

Making the most of VisualAge TeamConnection Version 2
user exits

Document Number TR 29.3032

Lee Perlov and Clifford Meyers

VisualAge TeamConnection/CMVC Development
IBM Software Solutions

Research Triangle Park, North Carolina
Copyright (C) 1998 IBM

ii TeamConnection V2 user exits

 ABSTRACT

This technical report provides guidance for family administrators developing VisualAge
TeamConnection user exits in order to enhance their software configuration management
(SCM) process. This document is organized by the types of problems that user exits solve,
providing specific examples in a variety of programming languages.

 ITIRC KEYWORDS

� Software Configuration Management

 � VisualAge

 � TeamConnection

 � User Exit

 ABSTRACT iii

iv TeamConnection V2 user exits

ABOUT THE AUTHOR

LEE R. PERLOV

Mr. Perlov is a Staff Programmer in the TeamConnection/CMVC development group. He
started working for IBM in 1985 in Gaithersburg, MD, working in the Federal Systems Division
on various projects for the United States intelligence community. He then moved to RTP to
work on library development and support.

Mr. Perlov received a B.S. degree in Accounting from the University of Florida in 1983. He
also completed two years of graduate work in the Department of Computer Science at the
University of Florida.

CLIFFORD J. MEYERS

Mr. Meyers is an advisory programmer with the VisualAge TeamConnection development
team. Previously, he was the technical team lead for IBM Global Services Distributed Config-
uration Management Services, one of the primary support organizations for CMVC and
VisualAge TeamConnection users. He joined IBM in 1985 as support for AIX/370 and
AIX/ESA before accepting his current assignment in 1993.

Cliff is currently a development engineer working on Unix platforms.

 ABOUT THE AUTHOR v

vi TeamConnection V2 user exits

 CONTENTS

ABSTRACT . iii
ITIRC KEYWORDS . iii

ABOUT THE AUTHOR . v
Lee R. Perlov . v
Clifford J. Meyers . v

Introduction . 1

General Suggestions . 3

Debugging Tips . 5
Simple Windows NT and OS/2 user exit . 5

Output of showParms.cmd . 6
Registering showParms.cmd user exit . 6

Simple Unix user exit . 7
Output of showParms.ksh . 7
Registering showParms.ksh user exit . 8

Simple Unix user exit accessing environment file . 8
Registering user exits . 9

Querying and updating the database . 11
Techniques to avoid deadlock . 11
Asynchronous execution of TeamConnection commands . 13
tcselect query tool . 13

tcselect syntax . 13

Accessing parts from user exits . 15
User exits for part shadowing . 15
teamc part -add: PartAdd2 . 15

teamc part -checkin: PartCheckIn2 . 16
Registering user exits . 17

Verify keywords in source code and text files . 18
teamc part -create/-checkin: uekey . 18
Registering user exits . 24
help message . 24

Integrating with other tools . 27

 Contents vii

New User Information User Exit . 27
C program: newuser.c . 27
Korn shell script: UserCreate2 . 31

Very large user exits . 33
Introduction to mue . 33
Delivered as source code . 33
How to use mue . 34

Comparing VisualAge TeamConnection and CMVC . 37
New to TeamConnection . 37
Migrating from CMVC to VisualAge TeamConnection V2 . 38
Comparing TeamConnection V1 to TeamConnection V2 . 38
Comparing VisualAge TeamConnection V2 to VisualAge TeamConnection V3 39

Appendix A. Bibliography . 41
VisualAge TeamConnection Publications . 41
Related Redbooks . 41
Related Technical Reports . 41

Appendix B. Copyrights, Trademarks and Service marks 43

viii TeamConnection V2 user exits

 INTRODUCTION

While VisualAge TeamConnection user exits are well documented in the VisualAge
TeamConnection Administrator's Guide , and sample user exits are provided with the
product in REXX, Korn Shell and C, there are no samples that address the typical problems
that family administrators try to solve.

In order to make use of this document, it is necessary to have a working understanding of
user exits. This information is provided in "Chapter 15: Providing user exits" and "Appendix C:
Userexit Parameters" of the VisualAge TeamConnection Administrator's Guide .

This document focuses on areas that are not covered in the VisualAge TeamConnection doc-
umentation:

� Sample user exits that show how to solve real-world problems

� Sample user exits that access temporary files used in teamc part commands

� Accessing the database through the teamc report command

� Accessing the database through SQL queries

� Avoiding problems that commonly occur when issuing TeamConnection commands or inte-
grating with other tools

� Debugging user exits

� A detailed comparison of user exits in VisualAge TeamConnection Version 2 and CMVC

 Introduction 1

2 TeamConnection V2 user exits

 GENERAL SUGGESTIONS

There are many useful suggestions on user exits in the VisualAge TeamConnection Admin-
istrator's Guide . Here are more suggestions based on the experience of our enterprise
family administrators and users:

� Use the environment file mechanism to make sure that you get the exact string that was
entered. As stated in the Administrator's Guide, any value that contains a newline will
truncate the parameter list on the command line for Windows NT and OS/2. Recent
changes can cause the same problem in Unix. Using the environment file eliminates the
risk of getting incorrect values. Many of the examples in this document use the environ-
ment file feature.

� If you are going to issue TeamConnection commands in your user exit, run extra daemons
and use a mechanism like the code segment in “Techniques to avoid deadlock” on
page 11.

� If there is significant processing to be done, use a high-level compiled language such as
C. TeamConnection provides a sample user exit in C, viewexit.c. Also, compile using
the optimizer option, for example cc -O ...

� Avoid using interpretive languages such as perl

Since most of our production families run on Unix, we tend to write most of our user exits in
Korn shell. However, increasingly we are seeing families installed on multi-processor Intel-
based workstations running Windows NT and OS/2. Therefore, many of the examples in this
document are written in the most portable language currently available: C. Since VisualAge
TeamConnection families can easily be moved to new servers, possibly including a change in
operating systems, we recommend writing user exits with portability in mind.

 General Suggestions 3

4 TeamConnection V2 user exits

 DEBUGGING TIPS

When a user exit isn't working properly, there are several techniques available to debug the
problem:

� Set the TRACE environment variables before starting the TeamConnection daemon to
start tracing. The trace will include the exact syntax of all calls to your user exit programs,
along with all of the parameters passed to your user exit program. Complete documenta-
tion for using the TRACE facility is provided in the VisualAge TeamConnection Adminis-
trator's Guide .

� Use whatever trace facility is available in the language of your user exit program. For
example:

– In Korn shell, add set -x to turn on shell trace. There is an example of this in “Simple
Unix user exit” on page 7.

– In C, use the perror or fprintf(stderr,... to write information to standard error.
– In DOS batch, omit the @echo off to allow echoing of all commands as they execute.
– In REXX, add TRACE ALL to turn on command trace.

� If you have problems using an environment file, get a sample environment file and test
your program independently of TeamConnection. You can use a simple user exit such as
“Simple Windows NT and OS/2 user exit” or “Simple Unix user exit” on page 7 to copy an
environment file to another location so that it will not be deleted when the user exit com-
pletes. Both of these examples have commented out lines that will copy the environment
file.

� Try the user exit in a test family, like the "testfam" family, documented in the
TeamConnection installation instructions. Once a user exit is know to the currently running
TeamConnection daemon (i.e. in $HOME/config/userExit when the daemon starts), the
program can be modified without restarting the daemon.

SIMPLE WINDOWS NT AND OS/2 USER EXIT

The very simple user exit sample, showParms.cmd, displays each of the user exit parameters,
including the environment file name. Here are the key points that make this sample useful for
understanding and debugging user exit problems:

� Line 1 - Commenting (REM) will cause each line executed to be displayed in an informa-
tion window when the user exit is run.

� Line 2 - Contains VisualAge TeamConnection keywords that indicate where the file came
from (i.e. the context).

� Line 3 - Uncommenting will save a copy of the environment file so that you can test your
user exit independent of VisualAge TeamConnection.

 Debugging Tips 5

� Remaining lines display parameters and operate on the parameter list. Note that if one of
the parameters is Remarks, which may contain a newline, the parameter list may be pre-
maturely truncated.

@echo off

REM $KW=@(#); $FN=showParms.cmd; $ChkD=1998/ð3/21 ð7:44:33; $Ver=66:1; $EKW;

REM copy %2 envfile.%1

echo User exit parameters:

:again

if %1.==. goto done

echo Parm: %1

shift

goto again

:done

echo No more parameters.

Output of showParms.cmd

Here is a sample output for the above sample user exit, run on a teamc part -create

command.

User exit parameters:

Parm: "Create"

Parm: "C:\PROGRA˜1\IBM\TEAMCO˜1\testfam\tctmp\ðð164ð"

Parm: "readme.txt"

Parm: "C:\TEMP\2"

Parm: "NOTRACK"

Parm: "comp1"

Parm: "1"

Parm: "SpaceMountain"

Parm: "Initial Version of readme.txt"

Parm: "ð6ðð"

Parm: ""

Parm: ""

Parm: ""

Parm: "1"

Parm: ""

Parm: "TCPart"

Parm: "TCPart"

Parm: "no"

Parm: "minnie"

Parm: "ð"

No more parameters.

Registering showParms.cmd user exit

Here is the entry in the %TC_DBPATH%\config\userExit file that invokes showParms.cmd,
including comments on each parameter:

#config/userExit file parameters:

#1. Action (e.g. PartAdd invoked for teamc part -create)

#2. Exit Number from ð to 3 (e.g. 1 is to execute after initial checking)

#3. UserExit Command to be executed (e.g. showParms.cmd)

#4. UserExit Parameter (e.g. "Create" passed to user exit in first positional

parameter)

- tcadmin GUI always inserts UEParm.

- config/userExit does not require, but it is strongly recommended.

6 TeamConnection V2 user exits

- Positional parameter list is shifted if UEParm is missing.

#5. Optional Environment Variable List (e.g. partpathName,

temporaryfileonserver,and filetype will be passed in an environment

file, C:\PROGRA˜1\IBM\TEAMCO˜1\testfam\tctmp\ðð164ð, to user exit

in second positional parameter

#6. Optional Comment (e.g. None used here, always starts with a #)

#

PartAdd 1 showParms.cmd "Create" ENV=(partpathName,temporaryfileonserver,filetype)

SIMPLE UNIX USER EXIT

This is the Korn shell equivalent to the DOS batch user exit in “Simple Windows NT and OS/2
user exit” on page 5. Uncomment the third line in order to get debug information, including
information about values of commands and the results of test instructions. Uncommenting the
fourth line will create a copy of the environment file so that you can test your user exit with an
environment file, but without running TeamConnection commands.

#!/usr/bin/ksh

$KW=@(#); $FN=showParms.ksh; $ChkD=1998/ð3/21 ð7:45:49; $Ver=66:1; $EKW;

set -x

cp $2 envfile.$1

print User Exit parameters:

while [["$1" != ""]]

do

print Parm: $1

 shift

done

print No more parameters.

Output of showParms.ksh

Here is a sample output for the above sample user exit, run on a teamc part -create

command.

User exit parameters:

Parm: ""

Parm: ""

Parm: "readme.txt"

Parm: "/tmp/xYor5H"

Parm: "NOTRACK"

Parm: "comp1"

Parm: "1"

Parm: "SpaceMountain"

Parm: "Initial Version of readme.txt"

Parm: "ð6ðð"

Parm: ""

Parm: ""

Parm: ""

Parm: "1"

Parm: ""

Parm: "TCPart"

Parm: "TCPart"

Parm: "no"

Parm: "minnie"

Parm: "ð"

No more parameters.

 Debugging Tips 7

Registering showParms.ksh user exit

Here is the entry in the $HOME/config/userExit file that invokes showEnv.ksh, including com-
ments on each parameter:

#config/userExit file parameters:

#1. Action (e.g. PartAdd invoked for teamc part -create)

#2. Exit Number from ð to 3 (e.g. 1 is to execute after initial checking)

#3. UserExit Command to be executed (e.g. showEnv.ksh)

#4. UserExit Parameter (e.g. "" if no string is to be passed to user exit)

- tcadmin GUI always inserts UEParm.

- config/userExit does not require, but it is strongly recommended.

- Positional parameter list is shifted if UEParm is missing.

#5. Optional Environment Variable List (e.g. not used)

#6. Optional Comment (e.g. # Executed on Part create)

#

PartAdd 1 showEnv.ksh "" # Executed on Part create

SIMPLE UNIX USER EXIT ACCESSING ENVIRONMENT FILE

The following example contains a minor extension to the previous Korn shell script that does
two useful things:

� Displays all of the values in the environment file
� Retrieves and displays a specific value (e.g. component)

In order to access the contents of the environment file, the sample program teamcenv.c

should be compiled using instructions in the files comment block.

#!/usr/bin/ksh

$KW=@(#); $FN=showEnv.ksh; $ChkD=1998/ð3/21 ð7:45:49; $Ver=66:1; $EKW;

set -x

cp $2 envfile.$1

print User Exit parameters:

while [["$1" != ""]]

do

print Parm: $1

 shift

done

#

#

if [[$2 == ""]]

then

print No environment file, check $HOME/config/userExit

 exit 1

fi

print Contents of environment file:

teamcenv $2

#

set pathName=""

pathName= teamcenv $2 partpathName

if [[$partName == ""]]

then

print Error: partpathName not set

8 TeamConnection V2 user exits

 exit 1

else

print partpathName value: $pathName

fi

exit ð

Registering user exits

Here is the entry in the $HOME/config/userExit file that invokes showEnv.ksh, including com-
ments on each parameter:

#config/userExit file parameters:

#1. Action (e.g. PartAdd invoked for teamc part -create)

#2. Exit Number from ð to 3 (e.g. 1 is to execute after initial checking)

#3. UserExit Command to be executed (e.g. showEnv.ksh)

#4. UserExit Parameter (e.g. "" if no string is to be passed to user exit)

- tcadmin GUI always inserts UEParm.

- config/userExit does not require, but it is strongly recommended.

- Positional parameter list is shifted if UEParm is missing.

#5. Optional Environment Variable List (e.g. partpathName,

temporaryfileonserver,and filetype will be passed in an environment

file to user exit)

#6. Optional Comment (e.g. None used here, always starts with a #)

#

PartAdd 1 showEnv.ksh "" ENV=(partpathName,temporaryfileonserver,filetype)

PartCheckIn 1 showEnv.ksh "" ENV=(partpathName,temporaryfileonserver,filetype)

 Debugging Tips 9

10 TeamConnection V2 user exits

QUERYING AND UPDATING THE DATABASE

It is now possible, in many cases, to use the teamc report command to query the contents of
the family from within a user exit. However, there are still some limitations:

� It is still possible to deadlock the database when trying to access data that is already
locked

� Invoking a TeamConnection command will use a second daemon
� It may be necessary to schedule tasks to run outside the user exit, for performance or

stability

Careful planning is necessary whenever TeamConnection commands are used inside a
TeamConnection user exit. Therefore, teamc command calls should be tested.

TECHNIQUES TO AVOID DEADLOCK

If a TeamConnection command deadlocks in a user exit everything stops! The only way to
know whether an action will cause a deadlock is to timeout the command. Here is a tech-
nique that can allow a deadlock to timeout safely in Unix:

1. Start the TeamConnection command in background, redirecting the output to a temporary
file.

Note: Unix returns the process ID.

2. Run a wait loop, checking the status of the process periodically.

3. After a fixed time, if the command has not completed, kill it and end the user exit with a
non-zero return code.

4. Upon successful completion of the command, continue processing.

5. In all cases, the output that was redirected to the file is displayed before removal of the
temporary file

Here is a piece of Korn shell that will provide such a wait loop. It includes some sample
processing to show you where you can insert your user exit code. The sample code is really
there to help you understand how the routine manages the background task.

#!/bin/ksh

Debugging, if needed

set -x

#

Input parameter processing

#

print Command line argument list: $\

if (($# < 1))

then

print For this example, 1 input parameter is required to Sleep Time,

 Querying and updating the database 11

print for example 45, for 45 second sleep

 exit 1

else

print Will sleep for $1 in this test

fi

#

End input parameter processing

#

TeamConnection command processing

#

Set command to be executed in background here

command="sleep $1"

Temporary filename for output of command

filename=/tmp/$$tmp.out

Executing command, returning process ID

$command > $filename 2>&1 &

pid=$!

print Executing in background: $command

print Process ID: $pid

#

loop 5 times, sleeping on each failed attempt

let i=ð

let deadlock=1 # assume deadlock

Allow about 1 minute for successful execution of command

while ((i < 5)) && ((deadlock))

do

sleep 11 # sleep 11 seconds, then

ps -fu $LOGNAME | cut -f3 -d' ' | grep $pid 1>/dev/null 2>&1

Check return code

if (($?))

 then

Optional comment: print ...

print Process $pid has terminated, exiting loop

let deadlock=ð # no deadlock

 else

Optional comment: print ...

print Process $pid still running, continuing to wait

let i=i+1 # increment and try again

 fi

done

#

Check for deadlock

if ((deadlock))

then

print Apparent deadlock on command: $command

print Terminating user exit

kill -9 $$

 cat $filename

rm -f $filename

 exit 1

fi

#

End of TeamConnection command processing

#

#

Start other user exit processing here

#

print Completed processing

#

End other user exit processing

#

Start cleanup and exit

12 TeamConnection V2 user exits

#

cat $filename

rm -f $filename

exit ð

ASYNCHRONOUS EXECUTION OF TEAMCONNECTION COMMANDS

In Unix and on Windows NT, it is possible to schedule commands in a user exit to run inde-
pendently of the user exit process. In other words, when the user exit is terminated, the
scheduled command will run in its own shell.

Here is the Unix syntax for the at command:

print 'teamc report -view users -raw > /tmp/userlist' | at now

If the at job is going to be run from a script, the following syntax discards the output of the
command

print 'teamc report -view users -raw>/tmp/userlist'|at now>/dev/null 2>&1

Here is the Windows NT syntax. Since the Windows NT Schedule service does not accept
"now" as a parameter, we recommend using a C progam that can get the current time, then
specify that time when executing the at command.

at \\%HOSTNAME% ðð:ðð "command string..."

Notes:

1. You need to set the Schedule service to start automatically.

2. When using at jobs, it is important to check the Windows NT Event Viewer frequently to
make sure that the processes are running properly.

TCSELECT QUERY TOOL

In addition to the teamc report command, tcselect allows for accessing data in the family
using SQL syntax. The command is installed only on the server.

 tcselect syntax

tcselect ("QUERY_ARGUMENT")

where QUERY_ARGUMENT is a standard SQL select without the word "select", for example:

tcselect "\ from users"

If no QUERY_ARGUMENT is provided, "tcselect" provides a prompt for entering a query,
complete with "select", for example:

>tcselect

 Querying and updating the database 13

Enter a valid query string, for example:

select \ from users

The query can include tables and fields not accessible by the teamc report command, such
as:

select adName from DataAtlasPSB

The tcselect client command provides a generalized SQL query facility for TeamConnection.
It is intended to be complementary to the teamc report command, in that it is possible to
query on all data defined in TeamConnection tables and report all columns selected in the
query. The teamc report command excludes some columns from reports and performs user
authentication, only returning the records a user is authorized to see.

Tcselect command supports the same SQL rules as the -where clause in teamc report,
including wildcards (% and _). Tcselect uses the environment variables TC_BECOME and
TC_FAMILY for all commands. Further, tcselect uses the environment variable TC_RELEASE
and TC_WORKAREA when a release or workarea context is required.

Upon successful completion, tcselect returns 0. Upon failure, tcselect returns 1 and outputs
various diagnostic information to standard error.

Notes:

1. Family administrators may choose to change permissions on the tcselect executable to
limit access to this command.

2. Quotes are required for QUERY_ARGUMENT only when wildcards are used that are inter-
preted by the command line processor (e.g. Unix ksh)

3. Tcselect is available only in English.

14 TeamConnection V2 user exits

ACCESSING PARTS FROM USER EXITS

TeamConnection commands that process file data, such as check-in and check-out, have
access to temporary files on the server that contain the part data. Accessing these parts in a
user exit running on the server allows the family administrator to perform a wide range of
tasks helpful to the software configuration management process. Here are some examples:

� Copy files to a directory structure so that they can be accessed by file based tools
� Inspect the content of files in order to enforce coding standards
� Extend the process model by adding new processing based on the content of information

in configurable fields.

Note: While it is possible to modify the contents of the temporary copy of a part in a user
exit, we strongly discourage it. Changing part contents negatively impacts a user's impression
that the library is a reliable means of saving EXACTLY what the programmer asked to be
saved.

Here are some sample programs written in different languages that perform operations on the
temporary files created during teamc part -create and teamc part -checkin.

USER EXITS FOR PART SHADOWING

In this minimal set of user exits we demonstrate how to populate a directory structure with a
shadow copy of the parts in a workarea. Shadowing allows administrators to create an
instant backup of a workarea and users to execute tools that interrogate parts, such as grep.

This example only saves files that are updated in a workarea. The VisualAge
TeamConnection development team uses these exits to verify change history while testing
beta versions of TeamConnection. A complete shadowing solution would also include handling
all of the teamc part commands, performing teamc driver -extract each time a driver is
updated (i.e. adding/removing a driver member, or performing a part build) and performing a
teamc release -extract each time a driver is committed.

This is a Unix implementation, using Korn Shell. For this set of user exits to work, the
${DIRNAME} variable must be set.

TEAMC PART -ADD: PARTADD2
#!/usr/bin/ksh

##

Author : Clifford J. Meyers

Function: Shadow PartAdd action to server

##

 Accessing parts from user exits 15

##

NOTES: stdout prints take the form print "<<STATUS>> ..."

stderr prints take the form print -u2 "<<ERROR>> ..."

##

##

function initialize

{

program return code

 RC=ð

 DIRNAME=/shadow/${FAMILY}/${RELEASE}/${WORKAREA}/ dirname ${PART}

 BASENAME= basename ${PART}

 BADTEMPFILE=/tmp/badtempfile.$$

}

##

function process

{

mkdir -p ${DIRNAME} >/dev/null 2>&1

cp ${TEMPFILE} ${DIRNAME}/${BASENAME} >/dev/null 2>&1

if ($? -ne ð)

then cp ${TEMPFILE} ${BADTEMPFILE} >/dev/null 2>&1

 print "cp ${BADTEMPFILE} ${DIRNAME}/${BASENAME}" | mail \

 -s "${HOSTNAME} ${FAMILY} ${PROG} failure" ${FA_ADMIN}

else print "<<STATUS>> Part ${BASENAME} has been shadowed\c"

 print " to directory ${DIRNAME}"

 fi

}

##

main

PROG= basename ${ð}

PART=${2}

TEMPFILE=${3}

RELEASE=${4}

FILETYPE=${6}

WORKAREA=${7}

initialize

if (-n "${TEMPFILE}")

 then process

fi

exit ${RC}

teamc part -checkin: PartCheckIn2
#!/usr/bin/ksh

##

Author : Clifford J. Meyers

Function: Shadow PartCheckIn action to server

##

##

NOTES: stdout prints take the form print "<<STATUS>> ..."

stderr prints take the form print -u2 "<<ERROR>> ..."

##

##

function initialize

{

program return code

 RC=ð

 DIRNAME=/shadow/${FAMILY}/${RELEASE}/${WORKAREA}/ dirname ${PART}

 BASENAME= basename ${PART}

16 TeamConnection V2 user exits

 BADTEMPFILE=/tmp/badtempfile.$$

}

##

function process

{

mkdir -p ${DIRNAME} >/dev/null 2>&1

cp ${TEMPFILE} ${DIRNAME}/${BASENAME} >/dev/null 2>&1

if ($? -ne ð)

then cp ${TEMPFILE} ${BADTEMPFILE}

 print "cp ${BADTEMPFILE} ${DIRNAME}/${BASENAME}" | mail \

 -s "${HOSTNAME} ${FAMILY} ${PROG} failure" ${FA_ADMIN}

else print "<<STATUS>> Part ${BASENAME} has been shadowed to \c"

 print "directory ${DIRNAME}"

 fi

}

##

main

PROG= basename ${ð}

PART=${2}

TEMPFILE=${3}

RELEASE=${4}

WORKAREA=${6}

initialize

if (-n "${TEMPFILE}")

 then process

fi

exit ${RC}

Registering user exits

In this example, there is no ueParm specified. This is allowed by VisualAge TeamConnection
user exits, but not encouraged. It is not certain that this will be possible in the future. The
impact of not including ueParm is that the argument list is shifted one (e.g $3 becomes $2,
etc.), as you can see from this excerpt of the help text delivered in the sample userExit file in
/usr/teamc/nls/cfg/En_US:

#

The following tables show the parameters passed to the user exit

programs defined for the PartAdd TeamConnection action. This information

is provided so that you can make use of the parameters being passed to your

user exit programs by the TeamConnection Server software.

#

At the end of this file is an example of a user exit definition. Add

your own definitions to the end of this file. For more information on

user exits, refer to the IBM TeamConnection Server Administration and Installation

guide.

#

#

===================

PartAdd, ExitID = ð

===================

Argument Number Argument Number Argument Value

in an executable in a shell program

source (e.g. C)

arg[ð] $ð User exit program name

arg[1] $1 User defined parameter - should be in quotes

 Accessing parts from user exits 17

arg[2] $2 Environment file name - null if not used

arg[3] $3 File path name

arg[4] $4 'ð' if the file will not be

transmitted; otherwise the

file will be transmitted.

arg[5] $5 Client location

arg[6] $6 Temp file on server

#

arg[7] $7 Release name

arg[8] $8 Component name

...

userExit file:

PartCheckIn 2 PartCheckIn2 # Part Checkin, exit 2

PartAdd 2 PartAdd2 # Part Add, exit 2

VERIFY KEYWORDS IN SOURCE CODE AND TEXT FILES

We recommend using VisualAge TeamConnection keywords in all source code, including text
documents, in order to insert version information into each file you manage. This allows you
to check the version of a file, even after files are extracted and delivered to end users.

The uekey user exit interrogates the temporary file and verifies that the keywords defined in a
coding standards document are properly included in each text file with an appropriate file
extension in the file name (e.g. a.c, readme.txt, go.cmd).

This example is written in C, so it should be portable to all operating systems where the
VisualAge TeamConnection daemon runs. However, it has only been tested on Windows NT.

teamc part -create/-checkin: uekey
/\

\\\

SAMPLE NAME: uekey.c

USAGE: User Exit, see <family dir>\config\UserExit for details

COMPILATION: cc -o uekey uekey.c

ENVIRONMENT VARIABLES:

 none

DESCRIPTION: This sample user exit inspects the contents of any file

with the name matching:

\.h, \.c, \.cmd, \.bat, \.txt

During checkin or create insure that appropriate

TeamConnection keywords are included in the file,

between $KW=@(#); and $EKW;, on one line.

If they are not, or are in the wrong order, an

explanation of how they should be used is returned,

with the error message.

\ Handle different parameter lists for PartAdd and

18 TeamConnection V2 user exits

 PartCheckIn

\ Handle different order of parameters by using

 envFile

NOTE: When changing file type on CheckIn, user exit

reports current type, not new type!

\\\

\ (C) Copyright, IBM Corp., 1996. All Rights Reserved.

\ Licensed Materials - Property of IBM

\

\ US Government Users Restricted Rights

\ - Use, duplication or disclosure restricted by

\ GSA ADP Schedule Contract with IBM Corp.

\

\ IBM is a registered trademark of

\ International Business Machines Corporation

\\\

\

\ NOTICE TO USERS OF THE SOURCE CODE EXAMPLES

\

\ INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THE SOURCE CODE

\ EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS, "AS IS" WITHOUT

\ WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT

\ LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

\ PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE

\ OF THE SOURCE CODE EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS,

\ IS WITH YOU. SHOULD ANY PART OF THE SOURCE CODE EXAMPLES PROVE

\ DEFECTIVE, YOU (AND NOT IBM OR AN AUTHORIZED DEALER) ASSUME THE ENTIRE

\ COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

\

\\\

\/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

#include <sys/types.h>

extern int errno;

/\ This is based on a limit used for actions in TeamC \/

#define MAX_PARM_NAME 4ð

/\ Name of program, for print statements \/

#define PROG_NAME "uekey"

#define TRUE 1

#define FALSE ð

/\ Part Action file types \/

/\ - On part create text=1, binary=2, none=ð \/

/\ - On part checkin text=text, binary=binary ... \/

#define CR_PART_BINARY "2"

#define CH_PART_BINARY "binary"

/\ Global variables, created for performance \/

#define LEN_PARM_VALUE 16ðð1

char parameterValue[LEN_PARM_VALUE]; /\ allow for max in TeamC 16ððð for remarks + NULL \/

/\ Function Declarations \/

void usageError(void);

void userHelp(void);

 Accessing parts from user exits 19

char \getEnvVal(char \inValue);

FILE \initFile(char \envFileName, char \parms);

int envGetFromEnvFile(FILE \envFile, char \parameterName, char \outValue);

/\---\

| usageError |

\---\/

void usageError(void)

{

fprintf(stderr, "%s: Use of keywords in source files:\n\

The following keywords are required:\n\

$%s; $FN; $ChkD; $Ver; $EKW;\n\

The string must contain these keywords in order, on one line.\n\

Other TeamConnection keywords are optional. It is recommended\n\

that a keyword string be compiled into the code. This\n\

imbeds the value of the keywords so that they can be seen by\n\

using the \"what\" (Unix) or \"tcwhat\" (Intel) command against\n\

the executable. This is a sample in C syntax:\n\

char fnStr[]=\"$%s; $FN; $ChkD; $Ver; $EKW;\";\n\

The values are expanded on extract, including \"teamc part -build\".\n\

These are the keyword values for this file:\n\

$KW=@(#); $FN=uekey.c; $ChkD=1998/ð3/21 ð7:47:18; $Ver=66:1; $EKW;\n\

Please update this file and repeat part action.\n\n",

PROG_NAME, "KW", "KW");

 return;

}

/\---\

| userHelp: |

\---\/

void userHelp(void)

{

fprintf(stderr,"%s usage:\n", PROG_NAME);

 fprintf(stderr," %s user exit parameters ...\n", PROG_NAME);

 fprintf(stderr," Note: The UEParm must equal \"Create\" or \"CheckIn\"\n\n");

 usageError();

 return;

}

/\---\

| getEnvVal: |

\---\/

char \getEnvVal(char \inValue)

{

 char \outValue;

outValue = getenv(inValue);

if (outValue == NULL)

 {

fprintf(stderr, "%s: Error, %s environment variable must be set\n",

 PROG_NAME, inValue);

 return NULL;

 }

 return outValue;

}

/\---\

| initFile: |

| - Return File Handle |

| - temporary file automatically deleted when daemons killed |

\---\/

20 TeamConnection V2 user exits

FILE \initFile(char \envFileName, char \parms)

{

 FILE \envFile;

/\ Open temporary file \/

envFile = fopen(envFileName, parms);

if (envFile == (FILE \)ð)

 {

fprintf(stderr,"%s: Error, could not open file \"%s\"\n",

 PROG_NAME, envFileName);

return (FILE \)ð;

 }

 return (envFile);

}

/\---\

| envGetFromEnvFile: |

| - Write an entry to environment file |

| - Write binary: |

| size of parameter, parameter string, size of value, value string |

\---\/

int envGetFromEnvFile(FILE \envFile, char \inName, char \outValue)

{

 int nNameLength;

 int nValueLength;

char parameterName[MAX_PARM_NAME+1]; /\ allow for maximum in TeamC (15 + NULL) \/

/\ Defining parameterValue as global for performance \/

/\ Search for parameter identified by inName \/

if (\inName == '\ð')

 {

fprintf(stderr,"%s: Error, require parameter name\n", PROG_NAME);

 return 1;

 }

else /\ Searching for one entry \/

 {

fread(&nNameLength, sizeof(int), 1, envFile);

fread(parameterName, sizeof(char), nNameLength, envFile);

 \(parameterName+nNameLength)='\ð';

fread(&nValueLength, sizeof(int), 1, envFile);

fread(parameterValue, sizeof(char), nValueLength, envFile);

 \(parameterValue+nValueLength)='\ð';

while ((strcmp(inName, parameterName) != ð) && (!feof(envFile)))

 {

fread(&nNameLength, sizeof(int), 1, envFile);

fread(parameterName, sizeof(char), nNameLength, envFile);

 \(parameterName+nNameLength)='\ð';

fread(&nValueLength, sizeof(int), 1, envFile);

fread(parameterValue, sizeof(char), nValueLength, envFile);

 \(parameterValue+nValueLength)='\ð';

 }

 if (!feof(envFile))

 {

/\ Return the value of the parameter \/

 strcpy(outValue, parameterValue);

 }

 else

 {

 strcpy(outValue, "");

fprintf(stderr, "%s: Error, parameter \"%s\" not found\n",

 PROG_NAME, inName);

 Accessing parts from user exits 21

 return 1;

 }

 }

 return ð;

}

/\---\

| main: |

| - Get parameters from envFile for PartCheckIn and PartAdd User Exit 1 |

| action |

| - Check keywords and provide guidance |

\---\/

int main(int argc, char \argv[])

{

FILE \envFile, \tempFile;

/\ char \family; \/

char envPathName[195], envTempFile[256], envFileType[7];

 char envPathNameLC[195];

 char aKeywords[][7]={"$KW","$FN","$ChkD","$Ver","$EKW",""};

 char \p;

int fFound, i, n, nParm = ð, rc = ð;

/\ If no parameters, print help text \/

/\ Parameter 1, UEParameters string must equal "Create" or "CheckIn" \/

if ((argc < 3) ||

 ((strcmp(argv[1],"Create")!=ð)&&(strcmp(argv[1],"CheckIn")!=ð))

)

 {

fprintf(stderr, "%s: Error, Not enough parameters or the UEParm is not set properly.\n", PROG_NAME);

 userHelp();

 exit (1);

 }

/\ no environment variables required \/

#ifdef NOTTODAY

family = getEnvVal("TC_FAMILY");

if (family == NULL)

 {

fprintf(stderr, "%s: Error, Could not get one or more environment variable values\n",

 PROG_NAME);

 exit (1);

 }

#endif

/\ Parameter 2, envFile, must be set \/

/\ Access parameter env file. \/

if (strlen(argv[2]) == ð)

 {

fprintf(stderr, "%s: Error, ENV=(partpathName,temporaryfileonserver,filetype)\n\

not defined in config/UserExit for this user exit.\n", PROG_NAME);

 userHelp();

 exit (1);

 }

envFile = initFile(argv[2], "rb");

if (envFile == (FILE \)ð)

 {

 exit (1);

 }

/\ Get parameters needed for message from envFile \/

22 TeamConnection V2 user exits

/\ NOTE: Using envFile is independent of keyword position \/

rc = envGetFromEnvFile(envFile, "partpathName", envPathName);

rc += envGetFromEnvFile(envFile, "temporaryfileonserver", envTempFile);

rc += envGetFromEnvFile(envFile, "filetype", envFileType);

if (rc > ð)

 {

fprintf(stderr, "%s: Error, envFile must be specified in config/UserExit\n",

 PROG_NAME);

 usageError();

 exit (1);

 }

/\ File must be text \/

 if (strcmp(argv[1],"Create")==ð)

 {

if (strcmp(envFileType, CR_PART_BINARY)==ð)

 {

/\ do not process for binary files \/

 exit (ð);

 }

 }

else /\ CheckIn \/

 {

if (strcmp(envFileType, CH_PART_BINARY)==ð)

 {

/\ do not process for binary files \/

 exit (ð);

 }

 }

/\ FileName must end with \.h, \.c, \.cmd, \.bat, \.txt \/

/\ - LowerCase the file name to match \/

n = strlen(envPathName);

for (i=ð; (i < n); i++)

 {

envPathNameLC[i] = tolower(envPathName[i]);

 }

p = envPathNameLC+n;

\p = '\ð';

if ((strcmp(envPathNameLC+n-strlen(".h"),".h")==ð) ||

 (strcmp(envPathNameLC+n-strlen(".c"),".c")==ð) ||

 (strcmp(envPathNameLC+n-strlen(".bat"),".bat")==ð) ||

 (strcmp(envPathNameLC+n-strlen(".cmd"),".cmd")==ð) ||

 (strcmp(envPathNameLC+n-strlen(".txt"),".txt")==ð)

)

 {

/\ valid file type \/

rc = ð;

fFound = FALSE;

tempFile = initFile(envTempFile, "rb");

if (tempFile == (FILE \)ð)

 {

fprintf(stderr, "%s: Error, temporary file on server, %s, could not be opened\n",

 PROG_NAME, envTempFile);

 usageError();

 exit (1);

 }

/\ Loop through each line, until a line has all of the keywords, or eof \/

/\ - start by setting Found Flag to TRUE, then set FALSE on first failure \/

/\ - if a line is parsed and the flag is still TRUE, exit \/

/\ - if any line is only partial, set rc to first missing parm \/

 Accessing parts from user exits 23

/\ on last line with a partial match \/

p = fgets(parameterValue, LEN_PARM_VALUE, tempFile);

while ((!feof(tempFile)) && (!fFound))

 {

/\ Parse file for "$KW $FN $ChkD $Ver $EKW", in order \/

/\ - Other characters may exist in between words \/

/\ - Process for each keyword in array \/

fFound = TRUE;

for (i=ð; ((strlen(aKeywords[i]) > ð) && (fFound)); i++)

 {

p = strstr(p, aKeywords[i]);

if (p == NULL)

 {

nParm = i; /\ if first keyword not found, rc = ð \/

fFound = FALSE;

 }

 }

/\ Save any non-zero parm index for error message \/

if (nParm > ð)

 {

rc = nParm;

 }

/\ Read next line \/

p = fgets(parameterValue, LEN_PARM_VALUE, tempFile);

 }

 }

/\ Determine if there was a failure when parsing file \/

if ((rc > ð) || (!fFound))

 {

 if (!fFound)

 {

fprintf(stderr, "%s: Error, no line containing keyword string was found.\n",

 PROG_NAME);

 }

if (rc > ð)

 {

fprintf(stderr, "%s: Error, at least one like contained some keywords, but\n\

keyword \"%s\" was missing or out of order.\n", PROG_NAME, aKeywords[rc]);

 }

 usageError();

 exit (1);

 }

 return (ð);

}

/\ End of File \/

Registering user exits

In this example, the UEParm is different for the two user exits registered. Since this value is
passed to the user exit program, it allows the user exit to perform different functions, handle
differences in parameter lists for each action, etc. by checking the value of the UEParm.

PartAdd 1 ueKey "Create" ENV=(partpathName,temporaryfileonserver,filetype)

PartCheckIn 1 ueKey "CheckIn" ENV=(partpathName,temporaryfileonserver,filetype)

 help message

24 TeamConnection V2 user exits

uekey usage:

uekey user exit parameters ...

Note: The UEParm must equal "Create" or "CheckIn"

uekey: Use of keywords in source files:

The following keywords are required:

$KW; $FN; $ChkD; $Ver; $EKW;

The string must contain these keywords in order, on one line.

Other TeamConnection keywords are optional. It is recommended

that a keyword string be compiled into the code. This

imbeds the value of the keywords so that they can be seen by

using the "what" (Unix) or "tcwhat" (Intel) command against

the executable. This is a sample in C syntax:

char fnStr[]="$KW; $FN; $ChkD; $Ver; $EKW;";

The values are expanded on extract, including "teamc part -build".

These are the keyword values for this file:

$KW=@(#); $FN=uekey.c; $ChkD=1998/ð3/21 ð7:47:18; $Ver=66:1; $EKW;

Please update this file and repeat part action.

 Accessing parts from user exits 25

26 TeamConnection V2 user exits

INTEGRATING WITH OTHER TOOLS

VisualAge TeamConnection user exits can be used to integrate with other tools in your devel-
opment environment. As discussed in “Asynchronous execution of TeamConnection
commands” on page 13 and “Techniques to avoid deadlock” on page 11, it is recommended
that any calls to other tools that will take a significant amount of time be run in background or
scheduled to run later.

NEW USER INFORMATION USER EXIT

Here are two examples:

� A C program that runs on Windows NT and sends each new user a note using Lotus
Notes. For complete information on this user exit see the technical report Evolution of a
new TeamConnection Family: Taking advantage of automation (second in a series)

� A Korn shell script that runs on AIX and sends a note using sendmail.

Both programs send a note that provides new user information about the family, so that they
can be effective quickly.

Notes:

1. Use environment file feature

2. Use interface to Lotus Notes on Windows NT

3. Written in C, copying code from samples viewexit.c and envfile.c

C program: newuser.c
/\

\\\

SAMPLE NAME: newuser.c

USAGE: newuser

COMPILATION: icc -O -o newuser newuser.c

ENVIRONMENT VARIABLES:

 TC_FAMILY

 TC_DBPATH

DESCRIPTION: This user exit is designed to be registered for UserCreate, exit 2.

Here is the recommended entry in the config/UserExit file

UserCreate 2 newusers "" ENV=(component,release) # New User Mail Message

This program extracts the current contents of %TC_DBPATH%/motd, adds a

standardized subject line and some framing, then invokes tcnotes.exe to

mail the document using Lotus Notes.

 Integrating with other tools 27

NOTES: 1. The tcnotes.exe utility is required as the mail exit, and notifyd must

 be running.

2. The functions envInitReadEnvFile and envGetFromEnvFile are derived

from the TEAMCENV.C sample provided with TeamConnection.

3. The function userHelp is derived from the help function in VIEWEXIT.C

\\\

\/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

/\ This is based on a limit used for actions in TeamC \/

#define maxParmName 4ð

/\ Function Declarations \/

void userHelp(void);

char \getEnvVal(char \inValue);

FILE \initFile(char \envFileName, char \parms);

int envGetFromEnvFile(FILE \envFile, char \parameterName, char \outValue);

/\---\

| userHelp: |

\---\/

void userHelp(void)

{

 fprintf(stderr,"newuser usage:\n");

fprintf(stderr,"\tnewuser - This help message\n");

fprintf(stderr,"\tnewuser UserCreate_ParameterList ... - Send motd to new user\n");

 return;

}

/\---\

| getEnvVal: |

\---\/

char \getEnvVal(char \inValue)

{

 char \outValue;

outValue = getenv(inValue);

if (outValue == NULL)

 {

fprintf(stderr, "newuser: Error, %s environment variable must be set\n",

 inValue);

 return NULL;

 }

 return outValue;

}

/\---\

| initFile: |

| - Return File Handle |

| - temporary file automatically deleted when daemons killed |

\---\/

FILE \initFile(char \envFileName, char \parms)

{

 FILE \envFile;

/\ Open temporary file \/

envFile = fopen(envFileName, parms);

if (envFile == (FILE \)ð)

 {

fprintf(stderr,"newuser: Error, could not open file \"%s\"\n",

28 TeamConnection V2 user exits

 envFileName);

return (FILE \)ð;

 }

 return (envFile);

}

/\---\

| envGetFromEnvFile: |

| - Write an entry to environment file |

| - Write binary: |

| size of parameter, parameter string, size of value, value string |

\---\/

int envGetFromEnvFile(FILE \envFile, char \inName, char \outValue)

{

 int nNameLength;

 int nValueLength;

char parameterName[maxParmName+1]; /\ allow for maximum in TeamC (15 + NULL) \/

char parameterValue[16ðð1]; /\ allow for max in TeamC 16ððð for remarks + NULL \/

/\ Search for parameter identified by inName \/

if (\inName == '\ð')

 {

fprintf(stderr,"newuser: Error, require parameter name\n");

 return 1;

 }

else /\ Searching for one entry \/

 {

fread(&nNameLength, sizeof(int), 1, envFile);

fread(parameterName, sizeof(char), nNameLength, envFile);

 \(parameterName+nNameLength)='\ð';

fread(&nValueLength, sizeof(int), 1, envFile);

fread(parameterValue, sizeof(char), nValueLength, envFile);

 \(parameterValue+nValueLength)='\ð';

while ((strcmp(inName, parameterName) != ð) && (!feof(envFile)))

 {

fread(&nNameLength, sizeof(int), 1, envFile);

fread(parameterName, sizeof(char), nNameLength, envFile);

 \(parameterName+nNameLength)='\ð';

fread(&nValueLength, sizeof(int), 1, envFile);

fread(parameterValue, sizeof(char), nValueLength, envFile);

 \(parameterValue+nValueLength)='\ð';

 }

 if (!feof(envFile))

 {

/\ Return the value of the parameter \/

 strcpy(outValue, parameterValue);

 }

 else

 {

 strcpy(outValue, "");

fprintf(stderr, "newuser: Error, parameter \"%s\" not found\n", inName);

 return 1;

 }

 }

 return ð;

}

/\---\

| main: |

 Integrating with other tools 29

| - Get parameters from envFile for UserCreate User Exit 2 action |

| - Read %TC_DBPATH%/motd and create a new user mail message |

| - Use Lotus Notes mail exit to mail new user message |

\---\/

int main(int argc, char \argv[])

{

FILE \envFile, \userFile;

char \family, \dbpath, \userFileName;

char envLogin[31], envFullName[63], envMailAddr[159];

 char command[1ððð];

int rc = ð;

/\ If no parameters, print help text \/

if (argc < 3)

 {

 userHelp();

 exit (1);

 }

/\ Check environment variables \/

 family = getEnvVal("TC_FAMILY");

 dbpath = getEnvVal("TC_DBPATH");

if (family == NULL || dbpath == NULL)

 {

fprintf(stderr, "newuser: Error, Could not get one or more environment variable values\n");

 exit (1);

 }

/\ Parameter 1, UEParameters string, is not currently used \/

/\ Parameter 2, envFile, must be set \/

/\ Access parameter env file. \/

if (strlen(argv[2]) == ð)

 {

fprintf(stderr, "newuser: Error, envFile must be specified in config/UserExit\n");

 exit (1);

 }

envFile = initFile(argv[2], "rb");

if (envFile == (FILE \)ð)

 {

 exit (1);

 }

/\ Get parameters needed for message from envFile \/

rc = envGetFromEnvFile(envFile, "login", envLogin); /\ Login ID \/

rc += envGetFromEnvFile(envFile, "usersfullname", envFullName); /\ Full Name \/

rc += envGetFromEnvFile(envFile, "sendmailaddress", envMailAddr); /\ mail address \/

if (rc > ð)

 {

fprintf(stderr, "newuser: Error, Could not get one or more parameters from \"%s\"\n",

 argv[2]);

 exit (1);

 }

/\ Construct mail message \/

/\ - Create temporary file \/

/\ - Write subject line \/

/\ - append motd \/

userFileName = tmpnam(NULL);

userFile = initFile(userFileName, "wb");

if (userFile == (FILE \)ð)

 {

 exit (1);

 }

30 TeamConnection V2 user exits

fprintf(userFile, "Subject: Welcome New TeamConnection User to %s\n", family);

fprintf(userFile, "Welcome %s, your new userid is %s\n", envFullName, envLogin);

 fprintf(userFile, "---\n");

 fclose(userFile);

sprintf (command, "type %s\\motd >> %s", dbpath, userFileName);

rc = system(command);

if (rc > ð)

 {

fprintf(stderr, "newuser: Error, Could not execute command: %s\n", command);

 exit (1);

 }

/\ Send file to user \/

sprintf(command, "tcnotes.exe %s %s %s", userFileName, family, envMailAddr);

rc = system(command);

 remove (userFileName);

if (rc > ð)

 {

fprintf(stderr, "newuser: Error, Could not send new user note\n\

command: tcnotes %s %s %s\n", userFileName, family, envMailAddr);

 exit (1);

 }

 return (ð);

}

/\ End of File \/

Korn shell script: UserCreate2

Note: This shell script is also a port from CMVC. As such, it does not use a UEParameter.
As a result, the position of the parameters is shifted. Also, there are no keywords for tracking
purposes.

#!/bin/ksh

function initialize

{

IPADDRESS=$(host hostname | awk '{ print $3 }')

 IPNAME= hostname

 NOTETOSEND=/tmp/user.note.$$

cp /usr/lpp/teamc/scm/userExits/usercreate.note ${NOTETOSEND}

}

function update_junk_mail

{

awk 'BEGIN{print "%s/'TCLOGIN'/'${TCLOGIN}'/g";print "wq"}' \

 /dev/null | ex ${NOTETOSEND} > /dev/null 2>&1

awk 'BEGIN{print "%s/'FAMILYNAME'/'${FAMILY}'/g";print "wq"}' \

 /dev/null | ex ${NOTETOSEND} > /dev/null 2>&1

awk 'BEGIN{print "%s/'PORT'/'${TC_PORT}'/g";print "wq"}' /dev/null | \

 ex ${NOTETOSEND} > /dev/null 2>&1

awk 'BEGIN{print "%s/'IPADDRESS'/'${IPADDRESS}'/g";print "wq"}' \

 /dev/null | ex ${NOTETOSEND} > /dev/null 2>&1

awk 'BEGIN{print "%s/'IPNAME'/'${IPNAME}'/g";print "wq"}' /dev/null | \

 ex ${NOTETOSEND} > /dev/null 2>&1

}

 Integrating with other tools 31

main processing routine

TCLOGIN=${1}

ADDRESS=${2}

initialize

update_junk_mail

mail -s "Welcome to TeamConnection" ${ADDRESS} < ${NOTETOSEND}

rm -f ${NOTETOSEND}

32 TeamConnection V2 user exits

VERY LARGE USER EXITS

It is possible for user exits to be very complicated. This section briefly discusses the mue user
exit. Since the source file, mue.c, is over 2000 lines (including lots of comments and white
space), it is a very large user exit sample. This user exit is fully documented in the technical
report 29.2307 Data Driven TeamConnection User Exits .

INTRODUCTION TO MUE

The mue (multiple user exits) user exit demonstrates the capabilities of a new
TeamConnection concept: the Environment File. The mue program demonstrates how the
environment file provides greater reliability and more direct access to data. This code:

� Uses the value of parameters delivered to the user exit, plus the content of the
config/multExit configuration file, to determine whether a particular user exit needs to be
run.

� Allows multiple user exits to be run and the results of the previously run user exit's return
value to be considered before running the current user exit.

� The config/multExit file is very similar in format to the config/userExit file, making it easy
to configure.

What makes mue possible is a new TeamConnection concept of user exits with version 2.0,
the Environment File. Through a new field, ENV=(), in the config/userExit file, a family admin-
istrator may specify individual user exit parameters by name, to be delivered as binary data
(parameter name and value) in an environment file. This file is easily parsed to allow for
direct access to data, without the difficulties associated with parsing a parameter list.

DELIVERED AS SOURCE CODE

Since every family administrator has different goals, mue is delivered as source code so that
the code can be customized or enhanced to fit the needs of the environment.

In order to help the family administrator take full advantage of TeamConneciton user exits, the
mue program includes a significant amount of code copied directly from the TeamConnection
source and the values of some critical variables used by TeamConnection user exits.

Also included in this technical report is the source code to the viewexit.c sample. This
program displays the output of all parameters and environment file values delivered to a user
exit by the TeamConnection teamcd process. When viewexit is registered in the
config/multExit file for a user exit, it is possible to see the full range of what TeamConnection
user exits can do for you.

 Very large user exits 33

This code was not written to be particularly clever or sophisticated. As such, almost any
family administrator with basic C skills should be able to customize this code as needed.

HOW TO USE MUE

The complete details of using mue are in the technical report 29.2307 Data Driven
TeamConnection User Exits . However, here is a short explanation of how to use mue.

The mue program demonstrates data driven logic that is based in large part on the value of
parameters in the envFile. This shows how a user exit can use the envFile to perform
complex tasks reliably. The code reads the userExit file, and a file specific to mue,
config/multExit , that contains conditions for determining whether a user exit program will be
executed.

The mue program has a usage message, options for verifying the configuration files and of
course the default where mue is called as a user exit.

The usage message for the mue program:

Multiple User Exit usage:

 1. Called from command line:

mue -? // Display complete help message

mue -C [a|m|u] // Checks userexit and multexit files;

// where 'm' verifies config/multExit file, 'u' verifies

// config/userExit, and 'a' verifies all (m+u).

 2. Registered as TeamConnection user exit (\config\userExit):

ActionName ExitID mue "ActionName ExitID" ENV=(...) # Comment

Example: PartAdd ð mue "PartAdd ð" ENV=(component,release)

Registration of conditional exits in MultiUser file (\config\multExit):

ActionName ExitID ExitName "Conditions" # comment

Example: PartAdd ð viewExit "RC>ð,component!=NULL"

Acceptable conditional expressions:

envName > Number;... // Using envName (where envName is in ENV=()),

RC < : // or RC (where RC is highest return code from

= : // exits). Multiple conditionals are separated

<> // by commas. Numeric compares convert strings to

== String // numbers. String compares do NOT allow spaces

!= NULL // and does NOT use quotes.

 in String,String...

NOTE: "mue -C" searches config/userExit for "mue" in lower case.

An example of configuring a family to use mue:

This config/userExit file calls mue as the user exit known to TeamConnection.

PartAdd ð mue "PartAdd ð"

PartAdd 2 mue "PartAdd 2" ENV=(workareaname,target)

PartDelete ð mue "" ENV=(partpathName) # no user defined parameter

DefectModify 1 mue "PartModify 1" ENV=(customerName) # UDP not match action

udp not match action and exitid

34 TeamConnection V2 user exits

Here is a config/multExit file. When called from the TeamConnection user exit interface, it
evaluates the contents of variables passed through the environment file, then calls the appro-
priate user exit programs.

mue file:

ActionName ExitId Exit "Condition(s)"

FeatureOpen 1 viewexit ""

PartAdd ð viewexit "target==96ð4"

PartAdd 2 viewexit "RC > ð"

PartAdd 2 viewexit "RC=ð;workareaname!=NULL;target()96ð4,96ð7,v2ð7 "

PartAdd 2 viewexit "RC=ð"

PartModify 1 failtest "RC=ð"

PartModify 1 failtest "RC=ð"

DefectModify 1 viewexit "RC < 2"

#PartDelete ?

 Very large user exits 35

36 TeamConnection V2 user exits

COMPARING VISUALAGE TEAMCONNECTION AND CMVC

You have seen how to use the new features available for VisualAge TeamConnection Version
2. Here is a quick summary of the differences between the current user exit interface and its
predecessors.

NEW TO TEAMCONNECTION

� Reliability and error handling have been enhanced, through the following changes:

– Each parameter is quoted using apostrophes(') to prevent interpretation of the con-
tents. Apostrophes(') within a parameter are converted to quotes(") in the positional
parameters. The values are unchanged in the environment file.

– In Windows NT and OS/2 imbedded quotes are backquoted.
– Since each string is quoted, null strings are denoted by a pair of quotes(""). As a

result, null strings do not change the position of parameters.
– The administration tool that helps set up user exits quotes a single user exit parameter

instead of writing each word separately. As a result, the number of parameters passed
to the user exit is consistent.

 � Flexibility:

– The environment file is easier to use reliably than positional parameters on the
command line. Hopefully, the examples in this technical report have convinced you of
that.

– User exit files must be on the path, but no longer need to be in the $HOME/bin direc-
tory.

� Ease of configuration:

– Administration GUI simplifies the setup of user exits
– The new report option, teamc report -userExitInfo, reports available user exits and

their parameters. This includes available configurable fields.
– The new report option, teamc report -userExitInfo -long, also reports registered

user exits, including any use of environment files and UEParm values.

 � Security

– User exits run as family account. There is no more setuid to deal with, making invoca-
tion of user exits more predictable and controllable.

 � Other differences

– The order and list of parameters for each action have changed.
– User Exit 2 is run after the database transaction has been committed. Therefore,

returning a non-zero value in a user exit will NOT rollback a transaction.

 Comparing VisualAge TeamConnection and CMVC 37

– Comments in the sample userExit file are stripped from the configured
$HOME/config/userExit file by tcadmin to improve performance. The commented file is
still installed with VisualAge TeamConnection, but it is in the $HOME/nls/cfg/enu (for
iso English) directory.

MIGRATING FROM CMVC TO VISUALAGE TEAMCONNECTION V2

Other than changes to the order of parameters, CMVC user exits can run in TeamConnection.
However, we recommend several changes to improve the maintainability of the code and the
likelihood that the user exit will continue to perform as expected. You can test after each step
to insure the code still behaves as expected.

1. Put quotes around all User Exit Parameters in the config/userExit file, so that they become
a single UEParameter.

2. Convert existing programs to expect only 1 UEParameter.

3. Convert existing programs to set variables from the input parameter list instead of refer-
encing positional parameters by their numbers. In other words, replace the use of posi-
tional parameters like $1 and $2 with assignments (e.g. let defectName = $2), then use
those variables.

4. Copy code from the appropriate version of viewexit to access the positional parameters.

5. Replace the use of positional parameters with environment file values. You can use
sample code in “Simple Unix user exit accessing environment file” on page 8, the program
in the samples directory, viewexit, or compile the teamcenv.c program in the samples in
order to extract values from the environment file.

6. Use either “Simple Windows NT and OS/2 user exit” on page 5 or “Simple Unix user exit”
on page 7 to create an environment file to use during unit testing (i.e. without running
teamcd), then

7. Configure $HOME/config/userExit to call your new user exit.

8. Convert keywords:

A user exit that converts SCCS keywords used by CMVC into TeamConnection keywords
is documented in the VisualAge TeamConnection Administrators Guide , in the chapter
on migration from CMVC to TeamConnection.

COMPARING TEAMCONNECTION V1 TO TEAMCONNECTION V2

The user exit facility in TeamConnection Version 1 was a unique implementation, unlike that of
CMVC or VisualAge TeamConnection Version 2. If you have written any user exits for
Version 1, you need to replace the way arguments are parsed. Otherwise, the body of your
user exit should remain unchanged.

38 TeamConnection V2 user exits

In TeamConnection V1, each parameter is separated by a pipe(|). While this works well for
parsing in REXX, it does not allow programs written in other languages, such as C or Korn
shell, to interpret the parameter list and assign the positional parameters. As a result, all of
the values in the parameter list will be assigned to $1, unless there are spaces in the values
of some of the parameters.

If you are parsing for a pipe in REXX, look at the sample program viewexit.cmd to see how
REXX can parse the argument list in VisualAge TeamConnection V2.

If you are porting your TeamConnection V1 family server to another operating system, it is
recommended that you use the sample programs viewexit.c or viewexit.ksh as guides to
rewriting your user exit programs.

COMPARING VISUALAGE TEAMCONNECTION V2 TO VISUALAGE
TEAMCONNECTION V3

Since the next version of VisualAge TeamConnection has recently been announced, it is
appropriate to highlight some of the expected impacts to user exits for current users of
VisualAge TeamConnection Version 2:

� Replacement of the ObjectStore database with DB2

As a result of replacing the current object-oriented database with a relational database, the
tcselect command will no longer be needed for user exits. The database can be queried
directly, without the overhead of executing a TeamConnection client command.

� Shadowing implemented as part of TeamConnection server

The shadowing user exit example is an excellent teaching tool. However, a fully integrated
shadowing facility will be available in VisualAge TeamConnection Version 3.

� More parameters have been added to many of the actions

Many of the currently available actions, such as PartAdd, will have new parameters
inserted near the end of the list. This will impact user exits that use positional parameters.
For those using the environment file, there should be no impact.

� Fewer deadlocks for TeamConnection commands in user exit 2

As a result of changing databases, as well as minor changes to the underlying transaction
handling, user exit 2 is outside of the database transaction. This will reduce the occur-
rence of deadlocks when running TeamConnection commands in a user exit.

 � New actions

There are some new actions, and new configurable fields for releases and workareas.
This provides new opportunities for user exits.

 Comparing VisualAge TeamConnection and CMVC 39

After VisualAge TeamConnection Version 3 becomes generally available, and our customers
have a chance to provide feedback on any behavior changes in the user exit interface, we
hope to provide an updated technical report.

40 TeamConnection V2 user exits

 APPENDIX A. BIBLIOGRAPHY

VISUALAGE TEAMCONNECTION PUBLICATIONS

For more information on how to use VisualAge TeamConnection, you can consult the following
manuals:

SC34-4551 TeamConnection, Administrator's Guide

SC34-4552 Getting Started with the TeamConnection Clients

SC34-4499 TeamConnection, User's Guide

SC34-45ð1 TeamConnection, Commands Reference

SC34-45ðð TeamConnection, Quick Commands Reference

 RELATED REDBOOKS
The following IBM redbooks provide practical advice about VisualAge TeamConnection from
software specialists:

SG24-4648 Introduction to the IBM Application Development

 Team Suite

SG26-2ðð8 TeamConnection Family and Application Development

SG24-461ð TeamConnection Workframe Integration Survival Guide

RELATED TECHNICAL REPORTS

The following technical reports provide hints for using VisualAge TeamConnection:

29.2357 Evolution of a new TeamConnection Family:

Taking advantage of automation (second in a series)

29.2267 TeamConnection frequently asked questions: How to do

routine operating system tasks

29.2321 Comparison between TeamConnection 2 and CMVC 2.3

29.23ð7 Data Driven TeamConnection User Exits

 Appendix A. Bibliography 41

42 TeamConnection V2 user exits

APPENDIX B. COPYRIGHTS, TRADEMARKS AND SERVICE
MARKS

The following terms used in this technical report, are trademarks or service marks of the indi-
cated companies:

+---------------------+---+

| TRADEMARK, | COMPANY |

| REGISTERED | |

| TRADEMARK OR | |

| SERVICE MARK | |

+---------------------+---+

| AIX, OS/2, IBM, | IBM Corporation |

| DB2/6ððð, DB2, | |

| CMVC, VisualAge | |

| TeamConnection, | |

+---------------------+---+

| ObjectStore | Object Design, Inc. |

+---------------------+---+

| UNIX, USL | UNIX System Laboratories, Inc. |

+---------------------+---+

| Acrobat, PostScript | Adobe Systems Incorporated |

+---------------------+---+

| HP, HP-UX, | Hewlett-Packard Company |

| SoftBench | |

+---------------------+---+

| Microsoft, Windows, | Microsoft Corporation |

| Windows NT | |

+---------------------+---+

| X Window System | Massachusetts Institute of Technology |

+---------------------+---+

END OF DOCUMENT

 Appendix B. Copyrights, Trademarks and Service marks 43

