entries on, and delete entries
from a release environment list. Each environment list entry consists of an
environment name and the user ID of a designated tester for that environment.
You can specify the environments in which a resolved defect or an implemented
feature must be tested. One user can be responsible for testing more than one
environment, so a user ID can have more than one entry on the environment list.

Test records are created according to the environment list of the release for each
work area that is created for that release. See the test command for information on
entering environment test results. If an environment list does not exist for a
release, then the testing process using test records is bypassed for all work areas
associated with that release.

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the environment command are:

teamc environment -create Name ... -tester Name -release Name
-family Name [-become Name] [-verbose]

teamc environment -delete Name ... -release Name -family Name
[-become Name] [-verbose]

teamc environment -modify Name ... -tester Name -release Name
-family Name [-become Name] [-verbose]

Command actions

environment -create Name . . .

Creates one or more environment list entries for a release by specifying an
environment and a user who is responsible for testing in that environment.

The environment -create command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

© Copyright IBM Corp. 1992, 1999 93

Attribute Description
-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-tester Name The user responsible for testing in a given environment.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

Assume you own the debugr release. Work being done in reference to that release
needs to be tested in the PCVersion1 environment as well as in the PCVersion2
environment. The following command specifies jon as the tester on the
environment list associated with the debugr release.
teamc environment -create PCVersion1 PCVersion2 -tester jon -release debugr

Two new environment list entries are created for the debugr release: one for the
PCVersion1 environment and one for the PCVersion2 environment. The owner of
the user ID jon is responsible for testing both environments. Therefore, jon owns 2
test records for every work area that is created for the debugr release.

environment -delete Name . . .

Deletes one or more environment list entries for a release.

The environment -delete command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command deletes all entries for environment ModelA from the
environment list associated with the release set in the TC_RELEASE environment
variable.

Environment

94 Commands Reference

teamc environment -delete ModelA

environment -modify Name . . .

Modifies one or more environment list entries for a release.

The environment -modify command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-tester Name The user responsible for testing in a given environment.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command assigns a new tester for PCVersion2 in the graphix
release. The owner of the user ID lisa replaces the previous person responsible for
testing the PCVersion2 environment for the graphix release.
teamc environment -modify PCVersion2 -tester lisa -release graphix

Related information

See the following related commands:
Release
Report
Test
Workarea

Environment

Chapter 12. Environment 95

Environment

96 Commands Reference

Chapter 13. Feature

Command summary

Use the feature command to open requests for design changes or ideas for future
functions. Also use this command to delete, modify properties of, change the state
of, and view information about features.

The states a feature moves through depend on the TeamConnection subprocesses
included in its associated component process. A component process can include the
feature design, size, and review (dsrFeature) or verifyFeature subprocesses, or none
at all. For more information on the feature states and their associated subprocesses,
refer to the TeamConnection User’s Guide.

When you open a feature, you become the originator of the feature. You must
describe the proposed design change and name the primary component affected by
the feature. The owner of the component you assign the feature to becomes the
feature owner. If the dsrFeature subprocess is included in the component’s process,
the feature owner responds to the feature by moving it to the design state,
returning it, or assigning it to a different component or user ID. If the dsrFeature
subprocess is not included in the component’s process, the feature owner either
accepts the feature, returns it, or assigns it to a different component or user ID.

As the originator of the feature, you can cancel or reopen it if it is returned by the
feature owner. You can also modify selected properties of a feature. Originators of
duplicate features are notified when the corresponding active defect or feature is
closed or canceled. Thus, they can either cancel or reopen the duplicate feature, as
appropriate.

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the feature command are:

teamc feature -accept Name ... -family Name [-answer Name]*
[-remarks Text] [-become Name] [-verbose]

teamc feature -assign Name ... -family Name [-remarks Text]
[-verbose] { -component Name -owner Name } [-become Name]

teamc feature -cancel Name ... -family Name [-remarks Text]
[-become Name] [-verbose]

teamc feature -configInfo -family Name [-become Name] [-raw]

teamc feature -design Name ... -family Name [-remarks Text]
[-become Name] [-verbose]

© Copyright IBM Corp. 1992, 1999 97

teamc feature -modify Name ... -family Name { -prefix Name
-target Name -reference Name -originator Name -abstract Text
-priority Name -name Name -answer Name -release Name}
[-remarks Text] [-become Name]
[-verbose] [-notesDB Path] [-notesID Name]

teamc feature -note Name ... -remarks Text -family Name
[-become Name] [-verbose]

teamc feature -open -remarks Text -component Name -family Name
[-name Name] [-verbose] [-prefix Name]* [-reference Name]
[-abstract Text] [-release Name] [-raw] [-become Name]

[-notesDB Path] [-notesID Name]

teamc feature -reopen Name ... -family Name [-remarks Text]
[-become Name] [-verbose]

teamc feature -return Name ... -family Name
[-answer | -duplicate Name]*
[-remarks Text] [-become Name] [-verbose]

teamc feature -review Name ... -family Name [-remarks Text]
[-become Name] [-verbose]

teamc feature -size Name ... -family Name [-remarks Text]
[-become Name] [-verbose]

teamc feature -verify Name ... -family Name [-remarks Text]
[-become Name] [-verbose]

teamc feature -view Name ... -family Name [-processInfo | -long]
[-become Name] [-verbose]

* required when no default value is set for the TeamConnection family

Command actions

feature -accept Name . . .

Accepts features, in the open or review state, depending on the subprocess
configuration of the component so that problems can be resolved. You can specify
fields to be user-configurable using the -configField attribute overriding field
defaults.

Because your family administrator can modify or delete certain configurable fields
and create new fields, the attributes for this action might be different from those in
your family or might not appear at all. Those listed here represent the shipped
default fields only. For a list of the field properties and flags in use in your family,
use the -configInfo command or see your family administrator. For more
information on configurable fields, refer to the Administrator’s Guide.

Feature

98 Commands Reference

The feature -accept command has these associated attribute flags.

Attribute Description
-answer Name Specifies an answer code when accepting, modifying, or

returning a defect or feature. If no default has been set for
this attribute, then you must include it with the command.
This attribute is configurable.

-become Name The user ID you want to issue TeamConnection commands
from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-configField Name Specify a field to be user-configurable, overriding the field
default. NULL is a valid value.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-remarks Text Describes the change being requested, the actual design for
the defect or feature, or the reason for modifying or
changing the state of the defect or feature. Remarks are
limited to 29,999 characters. If you need to include more
than this limit, break your remarks into smaller files and
load them from these files. After you issue a command
that adds remarks, you cannot change the remarks (that is,
you cannot use the -modify action to change the remarks).
Note: To move a defect or feature to the size state, you
must have entered some design text using the -remarks
flag with the -design action.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

Assume that you own feature 4312 and that it is currently in the review state. After
you have reviewed the feature information, you decide to accept the feature for
implementation. The following command accepts the feature and moves it to the
working state. Work areas and fix records are created according to the sizing
records for this feature.
teamc feature -accept 4312

feature -assign Name . . .

Assigns features to another owner or another component.

The feature -assign command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

Feature

Chapter 13. Feature 99

Attribute Description
-component Name The component associated with the object. Different

components can manage different versions of the same
object.

(Environment variable: TC_COMPONENT.)

-component Name The component associated with the object. Different
components can manage different versions of the same
object. Either -component or -owner is required.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-owner Name Specifies the user ID of the owner of the object. Either
-component or -owner is required.

-remarks Text Describes the change being requested, the actual design for
the defect or feature, or the reason for modifying or
changing the state of the defect or feature. Remarks are
limited to 29,999 characters. If you need to include more
than this limit, break your remarks into smaller files and
load them from these files. After you issue a command
that adds remarks, you cannot change the remarks (that is,
you cannot use the -modify action to change the remarks).
Note: To move a defect or feature to the size state, you
must have entered some design text using the -remarks
flag with the -design action.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

Assume that you are the owner of feature 4312. The following command assigns
feature 4312 to the graphix component; the owner of graphix becomes the new
owner of this feature.
teamc feature -assign 4312 -component graphix

feature -cancel Name . . .

Cancels features that are in the open or the returned state.

The feature -cancel command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

Feature

100 Commands Reference

Attribute Description
-remarks Text Describes the change being requested, the actual design for

the defect or feature, or the reason for modifying or
changing the state of the defect or feature. Remarks are
limited to 29,999 characters. If you need to include more
than this limit, break your remarks into smaller files and
load them from these files. After you issue a command
that adds remarks, you cannot change the remarks (that is,
you cannot use the -modify action to change the remarks).
Note: To move a defect or feature to the size state, you
must have entered some design text using the -remarks
flag with the -design action.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

Assume that you are the originator of feature 4298 and that it is currently in the
returned state. The following command cancels this feature.
teamc feature -cancel 4298

feature -configInfo

The feature -configInfo action shows configurable field properties for features in
the specified family.

The feature -configInfo command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-raw Displays configurable field information in raw format.

Examples
v The following command displays the configurable fields defined for the features

in family rdev.
teamc feature -configInfo -family rdev

The following is an example of the output provided for this command.
Attribute DB Column Create/ Own/Orig Accept/
Name Name Required Type Modify Required Driver

----------- ------------ -------- -------- -------- -------- ------
symptom symptom yes/yes symptom yes/yes yes/no
phaseFound phaseFound yes/yes phase yes/yes yes/no
phaseInject phaseInject no/no phase yes/yes yes/no
priority priority no/no priority no/no yes/no
target target no/no yes/no yes/no

Feature

Chapter 13. Feature 101

v The following command displays the configurable fields defined for users in
family rdev in raw format.
teamc feature -configInfo -family rdev -raw

The following is an example of the output provided for this command.
Prefix:|Prefix|prefix|prefix|yes|yes|defectPrefix|yes|yes|yes|no|0|
Severity:|Severity|severity|severity|yes|yes|severity|no|yes|yes|no|0|
Symptom||symptom|symptom|yes|yes|symptom|yes|yes|yes|no|0|
Phase found||phaseFound|phaseFound|yes|yes|phase|yes|yes|yes|no|0|
Phase injected||phaseInject|phaseInject|no|no|phase|yes|yes|yes|no|0|
Priority|Priority|priority|priority|no|no|priority|no|no|yes|no|0|
Target|Target|target|target|no|no||yes|no|yes|no|0|

feature -design Name . . .

Moves features to the design state or specifies design text. Features can move to
the design state from the open, returned, design, size, or review state.

The feature -design command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-remarks Text Describes the change being requested, the actual design for
the defect or feature, or the reason for modifying or
changing the state of the defect or feature. Remarks are
limited to 29,999 characters. If you need to include more
than this limit, break your remarks into smaller files and
load them from these files. After you issue a command
that adds remarks, you cannot change the remarks (that is,
you cannot use the -modify action to change the remarks).
Note: To move a defect or feature to the size state, you
must have entered some design text using the -remarks
flag with the -design action.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

Assume that you are a component owner and that feature 4312 was opened against
your component. The following command moves the feature to the design state.
You can issue the teamc feature -design command with the -remarks flag when
you are ready to enter actual design information. You can issue the teamc feature
-design command more than once.
teamc feature -design 4312

Feature

102 Commands Reference

feature -modify Name . . .

The feature -modify Name . . . action modifies selected properties of features. At
least one of these attributes is required with the feature -modify Name . . . action.

-abstract
-name
-originator
-prefix
-priority*
-reference
-target*

You cannot modify existing remarks in a feature.

*Because your family administrator can modify or delete certain configurable fields
and create new fields, the attributes for the -modify action might differ from those
in your family or might not appear at all. Those listed here represent the shipped
default fields only. For a list of the field properties and flags in use in your family,
use the teamc feature -configInfo command or see your family administrator. For
more information on configurable fields, refer to the Administrator’s Guide.

The feature -modify command has these associated attribute flags.

Attribute Description
-abstract Text Lets users enter concise text to summarize a defect or

feature. Up to 63 characters are allowed. This text appears
in reports and notification messages. If this flag is not
specified when you are opening a defect or feature, the
first 63 characters or the text up to the first new-line
character of the -remarks flag serves as the abstract.

-answer Name Specifies an answer code when accepting, modifying, or
returning a defect or feature. If no default has been set for
this attribute, then you must include it with the command.
This attribute is configurable.

-become Name The user ID you want to issue TeamConnection commands
from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-name Name Specifies the defect or feature identifier. Up to 15
alphanumeric characters are allowed for user-generated
IDs. The TeamConnection product checks the uniqueness
of the ID. If the ID already exists in the TeamConnection
product, the action fails and you receive a message
indicating that the identifier is not unique. You must then
enter a new identifier or let the TeamConnection product
generate one.

-notesDB Used by the Lotus Notes integration and should not be
used by end users.

Feature

Chapter 13. Feature 103

Attribute Description
-notesID Used by the Lotus Notes integration and should not be

used by end users.

-notesID Used by the Lotus Notes integration and should not be
used by end users.

-originator Name Specifies the user ID of the new originator when you
modify a defect or feature. The previous originator’s
verification record is automatically reassigned to the new
originator.

-prefix Name Identifies a prefix that categorizes the defect or feature by
type. This value precedes the identifier in report output. If
no default has been set for this attribute, then you must
include it with the command. This attribute is
configurable.

-priority Name When modifying a defect, specifies the timing or
scheduling requirements for resolving a defect. This
attribute is configurable.

-reference Name Assigns a value, name, or keyword to a defect or feature.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-remarks Text Describes the change being requested, the actual design for
the defect or feature, or the reason for modifying or
changing the state of the defect or feature. Remarks are
limited to 29,999 characters. If you need to include more
than this limit, break your remarks into smaller files and
load them from these files. After you issue a command
that adds remarks, you cannot change the remarks (that is,
you cannot use the -modify action to change the remarks).
Note: To move a defect or feature to the size state, you
must have entered some design text using the -remarks
flag with the -design action.

-target Name Specifies a target (such as, a driver or a date) for defect
resolution or availability.

-verbose TeamConnection displays a confirmation message after
you issue the command.

feature -note Name . . .

Adds remarks to features. These notes cannot be modified or deleted after they are
in the system.

Feature

104 Commands Reference

The feature -note command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-remarks Text Describes the change being requested, the actual design for
the defect or feature, or the reason for modifying or
changing the state of the defect or feature. Remarks are
limited to 29,999 characters. If you need to include more
than this limit, break your remarks into smaller files and
load them from these files. After you issue a command
that adds remarks, you cannot change the remarks (that is,
you cannot use the -modify action to change the remarks).
Note: To move a defect or feature to the size state, you
must have entered some design text using the -remarks
flag with the -design action.

-verbose TeamConnection displays a confirmation message after
you issue the command.

feature -open

Opens a feature. A unique identifier is generated by the TeamConnection product
to identify the new feature unless you specify an identifier using the optional
-name flag.

Because your family administrator can modify or delete certain configurable fields
and create new fields, the attributes for this action might be different from those in
your family or might not appear at all. Those listed here represent the shipped
default fields only. For a list of the field properties and flags in use in your family,
use the -configInfo command or see your family administrator. For more
information on configurable fields, refer to the Administrator’s Guide.

The feature -open command has these associated attribute flags.

Attribute Description
-abstract Text Lets users enter concise text to summarize a defect or

feature. Up to 63 characters are allowed. This text appears
in reports and notification messages. If this flag is not
specified when you are opening a defect or feature, the
first 63 characters or the text up to the first new-line
character of the -remarks flag serves as the abstract.

-become Name The user ID you want to issue TeamConnection commands
from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

Feature

Chapter 13. Feature 105

Attribute Description
-component Name The component associated with the object. Different

components can manage different versions of the same
object.

(Environment variable: TC_COMPONENT.)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-name Name Specifies the defect or feature identifier. Up to 15
alphanumeric characters are allowed for user-generated
IDs. The TeamConnection product checks the uniqueness
of the ID. If the ID already exists in the TeamConnection
product, the action fails and you receive a message
indicating that the identifier is not unique. You must then
enter a new identifier or let the TeamConnection product
generate one.

-notesDB Used by the Lotus Notes integration and should not be
used by end users.

-notesID Used by the Lotus Notes integration and should not be
used by end users.

-notesID Used by the Lotus Notes integration and should not be
used by end users.

-prefix Name Identifies a prefix that categorizes the defect or feature by
type. This value precedes the identifier in report output. If
no default has been set for this attribute, then you must
include it with the command. This attribute is
configurable.

-raw Displays configurable field information in raw format.

-reference Name Assigns a value, name, or keyword to a defect or feature.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-remarks Text Describes the change being requested, the actual design for
the defect or feature, or the reason for modifying or
changing the state of the defect or feature. Remarks are
limited to 29,999 characters. If you need to include more
than this limit, break your remarks into smaller files and
load them from these files. After you issue a command
that adds remarks, you cannot change the remarks (that is,
you cannot use the -modify action to change the remarks).
Note: To move a defect or feature to the size state, you
must have entered some design text using the -remarks
flag with the -design action.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Feature

106 Commands Reference

Examples

The following command opens a feature against the debugr component, assuming
a default prefix value is set. This command creates a feature change request against
the debugr component. The feature identifier appears on the screen when the
command is completed. The person issuing this command is the originator of the
feature. The owner of component debugr is the owner of the feature.
teamc feature -open -remarks "Change format of parameter values display"
-component debugr

feature -reopen Name . . .

Reopens features that are in the returned or canceled state.

The feature -reopen command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-remarks Text Describes the change being requested, the actual design for
the defect or feature, or the reason for modifying or
changing the state of the defect or feature. Remarks are
limited to 29,999 characters. If you need to include more
than this limit, break your remarks into smaller files and
load them from these files. After you issue a command
that adds remarks, you cannot change the remarks (that is,
you cannot use the -modify action to change the remarks).
Note: To move a defect or feature to the size state, you
must have entered some design text using the -remarks
flag with the -design action.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

Assume that you are the originator of feature 4245 and that it is currently in the
canceled state. The following command reopens the feature against the component
that owned it when the feature was canceled.
teamc feature -reopen 4245 -remarks "Disagree with restriction
classification"

feature -return Name . . .

Returns features from any state except the verify, closed, or canceled states. A
feature in the working state can be returned only if it does not have work areas
associated with it.

Feature

Chapter 13. Feature 107

The feature -return command has these associated attribute flags.

Attribute Description
-answer Name Specifies an answer code when accepting, modifying, or

returning a defect or feature. If no default has been set for
this attribute, then you must include it with the command.
This attribute is configurable.

-become Name The user ID you want to issue TeamConnection commands
from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-duplicate Name Specifies that another feature (that is not canceled,
returned, or closed) already exists to address the feature
being returned.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-remarks Text Describes the change being requested, the actual design for
the defect or feature, or the reason for modifying or
changing the state of the defect or feature. Remarks are
limited to 29,999 characters. If you need to include more
than this limit, break your remarks into smaller files and
load them from these files. After you issue a command
that adds remarks, you cannot change the remarks (that is,
you cannot use the -modify action to change the remarks).
Note: To move a defect or feature to the size state, you
must have entered some design text using the -remarks
flag with the -design action.

-verbose TeamConnection displays a confirmation message after
you issue the command.

feature -review Name . . .

Moves features from the size state to the review state so that the proposed design
implementation and sizing information can be reviewed.

The feature -review command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

Feature

108 Commands Reference

Attribute Description
-remarks Text Describes the change being requested, the actual design for

the defect or feature, or the reason for modifying or
changing the state of the defect or feature. Remarks are
limited to 29,999 characters. If you need to include more
than this limit, break your remarks into smaller files and
load them from these files. After you issue a command
that adds remarks, you cannot change the remarks (that is,
you cannot use the -modify action to change the remarks).
Note: To move a defect or feature to the size state, you
must have entered some design text using the -remarks
flag with the -design action.

-verbose TeamConnection displays a confirmation message after
you issue the command.

feature -size Name . . .

Moves features from the design state to the size state for sizing. Design text must
first be entered using feature -design -remarks.

The feature -size command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-remarks Text Describes the change being requested, the actual design for
the defect or feature, or the reason for modifying or
changing the state of the defect or feature. Remarks are
limited to 29,999 characters. If you need to include more
than this limit, break your remarks into smaller files and
load them from these files. After you issue a command
that adds remarks, you cannot change the remarks (that is,
you cannot use the -modify action to change the remarks).
Note: To move a defect or feature to the size state, you
must have entered some design text using the -remarks
flag with the -design action.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

Assume that you are the owner of feature 3129. This feature is in the design state
and text has been entered using feature -design -remarks. The following command
moves the feature to the size state. After the feature is in the size state, you can
create sizing records using the size command. (One sizing record is required for
each component and release combination affected by the feature change.)
teamc feature -size 3129

Feature

Chapter 13. Feature 109

feature -verify Name . . .

Moves features from the working state to the verify state.

The feature -verify command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-remarks Text Describes the change being requested, the actual design for
the defect or feature, or the reason for modifying or
changing the state of the defect or feature. Remarks are
limited to 29,999 characters. If you need to include more
than this limit, break your remarks into smaller files and
load them from these files. After you issue a command
that adds remarks, you cannot change the remarks (that is,
you cannot use the -modify action to change the remarks).
Note: To move a defect or feature to the size state, you
must have entered some design text using the -remarks
flag with the -design action.

-verbose TeamConnection displays a confirmation message after
you issue the command.

feature -view Name . . .

Shows information about features.

The feature -view command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-long Displays detailed information for the specified objects.
Specify only one of -long or -processInfo.

-processInfo Displays the current process setting and associated
TeamConnection subprocesses for the specified
components when used with the -view action flag. Specify
only one of -long or -processInfo.

Feature

110 Commands Reference

Attribute Description
-verbose TeamConnection displays a confirmation message after

you issue the command.

Examples

The following command displays information about feature 1244, including its
purpose, originator, owner, and current state.
teamc feature -view 1244

Related information

See the following related commands:
Defect
Fix
Report
Size
Verify
Workarea

To see the feature state diagrams, refer to the poster Staying on Track with
TeamConnection Processes.

Feature

Chapter 13. Feature 111

112 Commands Reference

Chapter 14. Fix

Command summary

Fix records are associated with work areas. A fix record reflects the status of all the
part changes made to resolve a defect or implement a feature for a work area and
release in reference to one component. A work area has one or more fix records
associated with it, depending on the number of components in which parts are
changed. The component manages the parts to be changed in relation to the work
area.

Use the fix command to create, delete, and reassign fix records and to change the
state of fix records.

Each fix record is uniquely identified by a work area, a release, and a component.
The owner of a fix record is, by default, the owner of the related component;
however, this ownership can be reassigned using the -assign action flag.

Each fix record refers to the part changes required within one component. The
state of the fix record indicates the state of part changes for that component.

When the defect or feature is accepted, and the design, size, and review process is
enabled for the component the defect or feature is assigned to, one work area is
created for each release referenced by a sizing record, if the release has the track
process enabled. Fix records are created for all sizing records in this scenario. Fix
records are created in the notReady state if the associated work area is in the
approve state; otherwise, they are created in the ready state. Additional fix records
are created if parts are changed and checked in to the TeamConnection product for
a work area associated with a defect or a feature in a component for which there is
no existing fix record. In this case, the fix record is in the active state. Active state
means that part changes have been checked in to a work area associated with a
defect or feature in the component. You can create fix records using the -create
action flag if a work area is in the approve state or the fix state.

Use the -complete action flag to indicate that the part changes for the work area
associated with a defect or feature within that component are completed. This
moves the fix record to the complete state.

When all fix records for the work area are completed, the work area automatically
moves from the fix state to the integrate state. This automatic transition to the
integrate state can be disabled by including the workareafixhold subprocess in the
release process. When workareafixhold is part of the release process, a workarea
-integrate command must be issued to move the work area into the integrate state
after all the fix records are complete. Use the -activate action flag to reactivate a fix
record that is in the complete state if additional part changes are needed. You must
change the work area state from integrate to fix before activating the fix records.
You can make changes in the work area only when it is in the fix state.

If you decide that no part changes are required for a component that has a fix
record, you can use the -delete action flag to delete the fix record from the
associated work area.

© Copyright IBM Corp. 1992, 1999 113

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the fix command are:

teamc fix -activate -workarea Name ... -family Name
-release Name ... -component Name [-become Name] [-verbose]

teamc fix -assign -to Name -workarea Name ... -release Name ...
-component Name -family Name [-become Name] [-verbose]

teamc fix -complete -workarea Name ... -family Name
-release Name ... -component Name [-become Name] [-verbose]

teamc fix -create -workarea Name ... -release Name ...
-component Name -family Name [-developer Name] [-become Name]
[-verbose]

teamc fix -delete -workarea Name ... -release Name ...
-component Name -family Name [-become Name] [-verbose]

Command actions

fix -activate

Moves a fix record from the complete state to the active state so that additional
part changes can be made. You can change the fix record state only when the
corresponding work area is in the fix state.

To perform this action, the associated release’s process must include the fix
subprocess.

The fix -activate command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-component Name The component associated with the object. Different
components can manage different versions of the same
object.

(Environment variable: TC_COMPONENT.)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

Fix

114 Commands Reference

Attribute Description
-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

Assume additional part changes are required to parts managed by component
graphix for work area 412 and release font38. Also, assume that the
TC_COMPONENT and the TC_RELEASE environment variables are set to graphix
and font38, respectively, and the work area is in the fix state. The following
command reactivates the fix record. The fix record for work area 412 in the
component and release specified in the environment variables is moved to the
active state, and additional part changes can now be checked in.
teamc fix -activate -workarea 412

fix -assign

Assigns ownership of a fix record to another user ID. You cannot reassign the
component.

To perform this action, the associated release’s process must include the fix
subprocess.

The fix -assign command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-component Name The component associated with the object. Different
components can manage different versions of the same
object.

(Environment variable: TC_COMPONENT.)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-to Name The user ID to which you want to reassign the object. The
user ID you specify becomes the owner of the object.

Fix

Chapter 14. Fix 115

Attribute Description
-verbose TeamConnection displays a confirmation message after

you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

Assume that you own a fix record that monitors changes made to parts in the
debugr component for work area 955 in release 21gos. The following command
reassigns the fix record to joel, assuming the TC_RELEASE environment variable is
set to 21gos. If your TC_RELEASE environment variable were not set to the proper
release, you would have to use the -release attribute flag.
teamc fix -assign -workarea 955 -component debugr -to joel

fix -complete

Moves a fix record to the complete state to indicate that all part changes required
in the associated component are completed. If no other fix records exist or all other
records are completed, this causes the work area to change from the fix state to the
next valid state, which is governed by the release’s process.

To perform this action, the associated release’s process must include the fix
subprocess.

The fix -complete command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-component Name The component associated with the object. Different
components can manage different versions of the same
object.

(Environment variable: TC_COMPONENT.)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Fix

116 Commands Reference

fix -create

Creates a fix record for a work area in relation to a component. You can create a fix
record only if the work area is in the approve state or in the fix state.

To perform this action, the associated release’s process must include the fix
subprocess.

The fix -create command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-component Name The component associated with the object. Different
components can manage different versions of the same
object.

(Environment variable: TC_COMPONENT.)

-developer Name When creating a fix record, specifies the user ID of the
owner of the fix record.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

Assume that part changes are required to resolve defect 909 in release 21gos. The
component graphix manages the parts to be changed. The TeamConnection
product creates work area 909 for the changes. The following command creates a
fix record to monitor changes made to parts in the graphix component to resolve
defect 909 for the release 21gos. The owner of the new fix record is the owner of
the graphix component.
teamc fix -create -workarea 909 -component graphix -release 21gos

fix -delete

Deletes the fix record for the specified work area and component. You cannot
delete a fix record that is in the active state or in the complete state because it has
part changes associated with it.

Fix

Chapter 14. Fix 117

The fix -delete command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-component Name The component associated with the object. Different
components can manage different versions of the same
object.

(Environment variable: TC_COMPONENT.)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Related information

See the following related commands:
Component
Part
Release
Workarea

Fix

118 Commands Reference

Chapter 15. Host

Command summary

Use the host command to create and delete entries on a TeamConnection user’s
host list. Host list entries are only required if the family is using host-based
security.

Each entry identifies client access for a user ID on one host and consists of a user
ID and a host in the format login@hostName. The host command is used in
conjunction with the user command when you initially create a new user ID. A
host list is attached to a user ID and must have at least one entry to establish client
access for the user. Additional entries can be defined to let a user complete
TeamConnection commands from multiple hosts (and user IDs).

A TeamConnection superuser, or member of the authority group admin, must
create the first host list entry for a new user ID. The owner of the user ID can
make subsequent entries to gain client access on the hosts where the user has
logins. Each user ID can have multiple host list entries.

When you use the -become flag or the TC_BECOME environment variable, the
host list must have an entry of the user ID specified by the -become flag. This
entry gives you authority to act on behalf of that user ID.

Host list entries can be deleted; however, a user ID must always have one host list
entry to be able to access the TeamConnection product. If all host list entries are
deleted for a user ID, only a TeamConnection superuser, or member of the
authority group admin, can create a host list entry to reestablish client access for
that user ID.

There is a difference between the graphical user interface (GUI) host command and
the TeamConnection command line that the GUI prepares. The following fields
appear when you add a host entry to the list:
Logins smith
Host names carcps20
User IDs jane

However, the GUI prepares the following TeamConnection command line:
teamc host -create smith@carcps20 -login jane

Note that -create smith is the login for the GUI and that -login jane is the user ID
for the GUI. Thus, the GUI login field is not the same as the TeamConnection line
command -login.

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the host command are:

© Copyright IBM Corp. 1992, 1999 119

teamc host -create Name ... -family Name [-login Name] [-become Name]
[-verbose]

teamc host -delete Name ... -family Name [-login Name] [-become Name]
[-verbose]

For example, to create a host list entry for the TeamConnection
userid named admin who has a system login named mike in
the host jupiter, use the following command:

teamc host -create mike@jupiter -login admin

Command actions

host -create Name . . .

Creates one or more host list entries for an existing user ID, using the format
login@hostName. The login is optional if it matches the user’s current login.

The initial host list entry for each user must be created by someone with
TeamConnection superuser privilege or member of the authority group admin.
During the create operation, the host login is resolved. The login
myUser@myHostname, for example, is resolved to
myUser@myHostname.myCompany.com.

Should you attempt to create a user at an unreachable host, an error message will
appear.

The host -create command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-login Name TeamConnection user ID.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

Assume that your login on host lab1 is jane and you have an identical
TeamConnection user ID that has a host list entry for lab1; that is, the
TeamConnection user ID jane has a host entry for jane@lab1. You also have the
login jane on two other hosts, lab2 and lab3 (also on the network), and you want
to use the TeamConnection product on those hosts as well. The following

Host

120 Commands Reference

command gives user jane TeamConnection client access on these additional hosts.
This command creates host list entries jane@lab2 and jane@lab3 for the
TeamConnection user ID jane.
teamc host -create lab2 lab3 -login jane

Because your login on the current host is identical to the TeamConnection user ID
for which you are making a host list entry, the command could also be:
teamc host -create lab2 lab3

Assume that jane and pete are logins on host lab2. The following command gives
them access to the admin TeamConnection user ID at that host. Adding this entry
host list entry for the user ID admin lets logins jane and pete perform
TeamConnection commands using the TeamConnection user ID admin while
logged on to the host lab2. They can use the -become attribute flag to move
between the admin user ID and their own user IDs.

Note: You assume the access authority of the user ID you specify.
teamc host -create jane@lab2 pete@lab2 -login admin

host -delete Name . . .

Deletes one or more host list entries for an existing user ID, using the format
login@hostName. The login is optional if it matches the user’s current login. Each
user must have at least one host list entry to have TeamConnection access.

During the delete operation, the host login is not resolved. You must use a fully
qualified host name. To delete the host list entry for login myUser@myHostname,
for example, you need to issue the command with the fully qualified login
myUser@myHostname.myCompany.com.

The host -delete command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-login Name TeamConnection user ID.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

Assume that your user ID joan has a number of host list entries, including one for
the host johnson.kap.uwo.com. The following command deletes the entry from the
host list associated with your user ID. Your user ID, joan, can no longer perform
TeamConnection commands from that host.
teamc host -delete joan@johnson.kap.uwo.com

Host

Chapter 15. Host 121

Related information

See the following related commands:
User

Host

122 Commands Reference

Chapter 16. Notify

Command summary

By default, you receive notification when an action is required on your part. To
receive additional notification, you can add entries to notification lists for specific
components.

Use the notify command to create or delete entries on a component notification
list. Each entry associates a user ID with a notification interest group. An interest
group represents a list of actions; whenever an action on this list is performed, the
users who are associated with the interest group receive notification. For a list of
the notification interest groups shipped with TeamConnection, refer to the
TeamConnection User’s Guide. Your family administrator can modify or create new
interest groups.

When you create the user ID, the TeamConnection product sends notification
messages to the address you specified for each user ID. You can modify the
address using user -modify.

A user ID can have more than one entry on the notification list for a given
component. Interest groups defined on notification lists are inherited down the
component hierarchy, but the notification lists of child components do not show
the notification list entries that are inherited from ancestor components.

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the notify command are:

teamc notify -create -login Name ... -interest Name -component Name
-family Name [-become Name] [-verbose]

teamc notify -delete -login Name ... -interest Name -component Name
-family Name [-become Name] [-verbose]

Command actions

notify -create

Creates one or more notification list entries for a specified component.

© Copyright IBM Corp. 1992, 1999 123

The notify -create command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-component Name The component associated with the object. Different
components can manage different versions of the same
object.

(Environment variable: TC_COMPONENT.)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-interest Name A preconfigured notification interest group for the
specified user ID. For a list of interest groups, refer to the
TeamConnection User’s Guide or issue the following report
command:

teamc report -view interest -where "order by name"

-login Name . . . One or more TeamConnection user IDs. Specify only one
of -inherited or -login.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

You own the graphix component. The following command creates notification list
entries for the owners of user IDs pam, jack, and lisa with general notification
interest for that component. Three entries are added to the notification list
associated with the graphix component, one for each of the user IDs you specified
with the -login attribute flag. Each user is notified when an action configured in
the general notification interest group is performed in reference to the graphix
component or to any child components of that component. If this group includes
the DefectOpen action, then these users are notified each time a defect is opened
against the graphix component.
teamc notify -create -login pam jack lisa -interest general
-component graphix

notify -delete

Deletes one or more notification list entries from the specified component. Owners
of user IDs do not need special authority to delete their user IDs from a
notification list.

Notify

124 Commands Reference

The notify -delete command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-component Name The component associated with the object. Different
components can manage different versions of the same
object.

(Environment variable: TC_COMPONENT.)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-interest Name A preconfigured notification interest group for the
specified user ID. For a list of interest groups, refer to the
TeamConnection User’s Guide or issue the following report
command:

teamc report -view interest -where "order by name"

-login Name . . . One or more TeamConnection user IDs. Specify only one
of -inherited or -login.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

You do not own the debugr component, but you want to remove a notification list
entry for that component for your own user ID, pam. The following command
removes the notification list entry that gives you developer interest for that
component. You are no longer notified when actions configured for the developer
interest group are performed in reference to the debugr component or its child
components.
teamc notify -delete -login pam -interest developer -component debugr

Related information

See the following related commands:
Component
Report

Use the report command to view the interest groups and the actions they include.
For example:
teamc report -view interest -where "order by name"

For a list of the notification groups shipped with TeamConnection, refer to the
TeamConnection User’s Guide.

See your family administrator for information about configuring new notification
interest groups and modifying existing ones.

Notify

Chapter 16. Notify 125

126 Commands Reference

Chapter 17. Parser

Command summary

Use the parser command to create, modify, view, or delete parsers.

To automate some of the work involved in defining and maintaining a build tree,
you can use a parser object. The task of a parser is to inspect part contents to
determine dependencies. For example, a parser can inspect hello.c, recognize that it
has a dependency on hello.h, and create that dependency in the TeamConnection
build tree.

Because parsers are language-dependent, you probably need a different parser for
each language you use in a particular release. For example, you might have both a
COBOL parser and a C parser in a release. Many parts in the release can use the
same parser.

For more information about parsers, refer to the TeamConnection User’s Guide.

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the parser command are:

teamc parser -create Name -command Name -release Name -family Name
[-include Paths]
[-become UserName] [-verbose]

teamc parser -modify Name -workarea Name -release Name -family Name
[-command Name] [-include Paths]
[-become UserName] [-verbose]

teamc parser -delete Name -release Name -family Name
[-become UserName] [-verbose]

teamc parser -view Name -release Name -family Name
[-become UserName] [-verbose]

Command actions

parser -create Name

Creates a new parser.

© Copyright IBM Corp. 1992, 1999 127

The parser -create command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-command Name Specifies the command file you want to associate with the
parser. This can be an .exe, a .com, a .cmd, or a .bat file.
The executable file needs to be in the execution path of the
TeamConnection family server.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-include Paths Specifies a concatenated set of paths that define where the
parser looks for parts when processing the set of
dependencies returned from the command file. These
dependencies come in two types:

v A dependency in which the file is stored in the
TeamConnection database. For example, hello.c includes
hello.h, and both files are stored in the TeamConnection
database. During a build, these dependencies must be
extracted to a path accessible by the build processor.

v A dependency on a file that is not stored in the
TeamConnection database. An example of such a
dependency is stdio.h, which is typically stored in a
compiler’s include path and not in the TeamConnection
database.

For more information about include paths, refer to the
TeamConnection User’s Guide.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

parser -delete Name

Deletes the specified parser.

The parser -delete command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

Parser

128 Commands Reference

Attribute Description
-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

parser -modify Name

Modifies an existing parser. You must specify the -workarea attribute. This
attribute specifies the name of the workarea containing the files to be parsed. The
files you want to parse, must be associated with this work area.

The parser -modify command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-command Name Specifies the command file you want to associate with the
parser. This can be an .exe, a .com, a .cmd, or a .bat file.
The executable file needs to be in the execution path of the
TeamConnection family server.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-include Paths Specifies a concatenated set of paths that define where the
parser looks for parts when processing the set of
dependencies returned from the command file. These
dependencies come in two types:

v A dependency in which the file is stored in the
TeamConnection database. For example, hello.c includes
hello.h, and both files are stored in the TeamConnection
database. During a build, these dependencies must be
extracted to a path accessible by the build processor.

v A dependency on a file that is not stored in the
TeamConnection database. An example of such a
dependency is stdio.h, which is typically stored in a
compiler’s include path and not in the TeamConnection
database.

For more information about include paths, refer to the
TeamConnection User’s Guide.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

Parser

Chapter 17. Parser 129

Attribute Description
-verbose TeamConnection displays a confirmation message after

you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

parser -view Name

Displays the specified parser definition.

The parser -view command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

Related information

See the following related commands:
Builder
Part
Release

Parser

130 Commands Reference

Chapter 18. Part

Command summary

Use the part command to put files or objects, such as VisualAge Generator parts,
into the TeamConnection database and to work with them afterwards. You put a
part into the TeamConnection database using part -create. When you create a part,
you can do any of the following:
v Take an existing file that is on your workstation and place it in the

TeamConnection database. After a part is successfully created in the database,
the TeamConnection product modifies the file attributes of the source file on the
workstation to read-only.

v Create a place-holder part using the -empty flag. Place holders are used to build
an application. They have no content until a successful build of their inputs.

v Create a part that acts as a collector object so that you can synchronize the build
of unrelated parts. These parts do not have bulk contents (such as ASCII or
binary data). For more information, refer to the TeamConnection User’s Guide.

v Create a part that has its source in another file using the -from flag.

Characteristics of parts

Part names

TeamConnection parts have two names: the base name and the path name. For a
TeamConnection part that is a file, for example, the base name is the part’s file
name and extension, such as myfile.txt. The path name is the base name prefixed
with a directory structure, such as mydirectory\subdirectory\myfile.txt. Path
names for parts must be unique within a release. More than one part can have the
same base name as long as the path name is unique. The following file names, for
example, can both exist in the same release: unix\install.exe and intel\install.exe.

If a part has a unique base name or path name within a release, you can select it
by its base name or path name when performing TeamConnection actions against
it. If a part has the same base name as another part, it must be selected by its path
name.

If two parts have a different -type, they can have the same base name.

A part’s name can contain spaces provided it is enclosed in double quotation
marks during processing. For example:
teamc part -create "This is a long file name.txt"

The name with spaces will be shown as-is by the GUI (without the double quotes).
If the name has spaces and is not enclosed in double quotation marks, then you
may get an error message repeated many times, one for each ″token″ separated by
spaces in the long name.

Note: The base name may contain a maximum of 63 characters, not including the
double quotations. The path name, which includes the base name, may
contain a maximum of 195 characters, not including the double quotations.

© Copyright IBM Corp. 1992, 1999 131

Association with releases and components

When you create a part in the TeamConnection database, you associate it with a
release (to relate the part to a particular development effort) and with a component
(to control the ownership of and the access to the part). All subsequent part access
commands must specify the part name, release name, and possibly a work area
name to identify the correct part.

File mode

If the part you are creating is a file, you have the option of specifying a file mode
using the -fmode flag. For example, you can use the -fmode flag to specify that a
part is read-only. If a file mode is not specified, the current file mode of the source
file is used.

Part and file type

Parts are created with the default part type of TCPart and, if the part is a file, the
file type of text, binary, or none (used for collector parts). You can specify a part
type other than TCPart. In TeamConnection commands, the part type is specified
either by the -type attribute or by the -parenttype attribute. The -

Unless you specify a type on a part, all TeamConnection part commands default to
TCPart. Once the type is specified, it cannot be changed, unless you delete the part
and then re-create it.

What you can do with parts

You can perform various actions against parts in the TeamConnection database,
depending on the access authority you have for the components that manage the
parts.
v Parts can be extracted or checked out for editing and subsequently checked in to

save the changes.
v Part properties, such as the path name, release, component, and file mode, can

be modified. For example, you can change the name of a part using the -rename
action.

v Parts can be built. You can use the -connect and -disconnect actions to indicate
how parts are related. You can also use the -touch action to ensure that the part
participates in the next build. To cancel a build, you can use the -cancel attribute
of the part -build action. For more information about building parts, refer to the
TeamConnection User’s Guide.

v Parts can be deleted, using the -delete action, and then re-created using the
-recreate action.

v Actions performed on parts can be undone, although certain limitations apply.
The -undo action rolls back all of the uncommitted changes to a part in a work
area since the last work area -freeze.

v Parts from different releases can be merged together into a separate part and
placed in a specified release using the -merge action, .

v When a work area is refreshed, collisions detected can be resolved for a specified
list of parts using the -reconcile action.

v Parts can be marked as ready or not ready for translation into other languages.
v You can run certain operating system commands against parts in the database

using the -exec action.

Part

132 Commands Reference

Working with parts

When working with parts in a release whose process includes the tracking and
driver subprocesses, multiple sets of part changes can be checked in and included
in one driver; however, other types of part changes can be specified only once in a
driver. For example, a part cannot be created and renamed in the same driver.
However, an existing unfrozen -create action can be undone so that you can create
a part with the name you want.

If the release uses concurrent development mode, then multiple users can work on
the same part at the same time. This is in contrast to serial mode, where only one
user at a time can work on a part. For more information about concurrent
development, refer to page 39.

Parts can be linked to identify them as common to more than one release or work
area. A common part has identical content in all of the releases or work areas in
which it is linked. For example, a part is common to two releases if the same
version of the part is being used in those releases. Common parts follow a single
path of development.

The TeamConnection product maintains commonality of parts unless you use the
-force flag to break the link. When a link is broken, the parts still share the same
name, but the information contained in the parts is different.

Specifying the full path name of a TeamConnection part

There are a number of ways to specify the full path of a TeamConnection part:
v Specify the part name (which includes TeamConnection path name and base

name), and take the workstation path from your current working directory.
v Use the -relative flag to specify a path name that is outside your current

working directory. In this case, the values for the -relative flag and the name are
concatenated. This flag can be used only with the -create, -checkout, -checkin,
-extract, and -unlock actions.

v If your workstation directory structure matches the way parts are named, you
can set the TC_TOP variable to the leading portion of your current working
directory, and specify only the base name in the actions of the part command.
TeamConnection subtracts the contents of TC_TOP from the current working
directory. This option might take some time to understand, but it can save you a
great deal of typing.

The example that follows starts with the simplest case and moves to the more
complex. Throughout the example, assume that the environment variables for
TC_FAMILY, TC_RELEASE, and TC_WORKAREA have been set.

Working from your current working directory

Sam is working with a part named txfile.c. The path name and base name for this
part is src\lib\server\tx\txfile.c; the current working directory on Sam’s client
workstation is d:\robot\src. There is no other part in this release named txfile.c.

Part

Chapter 18. Part 133

Next Sam needs to check out \src\lib\server\tx\msg.h. Because other files named
msg.h exist in release 9501, he must specify the entire path name.

Note: If you create a part without specifying -relative or setting the TC_TOP
variable, then a file with the same name must exist in the current working
directory. For example, you use the following command:
teamc part -create src\lib\server\read.me

In this case, read.me must exist in your current directory; the
TeamConnection product does not search for the part in x:\src\lib\server (x
is your current drive).

Using the -relative flag

The next day, Sam’s current working directory is d:\robot\src\lib\client\gui. But
he wants to check out txfile.c to the same directory as before. He uses the -relative
flag to do this:

Part name:
src\lib\server\tx\txfile.c

O S / 2

Current working directory:
d:\robot\src

T e a m C o n n e c t i o n
c l i e n t

The TC_TOP variable is not set.

Sam types this command:
teamc part -checkout txfile.c

Path and file name after checkout:
d:\robot\src\txfile.c

F a m i l y s e r v e r

The base name,
txfile.c, is unique
in this release.

Part

134 Commands Reference

Because txfile.c is unique in the release, Sam did not need to specify the entire path
name. But msg.h is not a unique base name:

Using the TC_TOP variable

A few days later, Sam has checked out many files from the release into
subdirectories of d:\robot, using a directory structure that mimics the names of
TeamConnection parts. For his own convenience, he sets the TC_TOP variable to
d:\robot.

Now when he works with parts, he can specify just the base name of files in his
current working directory, as in this example:

Part name:
src\lib\server\tx\txfile.c

O S / 2

Current working directory:
d:\robot\src\lib\client\gui

T e a m C o n n e c t i o n
c l i e n t

The TC_TOP variable is not set.

Sam types this command:
teamc part -checkout txfile.c
-relative robot

Path and file name after checkout:
d:\robot\src\lib\server\tx\txfile.c

F a m i l y s e r v e r

The base name,
txfile.c, is unique
in this release.

Part name:
src\lib\server\tx\msg.h

O S / 2

Current working directory:
d:\robot\src\lib\client\gui

T e a m C o n n e c t i o n
c l i e n t

The TC_TOP variable is not set.

Sam types this command:
teamc part -checkout src\lib\server\tx\msg.h
-relative robot

Path and file name after checkout:
d:\robot\src\lib\server\tx\msg.h

F a m i l y s e r v e r

The base name,
msg.h, is not unique
in this release.

Part

Chapter 18. Part 135

The additional information added to the leading portion of the path is formed by
subtracting the value of TC_TOP from the current working directory. In other
words, the TC_TOP variable tells the TeamConnection product which portion of
the current working directory path belongs to the client workstation.

This command is completely equivalent to the following command if the TC_TOP
variable is not set:
teamc part -checkout src\lib\server\tx\txfile.c -relative d:\robot

However, using TC_TOP lets Sam save his fingers for typing code instead of long
path names.

Common parts in releases

When a common part is checked out for editing, it is locked in all releases and
work areas where it is common. You need to do only one check-in to have the
change reflected in all releases and work areas in which the part is common. The
TeamConnection product maintains commonality of parts unless you use the -force
flag to break the common link. If you want to edit a locked part and cannot wait
for the part to be checked in, you can break the common link (and thus the lock on
the common version) by specifying the -force flag when you issue part -checkout.
The force action applies only in that release and work area so that the part
associated with that release is no longer common. You must explicitly link parts to
make them common again after that time.

When a common part is checked in using the part -checkin command, all work
areas must be specified for each release in which the part is common. The
associated work areas must be in the fix state, and the associated fix records in the
ready or active state.

If you want to check in a common part, and you do not want the changes to be
reflected in the other work areas in which the part is common, use the -force flag
to break the common link. If you want to check in a common part, but you want
the changes to be reflected in some of the work areas to which the part is common
but not in others, use the following attributes:
v -force

Part name:
src\lib\server\tx\txfile.c

O S / 2

Current working directory:
d:\robot\src\lib\server\tx

T e a m C o n n e c t i o n
c l i e n t

The TC_TOP variable is set
to d:\robot.

Sam types this command:
teamc part -checkout txfile.c

Path and file name after checkout:
d:\robot\src\lib\server\tx\txfile.c

F a m i l y s e r v e r

The base name,
txfile.c, is unique
in this release.

Part

136 Commands Reference

v -common, including as arguments the names of releases you want to keep
common and excluding the name of the release associated with the part you are
checking in or modifying

v -workarea, including as arguments the names of the work areas for which you
want to maintain part commonality

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the part command are:

teamc part -build Name -pool Name -release Name -family Name
[-workarea Name | -driver Name]
{-force | -normal* | -unconditional | -report}
[-detail FileSpec]
[-parameters Parameters]
[-type Name]
[-top Name]
[-buildresource Name]
[-become Name] [-verbose]

teamc part -build Name -cancel -release Name -family Name
[-workarea Name | -driver Name]
[-type Name]
[-top Name]
[-become Name] [-verbose]

teamc part -checkin Name ... -release Name -family Name
-workarea Name ...

[-common Name ...] [-force] [-retainLock] [-remarks Text]
[-binary | -text | -none] [-stdin | -from fileSpec]**
[-relative Name | -top Name]
[-become Name] [-verbose]

teamc part -checkout Name ...
-workarea Name -release Name -family Name
[-force] [-stdout] [-crlf]
[-relative Name | -top Name]
[-become Name] [-verbose]

teamc part -configInfo -family Name [-become Name] [-raw]

teamc part -connect Name ...-parent Name
{-input* | -output | -dependent}
-workarea Name -release Name -family Name
[-type Name]
[-parenttype Name]
[-become Name] [-verbose]

teamc part -create Name ... -component Name
-workarea Name -release Name -family Name

Part

Chapter 18. Part 137

[-builder Name] [-fmode Octal_number]
[-relative Name | -top Name]
[-binary | -text* | -none]
[-parameters Parameters]
[-parent Name {-input* | -output | -dependent}]
[-parser Name]
[-stdin | -from fileSpec | -empty]**
[-parenttype Name*]
[-remarks Text]
[-temporary* | +temporary]
[-translation Name]****
[-become Name] [-verbose]

teamc part -delete Name ...
-workarea Name ...
-release Name -family Name
[-common Name ...] [-force] [-type Name]
[-top Name] [-become Name] [-verbose]

teamc part -disconnect Name ...
-workarea Name -parent Name -release Name -family Name

[-parenttype Name]
[-type Name]
[-become Name] [-verbose]

teamc part -exec Text -release Name -family Name [-name Name ...]
[-workarea Name | -driver Name | -version Name] [-top Name]
[-numVersions {all|n}] [-where Text] [-become Name]

teamc part -export Name -family Name -release Name
-file Name [-workarea Name] [-become Name] [-verbose]

teamc part -extract Name ...
-release Name -family Name
[-workarea Name*** | -driver Name | -version Name]
[-nokeys] [-relative Name | -top Name] [-stdout] [-crlf]
[-dmask Octal_number] [-fmask Octal_number]
[-become Name] [-verbose]

teamc part -link Name ... -workarea Name -release Name -family Name
[-fromworkarea Name | -version Name] [-fromrelease Name]
[-type Name]
[-top Name] [-become Name] [-verbose]

teamc part -lock Name ...
-workarea Name
-release Name -family Name [-force]
[-type Name]
[-top Name] [-become Name] [-verbose]

teamc part -mark Name ... -transState {notReady | ready}
-release Name -family Name
[-workarea Name*** | -driver Name | -version Name]
[-type Name]
[-top Name] [-become Name] [-verbose]

Part

138 Commands Reference

teamc part -modify***** Name ...
-workarea Name -release Name -family Name
{-parameters Parameters
-parser Name -builder Name
[-temporary* | +temporary]}
[-type Name]
[-top Name] [-become Name] [-verbose]

teamc part -modify***** Name ...
-release Name -family Name
{-fmode Octal_number -component Name -translation Name}
[-top Name] [-become Name] [-verbose]

teamc part -overrideRestrict Name ...
-workarea Name -release Name
-family Name [-login Name] [-top Name]
[-type Name]
[-become Name] [-verbose]

teamc part -overrideRestrict Name ... -cancel
-workarea Name -release Name
-family Name [-login Name] [-top Name]
[-type Name]
[-become Name] [-verbose]

teamc part -recreate Name ...
-workarea Name ...
-release Name -family Name [-top Name]
[-common Name ...] [-force]
[-type Name]
[-become Name] [-verbose]

teamc part -refresh Name ... -workarea Name -release Name -family Name
[-fromworkarea Name | -version Name]
[-type Name]
[-top Name] [-become Name] [-verbose]

teamc part -rename Name -path Name
-workarea Name ...
-release Name -family Name
[-top Name] [-common Name ...] [-force]
[-type Name]
[-become Name] [-verbose]

teamc part -resolve Name ... -release Name -family Name [-quiet]
[-type Name]
[-top Name] [-become Name] [-verbose]

teamc part -restrict Name ...
-release Name -family Name [-top Name]
[-type Name]
[-become Name] [-verbose]

teamc part -restrict Name ... -cancel
-release Name -family Name [-top Name]
[-type Name]

Part

Chapter 18. Part 139

[-become Name] [-verbose]

teamc part -touch Name ...
-workarea Name
-release Name -family Name [-top Name]
[-type Name]
[-become Name] [-verbose]

teamc part -undo Name ...
-workarea Name ...
-release Name -family Name
[-top Name][-common Name ...]
[-type Name]
[-force] [-become Name] [-verbose]

teamc part -unlock Name ...
-workarea Name
-release Name -family Name
[-relative Name | -top Name]
[-type Name]
[-become Name] [-verbose]

teamc part -view Name ...
-release Name -family Name [-long] [-top Name]
[-workarea Name*** | -driver Name | -version Name]
[-type Name]
[-become Name] [-verbose]

teamc part -viewmsg Name ... -release Name -family Name [-top Name]
[-workarea Name | -driver Name | -version Name]
[-type Name]
[-become Name] [-verbose]

* default if not specified
-type and -parenttype will default to ’TCPart’ if not specified
-temporary is the default, meaning NOT a temporary part

** Only valid with file type of text or binary.
*** Required if part has not been committed.

**** Required when no default value is set for the TeamConnection family.

***** Note the 2 variations of -modify action on Part command.
Workarea is required when modifying the indicated set
of parameters. Workarea is not required when modifying
fmode, component, or translation.

Command actions

part -build Name

Starting with the specified part as the root of the build tree, this command will
build all parts in the tree that have a buildStatus not equal to ″success.″

Part

140 Commands Reference

The part -build command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-detail FileSpec Specifies a file in which all of the build messages are
collected.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-force Build all parts in the build tree, starting at the specified
part, regardless of whether the parts are currently up to
date. Processing stops after the first error is returned. By
default, only parts with a build status not equal to
″success″ will be built.

If you specify this attribute, do not also specify -normal,
-unconditional, or -report. If you specify none of these
attributes, -normal is the default.

-normal Builds only the parts that are out-of-date. Processing stops
after the first error is returned.

If you specify this attribute, do not also specify -force,
-unconditional, or -report. If you specify none of these
attributes, -normal is the default.

-parameters Specifies the parameters you use to build a part. These
parameters replace the ones in the builder that is
associated with this part. If you want to include the
builder parameters, you can imbed the
$(BUILDERPARMS) variable in your part. You can imbed
this variable wherever you want the variables substituted
in your part.

In UNIX environments, you need to include an escape
character before the $: \$(variable_name). The following is
an example: \$(TC_INPUT).

-pool Name Specifies the name of the build pool that contains the build
servers that will perform the build.

(Environment variable: TC_BUILDPOOL)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-report Gives a preview of what would be built if you invoked a
build. The report identifies what steps would occur
without any translations taking place.

If you specify this attribute, do not also specify -force,
-normal, or -unconditional. If you specify none of these
attributes, -normal is the default.

Part

Chapter 18. Part 141

Attribute Description

-top Name Specifies the leading portion of the path name that is a
subset of the current working directory on the client
machine.

(Environment variable: TC_TOP)

-type Name The type of the parts. The default is TCPart.

-unconditional Builds only parts that are out-of-date, but continues
processing even if errors are returned. Outputs are not
rebuild for inputs that have failed.

If you specify this attribute, do not also specify -force,
-normal, or -report. If you specify none of these attributes,
-normal is the default.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

The following command builds robot.exe using pool OS2_486.
teamc part -build robot.exe -pool os2_486 -workarea 501 -release 11debgr

part -build Name -cancel

Will stop all queued and currently running jobs that where caused by the build of
the part. You can only specify a part for which a part -build was issued.

The part -build (cancel) command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-top Name Specifies the leading portion of the path name that is a
subset of the current working directory on the client
machine.

(Environment variable: TC_TOP)

Part

142 Commands Reference

Attribute Description
-type Name The type of the parts. The default is TCPart.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

part -checkin Name . . .

Submits the changes made to a specified part to the TeamConnection server and
unlocks and breaks commonality of the part. Any associated work areas must be in
the fix state and the associated fix records in the ready or active state.

When a part is checked-in successfully, the part mode is read-only. Setting the
environment variable tc_modperm can change the mode.
v Set to off/OFF part mode is read-only
v Set to on/ON part mode is read-write

The part -checkin command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-binary Specifies that the object is a binary file. Specify only one of
-binary, -none, or -text. If you specify none of these
attributes, -text is the default.

-common Name . . . Specifies the releases in which common parts are to be
maintained or whether the specific part change is to apply
to all releases in which the part is common. All releases
must be specified unless the -force flag is specified as well.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-force Forces a break between common parts.

-from fileSpec Specifies the location of the file contents.

-none Indicates that the part will never contain any data. For
example, the part might be a collector object.

-relative Name Places the specified part relative to the directory location
specified according to the complete path name of the part.
Directories are created if necessary when extracting or
checking out in order to copy the part by its full path
name. Specify either -relative or -top.

Part

Chapter 18. Part 143

Attribute Description
-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-remarks Text Adds explanatory remarks for the action. Remarks are
limited to 29,999 characters. If you need to include more
than this limit, break your remarks into smaller files and
load them from these files.

-retainLock Submits the changes made to a specified part without
unlocking the part.

-stdin Loads the part from standard input.

-text Specifies that the object is a text file. If you specify neither
-binary, -none, nor -text, -text is the default.

-top Name Specifies the leading portion of the path name that is a
subset of the current working directory on the client
machine.

(Environment variable: TC_TOP)

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

Assume that your TC_RELEASE environment variable is set to the release
associated with the part graphix\x.c and that the tracking subprocess is included
in the associated release process. Your current working directory is \jane\test, and
your TC_TOP environment variable is not set. The following command checks in
the part after editing. Changes made to the part graphix\x.c are submitted to the
TeamConnection server creating a new version of the part. The changes relate to
the work areas corresponding to defect 8117 in the release indicated by the
TC_RELEASE environment variable. The edited part graphix\x.c must exist in
your current working directory.
teamc part -checkin graphix\x.c -workarea 8117

The following command checks in changes to part file1.c, which is common to two
work areas: 400 and 428.
teamc part -checkin file1.c -workarea 400 428 -release R1

part -checkout Name . . .

Retrieves a working copy of a specified part and locks it for editing purposes.
Only the most recent version of a part can be checked out.

If a read-only copy of the part already exists on your workstation, it is renamed
and saved as a backup copy. TeamConnection adds an extra character ($ on Intel
platforms or _ on UNIX platforms) to the file name extension of the backup copy.

Part

144 Commands Reference

The file myfile.ext, for example, is renamed to myfile.$ext or myfile._ext. If your
file system supports only 8.3 file names (as on FAT file systems), the file name
extension is truncated to three characters (myfile.$ex or myfile._ex). If a backup
copy already exists, it is deleted.

The environment variables TC_BACKUP, TC_BACKUPCHAR and TC_MODPERM
control the backup and read-only options. If the environment variable
TC_BACKUP is set to either off or OFF this command will not create a backup file.
See “Environment variables” on page 6 for more information about the
TC_BACKUP, TC_BACKUPCHARS, and TC_MODPERM environment variables.

The part -checkout command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-crlf Provides transparent file conversion between UNIX- and
Intel-based operating systems. This attribute enables parts
shared between UNIX and Intel platforms to have the
proper format for the platform to which they are extracted.
When parts are extracted to an Intel platform, the -crlf
attribute will add carriage-returns, expand tabs, and add
end-of-file characters (if the parts do not already have EOF
characters). When parts are extracted to a UNIX platform,
the -crlf attribute will remove carriage-returns, replace
spaces with tabs, and remove end-of-file characters.

If you omit this attribute, no file format conversion is
performed.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-force Forces a break between common parts.

-relative Name Places the specified part relative to the directory location
specified according to the complete path name of the part.
Directories are created if necessary when extracting or
checking out in order to copy the part by its full path
name. Specify either -relative or -top.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-stdout Redirects the specified part to standard output when
extracting it from the TeamConnection server.

-top Name Specifies the leading portion of the path name that is a
subset of the current working directory on the client
machine.

(Environment variable: TC_TOP)

Part

Chapter 18. Part 145

Attribute Description
-verbose TeamConnection displays a confirmation message after

you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

Assume that your current working directory is c:\jane\graphix and that your
TC_TOP environment variable is set to c:\jane. The following command checks
out a working copy of a part graphix\x.c in work area 501 and locks it for editing.
In this example, the value of the TC_TOP environment variable, \jane, is stripped
from the head of your current working directory. The result indicates the name of
the part, graphix\x.c, within the TeamConnection environment. The part is copied
to c:\jane\graphix with the name x.c, and the current version of the part in work
area 501 is locked.
teamc part -checkout graphix\x.c -release 10graphix -workarea 501

The following command checks out part file1.c from work area 400.
teamc part -checkout file1.c -workarea 400 -release R1

part -childInfoView Name . . .

Shows the immediate children (of the part) in the build tree.

The -raw output of this command shows the following:
baseName|releaseName|compName|committedVersion|addDate|dropDate|lastUpdate|
pathName|currentVersion|nuAddDate|nuDropDate|nuPathName|userLogin|fmode|
fileType|changeType|workAreaName|partType|temporary|builderName|
parserName|ancestorSourceId|buildStatus|parameters|
workAreaChange|translation|transState|restricted

The part -childInfoView command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-driver Name Specifies the driver for which the command is issued.
Specify only one of -driver, -version, or -workarea. This
attribute provides the context for selecting the part version
for the command.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-long Displays detailed information for the specified objects.
Specify only one of -long or -raw.

Part

146 Commands Reference

Attribute Description
-raw Displays report in raw format. Specify only one of -long or

-raw.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-type Name The type of the parts. The default is TCPart.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-version Name Specifies the version of the object. Specify only one of
-driver, -version, or -workarea. This attribute provides the
context for selecting the part version for the command.

-workarea Name . . . The name of the work area for the part. Specify only one
of -driver, -version, or -workarea. This attribute provides
the context for selecting the part version for the command.

part -configInfo

Shows configurable field properties for parts in the specified family.

The part -configInfo command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-raw Displays configurable field information in raw format.

Examples
v The following command displays the configurable fields defined for the parts in

family rdev.
teamc part -configInfo -family rdev

The following is an example of the output provided for this command. This
example assumes that the only configurable field defined is called partTest.
Attribute Name DB Column Name Create/Required Type
-------------- --------------- --------------- -----

partTest partTest yes/no test

v The following command displays the configurable fields defined for parts in
family rdev in raw format.
teamc part -configInfo -family rdev -raw

Part

Chapter 18. Part 147

The following is an example of the output provided for this command. This
example assumes that the only configurable field defined is called partTest.
Part Test|Part Test|partTest|partTest|yes|no|test

part -connect Name . . .

Connects a part to a parent in the build tree.

The part -connect command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-dependent Specifies that the part is not an input to a build, but that it
is needed for a build of its parent. A C language #include
file is an example. Specify only one of the attributes -input,
-output, or -dependent. If none of these is specified, the
default is -input.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-input Specifies that the part is an input that is needed to build
its parent. A C language source file is an example. Specify
only one of the attributes -input, -output, or -dependent. If
none of these is specified, the default is -input.

-output Name Specifies that the part is built at the same time as its
parent. A .map file is an example. Specify only one of the
attributes -input, -output, or -dependent. If none of these is
specified, the default is -input.

-parent Name The target of the operation.

-parenttype Name Specifies the type of the parent part.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-type Name The type of the parts. The default is TCPart.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Part

148 Commands Reference

Examples

The following command connects dependent file mymsg.h to its parent hello.c.
teamc part -connect mymsg.h -parent hello.c -dependent -workarea 501

part -create Name . . .

Creates parts with the specified names; this creates a TeamConnection record for
the part and copies it to the server. A part must have a unique path name and type
within a release.

You can specify fields to be user-configurable using the -configField attribute
overriding field defaults. When you create a part, TeamConnection enables you to
specify whether it is a text or binary file using the -text and -binary attributes. If
you omit these attributes, TeamConnectioncan determine from the file itself what
format to create it in.

When a part is created successfully, the part mode is read-only. Setting the
environment variable tc_modperm can change the mode.
v Set to off/OFF part mode is read-only
v Set to on/ON part mode is read-write

Because your family administrator can modify or delete certain configurable fields
and create new fields, the attributes for this action might be different from those in
your family or might not appear at all. Those listed here represent the shipped
default fields only. For a list of the field properties and flags in use in your family,
use the -configInfo command or see your family administrator. For more
information on configurable fields, refer to the Administrator’s Guide.

The part -create command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-binary Specifies that the object is a binary file. Specify only one of
-binary, -none, or -text. If you specify none of these
attributes, -text is the default.

-builder Name Specifies the name of the builder you want to use.

-component Name The component associated with the object. Different
components can manage different versions of the same
object.

(Environment variable: TC_COMPONENT.)

-configField Name Specify a field to be user-configurable, overriding the field
default. NULL is a valid value.

Part

Chapter 18. Part 149

Attribute Description
-dependent Specifies that the part is not an input to a build, but that it

is needed for a build of its parent. A C language #include
file is an example. Specify only one of the attributes -input,
-output, or -dependent. If none of these is specified, the
default is -input.

-empty Indicates that the part being created is a place holder. The
part does not contain data when you create it, but it will
contain data later. Typically, you use this attribute for files
that you plan to generate later using part -build. Specify
only one of -empty, -from, or -stdin. You cannot use this
attribute if you also use the -none attribute. You can use it
only with the -binary and -text attributes.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-fmode Octal_number Specifies the file mode in the TeamConnection product
when creating or modifying If no mode is specified, the
current file mode is accepted.

-from fileSpec Specifies the location of the file contents.

-input Specifies that the part is an input that is needed to build
its parent. A C language source file is an example. Specify
only one of the attributes -input, -output, or -dependent. If
none of these is specified, the default is -input.

-none Indicates that the part will never contain any data. For
example, the part might be a collector object. Specify only
one of -binary, -none, or -text. If you specify none of these
attributes, -text is the default.

-output Name Specifies that the part is built at the same time as its
parent. A .map file is an example. Specify only one of the
attributes -input, -output, or -dependent. If none of these is
specified, the default is -input.

-parameters Specifies the parameters you use to build a part. These
parameters replace the ones in the builder that is
associated with this part. If you want to include the
builder parameters, you can imbed the
$(BUILDERPARMS) variable in your part. You can imbed
this variable wherever you want the variables substituted
in your part.

In UNIX environments, you need to include an escape
character before the $: \$(variable_name). The following is
an example: \$(TC_INPUT).

-parent Name The target of the operation.

-parenttype Name Specifies the type of the parent part.

-parser Name Specifies the name of the parser you want to use.

Part

150 Commands Reference

Attribute Description
-relative Name Places the specified part relative to the directory location

specified according to the complete path name of the part.
Directories are created if necessary when extracting or
checking out in order to copy the part by its full path
name. Specify either -relative or -top.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-remarks Text Adds explanatory remarks for the action. Remarks are
limited to 29,999 characters. If you need to include more
than this limit, break your remarks into smaller files and
load them from these files.

-stdin Loads the part from standard input.

-temporary Specifies that this part is not temporary. This is the default.

+temporary Specifies that the part is temporary. A temporary part is
one whose bulk contents will be deleted after a successful
build.

-text Specifies that the object is a text file. If you specify neither
-binary, -none, nor -text, -text is the default.

-top Name Specifies the leading portion of the path name that is a
subset of the current working directory on the client
machine.

(Environment variable: TC_TOP)

-translation Specifies how the part is related to the translation process.
For example, a part might be translated into another
language, used while translating other parts, or completely
unrelated to translation. You must include this attribute
when creating a part if no default has been set for this
attribute. This attribute is configurable.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

Assume that your current working directory is c:\jane, and that your TC_TOP
environment variable is set to c:\jane. You have a part with the path name
c:\jane\src\bar\option\tic.c on your workstation. You also have a work area 341
to fix defect 341.

The following command creates this part within the TeamConnection database as
src\bar\option\tic.c and associates it with a release whose process includes the
tracking subprocess. The part is managed by the graphs component and is created
as part of the fix for defect 341.

Part

Chapter 18. Part 151

teamc part -create src\bar\option\tic.c -component graphs
-release 32charting -workarea 341

part -delete Name . . .

Deletes the specified parts.

The part -delete command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-common Name . . . Specifies the releases in which common parts are to be
maintained or whether the specific part change is to apply
to all releases in which the part is common. All releases
must be specified unless the -force flag is specified as well.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-force Forces a break between common parts.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-top Name Specifies the leading portion of the path name that is a
subset of the current working directory on the client
machine.

(Environment variable: TC_TOP)

-type Name The type of the parts. The default is TCPart.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

part -disconnect Name . . .

Disconnects a part from its parent in the build tree.

The part -disconnect command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

Part

152 Commands Reference

Attribute Description

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-parent Name The target of the operation.

-parenttype Name Specifies the type of the parent part.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-type Name The type of the parts. The default is TCPart.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

part -exec Text

The part -exec Text action runs standard operating system commands against a
part in the database. You must have superuser or PartExec authority for the parts
you run this action against. See the Administrator’s Guide for more information on
security and authority for this action.

The part -exec Text command extracts temporary files to the server before
executing the operating system command. The temporary files are deleted after
each command is executed.

This action requires you to specify the following information:
v The operating system command to execute. Specify the command to be executed

in quotation marks, as shown in the following example:
teamc part -exec "/usr/bin/grep 99-P183843 {}" -release 99-P32828v1
-where nuPathName='foo.c' -numVersions all

All occurrences of the string ″{}″ in your command string are replaced with the
part name before the operating system command is executed. You can specify
any command that can be executed by the operating system on which the
TeamConnection server runs. If your TeamConnection server operates on AIX,
for example, you can issue AIX commands with the -exec action. The family
administrator can limit the operating system commands allowed as described in
the Administrator’s Guide.

You must specify the name of the executable exactly as it appears in
execcmds.ld, including any file name extensions, such as .exe. (Refer to the
Administrator’s Guide for a description of execcmds.ld.) If the full path is in
execcmds.ld, the user must specify the full path. If a relative path is specified,
the user must specify a relative path. If no path is specified (the executable can
be found in the server’s path or current working directory), then the user must
specify the file without the path.

Part

Chapter 18. Part 153

|
|
|

|
|
|
|
|
|
|

The following restrictions apply to running part -exec Text on an OS/2
server:

– The executable must be in the server’s current working directory or in
its path.

– You cannot specify a directory path on the teamc part -exec command
itself (for example, you cannot specify teamc part -exec
″d:\tools\grep . . . ″.

– Batch and command files are not supported.

v The family and release to execute the command against. If you have set
TC_FAMILY and TC_RELEASE environment variables, these two attributes are
not required.

Given only these required attributes, the part -exec Text action will process all
parts in the family and release specified. You can restrict or increase the number of
parts processed by also including a -where clause, the -numVersions attribute, and
a context attribute (-workarea, -driver, or -version):
v You can use the -where attribute to select the parts to be processed by the

operating system command. See “Appendix. Querying the TeamConnection
database” on page 275 for instructions on using the -where attribute and
“PartView**” on page 306 for a list of fields you can use to select specific parts.

v You can also select parts by specifying the -top and -name attributes. See “Using
the TC_TOP variable” on page 135 for information on how this attribute works.

v You can use the -numVersions attribute to specify how many versions of each
part to process. This attribute works in conjunction with the context attributes as
follows:
– The context attributes (-workarea, -driver, or -version) determine which

version of the part is selected as the starting point for selecting parts to
process.

– If the -numVersions flag is omitted, only the current version from the
specified context (the work area, driver, or specific version) is processed.

– If the -numVersions attribute is specified with a numeric value, such as 5, for
example, then the part -exec Text action processes the 5 most recent versions
of the part beginning with the version from the current context.

When you include the -numVersions attribute, TeamConnection starts with the
selected version and works backward toward the part’s initial version. The
attributes -workarea myworkarea -numVersions 5, for example, select the current
part version in the work area myworkarea and the four previous versions of the
part.

You can also specify -numversions all to process all prior versions of the part.

How -where and -name work together

It is possible to include both the -where and -name attributes to select parts for
processing. If you include both attributes in your command, they work together as
follows:
v TeamConnection uses the criteria specified in both attributes to select parts. In

other words, for a part to be selected for processing, the part name must match
the criteria specified in both attributes.
For the following attributes:
-name hello.c bye% -where "basename!='byebye' order by nupathname"

The following files are selected for processing:

Part

154 Commands Reference

|

|

|

|
|

|
|

|
|
|

|

|

|
|

|

|
|
|

|
|
|

|

|

|

– byebye.h
– bye.c
– bye.h
– hello.c

Note that while the file byebye.h is selected, the file byebye is not.
v The -top attribute applies only to the -name attribute and does not affect the

parts selected by the -where clause.
v The -name attribute allows you to specify wildcard characters (as in bye%). See

“Appendix. Querying the TeamConnection database” on page 275 for more
information on wildcards.

Restrictions and limitations

The following restrictions and limitations apply to using the part -exec Text action:
v The part -exec Text action does not process files that have been deleted in the

database.
v If the user does not have PartExec authority for a particular part selected for

processing, that part will be ignored. The remaining parts in the result set will
be processed.

v Keywords will not be expanded during part -exec Text processing.
v The part -exec Text action can process only one file at a time. All occurrences of

the string ″{}″ in the specified -exec command string are replaced with the file
currently being processed from the result set.

Attribute flags

The part -exec command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-driver Name Specifies the driver for which the command is issued.
Specify only one of -driver, -version, or -workarea. This
attribute provides the context for selecting the part version
for the command.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-name Name . . . Specifies one or more part names to execute the operating
system command against. It allows you to specify wildcard
characters (as in bye%). See “Appendix. Querying the
TeamConnection database” on page 275 for more
information on wildcards. This attribute works in
conjunction with the -top attribute.

-numVersions {n|all} Specifies the number of part versions to be selected for
processing by an operating system command.

Part

Chapter 18. Part 155

|

|

|

|

|

|
|

|
|
|

|

Attribute Description
-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-top Name Specifies the leading portion of the path name that is a
subset of the current working directory on the client
machine.

(Environment variable: TC_TOP)

-version Name Specifies the version of the object. Specify only one of
-driver, -version, or -workarea. This attribute provides the
context for selecting the part version for the command.

-where Text Defines the selection criteria to query the specified table or
view using valid syntax. See “Appendix. Querying the
TeamConnection database” on page 275 for the syntax of
where clauses.

When you search for specific field values, you must type
the value of the field exactly as it exists in the database.
The database values are case sensitive. The following
query, for example, returns the part named mypart.c, but
not MYPART.C:

-where "baseName in ('mypart.c')"

To construct a case-insensitive query, you can include the
DB2 UCASE() function in your query. This function
performs an uppercase comparison. The following query,
for example, returns both mypart.c and MYPART.C:

-where "ucase(baseName) in ('MYPART.C')"

-workarea Name . . . The name of the work area for the part. Specify only one
of -driver, -version, or -workarea. This attribute provides
the context for selecting the part version for the command.

Examples

The following command searches for the string ″99-P183843″ in all versions of the
part with the path name foo.c in release 99-P32828v1.
teamc part -exec "/usr/bin/grep 99-P183843 {}" -release 99-P32828v1
-where nuPathName='foo.c' -numVersions all

The following command searches for the string ″fred″ in the most recent version of
all files with the file extension .c in the release NOTRACK. The command uses an
abbreviation of the -numVersions attribute.
teamc part -exec "\goodies\grep -i fred {}" -release NOTRACK
-where "pathname like '%.c'" -num 1

The following command counts the words in the current version of the file hello.c
in release NOTRACK.
teamc part -exec "\goodies\wc {}" -release NOTRACK -where "pathname='hello.c'"

Part

156 Commands Reference

part -export Name . . .

The part -export Name . . . command exports the part or parts specified by the
Name argument to the file name specified in the -file attribute. With this command
you need to specify the class in which the part is defined using the -type attribute.

This function is useful for exporting information from one family into another. You
can export the information from one family into a CDF file and then import the
CDF file into another family.

Note: You cannot use the import and export functions to migrate information from
CMVC to TeamConnection or from one release of TeamConnection to
another. Refer to the Administrator’s Guide for information on the
TeamConnection migration tool.

The part -export command has these associated attribute flags.

Attribute Description
-file filename Specifies the name of the file to which the part or parts are

to be exported. The information is exported to the file in
CDF format.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-type Name Specifies the name of the class of the part being exported.

-version Name Specifies the version of the object.

-viewType viewTypeName Defines the name of the view for the part being exported.
If you do not specify this attribute, it defaults to the part
type.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

part -extract Name . . .

Retrieves a copy of a specified part. The current version is extracted by default.

If a read-only copy of the part already exists on your workstation, it is renamed
and saved as a backup copy. TeamConnection adds an extra character ($ on Intel
platforms or _ on UNIX platforms) to the file name extension of the backup copy.
The file myfile.ext, for example, is renamed to myfile.$ext or myfile._ext. If your
file system supports only 8.3 file names (as on FAT file systems), the file name
extension is truncated to three characters (myfile.$ex or myfile._ex). If a backup
copy already exists, it is deleted.

The environment variables TC_BACKUP, TC_BACKUPCHAR and TC_MODPERM
control the backup and read-only options. If the environment variable
TC_BACKUP is set to either off or OFF this command will not create a backup file.
See “Environment variables” on page 6 for more information about the
TC_BACKUP, TC_BACKUPCHARS, and TC_MODPERM environment variables.

Part

Chapter 18. Part 157

The part -extract command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-crlf Provides transparent file conversion between UNIX- and
Intel-based operating systems. This attribute enables parts
shared between UNIX and Intel platforms to have the
proper format for the platform to which they are extracted.
When parts are extracted to an Intel platform, the -crlf
attribute will add carriage-returns, expand tabs, and add
end-of-file characters (if the parts do not already have EOF
characters). When parts are extracted to a UNIX platform,
the -crlf attribute will remove carriage-returns, replace
spaces with tabs, and remove end-of-file characters.

If you omit this attribute, no file format conversion is
performed.

-dmask Octal_number Specifies the read, write, and execute directory permissions
for extracted parts in octal notation.

The default is 750 (read, write and execute access for
directory owner, read and execute access for others in the
owner’s group, and no access for all other users).

While the OS/2 client accepts -dmask, it has no effect.

-driver Name Specifies the driver for which the command is issued.
Specify only one of -driver, -version, or -workarea. This
attribute provides the context for selecting the part version
for the command.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-fmask Octal_number Specifies the read, write, and execute file permissions for
extracted parts in octal notation. The default is the file’s
mode less the write permission for the part owner, others
in the owner’s group and all others.

-nokeys Indicates that you do not want to substitute assigned
values in place of keywords embedded in the extracted
parts.

-relative Name Places the specified part relative to the directory location
specified according to the complete path name of the part.
Directories are created if necessary when extracting or
checking out in order to copy the part by its full path
name. Specify either -relative or -top.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

Part

158 Commands Reference

Attribute Description

-stdout Redirects the specified part to standard output when
extracting it from the TeamConnection server.

-top Name Specifies the leading portion of the path name that is a
subset of the current working directory on the client
machine.

(Environment variable: TC_TOP)

-verbose TeamConnection displays a confirmation message after
you issue the command.

-version Name Specifies the version of the object. Specify only one of
-driver, -version, or -workarea. This attribute provides the
context for selecting the part version for the command.

-workarea Name . . . The name of the work area for the part. Specify only one
of -driver, -version, or -workarea. This attribute provides
the context for selecting the part version for the command.

Examples

Assume that your TC_RELEASE environment variable is set to the release
associated with a part you want to extract. The following command extracts the
latest copy of the part committed to the release. Part graphix\x.c in the release
specified by the TC_RELEASE environment variable is copied to the file View_x.c
in your current working directory. If the -stdout flag is not specified and your
TC_TOP environment variable is not set, the part is copied to your current
working directory using the base name.
teamc part -extract graphix\x.c -stdout > View_x.c

part -link Name . . .

Makes common parts in the specified release or work area.

The part -link command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-fromrelease Name Specifies the release from which you want to create a link
for a common or shared part; use it when you link
specified parts.

Part

Chapter 18. Part 159

Attribute Description
-fromworkarea Name Specifies the work area from which you want to create a

link for a common part; use it when you link specified
parts. Specify only one of -fromworkarea or -version.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-top Name Specifies the leading portion of the path name that is a
subset of the current working directory on the client
machine.

(Environment variable: TC_TOP)

-type Name The type of the parts. The default is TCPart.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-version Name Specifies the source version name for the link. Specify only
one of -fromworkarea or -version.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

The following command creates a common part between two releases. The
committed version of the part debugr\x.c in release 10debugr is linked to the
20debugr release. This creates a common part link between the releases 10debugr
and 20debugr for the committed version of the part in release 10debugr.
Alternatively, you can specify that you want to link from the work area, using the
-fromworkarea flag. Future changes to the part debugr\x.c must reference a work
area for each release to maintain part commonality.
teamc part -link debugr\x.c -fromrelease 10debugr -release 20debugr
-workarea 866

Assume that you are working in work area 400 and that you need the latest
version of a part that is in work area 428. The following command links the part in
work area 428 to your work area, so that the part is common across the two work
areas within the same release.
teamc part -link file1.c -from workarea 428 -workarea 400 -release R1

part -lock Name . . .

Locks a part in the TeamConnection server. This prevents other users from
checking out the part. Only the current version of a part can be locked.

When a part is locked successfully, the part mode in TeamConnection is read-only.

Part

160 Commands Reference

The part -lock command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-force Forces a break between common parts.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-top Name Specifies the leading portion of the path name that is a
subset of the current working directory on the client
machine.

(Environment variable: TC_TOP)

-type Name The type of the parts. The default is TCPart.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

part -mark Name . . .

Marks the specified parts as ready or not ready for translation into other
languages. New versions of a part have an initial translation state of notReady. The
most recently committed part version is marked by default as notReady.

The transition of a part to the ready state is not automatic, it must be done
manually. Use this command to mark the state of translatable parts in your native
language. No translation states are currently defined for parts in other languages
that are the result of translation.

The part -mark command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-driver Name Specifies the driver for which the command is issued.
Specify only one of -driver, -version, or -workarea. This
attribute provides the context for selecting the part version
for the command.

Part

Chapter 18. Part 161

Attribute Description

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-top Name Specifies the leading portion of the path name that is a
subset of the current working directory on the client
machine.

(Environment variable: TC_TOP)

-transState {notReady |
ready}

Specifies the desired translation state for the parts being
marked. The initial translation state for new part versions
is notReady.

-type Name The type of the parts. The default is TCPart.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-version Name Specifies the version of the object. Specify only one of
-driver, -version, or -workarea. This attribute provides the
context for selecting the part version for the command.

-workarea Name . . . The name of the work area for the part. Specify only one
of -driver, -version, or -workarea. This attribute provides
the context for selecting the part version for the command.

Examples

The following command marks the latest version of graphix\x.c in workarea 501
as ready for translation.
teamc part -mark graphix\x.c -transState ready -workarea 501 -release R1

part -modify Name . . .

Reassigns the part to another component or changes the file permission. When you
reassign the part to another component, the component you specify manages
access to the part. Different components can manage different versions of the same
part.

The part -modify Name . . . action has two variations: The -workarea attribute is
required when modifying the following attributes:
v -builder
v -fmode
v -parameters
v -parser
v -temporary or +temporary
v -type

The -workarea attribute is not required when modifying the following attributes:

Part

162 Commands Reference

v -component
v -translation

Because your family administrator can modify or delete certain configurable fields
and create new fields, the attributes for this action might be different from those in
your family or might not appear at all. Those listed here represent the shipped
default fields only. For a list of the field properties and flags in use in your family,
use the -configInfo command or see your family administrator. For more
information on configurable fields, refer to the Administrator’s Guide.

The part -modify command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-builder Name Specifies the name of the builder you want to use.

-component Name The component associated with the object. Different
components can manage different versions of the same
object.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-fmode Octal_number Specifies the file mode in the TeamConnection product
when creating or modifying If no mode is specified, the
current file mode is accepted.

-parameters Specifies the parameters you use to build a part. These
parameters replace the ones in the builder that is
associated with this part. If you want to include the
builder parameters, you can imbed the
$(BUILDERPARMS) variable in your part. You can imbed
this variable wherever you want the variables substituted
in your part.

In UNIX environments, you need to include an escape
character before the $: \$(variable_name). The following is
an example: \$(TC_INPUT).

-parser Name Specifies the name of the parser you want to use.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-temporary Specifies that this part is not temporary. This is the default.

+temporary Specifies that the part is temporary. A temporary part is
one whose bulk contents will be deleted after a successful
build.

Part

Chapter 18. Part 163

Attribute Description
-top Name Specifies the leading portion of the path name that is a

subset of the current working directory on the client
machine.

(Environment variable: TC_TOP)

-translation Specifies how the part is related to the translation process.
For example, a part might be translated into another
language, used while translating other parts, or completely
unrelated to translation. You must include this attribute
when creating a part if no default has been set for this
attribute. This attribute is configurable.

-type Name The type of the parts. The default is TCPart.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

Assume that your TC_RELEASE environment variable is set to the release
associated with the part src\bar\option\tic.c. The following command reassigns
that part to another component.
teamc part -modify src\bar\option\tic.c -component debugr

part -overrideRestrict Name . . .

Allows changes to a part that has been restricted. The override applies only to
changes done within the specified work area. If the optional -login parameter is
specified, then only that user will be able to modify the part. If the -login
parameter is not specified, then any user (with authority to the part and work
area) can modify the part within that work area.

This override will allow fix records that contain changes to the specified part to be
completed and will allow work areas containing changes to the part to be
integrated and committed as long as these actions are done within the specified
work area.

A second version of this command is available using the -cancel flag. This second
version cancels a part -overrideRestrict that was done for a part. If a -login
parameter was specified for the part -overrideRestrict, then the -login parameter
with the same Name value must be used here as well.

The part -overrideRestrict command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

Part

164 Commands Reference

Attribute Description

-cancel Cancels a part -overrideRestrict that was done for a part.
If a -login parameter was specified for the part
-overrideRestrict, then the -login parameter with the same
Name value must be used here as well.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-login Name TeamConnection user ID who is allowed to make changes
to the part within the specified work area.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-top Name Specifies the leading portion of the path name that is a
subset of the current working directory on the client
machine.

(Environment variable: TC_TOP)

-type Name The type of the parts. The default is TCPart.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

part -recreate Name . . .

Re-creates previously deleted parts.

The part -recreate command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-common Name . . . Specifies the releases in which common parts are to be
maintained or whether the specific part change is to apply
to all releases in which the part is common. All releases
must be specified unless the -force flag is specified as well.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-force Forces a break between common parts.

Part

Chapter 18. Part 165

Attribute Description
-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-top Name Specifies the leading portion of the path name that is a
subset of the current working directory on the client
machine.

(Environment variable: TC_TOP)

-type Name The type of the parts. The default is TCPart.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name The work area name.

(Environment variable: TC_WORKAREA)

part -refresh Name . . .

Use the part -refresh Name . . . action to refresh a part (the target part) with the
contents of the same part from another release or another version of the part (the
source part). The behavior of this command varies according to the relationship
between the taraget and source parts:
v If the source part is a successor of the target part, then the target part is updated

from the source part. The action performed is a part -link Name . . .and the two
parts become shared or common parts.

v If the source part is a predecessor of the target part, no change is made to the
target part.

v If the source and target parts are alternate versions, then TeamConnection
generates collision records.

The part -refresh command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-fromrelease Name Specifies the release from which you want to create a link
for a common or shared part; use it when you link
specified parts.

-fromworkarea Name Specifies the work area from which you want to create a
link for a common part; use it when you link specified
parts. Specify only one of -fromworkarea or -version.

Part

166 Commands Reference

Attribute Description
-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-top Name Specifies the leading portion of the path name that is a
subset of the current working directory on the client
machine.

(Environment variable: TC_TOP)

-type Name The type of the parts. The default is TCPart.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-version Name Specifies the source version name for the link. Specify only
one of -fromworkarea or -version.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

The following command refreshes a part called debugr\x.c in release 20debugr
with the same part in release 10debugr. This creates a common part link between
the releases 10debugr and 20debugr for the committed version of the part in
release 10debugr. Alternatively, you can specify that you want to refresh the part
from the work area, using the -fromworkarea flag.
teamc part -refresh debugr\x.c -fromrelease 10debugr -release 20debugr
-workarea 866

part -rename Name

Specifies a new path name for a part. To select the part to be renamed, replace
Name with the name of the part. Use the -path attribute to specify the new name.
You can modify both the path name and the base name using the -path attribute.

The part -rename command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-common Name . . . Specifies the releases in which common parts are to be
maintained or whether the specific part change is to apply
to all releases in which the part is common. All releases
must be specified unless the -force flag is specified as well.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

Part

Chapter 18. Part 167

Attribute Description
-force Forces a break between common parts.

-path Name The path name of the part. Part names, consisting of the
base name and the path name, must be unique within a
release.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-top Name Specifies the leading portion of the path name that is a
subset of the current working directory on the client
machine.

(Environment variable: TC_TOP)

-type Name The type of the parts. The default is TCPart.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

The following command renames an existing part in a release whose process
includes the tracking subprocess. The part debugr\src\xyz.c in release 20debugr
and work area 560 is renamed debugr\v2\xyz2.c.
teamc part -rename debugr\src\xyz.c -path debugr\v2\xyz2.c
-release 20debugr -workarea 560

part -resolve Name . . .

Displays the full path name in a specific release for specified part base names.
Only works on parts in an integrated work area or committed driver.

The part -resolve command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-quiet Suppresses explanatory remarks and new line characters in
the output.

Part

168 Commands Reference

Attribute Description
-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-top Name Specifies the leading portion of the path name that is a
subset of the current working directory on the client
machine.

(Environment variable: TC_TOP)

-type Name The type of the parts. The default is TCPart.

-verbose TeamConnection displays a confirmation message after
you issue the command.

part -restrict Name . . .

Prevents a user from making changes to the part within the specified release unless
the user has superuser authority OR the user has been granted an override to the
restriction.

Part -restrict will prevent completing a fix record that contains a change to a
restricted part. It will also prevent any work area that contains a change to the
specified part from being integrated or committed.

The only ways to circumvent this restriction are the following:
v If a part change occurs in a work area that has been granted an override to the

restriction (see part -overrideRestrict).
v If an action is done by a user with superuser authority.
v If part -restrict -cancel is done on the part.

The part -restrict command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-cancel Removes the restriction from the part.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-top Name Specifies the leading portion of the path name that is a
subset of the current working directory on the client
machine.

(Environment variable: TC_TOP)

Part

Chapter 18. Part 169

Attribute Description

-type Name The type of the parts. The default is TCPart.

-verbose TeamConnection displays a confirmation message after
you issue the command.

part -touch Name . . .

Marks the part out-of-date, to ensure it participates in the next build. This
command does not affect the part’s status with respect to the release, so the part
does not have to be integrated into the release again.

The part -touch command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-top Name Specifies the leading portion of the path name that is a
subset of the current working directory on the client
machine.

(Environment variable: TC_TOP)

-type Name The type of the parts. The default is TCPart.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

part -undo Name . . .

Undoes the most recent uncommitted action that changed specified parts. Reverts
part back to the last frozen version within a specified work area. If the tracking
subprocess is turned on, the work area must be in the fix state. If the latest version
of the part is frozen, the command fails and TeamConnectionreturns an error
message.

This action is not available for build outputs.

Part

170 Commands Reference

The part -undo command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-common Name . . . Specifies the releases in which common parts are to be
maintained or whether the specific part change is to apply
to all releases in which the part is common. All releases
must be specified unless the -force flag is specified as well.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-force Forces a break between common parts.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-top Name Specifies the leading portion of the path name that is a
subset of the current working directory on the client
machine.

(Environment variable: TC_TOP)

-type Name The type of the parts. The default is TCPart.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

The following command reverts to a previous version of a part in a work area. The
most recent change submitted for part debugr\x.c in the release indicated by the
TC_RELEASE environment variable is reversed or undone.
teamc part -undo debugr\x.c -workarea 501

part -unlock Name . . .

Unlocks a part that is checked out so that it is no longer reserved for editing
purposes. Or, unlocks a part that has been previously locked using -lock.

Part

Chapter 18. Part 171

The part -unlock command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-relative Name Places the specified part relative to the directory location
specified according to the complete path name of the part.
Directories are created if necessary when extracting or
checking out in order to copy the part by its full path
name. Specify either -relative or -top.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-top Name Specifies the leading portion of the path name that is a
subset of the current working directory on the client
machine.

(Environment variable: TC_TOP)

-type Name The type of the parts. The default is TCPart.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

The following command unlocks a part that was checked out in work area 501.
teamc part -unlock debugr\x.c -release 11debugr -workarea 501

part -view Name . . .

Shows all information for the specified parts.

The part -view command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

Part

172 Commands Reference

Attribute Description
-driver Name Specifies the driver for which the command is issued.

Specify only one of -driver, -version, or -workarea. This
attribute provides the context for selecting the part version
for the command.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-long Displays detailed information for a part, including the part
history, whether the file is checked out for editing, all
associated common parts, and any change information.
The part change information includes the existing active
changes for the part, the defect or feature, and the part
version associated with those changes. The part change
information also shows all versions of the part requested
in the command.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-top Name Specifies the leading portion of the path name that is a
subset of the current working directory on the client
machine.

(Environment variable: TC_TOP)

-type Name The type of the parts. The default is TCPart.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-version Name Specifies the version of the object. Specify only one of
-driver, -version, or -workarea. This attribute provides the
context for selecting the part version for the command.

-workarea Name . . . The name of the work area for the part. Specify only one
of -driver, -version, or -workarea. This attribute provides
the context for selecting the part version for the command.

Examples

The following command displays information about a specified part.
teamc part -view graphix\x.c -release 10graphix -workarea 501

The following command displays additional information about a specified part,
including the part history, whether the part is locked for editing, all common parts,
and change information.
teamc part -view graphix\x.c -release 10graphix -workarea 501 -long

part -viewmsg Name . . .

Shows the result of the latest build of the part.

Part

Chapter 18. Part 173

The part -viewmsg command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-driver Name Specifies the driver for which the command is issued.
Specify only one of -driver, -version, or -workarea. This
attribute provides the context for selecting the part version
for the command.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-top Name Specifies the leading portion of the path name that is a
subset of the current working directory on the client
machine.

(Environment variable: TC_TOP)

-type Name The type of the parts. The default is TCPart.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-version Name Specifies the version of the object. Specify only one of
-driver, -version, or -workarea. This attribute provides the
context for selecting the part version for the command.

-workarea Name . . . The name of the work area for the part. Specify only one
of -driver, -version, or -workarea. This attribute provides
the context for selecting the part version for the command.

Related information

See the following related commands:
Builder
Collision
Component
Driver
Parser
Release
Report
Workarea

For a list of supported keywords, refer to the TeamConnection User’s Guide.

For additional information on using theautomerge tool, refer to “Chapter 30.
AutoMerge” on page 269.

Part

174 Commands Reference

Chapter 19. Prereq

Command summary

Use the prereq command to create and delete prerequisite relationships between
two or more work areas that are in the fix or integrate state. A work area that you
identify as a prerequisite for another work area can be built and committed prior
to or at the same time as the work area at hand. Work areas defined implicitly as
prerequisites by the TeamConnection product must also be built and committed
prior to or at the same time as the work area at hand.

Identify prerequisite relationships between work areas to indicate that work being
done in one or more work areas is dependent on changes to parts associated with
changes in another work area. This action ensures that a driver that includes the
work area with the prerequisite cannot be committed unless its prerequisite work
areas are included in the driver.

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the prereq command are:

Prereq -create Name ... -workarea Name ...
-release Name -family Name [-become Name] [-verbose]

Prereq -delete Name ... -workarea Name ...
-release Name -family Name [-become Name] [-verbose]

Command actions

prereq -create Name . . .

Creates a prerequisite relationship between the specified work areas. The work
area that you specify as an argument to the -create action is the prerequisite. The
work area that you specify as an argument to the -workarea attribute is the one for
which you are creating the prerequisite.

The prereq -create command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

© Copyright IBM Corp. 1992, 1999 175

Attribute Description
-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The name of the work area for which you are creating or
deleting a prerequisite.

prereq -delete Name . . .

Deletes the specified work areas from an existing group of prerequisite work areas.
The work area that you specify as an argument to the -delete action is the
prerequisite. The work area that you specify as an argument to the -workarea
attribute is the one for which you are deleting the prerequisite.

The prereq -delete command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The name of the work area for which you are creating or
deleting a prerequisite.

Related information

See the following related commands:
Coreq
Report
Workarea

For more information about corequisite and prerequisite relationships, refer to the
TeamConnection User’s Guide.

Prereq

176 Commands Reference

Chapter 20. Release

Command summary

Use the release command to:
v Create, modify, delete, and re-create releases
v Extract the set of parts associated with a release
v Link parts within releases with those in other releases
v Merge the content of two releases into a specified work area.
v View information about existing releases

A release is a set of parts that must be built, tested, and distributed as a whole. A
release must be created in relation to a component that manages access and
notification for the release. If you create a release, you become its owner, and you
have implicit authority to define an approval list and an environment list for that
release. Release names must be unique within a family.

When you create a release, you must choose a process using the -process flag. A
process contains different combinations of TeamConnection subprocesses.
TeamConnection subprocesses determine the states of the work areas within a
release. For release processes, you can specify the track, approval, fix, driver, and
test subprocesses. Processes are configured by your family administrator, who can
modify current processes and define new ones. For a list of the valid release
processes and the TeamConnection subprocesses they include, use the report -view
cfgrelproc command.

Also, when you create a release, you must choose between serial and concurrent
development:
v In serial development mode, only one user at a time can check out or lock a

part.
v In concurrent development mode more than one user at a time can check out or

lock a part. For more information about concurrent development, refer to page
39.

The default development mode is serial. Choose concurrent development by using
the -concurrent flag on the release -create command. To change the development
mode of a release, use the release -modify command. You can change the
development mode from serial to concurrent at any time. You can change the
development mode from concurrent to serial only if all work areas and drivers in
the release are committed.

You can change the process for an existing release by using the -modify flag. For
more information on how TeamConnection subprocesses relate to the states of
TeamConnection objects, refer to the TeamConnection User’s Guide.

To modify an environment or a tester for a release, use the environment command.
See “Chapter 12. Environment” on page 93 for more information.

To modify an approver for a release, use the approver command to add or delete
an approver. See “Chapter 4. Approver” on page 27 for more information.

© Copyright IBM Corp. 1992, 1999 177

You cannot delete releases that have parts, outstanding work areas, uncommitted
drivers, or active sizing records associated with them. You cannot reuse the name
of a deleted release, but you can re-create a deleted release and modify the name
of a re-created release.

If autopruning is turned on for a release, you can prune committed branches (work
areas or drivers) from that release. The TeamConnection server automatically
prunes branches when you specify the +autopruning flag either on the release
-create command or the release -modify command. You can also directly prune a
committed branch by typing the release -prune command.

Note: A pruned branch cannot be recovered.

You can limit the number of committed output versions that you want to keep
using the -outputVersions attribute on the release -create or release -modify
command. (The default for release -create is to keep all output versions.) When
you commit your work area, all output versions that exceed the specified limit will
change to type empty. For an example, refer to “Examples” on page 188.

To keep all output versions on the release, specify the +outputVersions attribute
on the release -modify command.

When you link parts in one release to those in another, you can link the current or
the committed version of each active part. The committed version is the default
setting. If you want to specify the current version of each active part, you must
also supply the name of the associated work area using the -fromworkarea
parameter.

When you extract parts associated with a release, the current version of the
associated parts is extracted by default. Alternatively, you can extract parts
changed after a certain date. For a release whose process includes the track and
driver subprocesses, you can extract the last committed version of the parts.

Using the -merge action, you can merge the content of the committed versions of
two releases and place the resulting parts in a specified work area.

When creating or modifying a release, you can specify the type of coupling the
release has to other releases. This coupling affects part commonality between
releases.

default
TeamConnection part commonality functions normally. (This is the default
value.)

loose This coupling, will allow the release to exist without requiring a -force or
-common on part actions. Essentially, the part is logically decoupled from
other releases. The user can decide to keep this release common by using
-common on part actions.
v Parts identified by the -common flag will remain common and shared to

other releases; parts not identified will only be shared. Commonality is
broken with other releases without the mandatory use of the -force flag.
teamc part -checkin foo.c -release thisisloose -common bar -workarea 123

If release thisisloose was created or modified with coupling as loose,
any part not specified with the -common flag will be shared.
Commonality is broken with other releases common to thisisloose.

Release

178 Commands Reference

v Part commonality to be ″silently″ broken by actions from other common
releases.
teamc part -checkin foo.c -release bar -common rel1 -workarea 123

Since release thisisloose was created or modified with coupling as loose
and is not specified, the link is broken silently (no error is generated due
to the lack of a -force option).

However, TeamConnection part commonality function is maintained for
different workareas in the same release. The -force option must be used to
break commonality of parts in other workareas of the same release.

looseRestr
Specifies that this release cannot be kept common with any other release
by the -common mechanism. The -common flag can only be used for
workareas in this release.

Note: Parts in a release with coupling identified as looseRestr can be
relinked back to some other release using part -link.

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the release command are:

teamc release -configInfo -family Name [-become Name] [-raw]

teamc release -create Name ... -component Name -process Name
-family Name
[-environment Name -tester Name]* [-approver Name]*
[-description Text] [-owner Name] [-become Name]
[-concurrent] [-verbose] [-coupling Name]
[+autopruning] [-outputVersions Number]

teamc release -delete Name ... -family Name [-become Name] [-verbose]

teamc release -export Name -family Name -file Name
[-become Name] [-verbose]

teamc release -extract Name ... -root Name -family Name
[-nokeys] [-fmask Octal_number] [-version Name]
[-dmask Octal_number] [-crlf]
[-component Name ...] [-become Name] [-verbose]
[-exclude filename] [-include filename] [-report]
[-scan] [-erase]

teamc release -link Name ... -fromrelease Name -family Name
[-workarea Name] [-fromworkarea Name | -version Name]
[-become Name] [-verbose]

teamc release -modify Name ... -family Name
{ -component Name -process Name [-environment Name -tester Name]*

Release

Chapter 20. Release 179

-name Name [-approver Name]* -description Text -owner Name
[+autopruning | -autopruning] [-concurrent | -serial]
[-outputVersions Number | +outputVersions]}
[-coupling Name]
[-become Name] [-verbose]

teamc release -prune Name -version Name -family Name
[-become Name] [-verbose]

teamc release -recreate Name ... -family Name
[-environment Name -tester Name]* [-approver Name]*
[-become Name] [-verbose]

teamc release -view Name ... -family Name [-processInfo]
[-become Name] [-verbose]

* Required only when their related subprocess has been specified for
the release

Command actions

release -configInfo

The release -configInfo action shows configurable field properties for releases in
the specified family. The information is returned in a fixed ASCII table format.

The release -configInfo command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-raw Displays configurable field information in raw format.

Examples

The following command displays configurable field information for the family
testfam.
teamc release -configInfo -family testfam

The following is an example of the report generated by this command:
Create/ Own/Orig Accept/

Attribute Name DB Column Name Required Type Modify Required Driver
--------------- --------------- -------- --------------- -------- -------- ---------------
testField testField yes testField yes no

Release

180 Commands Reference

release -create Name . . .

The release -create Name . . . action creates releases with the specified names.
Certain attributes of this action are used only when certain release subprocesses are
in effect:
v -approver is used by the approval subprocess.
v -environment is used by the test subprocess.
v -tester is used by the test subprocess.

Because your family administrator can modify or delete certain configurable fields
and create new fields, the attributes for this action might be different from those in
your family or might not appear at all. Those listed here represent the shipped
default fields only. For a list of the field properties and flags in use in your family,
use the -configInfo command or see your family administrator. For more
information on configurable fields, refer to the Administrator’s Guide.

The release -create command has these associated attribute flags.

Attribute Description
-approver Name The user ID of the approver for the release. This attribute

is used only when the approval subprocess is in effect.

+autopruning Turns autopruning on for the release. Specify only one of
+autopruning or -autopruning.

-become Name The user ID you want to issue TeamConnection commands
from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-component Name The component associated with the object. Different
components can manage different versions of the same
object.

(Environment variable: TC_COMPONENT.)

-concurrent Turns on concurrent development mode for the release.

-coupling [default | loose
| looseRestr]

Specifies the type of coupling for a release to other
releases.

v default - TeamConnection part commonality functions
normally. (This is the default value.)

v loose - Allows the release to exist without requiring a
-force or -common on Part actions.

v looseRestr - Specifies that this release cannot be kept
common with any other release by the -common
mechanism.

-description Text Specifies a description of the object.

-environment environment Specifies the environment in which the testing is done.
Note: The tester/environment name combination becomes
an entry on the environment list for the release.

Release

Chapter 20. Release 181

Attribute Description
-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-outputVersions Saves a specified number of committed outputs. Specify
only one of +outputVersions or -outputVersions.

-owner Name Specifies the user ID of the owner of the object.

-process Name Specifies a process when creating or modifying a release.
Processes for your environment are configured by your
family administrator. For a list of the valid release
processes and the TeamConnection subprocesses they
include, use the report -view cfgrelproc command.

-tester Name Specifies the user responsible for testing in the given
environment if the test subprocess is included in the
release process. The tester/environment name combination
becomes an entry on the environment list for the release.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command creates a release named 10debugr which is associated
with component comp1 and the process preship (which specifies the
TeamConnection track, approval, fix, driver, and test subprocesses). Because the
preship process includes the TeamConnection test subprocess, an environment,
PCVersion1, and an initial tester, jon, are specified. And because the preship
process includes the TeamConnection approval subprocess, an approver, michael,
is specified. The release will use serial development.
teamc release -create 10debugr -component comp1 -process preship
-environment PCVersion1 -tester jon -approver michael

The following command creates a concurrent release named 20debugr which is
associated with component comp1 and the process no_track.
teamc release -create 20debugr -process no_track -concurrent
-component comp1

release -delete Name . . .

Deletes the specified releases. Releases cannot have parts, outstanding work areas,
uncommitted drivers, or active sizing records associated with them.

The release -delete command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

Release

182 Commands Reference

Attribute Description
-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-verbose TeamConnection displays a confirmation message after
you issue the command.

release -export Name . . .

The release -export Name . . . command exports the parts in the release (or
releases) specified by the Name argument to the file name specified in the -file
attribute.

This function is useful for exporting information from one family into another. You
can export the information from one family into a CDF file and then import the
CDF file into another family.

Note: You cannot use the import and export functions to migrate information from
CMVC to TeamConnection or from one release of TeamConnection to
another. Refer to the Administrator’s Guide for information on the
TeamConnection migration tool.

The release -export command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-file filename Specifies the name of the file to which the part or parts are
to be exported. The information is exported to the file in
CDF format.

-verbose TeamConnection displays a confirmation message after
you issue the command.

release -extract Name . . .

Extracts the part tree for the specified releases. By default, the current versions of
all parts in the releases are extracted.

You can issue this command with the -component attribute to limit the release
extract to parts in one or more components.

TeamConnection has the capability to perfrom a ″smart″ extract.″ Smart extract
extracts from the database only the parts whose date/time stamp differ from the
corresponding files in the target path of the file system. This function improves

Release

Chapter 20. Release 183

|
|
|

performance by extracting only parts that do not already exist on the taret file
system or are outdated on the target file system.

The release -extract command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-component Name The components whose parts you want to extract. This
attribute restricts the extract action to the components you
include with the attribute.

-crlf Provides transparent file conversion between UNIX- and
Intel-based operating systems. This attribute enables parts
shared between UNIX and Intel platforms to have the
proper format for the platform to which they are extracted.
When parts are extracted to an Intel platform, the -crlf
attribute will add carriage-returns, expand tabs, and add
end-of-file characters (if the parts do not already have EOF
characters). When parts are extracted to a UNIX platform,
the -crlf attribute will remove carriage-returns, replace
spaces with tabs, and remove end-of-file characters.

If you omit this attribute, no file format conversion is
performed.

-dmask Octal_number Specifies the read, write, and execute directory permissions
for extracted parts in octal notation.

The default is 750 (read, write and execute access for
directory owner, read and execute access for others in the
owner’s group, and no access for all other users).

While the OS/2 client accepts -dmask, it has no effect.

-erase Erases stale or extra files from the target file system. This
attribute is used for smart extract.

-exclude Name Specifies the name of a file containing a list of parts to
exclude from the extract. This attribute is used for smart
extract.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-fmask Octal_number Specifies the read, write, and execute file permissions for
extracted parts in octal notation. The default is the file’s
mode less the write permission for the part owner, others
in the owner’s group and all others.

-include Paths Specifies the name of a file containing a list of parts to
include in the extract. This attribute is used for smart
extract.

Release

184 Commands Reference

|
|

Attribute Description
-lock Locks parts that are extracted. This attribute is used for

smart extract.

Name . . . Specify a list of parts to extract in addition to the parts in
the include list. This attribute is used for smart extract.
*-- -->

-nokeys Indicates that you do not want to substitute assigned
values in place of keywords embedded in the extracted
parts.

-report Gives a preview of the parts that will be extracted, but
does not actually extract the parts. This attribute is used
for smart extract.

-root Name Specifies a directory on the client where the extracted part
tree is to be placed.
Note: You can mount a directory from another machine to
the client machine, so that the client machine will treat that
directory as a local directory.

-scan Scans the target file system and checks the date/time
stamps of parts in the the target directory. Only outdated
parts are extracted. This attribute is used for smart extract.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-version Name Specifies the version of the object.

Examples

You own the 21graphix release. The following command extracts all of the parts
associated with that release and writes them to the \tmp\test\graphix directory. A
part tree is created relative to the location \tmp\test\graphix. This part tree
represents all parts associated with the 21graphix release that have changed.
teamc release -extract 21graphix -root \tmp\test\graphix

Assume that the directory \tmp\9604 has been exported on a host with write
permission given to the TeamConnection client and that the directory is mounted
on the client using NFS, Netware, IBM LAN Server, or another LAN product. The
following command extracts all of the parts associated with release 9604 and
components cmdref and using and writes them to the \tmp\9604 directory. A part
tree is created relative to the location \tmp\9604. This part tree represents all parts
associated with the 9604 release and the cmdref and using components that have
changed.
teamc release -extract 9604 -component cmdref using -root \tmp\9604

The following command generates a report showing all the stale parts from release
Bar in component C:
teamc release -extract Bar -family test -scan -component C -report

Release

Chapter 20. Release 185

release -link Name . . .

Links the active parts in a specified release to those in another specified release.
The default version for the link is the committed version.

The release -link command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-fromrelease Name Specifies the release from which you want to create a link
for a common or shared part; use it when you link
specified parts.

-fromworkarea Name Specifies the work area from which you want to create a
link for a common part; use it when you link specified
parts. Specify only one of -fromworkarea or -version.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-version Name Specifies the source version name for the link. Specify only
one of -fromworkarea or -version.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

The following command links the committed version of release10debugr to release
20debugr.
teamc release -link 20debugr -fromrelease 10debugr -workarea 12

release -modify Name . . .

Modifies the following properties of the specified releases. One or more of the
following attributes is required.

-approver
-autopruning or +autopruning
-component
-concurrent or -serial
-coupling
-description
-environment
-outputVersions or +outputVersions
-owner
-process

Release

186 Commands Reference

-tester

Because your family administrator can modify or delete certain configurable fields
and create new fields, the attributes for this action might be different from those in
your family or might not appear at all. Those listed here represent the shipped
default fields only. For a list of the field properties and flags in use in your family,
use the -configInfo command or see your family administrator. For more
information on configurable fields, refer to the Administrator’s Guide.

The release -modify command has these associated attribute flags.

Attribute Description
-approver Name The user ID of the approver for the release. This attribute

is used only when the approval subprocess is in effect.

+autopruning Turns autopruning on for the release. Specify only one of
+autopruning or -autopruning.

-autopruning Turns autopruning off for the release. Specify only one of
+autopruning or -autopruning.

-become Name The user ID you want to issue TeamConnection commands
from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-component Name The component associated with the object. Different
components can manage different versions of the same
object.

-concurrent Turns on concurrent development mode for the release.

-coupling [default | loose
| looseRestr]

Specifies the type of coupling for a release to other
releases.

v default - TeamConnection part commonality functions
normally. (This is the default value.)

v loose - Allows the release to exist without requiring a
-force or -common on Part actions.

v looseRestr - Specifies that this release cannot be kept
common with any other release by the -common
mechanism.

-description Text Specifies a description of the object.

-environment environment Specifies the environment in which the testing is done.
Note: The tester/environment name combination becomes
an entry on the environment list for the release.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-name Name Specifies a name for the object.

+outputVersions Saves all committed outputs. Specify only one of
+outputVersions or -outputVersions.

Release

Chapter 20. Release 187

Attribute Description

-outputVersions Saves a specified number of committed outputs. Specify
only one of +outputVersions or -outputVersions.

-owner Name Specifies the user ID of the owner of the object.

-process Name Specifies a process when creating or modifying a release.
Processes for your environment are configured by your
family administrator. For a list of the valid release
processes and the TeamConnection subprocesses they
include, use the report -view cfgrelproc command.

-serial Changes the development mode of a concurrent release to
serial. You can change the development mode from
concurrent to serial only if all workareas and drivers are
committed.

-tester Name Specifies the user responsible for testing in the given
environment if the test subprocess is included in the
release process. The tester/environment name combination
becomes an entry on the environment list for the release.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command turns on autopruning and limits the number of
committed output versions to 10 for release 10debugr.
teamc release -modify 10debugr +autopruning -outputVersions 10

You own release 10debugr. The following command makes pam the new owner.
teamc release -modify 10debugr -owner pam

You own release 10debugr. The following command changes the process associated
with the release to prototype.
teamc release -modify 10debugr -process prototype

release -prune Name

Prunes the specified branch (work area or driver) for the release.

The release -prune command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

Release

188 Commands Reference

Attribute Description
-verbose TeamConnection displays a confirmation message after

you issue the command.

-version Name Specifies the name of the first version of the branch being
pruned. Also the source version name for the release link.

release -recreate Name . . .

Re-creates previously deleted releases. Certain attributes of this action are used
only when certain release subprocesses are in effect:
v -approver is used by the approval subprocess.
v -environment is used by the test subprocess.
v -tester is used by the test subprocess.

The release -recreate command has these associated attribute flags.

Attribute Description
-approver Name The user ID of the approver for the release. This attribute

is used only when the approval subprocess is in effect.

-become Name The user ID you want to issue TeamConnection commands
from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-environment environment Specifies the environment in which the testing is done.
Note: The tester/environment name combination becomes
an entry on the environment list for the release.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-tester Name Specifies the user responsible for testing in the given
environment if the test subprocess is included in the
release process. The tester/environment name combination
becomes an entry on the environment list for the release.

-verbose TeamConnection displays a confirmation message after
you issue the command.

release -view Name . . .

Shows all current information for the specified releases.

The release -view command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

Release

Chapter 20. Release 189

Attribute Description

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-processInfo Displays the current process setting and associated
TeamConnection subprocesses for the specified
components when used with the -view action flag.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Related information

See the following related commands:
Approver
Builder
Collision
Component
Environment
Parser
Part
Workarea

For a list of supported keywords, refer to the TeamConnection User’s Guide.

For a list of the valid release processes and the TeamConnection subprocesses they
include, use the report -view cfgrelproc command.

For additional information on using theautomerge tool, refer to “Chapter 30.
AutoMerge” on page 269.

Release

190 Commands Reference

Chapter 21. Report

Command summary

Use the report command to query the tables and views associated with the
TeamConnection product and generate output showing the results of that query.
TeamConnection uses the information provided in a report command to build a
SELECT statement. The -view flag specifies the database table or view to query,
and the -where flag specifies the selection criteria for the query.

You can issue queries to generate reports of data from tables and views using the
-view action flag. If you do not specify selection criteria, such as the fields and the
search conditions you want to use, the report query selects all entries for the table
or view indicated that the user has authority to access. This command does not
show any objects in components that the user is not authorized to access.

Use the -verbose flag to have TeamConnection display message 0010-213 when all
or some objects requested are not included in a report.

The -help flag displays a list of valid table and view names that you can use as
arguments for the -view flag. All view and table names as well as their
corresponding fields are listed in “Appendix. Querying the TeamConnection
database” on page 275.

Views are also available to report all inherited notification list members for a
specified component. These views are designated by the suffix UpView. UpViews
are valid for defect, feature, access, and notify. You must specify a component in
the selection criteria of the report command to query this view.

Views are available to report all objects of a certain type for all descendants of a
specified component; these views are designated by the suffix DownView.
DownViews are valid for defect, feature, access, and notify. You must specify a
component in the selection criteria of the report command to query this view.

The Text argument of the -where attribute flag defines the search criteria and the
conditions of the data you want to select, and it must follow the TeamConnection
database syntax rules, which can include the like operator, subselects and
functions. Refer to the following sections in “Appendix. Querying the
TeamConnection database” on page 275 for more information:
v “Constructing queries” on page 275 for an explanation of query syntax for the

various TeamConnection interfaces.
v “Rules for defining queries” on page 276 for rules regarding case sensitivity, date

formats, abbreviations, and operators such as =, in, like (including wildcard
characters).

v “Views and report output” on page 277 for a list of TeamConnection tables,
views, column names, and report output.

By default, report results are displayed in 132-column table format, but you can
request the output to be displayed in 80-column stanza format or in long format,
which is a combination of stanza and table formats. You can also request output in
raw format if you want the results to be used in another program or utility.

© Copyright IBM Corp. 1992, 1999 191

|
|
|
|
|

|
|

|
|
|

|
|

|

You can tailor a report to fields you specify by using the -general flag. You are not
restricted to any predefined sets of information.

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the report command are:

teamc report -help -family Name [-become Name] [-verbose]

teamc report -testClient -family Name [-become Name] [-verbose]

teamc report -testServer -family Name [-become Name] [-verbose]

teamc report -userExitInfo -family Name [-long] [-become Name]

teamc report -view name -family Name [-where Text] [-become Name]
[-stanza | -raw | -table* | -long] [-verbose]

teamc report -view partView -family Name [-where Text] [-become Name]
{-workarea Name | -version Name}
-release Name
[-stanza | -raw | -table* | -long] [-verbose]

teamc report -general tabspec -family Name [-become Name]
[-select selspec] [-where Text] [-colspec Text ***]

A select statement of the following form will be executed:
select selspec from tabspec where Text

* Default
** Default parenttype if not specified is file.
*** A series of minimum column widths separated by

blanks and/or one comma. The last width is propogated
for any additional columns. The output is presented in
a tabular format. If omitted, a raw format is used.

Command actions

report -general Tclause

Displays a ″roll your own″ type of report. You can tailor your report to extract
information not readily available using the standard views and reports. Use this
command to specify the fields you wish to view.

This report is in raw format with each field separated by the ″|″ character.

Some TeamConnection tables, such as ConfigPartView, can be queried only by this
command.

Report

192 Commands Reference

The report -general command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-colspec Number(s) Defines a tabular format for the report. The argument,
Number(s), is a series of numbers separated by commas.
Each number represents the minimum width of that
column. A header line with the names of the columns, up
to the specified width, is displayed. If the data in a column
exceeds the specified width, the rest of the columns is
shifted left. No data is truncated.

If more colspec numbers are given than columns to be
displayed, the excess colspec numbers are ignored. If less
colspec numbers are given than columns to be displayed,
the last number is propagated for the additional columns.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-q Level Sets the optimization level for the query. The default
optimization level is 5. Setting the optimization level to a
lower value such as 3, 1 or 0 improves optimization.

-select Sclause Specifies the select clause parameters for the report. If
omitted, * (all) is used.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-where Text Defines the selection criteria to query the specified table or
view using valid syntax. See “Appendix. Querying the
TeamConnection database” on page 275 for the syntax of
where clauses.

When you search for specific field values, you must type
the value of the field exactly as it exists in the database.
The database values are case sensitive. The following
query, for example, returns the part named mypart.c, but
not MYPART.C:

-where "baseName in ('mypart.c')"

To construct a case-insensitive query, you can include the
DB2 UCASE() function in your query. This function
performs an uppercase comparison. The following query,
for example, returns both mypart.c and MYPART.C:

-where "ucase(baseName) in ('MYPART.C')"

Examples
v The following command displays all views and tables available.

teamc report -general sysibm.systables -select name

v The following command shows all views available.

Report

Chapter 21. Report 193

teamc report -general sysibm.sysviews -select name

v The following command displays the columns of a table or view (<view_name>)
with a column width of 19.
teamc report -general <view_name> -colspec 19 -where "0=1"

v The general report can extract information not readily available using the
standard views and reports. This example extracts information about what
defects were opened by someone who is (currently) a superuser.
teamc report -general "Defects D, Users U" -select "D.name, U.login"
-where "D.originId=U.id and U.superuser='yes'" -colspec "6, 10"

Note: Quotes are required around clauses which contain blanks (spaces).

report -help

Displays a list of the valid view and table names you can use as arguments for the
-view flag.

The report -help command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-q Level Sets the optimization level for the query. The default
optimization level is 5. Setting the optimization level to a
lower value such as 3, 1 or 0 improves optimization.

-verbose TeamConnection displays a confirmation message after
you issue the command.

report -testClient

Tests the availability of the TeamConnection message catalog on the client’s host,
and returns a message informing the user of its availability.

The report -testClient command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

Report

194 Commands Reference

Attribute Description
-q Level Sets the optimization level for the query. The default

optimization level is 5. Setting the optimization level to a
lower value such as 3, 1 or 0 improves optimization.

-verbose TeamConnection displays a confirmation message after
you issue the command.

report -testServer

Tests the availability of the TeamConnection message catalog on the
TeamConnection server, and returns a message informing the user of its
availability.

The report returned provides the names and values of certain enviroment variables
that are set on the TeamConnection server. The report is a file that can be updated
by the administrator and used by the TeamConnection server without restarting
the server.

If the system administrator has defined a list of environment parameters in the
$HOME/config/env_report_list file, these environment parameter(s) and their
value will be appended to the Report -testServer output with each parameter listed
on a seperate line and the parameter name and value separated by a ″|″ character.
This is intended primarily to provide server environment information for the use
of the GUI. The following is an example of this report.

Connect to Family Name: ptest
Server TCP/IP Name: atropos.austin.ibm.com
Server IP Address: 9.3.84.110
Server TCP/IP Port Number: 8795

Server Specific Information ----------------------------------
Product Version: 3.0.0
Operating System: AIX
Message catalog language: English
Server Mode: non-maintenance
Authentication Level: HOST_ONLY
TC_RELEASE|v300
TC_FAMILY|ptest@atropos.austin.ibm.com@8795

The report -testServer command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-verbose TeamConnection displays a confirmation message after
you issue the command.

Report

Chapter 21. Report 195

report -userExitInfo

The report -userExitInfo command displays user exit parameters for all
TeamConnection commands that support user exits. The report produced by this
command includes the following information:
v The parameters that can be passed to a user exit program at each user exit ID:

Exit ID 0 Before checking the command request
Exit ID 1 Before processing the command
Exit ID 2 After the action completes
Exit ID 3 If the action or the user exit program fails

v Any configurable fields that can be passed to the user exit program.

The report -userExitInfo command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-long Displays detailed information for the specified objects.

-q Level Sets the optimization level for the query. The default
optimization level is 5. Setting the optimization level to a
lower value such as 3, 1 or 0 improves optimization.

Examples
v The following command displays user exit information in the default format:

teamc report -userExitInfo

The following is an excerpt of the report produced by this command:
User Exit Information

Action Name: AccessCreate
User Exits 0 and 3:
Parameter List: TeamcUserID, component, authority, effectiveUserID,

TeamcUserID, verboseFlag
User Exit 1:
Parameter List: TeamcUserID, component, authority, effectiveUserID,

verboseFlag
User Exit 2:
Parameter List: TeamcUserID, component, authority, effectiveUserID,

verboseFlag
No configurable fields.

Action Name: AccessDelete
User Exits 0 and 3:
Parameter List: TeamcUserID, component, authority, effectiveUserID,

TeamcUserID, verboseFlag
User Exit 1:
Parameter List: TeamcUserID, component, authority, effectiveUserID,

verboseFlag

Report

196 Commands Reference

User Exit 2:
Parameter List: TeamcUserID, component, authority, effectiveUserID,

verboseFlag
No configurable fields.

v Issuing the report -userExitInfo command with the -long attribute displays
information about your user exit programs as well as the user exit parameters.
User exit information is shown at the end of the report. The following is an
example of the report -userExitInfo command with the -long attribute:
teamc report -userExitInfo -long

The following is an example of the information added to the report by the -long
attribute:
Configured User Exits:
Action Name: DefectModify
User Exit 0; Program: viewexit.cmd "mod defect 0"
Parameter List: remarks
Configurable Fields: phaseFound

User Exit 2; Program: viewexit.cmd "DefMod2"
No parameter list fields.
No configurable fields.

Action Name: PartAdd
User Exit 0; Program: viewexit.cmd "PartAdd 0"
Parameter List: release
No configurable fields.

User Exit 1; Program: viewexit.exe "PartAdd1"
No parameter list fields.
No configurable fields.

report -view Name

Specifies the database table or view you want to query. You can use a unique
prefix abbreviation of the table and view names. You can view the following
names:

AccessDownView DefectView (long) PartFullView
AccessView DriverMemberView PartsOutView
ApprovalView DriverView (long) PartView
ApproverView EnvView PrereqView
Authority FeatureDownView (long) ReleaseView
BuilderView FeatureView (long) ShadowTypes
Cfgcomproc FixView ShadowView
Cfgrelproc HostView ShadowPartView
ChangeView Interest SizeView
CollisionView NoteView TestView
CompView (long) NotifyDownView Users (long)
Config NotifyUpView VerifyView
CoreqView NotifyView VersionView (long)
DefectDownView (long) ParserView WorkAreaView (long)

The report -view command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

Report

Chapter 21. Report 197

Attribute Description
-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-long Produces report output in stanza format, with additional
important information shown in a table format:
v Each database record is a stanza.
v Each stanza line consists of a field and its corresponding

values.

Specify only one of -long, -raw, -stanza, or -table.

-q Level Sets the optimization level for the query. The default
optimization level is 5. Setting the optimization level to a
lower value such as 3, 1 or 0 improves optimization.

-raw Displays reports in raw format. Specify only one of -long,
-raw, -stanza, or -table.

See “Appendix. Querying the TeamConnection database”
on page 275 Refer to the appendix in the Commands

Reference for the format of raw output for each report view.

-stanza Produces report output in stanza format:

v Each database record is a stanza.
v Each stanza line consists of a field and its corresponding

values.

Specify only one of -long, -raw, -stanza, or -table.

-table Produces report output in the following table format:
v Each field is displayed as a column heading.
v Field values appear under respective column headings.
v Each row corresponds to one database record.

Specify only one of -long, -raw, -stanza, or -table. The table
view is the default format of report output.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-where Text Defines the selection criteria to query the specified table or
view using valid syntax. See “Appendix. Querying the
TeamConnection database” on page 275 for the syntax of
where clauses.

When you search for specific field values, you must type
the value of the field exactly as it exists in the database.
The database values are case sensitive. The following
query, for example, returns the part named mypart.c, but
not MYPART.C:

-where "baseName in ('mypart.c')"

To construct a case-insensitive query, you can include the
DB2 UCASE() function in your query. This function
performs an uppercase comparison. The following query,
for example, returns both mypart.c and MYPART.C:

-where "ucase(baseName) in ('MYPART.C')"

Report

198 Commands Reference

Attribute Description

Examples

The following command displays all users who have developer authority for the
graphix component.
teamc report -view accessView -where "compname = 'graphix' and
authorityName='developer'"

The preceding command could be abbreviated as follows. This command shows
access explicitly defined for the graphix component. Additional access can be
inherited at the component driver.
teamc report -vi accessv -wh "compname = 'graphix'
and authorityName='developer'"

The following command displays all the approval records for the 20graphix release
that were updated on or after December 1, 1995. Because date fields include the
date of the action as well as the time of the action, the approval records selected
using the above example are those that were updated after 12:00 p.m. on
November 30, 1995. The date field must be enclosed in single quotation marks
because it is a character field.
teamc report -view approvalview -where "releasename='20graphix' and
lastupdate > '1995/12/01'"

The percent sign (%) is a wildcard character used with the like operator to match
zero or more characters. For a more granular search, use the underscore (_)
wildcard character to match a single character. If the string you are searching for
contains an underscore or percent character, as in the file name prt_new.txt, for
example, you can use the escape or translate function to indicate that the
underscore or percent character is to be taken literally.
v Escape - The following example identifies ’\’ as the escape character and selects

all part names starting with prt_:
report -view PartView -release tcid20 -where "baseName like 'prt_%' escape '\'"

v Translate - First you need to find a string that does not appear in the set of
names that you try to find. Then use the translate function to identify that string
as representing the underscore or percent character. The following example
identifies ’#’ as representing the underscore character and selects all part names
starting with prt_:
report -view PartView -release tcid20 -where "translate(baseName,'#','_') like 'prt#%'"

The following command displays all authority groups that include the
DriverCommit action.
teamc report -view authority -where "action = 'DriverCommit'"

The following command displays all actions that are included in the definition of
the general authority group.
teamc report -view authority -where "name = 'general'"

The following command displays all drivers for the 20debugr release that have
been updated on or after April 29, 1995. Because date fields include date and time,
the drivers selected using the above example are those that were updated after
12:00 p.m. on April 28, 1995. The date field must be enclosed in single quotation
marks because it is a character field.

Report

Chapter 21. Report 199

teamc report -view driverView -where "releaseName='20debugr' and
lastUpdate > '1995/04/29'"

The following command displays, in raw format, all drivers that were committed
earlier than March 3, 1995. The drivers committed on or before 12:00 p.m. on
March 3, 1995, are selected. The date field must be enclosed in single quotation
marks because it is a character field.
teamc report -view driverView -where "commitDate < '1995/03/03'" -raw

The following command displays all returned defects originated by the user ID
michael.
teamc report -view defectView -where "originLogin = 'michael' and state =
'returned'"

The following command displays all defects for the graphix component that are in
the working state.
teamc report -view defectView -where "state = 'working' and compName =
'graphix'"

The following command displays all defects in the open or working state that are
owned by users in the area e50. If some user areas are E50, they are not selected.
teamc report -view defectView -where "state in ('open','working') and
ownerArea='e50'"

The following command displays all release environment list entries that designate
the user michael as the tester of the PCVersion1 environment.
teamc report -view envView -where "userlogin = 'michael'
and name = 'PCVersion1'"

The following command displays the release environment list members for the
21debugr release.
teamc report -view envView -where "releaseName = '21debugr'"

The following command displays member parts of the 10debugr release that were
last updated on or after August 8, 1995. The date field must be in the
yyyy/mm/dd format, and it must be enclosed in single quotation marks because it
is a character field. Because the date field includes date and time, all parts updated
after August 7, 1995, at 12:00 p.m. are selected.
teamc report -view partFullView -where "releaseName = '10debugr'
and lastUpdate > '1995/08/07'"

The following command displays member parts of the 20graphix release that are
currently checked out.
teamc report -view partsOutView -where "releaseName = '20graphix'"

The following command displays all actions that define the developer interest
group.
teamc report -view interest -where "Name = 'developer'"

The following command displays all the notes for defect 7627 that were added
before September 2, 1995. The date field must be in the yyyy/mm/dd format, and
it must be enclosed in single quotation marks because it is a character field.
teamc report -view noteView -where "defectName = '7627' and addDate
< '1995/09/02'"

Report

200 Commands Reference

The following command displays all the notes for defect 4866 written by the
owners of the user IDs sam and sara.
teamc report -view noteView -where "defectName = '4866' and
(userlogin = 'sam' or userlogin = 'sara')"

The following command displays all test records for the environment PCVersion2
that have reject or abstain test results recorded.
teamc report -view testView -where "envName = 'PCVersion2' and (state
= 'reject' or state = 'abstain')"

The following command displays all test records for the defect 9821 that have an
environment name beginning with PCV.
teamc report -view testView -where "envName like 'PCV%' and
defectName = '9821'"

The following command displays all existing work areas for defect 5490 that are in
the fix state.
teamc report -view workAreaView -where "defectName = '5490' and
state = 'fix'"

The following command displays all existing work areas created on or after
September 17, 1995, for the 21debugr release.
teamc report -view workAreaView -where "releasename = '21debugr' and
addDate > '1995/09/16'"

The following command displays all users in areas that include tools as part of the
area name.
teamc report -view users -where "area like '%tools%'"

The following command displays all users who have TeamConnection superuser
privilege.
teamc report -view users -where "superuser = 'yes'"

The following command displays an order by clause with two column names. Asc
orders the version SID column in ascending order and desc orders the path name
column in descending order. This query reports changes to parts in ascending
order, and the path names of the parts in descending order.
teamc report -view changeview -where "defectName = '1491' and
releaseName ='projectA_rel1' order by versionSID asc, pathName desc"

The following command displays all work areas that are in the integrate state and
that are not in a driver.
teamc report -view workAreaView -where "state = 'integrate' and
releasename = 'projectA_r1' and id not in (select workareaid
from drivermembers)"

The following command displays all part changes for
src\kernel\ibmesa\io\dkios.c that were committed in a driver on or before
October 21, 1995.
teamc report -view changeview -where "pathname =
'src\kernel\ibmesa\io\dkios.c' and drivername in (select name from
driverview where commitdate < '1995/10/21')"

The following command displays the component comp1 and all its children.
teamc report -view compview -where "id in (select childid from compmemberview
where parentCompName='comp1')"

Report

Chapter 21. Report 201

The following command displays the children of component comp1.
teamc report -view compview -where "id in (select childid from compmemberview
where parentCompName='comp1') and id not in (select parentid from
compmemberview where parentCompName='comp1')"

The following command displays the component comp1 and all parents.
teamc report -view compview -where "id in (select parentid from compmemberview
where childCompName='comp1')"

The following command displays the parents of component comp1.
teamc report -view compview -where "id in (select parentid from compmemberview
where childCompName='comp1') and id not in (select parentid from
compmemberview where parentCompName='comp1')"

report -view partView

The report -view partView action enables you to query the PartView table in the
TeamConnection database. This action is somewhat different from the report -view
Name action. With this action you can specify the following additional attributes to
focus your database query:
v -workarea Name or -version Name
v -release Name
v -parent Name
v -parenttype Name

Note: The part must be visible to the workarea and the workarea must exist as
valid for a report to be generated. If either is not the case, zero (0) records
will be returned.

The report -view (partView) command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-long Produces report output in stanza format, with additional
important information shown in a table format:
v Each database record is a stanza.
v Each stanza line consists of a field and its corresponding

values.

Specify only one of -long, -raw, -stanza, or -table.

-parent Name Specifies the parent of the object.

-parenttype Name Specifies the type of the parent part.

-q Level Sets the optimization level for the query. The default
optimization level is 5. Setting the optimization level to a
lower value such as 3, 1 or 0 improves optimization.

Report

202 Commands Reference

Attribute Description
-raw Displays reports in raw format. Specify only one of -long,

-raw, -stanza, or -table.

See “Appendix. Querying the TeamConnection database”
on page 275 Refer to the appendix in the Commands
Reference for the format of raw output for each report view.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-stanza Produces report output in stanza format:

v Each database record is a stanza.
v Each stanza line consists of a field and its corresponding

values.

Specify only one of -long, -raw, -stanza, or -table.

-table Produces report output in the following table format:
v Each field is displayed as a column heading.
v Field values appear under respective column headings.
v Each row corresponds to one database record.

Specify only one of -long, -raw, -stanza, or -table. The table
view is the default format of report output.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-version Name Specifies the version of the object. Specify either -version
or -workarea or both.

-where Text Defines the selection criteria to query the specified table or
view using valid syntax. See “Appendix. Querying the
TeamConnection database” on page 275 for the syntax of
where clauses.

When you search for specific field values, you must type
the value of the field exactly as it exists in the database.
The database values are case sensitive. The following
query, for example, returns the part named mypart.c, but
not MYPART.C:

-where "baseName in ('mypart.c')"

To construct a case-insensitive query, you can include the
DB2 UCASE() function in your query. This function
performs an uppercase comparison. The following query,
for example, returns both mypart.c and MYPART.C:

-where "ucase(baseName) in ('MYPART.C')"

-workarea Name . . . The work area name. Specify either -version or -workarea.

(Environment variable: TC_WORKAREA)

Report

Chapter 21. Report 203

report -view TargetView

The report -view TargetView action enables you to query the TargetView table in
the TeamConnection database. This action is somewhat different from the report
-view Name action. Following is a list of attributes you can specify with this
action.

The report -view (TargetView) command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-raw Displays reports in raw format. Specify only one of -raw,
-stanza, or -table.

See “Appendix. Querying the TeamConnection database”
on page 275 Refer to the appendix in the Commands

Reference for the format of raw output for each report view.

-stanza Produces report output in stanza format:

v Each database record is a stanza.
v Each stanza line consists of a field and its corresponding

values.

Specify only one of -raw, -stanza, or -table.

-table Produces report output in the following table format:
v Each field is displayed as a column heading.
v Field values appear under respective column headings.
v Each row corresponds to one database record.

Specify only one of &-raw, -stanza, or -table. The table
view is the default format of report output.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Report

204 Commands Reference

Attribute Description
-where Text Defines the selection criteria to query the specified table or

view using valid syntax. See “Appendix. Querying the
TeamConnection database” on page 275 for the syntax of
where clauses.

When you search for specific field values, you must type
the value of the field exactly as it exists in the database.
The database values are case sensitive. The following
query, for example, returns the part named mypart.c, but
not MYPART.C:

-where "baseName in ('mypart.c')"

To construct a case-insensitive query, you can include the
DB2 UCASE() function in your query. This function
performs an uppercase comparison. The following query,
for example, returns both mypart.c and MYPART.C:

-where "ucase(baseName) in ('MYPART.C')"

Related information

For the order and description of field names that are output for various views
when you issue the report command using the -raw flag, refer to “Appendix.
Querying the TeamConnection database” on page 275.

For a list of the views and a description of their fields, or a list of the tables that
can be specified as subselects in the -where clause and a description of their fields,
refer to “Appendix. Querying the TeamConnection database” on page 275.

Report

Chapter 21. Report 205

206 Commands Reference

Chapter 22. Shadow

Command summary

Use the shadow command to define, setup, manipulate, and view TeamConnection
shadows. Shadows are defined and implemented by family administrators. A
shadow is a collection of parts in a filesystem that reflect the contents of a
workarea, driver, or release. Shadowing is similar to extracting in that the purpose
of each is to provide a set of files that reflect the version of a TeamConnection
object.

TeamConnection does not do shadowing all by itself. It implements a framework
that requires you to provide the ″shadowing program″ to perform the actual
filesystem updates. When commands are issued that effect the contents of a part in
a workarea, driver, or release, TeamConnection determines what needs to be
updated in the shadows. TeamConnection then extracts the parts and calls the
″shadowing program″ to update the filesystem.

After a shadow type has been defined, individual shadows of that type can be
created. Note that performing the shadow -create action may not be enough to
cause shadowing to occur. You may have to acquire disk space for the files.
Permissions to the file space may have to be set. You may even have to configure
other computers as ″shadowing servers″. It all depends on the requirements for the
particular shadowing type that has been created.

Parts in a shadow may not be current for many reasons. Perhaps disk space
shortages, or network problems are causing shadow updates to fail. Synchronizing
a shadow will update the shadow to reflect the current state of the parts in
TeamConnection for the specified workarea, driver, or release.

Shadows can be disabled and enabled. Disabling a shadow prevents the shadow
from being updated. For example, if the shadow is out of disk space or there are
network problems, the shadow can be disabled until the problem can be corrected.
After the problems are resolved, the shadowing can be enabled again. After
enabling a shadow, you may need to synchronize the shadow to catch up on any
shadowing that should have occurred while the shadow was disabled.

When a part is shadowed, Team Connection records the name, version, and
timestamp of the file in the TeamConnection database. A shadow can be verified to
see that the timestamp of the parts in the shadow match the timestamp that
TeamConnection has recorded for the part. This would typically be used after
something unexpected happened to the shadow, such as a disk crash. After the
shadow has been restored from backup, the shadow could be verified to find parts
that were shadowed after the backup was taken.

The properties associated with a shadow can be modified. When a text part is
shadowed, TeamConnection converts the part’s end of file character(s) to that
specified by the crlf value for that shadow. Modifying the properties of a shadow
will not affect the parts that are already in the shadow. For example, if you modify
the shadow to enable keyword expansion, this will not affect the parts that have
already been shadowed. Depending on what properties you modify for the

© Copyright IBM Corp. 1992, 1999 207

shadow, you may have to use the -synchronize action with the -force option to
update all of the files already in the shadow.

Additional information can be found in the Administrator’s Guide.

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the shadow command are:

teamc shadow -create Name -family Name -release Name -type Name
-location Text [-contents drivers workareas release]
[-synchronous | -manual] [-priority Number]
[-crlf | -nocrlf] [-keys | -nokeys]
[-timestamp preserve | current]
[-parameters Text] [-become Name] [-verbose]

teamc shadow -define Name -family Name -description Text -program Name [-become N

teamc shadow -delete Name -family Name -release Name [-become Name] [-verbose]

teamc shadow -disable Name -family Name -release Name [-become Name] [-verbose]

teamc shadow -enable Name -family Name -release Name [-become Name] [-verbose]

teamc shadow -modify -family Name -release Name [-name Name] [-location Text]
[-contents drivers workareas release]
[-synchronous | -manual] [-priority Number]
[-crlf | -nocrlf] [-keys | -nokeys]
[-timestamp preserve | current]
[-parameters Text] [-become Name] [-verbose]

teamc shadow -redefine Name -name Name -description Text -program Name -family N

teamc shadow -synchronize Name -family Name -release Name
[-driver Name] [-workarea Name]
[-force] [-report] [-path Name] [-become Name] [-verbose]

teamc shadow -undefine Name -family Name [-become Name] [-verbose]

teamc shadow -verify Name -family Name -release Name
[-driver Name] [-workarea Name]
[-report] [-path Name] [-become Name] [-verbose]

teamc shadow -view Name -family Name -release Name [-become Name] [-verbose]

Shadow

208 Commands Reference

Command actions

shadow -create Name

Creates a shadow with the specified name. The shadow name must be unique
within the release. Multiple shadows can be created for the same release. A
shadow is created in the disabled state. Use shadow -enable command to enable
the shadow.

The shadow -create command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-contents {[drivers]*
[workareas] [release] }

Indicates which TeamConnection objects are shadowed.
Specify one or more of drivers, workareas, and release. The
default is to shadow drivers.

-crlf Specifies that files of type text will be converted to have
crlf characters to indicate the end of a line. Specify only
one of -crlf or -nocrlf. The default is -crlf.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-keys Specifies that keyword expansion will be performed on the
parts that are extracted from TeamConnection. Specify only
one of -keys or -nokeys. The default is -keys.

-location Text The location of the shadow. The valid values for this
parameter depends on the type of shadows implemented
for your family. Several substitution variables are
supported for this attribute. See the Administrator’s Guide
for details.

-manual Specifies that the shadow’s update mode is manual.
Specify only one of the attributes -synchronous or -manual.
The default is synchronous. Manual mode shadows are not
updated until the shadows are explicitly synchronized
with the shadow -synchronize action. The priority attribute
is set to zero when a shadow is set to the manual mode.

-nokeys Specifies that keyword expansion will not be performed on
the parts that are extracted from TeamConnection. Specify
only one of -keys or -nokeys. The default is -keys.

-nocrlf Specifies that files of type text will be converted to have a
lf character to indicate the end of a line. Only a linefeed
character will be used. Specify only one of -crlf or -nocrlf.
The default is -crlf.

Shadow

Chapter 22. Shadow 209

Attribute Description
-parameters Parameters Specifies additional shadow parameters and characteristics.

The valid values for this parameter depend on the type of
shadows implemented for your family. Several substitution
variables are supported for this attribute. See the
Administrator’s Guide for details.

-priority Number Specifies the priority of the shadow relative to other
shadows for the release. Shadows are updated from high
priority to low priority. The number must be a positive
integer. This parameter is only valid for synchronous mode
shadows.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-synchronous Specifies that the shadow’s update mode is synchronous.
Specify only one of the attributes -synchronous or -manual.
The default is -synchronous. Synchronous mode shadows
are updated as the contents in workareas, drivers, and/or
releases change. You must specify a priority when creating
a synchronous shadow.

-timestamp { preserve |
current }

Specifies how the timestamps on the parts that are
shadowed should be maintained. Specify preserve to use
the timestamp of the part when it was checked into
TeamConnection. Specify current to use the time when the
shadow is updated. The default is preserve.

-type Name The type of the shadow. This must be a type that was
previously defined with the shadow -define action.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

Assume a shadowtype of PCShadow has been defined. The following command
will create a shadow for workareas and releases.
teamc shadow -create PCshad1 -type PCShadow -release 21debugr

-contents workareas release
-location "hardrock.ibm.com /tcshadow/$R/$N/$P"
-synchronous -timestamp preserve -priority 10 -crlf -keys

shadow -define Name

Defines a shadow type for the TeamConnection family.

The shadow -define command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

Shadow

210 Commands Reference

Attribute Description

-description Text Specifies the description of the shadow type.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-program Name Specifies the name of the shadowing program that will be
called to carry out the shadowing.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

Assume you have created a program named remoteShadow to implement
shadowing to a remote PC. The file will be stored on the family server at
c:\shadowprograms.
teamc shadow -define PCShadow -description "Shadow to a Remote PC"

-program c:\shadowprograms\remoteShadow

shadow -delete Name

Deletes the specified shadow. This action only deletes the shadowing information
from the TeamConnection database. The actual parts in the shadow are not
deleted.

The shadow -delete command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

shadow -disable Name

Disables shadowing for the specified shadow name. The contents of a disabled
shadow can not be updated until it is enabled.

Shadow

Chapter 22. Shadow 211

The shadow -disable command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

shadow -enable Name

Enables shadowing for the specified shadow name.

The shadow -enable command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

shadow -modify Name

Modifies the properties of the specified shadow.

The shadow -modify command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

Shadow

212 Commands Reference

Attribute Description
-contents {[drivers]*
[workareas] [release] }

Indicates which TeamConnection objects are shadowed.
Specify one or more of drivers, workareas, and release. The
default is to shadow drivers.

-crlf Specifies that files of type text will be converted to have
crlf characters to indicate the end of a line. Specify only
one of -crlf or -nocrlf. The default is -crlf.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-keys Specifies that keyword expansion will be performed on the
parts that are extracted from TeamConnection. Specify only
one of -keys or -nokeys. The default is -keys.

-location Text The location of the shadow. The valid values for this
parameter depends on the type of shadows implemented
for your family. Several substitution variables are
supported for this attribute. See the Administrator’s Guide
for details.

-manual Specifies that the shadow’s update mode is manual.
Specify only one of the attributes -synchronous or -manual.
The default is synchronous. Manual mode shadows are not
updated until the shadows are explicitly synchronized
with the shadow -synchronize action. The priority attribute
is set to zero when a shadow is set to the manual mode.

-name Name Specify a new name for the shadow.

-nokeys Specifies that keyword expansion will not be performed on
the parts that are extracted from TeamConnection. Specify
only one of -keys or -nokeys. The default is -keys.

-nocrlf Specifies that files of type text will be converted to have a
lf character to indicate the end of a line. Only a linefeed
character will be used. Specify only one of -crlf or -nocrlf.
The default is -crlf.

-parameters Parameters Specifies additional shadow parameters and characteristics.
The valid values for this parameter depend on the type of
shadows implemented for your family. Several substitution
variables are supported for this attribute. See the
Administrator’s Guide for details.

-priority Number Specifies the priority of the shadow relative to other
shadows for the release. Shadows are updated from high
priority to low priority. The number must be a positive
integer. This parameter is only valid for synchronous mode
shadows.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

Shadow

Chapter 22. Shadow 213

Attribute Description
-synchronous Specifies that the shadow’s update mode is synchronous.

Specify only one of the attributes -synchronous or -manual.
The default is -synchronous. Synchronous mode shadows
are updated as the contents in workareas, drivers, and/or
releases change. You must specify a priority when creating
a synchronous shadow.

-timestamp { preserve |
current }

Specifies how the timestamps on the parts that are
shadowed should be maintained. Specify preserve to use
the timestamp of the part when it was checked into
TeamConnection. Specify current to use the time when the
shadow is updated. The default is preserve.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command changes the shadow properties to manual and changes
the parameters that are passed to the shadow:
teamc shadow -modify PCshadow -release 21debugr -manual -parameters "-component $C"

shadow -redefine Name

Redefines the properties of a shadow type. This command allows you to change
the description or the program name for the shadow type.

The shadow -redefine command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-description Text Specifies the description of the shadow type.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-name Name Specify a new name for the shadow.

-program Name Specifies the name of the shadowing program that will be
called to carry out the shadowing.

-verbose TeamConnection displays a confirmation message after
you issue the command.

shadow -synchronize Name

Synchronizes the specified shadow to the state of the objects in TeamConnection.

Shadow

214 Commands Reference

The shadow -synchronize command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-driver Name Specifies the name of the driver for which the command is
issued. Specify only one of -driver or -workarea. If you do
not specify either driver or workarea, the command is
performed on the release version.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-force Specifies that you want to force the shadow to be updated,
whether it is out of sync or not. Specify only one of -force
or -report.

-path Name Subsets the command function to the path specified.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-report Gives a preview of the parts that are not correct in the
shadow. The shadow is not updated.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . Specifies the name of the workarea for which the
command is issued. Specify only one of -driver or
-workarea. If you do not specify either driver or workarea,
the command is performed on the release version.

Examples

The following command synchronizes the PCshadow shadow for workarea 9312:
teamc shadow -synchronize PCshadow -release 21debugr -workarea 9312

shadow -undefine Name

Removes a shadow type from the family. A shadow type cannot be removed if
there are shadows created for this type.

The shadow -undefine command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

Shadow

Chapter 22. Shadow 215

Attribute Description

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-verbose TeamConnection displays a confirmation message after
you issue the command.

shadow -verify

Synchronizes a shadow, and additionally verifies that the timestamps of the parts
in the shadow match the timestamps that TeamConnection stored when the parts
were placed in the shadow. The parts that do not match the contents of the
TeamConnection database will be updated in the shadow.

The shadow -verify command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-driver Name Specifies the name of the driver for which the command is
issued. Specify only one of -driver or -workarea. If you do
not specify either driver or workarea, the command is
performed on the release version.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-path Name Subsets the command function to the path specified.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-report Gives a preview of the parts that are not correct in the
shadow. The shadow is not updated.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command verifies the PCshadow shadow for workarea 9312 and
only reports the discrepancies.
teamc shadow -verify PCshadow -release 21debugr -workarea 9312 -report

shadow -view Name

Views the properties of the specified shadow.

Shadow

216 Commands Reference

The shadow -view command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

Related information

See the following related commands:
Part
Driver
Workarea
Report

For more information about implementing shadows in TeamConnection, refer to
the Administrator’s Guide.

Shadow

Chapter 22. Shadow 217

218 Commands Reference

Chapter 23. Size

Command summary

Use the size command to create, delete, and reassign sizing records for a defect or
feature that is in the size state, or to indicate sizing information. A sizing record
must be created explicitly by the defect or feature owner. A sizing record indicates
the time and resources needed to resolve a defect or implement a feature in one
component for a release. Each sizing record is uniquely identified by a defect or
feature identifier, a component, and a release.

If you are the owner of the component in which the defect must be resolved or the
feature must be implemented, you are also the owner of the sizing record by
default. Sizing information must be entered as text on a sizing record.

All sizing records must be marked either with accept or reject in order to move
the defect or feature from the size state to the review state. Work areas and fix
records are created for all sizing records marked accept, when the defect or feature
is accepted, when the track process is enabled for the release and the design, size,
and review process is enabled for the component. Otherwise, you must create the
work area manually.

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the size command are:

teamc size -accept { -feature Name ... -defect Name ... }
-component Name ... -release Name
-family Name -sizing Text [-become Name] [-verbose]

teamc size -assign -to Name { -feature Name ... -defect Name ... }
-component Name ... -release Name
-family Name [-become Name] [-verbose]

teamc size -create { -feature Name ... -defect Name ...}
-component Name ... -release Name
-family Name [-become Name] [-verbose]

teamc size -delete { -feature Name ... -defect Name ...}
-component Name ... -release Name
-family Name [-become Name] [-verbose]

teamc size -reject { -feature Name ... -defect Name ...}
-component Name ... -release Name
-family Name [-become Name] [-verbose]

© Copyright IBM Corp. 1992, 1999 219

Command actions

size -accept

Indicates that the sizing information is entered and complete for the corresponding
defect or feature, release, and component. This action is used to record initial
sizing information.

The size-accept command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-component Name The component associated with the object. Different
components can manage different versions of the same
object.

(Environment variable: TC_COMPONENT.)

-defect Name The defect identifier for the object. Either -defect or
-feature is required.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-feature Name The feature identifier for the object. Either -defect or
-feature is required.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-sizing Text The sizing information for the proposed defect or feature
change in the specified component and release.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

Assume you own the sizing record for feature 483 in component graphix for
release 21graphix. The following command specifies that 10 person-days are
required to implement the feature.
teamc size -accept -feature 483 -component graphix -release 21graphix
-sizing "10 person-days"

size -assign

Reassigns ownership of the specified sizing record to another user ID.

Size

220 Commands Reference

The size -assign command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-component Name The component associated with the object. Different
components can manage different versions of the same
object.

(Environment variable: TC_COMPONENT.)

-defect Name The defect identifier for the object. Either -defect or
-feature is required.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-feature Name The feature identifier for the object. Either -defect or
-feature is required.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-to Name The user ID to which you want to reassign the object. The
user ID you specify becomes the owner of the object.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

You own the sizing record for feature 483 in the graphix component for the
20graphix release. The following command assigns the sizing record to user ID
mary. Responsibility for sizing the feature is reassigned to the user mary. The
sizing record is uniquely defined by the feature number 483, release 20graphix,
and component graphix.
teamc size -assign -feature 483 -component graphix -release 20graphix
-to mary

size -create

Creates a sizing record for the corresponding defect or feature, release, and
component.

The associated component’s process must include the design, size, and review
(DSR) subprocess.

Size

Chapter 23. Size 221

The size -create command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-component Name The component associated with the object. Different
components can manage different versions of the same
object.

(Environment variable: TC_COMPONENT.)

-defect Name The defect identifier for the object. Either -defect or
-feature is required.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-feature Name The feature identifier for the object. Either -defect or
-feature is required.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command creates a sizing record for feature 483 in the graphix
component for the 21graphix release. The owner of the sizing record is the owner
of the graphix component.
teamc size -create -feature 483 -component graphix -release 21graphix

size -delete

Deletes the specified sizing record.

The size -delete command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-component Name The component associated with the object. Different
components can manage different versions of the same
object.

(Environment variable: TC_COMPONENT.)

Size

222 Commands Reference

Attribute Description
-defect Name The defect identifier for the object. Either -defect or

-feature is required.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-feature Name The feature identifier for the object. Either -defect or
-feature is required.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

size -reject

Indicates that resolving the defect or implementing the feature does not require
changes in the corresponding component. If old sizing information exists for this
sizing record, it is deleted.

The size -reject command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-component Name The component associated with the object. Different
components can manage different versions of the same
object.

(Environment variable: TC_COMPONENT.)

-defect Name The defect identifier for the object. Either -defect or
-feature is required.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-feature Name The feature identifier for the object. Either -defect or
-feature is required.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

Size

Chapter 23. Size 223

Examples

Assume you own the sizing record for defect APAR20 in component charting for
release 32charting. The following command specifies that no changes are required
in that component and no additional resources are required. The -reject action flag
indicates that no changes are required for defect APAR20 in the component
charting for the release 32charting.
teamc size -reject -defect APAR20 -component charting -release 32charting

Related information

See the following related commands:
Defect
Feature
Release
Report
Workarea

Size

224 Commands Reference

Chapter 24. Target

Command summary

Use the target command to maintain target and status information for part
versions.

Context for target/status processing

Maintaining target and status information for part versions helps coordinate the
execution of multiple instances of the same executable in transaction processing
environments. A status field is associated with each executable and all of its part
versions. As the status of the executable changes, the user can change the status
associated with each of that executable’s part versions. A target field is also
associated with each status and part version to enable different versions of the
same executable to run on different target systems.

Supporting tables and views

TeamConnection provides the following tables and views to enable an association
between targets, status fields, and part versions. Each of these tables and views is
described in “Views and report output” on page 277.

TargetView
Shows target and status information for PartVersions. TargetView combines
information about part versions with the contents of the Target table.

ConfigPartView
Shows parts in a specified context (specified by contextName and
releaseName). This view is used to associate a target/status event with a
part version. See the report -general command for instructions on querying
this view.

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the target command are:

Target -create Name -where text -family Name
[-status Name] [-time timeStamp] [-active Name]
[-become Name] [-verbose]

Target -modify -where text -family Name [-status Name]
[-time timeStamp] [-active Name] [-become Name] [-verbose]

Target -delete -where text -family Name [-become Name] [-verbose]

© Copyright IBM Corp. 1992, 1999 225

Target -view -where text -family Name [-stanza|-table|-raw]
[-become Name] [-verbose]

Command actions

target -create Name

Creates a target object and associates it with a status and part version.

Use the -where attribute flag to specify SQL criteria for ConfigPartView to
associate the target and status with one or more part versions.

The target -create command has these associated attribute flags.

Attribute Description
-active Name Indicates the active state of the status event.

-become Name The user ID you want to issue TeamConnection commands
from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-status Name Specifies the status of the target for the part version.

-time timeStamp Specifies the timestamp (online time) of the satus event.

-verbose TeamConnection displays a confirmation message after
you issue the command. The message includes a list of the
TargetView rows added, deleted, or modified in raw
format. See “Views and report output” on page 277 for a
description of the raw output for TargetView.

Target

226 Commands Reference

Attribute Description
-where Text Defines the selection criteria to query the specified table or

view using valid syntax. See “Appendix. Querying the
TeamConnection database” on page 275 for the syntax of
where clauses.

When you search for specific field values, you must type
the value of the field exactly as it exists in the database.
The database values are case sensitive. The following
query, for example, returns the part named mypart.c, but
not MYPART.C:

-where "baseName in ('mypart.c')"

To construct a case-insensitive query, you can include the
DB2 UCASE() function in your query. This function
performs an uppercase comparison. The following query,
for example, returns both mypart.c and MYPART.C:

-where "ucase(baseName) in ('MYPART.C')"

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

target -delete

Deletes the specified target.

Use the -where attribute flag to specify SQL criteria for TargetView to select the
target(s) to be deleted.

target -modify

Modifies the following properties of the specified target. One or more of the
following attributes is required.

-active
-status
-time

Use the -where attribute flag to specify SQL criteria for TargetView to select the
target(s) to be modified.

The target -modify command has these associated attribute flags.

Attribute Description
-active Name Indicates the active state of the status event.

-become Name The user ID you want to issue TeamConnection commands
from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

Target

Chapter 24. Target 227

Attribute Description
-status Name Specifies the status of the target for the part version.

-time timeStamp Specifies the timestamp (online time) of the satus event.

-verbose TeamConnection displays a confirmation message after
you issue the command. The message includes a list of the
TargetView rows added, deleted, or modified in raw
format. See “Views and report output” on page 277 for a
description of the raw output for TargetView.

-where Text Defines the selection criteria to query the specified table or
view using valid syntax. See “Appendix. Querying the
TeamConnection database” on page 275 for the syntax of
where clauses.

When you search for specific field values, you must type
the value of the field exactly as it exists in the database.
The database values are case sensitive. The following
query, for example, returns the part named mypart.c, but
not MYPART.C:

-where "baseName in ('mypart.c')"

To construct a case-insensitive query, you can include the
DB2 UCASE() function in your query. This function
performs an uppercase comparison. The following query,
for example, returns both mypart.c and MYPART.C:

-where "ucase(baseName) in ('MYPART.C')"

target -view

Shows all current information for the specified target(s).

Use the -where attribute flag to specify SQL criteria for TargetView to select the
target(s) to view.

The target -view command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-raw Displays reports in raw format. Specify only one of -raw,
-stanza, or -table.

See “Appendix. Querying the TeamConnection database”
on page 275 Refer to the appendix in the Commands

Reference for the format of raw output for each report view.

Target

228 Commands Reference

Attribute Description
-stanza Produces report output in stanza format:

v Each database record is a stanza.
v Each stanza line consists of a field and its corresponding

values.

Specify only one of -raw, -stanza, or -table.

-table Produces report output in the following table format:
v Each field is displayed as a column heading.
v Field values appear under respective column headings.
v Each row corresponds to one database record.

Specify only one of &-raw, -stanza, or -table. The table
view is the default format of report output.

-verbose TeamConnection displays a confirmation message after
you issue the command. The message includes a list of the
TargetView rows added, deleted, or modified in raw
format. See “Views and report output” on page 277 for a
description of the raw output for TargetView.

-where Text Defines the selection criteria to query the specified table or
view using valid syntax. See “Appendix. Querying the
TeamConnection database” on page 275 for the syntax of
where clauses.

When you search for specific field values, you must type
the value of the field exactly as it exists in the database.
The database values are case sensitive. The following
query, for example, returns the part named mypart.c, but
not MYPART.C:

-where "baseName in ('mypart.c')"

To construct a case-insensitive query, you can include the
DB2 UCASE() function in your query. This function
performs an uppercase comparison. The following query,
for example, returns both mypart.c and MYPART.C:

-where "ucase(baseName) in ('MYPART.C')"

Related information

See the following related commands:
Part
Report

Target

Chapter 24. Target 229

Target

230 Commands Reference

Chapter 25. Tclogin

Command summary

Use the tclogin command to login to, log out of, or display a list of user login IDs
currently logged in to the family server. This command is required only if your
family database uses the PASSWORD_ONLY security option. It may also be
needed if your family database uses the PASSWORD_OR_HOST security option.
The password can be used when a hostlist does not exist, such as when the IP
address is dynamically assigned.

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the tclogin command are:

teamc tclogin -login -family Name [-password [Name]]
[-become Name] [-verbose]

teamc tclogin -logout -family Name [-become Name] [-verbose]

teamc tclogin -view

Command actions

tclogin -login

Use the tclogin -login command to log in a user ID to the family server.

The tclogin -login command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-password Name Specifies the password for the user ID. This attribute is
required if the family uses the PASSWORD_ONLY or
PASSWORD_OR_HOST and the user has no host list entry
security options. A password must be at least one
character long and can be up to thirty-one characters long.

© Copyright IBM Corp. 1992, 1999 231

Attribute Description
-verbose TeamConnection displays a confirmation message after

you issue the command.

Examples

To login to a TeamConnection family, issue the following command:
teamc tclogin -login -family testfam -password myPassword

tclogin -logout

Use the tclogin -logout command to log out a user ID from the family server.

The tclogin -logout command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

To log out from a TeamConnection family, issue the following command:
teamc tclogin -logout -family testfam

tclogin -view

Use the tclogin -view command to display a list of the families and
TeamConnection login IDs for the user issuing the command. This command
displays a list of login IDs and the families to which the login IDs are logged in.
This command is helpful if you typically log in to more than one family or have
more than one login ID and you need to see which families you are logged in to.

This command does not display:
v User ID and host list connections. To display a login ID in this list, you must

have logged in to the family using the teamc tclogin -login command.
v Any other login IDs besides those logged in to the family server from the client

you are using. You cannot use this command, for example, to see a list of
everyone logged in to the family.

Examples

To display the user IDs and families you are logged in to, issue the following
command:
teamc tclogin -view

Tclogin

232 Commands Reference

|
|
|
|
|

|
|

|

This command displays information similar to the following:
userLogin family
--------------- ---
albertal idbuild@idserver.raleigh.ibm.com@9001

smazzara idbuild@idserver.raleigh.ibm.com@9001

smazzara vatc@tcaix05.raleigh.ibm.com@2600

3 records selected

Related information

See the following related commands:
User

Tclogin

Chapter 25. Tclogin 233

|

|
|
|
|
|
|
|
|
|
|

|

Tclogin

234 Commands Reference

Chapter 26. Test

Command summary

Use the test command to indicate the results of an environment test on a test
record associated with a work area.

If a release has an environment list, test records are created according to the entries
in that list whenever a new work area is created for that release (provided that the
release’s process includes the test subprocess). Each test record includes the
environment name and user ID specified on the release environment list, and the
defect or feature identifier of the work area. The owner of the user ID is the tester
who owns the test record.

Test records are activated (that is, they are moved to the ready state) when the
associated work area moves to the test state and the proposed change is ready for
environment testing. When results are entered for all the environment test records
associated with a work area, the state of that work area changes to complete. Even
if you reject a test record, the work area changes to the complete state. Create
another work area to address any changes still required. The automatic transition
to the complete state can be disabled by including the workareatesthold
subprocess in the release process. If workareatesthold is part of the release process,
a workarea -complete must be issued to move the workarea into the complete
state.

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the test command are:

teamc test -abstain -workarea ... -family Name
-release Name ... -environment Name ...
[-tester Name] [-become Name] [-verbose]

teamc test -accept -workarea ... -family Name
-release Name ... -environment Name ...
[-tester Name] [-become Name] [-verbose]

teamc test -assign -to Name -workarea ... -release Name ...
-environment Name ... -family Name [-tester Name]
[-become Name] [-verbose]

teamc test -create -workarea ... -release Name ...
-environment Name ... -family Name [-tester Name]
[-become Name] [-verbose]

teamc test -delete -workarea ... -release Name ...
-environment Name ... -family Name

© Copyright IBM Corp. 1992, 1999 235

[-become Name] [-verbose]

teamc test -reject -workarea ... -family Name
-release Name ... -environment Name ...
[-tester Name] [-become Name] [-verbose]

Command actions

test -abstain

Abstains from testing for a release environment.

The test -abstain command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-environment environment Specifies the environment in which the testing is done.
Note: The tester/environment name combination becomes
an entry on the environment list for the release.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-tester Name The user responsible for testing in a given environment.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

Assume that you have superuser privilege and that your TC_RELEASE
environment variable is set to tripod3. The following command indicates that jane,
the owner of the test record for work area 7966 in release tripod3, will abstain
from marking test results in the PCVersion2 environment. The test record owned
by the user jane for work area 7966 in the environment PCVersion2 is marked
abstain. You can mark the test record owned by another user because you have
superuser privilege. The work area moves to the complete state if this is the last
test record for the work area to be marked with test results.
teamc test -abstain -workarea 7966 -environment PCVersion2 -tester jane

Test

236 Commands Reference

test -accept

Indicates successful results for a release environment test.

The test -accept command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-environment environment Specifies the environment in which the testing is done.
Note: The tester/environment name combination becomes
an entry on the environment list for the release.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-tester Name The user responsible for testing in a given environment.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

Assume that you are responsible for testing whether or not defect 7966 was
successfully resolved in the PCVersion1 environment for release tripod3. The
following command accepts the test record for work area 7966 if your
TC_RELEASE environment variable is set to tripod3. The test record you own is
marked accept, indicating successful test results. The work area moves to the
complete state if this is the last test record for the work area to be marked with test
results.
teamc test -accept -workarea 7966 -environment PCVersion1

test -assign

Assigns a test record to another user ID.

The test -assign command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

Test

Chapter 26. Test 237

Attribute Description

-environment environment Specifies the environment in which the testing is done.
Note: The tester/environment name combination becomes
an entry on the environment list for the release.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-tester Name The user responsible for testing in a given environment.

-to Name The user ID to which you want to reassign the object. The
user ID you specify becomes the owner of the object.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

Assume that you own the test record for work area 7562 in release 20gos and
environment Model1. The following command assigns this test record to user ID
amy so that the owner of that user ID assumes the testing responsibility.
teamc test -assign -to amy -workarea 7562 -environment Model1
-release 20gos

test -create

Creates a test record.

The test -create command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-environment environment Specifies the environment in which the testing is done.
Note: The tester/environment name combination becomes
an entry on the environment list for the release.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

Test

238 Commands Reference

Attribute Description
-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-tester Name The user responsible for testing in a given environment.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Examples

Assume that you own the test environment ModelT and tester gdixon has been
added to release bos41M. When work areas are created in the future, test records
will be created for this new environment. But work areas for defects 7703 and 7715
already exist and should also be tested for the new environment. The following
command creates test records for these defects.
teamc test -create -tester gdixon -workarea 7703 7715

-environment ModelT -release bos41M

test -delete

Deletes a test record.

The test -delete command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-environment environment Specifies the environment in which the testing is done.
Note: The tester/environment name combination becomes
an entry on the environment list for the release.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Test

Chapter 26. Test 239

Examples

You decide that defect 7711 is not applicable to environment ModelT in release
bos41M, so the associated test record is no longer needed. The following command
would delete it.
teamc test -delete -workarea 7711 -environment ModelT -release bos41M

test -reject

Indicates unsuccessful results for a release environment test.

The test -reject command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-environment environment Specifies the environment in which the testing is done.
Note: The tester/environment name combination becomes
an entry on the environment list for the release.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-tester Name The user responsible for testing in a given environment.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-workarea Name . . . The work area name.

(Environment variable: TC_WORKAREA)

Related information

See the following related commands:
Driver
Environment
Release
Report
Workarea

Test

240 Commands Reference

Chapter 27. User

Command summary

Use the user command to create new user IDs, to modify information associated
with user IDs, and delete user IDs. Superuser privilege, or member of the authority
group admin, is required to create user IDs for new users, delete other user IDs,
and modify the superuser privilege of a user. You can modify your own user ID
information but cannot give yourself TeamConnection superuser privilege or
admin membership.

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the user command are:

teamc user -create -login Name -address Name -family Name
[-name Text] [-area Name] [+super] [-become Name] [-verbose]

teamc user -configInfo -family Name [-become Name] [-raw]

teamc user -delete Name ... -family Name [-become Name] [-verbose]

teamc user -modify Name ... -family Name { -login Name -name Text
-address Name -area Name [+super | -super]
-password [newpass [oldpass]] } [-become Name] [-verbose]

teamc user -recreate Name ... -family Name [-become Name] [-verbose]

teamc user -view Name ... -family Name [-long] [-become Name]
[-verbose]

Command actions

user -create

Adds user IDs by specifying a value for the -login flag. User IDs must be unique
within a family. Should you attempt to create a user at an unreachable host, an
error message will appear.

Because your family administrator can modify or delete certain configurable fields
and create new fields, the attributes for this action might be different from those in
your family or might not appear at all. Those listed here represent the shipped
default fields only. For a list of the field properties and flags in use in your family,
use the -configInfo command or see your family administrator. For more
information on configurable fields, refer to the Administrator’s Guide.

© Copyright IBM Corp. 1992, 1999 241

The user -create command has these associated attribute flags.

Attribute Description
-address Name Specifies where notification messages are sent for this user.

For this attribute, specify the user’s mail address in the
form login@hostname. The address is case-sensitive. For
example, -address johnw@VM6OUT.austin.ibm.com.

-area Name Specifies the area or department of a user.

-become Name The user ID you want to issue TeamConnection commands
from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-login Name TeamConnection user ID.

-name Name Specifies the user’s full name.

+super Grants TeamConnection superuser privilege to a specified
user ID.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command creates a user ID for a new user with the user ID dorrie
and the mailing address dorrie@cansas. Because TeamConnection superuser
authority was not specified, this user does not have this authority.
teamc user -create -login dorrie -address dorrie@cansas
-name "Julie Karland" -area tools

user -configInfo

Shows configurable field properties for users in the specified family. The
information is returned in a fixed ASCII table format.

The user -configInfo command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-raw Displays configurable field information in raw format.

User

242 Commands Reference

Attribute Description

Examples
v The following command displays the configurable fields defined for users in

family rdev.
teamc user -configInfo -family rdev

The following is an example of the output provided for this command. This
example assumes that the only configurable field defined is called userTest.
Attribute Name DB Column Name Create/Required Type
-------------- --------------- --------------- -----

userTest userTest yes/no test

v The following command displays the configurable fields defined for users in
family rdev in raw format.
teamc user -configInfo -family rdev -raw

The following is an example of the output provided for this command. This
example assumes that the only configurable field defined is called userTest.
User Test|User Test|userTest|userTest|yes|no|test

user -delete Name . . .

Deletes specified user IDs.

The user -delete command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command deletes the user ID jack. You can delete a user ID only if
all associated objects the user ID owns have been deleted or reassigned and the
user ID is removed from approver, environment, access, and notification lists. A
deleted user ID can be re-created.
teamc user -delete jack

user -modify Name . . .

The user -modify Name . . . action modifies information associated with specified
user IDs. Only a superuser can modify superuser privilege. You must include at
least one attribute to be modified with the command.

User

Chapter 27. User 243

Use the user -modify Name . . . command to set passwords for user IDs.
Passwords are required if the family uses the PASSWORD_ONLY or
PASSWORD_OR_HOST and the user has no host list entry security options.

Because your family administrator can modify or delete certain configurable fields
and create new fields, the attributes for this action might be different from those in
your family or might not appear at all. Those listed here represent the shipped
default fields only. For a list of the field properties and flags in use in your family,
use the -configInfo command or see your family administrator. For more
information on configurable fields, refer to the Administrator’s Guide.

The user -modify command has these associated attribute flags.

Attribute Description
-address Name Specifies where notification messages are sent for this user.

For this attribute, specify the user’s mail address in the
form login@hostname. The address is case-sensitive. For
example, -address johnw@VM6OUT.austin.ibm.com.

-area Name Specifies the area or department of a user.

-become Name The user ID you want to issue TeamConnection commands
from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-login Name TeamConnection user ID.

-name Name Specifies the user’s full name.

-password Name Specifies the password for the user ID. This attribute is
required if the family uses the PASSWORD_ONLY or
PASSWORD_OR_HOST and the user has no host list entry
security options. A password must be at least one
character long and can be up to thirty-one characters long.

+super Grants TeamConnection superuser privilege to a specified
user ID.

-super Removes TeamConnection superuser privilege for a
specified user ID. Specify only one of +super or -super.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

Assume that you are logged on to host lab2 with the TeamConnectionuser ID jane.
That user ID does not have superuser privilege. You have a host list entry for user
ID admin (that is, jane@lab2 is on the host list for admin), and that user ID does
have superuser privilege. To give the user ID george superuser privilege, you must

User

244 Commands Reference

become user admin to issue the command successfully. The following command
changes your TeamConnection user ID to admin and provides superuser authority
to user ID george.
teamc user -modify george +super -become admin

The following command grants superuser privilege to the user with the login name
dorothy.
teamc user -modify dorothy +super

The following command modifies information for multiple user IDs. The area
specification is changed to tools07 for the user IDs jack and sally. This command
also removes TeamConnection superuser privilege from both user IDs.
teamc user -modify jack sally -area tools07 -super

user -recreate Name . . .

Re-creates previously deleted user IDs.

The user -recreate command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-verbose TeamConnection displays a confirmation message after
you issue the command.

user -view Name . . .

Shows information about specified user IDs.

The user -view command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-long Displays detailed information for the specified objects.

-verbose TeamConnection displays a confirmation message after
you issue the command.

User

Chapter 27. User 245

Examples

The following command displays all the host list entries for user ID shirley.
teamc user -view shirley -long

The following command displays information for specified user IDs.
teamc user -view dorothy jack sally

Related information

See the following related commands:
Host
Report

User

246 Commands Reference

Chapter 28. Verify

Command summary

Use the verify command to verify the resolution of defects or the implementation
of features or to reassign ownership of existing verification records.

A verification record is created for the originator of a defect or a feature when the
defect or feature is accepted and the component that manages the defect or feature
has a process that includes the defectVerify or featureVerify subprocesses.
Ownership of a verification record is reassigned to the new owner if the defect or
feature owner is changed. Defects can be specified as duplicates of features, and
features can be specified as duplicates of defects.

Verification records become active when a defect or feature changes from the
working state to the verify state. When results have been recorded for all the
verification records for a defect or feature, and when all of the work areas of the
defect or feature are complete, the defect or feature changes from the verify state to
the closed state. If a verification record is rejected, the defect or feature is returned
to the working state.

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the verify command are:

teamc verify -abstain { -defect Name ... -feature Name ... }
-family Name [-tester Name] [-become Name] [-verbose]

teamc verify -accept { -defect Name ... -feature Name ... }
-family Name [-tester Name] [-become Name] [-verbose]

teamc verify -assign -to Name { -defect Name ...
-feature Name ... }
-family Name [-tester Name] [-become Name] [-verbose]

teamc verify -reject { -defect Name ... -feature Name ... }
-family Name [-tester Name] [-become Name] [-verbose]

Command actions

verify -abstain

Indicates that the owner of the verification record abstains from verifying defect
resolution or feature implementation.

© Copyright IBM Corp. 1992, 1999 247

The verify -abstain command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-defect Name The defect identifier for the object. Either -defect or
-feature is required.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-feature Name The feature identifier for the object. Either -defect or
-feature is required.

-tester Name The user responsible for testing in a given environment.

-verbose TeamConnection displays a confirmation message after
you issue the command.

verify -accept

Indicates successful verification of the defect resolution or feature implementation.

The verify -accept command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-defect Name The defect identifier for the object. Either -defect or
-feature is required.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-feature Name The feature identifier for the object. Either -defect or
-feature is required.

-tester Name The user responsible for testing in a given environment.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command indicates that a defect resolution was verified successfully.
teamc verify -accept -defect 976

Verify

248 Commands Reference

verify -assign

Reassigns the ownership of the verification record for a specified defect or feature
to another user.

The verify -assign command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-defect Name The defect identifier for the object. Either -defect or
-feature is required.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-feature Name The feature identifier for the object. Either -defect or
-feature is required.

-tester Name The user responsible for testing in a given environment.

-to Name The user ID to which you want to reassign the object. The
user ID you specify becomes the owner of the object.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command reassigns ownership of a verification record. If you are a
superuser, the current owner of the verification record for feature 899, or you have
VerifyAssign explicit authority, then you can type this command to reassign the
verification record to the user ID lee.
teamc verify -assign -feature 899 -to lee

verify -reject

Indicates unsuccessful verification of the defect resolution or feature
implementation.

The verify -reject command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-defect Name The defect identifier for the object. Either -defect or
-feature is required.

Verify

Chapter 28. Verify 249

Attribute Description

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-feature Name The feature identifier for the object. Either -defect or
-feature is required.

-tester Name The user responsible for testing in a given environment.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command indicates that a defect resolution was not verified
successfully, type:
teamc verify -reject -defect 1001

Related information

See the following related commands:
Defect
Feature
Release
Workarea

Verify

250 Commands Reference

Chapter 29. Workarea

Command summary

A work area monitors the progress of changes to resolve a defect or implement a
feature.

Use the workarea command to create, modify, reassign, delete, freeze, reconcile,
refresh, and view information about a work area, and to change the state of a work
area. The states a work area moves through depend on the TeamConnection
subprocesses included in the associated release process. A release process can
include the track, approval, fix, driver, or test subprocesses, or none at all. For
more information on the work area states and their associated subprocesses, refer
to the TeamConnection User’s Guide. A workarea can also be moved to the restrict
state, in which only persons with a certain level of authority are allowed to make
changes to it. For more details on the restrict state for workareas, see the teamc
driver -restrict command.

If the track process is turned on for the release, a work area must be associated
with a defect or feature. The default name for these work areas is the name of the
defect or feature.

You can also create a work area with a specified name. If the release does not have
the track process, you must create the work area with a specified name. The user
who creates the work area becomes the owner of the work area unless a different
owner is specified when the work area is created.

You can also freeze or refresh your work area. You freeze a work area to save the
current version of a part or parts in the work area by using the -freeze action. The
version that you freeze represents a snapshot in time of the parts in your work
area. You refresh your work area to ensure that parts in the work area are the most
current by using the -refresh action. When you refresh a work area, you get the
most current view of all the parts in your work area from that source.

Changes associated with the work area are not visible to the release until you
commit the work area. If your release does not have the driver process enabled,
the TeamConnection product commits the work area implicitly via the workarea
-integrate command.

If a defect or feature is linked to more than one release, multiple work areas exist
for that defect or feature. The work areas required for a defect or feature are
created according to sizing records only if the dsr subprocess is in effect.
Otherwise, the workarea must be created when the defect or feature changes to the
working state. Defect or feature owners can create additional work areas if the
defect or feature is in the working state.

To determine the prerequisite and corequisite work areas for a particular work
area, use the workarea -check action. By default, the workarea -check command
lists all prerequisite and corequisite areas relative to the current state of the release.
Specify the driver name to determine the prerequisite and corequisite work areas

© Copyright IBM Corp. 1992, 1999 251

|
|
|
|
|
|
|
|
|
|

relative to an earlier committed driver. You will get a list of all prerequisite and
corequisite work areas including any that were integrated after the specified driver
was committed.

Command syntax

In the following syntax statements, the first letter of each argument is capitalized,
for example —family Name. Replace these arguments with a value that is valid for
your TeamConnection database. If you want to issue a command for the family
named testfam, for example, replace —family Name with —family testfam.

The syntax statements for the workarea command are:

teamc workarea -assign Name ... -to Name
-release Name ... -family Name [-become Name]
[-verbose]

teamc workarea -cancel Name ... -release Name ...
-family Name [-become Name] [-verbose]

teamc workarea -check Name ... -release Name ... [-noduplicates]
-family Name [-driver Name] [-become Name] [-verbose]

teamc workarea -check Name ... -release Name ...
-family Name [-exclude] [-become Name] [-verbose]

teamc workarea -commit Name ... -release Name ...
-family Name [-become Name] [-verbose]

teamc workarea -complete Name ... -release Name ...
-family Name [-become Name] [-verbose]

teamc workarea -configInfo -family Name [-become Name] [-raw]

teamc workarea -create -name Name ... -release Name ...
-family Name [-owner Name] [-target Name] [-become Name]
[-verbose] *

teamc workarea -create -name Name ... {-defect Name |
-feature Name} -release Name ... -family Name [-owner Name]
[-target Name] [-become Name] [-verbose] **

teamc workarea -create {-defect Name ... -feature Name ...}
-release Name ... -family Name [-owner Name] [-target Name]
[-become Name] [-verbose] ***

teamc workarea -extract Name... -release Name -root Name
-family Name [-full] [-nokeys] [-version Name]****
[-fmask Octal_number] [-dmask Octal_number]
[-crlf | -nocrlf] [-component Name ...] [-become Name]
[-verbose] [-excludefiles filename] [-includefiles filename]
[-report] [-scan] [-erase]

teamc workarea -export Name -family Name -release Name
-file Name [-become Name] [-verbose]

Workarea

252 Commands Reference

teamc workarea -fix Name ... -release Name ...
-family Name [-become Name] [-verbose]

teamc workarea -freeze Name ... -release Name
-family Name [-become Name] [-verbose]

teamc workarea -import Name -family Name -release Name
-file Name [-makeComponent] [-become Name] [-verbose]

teamc workarea -integrate Name ... -release Name ...
-family Name [-force] [-become Name] [-verbose]

teamc workarea -modify Name ... -target Name
-release Name ... -family Name [-become Name] [-verbose]

teamc workarea -refresh Name ... -release Name ...
-family Name [-become Name] [-source Name] [-verbose]

teamc workarea -test Name ... -release Name ... -family Name
[-become Name] [-verbose]

teamc workarea -undo Name ... -release Name ...
-family Name [-become Name] [-verbose]

teamc workarea -view Name ... -family Name -release Name ...
[-long] [-become Name] [-verbose]

* Use this syntax to create work areas in non-tracking releases
** This syntax will create named work areas in tracking releases
*** This syntax will default the work area name to be the same as

the defect or feature name. Used in tracking releases.
**** use this to extract versions other than the latest version of the

work area. Don’t specify the -version to get the latest version

Command actions

workarea -assign Name . . .

Reassigns ownership of specified work areas to another user ID.

The workarea -assign command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

Workarea

Chapter 29. Workarea 253

Attribute Description
-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-to Name The user ID to which you want to reassign the object. The
user ID you specify becomes the owner of the object.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command reassigns owner responsibility for a work area to the user
ID jack:
teamc workarea -assign 8803 -release 20graphix -to jack

workarea -cancel Name . . .

Cancels the specified work areas. This is valid only if no changes have been made
to parts referencing the work areas.

If the work area being canceled is a prerequisite for another workarea, this
command removes the prerequisite relationship.

The workarea -cancel command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

workarea -check Name . . .

Displays the prerequisite and corequisite work areas for the specified work areas.
v full and exclude attributes are optional
v exclude and full both can not be specified
v exclude and driver can not be specified
v full and driver can be specified
v full and no driver can be specified

Workarea

254 Commands Reference

The workarea -check command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-driver Name The name of the driver to use as a base when determining
prerequisite and corequisite work areas relative to an
earlier committed driver.

-exclude Specifies that all given work areas are to be checked as a
group. The command output will identify the workarea(s)
in the group that have requisites that are not in the group.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-full Name Specifies that a complete list of requisites be provided.
Without this attribute, a given requisite will only be listed
once.

-noduplicates When this flag is used, a requiste workarea will only be
listed once. The first reason encountered for its being a
requisite will be returned.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command checks whether prerequisite or corequisite work areas
exist for a work area relative to a particular driver. All prerequisite and corequisite
work areas that exist for the work area for defect 8734 in the 10graphix release are
displayed, including those for part changes committed after the commit date of the
driver 9028.
teamc workarea -check 8734 -release 10graphix -driver 9028

workarea -commit Name . . .

Changes the state of the specified work areas from integrate to commit, if no part
changes were made for the work area. This action is required only if the work area
is not committed in a driver.

The associated release’s process must include the track subprocess.

An optional attribute may be used to keep a track in the commit state.

Workarea

Chapter 29. Workarea 255

The workarea -commit command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

workarea -complete Name . . .

Changes the state of the specified work areas from test to complete if no part
changes were made for the work area. No additional state changes can occur after
a work area reaches the complete state.

The associated release’s process must include the track subprocess.

The workarea -complete command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

Workarea

256 Commands Reference

workarea -configInfo

The workarea -configInfo command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-raw Displays configurable field information in raw format.

Examples

The following command displays configurable fields information for work areas in
family testfam.
teamc workarea -configInfo -family testfam

The following is sample output from this command.
Create/ Own/Orig Accept/

Attribute Name DB Column Name Required Type Modify Required Driver
--------------- --------------- -------- --------------- -------- -------- ---------------
testField testField yes testField yes no

workarea -create

The workarea -create action creates a work area for the specified release.

This action has three variations which may be used:
v To create user specified named work areas in non-tracking releases, use

teamc workarea -create -name Name ... -release Name ...
-family Name [-owner Name] [-target Name] [-become Name]
[-verbose]

v To create user specified named work areas in tracking releases, use
teamc workarea -create -name Name ... {-defect Name |

-feature Name} -release Name ... -family Name [-owner Name]
[-target Name] [-become Name] [-verbose]

v To create automatically defaulted named work areas in tracking releases, use
teamc workarea -create {-defect Name ... -feature Name ...}

-release Name ... -family Name [-owner Name] [-target Name]
[-become Name] [-verbose] ***

This command creates named work areas whose names automatically default to
the specified defect/feature name.

Because your family administrator can modify or delete certain configurable fields
and create new fields, the attributes for this action might be different from those in
your family or might not appear at all. Those listed here represent the shipped
default fields only. For a list of the field properties and flags in use in your family,
use the -configInfo command or see your family administrator. For more
information on configurable fields, refer to the Administrator’s Guide.

Workarea

Chapter 29. Workarea 257

The workarea -create command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-defect Name The defect for which the work area is being created. If you
use the -defect attribute, the work area is given the same
name as the defect. Do not specify both -defect and -name.

Specify either -feature or -defect, but not both.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-feature Name The feature for which the work area is being created. If
you use the -feature attribute, the work area is given the
same name as the defect. Do not specify both -feature and
-name.

Specify either -feature or -defect, but not both.

-name Name Specifies a name for the object.

-owner Name Specifies the user ID of the owner of the object.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-target Name Specifies a target (such as, a driver or a date) for defect
resolution or availability.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command creates a work area named work1 in release 10graphix.
Release 10graphix does not have the track process turned on.
teamc workarea -create -name work1 -release 10graphix

The following command creates work areas for a defect that requires resolution for
three releases. This command creates three work areas for defect 8734: one for each
of the three releases and all named 8734.
teamc workarea -create -defect 8734 -release 20graphix 10graphix
21charting

workarea -export Name . . .

The workarea -export Name . . . command exports the parts in the work area (or
work areas) specified by the Name argument from a release to the file name
specified in the -file attribute.

Workarea

258 Commands Reference

This function is useful for exporting information from one family into another. You
can export the information from one family into a CDF file and then import the
CDF file into another family.

Note: You cannot use the import and export functions to migrate information from
CMVC to TeamConnection or from one release of TeamConnection to
another. Refer to the Administrator’s Guide for information on the
TeamConnection migration tool.

The workarea -export command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-file filename Specifies the name of the file to which the part or parts are
to be exported. The information is exported to the file in
CDF format.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

workarea -extract Name . . .

Creates a part tree by extracting the parts defined by the specified workareas.

TeamConnection has the capability to perfrom a ″smart″ extract.″ Smart extract
extracts from the database only the parts whose date/time stamp differ from the
corresponding files in the target path of the file system. This function improves
performance by extracting only parts that do not already exist on the taret file
system or are outdated on the target file system.

The workarea -extract command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-component Name The components whose parts you want to extract. This
attribute restricts the extract action to the components you
include with the attribute.

Workarea

Chapter 29. Workarea 259

|
|
|
|
|

Attribute Description
-crlf Provides transparent file conversion between UNIX- and

Intel-based operating systems. This attribute enables parts
shared between UNIX and Intel platforms to have the
proper format for the platform to which they are extracted.
When parts are extracted to an Intel platform, the -crlf
attribute will add carriage-returns, expand tabs, and add
end-of-file characters (if the parts do not already have EOF
characters). When parts are extracted to a UNIX platform,
the -crlf attribute will remove carriage-returns, replace
spaces with tabs, and remove end-of-file characters.

If you omit this attribute, no file format conversion is
performed.

-dmask Octal_number Specifies the read, write, and execute directory permissions
for extracted parts in octal notation.

The default is 750 (read, write and execute access for
directory owner, read and execute access for others in the
owner’s group, and no access for all other users).

While the OS/2 client accepts -dmask, it has no effect.

-erase Erases stale or extra files from the target file system. This
attribute is used for smart extract.

-exclude Name Specifies the name of a file containing a list of parts to
exclude from the extract. This attribute is used for smart
extract.

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-fmask Octal_number Specifies the read, write, and execute file permissions for
extracted parts in octal notation. The default is the file’s
mode less the write permission for the part owner, others
in the owner’s group and all others.

-include Paths Specifies the name of a file containing a list of parts to
include in the extract. This attribute is used for smart
extract.

-lock Locks parts that are extracted. This attribute is used for
smart extract.

Name . . . Specify a list of parts to extract in addition to the parts in
the include list. This attribute is used for smart extract.
*-- -->

-nokeys Indicates that you do not want to substitute assigned
values in place of keywords embedded in the extracted
parts.

Workarea

260 Commands Reference

Attribute Description
-nocrlf Specifies that files of type text will be converted to have a

lf character to indicate the end of a line. Only a linefeed
character will be used. Specify only one of -crlf or -nocrlf.
The default is -crlf.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-report Gives a preview of the parts that will be extracted, but
does not actually extract the parts. This attribute is used
for smart extract.

-root Name Specifies a directory on the client where the extracted part
tree is to be placed.
Note: You can mount a directory from another machine to
the client machine, so that the client machine will treat that
directory as a local directory.

-scan Scans the target file system and checks the date/time
stamps of parts in the the target directory. Only outdated
parts are extracted. This attribute is used for smart extract.

-verbose TeamConnection displays a confirmation message after
you issue the command.

-version Name Specifies the version of the object.

Examples

The following command extracts and locks all stale cpp and hpp files from
workarea Foo. The file includelist contains myfiles*.cpp\n\myfiles*.hpp
teamc workarea -extract Foo -lock -include includelist -family test -release v300 -scan

workarea -fix Name . . .

Moves the specified work areas from the integrate state to the fix state.

The associated release’s process must include the track subprocess.

An optional attribute may be used to prevent a track from going to integrate when
all fix records are complete. Only relevant when level process not being used.

The workarea -fix command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

Workarea

Chapter 29. Workarea 261

Attribute Description
-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

Assume that the work area 8734 and the release specified by your TC_RELEASE
environment variable is not a member of a driver. The following command
changes the work area from integrate state to fix state. If a work area is in a driver,
you must delete it from the driver before you can move it back to the fix state.
teamc workarea -fix 8734

workarea -freeze Name . . .

Saves the state of a work area.

The workarea -freeze command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command freezes work area work1 in release 10graphix
teamc workarea -freeze work1 -release 10graphix

workarea -import Name . . .

The workarea -import Name . . . command imports the parts in the work area (or
work areas) specified by the Name argument from the file name specified in the
-file attribute to a release.

This function is useful for exporting information from one family into another. You
can export the information from one family into a CDF file and then import the
CDF file into another family.

Workarea

262 Commands Reference

Note: You cannot use the import and export functions to migrate information from
CMVC to TeamConnection or from one release of TeamConnection to
another. Refer to the Administrator’s Guide for information on the
TeamConnection migration tool.

The workarea -import command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-file filename Specifies the name of the file from which the work area is
to be imported.

-makeComponent If the component defined in the file from which the work
area is being imported does not already exist, this attribute
enables TeamConnection to create the component. If the
component does not exist and this attribute is not included
with the command, then the import operation fails.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

workarea -integrate Name . . .

Changes the state of the specified work areas from fix to the next valid state
governed by the release’s process. For a release whose process includes the driver
subprocess, this action is valid only if no part changes were made for the work
area and the work area is not committed in a driver.

The workarea -integrate command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-force Integrates the work area even if all fix records are not
complete.

Workarea

Chapter 29. Workarea 263

Attribute Description
-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command integrates work area work1 in release 10graphix.
teamc workarea -integrate work1 -release 10graphix

workarea -modify Name . . .

Modifies the target field for the specified work areas.

Because your family administrator can modify or delete certain configurable fields
and create new fields, the attributes for this action might be different from those in
your family or might not appear at all. Those listed here represent the shipped
default fields only. For a list of the field properties and flags in use in your family,
use the -configInfo command or see your family administrator. For more
information on configurable fields, refer to the Administrator’s Guide.

The workarea -modify command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-target Name Destination of the copy.

-verbose TeamConnection displays a confirmation message after
you issue the command.

workarea -refresh Name . . .

Refreshes the contents of one work area with another work area, driver, or release.
This command also freezes the work area.

Workarea

264 Commands Reference

The workarea -refresh command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-source Name Specifies the name of the work area, driver, or release with
the work area is to be refreshed.

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command refreshes work area work1 with respect to what is
currently in release 10graphix.
teamc workarea -refresh work1 -release 10graphix

workarea -test Name . . .

Changes the state of the specified work areas from commit to test. This action is
required only if the work area is not committed in a driver. Usually, this change
occurs when you issue the driver -complete command.

The associated release’s process must include the track subprocess.

An optional attribute may be used to prevent a track from going to complete when
all fix records are complete. Only relevant when level process not being used.

The workarea -test command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

Workarea

Chapter 29. Workarea 265

Attribute Description
-verbose TeamConnection displays a confirmation message after

you issue the command.

workarea -undo Name . . .

The workarea -undo Name . . . action reverts a work area back to the last frozen
version within a specified release. If the tracking subprocess is turned on, the work
area must be in the fix state.

To revert a work area back to its last frozen state after a workarea -refresh Name
. . . action, you need to execute the workarea -undo Name . . . action twice. The
workarea -refresh Name . . . action actually freezes the work area twice: once
before the refresh and once after the refresh. Freezing the work area before a
refresh ensures that you can roll back the work area if an error occurs during the
refresh action. To return the work area to its original state before the refresh, you
need to undo both freezes.

I you undo the first version of a work area, that work area is deleted.

The workarea -undo command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

workarea -view Name . . .

Shows all information for the specified work areas.

The workarea -view command has these associated attribute flags.

Attribute Description
-become Name The user ID you want to issue TeamConnection commands

from, if the user ID differs from your login. You assume
the access authority of the user ID you specify.

(Environment variable: TC_BECOME)

-family Name The family for which this command is being issued.

(Environment variable: TC_FAMILY)

Workarea

266 Commands Reference

Attribute Description

-long Displays detailed information for the specified objects.

-release Name The release for which this command is being issued.

(Environment variable: TC_RELEASE)

-verbose TeamConnection displays a confirmation message after
you issue the command.

Examples

The following command displays information about a specified work area
associated with the release set in the TC_RELEASE environment variable, type:
teamc workarea -view 8667

Related information

See the following related commands:

Approval Fix
Collision Release
Coreq Report
Defect Size
Driver Test
Feature

For additional information on using theautomerge tool, refer to “Chapter 30.
AutoMerge” on page 269.

Workarea

Chapter 29. Workarea 267

268 Commands Reference

Chapter 30. AutoMerge

Automerge is a tool used for automatically merging files or directories of files.
(The term ″file″ can be substituted with the term ″directory″.) Files needed for this
process:
v Master file - The common ancestor for the three files.
v Maintenance file - The file that is currently being worked on.
v Target file - The differences between the files will be stored here, unless

specified otherwise.
v Output file - An optional file that is primed with the contents of the target file.

If specified, changes are made to this file and the target file is left unchanged.

When a directory merge takes place, a list of applicable files is generated from the
master directory. Automerge uses the generated list to find the same file(s) in the
target and maintenance directories, so it can perform the merge. If automerge
cannot find a listed file in the other directories, the merge will not occur for that
file. It will move onto the next file in the master directory list and attempt the
same thing.

During a merge, the three files are compared line by line. The types of action the
automerge program may perform are:
v ″none″ - no changes are necessary.
v ″merge″ - automerge will properly merge the change into the target file.
v ″conflict″ - automerge will look at the user’s preference for handling conflicts.

The following lists some possible scenarios the automerge program may encounter
and the type of action it may perform during the line by line comparison of the
files.

Scenario Action

no change in Maint file, code added to Target file none

code added to Maint file, changed in Target file conflict

code changed in Maint file, changed in Target file conflict

code changed in Maint file, deleted in Target file conflict

code deleted in Maint file, deleted in Target file none

code changed in Maint file, no change in Target file merge

code deleted in Maint file, changed in Target file conflict

code added to Maint file, same in Target file none

code deleted in Maint file, no change in Target file merge

no change in Maint file, code deleted in Target file none

The following presents some examples of the three types of actions:

Master Maint Target
line 1 line 1 line 1
line 2 line 1a line 1a
line 3 line 2 line 2

© Copyright IBM Corp. 1992, 1999 269

In this case, line 1a was added to both the maintenance file and the target file.
Since the extra line is the same in both files, no action is required.

Master Maint Target
line 1 line 1 line 1
line 2 line 1a line 2
line 3 line 2 line 3

In this case, line 1a was added to the maintenance file, but does not appear
anywhere else. Automerge will then merge this line into the target file.

Master Maint Target
line 1 line 1 line 1
line 2 line 1a line 1b
line 3 line 2 line 2

For the second entry, the maintenance file and the target file have different lines.
This causes a conflict. The user can choose how to resolve this conflict by using the
-resolution parameter. If the user doesn’t want to handle conflicts, then the
-resolution parameter can be set to ’none’.

To summarize the automerge actions:
v If a difference is caused by the changes in the Master file, then nothing will be

done.
v If a difference is caused by changes in the Maintenance file, then the changes

will be merged into the Target file.
v If a difference is caused by changes in the Target file, then nothing will be done.
v If a difference is caused by changes in more than one file, then it will be

considered a conflict.

Command summary

The master <file | directory>, maintenance <file | directory>, and target <file |
directory> are required parameters and must be in sequential order. The remaining
parameters are optional, and can be listed in any order following the required
parameters.

The following is an example of the syntax for a file merge:
automrg <master file> <maintenance file> <target file> [-out[put]
<file name>] [-re[place]] [-ignoreco[lumns]
<list of ranges>] [ignoreb[lanks] <l | t | lt |
a>] [-r[esolution] <maint | both | target |
manual | none>] [-log[file] <file name>]
[-v[erbose]] [-a[ppend]] [-q[uiet]]
[-ignoreca[se]]

where:
v <master file> is the master file or the common ancestor to the maintenance and

target files.
v <maintenance file> is the maintenance copy of the file.
v <target file> is the target copy of the file. The changes will be made here.

The following is an example of the syntax for a directory merge:

AutoMerge

270 Commands Reference

automrg <master dir> <maintenance dir> <target dir> [-out[put]
<dir name>] [-re[place]] [-f[iles] <file spec>]
[-ignoreco[lumns] <list of ranges to ignore>] [ignoreb[lanks]
<l | t | lt | a>] [-r[esolution] <maint | both |
target | manual | none>] [-log[file] <file name>]
[-v[erbose]] [-a[ppend]] [-q[uiet]]
[-ignoreca[se]]

where:
v <master dir> is the directory containing the master files.
v <maintenance dir> is the directory containing the maintenance files.
v <target dir> is the directory containing the target files.

Parameters

The following lists some parameters that may be used with the automrge
command.
v -f[iles] <file spec>

File specifications of the file(s) to be merged when specifying a directory.
Supports wildcards. The following options can be used with this parameter:
– file name and extension (e.g., Shapes.c)
– file name with any extension (e.g., Shapes.*)
– extension with any file name (e.g., *.c)
– all files in the directory (i.e., *). This is the default choice.

Multiple specifications can be used, with a single space separating each entry.

Note: In a Unix environment, a slash(\) must proceed every asterisk used (i.e.,
Shapes.*, *.c, *).

v -out[put] <file name | dir name>

File where the changes are placed. The target file will not be changed.
v -re[place]

The flag is only valid when the -output parameter is specified. If the output file
already exists, it will be overwritten. If the -replace flag is not set and the output
file already exists, then the merge will not take place, and an error message will
be sent to the error stream.

v -ignoreco[lumns] <list of ranges>

List of column ranges to be ignored when performing the compare. Every entry
must have the format: <startColumn,endColumn>, with no spaces within an
entry. Each entry must be separated by one or more blanks. If the starting and
ending column are the same (i.e., only one column is being ignored), that entry
can be written as: <Column>.

v -ignoreb[lanks] <l | t | lt | a>

Blank spaces and tabs are ignored when the files are compared. The user can
specify one of the following options for ignoring blanks:
– l - leading blanks are ignored.
– t - trailing blanks are ignored.
– lt - leading and trailing blanks are ignored.
– a - all blanks are ignored.

v -r[esolution] <maint | both | target | manual | none>

AutoMerge

Chapter 30. AutoMerge 271

Preference for resolving conflicts. When a conflict is encountered, it can be
resolved by one of five options:
– maint - replaces the code in the target file (or the output file, if specified) with

the code in the maintenance file.
– both - copies the code from the maintenance file to the target file (or output

file). Both maintenance and target differences will reside in the target file.
– target - leaves the code in the target file (default choice).
– manual - starts the Visual Merge GUI to show the conflict differences.
– none - conflicts are not handled.

v -log[file] <file name>

File where program status output is logged. If not used, runtime status messages
will be directed to stdout.

v -v[erbose]

Provide a more detailed logfile by including the output from the diff engine.
This shows the line numbers of all of the differences.

v -a[ppend]

Append status output to the logfile.
v -q[uiet]

Suppress all output, including the logfile. This flag is mutually exclusive to the
-logfile, -append, and -verbose parameters.

v -ignoreca[se]

Case is ignored when the files are compared.

Examples

Following are some examples of using the automerge syntax:
v In this example, master.txt is the master file, maint.txt is the maintenance file,

and target.txt is the target file. Since the -output parameter is specified, the
target file (target.txt) remains unchanged, and the merged file is out.txt. Since
the -resolution parameter is not specified, the default is target.
automrg master.txt maint.txt target.txt -output out.txt

v In this example, the user has specified that conflicts will be handled manually.
This will bring up the Visual Merge window. Since the -logfile parameter is
specified, all output messages will be directed to log.txt.
automrg master.txt maint.txt target.txt -resolution manual -logfile log.txt

v In this example, the user has specified that leading and trailing blanks will be
ignored. Also, columns 2-5, 23-30, and 35 will be ignored. All output is
suppressed through the use of the -quiet flag. Since the -resolution parameter is
set to ’none’, no merge will take place if any conflicts arise.
automrg master.txt maint.txt target.txt -ignoreblanks lt -ignorecolumns
2,5 23,30 35 -resolution none -quiet

v This example uses a directory merge in a non-Unix environment. Files with a
.java or .h extension (and in all three directories) will be included in the merge.
All output messages are appended to the logfile log.txt, and the -verbose flag
will show a more detailed run summary. Unix users will need to type the file
specs as: *.java *.h.
automrg /usr/master /usr/maint /usr/target -files *.java *.h -append
-logfile log.txt -verbose

AutoMerge

272 Commands Reference

Program Status

Throughout the program, the user is supplied with helpful messages, should an
error occur. At the end of the program, information about the status of the run is
displayed. This status will appear on the screen, or the user can specify an output
file using the -logfile parameter. The -verbose flag will show the actual output
from the diff engine. Typically, the output of this option is lengthy (especially with
directory merges).

Here is an example of the logfile for a single file merge:
Master file: master.txt
Maintenance file: maint.txt
Target file: target.txt
Output file: out.txt

completed at: Thu Oct 02 15:18:36 CDT 1997
differences encountered: 4
conflicts encountered: 1
conflicts resolved: 0
conflicts unresolved: 1
line numbers: 7

**

Here is an example of the logfile for a directory merge:
Master file: /master/f1.txt
Maintenance file: /maint/f1.txt
Target file: /target/f1.txt

completed at: Thu Oct 02 15:20:39 CDT 1997
differences encountered: 7
conflicts encountered: 3
conflicts resolved: 3
conflicts unresolved: 0

**
Master file: /master/f2.txt
Maintenance file: /maint/f2.txt
Target file: /target/f2.txt

completed at: Thu Oct 02 15:20:40 CDT 1997
differences encountered: 5
conflicts encountered: 2
conflicts resolved: 0
conflicts unresolved: 2
line numbers: 9 11-12

**
of files merged: 2

The following are Return Codes which may be produced by the automrg:
v 0 - all differences merged and no conflicts
v 1 - all non-conflict differences merged, and all conflicts resolved
v 2 - all non-conflict differences merged, and all conflicts passed to Visual Merge
v 3 - directory merge; check run status of each set of files for results.
v 10 - all non-conflict differences merged, and error(s) resolving conflicts
v 20 - merge failure
v 89 - program error

AutoMerge

Chapter 30. AutoMerge 273

274 Commands Reference

Appendix. Querying the TeamConnection database

You can write queries against the TeamConnection database from the following
interfaces:
v The Edit Task List window
v The Query field on the filter windows
v The TeamConnection command window
v An operating system command line prompt

Queries written in these environments issue a report -view command to query the
TeamConnection database for information about TeamConnectionobjects. You
specify select criteria for the query using the -where attribute. This appendix
provides the names of views you can request reports for. These views represent
tables in the TeamConnection database. The field names provided for each view
represent column names.

Note: If you do not specify selection criteria, such as the fields and the search
conditions you want to use, the report query selects all entries for the table
or view indicated that the user has authority to access. This command does
not show any objects in components that you are not authorized to access.

To query the database for parts whose base names begin with prt, for example,
you write a query against the baseName column of the PartView table. The
following is an example:
teamc report -view PartView -release tcid20 -where "baseName like 'prt%'"

Constructing queries

You construct queries differently in different interfaces. The following shows how
to construct the query in the previous example from each interface:
v Edit Task List window:

1. Select the Query radio button
2. Select Parts from the Query list box
3. In the Task field, type baseName like ’prt%’

4. In the Release field, type tcid20

v Query field on the Parts filter window:
1. In the Release field, type tcid20

2. In the Query field, type baseName like ’prt%’

v Command Window or command line prompt:
Type the following command:
teamc report -view compView -where "name like 'comp%'"

The teamc report -general command displays a ″roll your own″ type of report.
You can tailor your report to extract information not readily available using the
standard views and reports. Use this command to specify the fields you wish to
view. This report is in raw format with each field separated by the ″|″
varcharacter.

“Views and report output” on page 277 lists all the field names that are in each
TeamConnection view.

© Copyright IBM Corp. 1992, 1999 275

Rules for defining queries

TeamConnection queries follow the syntax of SQL queries, except for the addition
of teamc report -view at the beginning of the command. The following are basic
rules for defining queries:
v View and field names are not case-sensitive. Any of the following retrieves

information from the baseName field: baseName, basename, BASENAME.
v You can abbreviate view names to their shortest unique string.

AccessDownView, for example, can be abbreviated to AccessD. You cannot
abbreviate field names.

v When you specify values for date fields, use the format yyyy/mm/dd hh:mm:ss.
v When you search for specific field values, you must type the value of the field

exactly as it exists in the database. The database values are case sensitive. The
following query, for example, returns the part named mypart.c, but not
MYPART.C:
teamc report -view PartView -where "baseName in ('mypart.c')"

To construct a case-insensitive query, you can include the DB2 UCASE()
function in your query. This function performs an uppercase comparison. The
following query, for example, returns both mypart.c and MYPART.C:
teamc report -view PartView -where "ucase(baseName) in ('MYPART.C')"

v Use keywords such as and, or, and not to enhance search conditions.
v Enclose values for varcharacter fields in single quotation marks.
v Use the following relational operators (also called comparison operators) to

describe a relationship between two values:

Table 8. Relational operators

Operators The search is based on the following:

= Only one item you type.

<> All items except for the one item you type.

> An alphanumeric string greater than the one you type.

>= An alphanumeric string greater than or equal to the one you type.

< An alphanumeric string less than the one you type.

<= An alphanumeric string less than or equal to the one you type.

in Items that you type.

not in All items except for those you type.

276 Commands Reference

|
|
|
|

|

|
|
|

|

|

Table 8. Relational operators (continued)

Operators The search is based on the following:

like The varcharacter string you type. You can use the following:
– The % wildcard varcharacter to match 0 or more varcharacters.
– The _ wildcard varcharacter to match exactly one varcharacter.

If the string you are searching for contains an underscore or percent
varcharacter, as in the file name prt_new.txt, for example, using the like
command you can use the escape or translate function to indicate that
the underscore or percent varcharacter is to be taken literally.

– Escape - The following example identifies ’\’ as the escape
varcharacter and selects all part names starting with prt_:

teamc report -view PartView -release tcid20
-where "baseName like 'prt_%' escape '\'"

– Translate - First you need to find a string that does not appear in the
set of names that you try to find. Then use the translate function to
identify that string as representing the underscore or percent
varcharacter. The following example identifies ’#’ as the underscore
varcharacter and selects all part names starting with prt_:

teamc report -view PartView -release tcid20
-where "translate(baseName,'#','_') like 'prt#%'"

between The items falling between the two values you type.

is null The items that have null values for the associated field.

is not null The items that have values for the associated field.

Note: Selections in reports for date fields using <= or >= return the same
information as if you entered < or >. This is because the date data type
consists of a date and a time. Use the like operator with the < or >
operators to return <= or >= information.

v Path names of files must use forward slashes (/) and not backward slashes (\).
TeamConnection normalizes all file path names according to the UNIX style. If
you use an Intel operating system that creates file and path names with
backward slashes, such as src\file1, then this path name is normalized in the
TeamConnection database as src/file1. If, in this example, you query the
database for:
pathName in ("src\file1")

The part will not be found. You must query this part as follows:
pathName in ("src/file1")

When you extract or checkout files to an Intel platform, the file path names are
converted to use backward slashes.

Views and report output

The remaining sections in this appendix list all the field names that are in each
TeamConnection view. The following explains how this information is presented:
v View names that you can use with the report -view command are marked with

a double asterisk symbol (**). View names without a double asterisk are
available only as subselect criteria. CompMemberView, for example, can be used
only as subselect criteria. You include subselect criteria by writing a nested select

Appendix. Querying the TeamConnection database 277

|
|

|
|

|
|
|
|

statement with your query. Nested select statements are included in the -where
argument of the report -view commands or on the Query fields of the Edit Task
List and filter windows.

v Field names that appear in italics indicate that you can use them as search
criteria, but they do not provide data output.

v Defined configurable fields are added to the end of the report output. They
appear in the same order in which they are defined in the config.ld file.

If your family administrator configures the database fields, the field names in your
database may differ from the field names in the following tables.

The actual size limit for many of the varcharacter attributes listed in these tables is
smaller than the specified limit. For example, the length of the login field in the
Users table is limited to 31 bytes, but you can actually use only 15 varcharacters.
The fields affected are usually related to names, such as userLogin and
releaseName.

AccessDownView**

Access list entries, including those of all child components

Field name (length) Data type Description
authorityName (31) varchar Access authority group name
authorityType (15) varchar Access authority type (granted or restricted)
compId (12) varchar Database ID of the component where access is

granted or restricted
parentCompId (12) varchar Database ID of the parent component
parentId (12) varchar Database ID of the parent for a build
compName (63) varchar Component name
childCompName (63) varchar Child component name
userId (12) varchar Database ID of the user who owns the access

authority
userLogin (32) varchar User’s TeamConnection user ID
userName (64) varchar User’s full name
userArea (32) varchar User’s area or department

Raw output:
childCompName|userLogin|userName|userArea|authorityName|authorityType

AccessFastView

Low level actions granted to users at a component

Field name (length) Data type Description
userId (12) varchar Database ID of the user who owns the access

authority
authorityType (15) varchar Access authority type (granted or restricted)
authorityName (31) varchar Access authority group name
action (15) varchar TeamConnection action name
compId (12) varchar Database ID of the component where access is

granted or restricted

278 Commands Reference

|
|
|

|
|

|
|

|
|

|
|
|
|
|

AccessNInheritView

Low level actions restricted to users at a component

Field name (length) Data type Description
userId (12) varchar Database ID of the user who owns the access

authority
compId (12) varchar Database ID of the component where access is

granted or restricted
authorityType (15) varchar Access authority type (granted or restricted)
authorityName (31) varchar Access authority group name
action (15) varchar TeamConnection action name

AccessTable

Component access list table

Field name (length) Data type Description
compId (12) varchar Database ID of the component where access is

granted or restricted
userId (12) varchar Database ID of the user who owns the access

authority
authorityName (31) varchar Access authority group name
authorityType (15) varchar Access authority type (granted or restricted)

AccessUpView

Access list entries including those of all parent components

Field name (length) Data type Description
authorityName (31) varchar Access authority group name
authorityType (15) varchar Access authority type (granted or restricted)
compId (12) varchar Database ID of the component where access is

granted or restricted
childCompId (12) varchar Database ID of the child component
childId (12) varchar Database ID of the child
compName (63) varchar Component name
parentName (63) varchar Parent component name
userId (12) varchar Database ID of the user who owns the access

authority
userLogin (32) varchar User’s TeamConnection user ID
userName (643) varchar User’s full name
userArea (32) varchar User’s area or department

AccessView**

Component access list entries

Field name (length) Data type Description
compId (12) char Database ID of the component where access is

granted or restricted
compName (63) varchar Component name
userId (12) char Database ID of the user who owns the access

authority
userLogin (32) varchar User’s TeamConnection user ID

Appendix. Querying the TeamConnection database 279

Field name (length) Data type Description
userName (64) varchar User’s full name
userArea (32) varchar User’s area or department
authorityName (31) varchar Access authority group name
authorityType (15) varchar Access authority type (granted or restricted)

Raw output:
compName|userLogin|userName|userArea|authorityName|authorityType

Approvals

Work area approval records table

Field name (length) Data type Description
trackId (12) char Database ID of the workarea
workAreaId (12) char Database ID of the work area for the approval

record
attribute (12) char
state (15) varchar Approval record state
addDate (32) varchar Date created
lastUpdate (32) varchar Date of last update

ApprovalView**

Work area approval records

Field name (length) Data type Description
trackId (12) char Database ID of the workarea
workAreaId (12) char Database ID of the work area for the approval

record
workAreaName (32) varchar Name of work area
releaseId (12) char Database ID of the release for the approval record
releaseName (32) varchar Release name
defectId (12) char Database ID of the defect
defectPrefix (31) varchar Defect or feature prefix
defectName (31) varchar Defect or feature identifier
defectReference (31) varchar Defect or feature reference
defectAbstract (127) varchar Defect or feature abstract
defectType (9) varchar Defect or feature
userId (12) char Database ID of the user who owns the approval

record
userName (64) varchar Approver’s full name
userLogin (32) varchar Approver’s TeamConnection user ID
userArea (32) varchar Approver’s area or department
state (15) varchar Approval record state
addDate (32) varchar Date created
lastUpdate (32) varchar Date of last update

Raw output:
workAreaName|defectPrefix|defectName|releaseName|userLogin|userName|userArea|

state|addDate|lastUpdate|defectReference|defectAbstract|defectType

280 Commands Reference

Approvers

Release approver list table

Field name (length) Data type Description
releaseId (12) char Database ID of the release
userId (12) char Database ID of the user

ApproverView**

Release approver list entries

Field name (length) Data type Description
releaseId(12) char Database ID of the release associated with the

approver list
releaseName (32) varchar Release name
userId (12) char Database ID of the user who is the approver
userLogin (32) varchar Approver’s TeamConnection user ID
userName (64) varchar Approver’s full name
userArea (32) varchar Approver’s area or department

Raw output:
releaseName|userLogin|userName|userArea

Authority**

Authority table

Field name (length) Data type Description
name (31) varchar Access authority group name
action (15) varchar Low-level action name

BchangeView**

Part changes (Tree view information)

Note: This view is only available in raw output.

Field name (length) Data type Description
pathId (12) char Database ID of the part’s path name
pathName (196) varchar Part’s full path name
trackId (12) char Database ID of the workarea
workAreaId (12) char Database ID of the work area for this part change
workAreaName (32) varchar Name of the workarea
defectId (12) char Database ID of the defect or feature
defectPrefix (31) varchar Defect or feature prefix
defectName (31) varchar Defect or feature identifier
defectReference (31) varchar Defect or feature reference
defectAbstract (127) varchar Defect or feature abstract
defectType (9) varchar Defect or feature
fileId (12) char Database ID of the file
partId (12) char Database ID of the part
partType (127) varchar Type of the part
releaseId (12) char Database ID of the release

Appendix. Querying the TeamConnection database 281

Field name (length) Data type Description
releaseName (32) varchar Release name
tipOverId (12) char Database ID of other versions the object is

associated with
committedVersion (47) varchar Version name of the part when last committed
compId (12) char Database ID of the component
compName (63) varchar Component name of the part where the change is

included
versionId (4) integer Database ID of the part’s version
versionSID (47) varchar Version name of the changed part
driverId (12) char Database ID of the driver where the change is

included and committed
driverName (31) varchar Name of the driver where the change is included
changeType (11) varchar Type of part change
userId (12) char Database ID of the user who made the change to

the part

Raw output:
workareaName|defectName|compName|pathName|versionSID|defectType|releaseName|
driverName|partType

BcompView**

Component properties

Note: This view is only available in raw output.

Field name (length) Data type Description
id char Database ID of the component
name (63) varchar Component name
userId char Database ID of the user who owns the component
description (127) varchar Component description
addDate (25) varchar Date created
dropDate (25) varchar Date deleted
lastUpdate (25) varchar Date of last update
compProcess (31) varchar Component process name
featureDSR (3) varchar Feature design, size, and review subprocess? (yes

or no)
featureVerify (3) varchar Feature verify subprocess? (yes or no)
defectDSR (3) varchar Defect design, size, and review subprocess? (yes or

no)
defectVerify (3) varchar Defect verify subprocess? (yes or no)
userLogin (31) varchar Component owner’s TeamConnection user ID
userName (63) varchar Component owner’s full name
userArea (31) varchar Component owner’s area or department

Raw output:
hierarchy|name

BpartView**

Part properties

282 Commands Reference

Note: This view is only available in raw output.

Field name (length) Data type Description
id char Database ID of this part version
fileId char Database ID of the file
partId char Database ID of the part
workAreaId char Database ID of the work area
builderId char Database ID of the builder
paserId char Database ID of the parser
nuPathId char Database ID of the path name
addDate (25) varchar Date created
dropDate (25) varchar Date deleted
nuAddDate (25) varchar New creation date
nuDropDate (25) varchar New deletion date
lastUpdate (25) varchar Date of last update
baseName (127) varchar Part base name
pathName (195) varchar Part path name
nuPathName (195) varchar Pending new part path name
releaseName (31) varchar Release name
releaseId char
fileType (7) varchar Type of the file, as it exists outside

TeamConnection (text or binary)
partType (7) varchar Type of the part
userLogin (31) varchar TeamConnection user ID who locked or checked

out the part
fmode (4) varchar File mode
compName (63) varchar Component name
currentVersion (8) varchar Name of the current part version
committedVersion varchar Last committed part version name
workAreaName (14) varchar Name of current work area
changeType (8) varchar The type of change to the part. A value of bulk

means the part’s content has changed; attrib
means the part’s attributes have changed; and none
means the part has not changed.

builderName (63) varchar Name of the part’s builder
parserName (63) varchar Name of the part’s parser
buildStatus (15) varchar Status of the build
parameters (1024) varchar Build parameters
sourceId char Database ID of the part’s source. Defines where the

part was derived from and is used to identify
common parts.

temporary (3) varchar Identifies parts that are deleted after a build,
because they are no longer necessary.

workAreaChange (8) varchar The type of change to the part in the work area. A
value of bulk means the part’s content has
changed; attributes means the part’s attributes
have changes; all means both the contents and
attributes have changed; and none means the part
has not changed.

translation (31) varchar Relationship of the part to the translation process.
transState (15) varchar Translation state of the part.
restricted (3) varchar Is the part restricted in this release? (yes or no)

Raw output:

Appendix. Querying the TeamConnection database 283

hierarchy|baseName|releaseName|compName|committedVersion|addDate|dropDate|lastUpdate|
pathName|currentVersion|nuAddDate|nuDropDate|nuPathName|userLogin|fmode|
fileType|changeType|workAreaName|partType|temporary|builderName|
parserName|parentName|hasChildren|buildStatus|typeOfRelation|parameters|
workAreaChange|restricted|translation|transState

Builders

Builder properties table

Field name (length) Data type Description
id (12) char Database ID of the builder
sequenceId (4) integer
releaseId (12) char Database ID of the release associated with the

builder
name (127) varchar Builder name
parameters (1025) varchar Builder parameters
rebuildTimeStamp (32) varchar Time stamp of most recent update to this builder
addDate (32) varchar Date the builder was created
dropDate (32) varchar Date the builder was deleted
lastUpdate (32) varchar Date the builder was last changed
buildScript (259) varchar Name you want the build script extracted as
goodRCEvaluator (5) varchar Boolean expression to determine successful build

event
RCCondition (5) varchar Return code condition
rcValue (9) varchar Return code value
bulkType (7) varchar Type of data stored (binary, text, or none)
bulkTypeNum (4) integer Database ID of type of data stored
environment (31) varchar Environment this builder supports
timeout (4) integer Number of minutes allowed to build until timeout

detected
billOfMaterials (4) integer N/A
setupOptions (259) varchar Processor options
SQLText (259) varchar Specific SQL text

BuilderView**

Builder properties

Field name (length) Data type Description
id (12) char Database ID of the builder
releaseId (12) char Database ID of the release associated with the

builder
releaseName (32) varchar Release name
name (127) varchar Builder name
parameters (1025) varchar Builder parameters
rebuildTimeStamp (32) varchar Time stamp of most recent update to this builder
addDate (32) varchar Date the builder was created
dropDate (32) varchar Date the builder was deleted
lastUpdate (32) varchar Date the builder was last changed
buildScript (259) varchar Name you want build script extracted as
RCCondition (5) varchar Return code condition
rcValue (9) varchar Return code value
bulkType (7) varchar Type of data stored (binary, text, or none)
bulkTypeNum (4) integer Database ID of type of data stored
environment (31) varchar Environment this builder supports

284 Commands Reference

Field name (length) Data type Description
timeout (4) integer Number of minutes allowed to build until timeout

detected
billOfMaterials (4) integer
setupOptions (259) varchar Processor options
SQLText (259) varchar Specific SQL query text

Raw output:
name|releaseName|parameters|rebuildTimeStamp|buildScript|rcCondition|

bulkType|rcValue|environment|timeout

Cfgcomproc**

Configurable process — component table

Field name (length) Data type Description
name (31) varchar Component process name
config (15) varchar Subprocess name

Raw output:
name|config

Cfgrelproc**

Configurable process — release table

Field name (length) Data type Description
name (31) varchar Release process name
config (15) varchar Subprocess name

Raw output:
name|config

ChangeExtractView

Part changes

Field name (length) Data type Description
pathId (12) char Database ID of the part’s path name
pathName (196) varchar Part’s full path name
trackId (12) char Database ID of the workarea
workAreaId (12) char Database ID of the work area for this part change
workAreaState (15) varchar State of the work area
fileId (12) char Database ID of the file
partId (12) char Database ID of the part
partType (127) varchar Type of the part
OSRelTipVerionId (16) char Database ID of other versions the object is

associated with
versionId (4) integer Database ID of the part’s version
partSourceId (12) char Database ID of the part’s source. Defines where the

part is derived from and is used to identify
common parts

oVersionId (12) char
versionSID (47) varchar Version name of the changed part

Appendix. Querying the TeamConnection database 285

Field name (length) Data type Description
driverId (12) char Database ID of the driver where the change is

included and committed
changeType (11) varchar Type of part change

ChangeView**

Part changes, including defect and feature information

Field name (length) Data type Description
pathId (12) char Database ID of the part’s path name
pathName (196) varchar Part’s full path name
trackId (12) char Database ID of the workarea
workAreaId (12) char Database ID of the work area for this part change
workAreaName (32) varchar Name of the current work area
defectId (12) char Database ID of the defect or feature
defectPrefix (31) varchar Defect or feature prefix
defectName (31) varchar Defect or feature identifier
defectReference (31) varchar Defect or feature reference
defectAbstract (127) varchar Defect or feature abstract
defectType (9) varchar Defect or feature
workAreaState (15) varchar State of the work area
fileId (12) char Database ID of the file
partId (12) char Database ID of the part
partType (127) varchar Type of the part
releaseId (12) char Database ID of the release
releaseName (32) varchar Release name
tipOverId (12) char Database ID of other versions the object is

associated with
committedVersion (47) varchar Last committed part version name
versionId (4) integer Database ID of the part’s version
oVersionId (12) char
versionSID (47) varchar Version name of the changed part
sourceId (12) char Database ID of the part’s source
changeDate (32) varchar Date the part was last updated
driverId (12) char Database ID of the driver where the change is

included and committed
driverName (31) varchar Name of the driver where the change is included
changeType (11) varchar Type of part change
userId (12) char Database ID of the user who made the change to

the part
userLogin (32) varchar Component owner’s TeamConnection user ID
userName (64) varchar Component owner’s full name
userArea (32) varchar Component owner’s area or department

Raw output:
releaseName|workAreaName|defectName|driverName|versionSID|pathName|type|

partType|defectReference|defectAbstract|defectPrefix|userLogin|userName|
userArea

286 Commands Reference

Changes

Part changes

Field name (length) Data type Description
pathId (12) char Database ID of the part’s path name
trackId (12) char Database ID of the workarea
workAreaId (12) char Database ID of the work area for this part change
workAreaState (15) varchar State of the work area
fileId (12) char Database ID of the file
partId (12) char Database ID of the part
partType (127) varchar Type of the part
versionId (4) integer Database ID of the part’s version SID
sourceId (12) char Database ID of the part’s source
changeDate (32) varchar Date the part was last updated
driverId (12) char Database ID of the driver where the change is

included and converted
changeType (11) varchar Type of part change
userId (12) char Database ID of the user who made the part

changes

Collectors

Collectors table

Field name (length) Data type Description
id char
typeName varchar

Collisions

Part collision records table

Field name (length) Data type Description
fileId (12) char Database ID of the part for this collision
partId (12) char Database ID of the part
partType (127) varchar Type of the part
workAreaId (12) char Database ID of the work area for this collision
altWorkAreaId (12) char Database ID of the alternate work area for this

collision
state (15) varchar State of the collision record
addDate (32) varchar Date created
lastUpdate (32) varchar Date of last update
localpartVersionId (16) char ID of the local part name
altPartVersionId (16) char ID of the alternate part name
resolvedpartVrsnId (16) char ID of the resolved part name

CollisionView**

Part collision records

Field name (length) Data type Description
fileId char Database ID of the part for this collision
pathId (12) char Database ID of the part

Appendix. Querying the TeamConnection database 287

Field name (length) Data type Description
pathName (196) varchar Part’s full path name
partId (12) char Database ID of the part
partType (127) varchar Type of the part
workAreaId (12) char Database ID of the work area for this collision
workAreaName (32) varchar Name of the work area
releaseId (12) char Database ID of the release
releaseName (32) varchar Name of the release
relProcess (32) varchar Name of the release process
altWorkAreaId (12) char Database ID of the alternate work area for this

collision
state (15) varchar State of the collision record
addDate (32) varchar Date created
lastUpdate (32) varchar Date of last update
localVersionId (12) char Database ID of the version in current work area
localVersion (47) varchar Version in current work area
alternateVersion (31) varchar Version that causes the collision
altOVersionId (12) char
alternateVersion (47) varchar Version of the part that caused the collision
localChangeType (12) varchar Change type of the version in the current work

area
localSourceId (12) char Source ID of the version in the current work area
altChangeType (12) varchar Change type of the version that causes the

collision
altSourceId (12) char Source ID of the version that causes the collision
resolvedChangeType (12) varchar Change type of the version that the collision

resolved to
resolvedSourceId (12) char Source ID of the version that the collision resolved

to

Raw output:
pathName|workAreaName|releaseName|localVersion|alternateVersion|partType|

state|addDate|lastUpdate|relProcess

CompMembers

Component hierarchy table

Field name (length) Data type Description
parentId (12) char Database ID of the parent component
childId (12) char Database ID of the component
rank (4) integer Number of links or generations between parent

and child
reference (4) integer Number of references to this parent-child-rank

combination

CompMemberView

Component hierarchy linkages

Field name (length) Data type Description
parentId (12) char Database ID of the parent component
parentCompName(63) varchar Parent component name
childId (12) char Database ID of the component
childCompName (63) varchar Component name

288 Commands Reference

Field name (length) Data type Description
rank (4) integer Number of links or generations between parent

and child
reference (4) integer Number of references to this parent-child-rank

configuration

Components

Component properties table

Field name (length) Data type Description
id (12) char Database ID of the component
name (63) varchar Component name
userId (12) char Database ID of the user who owns the component
featureDSR (3) varchar Feature design, size, and review subprocess? (yes

or no)
featureVerify (3) varchar Feature verify subprocess? (yes or no)
defectDSR (3) varchar Defect design, size, and review subprocess? (yes or

no)
defectVerify (3) varchar Defect verify subprocess? (yes or no)
description (127) varchar Component description
addDate (32) varchar Date created
dropDate (32) varchar Date deleted
lastUpdate (32) varchar Date of last update
compProcess (31) varchar Component process name

CompView**

Component properties

Field name (length) Data type Description
id (12) char Database ID of the component
name (63) varchar Component name
userId (12) char Database ID of the user who owns the component
userLogin (32) varchar Component owner’s TeamConnection user ID
userName (64) varchar Component owner’s full name
userArea (32) varchar Component owner’s area or department
featureDSR (3) varchar Feature design, size, and review subprocess? (yes

or no)
featureVerify (3) varchar Feature verify subprocess? (yes or no)
defectDSR (3) varchar Defect design, size, and review subprocess? (yes or

no)
defectVerify (3) varchar Defect verify subprocess? (yes or no)
description (127) varchar Component description
addDate (32) varchar Date created
dropDate (32) varchar Date deleted
lastUpdate (32) varchar Date of last update
compProcess (31) varchar Component process name

Raw output:
name|userLogin|userName|userArea|addDate|dropDate|lastUpdate|description|

compProcess|featureDSR|featureVerify|defectDSR|defectVerify

Appendix. Querying the TeamConnection database 289

Config**

Configurable field types table

Field name(length) Data type Description
configType (15) varchar Name of the configurable field type
name (31) varchar Value for the configurable field type
dflt (3) varchar Is this entry the default value? (yes or no)
value1 (4) integer (not currently used)
value2 (4) integer (not currently used)
description (127) varchar Description of the value
kind (4) integer kind of configurable field (symantic rules)
driverId (4) integerr driver number
driverSeq (4) integer driver subset number
dependent (4) integer dependent number
dependSeq (4) integerr dependent subset number
choiceOrder (4) integer relative ordering number
helpText(1999) varchar name or field help information

Raw Output
configType|name|dflt|value1|value2|description|kind|driverId|driverSeq|dependent|

dependSeq|choiceOrder|helpText

ConfigPartView**

ConfigPartView can be queried only by the Report -general command.

Field name (length) Data type Description
contextRelease (32) varchar
releaseName (32) varchar Name of the release
contextName (47) varchar
contextOID (12) char
OSReleaseId (12) char
id (4) integer
partId (12) char Database ID of the part
partType (127) varchar Type of part as it is stored in TeamConnection
workareaId (12) char Database ID of the workarea
workAreaName (32) varchar Name of the work area
OVersionId (12) char
currentVersion (47) varchar Name of the current part version
sourceId (12) char Source ID of the part version
fileType (8) varchar Type of part as it is stored in TeamConnection
nuAddDate (32) varchar The new creation date for the object
nuDropDate (32) varchar New delete date for the object
lastUpdate (32) varchar Date the object was last updated
nuPathId (12) char Database ID of the new path name
baseName (128) varchar Part’s base name
partName (196) varchar nuPathName of the part version
nuPathName ((196)) varchar The new path name for the part

Raw output:
partName|targetName|status|targetDate|active

290 Commands Reference

Coreqs

Corequisites table

Field name (length) Data type Description
trackId (12) char Database ID of the workarea
workAreaId (12) char Database ID of the workarea
groupId (4) integer Database ID of the corequisite group to which the

work area belongs

CoreqView**

Coreq properties

Field name (length) Data type Description
trackId (12) char Database ID of the work area
workAreaId (12) char Database ID of the workarea
name (32) varchar The name of the work area
releaseId (12) char Database ID of the release
releaseName (32) varchar The name of the release
defectId (12) char Database ID of the defect
defectPrefix (31) varchar The defect prefix of the corequisite workarea
defectName (31) varchar Defect name for the corequisite work area
defectType (9) varchar Defect or feature
state (15) varchar The state of the corequisite work area
groupID (4) integer ID of a group of corequisite work areas

Raw output:
groupId|workareaName|defectName|defectType|releaseName|state

DefectDownView**

Defect properties, including those of child components

Field name (length) Data type Description
id (12) char Database ID of the defect
defectType (9) varchar Defect
prefix (31) varchar Defect prefix
name (31) varchar Defect identifier
envName (31) varchar Environment where discovered
state (15) varchar Defect state
severity (31) varchar Severity level
abstract (127) varchar Defect abstract
reference (31) varchar Defect reference
answer (31) varchar Accept or return answer type
driverName (31) varchar Name of driver where discovered
lastUpdate (32) varchar Date of last update
addDate (32) varchar Date created
assignDate (32) varchar Date when reassigned
responseDate (32) varchar Date accepted or returned
endDate (32) varchar Date closed or canceled
releaseId (12) char Database ID of the release where discovered
releaseName (32) varchar Name of release where discovered

Appendix. Querying the TeamConnection database 291

Field name (length) Data type Description
compId (12) char Database ID of the component associated with the

defect
parentCompId (12) char Database ID of the parent component
parentId (12) char Database ID of the parent part
compName (63) varchar Component name
originId (12) char Database ID of the defect originator
originLogin (32) varchar Defect originator’s TeamConnection user ID
originName (64) varchar Defect originator’s full name
originArea (32) varchar Defect originator’s area or department
ownerId (12) char Database ID of the defect owner
ownerLogin (32) varchar Defect owner’s TeamConnection user ID
ownerName (64) varchar Defect owner’s full name
ownerArea (32) varchar Defect owner’s area or department
age (4) integer Age of the defect (dependent on the family’s aging

mechanism)
duplicate (31) varchar Duplicate defect or feature identifier
notesDB (260) varchar The Lotus Notes database where the object was

created
notesId (256) varchar The Lotus Notes ID of the creator of the object
symptom (16) varchar Specifies the symptom associated with the defect
priority (16) varchar Specifies timing or scheduling requirements for

resolving a defect
target (32) varchar Specifies a target (such as a driver or a date) for

defect resolution or availability
phaseFound (16) varchar Specifies the development phase in progress when

the defect was discovered
phaseInject (16) varchar Specifies the development phase in progress when

the defect was injected into the code

Raw output:
prefix|name|childCompName|releaseName|ownerLogin|state|answer|severity|

abstract|age|envName|driverName|duplicate|lastUpdate|addDate|assignDate|
responseDate|endDate|ownerName|ownerArea|reference|originLogin|originName|
originArea

Defects

Defect properties table

(This table is also used to record features.)

Field name (length) Data type Description
id (12) char Database ID of the defect or feature
defectType (9) varchar defect or feature
prefix (31) varchar Defect or feature prefix
name (31) varchar Defect or feature identifier
compId (12) char Database ID of the component associated with the

defect or feature
releaseId (12) char Database ID of the release associated with the

defect or feature
envName (31) varchar Environment where discovered (when type is

defect, blank otherwise)
state (15) varchar Defect or feature state
severity (31) varchar Severity level (when type is defect)
abstract (127) varchar Defect or feature abstract

292 Commands Reference

Field name (length) Data type Description
reference (31) varchar Defect or feature reference
answer (31) varchar Accept or return answer type
driverName (31) varchar Name of driver where discovered (when type is

defect)
lastUpdate (32) varchar Date of last update
addDate (32) varchar Date created
assignDate (32) varchar Date when reassigned
responseDate (32) varchar Date accepted or returned
endDate (32) varchar Date closed or canceled
originId (12) char Database ID of the user who opened the defect or

feature
ownerId (12) char Database ID of the defect or feature owner
age (4) integer Age of defect or feature (dependent on the aging

mechanism of the family)
duplicate (31) varchar Defect or feature for which this defect or feature is

a duplicate
notesDB (260) varchar The Lotus Notes database where the object was

created
notesID (256) varchar The Lotus Notes ID of the creator of the object

DefectView**

Defect properties

Field name (length) Data type Description
id (12) char Database ID of the defect
defectType (9) varchar Defect
prefix (31) varchar Defect prefix
name (31) varchar Defect identifier
compId (12) char Database ID of the component associated with the

defect
releaseId (12) char Database ID of the release where discovered
releaseName (32) varchar Name of release where discovered
envName (31) varchar Environment where discovered
state (15) varchar Defect state
severity (31) varchar Severity level
abstract (127) varchar Defect abstract
reference (31) varchar Defect reference
answer (31) varchar Accept or return answer type
driverName (31) varchar Name of driver where discovered
lastUpdate (32) varchar Date of last update
addDate (32) varchar Date created
assignDate (32) varchar Date when reassigned
responseDate (32) varchar Date accepted or returned
endDate (32) varchar Date closed or canceled
originId (12) char Database ID of the defect originator
originLogin (32) varchar Defect originator’s TeamConnection user ID
originName (64) varchar Defect originator’s full name
originArea (32) varchar Defect originator’s area or department
ownerId (12) char Database ID of the defect owner
ownerLogin (32) varchar Defect owner’s TeamConnection user ID
ownerName (64) varchar Defect owner’s full name
ownerArea (32) varchar Defect owner’s area or department

Appendix. Querying the TeamConnection database 293

Field name (length) Data type Description
age (4) integer Age of the defect (dependent on the family’s aging

mechanism)
duplicate (31) varchar Duplicate defect or feature identifier
notesDB (260) varchar The Lotus Notes database where the object was

created
notesID (256 varchar The Lotus Notes ID of the creator of the object
symptom (16) varchar Specifies the symptom associated with the defect
priority (16) varchar Specifies timing or scheduling requirements for

resolving a defect
target (32) varchar Specifies a target (such as a driver or a date) for

defect resolution or availability
phaseFound (16) varchar Specifies the development phase in progress when

the defect was discovered
phaseInject (16) varchar Specifies the development phase in progress when

the defect was injected into the code

Raw output:
prefix|name|compName|releaseName|ownerLogin|state|answer|severity|abstract|age|

envName|driverName|duplicate|lastUpdate|addDate|assignDate|responseDate|
endDate|ownerName|ownerArea|reference|originLogin|originName|originArea|
notesDB|notesID

DriverMembers

Driver members table

Field name (length) Data type Description
driverId (12) char Database ID of the driver
driverState (15) varchar State of the driver
trackId (12) char Database ID of the workarea
workAreaId (12) char Database ID of the workarea
committedOVersinId (12) char
committedVersion (47) varchar Name of the committed version for the work area
workareaOVersionId (12) char

DriverMemberView**

Driver members

Field name (length) Data type Description
driverId (12) char Database ID of the driver
driverName (31) varchar Driver name
driverState (15) varchar State of the driver
trackId (12) char Database ID of the committed version for the work

area
workAreaId (12) char Database ID of the workarea
workAreaName (32) varchar Name of the current work area
releaseId (12) char Database ID of the release
releaseName (32) varchar Release name
userId (12) char User ID of the driver owner
trackUserLogin (32) varchar Work area owner’s TeamConnection User ID
trackUserName (64) varchar Work area owner’s full name
trackUserArea (32) varchar Work area owner’s area or department

294 Commands Reference

Field name (length) Data type Description
defectId (12) char Database ID of the defect for which the workarea

was created
defectPrefix (31) varchar Defect or feature prefix
defectName (31) varchar Defect or feature identifier
defectReference (31) varchar Defect or feature reference
defectAbstract (127) varchar Defect or feature abstract
defectType (9) varchar Defect or feature
committedOVersinId (12) char
committedVersion (47) varchar The version of the driver that the work area was

added to or the version of the driver that the
drivermember is in. You can use this field to
determine the order in which work areas were
added to the driver.

workareaOVersionId (12) char
workAreaVersion (47) varchar The name of the latest version of the work area

added to the driver. If the workarea was in the
integrate state when added to the driver, this field
is the name of the latest version in the work area.

Raw output:
driverName|releaseName|workAreaName|defectName|defectReference|

workAreaUserLogin|workAreaUserName|workAreaUserArea|defectPrefix|
defectType|committedVersion|workAreaVersion

Drivers

Driver properties table

Field name (length) Data type Description
id (12) char Database ID of the driver
name (31) varchar Driver name
releaseId (12) char Database ID of the release associated with the

driver
userId (12) char Database ID of the user who owns the driver
addDate (32) varchar Date created
commitDate (32) varchar Date committed
lastUpdate (32) varchar Date of last update
state (15) varchar Driver state
driverType (31) varchar Driver type

DriverView**

Driver properties

Field name (length) Data type Description
id (12) char Database ID of the driver
name (31) varchar Driver name
releaseId (12) char Database ID of the release
releaseName (32) varchar Release name
userId (12) char Database ID of the user who owns the driver
userLogin (32) varchar Driver owner’s TeamConnection user ID
userName (64) varchar Driver owner’s full name
userArea (32) varchar Driver owner’s area or department
addDate (32) varchar Date created

Appendix. Querying the TeamConnection database 295

Field name (length) Data type Description
commitDate (32) varchar Date committed
lastUpdate (32) varchar Date of last update
state (15) varchar Driver state
driverType (31) varchar Driver type

Raw output:
name|releaseName|type|userLogin|userName|userArea|addDate|commitDate|

lastUpdate|state

EnvView**

Release environment list entries

Field name (length) Data type Description
name (31) varchar Environment name
releaseId (12) char Database ID of the release
releaseName (32) varchar Release name
userId (12) char Database ID of the user
userLogin (32) varchar Tester’s TeamConnection user ID
userName (64) varchar Tester’s full name
userArea (32) varchar Tester’s area or department

Raw output:
name|releaseName|userLogin|userName|userArea

FeatureDownView**

Feature properties, including those of child components

Note: FeatureDownView and DefectView share the same field names. Some of the
field names are used only in DefectView, so these fields are listed as not
applicable (N/A) for FeatureDownView in the following table.

Field name (length) Data type Description
id (12) char Database ID of the feature
defectType (9) varchar Feature
prefix (31) varchar Feature prefix
name (31) varchar Feature identifier
compId (12) char Database ID of the component associated with the

feature
parentCompId (12) char Database ID of the parent component
parentId (12) char Database ID of the parent part
compName (63) varchar Component name
childCompName (63) varchar Child component name
releaseId (12) char Database ID of the release where discovered
releaseName (32) varchar Name of release where discovered
envName (31) varchar Environment name
state (15) varchar Feature state
severity (31) varchar Severity of the defect or feature (configurable)
abstract (127) varchar Feature abstract
reference (31) varchar Feature reference
answer (31) varchar Accept or return answer type
driverName (31) varchar Name of the driver

296 Commands Reference

Field name (length) Data type Description
lastUpdate (32) varchar Date of last update
addDate (32) varchar Date created
assignDate (32) varchar Date when reassigned
responseDate (32) varchar Date accepted or returned
endDate (32) varchar Date closed or canceled
originId (12) char Database ID of the feature originator
originLogin (32) varchar Feature originator’s TeamConnection user ID
originName (64) varchar Feature originator’s full name
originArea (32) varchar Feature originator’s area or department
ownerId (12) char Database ID of the feature owner
ownerLogin (32) varchar Feature owner’s TeamConnection user ID
ownerName (64) varchar Feature owner’s full name
ownerArea (32) varchar Feature owner’s area or department
age (4) integer Age of the feature (dependent on the family’s

aging mechanism)
duplicate (31) varchar Duplicate defect or feature identifier
notesDB (260) varchar The Lotus Notes database where the object was

created
notesID (256) varchar The Lotus Notes ID of the creator of the object
priority (16) varchar Specifies timing or scheduling requirements for

resolving a feature
target (32) varchar Specifies a target (such as a driver or a date) for

feature resolution or availability

Raw output:
prefix|name|childCompName|ownerLogin|ownerName|state|abstract|age|duplicate|

lastUpdate|addDate|assignDate|responseDate|endDate|ownerArea|reference|
originLogin|originName|originArea|releaseName|answer|notesDB|notesID

FeatureView**

Feature properties

Note: FeatureView and DefectView share the same field names. Some of the field
names are used only in DefectView, so these fields are listed as not
applicable (N/A) for FeatureView in the following table.

Field name (length) Data type Description
id (12) char Database ID of the feature
defectType (9) varchar Feature
prefix (31) varchar Feature prefix
name (31) varchar Feature identifier
compId (12) char Database ID of the component associated with the

feature
compName (63) varchar Name of the component the feature was opened

for
releaseId (12) char Database ID of the release where discovered
releaseName (32) varchar Name of release where discovered
envName (31) varchar Name of the environment
state (15) varchar Feature state
severity (31) varchar Severity of the defect or feature (configurable)
abstract (127) varchar Feature abstract
reference (31) varchar Feature reference
answer (31) varchar Accept or return answer type
driverName (31) varchar Name of the driver

Appendix. Querying the TeamConnection database 297

Field name (length) Data type Description
lastUpdate (32) varchar Date of last update
addDate (32) varchar Date created
assignDate (32) varchar Date when reassigned
responseDate (32) varchar Date accepted or returned
endDate (32) varchar Date closed or canceled
originId (12) char Database ID of the feature originator
originLogin (32) varchar Feature originator’s TeamConnection user ID
originName (64) varchar Feature originator’s full name
originArea (32) varchar Feature originator’s area or department
ownerId (12) char Database ID of the feature owner
ownerLogin (32) varchar Feature owner’s TeamConnection user ID
ownerName (64) varchar Feature owner’s full name
ownerArea (32) varchar Feature owner’s area or department
age (4) integer Age of the feature (dependent on the family’s

aging mechanism)
duplicate (31) varchar Duplicate defect or feature identifier
notesDB (260) varchar The Lotus Notes database where the object was

created
notesID (256) varchar The Lotus Notes ID of the creator of the object
priority (16) varchar Specifies timing or scheduling requirements for

resolving a feature
target (32) varchar Specifies a target (such as a driver or a date) for

feature resolution or availability

Raw output:
prefix|name|compName|ownerLogin|ownerName|state|abstract|age|duplicate|

lastUpdate|addDate|assignDate|responseDate|endDate|ownerArea|reference|
originLogin|originName|originArea|releaseName|answer|notesDB|notesID

Files**

Part properties

Field name (length) Data type Description
id (12) char Database ID of the file
partId (12) char Database ID of the part
compId char Database ID of the component
pathId char Database ID of the path
partType (127) varchar Type of the part
compId (12) char Database ID of the component
compName (63) varchar Name of the component
pathId (12) char Database ID of the file path
pathName (196) varchar Path name of the part
baseName (128) varchar Base name of the part (name without the directory

path)
addDate (32) varchar Date created
dropDate (32) varchar Date deleted
lastUpdate (32) varchar Date of last update
versionId (16) char Database ID of the part’s version
releaseId (12) char Database ID of the release
translation (31) varchar Relationship of the part to the translation process.
restricted (4) varchar Is the part restricted in this release? (yes or no)

298 Commands Reference

FixDownView

Fix records, including those for child components

Field name (length) Data type Description
trackId (12) char Database ID of the work area
workAreaId (12) char Database ID of the workarea
workAreaName (32) varchar Name of the work area
releaseId (12) char Database ID of the release
releaseName (32) varchar Release name
defectId (12) char Database ID of the defect
defectPrefix (31) varchar Defect or feature prefix
defectName (31) varchar Defect or feature identifier
defectAbstract (127) varchar Defect or feature abstract
defectReference (31) varchar Defect or feature reference
defectType (9) varchar Defect or feature
userId (12) char Database ID of the user who owns the fix record
userLogin (32) varchar Fix record owner’s TeamConnection user ID
userName (64) varchar Fix record owner’s full name
userArea (32) varchar Fix record owner’s area or department
compId (12) char Database ID of the component associated with the

fix record
parentCompId (12) char Database ID of the parent component
parentId (12) char Database ID of the parent part
compName (63) varchar Component name
childCompName (63) varchar Child component name
state (15) varchar Fix record state
addDate (32) varchar Date created
lastUpdate (32) varchar Date of last update

FixView**

Fix records

Field name (length) Data type Description
trackId (12) char Database ID of the work area
workAreaId (12) char Database ID of the workarea
workAreaName (32) varchar Name of the workarea
releaseId char Database ID of the release
releaseName (32) varchar Release name
defectId (12) char Database ID of the defect or feature
defectPrefix (31) varchar Defect or feature prefix
defectName (31) varchar Defect or feature identifier
defectAbstract (127) varchar Defect or feature abstract
defectReference (31) varchar Defect or feature reference
defectType (9) varchar Defect or feature
userId (12) char Database ID of the user who owns the fix record
userLogin (32) varchar Fix record owner’s TeamConnection user ID
userName (64) varchar Fix record owner’s full name
userArea (32) varchar Fix record owner’s area or department
compId (12) char Database ID of the component associated with the

fix record
compName (63) varchar Component name
state (15) varchar Fix record state
addDate (32) varchar Date created

Appendix. Querying the TeamConnection database 299

Field name (length) Data type Description
lastUpdate (32) varchar Date of last update

Raw output:
workAreaName|releaseName|compName|state|userLogin|userArea|defectAbstract|addDate|

lastUpdate|userName|defectPrefix|defectName|defectType|defectReference

HistoryView

Defect or feature state change history

Field name (length) Data type Description
defectId (12) char Database ID of the defect or feature
defectPrefix (31) varchar Defect or feature prefix
defectName (31) varchar Defect or feature identifier
defectReference (31) varchar Defect or feature reference
userId (12) char Database ID of the user who caused the defect or

feature state change
userLogin (32) varchar TeamConnection user ID of the user performing

the actions to the defect or feature
userName (64) varchar Full name of the user performing the actions to the

defect or feature
userArea (32) varchar Area or department of the user performing the

actions to the defect or feature
action (16) varchar Action that occurred and caused the state change
addDate (32) varchar Date action occurred

Hosts

User host list table

Field name (length) Data type Description
userId (12) char Database ID of the user
name (127) varchar Client host name
login (31) varchar User’s login name on client host
loginType (15) varchar

HostView**

User host list entries

Field name (length) Data type Description
name (127) varchar Name of the client host
login (31) varchar User’s login name on the client host
loginType (15) varchar
userId (12) char Database ID of the user
userLogin (32) varchar User’s TeamConnection user ID
userName (64) varchar User’s full name
userArea (32) varchar User’s area or department

Raw output:
login|name|userLogin|userName|userArea

300 Commands Reference

Interest**

Interest table

Field name (length) Data type Description
name (31) varchar Interest group name
action (15) varchar Low-level action name

Raw output
name|action

Notes

Defect or feature notes table

Field name (length) Data type Description
defectId (12) char Database ID of the defect or feature
userId (12) char Database ID of the user who added remarks
action (15) varchar Action occurring when remarks were added
remarks (32700) long Text of remarks
addDate (32) varchar Date remarks were added

NoteView**

Defect or feature notes

Field name (length) Data type Description
defectId (12) char Database ID of the defect or feature
defectPrefix (31) varchar Defect or feature prefix
defectName (31) varchar Defect or feature identifier
defectReference (31) varchar Defect or feature reference
userId (12) char Database ID of the user who added remarks
userLogin (32) varchar User’s TeamConnection user ID
userName (64) varchar User’s full name
userArea (32) varchar User’s area or department
action (15) varchar Action occurring when remarks were added
remarks (32700) long Text of remarks
addDate (32) varchar Date created

Raw output:
defectName|defectReference|action|addDate|userLogin|userName|userArea|

defectPrefix|remarks

Notification

Notification list table

Field name (length) Data type Description
compId (12) char Database ID of the component where notification

is controlled
userId (12) char Database ID of the user who owns the notification

interest
interestName (31) varchar Interest group name

Appendix. Querying the TeamConnection database 301

NotifyDownView**

Notification list members, including descendant members

Field name (length) Data type Description
compId (12) char Database ID of the component where notification

is controlled
parentCompId (12) char Database ID of the parent component
parentId (12) char Database ID of the parent part
compName (63) varchar Component name
childCompName (63) varchar Child component name
userId (12) char Database ID of the user who owns the notification

interest
userAddress (160) varchar User’s sendmail address
userLogin (32) varchar User’s TeamConnection user ID
userName (64) varchar User’s full name
userArea (32) varchar User’s area or department
interestName (31) varchar Interest group name

Raw output:
childCompName|userLogin|userName|userArea|userAddress|interestName

NotifyUpView**

Notification list entries, including those inherited from parents

Field name (length) Data type Description
compId (12) char Database ID of the component where notification

is controlled
userId (12) char Database ID of the user who owns the notification

interest
compId (12) char Database ID of the component
childCompId (12) char Database ID of the child component
childId (12) char Database ID of the child part
compName (63) varchar Component name
parentName (63) varchar Parent component name
userId (12) char Database ID of the user
userAddress (160) varchar User’s sendmail address
userLogin (32) varchar User’s TeamConnection user ID
userName (64) varchar User’s full name
userArea (32) varchar User’s area or department
interestName (31) varchar Interest group name

Raw output:
parentName|userLogin|userName|userArea|userAddress|interestName

NotifyView**

Notification list entries

Field name (length) Data type Description
compId (12) char Database ID of the component where notification

is controlled
compName (63) varchar Component name

302 Commands Reference

Field name (length) Data type Description
userId (12) char Database ID of the user who owns the notification

interest
userAddress (160) varchar User’s sendmail address
userLogin (32) varchar User’s TeamConnection user ID
userName (64) varchar User’s full name
userArea (32) varchar User’s area or department
interestName (31) varchar Interest group name

Raw output:
compName|userLogin|userName|userArea|userAddress|interestName

OVersions

Version record properties table

Field name (length) Data type Description
releaseId (12) char Database ID of the release
workAreaId (12) char Database ID of the workarea
name (47) varchar Name of the version
addDate (32) varchar Date created
freezeDate (32) varchar Date frozen
releaseVersion (3) varchar Version in the release
hasSuccessor (3) varchar Does this version have a successor? (yes or no)
hasOutputs (3) varchar Does the version have outputs? (yes or no)
sidSequence (4) integer
remarks (32700) long Text comment about the object or action taken on

it
branchPointId (12) char Database ID of the release version associated with

the workarea

Parsers

Parser properties table

Field name (length) Data type Description
id (12) char Database ID of the parser
sequenceId (4) integer
addDate (32) varchar Date the parser was created
dropDate (32) varchar Date the parser was deleted
lastUpdate (32) varchar Date the parser was last updated
releaseId (12) char Database ID of the release associated with the

parser
name (127) varchar Parser name
commandName (259) varchar Parser command that will be used
includePaths (519) varchar Include paths for parser

ParserView**

Parser properties

Field name (length) Data type Description
id (12) char Database ID of the parser
sequenceId (4) integer

Appendix. Querying the TeamConnection database 303

Field name (length) Data type Description
addDate (32) varchar Date the parser was created
dropDate (32) varchar Date the parser was deleted
lastUpdate (32) varchar Date the parser was last updated
releaseId (12) char Database ID of the release associated with the

parser
releaseName (32) varchar Release name
name (127) varchar Parser name
commandName (259) varchar Parser command that will be used
includePaths (519) varchar Include paths for parser

Raw output:
name|releaseName|commandName|includePaths

PartFullView**

Part properties

Field name (length) Data type Description
contextId (12) char
versionId (4) integer Database ID of the part version
id (4) integer Database ID of this part version
changeType (12) varchar The type of change to the part. A value of bulk

means the part’s content has changed; attrib
means the part’s attributes have changed; and none
means the part has not changed.

partId (12) char Database ID of the part
partType (127) varchar Type of the part
oVersionId (12) char
currentVersion (47) varchar Name of the current part version
releaseId (12) char Database ID of the release
releaseName (32) varchar Name of the release
workAreaId (12) char Database ID of the workarea
workAreaName (32) varchar Name of the current work area
fileId (12) char Database ID of the file
addDate (32) varchar Date created
dropDate (32) varchar Date deleted
pathId (12) char Database ID of the path name
pathName (196) varchar Part’s path name
translation (31) varchar Relationship of the part to the translation process.
restricted (4) varchar Is the part restricted in this release? (yes or no)
compId (12) char Database ID of the component
compName (63) varchar Component name
tipVersionId (16) char Other versions the object is associated with
tipOver (12) char Database ID of other versions the object is

associated with
committedVersion (47) varchar Last committed part version name
userId (12) char Database ID of the user who locked or checked out

the part
userLogin (32) varchar TeamConnection user ID who locked or checked

out the part
sourceId (12) char Source ID used to identify common parts
transState (15) varchar Translation state of the part.
fmode (4) varchar File mode
fileType (8) varchar text or binary

304 Commands Reference

Field name (length) Data type Description
nuAddDate (32) varchar New creation date
nuDropDate (32) varchar New deletion date
lastUpdate (32) varchar Date of last update
nuPathId (12) char Database ID of the path name
baseName (128) varchar Part’s base name
nuPathName (196) varchar Pending new part path name
ancestorSourceId (12) char
temporary (8) varchar Identifies parts that are deleted after a build,

because they are no longer necessary.

Raw output:
baseName|releaseName|compName|committedVersion|addDate|dropDate|
lastUpdate|pathName|currentVersion|nuAddDate|nuDropDate|nuPathName|
userLogin|fmode|type|workAreaLock|workAreaName|partType|
translation|transState|restricted

Parts

Part properties table

Field name (length) Data type Description
id (12) char Database ID of the part
partType (127) varchar Type of the part

PartsOutView**

Parts currently locked for editing

Field name (length) Data type Description
fileId (12) char Database ID of the part
partId (12) char Database ID of the part
releaseId (12) char Database ID of the release
releaseName (32) varchar Release name
pathId (12) char Database ID of the path name
partNuPath (196) varchar Part path name
compId (12) char Database ID of the component
seqPartId (12) char Database ID of the part
seqFileId (12) char Database ID of the part
userId (12) char Database ID of the user who has the part locked
userLogin (32) varchar User’s TeamConnection user ID
userName (64) varchar User’s full name
userArea (32) varchar User’s area or department
oVersionId (12) char Database ID of the part’s version
checkOutVersion (47) varchar Version of the part checked out
workAreaId (12) char Database ID of the workarea
workAreaName (32) varchar Work area name
checkOutDate (32) varchar Date part was locked

Raw output:
partNuPath|releaseName|checkOutDate|userLogin|userName|userArea|workAreaName

Appendix. Querying the TeamConnection database 305

PartOverrideRView

restricted parts that have been granted restriction overrides

Field name (length) Data type Description
fileId (12) char Database ID of the part
pathId (12) (12) char Database ID of the path name
pathName (196) varchar Part path name
baseName (128) varchar Part base name
workAreaId (12) char Database ID of the workarea
workAreaName (32) varchar Name of work area where part can be changed.
userId (12) char Database ID of the user getting the override
userLogin (32) varchar TeamConnection user ID that can change the part.

Field will be empty for parts not restricted for a
particular user in the workarea.

releaseId (12) char Database ID of the release
releaseName (32) varchar Release name

PartView**

Part properties

Field name (length) Data type Description
contextRelease (32) varchar
releaseName (32) varchar Release name
contextName (47) varchar
contextOID (12) char
OSReleaseId (12) char
releaseId (12) char Database ID of the release
id (4) char Database ID of this part’s version
fileId (12) char Database ID of the file
addDate (32) varchar Date created
dropDate (32) varchar Date deleted
pathId (12) char Database ID of the part
pathName (196) varchar Part path name
translation (31) varchar Relationship of the part to the translation process.
restricted (3) varchar Is the part restricted in this release? (yes or no)
compId (12) char Database ID of the component
compName (63) varchar Component name
tipVersionId(16) char Database ID of other versions the object is

associated with
tipOver(12) char
committedVersion (47) varchar Last committed part version name
foForVersionId(4) char
filesOutId(12) char
userId(12) char Database ID of the user who checked out or locked

the part
userLogin (32) varchar TeamConnection user ID who locked or checked

out the part
partId (12) char Database ID of the part
partType (127) varchar Type of the part
workAreaId (12) char Database ID of the workarea
workAreaName (32) varchar Name of current work area
parserId (12) char Database ID of the parser
parserName (127) varchar Name of the part’s parser

306 Commands Reference

Field name (length) Data type Description
oVersionId(12) char
currentVersion (47) varchar Name of the current part version
changeType (12) varchar The type of change to the part. A value of bulk

means the part’s content has changed; attrib
means the part’s attributes have changed; and none
means the part has not changed.

buildStatus (16) varchar Status of the build
workAreaChange (12) varchar The type of change to the part in the work area. A

value of bulk means the part’s content has
changed; attributes means the part’s attributes
have changes; all means both the contents and
attributes have changed; and none means the part
has not changed.

sourceId (12) char Database ID of the part’s source. Defines where the
part was derived from and is used to identify
common parts.

transState (15) varchar Translation state of the part.
fmode (4) varchar File mode
fileType (8) varchar Type of the file, as it exists outside

TeamConnection (text or binary)
nuAddDate (32) varchar New creation date
nuDropDate (32) varchar New deletion date
lastUpdate (32) varchar Date of last update
nuPathId (12) char Database ID of the path name
baseName (128) varchar Part base name
nuPathName (196) varchar Pending new part path name
temporary (8) varchar Identifies parts that are deleted after a build,

because they are no longer necessary.
ancestorSourceId (12) char Database ID of the part’s source. Defines where the

part was derived from and is used to identify
common parts.

typeOfRelation (5) varchar How the part fits in with the build
parentName (5) varchar Name of the paent part

Raw output:
baseName|releaseName|compName|committedVersion|addDate|dropDate|lastUpdate|
pathName|currentVersion|nuAddDate|nuDropDate|nuPathName|userLogin|fmode|
fileType|changeType|workAreaName|partType|temporary|builderName|
parserName|ancestorSourceId|buildStatus|parameters|
workAreaChange|translation|transState|restricted

Path

Part path names table

Field name (length) Data type Description
id (12) char Database ID of the part’s path name
name (196) varchar Full path name of the part
baseName (128) varchar base name of the part

Appendix. Querying the TeamConnection database 307

Prereqs

Prerequisites table

Field name (length) Data type Description
trackId (12) char Database ID of the workarea
workAreaId (12) char Database ID of the workarea
prereqId (12) char Database ID of the prerequisite group to which the

work area belongs
prereqWorkAreaId (12) char Database ID of the prerequisite workarea

PrereqView**

Prereq properties

Field name (length) Data type Description
trackId (12) char Database ID of the workarea
workAreaId (12) char Database ID of the workarea
name (32) varchar The name of the work area
releaseId (12) char Database ID of the release
releaseName (32) varchar The name of the release
trackDefectId (12) char Database ID of the defect associated with the work

area
defectPrefix (31) varchar Defect prefix for the work area
defectName (31) varchar Defect name for the work area
defectType (9) varchar Defect type for the work area
prereqId (12) char Database ID of the prerequisite
prereqWorkAreaId (12) char Database ID of the prerequisite workarea
prereqName (32) varchar The name of the prerequisite work area
prereqDefectId (12) char Database ID of the defect associated with the

prereq
prereqPrefix (31) varchar Defect prefix of the prerequisite work area
prereqDefect (31) varchar Defect name for the prerequisite work area
prereqType (9) varchar Defect type for the prerequisite work area
state (15) varchar The state of the prerequisite work area

Raw output:
workarea|defectName|defectType|releaseName|prereqName|prereqDefect|

prereqType|state

Releases

Release table

Field name (length) Data type Description
id (12) char Database ID of the release
name (32) varchar Release name
compId (12) char Database ID of the component associated with the

release
binding (4) varchar Binding status
approve (4) varchar Approval subprocess? (yes or no)
fix (4) varchar Fix subprocess? (yes or no)
lvl (4) varchar Driver subprocess? (yes or no)
test (4) varchar Test subprocess? (yes or no)
description (128) varchar Release description

308 Commands Reference

Field name (length) Data type Description
userId (12) char Database ID of the user who owns the release
addDate (32) varchar Date created
dropDate (32) varchar Date deleted
lastUpdate (32) varchar Date of last update
track (4) varchar Track subprocess? (yes or no)
relProcess (32) varchar Release process name
developmentMode (16) varchar Development mode of the release? (concurrent or

serial)
autoPrune (4) varchar Autopruning on? (yes or no)
coupling (32) varchar How common parts are handled
outputVersions (16) varchar Number of committed output versions saved in

the release

ReleaseView**

Release properties

Field name (length) Data type Description
id (12) char Database ID of the release
name (32) varchar Release name
compId (12) char Database ID of the component associated with the

release
compName (63) varchar Component name
binding (4) varchar Binding status
approve (4) varchar Approval subprocess? (yes or no)
fix (4) varchar Fix subprocess? (yes or no)
lvl (4) varchar Driver subprocess? (yes or no)
test (4) varchar Test subprocess? (yes or no)
description (128) varchar Release description
userId (12) char Database ID of the user who owns the release
userLogin (32) varchar Release owner’s TeamConnection user ID
userName (64) varchar Release owner’s full name
userArea (32) varchar Release owner’s area or department
addDate (32) varchar Date created
dropDate (32) varchar Date deleted
lastUpdate (32) varchar Date of last update
track (4) varchar Track subprocess? (yes or no)
relProcess (32) varchar Release process name
developmentMode (16) varchar Development mode of the release? (concurrent or

serial)
autoPrune (4) varchar Autopruning on? (yes or no)
coupling (32) varchar How common parts are handled
outputVersions (16) varchar Number of committed output versions saved in

the release
tipVersionId (12) char Database ID of other versions the object is

associated with
tipVersion (47) varchar Other versions the object is associated with

Raw output:
name|compName|relProcess|userLogin|userName|userArea|addDate|dropDate|

lastUpdate|description|track|approve|fix|lvl|test|developmentMode|
autoPrune|outputVersions

Appendix. Querying the TeamConnection database 309

Sequence

Sequences

Field name (length) Data type Description
name (15) varchar Sequence type
lastSerial (4) integer Database ID of the last sequence number assigned

for the sequence type

Shadows

Shadow properties table

Field name (length) Data type Description
id (12) char Database ID of the shadow
name (31) varchar Shadow name
releaseid (12) char Database ID of the release
shadowTypeId (12) char Database ID of the shadow type
mode (15) varchar Shadow mode
priority 4 integer Shadow priority
state (15) varchar Shadow state
location (511) varchar Shadow location
drivers (3) varchar Contains driver versions? (yes or no)
workareas (3) varchar Contains workarea versions? (yes or no)
release (3) varchar Contains release version? (yes or no)
crlf (3) varchar Is crlf conversion performed? (yes or no)
keys (3) varchar Is key expansion performed? (yes or no)
timestamp (15) varchar Timestamp property
parameters (511) varchar Shadow parameters

ShadowView**

Shadow properties table

Field name (length) Data type Description
id (12) char Database ID of the shadow
name (31) varchar Shadow name
releaseid (12) char Database ID of the release
releaseName (32) varchar Release Name
typeid (12) char Database ID of the shadow type
shadowType (31) varchar Shadow type
mode (15) varchar Shadow mode
priority (4) integer Shadow priority
state (15) varchar Shadow state
location (511) varchar Shadow location
drivers (3) varchar Contains driver versions? (yes or no)
workareas (3) varchar Contains workarea versions? (yes or no)
release (3) varchar Contains release version? (yes or no)
crlf (3) varchar Is crlf conversion performed? (yes or no)
keys (3) varchar Is key expansion performed? (yes or no)
timestamp (15) varchar Timestamp property
parameters (511) varchar Shadow parameters

Raw output:

310 Commands Reference

name|releaseName|shadowType|mode|priority|state|location|drivers|workareas|
release|crlf|keys|timestamp|parameters

ShadowTypes**

Shadow types table

Field name (length) Data type Description
id (12) char Database ID of the shadow type
name (31) varchar Name of the shadow type
description (127) varchar Description
program (255) varchar Program name

Raw output:
name|description|program

ShadowParts

Information about parts in the shadow

Field name (length) Data type Description
id (12) char Database ID of the shadow part
shadowId (12) char Database ID of the shadow
partId (12) char Database ID of the part
workareaid (12) char Database ID of the workarea or driver
pathid (12) char Database ID of the part name in the shadow
pBulk (12) char Database ID of the part contents
SID (47) varchar Version name of the part in the shadow
shadowTimeStamp (32) varchar TimeStamp of the file in the shadow
fmode (4) varchar The file mode of the part in the shadow
lastUpdate (32) varchar Date the shadow was updated for this part

ShadowPartView**

Properties of parts in the shadow

Field name (length) Data type Description
id (12) char Database ID of the shadow part
shadowid (12) char Database ID of the shadow
shadowName (31) varchar Shadow name
releaseid (12) char Database ID of the release
releaseName (32) varchar Release Name
partid (12) char Database ID of the part
workareaid (12) char Database ID of the workarea or driver
workareaName (32) varchar Workarea or Driver name
pathid (12) char Database ID of the part name in the shadow
pathName (196) varchar Part name
SID (47) varchar Part version name
shadowTimeStamp (32) varchar TimeStamp of the file when placed in the shadow
fmode (4) varchar The file mode of the part in the shadow
lastUpdate (32) varchar Date when shadowing occurred

Raw output:
shadowName|releaseName|workareaName|pathName|SID|

shadowTimeStamp|fmode|lastUpdate

Appendix. Querying the TeamConnection database 311

Sizes

Sizing records table

Field name (length) Data type Description
defectId (12) char Database ID of the defect or feature
compId (12) char Database ID of the component associated with the

sizing record
userId (12) char Database ID of the user who owns the sizing

record
addDate (32) varchar Date created
lastUpdate (32) varchar Date of last update
state (7) varchar Sizing record state
sizing (127) varchar Text of sizing information
releaseId (12) char Database ID of the release associated with the

sizing record

SizeView**

Sizing records

Field name (length) Data type Description
defectId (12) char Database ID of the feature or defect
featurePrefix (31) varchar Feature or defect prefix
featureName (31) varchar Feature or defect identifier
featureAbstract (127) varchar Feature or defect abstract
featureReference (31) varchar Feature or defect reference
compId (12) char Database ID of the component associated with the

sizing record
compName (63) varchar Component name
userId (12) char Database ID of the user who owns the sizing

record
userLogin (32) varchar Sizing record owner’s TeamConnection user ID
userName (64) varchar Sizing record owner’s full name
userArea (32) varchar Sizing record owner’s area or department
addDate (32) varchar Date created
lastUpdate (32) varchar Date of last update
state (7) varchar Sizing record state
sizing (127) varchar Text of sizing information
releaseId (12) char Database ID of the release associated with the

sizing record
releaseName (32) varchar Release name

Raw output:
featureName|featureReference|compName|releaseName|sizing|addDate|state|

userName|userLogin|userArea|lastUpdate|featurePrefix|featureAbstract

TargetView**

Targets

Field name (length) Data type Description
id (12) char
targetName(110) varchar Name or description of the target
status (110) varchar Status of the target for the part version

312 Commands Reference

Field name (length) Data type Description
active (110) varchar String field to note the active state of the status

event
targetDate (32) varchar Timestamp (online date) of the status event
sourceId (12) char Database ID of the target
nuPathId (12) char Database ID of the nupathname of the part
partName (196) varchar nuPathName of the part version

Raw output:
partName|targetName|status|targetDate|active

Tests

Environment test records table

Field name (length) Data type Description
trackId (12) char Database ID of the workarea
workAreaId (12) char Database ID of the workarea
envName (31) varchar Environment name
userId (12) char Database ID of the user who owns the test record
state (15) varchar Environment test record state
addDate (32) varchar Date created
lastUpdate (32) varchar Date of last update

TestView**

Environment test records

Field name (length) Data type Description
trackId (12) char Database ID of the work area
workAreaId (12) char Database ID of the workarea
workAreaName (32) varchar Name of the current work area
defectId (12) char Database ID of the defect or feature
defectPrefix (31) varchar Defect or feature prefix
defectName (31) varchar Defect or feature identifier
defectReference (31) varchar Defect or feature reference
defectAbstract (127) varchar Defect or feature abstract
defectType (9) varchar Defect or feature
releaseId (12) char Database ID of the release
releaseName (32) varchar Release name
envName (31) varchar Environment name
state (15) varchar Environment test record state
addDate (32) varchar Date created
lastUpdate (32) varchar Date of last update
userId (12) char Database ID of the user who owns the test record
userLogin (32) varchar Test record owner’s TeamConnection user ID
userName (64) varchar Test record owner’s full name
userArea (32) varchar Test record owner’s area or department

Raw output:
workAreaName|releaseName|defectPrefix|defectName|envName|state|addDate|

lastUpdate|userLogin|defectAbstract|userName|userArea|defectReference

Appendix. Querying the TeamConnection database 313

Tracks

Tracks properties table

Field name (length) Data type Description
id (12) char Database ID of the track
releaseId (12) char Database ID of the release associated with the

track
defectId (12) char Database ID of the defect or feature
userId (12) char Database ID of the user who owns the track
workAreaId (12) char Database ID of the workarea
name (32) varchar Name of the workarea
state (15) varchar Track state
target (31) varchar Target for completion (such as a driver or a date)
actual (31) varchar Driver commit date where track included (actual

driver name)
addDate (32) varchar Date created
lastUpdate (32) varchar Date of last update

Users**

Users table

Field name (length) Data type Description
id (12) char Database ID of the user
login (32) varchar TeamConnection ID
name (64) varchar User’s full name
superUser (4) varchar Superuser privilege? (yes or no)
area (32) varchar User’s area or department
address (160) varchar User’s sendmail address
addressType (16) varchar
addDate (32) varchar Date created
dropDate (32) varchar Date deleted
lastUpdate (32) varchar Date of last update
AuthType (16) varchar Granted or restricted
pswStatus (16) varchar Status of user account (active or disabled)
pswModifyTime (64) varchar Date when password was modified
pswCreateTime (64) varchar Date when password was deleted
pswFailCount (4) integer Number of times an incorrect password was

entered
pswBlock (29) BLOB

Raw output:
login|name|area|address|addDate|dropDate|lastUpdate|superUser

VerifyView**

Verification record properties

Field name (length) Data type Description
defectId (12) char Database ID of the defect or feature
defectPrefix (31) varchar Defect or feature prefix
defectName (31) varchar Defect or feature identifier
defectReference (31) varchar Defect or feature reference

314 Commands Reference

Field name (length) Data type Description
defectAbstract (127) varchar Defect or feature abstract
compId (12) char Database ID of the component the defect or feature

was opened aganist
compName (63) varchar Name of component associated with the defect or

feature
defectType (9) varchar Defect or feature
userId (12) char Database ID of the user who owns the verification

record
userLogin (32) varchar Verification record owner’s TeamConnection user

ID
userName (64) varchar Verification record owner’s full name
userArea (32) varchar Verification record owner’s area or department
verifyType (15) varchar Original or duplicate
state (15) varchar Verification record state
addDate (32) varchar Date created
lastUpdate (32) varchar Date of last update

Raw output:
defectName|state|addDate|userLogin|userArea|type|userName|defectAbstract|

lastUpdate|defectPrefix|defectReference|compName

Versions

Version record properties table

Field name (length) Data type Description
versionId (4) integer
id (4) integer Database ID of the part version
previousId (4) integer Database ID of the part’s previous version
partId (12) char Database ID of the part
oVersionId (12) char
SID (47) varchar Part version name
releaseId (12) char Database ID of the release
releaseName (32) varchar Release name
workareaID (12) char Database ID of the workarea
changeType (12) varchar The type of change to the part. A value of bulk

means the part’s content has changed; attributes
means the part’s attributes have changes; all
means both the contents and attributes have
changed; and none means the part has not
changed.

workAreaChange (12) varchar The type of change to the part in the work area. A
value of bulk means the part’s content has
changed; attributes means the part’s attributes
have changes; all means both the contents and
attributes have changed; and none means the part
has not changed.

sourceId (12) char Database ID of the part’s source that is used to
identify common parts

transState (15) varchar Translation state of the part.
nuAddDate (32) varchar New creation date for the part
nuDropDate (32) varchar New delete date for the part
changeDate (32) varchar Date the version was made
nuPathId (12) char Database ID of the path name
nuPathName (196) varchar Path name of the part

Appendix. Querying the TeamConnection database 315

Field name (length) Data type Description
ancestorsourceId (12) char
fileId (12) char Database ID of the source file

VersionView**

Database version properties

Field name (length) Data type Description
releaseId (12) char Database ID of the release
releaseName (32) varchar Release name
workAreaId (12) char Database ID of the work area
workAreaName (32) varchar Work area name associated with version
name (47) varchar Name of the version
addDate (32) varchar Date created
freezeDate (32) varchar Date frozen
releaseVersion (3) varchar Version in the release
hasSuccessor (3) varchar Does this version have a successor? (yes or no)
previousId (12) char
predecessor (47) varchar Previous version
branchPointId (12) char Database ID of the release version associated with

the workarea
branchPoint (47) varchar Release version associated with the workarea
hasOutputs (3) varchar Does the version have outputs? (yes or no)
sidSequence (4) integer
remarks (32700) long Text comment about the object or action taken on

it

Raw output:
name|workAreaName|releaseName|predecessor|hasSuccessor|releaseVersion|

hasOutputs|addDate|freezeDate

Workareas

Work areas properties table

Field name (length) Data type Description
id (12) char Database ID of the work area
releaseId (12) char Database ID of the release associated with the

work area
releaseName (32) varchar Name of the release associated with the work area
trackId (12) char Database ID of the associated workarea
name (32) varchar Work area name
tipOverId (12) char
branchPointId (12) char Database ID of the release version associated with

the workarea
branchPoint (47) varchar Release version associated with the workarea

WorkAreaView**

Work area properties

Field name (length) Data type Description
id (12) char Database ID of the work area

316 Commands Reference

Field name (length) Data type Description
workAreaId (12) char Database ID of the associated workarea
name (32) varchar Name of the current work area
branchPointId (12) char Database ID of the release version associated with

the workarea
branchPoint (47) varchar Release version associated with the workarea
driverId (12) char Database ID of the driver associated with the

workarea
driverName (31) varchar Name of the driver associated with the workarea
tipVersionId (12) char Database ID of other versions the object is

associated with
tipVersion (47) varchar Other versions the object is associated with
trackId (12) char Database ID of the associated workarea
releaseId (12) char Database ID of the release associated with the

work area
releaseName (32) varchar Release name
developmentMode (16) varchar Whether the release uses serial or concurrent

development
relProcess (32) varchar The release process currently in use
defectId (12) char Database ID of the defect or feature
defectPrefix (31) varchar Defect or feature prefix
defectName (31) varchar Defect or feature identifier
defectReference (31) varchar Defect or feature reference
defectAbstract (127) varchar Defect or feature abstract
defectType (9) varchar Defect or feature
userId (12) char Database ID of the user who owns the work area
userLogin (32) varchar Work area owner’s TeamConnection user ID
userName (64) varchar Work area owner’s full name
userArea (32) varchar Work area owner’s area or department
state (15) varchar Work area state
target (31) varchar Target for completion
actual (31) varchar Name of driver where work area is committed
addDate (32) varchar Date created
lastUpdate (32) varchar Date of last update

Raw output:
name|releaseName|defectName|defectReference|state|target|addDate|userLogin|

userName|userArea|actual|lastUpdate|defectPrefix|defectAbstract|defectType|
branchPoint

Appendix. Querying the TeamConnection database 317

318 Commands Reference

Services and Support

VisualAge TeamConnection Services and Support

Services

IBM consultants are available to help you, from planning to production and
everything in between. For information about these services, please visit the
following web site:
<http://www.software.ibm.com/ad/teamcon/services/>

If you are interested in VisualAge TeamConnection Services, contact IBM Software
Development Services via e-mail at:
websphere_consulting@us.ibm.com

Support

If you have a question or problem regarding VisualAge TeamConnection, you can
find support information and our telephone numbers at the following web site:
<http://www.software.ibm.com/ad/teamcon/support/>

Newsgroup

You can access VisualAge TeamConnection technical information, exchange
messages with other VisualAge TeamConnection users, and receive information
regarding the availability of FixPaks by visiting our newsgroup at:
news://news.software.ibm.com/ibm.software.teamcon

© Copyright IBM Corp. 1992, 1999 319

320 Commands Reference

Bibliography

IBM VisualAge TeamConnection Enterprise Server library

The following is a list of the TeamConnection publications. For a list of other
publications about TeamConnection, including white papers, technical reports, a
product fact sheet, and the product announcement letter, refer to the IBM
VisualAge TeamConnection Enterprise Server Library home page. To access this
home page, select Library from the IBM VisualAge TeamConnection Enterprise
Server home page at Web address <http://www.software.ibm.com/ad/teamcon>.
v License Information:

Contains license, service, and warranty information.
v Verifying Installation of TeamConnection:

Explains how to verify that TeamConnection has been installed correctly. Guides
you through the process of creating an initial test family.

v Administrator’s Guide:

Provides instructions for configuring the TeamConnection family server and
administering a TeamConnection family.

v User’s Guide:

A comprehensive guide for TeamConnection administrators and client users that
helps them install and use TeamConnection.

v Commands Reference:

Describes the TeamConnection commands, their syntax, and the authority
required to issue each command. This book also provides examples of how to
use the various commands.

TeamConnection technical reports

The following is a list of technical reports available for TeamConnection. Refer to
the IBM VisualAge TeamConnection Enterprise Server Library home page for the
most up-to-date list of technical reports. To access this home page, select Library
from the IBM VisualAge TeamConnection Enterprise Server home page at Web
address <http://www.software.ibm.com/ad/teamcon>.

29.2147 SCLM Guide to TeamConnection Terminology
29.2196 Using REXX Command Files with TeamConnection MVS Build Scripts
29.2231 TeamConnection Interoperability with MVS and SCLM
29.2235 Using REXX Command Files with TeamConnection MVS Build Scripts for

PL/I Programs
29.2266 TeamConnection frequently asked questions: National Language Support

(NLS) and Double-Byte Character Sets (DBCS)
29.2307 Data Driven TeamConnection User Exits
29.2333 Evolution of a New TeamConnection Family, Common Dos and Don’ts
29.2357 Evolution of a New VisualAge TeamConnection Family: Taking Advantage of

Automation
29.3076 Configuration and Administration of DB2 Universal Database V5 by Users of

VisualAge TeamConnection Enterprise Server V3
29.3088 Moving a VisualAge TeamConnection Version 3 Family
29.3090 Evolution of a VisualAge TeamConnection family: Using the Web and

Shadowing to Build and to Distribute

© Copyright IBM Corp. 1992, 1999 321

29.3094 VisualAge TeamConnection 3: How to Do Routine Operating System Tasks
29.3096 Comparison Between CMVC 2.3.1 and VisualAge TeamConnection Enterprise

Server 3
29.3098 VisualAge TeamConnection Version 3: Simple Build Function in UNIX
29.3099 VisualAge TeamConnection V3 Frequently Asked Questions: GUI and Line

Command Clients for UNIX, OS/2, and Windows 32-bit
29.3113 Migrating CMVC 2.3.1 to VisualAge TeamConnection V3

DB2

The following publications are part of the IBM DB2 Universal Database library of
documents for DB2 administration. DB2 publications are available in HTML format
from the DB2 Product and Service Technical Library at the following Web address:
<http://www.software.ibm.com/data/db2/library/>

v Administration Getting Started (S10J-8154–00)
An introductory guide to basic administration tasks and the DB2 administration
tools.

v SQL Getting Started (S10J-8156–00)
Discusses basic concepts of DB2 SQL.

v Administration Guide (S10J-8157–00)
A complete guide to administration tasks and the DB2 administration tools.

v SQL Reference (S10J-8165–00)
A reference to DB2 SQL for programmers and database administrators.

v Troubleshooting Guide (S10J-8169–00)
A guide to identifying and solving problems with DB2 servers and clients and to
using the DB2 diagnostic tools.

v Messages Reference (S10J-8168–00)
Provides detailed information about DB2 messages.

v Command Reference (S10J-8166–00)
Provides information about DB2 system commands and the command line
processor.

v Replication Guide (S10J-0999–00)
Describes how to plan, configure, administer, and operate IBM replication tools
available with DB2.

v System Monitor Guide and Reference (S10J-8164–00)
Describes how to monitor DB2 database activity and analyze system
performance.

v Glossary

A comprehensive glossary of DB2 terms.

Related publications
v Transmission Control Protocol/Internet Protocol (TCP/IP)

– TCP/IP 2.0 for OS/2: Installation and Administration (SC31-6075)
– TCP/IP for MVS Planning and Customization (SC31-6085)

v MVS
– MVS/XA JCL User’s Guide (GC28-1351)
– MVS/XA JCL Reference (GC28-1352)
– MVS/ESA JCL User’s Guide (GC28-1830)

322 Commands Reference

– MVS/ESA JCL Reference (GC28-1829)
v NLS and DBCS

– AIX 4, General Programming Concepts: Writing and Debugging Programs.
(SC23-2533-02). See chapter 16 ″National Language Support″ for an updated
contents of the AIX 3 material (see below).

– AIX 4, System Management Guide: Operating System and Devices (SC23-2525-03).
See chapter 10, ″National Language Support″ for system tasks.

– AIX Version 3.2 for RISC System/6000, National Language Support (GG24-3850).
– Internationalization of AIX Software, A Programmer’s Guide (SC23-2431).
– National Language Design Guide Volume 1 (SE09-8001-02). This manual contains

very good information on how to enable an application for NLS.
– National Language Design Guide Volume 2 (SE09-8002-02). This manual provides

information on the IBM language codes (consult the ″Language codes″
chapter).

Bibliography 323

324 Commands Reference

Glossary

This glossary includes terms and definitions from
the IBM Dictionary of Computing, 10th edition
(New York: McGraw-Hill, 1993). If you do not
find the term you are looking for, refer to this
document’s index or to the IBM Dictionary of
Computing.

This glossary uses the following cross-references:

Compare to
Indicates a term or terms that have a
similar but not identical meaning.

Contrast with
Indicates a term or terms that have an
opposed or substantially different
meaning.

See also
Refers to a term whose meaning bears a
relationship to the current term.

A
absolute path name. A directory or a part expressed
as a sequence of directories followed by a part name
beginning from the root directory.

access list. A set of objects that controls access to data.
Each object consists of a component, a user, and the
authority that the user is granted or is restricted from
in that component. See also authority, granted authority,
and restricted authority.

action. A task performed by the TeamConnection
server and requested by a TeamConnection client. A
TeamConnection action is the same as issuing one
TeamConnection command.

agent. See build agent.

alternate version ID. In collision records, the database
ID of the version of a driver, release, or workarea
where the conflicting version of a part is visible.

approval record. A status record on which an
approver must give an opinion of the proposed part
changes required to resolve a defect or implement a
feature in a release.

approver. A user who has the authority to mark an
approval record with accept, reject, or abstain within a
specific release.

approver list. A list of user IDs attached to a release,
representing the users who must review part changes
that are required to resolve a defect or implement a
feature in that release.

attribute. Information contained in a field that is
accessible to the user. TeamConnectionenables family
administrators to customize defect, feature, user, and
part tables by adding new attributes.

authority. The right to access development objects and
perform TeamConnection commands. See also access
list, base authority, explicit authority, granted authority,
implicit authority, restricted authority, and superuser
privilege.

authority group. A group of TeamConnection actions
that a member of the authority group is authorized to
perform.

B
base authority. The set of actions granted to a user
when a user ID is created within a TeamConnection
family. See also authority. Contrast with implicit authority
and explicit authority.

base name. The name assigned to the part outside of
the TeamConnection server environment, excluding any
directory names. See also path name.

base part tree. The base set of parts associated with a
release, to which changes are applied over time. Each
committed driver or workarea for a release updates the
base part tree for that release.

build. The process used to create applications within
TeamConnection.

build associate. A TeamConnection part that is not an
input to or an output from a build. An example of such
a part is a read.me file.

build cache. A directory that the build processor uses
to enhance performance.

build dependent. A TeamConnection part that is
needed for the compile operation to complete, but it
will not be passed directly to the compiler. An example
of this is an include file. See also dependencies.

builder. An object that can transform one set of
TeamConnection parts into another by invoking tools
such as compilers and linkers.

© Copyright IBM Corp. 1992, 1999 325

build event. An individual step in the build of an
application, such as the compiling of hello.c into
hello.obj.

build input. A TeamConnection part that will be used
as input to the object being built.

build output. A TeamConnection part that will be
generated output from a build, such as an .obj or .exe
file.

build pool. A group of build servers that resides in an
environment. The environment in which several build
servers operate. Typically, several servers are set up for
each environment that the enterprise develops
applications for.

build scope. A collection of build events that
implement a specific build request. See also build event.

build script. An executable or command file that
specifies the steps that should occur during a build
operation. This file can be a compiler, a linker, or the
name of a .cmd file you have written.

build server. A program that invokes the tools, such
as compilers and linkers, that construct an application.

build target. The name of the part at the top of the
build tree which is the final output of a build.
TeamConnection uses the build target to determine the
scope of the build. See also build tree.

build tree. A graphical representation of the
dependencies that the parts in an application have on
one another. If you change the relationship of one part
to another, the build tree changes accordingly.

C
change control process. The process of limiting and
auditing changes to parts through the mechanism of
checking parts in and out of a central, controlled,
storage location. Change control for individual releases
can be integrated with problem tracking by specifying
a process for the release that includes the tracking
subprocess.

check in. The return of a TeamConnection part to
version control.

check out. The retrieval of a version of a part under
TeamConnection control. In non-concurrent releases, the
check out operation does not allow a second user to
check out a part until the first user has checked it back
in.

child component. Any component in a
TeamConnection family, except the root component,
that is created in reference to an existing component.
The existing component is the parent component, and
the new component is the child component. A parent
component can have more than one child component,

and a child component can have more than one parent
component. See also component and parent component.

child part. Any part in a build tree that has a parent
defined. A child part can be input, output, or
dependent. See also part and parent part.

client. A functional unit that receives shared services
from a server. Contrast with server.

collision record. A status record associated with a
workarea or driver, a part, and one of the following:
v The workarea or driver’s release
v Another workarea

TeamConnection generates a collision record when a
user attempts to replace an older version of a part with
a modified version, another user has already modified
that part, and the first user’s modification is not based
on this latest version of the part.

command. A request to perform an operation or run a
program from the command line interface. In
TeamConnection, a command consists of the command
name, one action flag, and zero or more attribute flags.

command line. (1) An area on the Tasks window or in
the TeamConnection Commands window where a user
can type TeamConnection commands. (2) An area on an
operating system window where you can type
TeamConnection commands.

committed version. The revision of a part that is
visible from the release.

common part. A part that is shared by two or more
releases, and the same version of the part is the current
version for those releases.

comparison operator. An operator used in comparison
expressions. Comparison operators used in
TeamConnection are > (greater than), < (less than), >=
(greater than or equal to), <= (less than or equal to), =
(equal to), and <> (different from).

component. A TeamConnection object that organizes
project data into structured groups, and controls
configuration management properties. Component
owners can control access to data and notification of
TeamConnection actions. Components exist in a
parent-child hierarchy, with descendant components
inheriting access and notification information from
ancestor components. See also access list and notification
list.

concurrent development. Several users can work on
the same part at the same time. TeamConnection
requires these users to reconcile their changes when
they commit or integrate their workareas and drivers
with the release. Contrast with serial development. See
also workarea.

326 Commands Reference

configurable field. A field that a family administrator
can add to certain TeamConnection objects to customize
the kind of information that TeamConnection stores in
relation to those objects.

configuration management. The process of
identifying, managing, and controlling software
modules as they change over time.

connecting parts. The process of linking parts so that
they are included in a build.

context. The current workarea or driver used for part
operations.

corequisite workareas. Two or more workareas
designated as corequisites by a user so that all
workareas in the corequisite group must be included as
members in the same driver, before that driver can be
committed. If the driver process is not used in the
release, then all corequisite workareas must be
integrated by the same command. See also prerequisite
workareas.

current version. The last visible modification of a part
in a driver, release, or workarea.

current working directory. (1) The directory that is the
starting point for relative path names. (2) The directory
in which you are working.

D
daemon. A program that runs unattended to perform
a standard service. Some daemons are triggered
automatically to perform their task; others operate
periodically.

database. A collection of data that can be accessed and
operated upon by a data processing system for a
specific purpose.

default. A value that is used when an alternative is
not specified by the user.

default query. A database search, defined for a
specific TeamConnection window, that is issued each
time that TeamConnection window is opened. See also
search.

defect. A TeamConnection object used to formally
report a problem. The user who opens a defect is the
defect originator.

delete. If you delete a development object, such as a
part or a user ID, any reference to that object is
removed from TeamConnection. Certain objects can be
deleted only if certain criteria are met. Most objects that
are deleted can be re-created.

delta part tree. A directory structure representing only
the parts that were changed in a specified place.

dependencies. In TeamConnection builds there are
two types of dependencies:

v automatic. These are build dependencies that a
parser identifies.

v manual. These are build dependencies that a user
explicitly identifies in a build tree.

See also build dependent.

descendant. If you descendant a development object,
such as, a part or a user ID, any reference to that object
is removed from TeamConnection. Certain objects can
be descendant only if certain criteria are met. Most
objects that are descendants can be re-created.

disconnecting parts. The process of unlinking parts so
that they are not included in a build.

driver. A collection of workareas that represent a set
of changed parts within a release. Drivers are only
associated with releases whose processes include the
track and driver subprocesses.

driver member. A workarea that is added to a driver.

E
end user. See user.

environment. (1) A user-defined testing domain for a
particular release. (2) A defect field, in which case it is
the environment where the problem occurred. (3) The
string that matches a build server with a build event.

environment list. A TeamConnection object used to
specify environments in which a release should be
tested. A list of environment-user ID pairs attached to a
release, representing the user responsible for testing
each environment. Only one tester can be identified for
an environment.

explicit authority. The ability to perform an action
against a TeamConnection object because you have
been granted the authority to perform that action.
Contrast with base authority and implicit authority.

extract. A TeamConnection action you can perform on
a builder, part, driver or release builder. An extraction
results in copying the specified builder, part, or parts
contained in the driver or release to a client
workstation.

F
family. A logical organization of related data. A single
TeamConnection server can support multiple families.
The data in one family cannot be accessed from another
family.

family administrator. A user who is responsible for all
nonsystem-related tasks for one or more
TeamConnection families, such as planning,

Glossary 327

configuring, and maintaining the TeamConnection
environment and managing user access to those
families.

family server. A workstation running the
TeamConnection server software.

FAT. See file allocation table.

feature. A TeamConnection object used to formally
request and record information about a functional
addition or enhancement. The user who opens a feature
is the feature originator.

file. A collection of data that is stored by the
TeamConnection server and retrieved by a path name.
Any text or binary file used in a development project
can be created as a TeamConnection file. Examples
include source code, executable programs,
documentation, and test cases.

file allocation table (FAT). The DOS-, OS/2-,
Windows 95-, and Windows NT-compatible file system
that manages input, output, and storage of files on
your system. File names can be up to 8 characters long,
followed by a file extension that can be up to 3
characters.

fix record. A status record that is associated with a
workarea and that is used to monitor the phases of
change within each component that is affected by a
defect or feature for a specific release.

freeze. The freeze action saves changed parts to the
workarea. Thus, TeamConnectiontakes a snapshot of
the workarea, including all of the current versions of
parts visible from that workarea, and saves this image
of the system. The user can always come back to this
stage of development in the workarea. Note, however,
that a freeze action does not make the changes visible
to the other people working in the release.

Compare with refresh.

full part tree. A directory structure representing a
complete set of active parts associated with the release.

G
Gather. A tool to organize files for distribution into a
specified directory structure. This tool can be used as a
prelude to further distribution, such as using CD-ROM
or through electronic means like NetView DM/2. It can
also be used by itself for distributing file copies to
network-attached file systems.

GID. A number which uniquely identifies a file’s
group to a UNIX system.

granted authority. If an authority is granted on an
access list, then it applies for all objects managed by
this component and any of its descendants for which

the authority is not restricted. See also access list,
authority, and inheritance. Contrast with restricted
authority.

graphical user interface (GUI). A type of computer
interface consisting of a visual metaphor of a
real-world scene, often as a desktop. Within that scene
are icons, representing actual objects, that the user can
access and manipulate with a pointing device.

GUI. Graphical user interface.

H
high-performance file system (HPFS). In the OS/2
operating system, an installable file system that uses
high-speed buffer storage, known as a cache, to provide
fast access to large disk volumes. The file system also
supports the existence of multiple, active file systems
on a single personal computer, with the capacity of
multiple and different storage devices. File names used
with HPFS can have as many as 254 characters.

host. A host node, host computer, or host system.

host list. A list associated with each TeamConnection
user ID that indicates the client machine that can access
the family server and act on behalf of the user. The
family server uses the list to authenticate the identity of
a client machine when the family server receives a
command. Each entry consists of a login, a host name,
and a TeamConnection user ID.

host name. The identifier associated with the host
computer.

HPFS. See high-performance file system.

I
implicit authority. The ability to perform an action on
a TeamConnection object without being granted explicit
authority. This authority is automatically granted
through inheritance or object ownership. Contrast with
base authority and explicit authority.

import. To bring in data. In TeamConnection, to bring
selected items into a field from a matching
TeamConnection object window.

inheritance. The passing of configuration management
properties from parent to child component. The
configuration management properties that are inherited
are access and notification. Inheritance within each
TeamConnection family or component hierarchy is
cumulative.

integrated problem tracking. The process of
integrating problem tracking with change control to
track all reported defects, all proposed features, and all
subsequent changes to parts. See also change control.

328 Commands Reference

interest group. The list of actions that trigger
notification to the user IDs associated with those
actions listed in the notification list.

J
job queue. A queue of build scopes. One job queue
exists for each TeamConnection family.

L
local version ID. In collision records, the database ID
of the version of the current workarea.

lock. An action that prevents editing access to a part
stored in the TeamConnectiondevelopment
environment so that only one user can change a part at
a time.

login. The name that identifies a user on a multi-user
system, such as AIX or HP-UX, Solaris, or Windows
NT. In OS/2 and Windows 95, the login value is
obtained from the TC_USER environment variable.

M
map. The process of reassigning the meaning of an
object.

metadata. In databases, data that describe data objects.

N
name server. In TCP/IP, a server program that
supplies name-to-address translation by mapping
domain names to Internet addresses.

National Language Support (NLS). The modification
or conversion of a United States English product to
conform to the requirements of another language or
country. This can include the enabling or retrofitting of
a product and the translation of nomenclature, MRI, or
documentation of a product.

Network File System (NFS). The Network File System
is a program that enables you to share files with other
computers in networks over a variety of machine types
and operating systems.

notification list. An object that enables component
owners to configure notification. A list attached to a
component that pairs a list of user IDs and a list of
interest groups. It designates the users and the
corresponding notification interest that they are being
granted for all objects managed by this component or
any of its descendants.

notification server. A server that sends notification
messages to the client.

NTFS. NT file system.

NVBridge. A tool for automatic electronic distribution
of TeamConnection software deliverables within a
NetView DM/2 network.

O
operator. A symbol that represents an operation to be
done. See also comparison operators.

originator. The user who opens a defect or feature and
is responsible for verifying the outcome of the defect or
feature on a verification record. This responsibility can
be reassigned.

owner. The user who is responsible for a
TeamConnection object within a TeamConnection
family, either because the user created the object or was
assigned ownership of the object.

P
parent component. All components in each
TeamConnection family, except the root component, are
created in reference to an existing component. The
existing component is the parent component. See also
child component and component.

parent part. Any part in a build tree that has a child
defined. See also part and child part.

parser. A tool that can read a source file and report
back a list of dependencies of that source file. It frees a
developer from knowing the dependencies one part has
on other parts to ensure a complete build is performed.

part. A collection of data that is stored by the family
server and retrieved by a path name. They include text
objects, binary objects, and modeled objects. These
parts can be stored by the user or the tool, or they can
be generated from other parts, such as when a linker
generates an executable file.

path name. The name of the part under
TeamConnection control. A path name can be a
directory structure and a base name or just a base
name. It must be unique within each release. See also
base name.

pool. See build pool.

pop-up menu. A menu that, when requested, appears
next to the object it is associated with.

prerequisite workareas. If a part is changed to resolve
more than one defect or feature, the workarea
referenced by the first change is a prerequisite of the
workarea referenced by later changes. A workarea is a
prerequisite to another workarea if:

v Part changes are checked in, but not committed, for
the first workarea.

Glossary 329

v One or more of the same parts are checked out,
changed, and checked in again for the second
workarea.

problem tracking. The process of tracking all reported
defects through to resolution and all proposed features
through to implementation.

process. A combination of TeamConnection
subprocesses, configured by the family administrator,
that controls the general movement of TeamConnection
objects (defects, features, workareas, and drivers) from
state to state within a component or release. See also
subprocess and state.

Q
query. A request for information from a database, for
example, a search for all defects that are in the open
state. See also default query and search.

R
raw format. Information retrieved on the report
command that has the vertical bar delimiter separating
field information, and each line of output corresponds
to one database record.

refresh. This TeamConnection action updates a
workarea with any changes from the release, and it also
freezes the workarea, if it is not already frozen.

relative path name. The name of a directory or a part
expressed as a sequence of directories followed by a
part name, beginning from the current directory.

release. A TeamConnection object defined by a user
that contains all the parts that must be built, tested,
and distributed as a single entity.

restricted authority. The limitation on a user’s ability
to perform certain actions at a specific component.
Authority can be restricted by the superuser, the
component owner, or a user with AccessRestrict
authority. See also authority.

root component. The initial component that is created
when a TeamConnection family is configured. All
components in a TeamConnection family are
descendants of the root component. Only the root
component has no parent component. See also
component, child component, and parent component.

S
search. To scan one or more data elements of a set in
a database to find elements that have certain properties.

serial development. While a user has parts checked
out from a workarea, no one else on the team can
check out the part. The user develops new material

without interacting with other developers on the
project. TeamConnection provides the opportunity to
hold the part until the user is sure that it integrates
with the rest of the application. Thus, the lock is not
released until the workarea as a whole is committed.
Contrast with concurrent development. See also workarea.

server. A workstation that performs a service for
another workstation.

shadow. A collection of parts in a filesystem that
reflects the contents of a TeamConnection workarea,
driver, or release.

shared part. A part that is contained in two or more
releases.

shell script. A series of commands combined in a file
that carry out a function when the file is run.

SID. The name of a version of a driver, release, or
workarea.

sizing record. A status record created for each
component-release pair affected by a proposed defect
or feature. The sizing record owner must indicate
whether the defect or feature affects the specified
component-release pair and the approximate amount of
work needed to resolve the defect or implement the
feature within the specified component-release pair.

stanza format. Data output generated by the Report
command in which each database record is a stanza.
Each stanza line consists of a field and its
corresponding values.

state. workareas, drivers, features, and defects move
through various states during their life cycles. The state
of an object determines the actions that can be
performed on it. See also process and subprocess.

subprocess. TeamConnection subprocesses govern the
state changes for TeamConnection objects. The design,
size, review (DSR) and verify subprocesses are
configured for component processes. The track,
approve, fix, driver, and test subprocesses are
configured for release processes. See also process and
state.

superuser. This privilege lets a user perform any
action available in the TeamConnectionfamily.

system administrator. A user who is responsible for
all system-related tasks involving the TeamConnection
server, such as installing, maintaining, and backing up
the TeamConnectionserver and the database it uses.

T
TCP/IP. Transmission Control Protocol/Internet
Protocol.

330 Commands Reference

TeamConnection client. A workstation that connects
to the TeamConnection server by a TCP/IP connection.

TeamConnection part. A part that is stored by the
TeamConnection server and retrieved by a path name,
release, type, and workarea. See also part, common part,
and type.

TeamConnection superuser. See superuser.

tester. A user responsible for testing the resolution of
a defect or the implementation of a feature for a
specific driver of a release and recording the results on
a test record.

test record. A status record used to record the
outcome of an environment test performed for a
resolved defect or an implemented feature in a specific
driver of a release.

track subprocess. An attribute of a TeamConnection
release process that specifies that the change control
process for that release will be integrated with the
problem tracking process.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of communications protocols that
support peer-to-peer connectivity functions for both
local and wide area networks.

type. All parts that are created through the
TeamConnection GUI or on the command line will
show up in reports with the type of TCPart as the part
type. The TeamConnection GUI and command line can
only check in, check out, and extract parts of the type
TCPart.

U
user exit. A user exit allows TeamConnection to call a
user-defined program during the processing of
TeamConnection transactions. User exits provide a
means by which users can specify additional actions
that should be performed before completing or
proceeding with a TeamConnection action.

user ID. The identifier assigned by the system
administrator to each TeamConnection user.

V
verification record. A status record that the originator
of a defect or a feature must mark before the defect or
feature can move to the closed state. Originators use
verification records to verify the resolution or
implementation of the defect or feature they opened.

version. (1) A specific view of a driver, release, or
workarea. (2) A revision of a part.

version control. The storage of multiple versions of a
single part along with information about each version.

view. An alternative and temporary representation of
data from one or more tables.

W
workarea. An object in TeamConnection that you
create and associate with a release. When the workarea
is created, you see the most current view of the release
and all the parts that it contains. You can check out the
parts in the workarea, make modifications, and check
them back into the workarea. You can also test the
modifications without integrating them. Other users are
not aware of the changes that you make in the
workarea until you integrate the workarea to the
release. While you work on files in a workarea, you do
not see subsequent part changes in the release until you
integrate or refresh your workarea.

working part. The checked-out version of a
TeamConnection part.

Y
year 2000 ready. IBM VisualAge TeamConnection
Enterprise Server is Year 2000 ready. When used in
accordance with its associated documentation,
TeamConnection is capable of correctly processing,
providing and/or receiving date data within and
between the twentieth and twenty-first centuries,
provided that all products (for example, hardware,
software and firmware) used with the product properly
exchange accurate date data with it.

Glossary 331

|
|

332 Commands Reference

Index

Special Characters
-undo 132

A
access

description 15
related information 19
syntax 15

action flag 2
description 2

approval
description 21, 27
related information 26, 29
syntax 21, 27

attribute flag 3
description 3
null 4

authority 12
base 13
explicit 13
implicit 13
requirements 12
restricted 13
superuser 13

automerge 269
description 269
syntax 270

Automerge tool 39

B
build script 31
build tree 127
builder 31

description 31
related information 37
syntax 31

building parts 132

C
case-insensitive queries 276
collision

description 39
related information 44
syntax 40

component
description 45
related information 51
syntax 46

concurrent development mode 39, 133
configurable fields 58

defects 58, 61, 63
features 98, 101, 103
null keyword 4
parts 147, 149
users 241, 242

coreq
description 53

coreq (continued)
related information 55
syntax 53

D
defect 57

description 57
related information 73
syntax 57

deleting 132
parts 132

directory permissions 5, 82, 158, 184,
260

driver
description 75
related information 86
syntax 76

driver member
description 89
related information 92
syntax 89

E
environment

description 93
related information 95
syntax 93

environment variable 6
setting 12

extracting 132
parts 132

F
feature 97

description 97
related information 111
syntax 97

fhomigmk command 9, 10
file permissions 5, 82, 158, 162, 184, 260
fix

description 113
related information 118
syntax 114

flag 2
action 2
arguments 3
attribute 3
description 2

H
host

description 119
related information 122
syntax 119

L
LANG 6, 7, 8, 9, 10, 11, 12

M
merging parts 132
modifying 132

parts 132

N
NLSPATH 6
notify

description 123
examples 125
syntax 123

notifyd 2
null keyword 4

O
octal number 5
operating system commands 132, 153

P
parser

description 127
related information 130
syntax 127

part 131
building 132
collector object 131
common 136
deleting 132
description 131
extracting 132
linking 133
merging 39, 132
modifying 132
place-holder part 131
reconciling 132
related information 174
running operating system commands

against 132
specifying full path name 133
syntax 137
TC_TOP 133
translating 132
undoing uncommitted actions 132

PATH 6
prereq

description 175
related information 176
syntax 175

R
reconciling parts 132

© Copyright IBM Corp. 1992, 1999 333

release
description 177
related information 190
syntax 179

report
description 191
related information 205
syntax 192

return codes 6

S
serial development mode 39, 133
shadow

description 207
related information 217
syntax 208

size
description 219
related information 224
syntax 219

standard input 5
syntax statements 14

description 14

T
target

description 225
related information 229
syntax 225

TC_BACKUP 7
TC_BACKUPCHAR 7
TC_BECOME 7
TC_BUILD_RSSBUILDS_FILE 8
TC_BUILD_USER 12
TC_BUILDENVIRONMENT 7
TC_BUILDMAXWAIT 8
TC_BUILDMINWAIT 7
TC_BUILDOPTS 8
TC_BUILDPOOL 8
TC_CASESENSE 8
TC_CATALOG 8
TC_COMPONENT 9
TC_DBPATH 9
TC_FAMILY 9, 12
TC_INPUT 12
TC_INPUTTYPE 12
TC_LOCATION 12
TC_MAKEIMPORTRULES 9
TC_MAKEIMPORTTOP 9
TC_MAKEIMPORTVERBOSE 9
TC_MIGRATERULES 10
TC_MODELS 10
TC_MODPERM 10
TC_NOTIFY_DAEMON 10
TC_OUTPUT 12
TC_RELEASE 11
TC_REPORT_CHECKACCESS 11
TC_TOP 11, 133
TC_TRACE 11
TC_TRACEFILE 11
TC_TRACESIZE 11
TC_USER 11
TC_WORKAREA 12
TC_WWWDISABLED 12
TC_WWWPATH 12

tclogin

description 231
related information 233
syntax 231

teamc command 1

how to enter 1
return codes 6

teamcbld 2

teamcd 2

teamcpak 2

test

description 235
related information 240
syntax 235

translating parts 132

U
user 241

description 241
related information 246
syntax 241

V
verify

description 247
related information 250
syntax 247

W
work area

corequisite 251
description 251
freeze 251
prerequisite 251
refresh 251
related information 267
syntax 252

334 Commands Reference

Readers’ Comments — We’d Like to Hear from You

IBM VisualAge TeamConnection Enterprise Server
Commands Reference

Publication No. SC34-4501-03

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC34-4501-03

SC34-4501-03

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Information Development
Department G7IA / Bldg 062
P.O. Box 12195
Research Triangle Park, NC

27709-2195

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Part Number: 33H2571
Program Number: 5622–717

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC34-4501-03

33
H2

57
1

