
VisualAge Smalltalk

Ultra Light Client Guide and Reference
Version 4.5

IBM

VisualAge Smalltalk

Ultra Light Client Guide and Reference
Version 4.5

IBM

Note

Before using this document, read the general information under “Notices” on page vii.

First Edition (April 1999)

This edition applies to Version 4.5 of the VisualAge Smalltalk products, and to all subsequent releases and
modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the level of
the product. The term “VisualAge”, as used in this publication, refers to the VisualAge Smalltalk product set.

Portions of this book describe materials developed by Object Technology International Inc. of Ottawa, Ontario,
Canada. Object Technology International Inc. is a subsidiary of the IBM Corporation.

Order publications by phone or fax. IBM Software Manufacturing Solutions takes publication orders between 8:30
a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800)
284-4721.

You can also order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

If you have comments about this document, address them to: IBM Corporation, Attn: Information Development,
Department T71B Building 062, P.O. Box 12195, Research Triangle Park, NC 27709-2195. You can fax comments to
(919) 254-0206.

If you have comments about the product, address them to: IBM Corporation, Attn: Department TJ5B Building 062,
P.O. Box 12195, Research Triangle Park, NC 27709-2195. You can fax comments to (919) 254-4862.

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1999. All rights reserved.
US Government Users Restricted Rights – Use duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Notices vii
Trademarks. vii

About this book ix
Who this book is for ix
Conventions used in this book ix
Tell us what you think x

Part 1. User’s Guide 1

Chapter 1. What is ULC? 3
Half objects 3
How does the UI Engine work? 5

Chapter 2. Setting up ULC 9
What you need for ULC desktop workstations . . 9
Where to get Java packages 12
Setting up Java support. 12
Setting up the sample ULC HTTP server 13

Configuring Internet Explorer for ULC 13
Configuring Netscape Navigator for ULC . . . 15

Chapter 3. Running ULC components 17
Using the UI Engine 17

Running the UI Engine as a standalone
application 17
Running the UI Engine as an applet 17
Running UI Engine as a helper application . . 18
UI Engine command options 18

Using the sample ULC HTTP server 20
Using Application Controller 21

Running Application Controller in default mode 22
Running Application Controller in expert mode 23

Chapter 4. Implementing ULC objects 25
Implementing the widget 25
Implementing the UI half 26
Implementing the faceless half 27

Implementing the faceless half in Java 27
Implementing the faceless half in Smalltalk 29

Chapter 5. About building ULC
applications 31
How ULC compares with common widget protocol 31
ULC class overview 31
The simple widgets 32
ULC layout 32

ULC layout design tips 35
Using layout widgets. 37

Shells 38
About model-based widgets 38
Using models with model-based widgets 39
ULC and Server Smalltalk 40

Opening new ULC views 41
Enabling national language support in ULC
applications. 42

Differences between ULC and standard
VisualAge NLS mechanisms 43
Implementing NLS support for ULC applications 43

Chapter 6. Building ULC applications
visually 45
Visual composition pitfalls in ULC 46
Using ULC visual parts 46

Defining layout. 46
Adding widgets 46
Setting layout properties 47
Changing the ULC layout grid. 48

Building the To-Do List with ULC. 48
Creating a ULC application 49
Creating a new ULC visual part 49
Setting the layout 49
Adding the remaining parts 50
Connecting the parts. 52
Testing the application 53
Adding support for enablers 53

Enabling reuse with ULC composite parts 53
Using ULC nonvisual parts. 54

Working with Variable parts 54
Working with Form Model parts 54
Working with Table Model parts 56
Working with Tree Model parts 58

Chapter 7. Deploying ULC-based
applications 63
Packaging ULC-based applications in XD 63

Preparing ULC visual and composite parts . . 63
Registering the ULC visual application class 63
Creating and populating the passive image 64
Creating the packaging instructions and
outputting the image 64

Setting up a ULC development image to run in
production mode 65
About running ULC applications from a command
prompt 66

Chapter 8. Troubleshooting ULC
applications 69
Named ULC contexts 69
Cleaning up the ULC system 69
Using the Debugger window with ULC 70
Configuring #debugPrintString 70
Tracing inside the Smalltalk image 70

Default ULC debugging aspects 71
Defining application-specific debugging aspects 71

Customizing exception handling by context . . . 72
Default exception handling in ULC 72

© Copyright IBM Corp. 1999 iii

Implementing custom exception handling . . . 73
Customization considerations 74

Frequently asked questions 74
Why does the Test button in the Composition
Editor stop working? 74
How do I inspect the objects in a ULC
application?. 75
Why do I get a Debugger window when saving
the public interface of an object?. 75
Why does the development image not respond
when I start a ULC application? 75

Part 2. Programmer’s Reference 77

Chapter 9. Resource classes 79

Chapter 10. Box parts 81
Box attributes 81
Box general advice 82

Chapter 11. Browser Context 85
Browser Context attributes 85

Chapter 12. Button 87
Button attributes 87
Button events 87
Button general advice 88

Chapter 13. CheckBox 89
CheckBox attributes 89
CheckBox events 90
CheckBox general advice 90

Chapter 14. CheckBox Menu Item . . . 91
CheckBox Menu Item attributes 91
CheckBox Menu Item events 91
CheckBox Menu Item general advice 92

Chapter 15. Column 93
Column attributes 93
Column general advice 93

Chapter 16. ComboBox 95
ComboBox attributes 95
ComboBox events 96

Chapter 17. Field parts 97
Field attributes. 97
Field events 98
Field general advice 98

Chapter 18. Filler 99
Filler attributes. 99
Filler general advice 99

Chapter 19. Form Model 101
Form Model attributes 101
Form Model events 101

Form Model general advice 101

Chapter 20. GroupBox 103
GroupBox attributes 103
GroupBox general advice 103

Chapter 21. Html Pane 105
Html Pane attributes 105
Html Pane events. 106
Html Pane general advice 106

Chapter 22. Label 107
Label attributes 107
Label general advice. 108

Chapter 23. List 109
List attributes 109
List events 110
List general advice 110

Chapter 24. Menu 113
Menu attributes 113
Menu general advice 113

Chapter 25. Menubar 115
Menubar attributes 115
Menubar general advice 115

Chapter 26. Menu Item 117
Menu Item attributes 117
Menu Item events. 117
Menu Item general advice 118

Chapter 27. Menu Separator 119
Menu Separator general advice 119

Chapter 28. Notebook 121
Notebook attributes 121
Notebook events 122
Notebook general advice 122

Chapter 29. Page 123
Page attributes 123
Page events 123

Chapter 30. Pagebook 125
Pagebook attributes 125
Pagebook events 126
Pagebook general advice 126

Chapter 31. Progress Bar 129
Progress Bar attributes 129
Progress Bar general advice 129

Chapter 32. RadioButton 131
RadioButton attributes 131
RadioButton events 132
RadioButton general advice 132

iv VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 33. Radio Group 133

Chapter 34. Shell 135
Shell attributes. 135
Shell events 135
Shell general advice 136

Chapter 35. Slider 137
Slider attributes 137
Slider events 138
Slider general advice 138

Chapter 36. Split Pane 139
Split Pane attributes 139

Chapter 37. Table 141
Table attributes 141
Table events 142
Table general advice. 142

Chapter 38. Table Model 145

Table Model attributes 145
Table Model events 145
Table Model general advice 146

Chapter 39. ToolBar 147
ToolBar attributes 147

Chapter 40. Tree 149
Tree attributes 149
Tree events. 150

Chapter 41. Tree Model 151
Tree Model attributes 151
Tree Model events 151
Tree Model general advice. 151

Part 3. Appendixes153

Index 155

Contents v

vi VisualAge Smalltalk: Ultra Light Client Guide and Reference

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of
the intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction
with other products, except those expressly designated by IBM, are the
responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY, USA 10594.

IBM may change this publication, the product described herein, or both.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States,
other countries, or both:

VisualAge

The following terms are trademarks or registered trademarks of other companies:

Unicode Unicode, Inc.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

Other company, product or service names may be the trademarks or service marks
of others.

© Copyright IBM Corp. 1999 vii

viii VisualAge Smalltalk: Ultra Light Client Guide and Reference

About this book

The purpose of this book is to introduce you to the following:
v The basic concepts and terms needed for using Ultra Light Client (ULC)
v The fundamentals you need to know to create an application using ULC

This book is divided into the following parts:
v “Part 1. User’s Guide” on page 1 describes how ULC and how to use it.

v “Part 2. Programmer’s Reference” on page 77 describes the parts you use to
visually construct ULC applications.

Who this book is for

This book is written for anybody who wants to become familiar with the basic use
of ULC. Basic understanding of VisualAge Smalltalk and visual construction is
required to use this book. For developing industrial-strength applications, an
understanding of the Server Smalltalk (SST) feature is also required.

Conventions used in this book

These highlighting conventions are used in the text:

Highlight
style Used for Example

Boldface New terms the first time they are
used

VisualAge uses construction from
parts to develop software by
assembling and connecting reusable
components called parts.

Items you can select, such as push
buttons and menu choices

Select Add Part from the Options
pull-down. Type the part’s class and
select OK.

Italics Special emphasis Do not save the image.

Titles of publications Refer to the VisualAge Smalltalk User’s
Guide.

Text that the product displays The status area displays Category:
Data Entry.

VisualAge programming objects, such
as attributes, actions, events, composite
parts, and script names

Connect the window’s
aboutToOpenWidget event to the
initializeWhereClause script.

Monospace
font

VisualAge scripts and other examples
of Smalltalk code

doSomething
| aNumber aString |
aNumber := 5 * 10.
aString := 'abc'.

Text you can enter For the customer name, type John
Doe

© Copyright IBM Corp. 1999 ix

Tell us what you think

Please take a few moments to tell us what you think about this book. The only
way for us to know if you are satisfied with our books or if we can improve their
quality is through feedback from customers like you. There is an online reader’s
comment form on the VisualAge Smalltalk web page.

x VisualAge Smalltalk: Ultra Light Client Guide and Reference

http://www.software.ibm.com/ad/smalltalk

Part 1. User’s Guide

© Copyright IBM Corp. 1999 1

2 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 1. What is ULC?

Ultra Light Client (ULC) supports the deployment of applications with very
lightweight clients. It enables centralization of system maintenance and
administration, decreasing the cost of desktop management.

ULC is designed to run applications on a centrally controlled application server.
Only the presentation portion of an application is run on the end-user’s desktop.
Presentation is implemented as a universal user interface engine (UI Engine).
Because no application-specific code is run on the client, there is no need for
application-specific administration of the desktop machine.

An application communicates with the UI Engine through a high-level user
interface protocol. This protocol is designed to scale down to low-bandwidth
thin-pipe communication links. ULC shields you from this protocol; all
distribution is handled behind the scenes.

You develop ULC applications using conventional programming languages like
Java and Smalltalk. Use of heterogeneous technologies (HTML, plug-ins, or
JavaScript) is not required. This improves both robustness and ease of
development. ULC uses communication infrastructures from Server Smalltalk: TCP
or IIOP. For visually constructing ULC user interfaces, you use the Composition
Editor.

Half objects

Building ULC applications requires a special set of objects or widgets. These
widgets have an API and functional behavior that is similar to that of ″normal″
widgets sets, but they completely lack a user interface. These widgets communicate
with a corresponding ″real″ widget in the UI Engine by a socket-based mechanism.
They act as a proxy to the real widget. Because every widget is split into an API
and a user interface element, we call the widgets on both sides half objects. The

© Copyright IBM Corp. 1999 3

application half is termed faceless.

Applications communicate with the UI Engine through the Half Object Protocol,
which consists of requests, events, and callbacks. The application sends requests to
the UI Engine. User interaction typically results in low-level events (for example, a
mouse click) that are handled by the UI Engine first and then converted into a
semantic event (for example, an execute action) that is passed back to the
application. These events are typically used to synchronize the other half of the
object and then to trigger some application-specific action. If the UI Engine needs
some data from the application’s half object, it sends a callback. Callbacks are
identical to normal requests, but their direction is reversed.

Half objects form a hierarchy. At the root is an Application object that provides
methods for manipulating the global state of the application (for example,
stopping) and maintaining a list of windows, or shells. A shell represents a
top-level window with a content area and, possibly, a menu bar. The content area
is a tree of composite widgets. Composite widgets form the inner nodes of the tree
and implement the layout. Simple widgets are the leaves of the tree. The following
illustration shows a part of the tree from the sample Dossier application:

4 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Maintaining state across this half object split is a tricky business. You do not want
to render the application unusable just because there was a communication
problem or your client machine crashed. To prevent this, the UI Engine is
conceptually stateless; that is, all state is kept in the application. Of course, some
state is held in the UI Engine as well (for instance, the widget hierarchy), but only
as a type of cache. It is always possible to clear that cache (for instance, by
stopping and restarting the UI Engine) and re-transmit state information from the
application to the UI Engine.

This functionality has a major impact on communication between half objects.
Methods of the faceless half objects typically modify some state on their half and
then try to synchronize their half with the UI half. If the UI half is not available
(for example, because the socket timed out or the UI Engine is down),
synchronization cannot occur, but the faceless half remains in a consistent state.
When the UI half becomes available once again, the faceless half sets the UI half to
the correct state.

ULC is designed for thin-pipe connections, so network latency and network
bandwidth influence some design decisions. Communication between half objects
must be minimized, and requests should be batched together as a single message
to avoid a sluggish user interface. ULC minimizes communication overhead by
transmitting only presentation data that is visible (for example, just the visible 10
rows in a table with 10000 rows) or likely to become visible soon (for example, the
next 10 rows in that table).

To address high-latency environments, communication between the application and
the UI Engine is mostly asynchronous. For example, if the UI Engine has to draw a
table, it requests the data for the visible part of the table from the application. The
UI Engine does not wait for the requested data; it draws a placeholder instead. As
a result, the UI Engine remains responsive through the wait. Depending on
network latency and application responsiveness, the requested data
asynchronously arrives later and replaces the placeholder data.

How does the UI Engine work?

The UI Engine is implemented in Java; you can easily extend its behavior through
subclassing. Adding new widgets is possible if you follow the guidelines described
in “Chapter 4. Implementing ULC objects” on page 25. In the remainder of this
section, we discuss the two ways the UI Engine can work in the deployment of
your application.

Test mode

Chapter 1. What is ULC? 5

In this case, the UI Engine is running as a multithreaded server process listening
on a well known port; different applications connect to that server.

A listener thread accepts connections from applications and creates connection
objects for each application client. A thread in the connection object receives
requests from applications and posts them into an Abstract Windowing Toolkit
(AWT) event queue. Events and callbacks returning from the UI Engine to the
application are put into a write queue of the associated connection object and
processed inside a separate writer thread (left side of the following illustration):

The AWT main thread reads and processes events from the AWT event queue.
These requests either create objects that are registered for later reference in the
connection’s registry or call methods on already existing objects.

All manipulation of the widget tree is serialized, so explicit synchronization is not
necessary. Because callbacks from the UI to the application never wait for results
synchronously, blocking cannot occur in the main thread. Both design decisions
simplify the architecture considerably and improve its robustness.

The architecture of the application side of ULC is similar to that of the UI Engine
side. Every application has a connection object that handles asynchronous
communication by means of two threads and maintains the faceless halves of
objects in a registry (right side of the previous illustration).

6 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Production mode

In this case, the UI Engine and application switch roles: the UI Engine becomes the
client and connects to the application, which runs as a server. In this case, the
listener thread runs in the application server and accepts connections from UI
Engine components. For every connection, a new connection object is created that
establishes an independent context for running the application.

This architecture is very similar to the one depicted previously. In fact, the
connection objects are identical in both cases. The most significant difference is that
in this case, the application code runs in parallel within a single address space. As
a result, you must protect your data from synchronization problems arising from
concurrent access. For more information, see “ULC and Server Smalltalk” on
page 40.

Chapter 1. What is ULC? 7

8 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 2. Setting up ULC

This section provides an overview of ULC setup. For complete installation
instructions, see the release notes shipped with the installation components listed
below. ULC consists of the following installable components:

VisualAge features installable in the development environment. These are
subfeatures of the Server Workbench. You must install the following features:
– IBM ST: ULC, Development
– IBM ST: ULC, Server

To install these features from the System Transcript window, select Tools ->
Load/Unload Features.
The ULC runtime support packages. This includes the UI Engine and samples.
These are bundled in self-extracting archive files (OS/2) or self-installer files
(Windows), as follows:
– ULCOSamp.exe, the package of samples for OS/2
– ULCOUie.exe, the UI Engine package for OS/2
– ULCWSamp.exe, the package of samples for Windows
– ULCWUie.exe, the UI Engine package for Windows

For installation guidelines, see the release notes for these files.
Java components and tools available from the Web. For a list of Java resources
that are appropriate for your chosen desktop environments, see “Where to get
Java packages” on page 12.

First, decide on the desktop setup. Then install and set up the appropriate
components.

v For help in making setup decisions, see “What you need for ULC desktop
workstations”.

v As soon as you have decided on a setup, read “Where to get Java packages” on
page 12.

What you need for ULC desktop workstations

Setup of ULC components depends on how you intend end-users to run your ULC
applications. In all of the scenarios that follow, the application server contains
XD-packaged applications. For more information about these alternatives, see the
following sections:
v “How does the UI Engine work?” on page 5

v “Using the UI Engine” on page 17

© Copyright IBM Corp. 1999 9

Setup for running standalone applications in production mode

For running standalone applications, each desktop workstation must have the
following installed:

v Java Runtime Environment (JRE)
v Swing class libraries
v The UI Engine package

10 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Setup for running ULC applications over the Web in production mode

For running ULC applications over the Web, each desktop workstation must have
the following installed:

v A Web browser enabled for JRE 1.1
v Swing class libraries or Java Plug-In

You also need an HTTP server running on the application server; try the HTTP
server shipped in the ULC samples package.

Setup for developing applications

Each development workstation must have the following installed:
v JRE.
v Swing class libraries.
v The UI Engine package, installed in the ULC directory of your VisualAge

Smalltalk installation. If this package is not installed in the correct location, the
samples will not run.

v Java Development Kit (JDK) (for translation support only).

For development and early testing, all components can be set up on the same
machine. You can use ULC Monitor or a similar tool to check the amount of data
moving between client and server components.

When you are ready to move components to separate machines, you can use the
Application Controller sample or a similar tool to remotely start and stop
application servers from your test desktops.

Chapter 2. Setting up ULC 11

Running applications in production mode from the development image requires
some Smalltalk code and system setup. For more information on Smalltalk setup,
see “Setting up a ULC development image to run in production mode” on page 65.

Where to get Java packages

You must download the following from the Web as needed for the setups you
choose:
v Java Runtime Environment (JRE) 1.1.7 (all setups)
v Swing 1.0.3 (all setups). For Web setups, you can use Java Plug-In 1.1.1 instead.
v A Web browser that is enabled for JRE 1.1 (Web setups)
v Java Development Kit (JDK) 1.1.7 (development setups: for translation support

only)

URLs for these components are listed below.

Software for OS/2 desktop workstations

v IBM OS/2 Warp Developer Kit, Java Edition, Version 1.1.7
v Netscape Communicator 4.04 for OS/2 Warp or Netscape Navigator 2.02 for

OS/2

All OS/2 packages are available from http://www.ibm.com/java/.

Software for Windows desktop workstations

v JRE 1.1.7 and JDK 1.1.7, available from http://www.java.sun.com/products/.
v Netscape Navigator/Comunicator 4.51; Navigator 4.03–4.06 with JDK 1.1 patch.

Navigator 4.5.1 is available from
http://www.netscape.com/computing/download/index.html.

v Internet Explorer 4.0

Software for Swing support (OS/2 or Windows)

v Swing 1.0.3, available from http://www.java.sun.com/products/jfc/index.html
v Java Plug-In 1.1.1, available from http://java.sun.com/products/plugin/

Setting up Java support

For detailed installation instructions, see the release notes for the individual
packages.

Setting up support for running standalone applications

1. Install the JRE.
2. Set the ULCJREROOT environment variable for the location in which you

installed the JRE:
SET ULCJREROOT=D:\JRE

3. Install the Swing class libraries.
4. Set the ULCSWINGHOME environment variable for the location in which you

installed Swing:
SET ULCSWINGHOME=D:\SWING

Setting up support for running applications over the Web

12 VisualAge Smalltalk: Ultra Light Client Guide and Reference

http://www.ibm.com/java/
http://www.java.sun.com/products/
http://www.netscape.com/computing/download/index.html
http://www.java.sun.com/products/jfc/index.html
http://java.sun.com/products/plugin/

1. Install a Java-enabled browser.
2. Install the JRE.
3. Set the ULCJREROOT environment variable for the location in which you

installed the JRE:
SET ULCJREROOT=D:\JRE

4. Install the Swing class libraries or Java Plug-In.
5. If you installed the Swing class libraries, set the ULCSWINGHOME

environment variable for the location in which you installed them:
SET ULCSWINGHOME=D:\SWING

Important: If you installed Java Plug-In and notice unstable runtime behavior, turn
off the JIT compiler from the Java Plug-In Control Panel.

Setting up support for developing applications

1. Install the JRE.
2. Set the ULCJREROOT environment variable for the location in which you

installed the JRE:
SET ULCJREROOT=D:\JRE

3. Install the Swing class libraries.
4. Set the ULCSWINGHOME environment variable for the location in which you

installed Swing:
SET ULCSWINGHOME=D:\SWING

5. If you plan to internationalize your applications, install the JDK.

Setting up the sample ULC HTTP server

The ULC HTTP server reads HTML pages and replaces specific tokens (instances
of $WEBHOST) in these pages to enable you to run ULC application servers using
a Web browser.

Set the ULCUIHOME environment variable for the location in which you installed
the UI Engine:
SET ULCUIHOME=D:\VAST\ULC\UIEngine

Ensure that the file ULCSamples\HttpServer\lib\HttpServer.properties points to
the correct document root directory:
HttpServer.documentroot=d:/ulcrt/ULCSamples/HttpServer/lib

Configuring Internet Explorer for ULC

If using Internet Explorer 3.0 and 4.0, you must define a ULC file type in the
Windows operating system. This configuration step is best done before the ULC
HTTP server home page is loaded in the browser.
1. Start the Windows Explorer.
2. From the View menu, choose Options; a dialog appears. In this dialog, select

the File Types page.

Chapter 2. Setting up ULC 13

3. Click the New Type button; a dialog appears. Enter values into the dialog as
shown here:

4. Associate this new type to an application by adding an open action. Click the
New button under the Actions list; a dialog appears. Enter values into the
dialog as shown here (the application can be chosen by clicking the Browse
button):

5. Close all dialog windows by clicking OK.

You are now ready to use the ULC HTTP server page for starting and controlling
sample applications. You can also add links to start your own applications.

14 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Configuring Netscape Navigator for ULC

Netscape Navigator (3.0 and 4.0) and Communicator enable you to pick helper
applications based on the MIME type of the file they receive.
1. Start Navigator and load the HTTP server home page (the server must be

running; see “Using the sample ULC HTTP server” on page 20).

2. On the home page under Running as Helper, click the Java Hello World link; a
dialog appears.

3. Click the Pick App button; a dialog appears. Pick the UlcUI.exe application in
the ULC Runtime directory by using the Browse button as shown here:

4. Click OK; the association between the application/x-ulc MIME type and the
UlcUI.exe application is registered with the browser (and the UI Server Console
appears). You can check the association or change it later by going to the
Applications category in Navigator’s preference settings.

You are now ready to use the ULC HTTP Server page for starting and controlling
sample applications. You can also add links to start your own applications.

Chapter 2. Setting up ULC 15

16 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 3. Running ULC components

For convenience, ULC uses standard URL format to specify address, port, and
application name in one argument. The following table summarizes how to start
ULC components for myApp, an XD-packaged Smalltalk application:

Test Mode Production Mode

UI Engine
(desktop)

ulcui.exe -server <port number>
ulcui.exe -url ulc://<host> :<port>
/myApp

Application
myapp.exe -url ulc://<host>
:<port>

myapp.exe -server <port number>

In the development image, sample applications can be started from the System
Transcript window. First, start the UI Engine. Then, from the menu bar, select ULC.

Running your ULC-based applications from the development image requires
handwritten code and system setup. For more information, see “Setting up a ULC
development image to run in production mode” on page 65.

Known problem: Because of a Swing bug, the first window of an application can
initially appear behind other windows.

Using the UI Engine

You can use the UI Engine in any of the following ways, depending on the needs
of your application’s end-users:
v Run the UI Engine as a standalone Java application
v Download and run the UI Engine as a Java applet using a Web browser
v Run the UI Engine as a helper application using a Web browser

Running the UI Engine as a standalone application

You can run the UI Engine as a standalone Java application with or without a Web
browser. The UI Engine must be installed either on the desktop machine or on an
accessible network drive.

To run the UI Engine without a Web browser, just start it from a command prompt
set in the UIEngine\bin directory. For details, see “UI Engine command options”
on page 18.

You can also launch and monitor applications through regular Web browsers. The
entire process of launching a ULC application on a server machine, starting the UI
Engine on the user’s machine, and controlling the started processes is accessible
through standard Web-based mechanisms. The ULC HTTP server handles these
tasks.

Running the UI Engine as an applet

The UI Engine can be run as a Java applet that connects back to an application
server through a Web browser. You can verify that the browser opens the applet

© Copyright IBM Corp. 1999 17

successfully by opening the Java Console. If your browser does not have the
required Java support, the console will show a corresponding exception.

Loading an HTML page containing the applet

A few sample HTML pages are included in the
ULCSamples\HttpServer\lib\com\ibm\ulc\httpServer\resources subdirectory of
the ULC samples package. They enable you to start Application Controller as an
applet in various forms: out of place, embedded, and embedded in a separate
browser window. When one of these pages is loaded into a Web browser, it starts
the applet directly. No Web server is needed. Because of a Swing bug, though, the
applet will run only in a freshly started browser.

When run as an applet, the UI Engine is approximately 250KB, resulting in
reasonable download times even over low-bandwidth connections. To avoid
repeated connection overhead, the code is packaged in a JAR file (Java ARchive
format).

Running UI Engine as a helper application

You can run the UI Engine as a helper application for a configured ulc MIME type.
To add the UI Engine as a helper application, follow the instructions listed for your
browser:
v “Configuring Internet Explorer for ULC” on page 13

v “Configuring Netscape Navigator for ULC” on page 15

After you configure the UI Engine as a helper in Windows, clicking on any file
with the extension .ulc causes the UI Engine to start and attempt to connect to the
application referred to within the .ulc file. For example:

1. Create a file named dossier.ulc.
2. Within this file, enter the parameters you want to pass to the UI Engine, for

example, −m −url ulc://localhost:4444/Dossier

3. Save this file.

If you now start the Dossier application as a server on port 4444 and then click on
the dossier.ulc file, a connection is established to the Dossier server.

If the dossier.ulc file is referred to in a hyperlink on a Web page, clicking on the
link starts a connection between the UI Engine and the ULC application server. In
addition, if you use the ULC HTTP server, you can replace the host name with
$WEBHOST, and the ULC HTTP server replaces the token with the name of the
host on which the HTTP server is running.

UI Engine command options

The UlcUI command starts the user interface engine of ULC with the JIT compiler
enabled by default. To run with the JIT compiler disabled, use the UlcUINoJit
command.
UlcUI

[-m]
[-url URL | -server port_number]
[-locale ISOlanguage_ISOCountry]
[-look Look&Feel_class]

18 VisualAge Smalltalk: Ultra Light Client Guide and Reference

The UlcUI program checks if the UI Engine is running and starts it if necessary.
The engine can be started with different widget sets or with ULC Monitor, as
appropriate.

The UlcUI program expects the directory and file structure in which it is
embedded. Always start the program from its location in that tree (UIEngine\bin
directory).

Options

-url URL
Starts the UI Engine in production mode; that is, the UI Engine tries to
connect to an application server with the given URL. The URL should
conform to the following syntax:
ulc://hostName[:portNumber]/[appName]

-m Starts ULC Monitor, a simple tool for monitoring communication between
the UI Engine and connected applications.

-doublebuffering
Toggles double buffering. By default, it is on.

-locale Overrides the default locate of the UI Engine. The format is
Language_Country, where language and country are the two-character ISO
abbreviations, for example, -locale en_US for English language and the
U.S.

-look Look&Feel_class
Specifies the class name for the desired look and feel. Possible values are:

v com.sun.java.swing.plaf.windows.WindowsLookAndFeel (default)
v com.sun.java.swing.plaf.jlf.JLFLookAndFeel
v com.sun.java.swing.plaf.motif.MotifLookAndFeel
v com.sun.java.swing.plaf.metal.MetalLookAndFeel

-server port_number
Starts the UI Engine in test mode.

Chapter 3. Running ULC components 19

Using the sample ULC HTTP server

The sample ULC HTTP server can generate custom Web pages that enable a Web
browser to start the UI Engine as an applet and then connect to a running ULC
application. The HTTP server comes with all of the directory structure, Java files,
and HTML pages required to run a set of sample ULC applications as applets. The
setup also enables you to easily modify the sample Web pages to add your own
applications and extensions.

This component is part of the ULC samples package shipped with VisualAge. To
use it, follow these steps:
1. Make sure that installation of the ULC HTTP server has been completed. See

“Setting up the sample ULC HTTP server” on page 13.

2. Start a Web browser. The HTTP server currently supports Navigator 3.0,
Navigator 4.0, Internet Explorer 3.0, and Internet Explorer 4.0.

3. Start the HTTP server. By default, the HTTP server listens on port 80 for HTTP
requests. The server is generally run on the application server machine. You can
start it from a DOS prompt or by double-clicking
ULCSamples\HttpServer\bin\httpserver.bat from a file browser.

4. Retrieve the ULC HTTP server home page. You do this by following a URL to
the HTTP server.
v If you started the server locally, this URL is http://localhost.
v If the server was started on a server machine (named serverhost), the address

is http://serverhost.
5. Connect to an application by doing one of the following:

v Connect to a running Application Controller, which can start and stop ULC
application servers and request the UI Engine to make connections to them.
In this case, the UI Engine runs as an applet (see “Running the UI Engine as
an applet” on page 17).
Select the Connect button on the Application Controller.

v Connect using a custom Web page, using the UI Engine as a helper
application. In this case, you must start each application server manually
before selecting the corresponding link.
Click the appropriate application icon on the custom Web page.

Using the ULC HTTP server, you can create pages to connect to application servers
running on the same machine as the Web server without having to explicitly code
the host name into each web page. The HTTP server treats HTML pages with the
extension .shtml in a special way: if the HTTP server is asked to serve one of these
pages up, it searches within the page for all occurrences of the $WEBHOST token
and replaces it with the host name of the machine on which it is running.

For example, suppose the Web page to connect as an applet to a running ULC
Application Controller contains the following:
<APPLET archive="ulcui.jar"

code="UIApplet.UIApplet.class"
width="300" height="70">

<PARAM name="url" value="ulc://$WEBHOST:2222/AppController">
<PARAM name="title" value="ULC AppController Applet">
</APPLET>

20 VisualAge Smalltalk: Ultra Light Client Guide and Reference

When the file is served up by the ULC HTTP server, the Web browser starts the UI
Engine as an applet and attempts to connect to the Application Controller running
on the same machine as the Web server at port 2222.

Using Application Controller

Application Controller enables you to start and stop ULC application server
programs on the same machine on which it is running. In addition, it can send
requests to its connected UI Engine to establish connections to any of these
running ULC server applications.

You can make the UI Engine connect to an application server by sending it a
request programmatically via a ULC connection. Application Controller exploits
this feature.

You can run Application Controller in either of two modes:

v In default mode, Application Controller enables you to start and stop the UIs of
ULC applications.

v In expert mode, Application Controller enables you to start and stop ULC
application servers, something useful during development. You can also use it to
launch them remotely.

Chapter 3. Running ULC components 21

Running Application Controller in default mode

Double-clicking on an application’s representation (or selecting the application and
clicking the Connect button) makes the UI Engine connect to that application’s
server. You can close a connection by selecting an application and clicking the
Disconnect button. When a connection to an application’s server can be
established, Application Controller indicates this by turning the red-light icon to a
green light (as in Hello World in the previous illustration). Connections can also be
pending, that is, started in the UI Engine but not yet established because the server
is not responding. Pending connections are indicated by a yellow light (as in
Dossier (Java) in the previous illustration).

Use Application Controller in default mode as follows:

1. Start the application in production mode. On a server machine (named
serverhost), bring up a command prompt and switch to the
Java\Applications\AppController directory. Start Application Controller on the
selected port (2222) by entering the following:
run -server 2222

Note: 2222 is the default port for Application Controller, and the Java Plug-In
pages expect Application Controller to be running on this port.

2. Start the UI Engine in production mode. On a client machine (named
clienthost), bring up a command prompt and switch to the UIEngine\bin
directory. Start the engine with the Swing widget set and make it connect to the
server by entering the following:
ulcui -swing -url ulc://serverhost :2222

22 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Running Application Controller in expert mode

In expert mode, Application Controller presents more information (for example, an
additional Host column to indicate the host on which the application’s server is
running) and has additional menu entries. A file menu item enables you to bring
up a launching panel to start and control the application servers on a server
machine different from a client machine.

In the launching panel, you can start an application on the server machine by
double-clicking on an application’s representation (or by selecting it and clicking
the Launch Server button). A running server is indicated by its red-light icon
turning to green. Servers can be stopped again by selecting them and clicking the
Kill Server button.

Start Application Controller in expert mode as follows:
run -server 2222 -expert

Chapter 3. Running ULC components 23

24 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 4. Implementing ULC objects

The UI Engine can be extended to support new kinds of ULC objects like widgets
and data types (that is, type converters and formatters). This section demonstrates
the required steps for implementing a ULC widget. As discussed in “Chapter 1.
What is ULC?” on page 3, a ULC widget consists of two half objects:

v The faceless half defines the ULC API for application developers.
v The UI half communicates with a real widget and adapts it so that it can used

by the UI Engine.

In addition to the half objects, there is the real widget, which often already exists
and needs to be adapted to be used in ULC. The development of a ULC extension
is demonstrated based on the PieChart widget, which is shown in the following
illustration:

Implementing a new ULC widget requires the following steps:

1. If the widget does not exist, implement the real widget. In this example, the
widget is called PieChart.

2. Implement the UI half (UIPieChart).
3. Implement the faceless half (ULCPieChart).

The real widget and the UI half must be implemented in Java. The faceless half can
be implemented in either Java and Smalltalk, depending on the needs of your
business.

Implementing the widget

The pie chart widget was implemented from scratch. PieChart supports setting the
values to be shown, their names, and colors. Clicking on a pie segment sends an
action with the name of the clicked segment as an argument.

© Copyright IBM Corp. 1999 25

For simplicity’s sake, PieChart is not implemented as a model-based widget.
Implementing a model-based widget would require implementing a corresponding
half object that accesses and tracks changes of a model object.

Implementing the UI half

The UI half objects of an extension to the base ULC widgets are placed in a Java
package named ULCExtensions. To instantiate an object, the UI Engine uses the
following name-qualification rules:
v If the type string supplied by the ULC half object contains a period (.), the name

is assumed to be a fully qualified class name, and the UI tries to instantiate the
class that matches the supplied name.

v If the type string does not contain a period, the IClassLookUp object of the UI
searches its known class mappings for a match. If a match is found, the matched
class is instantiated.

v If the IClassLookUp object cannot find a match, the default UI package prefix
com.ibm.ulc.ui.UI is prepended to the type string, and the resulting class name is
used to attempt the instantiation.

Each UI half object must initialize its state from the faceless half. In addition,
PieChart offers the following API:
v Handle a request to set the data (values, labels, colors)
v Send an event to the faceless half when a pie segment is clicked

UIPieChart descends from com.ibm.ulc.UIComponent. UIPieChart adapts PieChart so
that it can be used by the UI Engine. As part of doing so, it keeps a reference to
the PieChart widget. Here is an excerpt from the class definition of UIPieChart:
public class UIPieChart extends UIComponent implements ActionListener {

private PieChart fPieChart= null;
}

To restore its state from the faceless half object, UIPieChart overrides restoreState():
public void restoreState(ORBConnection conn, Anything args) {

super.restoreState(conn, args);
fPieChart= new PieChart(args.get("w", 200), args.get("h", 150));
fPieChart.setData(args.get("data"));
fPieChart.addActionListener(this);

}

A call to the inherited restoreState() method restores the inherited state. The
PieChart widget is created and initialized with the restored state. The
ORBConnection argument is not used in this example and is just passed on to the
base class.

Communication between the UI Engine and faceless half objects is based on data
objects called Anythings. An Anything is a dynamic data structure that can be
transferred between processes. The restoreState() method receives an Anything as its
argument and uses Anything accessor methods to retrieve the individual
arguments. Anythings can contain either a simple data type or arrays and
dictionaries of Anythings. Proper retrieval of the arguments requires that both
faceless and UI half objects handle Anythings in a analogous way. In this case, the
Anything is a dictionary, and restoreState() retrieves the arguments by name. For
example, args.get("w") retrieves the width argument of the pie chart. In the same
way, the setData() method restores the pie chart’s data from the Anything and
passes it on to the PieChart widget.

26 VisualAge Smalltalk: Ultra Light Client Guide and Reference

So that UIPieChart can notify the faceless half when a pie segment is clicked,
UIPieChart implements the ActionListener interface. UIPieChart also registers itself
as an action listener of PieChart.

Requests sent from the faceless half are dispatched to handleRequest(). This method
receives the name of the request with its arguments packaged as an Anything.
UIPieChart implements only a single request (named setData()) to set the pie
chart’s data:
public void handleRequest(ORBConnection conn, String request, Anything args){

if (request.equals("setData")) {
setData(args);
return;

}
super.handleRequest(conn, request, args);

}

The handleRequest() method uses setData() to extract the data from the Anything
and install it in PieChart. Calling the inherited handleRequest() method enables the
base classes to handle its request.

As part of implementing the ActionListener interface, UIPieChart implements the
actionPerformed() method, which calls sendEventULC() to send the event:
public void actionPerformed(ActionEvent e) {

sendEventULC("action", "cmd", new Anything(e.getActionCommand()));
}

sendEventULC() takes the name of the event, its type name, and an argument. The
event’s argument is wrapped into an Anything. In this case, it is a simple string
that corresponds to the label of the clicked pie segment.

Implementing the faceless half

This section describes how to implement the faceless half of the pie chart. For this
example, implementations exist in both Java and Smalltalk.

Implementing the faceless half in Java

The Java half of the pie chart is defined in the ULCPieChart class. In contrast to
UIPieChart, you can define ULCPieChart in a package of your choice. The ULC
implementation uses the convention of prefixing faceless class names with the
prefix ULC. When the faceless widget creates its UI counterpart, it passes the type
name of the widget to be created to the UI Engine. By default, the type name
corresponds to the class name without the ULC prefix. If desired, this default can
be changed by overriding the typeString() method defined in the ULCProxy class.

Faceless half objects must retain the state of their corresponding UI halves. To do
so, ULCPieChart stores the values, labels, and colors of the pie chart widget in its
instance variables:
public class ULCPieChart extends ULCComponent {

protected double[] fValues;
protected String[] fColors;
protected String[] fLabels;
int fWidth;
int fHeight;

}

Chapter 4. Implementing ULC objects 27

ULCPieChart identifies its UI half by implementing the typeString() method, as
follows:
public String typeString() {

return "com.ibm.ulc.examples.pieExtension.UIPieChart";
}

ULCPieChart has to implement the UI Engine requests symmetrically. First, it must
transfer the widget state to the UI Engine; this is done by overriding the saveState()
method. saveState() packages the arguments kept in its instance variables into an
Anything:
public void saveState(Anything a) {

super.saveState(a);
a.put("w", fWidth);
a.put("h", fHeight);
Anything data= new Anything();
fillData(data);
a.put("data", data);

}

The setData() method is implemented in ULCPieChart as follows:
public void setData(String[] labels, double[] values, String[] colors) {

fValues= new double[values.length];
fColors= new String[colors.length];
fLabels= new String[labels.length];
System.arraycopy(labels, 0, fLabels, 0, labels.length);
System.arraycopy(values, 0, fValues, 0, values.length);
System.arraycopy(colors, 0, fColors, 0, colors.length);
Anything data= new Anything();

fillData(data);
sendUI("setData", data);

}

A request method needs only to package its arguments into an Anything. In this
case, the arrays with the values, labels, and colors are wrapped into the Anything
structure which is expected by the UI half. Then, the request is sent to the UI with
sendUI(), which transmits the request name and the Anything argument to the UI
Engine.

The last step is to handle action events from UIPieChart; to do this, you override
handleRequest(). This method receives the name of the request with an Anything
that stores the request data:
public void handleRequest(ORBConnection conn, String request, Anything args) {

if (request.equals("event")) { // (1)
String type= args.get("type", "???");
if (type.equals("action")) // (2)

distributeToListeners(new ULCActionEvent(this, args.get("cmd", "???"))); // (3)
return;

}
super.handleRequest(conn, request, args); // (4)

}

These steps are implemented in handleRequest():
1. Test whether the request is an event.
2. If so, check the type of event to find out if it is an action event.
3. If so, create an instance of ULCActionEvent and use the distributeToListeners()

method to notify registered listeners.
4. Otherwise, pass the request to the base class.

28 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Implementing the faceless half in Smalltalk

The Smalltalk implementation of ULCPieChart is conceptually identical to the Java
one. The saveState: method packs the widget data into the Smalltalk version of
Anythings.
saveState: aStcAnything

super saveState: aStcAnything.
aStcAnything
at: 'w' put: self width;
at: 'h' put: self height;
at: 'data' put: (self

fillData: self values
colors: self colors
labels: self labels);

yourself

The Smalltalk implementation of the setData: method follows:
setData: aValuesCollection colors: aColorsCollection labels: aLabelsCollection

| data |

data := self
fillData: aValuesCollection
colors: aColorsCollection
labels: aLabelsCollection.

self sendToUI: 'setData' with: data

In Smalltalk, the type name used to request the creation of UI half objects is
defined by overriding the typeString method:
typeString

|'com.ibm.ulc.examples.pieExtension.PieChart'

Chapter 4. Implementing ULC objects 29

30 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 5. About building ULC applications

This section describes the different types of ULC widgets and addresses application
development topics common to both handwritten and visually constructed ULC
applications, as follows:
v “ULC and Server Smalltalk” on page 40

v “Enabling national language support in ULC applications” on page 42

For more information about individual widgets, see the “Part 2. Programmer’s
Reference” on page 77 or browse class information online.

For examples of visual composition using ULC widgets, start with “Building the
To-Do List with ULC” on page 48.

How ULC compares with common widget protocol

The most significant difference between ULC and CW is in its handling of system
events. You register interest in a ULC event by sending a message to the widget
that would signal the event. CW callbacks are not used.

For example, to register for the action event of a UlcButton instance, send the
message #ulcWhenActionSend: aDirectedMessage to the button. At run time,
aDirectedMessage is sent whenever the action event occurs. If the event has
additional objects associated with it, nil parms of aDirectedMessage are replaced
with those associated objects, in sequence, when the event occurs.

All event registration methods implemented in a given widget are categorized
under ULC-API-Events.

Other differences from CW

v Widget layout. Manually laying out a ULC window is a lot simpler than
constructing the same window under Common Widgets (see “Using layout
widgets” on page 37).

v Setting ULC widget attributes. The two set methods available for all widget
attributes differ in how they update the UI Engine. The standard setter (that is,
#attribute: anObject) only sets the attribute and does not trigger an update of the
UI. Use this standard setter for initialization only. The ULC specific setter (that
is, #setAttribute: anObject) does update the UI. It is not possible to set, as a
bundle, attributes of a widget already created on the UI and send the changes
collectively to the UI.

ULC class overview

ULC classes fall into the following five categories:
1. Resources are are not user interface elements themselves but are used to

configure these elements and therefore should live in the UI Engine as well as
the application. Examples are fonts, bitmaps, images, and cursors.

© Copyright IBM Corp. 1999 31

2. Widgets are all kinds of user interface elements ranging from simple ones (like
buttons, labels, editable fields, menus, and menu items) to more complex ones
(like one-dimensional scrolling lists and two-dimensional tables).

3. Layout widgets are composites that implement a specific layout policy for their
children.

4. Shells are the top-level widgets forming the root of every widget tree. A shell
is typically represented as a modal or non-modal window and optionally has a
menu bar. The shell controls the collaboration of these elements. Examples are
standard shells, dialogs, and alerts.

5. Models are classes that can be used as data structures for model-enabled
widgets. Model classes correspond to the models of the MVC paradigm;
widgets represent the view and controller components.

The simple widgets

Simple widgets include the following:
v Resources: UlcIcon, UlcFont

v Widgets: Label, Button, Entry Field, and so forth
v Menus: Menu, Menubar, Menu Item, Menu Separator

To reduce the number of round-trips between the UI Engine and the application,
ULC provides built-in mechanisms for the following behavior:
v Enabling and disabling. Special conditions on some widgets can be used to

enable or disable other widgets without any communication between the UI
Engine and application. Examples are empty/non-empty fields or
empty/non-empty selections in list and table widgets.

v Validation. Predefined validator and formatter objects can be attached to some
widgets in order to perform validation like range checking and syntax checking
without any communication between the UI Engine and the application. This is
especially useful in form-model based widgets, where changes are not
transmitted immediately but batched.

v Management of event signaling. Signals are sent from the UI to the application
server only for those events for which interest has been registered.

ULC layout

Because the implementation of the UI Engine varies with operating environment,
specifying widget layout such that the result is visually appealing can be a
challenge. Explicit placement of widgets does not work very well in this situation
because widget sizes are not known in advance. Moreover, the precise horizontal
and vertical alignment of widgets and the specification of resize behavior is a
tedious task even with the help of the Composition Editor. This led to the
integration of layout management in ULC, based on a hierarchical and high-level
layout description rather than on the explicit placement of widgets, which handles
resize behavior automatically.

The ULC layout widgets employ three basic layout types:
v Border draws a borderline or leaves a margin around a single widget. This

layout is used by GroupBox, Shell, and Page.
v Box aligns widgets in a row/column fashion. This layout is used by Box,

Horizontal Box, and Vertical Box.

32 VisualAge Smalltalk: Ultra Light Client Guide and Reference

v Pile stacks widgets on top of each other. Only the topmost widget is visible.
This layout is used by Notebook and Pagebook.

All widgets that use the first two layout types incorporate the notions of cell and
cell alignment. A cell is a space which can be empty or can accommodate a single
widget. The size of a cell is always equal to or larger than the minimum size of the
enclosed widget (if any). If the cell is larger than the minimum size, the cell
alignment specifies what to do with the extra space. Possible options are to expand
the widget until it fills the cell completely or to align the widget within its cell.
The following illustration shows all possible cell alignments:

Border layout

The simplest example for a cell is the GroupBox widget. GroupBox has a single cell
and draws a border line and title around it. The size of the cell is determined
based on the natural size of the enclosed widget. If GroupBox is made larger, the

Chapter 5. About building ULC applications 33

alignment is used to determine how to align the content widget.

Shell and Page also use Border layout to create a margin around their content
areas.

Box layout

Box lays out cells in a two-dimensional grid separated by horizontal and vertical
gaps. The width of a column is determined by the maximum width of all widgets
in the corresponding column. The height of a row is determined by the maximum
height of all widgets in that row.

If the box is made larger than its minimal size, any extra space is distributed
evenly among expandable rows or columns. A row or column is expandable if at
least one cell attribute in that row (or column) is set to expand. If expandable rows
or columns do not exist, the box is centered within its cell bounds.

Box cells can span multiple columns or rows. In this case, the cell alignment
applies just as for the spanning cell. If the spanning specification results in

34 VisualAge Smalltalk: Ultra Light Client Guide and Reference

overlapping cells, the (visual) result is undefined.

Pile layout

Notebook piles tabbed Page widgets on top of each other and shows only the
topmost page. By selecting a tab, users can switch between pages interactively. The
size of Notebook is determined by the maximum size of all pages.

Like Notebook, Pagebook piles Page widgets, but Pagebook pages have no tabs.
Page switching is completely under program control. Pagebook is used to
implement dynamic layout, that is, to switch between different widget subtrees
programmatically.

ULC layout design tips

ULC layout is based on a few fundamental concepts. Combining layout types
recursively enables not only sophisticated layouts but also automatic resize
behavior. Many ways to solve a given layout problem exist, and it is not always
obvious which approach is the most appropriate. The following paragraphs outline
an overall strategy for designing and implementing a layout using ULC. In
addition, we provide guidelines for cases with alternative solutions.

Use nested boxes. You cannot implement layouts by explicit positioning and
resizing of widgets. Instead, design and build a tree of one- or two-dimensional

Chapter 5. About building ULC applications 35

boxes. We believe that box layout is easiest to use; therefore, layouts based on Box
are much easier to understand and maintain across different desktop environments.

Plan and design the structure of your layout in advance. Even when using the
Composition Editor, layout design is not just painting dialog controls on a drawing
surface. For almost every layout, a resizing strategy has to be defined: Which
elements should grow if the containing window is enlarged? What happens in a
localized version of the layout when a supported language has different string
length requirements? Another requirement is aesthetics: How do we keep controls
nicely grouped and aligned and spaced not too far apart, even if everything resizes
drastically?

Start from top to bottom. Identify the top-level elements or groups of elements.
Decide whether to use a horizontal, vertical or two-dimensional box layout.
Sometimes, the best solution is not as simple as it might seem. For example, is the
top-level layout of the previous illustration a Vertical Box with two rows, each
containing a Horizontal Box (following, right), or is it a 2x2 Box (following, left)?

Sometimes an answer can be found by asking whether elements should be kept
aligned across horizontal rows, for example, whether the label Dossier should line
up with the find entry field. If yes, a 2x2 Box has to be used. If not (which appears
to be more realistic in this case), it is better to nest independent horizontal boxes
within one Vertical Box.

Avoid deep nesting. Always try to keep your layout structures simple. The most
important way to achieve this goal is by avoiding too-deeply nested structures.
Using two-dimensional boxes instead of nesting boxes simplifies the layout. This
goal sometimes conflicts with making the layout visually appealing, because the
two-dimensional box forces elements into a rigid grid, aligning elements that need
not or should not align. Next, we describe how spanning makes the use of
two-dimensional boxes much more flexible.

Use spanning. With spanning, you can merge adjacent cells to form larger cells.
This is useful if you want to align components with different size requirements
within an overall grid. Without spanning, the width or height of rows and columns
is determined by the widest or tallest element. With spanning, exceptionally large
elements can grow into neighboring cells without making their containing rows or
columns too wide or tall.

36 VisualAge Smalltalk: Ultra Light Client Guide and Reference

One way to implement the following example is to nest a 1x3 Box inside a 3x2
Box. With spanning, it is possible to employ a 3x4 box and avoid nesting
altogether.

Spanning is a very powerful mechanism. You can use a grid layout, which
improves the overall aesthetics because elements are aligned and their spacing is
more uniform. On the other hand, you are not forced to make everything the same
size, because you can span elements across multiple grid cells. Spanning makes it
easy to have elements with different sizes always use multiples of some base cell
size, which is visually more appealing than having elements with various
unrelated sizes.

Build the nested grid first; fill in the details later. Because constructing Box
hierarchies is simpler than rearranging them, build and test the complete box
layout before filling in and adjusting the settings of all the non-layout widgets
(labels, buttons, and so on).

Using layout widgets

ULC provides the following layout widgets:
v Box
v Filler
v GroupBox
v Notebook
v Pagebook

Example

We used layout widgets to create the following:

(UlcBox rows: 3 columns: 4)
"First row: Name-label + FirstName + LastName"
add: (UlcLabel new label: 'Name'; yourself);
add: (UlcField new columns: 10; ulcName: 'firstName'; yourself);
add: (UlcField new columns: 10; ulcName: 'lastName'; yourself);
add: UlcFiller new;

"Second row: Address-label + Street + ZipCode + City"

Chapter 5. About building ULC applications 37

add: (UlcLabel new label: 'Address'; yourself);
add: (UlcField new columns: 4; ulcName: 'street'; yourself);
add: (UlcField new columns: 4; ulcName: 'zipCode'; yourself);
add: (UlcField new columns: 6; ulcName: 'city'; yourself);

"Third row: Country-Label + Country"
add: (UlcLabel new label: 'Country'; yourself);
add: (UlcField new columns: 10; ulcName: 'country'; yourself);
skip: 2;
add: UlcFiller new;
yourself

Shells

Shells are the second-highest level widgets, representing the root of every widget
tree. The topmost node of any widget tree is an instance of UlcApplication. A shell
can be a modal or nonmodal window and can have a menu bar.

About model-based widgets

Most ULC widgets support two types of model-widget relationship.

In the first type (subclasses of UlcFormComponent), every widget has a built-in
model and provides an API for accessing and changing the model:

For example, a field has a text model and methods setText: and getText. In addition,
the widget provides methods for specifying the visual appearance of the user
interface element, for example, what font to use or how many characters to display.

The second type uses an external model that is a separate object; this model can be
shared between different widgets:

38 VisualAge Smalltalk: Ultra Light Client Guide and Reference

With this type of model-widget relationship, the application creates and configures
both model and widget and then updates only the model. To retrieve changed
data, the application asks the model for it, not the widget.

An example of this correspondence is the table widget and table model pair. The
table model implements a two-dimensional data structure with rows and columns.
The UI half of the object contains a cache so that data access requests of the table
widget can be fulfilled immediately. If the cache does not contain valid data, the
table model returns placeholders and asynchronously requests new data from the
application half object. When this data arrives, the dependent widgets are notified
and updated.

Synchronization of the two halves of the table model is configurable. Its
notification-policy property gives you fine-grained control over when updates are
sent from the UI to the application.

The form model is another example of the model-based API. A form model
represents a set of named and typed attributes, similar to a heterogeneous
dictionary. Most simple ULC widgets can be initialized with a form model and
attribute name. Fields can be used on string attributes, check-boxes on boolean
attributes, and groups of radio buttons on enumeration-type attributes. These
widgets ignore their built-in model but track changes and allow updates of the
named attributes of the specified form model.

As with the table model, the form model’s notification-policy property gives you
fine-grained control over when updates are sent from the UI to the application.

Using models with model-based widgets

ULC provides three kinds of models:
v Form Model
v Table Model
v Tree Model

The dynamic environment of Smalltalk enables the generic implementation of all
three of these models. UlcModel serves as data accessor for the UI. All widgets that
can take their values from UlcModel have a string attribute called
(form)AttributeName. This string is the attribute name of the domain model instance
behind UlcModel. For UlcModel to function, all domain models must implement set
and get methods conforming to standard Smalltalk conventions. When the UI
requests a certain value from UlcModel, formAttributeName is passed in. UlcModel
sends this string to its domain model as a message and answers whatever the
domain model answers.

The implementation of UlcModel in Smalltalk saves the developer from having to
implement the mapping of formAttributeName to domain attributes. To use
UlcModel, do the following:
v Create one instance of UlcModel per domain object
v Set the correct attribute names as properties in the widgets that are supposed to

display these attributes
v Associate the widgets with the UlcModel instance

Chapter 5. About building ULC applications 39

It is always possible to follow the Java approach and create the necessary adapters
as subclasses of the appropriate UlcModel subclass. The explicit message-sends in
the adapter would eliminate potential problems that might occur at packaging
time. All get and set methods used in UlcModel adapters must be either explicitly
included in the packaging instructions or referenced (that is, sent) in code that gets
packaged (see “About model-based widgets” on page 38 for more details).

If a widget uses a form model, it will not receive widget-specific events. This is
because the form model handles all changes to its widgets on the UI side to
minimize traffic. Widgets that must trigger special events on the application-server
side should not be linked to a form model.

For usage examples, see “Using ULC nonvisual parts” on page 54.

ULC and Server Smalltalk

In ULC-packaged images, code runs in background processes that are owned and
managed by Server Smalltalk (SST). Messages, both in- and outbound, are
processed in UlcRequestProcessor objects that are owned by an instance of either
UlcApplication or UlcContext. Messages processed by UlcContext handle initialization
and context-specific settings like look-and-feel or local information; they are
internal to ULC. Application-relevant code always runs in a process associated
with an instance of UlcApplication. For each instance of UlcApplication, no more
than one request is being processed at any given moment.

To identify the object for which the current Smalltalk process is running, send the
#ulcActiveProcessOwner message. Similarly, the messages #ulcActiveContext and
#ulcActiveApplication answer the appropriate object or nil. You can assume the
following based on the responses to these messages:
v Processes that have an active UlcContext object but no UlcApplication are

processing context-specific requests. In general, they are not executing business
logic.

v Processes that have an active UlcApplication object also have an active UlcContext
object.

v Processes that answer nil when sent the #ulcActiveProcessOwner message were
created outside the ULC system (by business logic or by SST).

These relationships allow for custom exception handling for each UlcContext object.
For more information, see “Customizing exception handling by context” on
page 72.

Concurrency issues

When writing server applications, you must address concurrency issues. When
dealing with these issues, you must often identify the object space from which an
object should be retrieved, based on the active connection or user. ULC allows for
but does not directly support the creation of object spaces. In most cases, though, it
is enough for the application to be able to identify the context under which it is
running. As described previously, the #ulcActiveContext message will provide this
information for all processes created or scheduled by ULC. It is up to you to make
sure that a UlcContext is set for any processes created by business logic.

To set the owner for an active process, send the Object>>#ulcSetUlcProcessOwnerTo:
aUlcProxy while: aBlock message. aUlcProxy must be either a UlcContext or

40 VisualAge Smalltalk: Ultra Light Client Guide and Reference

UlcApplication object. aBlock contains the business logic that will be run in the
process to be owned by aUlcProxy. In the case where code in business logic has
registered for context-related events in UlcContext, aUlcProxy must be set to the
active UlcApplication instance.

Within one UlcApplication instance, only one request is active at any given time.
The process that actually dispatches the request can be different each time, because
ULC maintains a pool of processes to dispatch the requests.

What does this mean for your application?

You must be conscious of this process model if either of the following is true:

v You are writing a server application, and data is shared among multiple views
within the same instance of UlcApplication or UlcContext.

v Data is accessed by using background processes or threads, because in this case,
replies are usually delivered asynchronously.

This process model is of no consequence if all of the following is true:
v You are not writing a server application.
v All data is shared across the image, in which case data access must be protected

by critical blocks.
v All data is held by the UlcView class.

Opening new ULC views

The following paragraphs refer to issues concerning SST process management. You
can ignore this section if either of the following is true:
v The code that opens the view resides in a subclass of UlcAppBldrPart. This is

usually the case if you are constructing the ULC application visually.
v The view will be opened as the result of UI input (for example, a button being

clicked). In that case, ULC sets the currently active UlcApplication instance to be
the view’s process owner.

However, if the code that opens the view is part of the application’s business logic,
you have to be more careful. For more information about SST process
management, read “ULC and Server Smalltalk” on page 40.

Registering the start-up view of your application

You must register the first view of your application with the ULC system so that
the correct class is given control as soon as the ULC environment is properly
initialized. To do this, send the following message:
#registerApplicationNamed: <string_parameter> withStartupClass: MyStartUpView

string_parameter is a string that can be used as a command-line parameter.
MyStartUpView is the name of the class from which the application view will be
instantiated. This new instance of MyStartUpView is opened in a Smalltalk process
whose owner is a fully initialized instance of UlcApplication.

Opening additional views in running applications

After the startup view is open, you can open any additional views with this
message:

Chapter 5. About building ULC applications 41

MyOtherViewClass new openWidget

MyOtherViewClass is the name of the class that you want instantiated. The new
view is opened in the instance of UlcApplication that is currently active. If you are
not sure whether the active Smalltalk process is owned by your UlcApplication
instance, send the #evaluate: aBlock message to the UlcProcessOwnerToken of your
UlcApplication instance and open the new view inside aBlock.

Opening a child view

To open a new view as a child of a view that is already open, send this message:
MyOtherViewClass new openWidgetAsChildOn: aViewAlreadyOpen

Again, if you are not sure if the Smalltalk process is owned by your application,
proceed as described previously.

Enabling national language support in ULC applications

A well behaved server application must provide NLS support for every client
individually. Because every client potentially has its own language, the default
Smalltalk NLS mechanism has been extended for ULC.

ULC clients can operate on any platform that is supported by Java, the language in
which the UI Engine component is implemented. Locale information can vary from
platform to platform. VisualAge already provides a rich set of NLS tools; ULC
leverages these by putting them to use in slightly different ways.

ULC clients deliver country and language information in ISO two-character
abbreviated format. This results in a Locale object that represents the locale to be
created within a ULC context associated with a given UI Engine client.

ULC uses the MPR file format provided by VisualAge Smalltalk as an external
source for language-specific strings. All end-user tools (such as those listed in the
System Transcript window’s Tools menu) for managing the language resources can
be used in ULC. (For details, see the VisualAge User’s Guide.)

For support of multiple national environments, you have a choice as to how to
create the MPR files:
v You can create native-encoded MPR files individually from native workstation

environments. This parallels the standard national language support provided in
VisualAge.

v You can create Unicode-encoded MPR files for all environments from a single
workstation that represents your default language environment. This parallels
the standard national language support provided by Java. This approach enables
you to avoid multiple workstation setups for the purpose of translation support.
However, you must download and install the JDK on this single workstation.

You must use Unicode encoding for those languages that are enabled but not
shipped in VisualAge national language versions (for example, Russian). It is also a
good idea to use Unicode for double-byte languages.

ULC implements a straight mapping of classes to MPR files. This approach is a
simplification from VisualAge in that ULC does not use named NLS groups.
Rather, ULC assumes that the resources of all classes defined in a manager

42 VisualAge Smalltalk: Ultra Light Client Guide and Reference

application share one MPR file. This file is defined by the manager application
class in the method #abtExternalizedStringBuildingInfo.

UlcSystem is configured by ULC applications with their language-to-file-name
substitution information in an application class method (see “Implementing NLS
support for ULC applications”).

Visually constructed views retrieve their view constants on an instance basis by
accessing their contexts for the NLS group concerned. UlcProxy implements the
#getMRI: method, which in turn sends the UlcContext>>#getMRI:class: message.
This scheme allows for multiple contexts, each with its own language, while still
using standard VisualAge NLS mechanisms. Applications wishing to make use of
this feature can do so by accessing the NLS group through the process owner. For
more information about SST process management, see “ULC and Server Smalltalk”
on page 40.

Differences between ULC and standard VisualAge NLS
mechanisms

v ULC does not support the unique combination of language and country (that is,
English/US and English/UK). NLS language in ULC is country-unaware. If your
application needs this kind of support, you can subclass UlcAbstractLocalizer for
implementation. By default, ULC uses the UlcDefaultLocalizer class for mapping
local information to MPR file names.

v If used by classes defined by different manager applications, indexed messages
are duplicated and given different file names.

v If business objects need access to externalized strings, they must retrieve them
from their context. To get the correct locale-specific resources, send the following
messages:
– UlcContext>>#abtSeparatedConstantsFor: aClass (for UlcView class-specific GUI

strings)
– UlcContext>>#getMRI: anInteger for: aClass (for an indexed message)

Implementing NLS support for ULC applications

If you have chosen to create Unicode-encoded files, you must install the JDK first.
You will use the JDK’s native2ascii utility program to convert native encoding to
Unicode. For more information about this utility program, see
http://www.javasoft.com/products/jdk/1.1/docs/tooldocs/win32/native2ascii.html.

Next, follow these steps in VisualAge:
1. Implement the #abtExternalizedStringBuildingInfo method in the startup class for

your ULC-based application, as follows:
SomeClass class>>#abtExternalizedStringBuildingInfo

|Array
with: 'ULC?R40' "MPR filename without extension; use yours here"
with: false "NOT platform dependent"
with: true. "DO recurse subApplications"

The question mark (?) in the file name is a placeholder for the locale strings
mapped in #initializeUlcSystemNLSMappings later in this process.

2. From the System Transcript window, generate a TRA file for the default
language environment. Select Tools->NLS Tools->Generate TRA.

Chapter 5. About building ULC applications 43

http://www.javasoft.com/products/jdk/1.1/docs/tooldocs/win32/native2ascii.html

3. Generate a MPR file for the default language environment. Select Tools->NLS
Tools->Generate Default Language MPR.

4. Replicate and translate a TRA file for each additional language you want the
application to support.

5. From a command prompt, convert the TRA files to Unicode with the
native2ascii utility program found in the JDK.
Important: Skip this step if you do not wish to use Unicode or if the default
language environment is Latin-1 (code page 850 or ISO 8559–1).
For example, the following syntax converts a Japanese input file to Unicode:
native2ascii -encoding Cp942 input.tra output.tra

6. From the System Transcript window, generate MPR files for environments other
than the default:
v If you converted the TRA files to Unicode, select Tools->NLS

Tools->Generate language MPR from unicode TRA.
v Otherwise, from each native workstation, select Tools->NLS Tools->Generate

language MPR from current language TRA.
7. Make sure to place the MPR files in a directory contained in your NLS path, or

in the same directory as the image.
8. Write the initialization script for locale mappings, as follows:

SomeClass class>>#initializeUlcSystemNLSMappings

UlcSystem default
nlsMapDefault: 'en' to: UlcNlsFileEnglish;
nlsMappings: (

LookupTable new
at: 'en' put: UlcNlsFileEnglish;
at: 'de' put: UlcNlsFileGerman;
yourself)

In this method, the ISO language code de is mapped to the string specified in
UlcNlsFileGerman. This string is substituted into the name of the MPR file
established for a German locale in the #abtExternalizedStringBuildingInfo method.

9. Call this method in loaded, a method in the startup class:
loaded

UlcSystem isRuntime ifTrue: [self initializeUlcSystemNLSMappings].
UlcSystem registerApplicationNamed: 'MyUlcApp' withStartupClass: SomeClass

For more information on registration during startup, see “Registering the ULC
visual application class” on page 63.

UlcAlert is the only class shipped with ULC that uses string resources according to
this scheme. The abstract MPR file name is ulcwi?40. Its language-to-file-name
substitution mappings follow the standard values described in the VisualAge User’s
Guide. To implement a different mapping, adjust the definitions for the widget
strings to match those of the application.

The language mappings shipped with ULC correspond to those languages for
which a national language version of VisualAge is available, with the addition of
German. For any other languages, you must include TRA and MPR files. The
names and scripts for their generation can be found in the UlcWidgetApp class
categorized under ULC-Internal-NLS Support.

44 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 6. Building ULC applications visually

Building an application with ULC parts follows the same process as building any
VisualAge application. However, important differences exist, as follows:

Connections. Unlike standard VisualAge parts where the user interface is expected
to run on the same machine as the application, ULC parts are designed so that
user interface and application can be running on different machines connected
through a network. ULC parts are therefore optimized to reduce the amount of
network traffic. This approach requires discipline on the part of developers when
making connections between widgets and parts to ensure that only necessary
updates are sent across the network.

ULC parts do not signal events for state changes (no self event). As a result,
attribute-to-attribute connections have limited utility; they run only once, sent as
initialization messages in the #ulcBuildInternals method.

Use event connections to explicitly set the contents of widgets. Each ULC part has
a well defined set of events that can be used to make event-to-action or
event-to-script connections.

Layout. ULC parts use a different layout scheme than standard VisualAge parts do.
You arrange ULC parts using a grid-based layout scheme. This scheme lays out
widgets in a portable way independent of actual widget size. For more information
about layout, see “ULC layout” on page 32.

Converters. ULC supports local validation and formatting of user input in the UI
Engine. The ULC Field part supports the following ULC converters:

v String formatter
v Range validator
v Percent validator
v Date validator
v Regular expression validator

ULC converters substitute for the standard VisualAge converters, which would
require round-trips between the UI Engine and the application server. Using ULC
converters to validate and format data in the UI Engine avoids those extra
round-trips. You can extend this set of ULC converters using a process similar to
that described in “Chapter 4. Implementing ULC objects” on page 25.

Standard VisualAge converters should be used only when local validation in the
UI Engine is not possible. You cannot do this visually; you must write a method to
pass the object to be converted to the converter and then set the contents of the
ULC widget part with the converted object.

Enablers. It is common practice in GUI development to enable or disable a widget
based on the state of another part. ULC parts support enablers, whereby traffic
between the UI Engine and the application server is not needed to enable or
disable a widget.

For an example of visual composition, see “Building the To-Do List with ULC” on
page 48.

© Copyright IBM Corp. 1999 45

Visual composition pitfalls in ULC

When working with ULC parts in the Composition Editor, pay close attention to
these issues:
v Event names in ULC are pool references. Keep this in mind if you refer to events

in handwritten code.
v ULC parts do not signal a self event.
v When signaling events in handwritten code, send the #ulcSignalEvent:* message,

not #signalEvent:*. Registering for events requires the message #ulcWhen*Send:
aDirectedMessage.

v Entry Field parts do not signal change events (UlcEventValueChanged) when they
are connected to Form Model parts.

Using ULC visual parts

When working with the ULC visual parts, you will work with three different kinds
of parts:
v Box parts are used to define the overall layout. They define a grid of cells.
v Cell parts contain a single widget part and define how the widget is positioned

inside its bounds. Cells keep track of the alignment of their widgets and not the
widgets themselves. Cell parts are automatically created and deleted as needed.
You interact with them only to change their settings.

v Widget parts represent buttons, entry fields, and so on.

Defining layout

When you create a ULC container part like Shell, Page, or GroupBox, it contains a
single cell. To define layout, insert a Box part, which defines the grid. Pick one of
the following:
v Box: the general grid layout. Initially, a box part has two rows and two columns
v Horizontal Box: a convenience part initially set with a single row of two cells
v Vertical Box: a convenience part initially set with a single column of two cells

The layout of your part is then defined by either nesting box parts or by spanning
the cells of a box part. See “ULC layout” on page 32 for a description of how to
use boxes to define layouts. In a nested box and cells structure, you need to be
able to distinguish boxes from cells. To make this distinction more explicit, the
bounds of a box are indicated by a solid blue line, and the bounds of a cell are
indicated by a dashed line.

Adding widgets

Add widgets by dropping them into cells. A cell can contain a single part. Once
dropped into a cell, the part is immediately resized according to the cell’s
alignment.

To reserve some fixed amount of white space in a layout drop a Filler part into a
cell. Filler has properties to define the minimum amount of white space it should
occupy.

46 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Setting layout properties

A Box part has the following properties:
v columns: the number of columns
v rows: the number of rows
v horizontalGap: the horizontal gap between the cells
v verticalGap: the vertical gap between the cells
v margin: the margin around the cells.

A cell part has two properties to define the alignment of its contained part:
v horizontalAlignment: the horizontal alignment of the contained part: Expand,

Center, Left, Right.
v verticalAlignment: the vertical alignment of the contained part: Expand, Top,

Bottom, Center.

You can change the alignment property of a cell in the following ways:
v From the cell’s settings
v From the Align submenu of the cell’s pop-up menu. To change the alignment of

multiple cells, select them and use the Align submenu.

Cells contained in a Box part have additional spanning properties, which you can
use to define cells which span over other cells.
v horizontalSpan: specifies the number of cells this cell spans horizontally.
v verticalSpan: specifies the number of cells this cell spans vertically.

The following figure shows how the parts and properties are presented in the
Composition Editor:

Chapter 6. Building ULC applications visually 47

The figure above shows a box which defines as three-by-three grid. There is both a
cell which spans vertically and a cell which spans horizontally.

The arrows in an empty cell indicate how it will align its contents. An arrow is
shown at every attachment point. For example, the top left cell has the alignment
set to expand in both dimensions. If there is no attachment point, the cell centers
the part in the corresponding dimension. In addition to changing the spanning
with the spanning properties, you can change it by direct manipulation with the
blue grid handles. The grid handles are shown in the figure below. You can drag
the grid handles either horizontally or vertically to span a cell.

Changing the ULC layout grid

You can change the dimensions of the initially defined grid in one of the following
ways:
1. Change the number of rows and columns in the settings view of the Box part.
2. Add an individual row or column relative to a cell. You first select the cell part.

The cell’s pop-up menu provides a Row and Column submenu to add a row or
column before or after the selected cell.

3. Delete a row or column. Select the cell in the row or column that you want to
delete. Then select Delete from the Row or Column submenu.

Building the To-Do List with ULC

This section guides you through building a sample ULC application. It is assumed
that you are familiar with Smalltalk and the Composition Editor. For a quick
overview of the Composition Editor, read VisualAge Smalltalk: Getting Started.

48 VisualAge Smalltalk: Ultra Light Client Guide and Reference

You will create a To-Do List application as shown below:

Creating a ULC application
1. Start VisualAge.
2. From the VisualAge Organizer menu bar, select Applications and then New. A

dialog appears.
3. Enter MyUlcToDoListApp and click OK.

Creating a new ULC visual part
1. From the Organizer Parts menu, select New. A dialog appears.
2. In the Part class field, enter MyUlcToDoListView.
3. From the Part type list, select ULC Visual Part.
4. Ensure that the Open now check box is selected.
5. Click on OK.

The Composition Editor opens your newly created ULC visual part. It already
contains a Shell part that contains a single cell. Change the text in the title bar
of the Shell part to ULC ToDoList Sample by directly editing the text.

Setting the layout

ULC visual parts use box layout. (For more information about layout, see “ULC
layout” on page 32.) The To-Do list sample can be visualized as having three basic
groups:

v To Do Item
v To Do List
v Buttons

We therefore choose a grid of a single column with three rows.

Chapter 6. Building ULC applications visually 49

Adding a Box part
1. From the Ulc Canvas category, select the Box part in the right-hand

column and drop it onto the Shell part. By default, the Box has two rows and
two columns, each containing a cell. The Box part can be distinguished from
the cell by the Box’s continuous blue outline; the cell has a dotted black outline.

2. Edit the following Box settings:
v Set columns to 1.
v Set rows to 3.

3. Click OK to apply your changes.

Adding GroupBox parts
1. Select the GroupBox part and drop it into the first row. By default, a cell’s

content is horizontally left-aligned and vertically centered.
2. Edit GroupBox settings as follows:
v Set horizontalAlignment to Expand.
v Set label to To Do Item

3. Click OK to apply your changes. The GroupBox part immediately expands to
take up all space within this cell.

4. Select another GroupBox part and drop it into the second row.

5. Edit GroupBox settings as follows:
v Set horizontalAlignment to Expand.
v Set label to To Do List

v Set verticalAlignment to Expand.
6. Click OK to apply your changes. The GroupBox part immediately expands to

take up all space within this cell.

Adding the remaining parts

Next, add UI components to the layout you have just set up:
v An Entry Field part in the To-Do Item group box
v A List part in the To-Do List group box
v Add and Remove buttons

Adding the Entry Field part

From the Ulc Data Entry category, select the Entry Field part and drop it

into the To-Do Item group box.

Adding the List part
1. From the Ulc Lists category, select the List part and drop it into the

To-Do List group box.

Double-click on the List part to bring up its settings view. Look at the
attributeName setting. This setting is used to retrieve a list-item object’s string
representation from the underlying collection part for display in the list. By
default, this value is yourself. Because we are dealing only with strings, we can
leave the default value as is.

50 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Adding the buttons

At this point, we need to add two buttons to the remaining empty cell. Because a
cell can contain only a single widget, add a Box part to the cell and then add the
button parts to the box, as follows:
1. Change the alignment of the cell to be horizontally and vertically centered.
2. From the Ulc Canvas category, select the Horizontal Box part, which

creates a box layout with two columns by default. Drop it in the empty cell.
3. From the Ulc Buttons category, select the Button part; drop one onto

each half of the horizontal box.
4. Edit settings for the Button parts as follows:
v Set the left button’s label to Add

v Set the right button’s label to Remove

Adding the Table Model part

To keep a list of to-do items, we need a nonvisual collection part. For ULC
applications, use the Table Model part.

From the Ulc Models category, select a Table Model part and drop it on

the free-form surface.

Chapter 6. Building ULC applications visually 51

Connecting the parts

When you have finished, your sample will look something like this:

Making the attribute-to-attribute connection

To display the contents of the collection in the list, make an attribute-to-attribute
connection between the Table Model part and the List part. The purpose of this
connection is to initialize the List part. Whenever an item is added or removed
from the collection, the items displayed in the list are automatically updated. Select
the tableModel attribute of the List part and linking it to the self attribute of the
Table Model part.

Important: Use ULC attribute-to-attribute connections only to initialize part
attributes. To keep ULC part values in sync, use event-to-action connections.

Making the event-to-action connections

The To-Do List application is supposed to add the text entered in the entry field to
the list when the Add button is clicked and to remove the item selected in the list
when the Remove button is clicked. To make this happen, you must make
event-to-action connections between the Button parts and the Table Model part.
You make these connections to the Table Model part instead of to the List part
because the Table Model part is the one that maintains both the items entered and
the order in which they were added.

52 VisualAge Smalltalk: Ultra Light Client Guide and Reference

1. Connect the action event of the Add button part to the addRow: action of the
Table Model part. A dashed line appears, which means that more information is
necessary. In this case, the parameter for the addRow: action is missing.

2. To supply the parameter, connect the value attribute of the Entry Field part to
the aRow attribute of the previous connection.

3. Connect the action event of the Remove button part to the removeRow: action of
the Table Model part. A dashed line appears, which means that more
information is necessary. In this case, the parameter for the removeRow: action is
missing.

4. To supply the parameter, connect the selectedItem attribute of the List part to the
aRow attribute of the previous connection.

Testing the application

Select the Test tool from the tool bar. All views opened with the Test tool use a

named context. This makes debugging easier. The context can be inspected and
reset from the ULC menu in the System Transcript window.

Adding support for enablers

For the final polish, you can add enablers to your sample.

A common behavior in GUI applications is to enable or disable a button based on
the state of another widget. ULC parts support this with an enabler attribute. To
enable the Add button only when the entry field is not empty, add an
attribute-to-attribute connection between the enabler attribute of the Add button
part and the self attribute of the Entry Field part.

Similarly, to enable the Remove button only when an item has been selected from
the list, add an attribute-to-attribute connection between the enabler attribute of the
Remove button part and the self attribute of the List part.

Now test your application again to verify that the buttons are enabled and
disabled properly.

Congratulations! Your To-Do List application is finished. Before versioning your
application, read “Packaging ULC-based applications in XD” on page 63.

Enabling reuse with ULC composite parts

Composite ULC parts are visual parts that can be stored in the library for later use
in other windows. They are much like standard ULC visual parts except that their
topmost widget is not a shell, but a cell-like widget that looks and feels much like
a FormView from the standard Composition Editor. Building a composite part
really means building a reusable ULC widget that can be used in any other ULC
visual part (both in other composites and shells).

To create a ULC composite part from the VisualAge Organizer’s New Part window,
simply choose ULC Composite Visual Part from the Part type list. You will see
that the superclass of the part switches to UlcCompositeView. From there, building a
ULC composite part is no different than building a ULC visual part. All features

Chapter 6. Building ULC applications visually 53

and parts that can be used in shell-based parts can also be used in composite parts.
Any restrictions that apply to shells also apply to composite parts.

For an example, see the name example shown in “Working with Form Model
parts”.

Using ULC nonvisual parts

This section explains how to work with the nonvisual ULC parts, as follows:
v Variable
v Form Model
v Table Model
v Table Model

Working with Variable parts

In ULC, Variable parts have work to do that standard VisualAge Variable parts do
not. ULC Variable parts must be able to communicate with both ULC and standard
Smalltalk classes, for example, pre-existing business domain objects. This task is
complicated by the need for compile-time resolution of run-time UI/application
connections under ULC. The UlcVariable class (which appears on the palette as the
Variable part) does this largely without your having to be concerned with what is
happening.
1. To use a Variable part in ULC, drop it on the free-form surface the way you

would a standard VisualAge Variable part.
2. Set the type of the Variable from the part’s pop-up menu. From that point on,

the Variable part will accept as valid values only those objects that inherit from
the specified type.
v To access the wrapped type from code, use the #object / #object: protocol.
v To access the wrapped type visually, connect to ulcVariableValue or

setUlcVariableValue. In addition, any features that are part of the type’s public
interface will also appear on the connection menu for the variable.

The type of a ULC variable cannot be changed at run time. However, the contents
can be changed at any time as long as the new value is of the correct type. nil is
also a valid object for variables of any type.

Working with Form Model parts

The Form Model part enables changes made in the UI to be deferred and sent to
the application only when explicitly flushed. Form Model parts are typically used
with standard business domain objects. The following example of a composite part

54 VisualAge Smalltalk: Ultra Light Client Guide and Reference

shows the essentials:

The connections between the Entry Field parts and the Form Model part are all the
same: between the formModel attribute of each field and the self attribute of the
Form Model.

What makes the correct information appear in each field is its formAttributeName
setting.

v In the First name field, this is set to firstName. This corresponds to a firstName
attribute for the Name class.

v In the Middle name field, this is set to middleName. This corresponds to a
middleName attribute for the Name class.

v In the Last name field, this is set to lastName. This corresponds to a lastName
attribute for the Name class.

The connection to the SomeName part associates the Form Model with a ″real″
instance of Name: between the model attribute of the Form Model and the self
attribute of the SomeName part.

This name view is actually a ULC composite part. To (re)use it in other ULC visual
parts, two features of the Form Model part must be promoted: the saveInput action
and the inputSaved event.

Chapter 6. Building ULC applications visually 55

Now suppose the name view is added to a ULC visual part that looks something
like this:

The name composite has been dropped into the upper cell of a Vertical Box part. A
Close button occupies the lower cell. For this trivial example, we use an alert to
indicate that the data has been sent. Here is how the connections go:

1. The action event of the Close button is connected to the promoted saveInput
action of the name composite. This triggers the explicit flush mentioned
previously.

2. The promoted inputSaved event of the name composite is connected to a script
called signalAlert, which creates and shows a confirmation that the event
occurred. In a more robust application, the inputSaved event would trigger some
other UI action, for example, the synchronization of another view.

Working with Table Model parts

The Table Model part stands in for collections of objects. Like the Form Model
part, the Table Model part defers changes in the UI until explicitly sent to the
application server. In “Building the To-Do List with ULC” on page 48, it is used to
hold strings for a List part. In the example below, it is used to hold Name instances

56 VisualAge Smalltalk: Ultra Light Client Guide and Reference

for a Table part:

In this tiny example, a get selector lazy-loads the instance variable names (an
OrderedCollection) with a few Name objects. The attribute-from-script connection
between the rows attribute of the Table Model part and the #names selector sets the
Table Model part.

To associate the Table Model part with the Table part, connect the tableModel
attribute of the Table part and the self attribute of the Table Model part.

The Table part contains three Column parts. What makes the correct information
appear in each column is its attributeName setting.

v In the Last column, this is set to lastName. This corresponds to a lastName
attribute for the Name class.

v In the First column, this is set to firstName. This corresponds to a firstName
attribute for the Name class.

v In the Middle column, this is set to middleName. This corresponds to a
middleName attribute for the Name class.

The finished example looks like this:

Chapter 6. Building ULC applications visually 57

Working with Tree Model parts

The Tree Model part stands in for an object hierarchy. Like the Form Model part,
the Tree Model part defers changes in the UI until explicitly sent to the application
server. In the example below, Tree Model is used to arrange a list of Customer
objects in a tree view:

The root node of the tree is a CustomerList object that contains a collection of
Customer instances. Each Customer instance contains a Name instance and a
collection of Address instances (as homeAddress and workAddress). Lazy loading at
each step into the tree provides a basic demonstration of how this works.

To use the Tree Model part, follow this process:

v Connect up the parts on the Composition Editor.
v Set properties for the Tree Model part.
v Implement methods to support traversal and display in the domain classes.

Connecting up the parts

As shown in the previous illustration, the customer-list view is a ULC visual part
to which Tree, Tree Model, and CustomerList parts have been added. CustomerList
(shown here as SomeCustomers) is a standard Smalltalk class.

To associate the ″real″ object with the Tree Model part, connect the self attribute of
the SomeCustomers part with the model attribute of the Tree Model part.

To associate the Tree Model part with the tree view, connect the self attribute of the
Tree Model part with the treeModel attribute of the Tree part.

Setting the Tree Model part

58 VisualAge Smalltalk: Ultra Light Client Guide and Reference

In setting the Tree Model part, you specify the names of the accessors that specify
the methods used to traverse and display the tree. An example follows:

These accessors are implemented in CustomerList as follows:
getRootNode
"answers root"

|self

getChildrenFor: aNode
"answers how to get branch of tree"

|aNode children

getNameFor: aNode
"answers how to get displayable node name"

| aNode nodeLabel

getNumberOfChildrenFor: aNode
"answers how to get size of tree branch"

|aNode numberOfChildren

getIconFor: aNode
"answers how to get icon for displaying node"

|aNode icon

Implementing methods to support the tree view

Now implement the messages sent to aNode. The Tree Model part cannot handle a
heterogeneous set of accessors, so the technique for making this work is to
implement these methods polymorphically for CustomerList, Customer, and Address.
Because there is only one root node, the getRootNode method is not implemented
elsewhere in the tree.

The remaining implementations for CustomerList follow:
children
"polymorphic method to access child nodes.

customers is an instance variable of type OrderedCollection"

|self customers

Chapter 6. Building ULC applications visually 59

nodeLabel
"polymorphic method to provide the name of the node "

|'Customers'

numberOfChildren
"polymorphic method to provide the size of tree"

| self customers size

icon
"polymorphic method to provide icon for tree view"

|UlcSharedResource named: 'treeIcon'
ifAbsent: [UlcIcon fromFile: 'bitmaps/red-ball.gif']

Implementations for Customer follow:
children
"polymorphic method to access child nodes.

addresses is an instance variable of type OrderedCollection"

|self addresses

nodeLabel
"polymorphic method to provide the name of the node.

nameString, a string accessor for the embedded Name instance,
is exposed to the public interface of Customer"

|self nameString

numberOfChildren
"polymorphic method to provide the size of tree.

In this example, only two addresses are supported"

|2

icon
"polymorphic method to provide icon for tree view"

|UlcSharedResource named: 'customerIcon'
ifAbsent: [UlcIcon fromFile: 'bitmaps/green-ball.gif']

Implementations for Address follow:
children
"polymorphic method to access child nodes.

nil means the end of the tree"

|nil

nodeLabel
"polymorphic method to provide the name of the node.

addressString is a string accessor for Address instances"

|self addressString

numberOfChildren
"polymorphic method to provide the size of tree"

|0
icon
"polymorphic method to provide icon for tree view"

|UlcSharedResource named: 'addressIcon'
ifAbsent: [UlcIcon fromFile: 'bitmaps/blue-ball.gif']

60 VisualAge Smalltalk: Ultra Light Client Guide and Reference

When complete, the example looks something like this:

Chapter 6. Building ULC applications visually 61

62 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 7. Deploying ULC-based applications

On some Windows 95 machines, you can get the message Out of environment space
when starting a ULC-based application. Ensure that your environment is large
enough by editing the Shell entry in the config.sys file as follows:
SHELL=someDisk:\somePath\command.com /P /E:2048

/E: specifies the maximum size of the environment. Ensure that the path
someDisk:\somePath is valid on your machine.

Packaging ULC-based applications in XD

You cannot package ULC-based applications using Applications->Make
executable; you must use the packager in XD. Packaging ULC-based applications
involves the following steps:
v Editing dependencies and prerequisites for the ULC visual and composite parts
v Registering the ULC visual application class
v Creating an appropriate passive image in XD
v Creating packaging instructions and outputting the packaged image

For more information about XD packaging, see the Server Guide.

To illustrate this process, we return to the ToDoList sample, which represents the
simplest ULC program possible: a single view with no user-defined server-side
processing. Packaging your application may involve additional steps. If necessary
before proceeding, review “Building the To-Do List with ULC” on page 48.

Preparing ULC visual and composite parts

Before versioning and releasing the visual application for packaging, you must edit
its list of immediate prerequisites and dependencies:
v CORBA applications must include UlcCommunicationIiopApp in their list of

prerequisites.
v All ULC applications must include UlcRunWidgetApp in their list of

prerequisites.

If necessary, use the Application Editions Browser to edit the list. As soon as this is
finished, you can version and release MyUlcToDoListView. However, do not version
the application yet.

Registering the ULC visual application class

Add the following methods to the class MyUlcToDoListApp:
v appName (optional if you prefer to hardcode this in the following examples)

appName

|'MyUlcToDoListApp'

v registerInUlcSystem, which registers the application with the ULC system object

© Copyright IBM Corp. 1999 63

registerInUlcSystem

UlcSystem
registerApplicationNamed: self appName
withStartupClass: MyUlcToDoListView

v loaded, a synchronization method that calls #registerInUlcSystem
loaded

self registerInUlcSystem

If the application supports multiple languages, this method should send a
message to initialize national language support. For details, see “Implementing
NLS support for ULC applications” on page 43.

v deregisterFromUlcSystem, which removes the application from ULC system control
deregisterFromUlcSystem

UlcSystem deregisterApplicationNamed: self appName

v removing, which calls #deregisterFromUlcSystem
removing

self deregisterFromUlcSystem

When you are finished, version and release the class; then version the application.

Creating and populating the passive image

From the System Transcript window, follow these steps:
1. From the XD menu, select New Image. The Image Properties window appears.
2. Set properties as appropriate for your application. For ULC, you must load the

Ultra Light Client (ULC) feature.
3. Select OK to create the passive image.
4. After the passive image has been created, load the applications you want to

package into the image:
v From the XD Transcript window, select Tools->Manage Applications. The

Application Manager window appears.
v From the menu bar, select Applications->Load->Available.
v Select each application you want loaded (in this case, only

MyUlcToDoListApp). Then select OK.

Creating the packaging instructions and outputting the image
1. Switch back to the development image to create a packaging application. We

create the packaging application in the development image because it is not
necessary to put it in the passive image.

2. From the VisualAge Organizer, create a new application. Call it
MyUlcToDoListPackagingApp.

3. Edit the immediate prerequisites for MyUlcToDoListPackagingApp: Select the
application, click mouse button 2, and select Prerequisites. The Prerequisites
window appears.

4. Packaging applications for ULC must list at least one prerequisite:
UlcPackagingBaseApp. If necessary, use the Application Editions Browser to edit
the list. Then select OK to close the window.

5. Switch back to the XD image.

64 VisualAge Smalltalk: Ultra Light Client Guide and Reference

6. From the Tools menu, select Browse Packaged Images. The Create New
Instructions tab appears on top.

7. Choose the type of image you want to package. In this case, select XD
Runtime ULC Application.

8. Add an image abstract and description in the spaces provided. Then select the
Modify Instructions box at the bottom of the window.

9. Select the appropriate applications for packaging. (For this example, select
MyUlcToDoListApp.) Then reduce the image.
If you are prompted for a significant number of Sst- or Ulc- applications, the
SST and ULC features were probably not loaded properly into the passive
image. If this happens, return to “Creating and populating the passive image”
on page 64 and repeat.

10. Examine and fix any relevant problems.
11. Save the instruction instructions as a class in the new ULC packaging

application. For this example, save the instructions as
MyUlcToDoListPackagingInstructions, subclass of
ULCBaseXdPackagingForUlcApplications, in application
MyUlcToDoListPackagingApp.

12. Output the image to ulctodo.icx.

To deploy the image, follow these steps:
1. Copy esvio.exe to ulctodo.exe (give it the same name as the image file).
2. Create an ulctodo.ini file, using ULCSamples\appctrl.ini as a model:
v Set nlspath to point to the MPR files for your application. Save the file.
v Add Server Runtime license and key information, using the Unlock Product

tool. To apply this information specifically to the ulctodo.ini file, select File
-> Select INI.

Setting up a ULC development image to run in production mode

If you package your application as described in “Packaging ULC-based
applications in XD” on page 63, your application will be enabled for production
mode. The following procedure enables you to run your application as a server
from a development image:

1. Add a startup method to the application, registerInUlcSystem, to register the
application with the ULC system object. Note that this is a class method.
MyUlcApp class>>registerInUlcSystem

UlcSystem
registerApplicationNamed: 'MySample'
withStartupClass: MyUlcView

2. Configure the UlcSystem instance for production mode. This can be done from
the System Transcript window by selecting ULC->System->Change Server Port
from the menu bar.

3. From the System Transcript window, start the server process that will wait for
new connections by selecting ULC->System->Start Server Mode from the
menu bar.
Your image is now ready to accept new connections from multiple UI Engine
components.

4. To connect to this image from a command prompt, use the following:
UIEngine\bin\ulcUI.exe -url ulc://localhost:4444/MySample

Chapter 7. Deploying ULC-based applications 65

If connecting to the application from another machine, replace localhost with
the IP address of the machine running the application. As appropriate, replace
4444 with the server port assigned earlier.

If your application does not run for any reason, ensure that the Debug option is
enabled on the ULC->Debug menu. Retry the previous sequence and watch the
System Transcript window for error messages.

5. You can connect multiple UI Engine components to the same Smalltalk image
by repeating the previous step from multiple machines or from multiple
command prompts on the same machine. After your tests are complete, you
can put your image back in the default mode from the System Transcript
window by selecting ULC->System->Stop Server Mode from the menu bar.

About running ULC applications from a command prompt

ULC-packaged images support the following command-line parameters. These
parameters are not case-sensitive:

-appName String
Packaged Smalltalk images may contain more than one named application.
If this parameter is not set, all applications are accessible. Specifying one or
more application names restricts access to the listed applications.

-corba Sets the default communication protocol of the image to CORBA (IIOP).
This parameter works only for images that include the IIOP support
(UlcCommunicationIiopApp). If that application is not present when this
parameter is passed, the image will not work.

-debug
This parameter starts the debug mode of ULC. If started, all debug aspects
are output.

A useful complementary VisualAge parameter is -lFileName, which
redirects output to TTY (the default output for ULC debugging) to the file
specified. -lCON outputs to the console.

-server XXX
The number specified by XXX defines the port number on which the
application server waits for connections.

-url String
The format of String is ULC://hostname:xxxx/ApplicationName.

-userparm String
String can be any valid single command-line parameter (as supported by
the platform). UlcSystem provides access to this parameter via its
#userParameter API. This string is not interpreted by ULC. It lets business
applications define their own startup parameters.

Examples
MyImage.exe -server 4444

The application server waits for connections on port number 4444. This
configuration allows access to all applications included in the image. To have a UI
Engine connect to this server, the command line would read:
UlcUI.exe -url ulc://localhost:4444/myBeautifulApp

MyImage.exe -server 4444 -appName MyBeautifulApp

66 VisualAge Smalltalk: Ultra Light Client Guide and Reference

The application server waits for connections on port number 4444 and restricts
access to the application named MyBeautifulApp. This is useful only if the server
image includes another application (for example, MyUglyApp).

The UI Engine command lines might read:
UlcUI.exe -url ulc://localhost:4444/myBeautifulApp
result: the MyBeautifulApp starts up

UlcUI.exe -url ulc://localhost:4445/myBeautifulApp
result: nothing happens, because the port is wrong

UlcUI.exe -url ulc://localhost:4444/myUglyApp
result: nothing happens, because access to MyUglyApp has been refused

Chapter 7. Deploying ULC-based applications 67

68 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 8. Troubleshooting ULC applications

ULC includes a number of development support tools that are accessible from the
ULC menu of the System Transcript window. The exact composition of the ULC
menu depends on the ULC applications loaded in the image. If
UlcDevelopmentSupport is not loaded, the ULC menu does not appear at all.

Important: These tools provide low-level access to ULC internal code. These are
manipulated at the user’s peril. In particular, this concerns Smalltalk processes and
any Sst- prefixed classes. For general information about SST process management,
see “ULC and Server Smalltalk” on page 40.

Named ULC contexts

Every instance of UlcContext defines the space in which a ULC application resides.
Two significant development contexts are summarized here:
v Builder Context, in which all views run when tested from within the

Composition Editor or VisualAge Organizer. This context becomes available
when the UlcEditWidgetApp application is loaded in the image.

v Example Context, which serves as context for all examples shipped with the
release. This context becomes available when the UlcExamples application is
loaded in the image.

Both named contexts offer three menu choices (disabled when their target context
is not active):
v inspect opens an Inspector window on the context. In this window, the context

can be walked.
v reset terminates the context. This option brings down the UI and closes the

context with all its connections. After the reset, all objects of the context should
be garbage-collected. If the context was the last one registered, UlcSystem
performs a runtime exit.

v inspect selected widgets opens an Inspector window on a collection of all
instances of selected ULC widget classes currently available in the context.

Cleaning up the ULC system

When the ULC system stops working, stops with a Debugger window, or just will
not stop, you can reset the system. From the System Transcript window, select
ULC->Debug->Reset Ulc System. In response to this selection, all active ULC
contexts stop, and all open communications are ended. ULC Monitor should no
longer list any open connections.

ULC->Debug->Inspect all Ulc Instances provides verification of a cleaned-up
image if it lists only these instances:
v UlcSystem (one instance; the default system is always initialized)
v UlcIconImageDescriptor (used in the VisualAge parts palette, the number

depending on the number of ULC parts loaded)
v UlcUndefinedProcessOwnerToken (one internal instance defined in a pool)

© Copyright IBM Corp. 1999 69

Any application-provided objects and all instances of UlcAbstractView subclasses
still visible after the reset constitute a potential problem (runtime memory leak in
ULC servers). The causes should be investigated and eliminated. Causes for
hanging instances are known to include references to the object from some global
object; start looking for those first.

Using the Debugger window with ULC

ULC communications employ Smalltalk processes extensively. Terminating one of
these ULC processes from the Debugger window can stop all communications for
the context using that process. Usually it suffices to reset the builder context, but
sometimes the UI must be stopped altogether.
v To ensure a clean image before resuming tests, select ULC->Debug->Reset Ulc

System from the System Transcript window.
v To verify that all ULC objects have been garbage-collected, select Inspect all Ulc

Instances from the same menu.

Be careful when setting breakpoints in ULC code, because they can render a
process unusable thereafter. When this happens, make sure that the image is in a
consistent state before you continue testing.

Configuring #debugPrintString

You can configure the way ULC-controlled objects are printed when inspected in
Inspector and Debugger windows. To do this, toggle options under
ULC->Debug->#debugPrintString from the System Transcript window as follows:
v Standard format uses the default image implementation. This option is used

only by subclasses of UlcObject. Select Use standard #debugPrintStream only.
v Short format uses the #ulcPrintObject method implemented in Object. All objects

pointed to by the one inspected are printed using the same format. Select Use
short #debugPrintStream only.

v Long format prints the entire object tree, which can be extremely large. Deselect
both options.

Tracing inside the Smalltalk image

ULC includes a trace facility that prints messages to a configurable stream interface
based on a system of aspects.
v To toggle the tracing option from the System Transcript window, select

ULC->Debug->Debug Mode.
v To configure the aspects actually output, select ULC->Debug->Filter Debug

Aspects. This enables a trace that displays only the information requested. For
more information about settings, see “Default ULC debugging aspects” on
page 71.

To direct output from the debugger from the System Transcript window, select
ULC->Debug->Set Debugger To as follows:

v Transcript.
v TranscriptTTY. At run time, this is the only option that is usable.
v WriteStream. This is a generic Smalltalk WriteStream; it is also the fastest and

safest of the three options.

70 VisualAge Smalltalk: Ultra Light Client Guide and Reference

If output is directed to WriteStream, you can display the contents of the stream in
the System Transcript window.
v To display the contents, select ULC->Debug->View Debug WriteStream.
v To reset the contents, select ULC->Debug->Set Debugger To->WriteStream.

ULC provides for user-defined aspects to be handled in the same routine. This
feature can be used anywhere in your application code. Send the #ulcDebug:print:
message to the UlcSystem default, with the first parameter being the aspect and the
second one a block that evaluates to a string. If the aspect passed is selected, the
result of the print block is appended to the current debug stream. The output is
structured as follows:
ULC
<_ASPECT_String_Name_> <_Sending object printObject_String_> -> <_value of printBlock_>

The sending object is printed using UlcBaseApp->Object>>#printObject. This method
in turn sends the #ulcPrintObjectOn: aStream message to the receiver. By default,
that method prints the class name of the receiver, followed by the state of the
receiver in brackets. The method printing the state (#ulcPrintStateOn: aStream) is
typically reimplemented by classes and can be used by application classes as well.

If the aspect is set to nil, the #ulcDebug:print method of UlcSystem prints the block
regardless of which aspects have been selected. This enables on-the-fly tracing
during development.

This feature is not intended for packaged images, because it is not suppressible. In
this case, you can extend the list of ULC aspects as follows:
v From code (typically the #loaded method).
v From the System Transcript window, select ULC->Debug and then either Add

Aspect or Remove Aspect. Aspects added from the System Transcript window
are not persistent and are available only in the image where they were added.

Default ULC debugging aspects
v All Aspects traces all aspects (including application-defined ones).
v Communication traces low-level communication.
v Save FormModel input traces (with timestamp) before or after saving the input

from a form model.
v LifeCycle traces life cycles of objects (creation, registration, destruction).
v ModalWait traces the start and end of a modal wait for an answer.
v Obsolete traces all senders of obsolete methods.
v Receive traces all incoming message (from UI).
v Send traces all outgoing messages (to UI).
v ShouldNotHappen traces events that are generally not critical, but should not

happen by design.
v SignalEvent traces ULC events that are about to be signaled.
v Synchronization is used only by UlcApplication>>synchronize.
v Views traces view-related events. Default is opening and destroying a view.

Defining application-specific debugging aspects

Although the application owns the aspects, the values of these aspects are defined
by UlcDebugger and can be different in every image. You set these as follows:

Chapter 8. Troubleshooting ULC applications 71

1. Define aspect names in the _PRAGMA_ method of your application.
_PRAGMA_UlcExampleDebugAspectConstants
"%%PRAGMA DECLARE
(name: UlcExampleDebugAspectConstants isPool: true)
(pool: UlcExampleDebugAspectConstants declarations: (
(name: UlcCustomDebugAspectOne isConstant: false)
(name: UlcCustomDebugAspectTwo isConstant: false)
))
"

Always set the isConstant flag to false. If you do not, the pool entry is marked
read-only, and the value defined by UlcDebugger cannot be assigned (step 2).

2. Initialize the aspects defined in step 1.
SomeApplication class>>#loaded

UlcExampleDebugAspectConstants::UlcCustomDebugAspectOne :=
UlcDebugger nextAspectIdentifier.

UlcExampleDebugAspectConstants::UlcCustomDebugAspectTwo :=
UlcDebugger nextAspectIdentifier.

UlcDebugger
addAspect: UlcExampleDebugAspectConstants::UlcCustomDebugAspectOne
text: 'name of the first aspect as shown in the selection prompter'.

UlcDebugger
addAspect: UlcExampleDebugAspectConstants::UlcCustomDebugAspectTwo
text: 'name of the second aspect as shown in the selection prompter'.

3. Use the aspects in application code.
SomeObject>>#someMethod

...
UlcSystem default
ulcDebug: UlcCustomDebugAspectTwo
print: ['some text shown in the trace'].

...

4. Remove the aspects previously defined.
SomeApplication class>>#removing

UlcDebugger
removeAspect: UlcExampleDebugAspectConstants::UlcCustomDebugAspectOne
removeAspect: UlcExampleDebugAspectConstants::UlcCustomDebugAspectTwo

Customizing exception handling by context

You can customize exception handling by ULC context in the startup class for any
ULC-packaged application. This exception handling can completely replace the
default, partly replace the default, or merely perform application-specific actions
before turning over control to default exception handling. For more information
about contexts before you get started, see “ULC and Server Smalltalk” on page 40.

Default exception handling in ULC

ULC handles instances of three exception classes (and their subclasses). Behavior
varies with environment.

ExError

During development, the following occurs:
1. ULC opens an Inspector window on the context in which the error occurred.

You must manually terminate the context because it will no longer be able to
process user input.

2. ULC opens a Debugger window on the process in which the error occurred.

72 VisualAge Smalltalk: Ultra Light Client Guide and Reference

At run time, the following occurs:
1. ULC logs the error with the debugger.
2. ULC attempts to display an error message in the UI to inform the user that the

connection is being closed because of an error.
3. ULC terminates the active context.

ExHalt

During development, ULC opens a Debugger window on the process in which the
exception occurred.

At run time, ULC ignores this event and resumes the process.

ExUserBreak

During development, ULC opens a Debugger window on the process in which the
exception occurred.

At run time, ULC ignores this event and resumes the process.

Implementing custom exception handling

To customize exception handling, implement a class method called
#exceptionHandlerForContext: aUlcContext in the ULC startup class for your
application. This class is typically a subclass of UlcAppBldrView. At run time, the
active context sends this message to the startup class before an instance of the class
is created.
MyAppBldrViewStartupClass class>>#exceptionHandlerFor: aUlcContext

"answer the custom exception handler for this application"

|MyCustomExceptionHandlerClass new context: aUlcContext; yourself

If the receiver of the message answers nil, default exception handling is installed
on the current process. Any other object answered is expected to have
implemented the #catchExceptionsWhile: aBlock method. The aBlock parameter
represents the exception-handling code to be run.
MyCustomExceptionHandlerClassOne>>#catchExceptionsWhile: aBlock

"Install the custom exception handlers on aBlock.
Terminate the receiver's context in all cases"

|aBlock
when: ExError
do: [:signal|self closeApplicationLog.

"performing some application specific tasks"
UlcDebugger errorMessage: self someApplicationSpecificErrorMessage.
[self context terminate] forkNamed: 'terminating context after error'

]

If default handling suffices for now, you can replace the last two lines of the
handler block with code that invokes default handling, as follows:
MyCustomExceptionHandlerClassTwo>>#catchExceptionsWhile: aBlock

"Install the custom exception handlers on aBlock.
Terminate the receiver's context in all cases"

|aBlock
when: ExError

Chapter 8. Troubleshooting ULC applications 73

do: [:signal|self closeApplicationLog.
"performing some application specific tasks"
signal signal "invoking default handling"

]

To change the exception handler dynamically, send #setExceptionHandler: anObject to
a context or its UlcProcessOwnerToken. anObject must have implemented the
#catchExceptionsWhile: aBlock method. anObject can also be nil, which causes
exception handling to revert to the default.

In any case, the new exception handler takes effect only on processes spawned
after it was set. Any handler already installed on a process is not affected by the
change.

To change the error message displayed at run time, edit the message called
UlcAlertTerminateContext. You can find the definition for this message in the files
UlcWidxxx.tra and UlcWidxxx.mpr.

Customization considerations

A process in which an ExError exception occurs is stopped. The context and UI
associated with this process is no longer functional. Custom handler code must
relieve this situation by doing one of the following:
v Terminate the context by sending #terminate to the object answered by

#ulcActiveContext. Use a forked process to do this, because the exception-causing
process might no longer be functional.

v Resume the process by sending #resumeWith: anObject to the Signal object. Do
this only when the original error is well understood and known to be resumable.

v Invoke default exception handling by sending #signal to the Signal object.

If the handled exception disrupted the connection between application server and
UI, attempts to display messages on the UI will probably not succeed.

Frequently asked questions
v “Why does the Test button in the Composition Editor stop working?”

v “How do I inspect the objects in a ULC application?” on page 75

v “Why do I get a Debugger window when saving the public interface of an
object?” on page 75

v “Why does the development image not respond when I start a ULC
application?” on page 75

Why does the Test button in the Composition Editor stop
working?

If during the test of a sample ULC part, a Debugger window is opened, the image
can be left in an inconsistent state. After closing the debugger, go to the System
Transcript window. From the ULC menu, select Debug and then Reset Ulc
System. This forces the image back to a consistent state.

74 VisualAge Smalltalk: Ultra Light Client Guide and Reference

How do I inspect the objects in a ULC application?

The set of objects in a ULC application is defined in that application’s context.
When testing a ULC part from the Composition Editor, you can inspect the active
context from the System Transcript window. From the menu bar, select
ULC->Debug->Inspect Builder Context. The context of the ULC examples is also
accessible by selecting ULC and then Debug.

As soon as you are inspecting the context, you can send messages like
findAllWidgetsOfType: ’Table’ or findAllWidgetsNamed: ’MyWidgetName’. These
methods are implemented for debugging only and are not part of the ULC API.

Why do I get a Debugger window when saving the public
interface of an object?

When defining event names for UlcCompositeView or UlcAppBldrView subclasses, the
names are converted from symbols to atoms. If an atom contains a colon, the
compiler expects it to be a selector, which the atom is not. To avoid this problem,
do not use colons in event names.

Why does the development image not respond when I start a
ULC application?

This can happen when debugging output is directed to Transcript. Fix this as
follows:
1. Issue a user-break.
2. Redirect output to WriteStream (see “Tracing inside the Smalltalk image” on

page 70).

3. Reset the ULC system (see “Cleaning up the ULC system” on page 69).

4. Restart the application.

Chapter 8. Troubleshooting ULC applications 75

76 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Part 2. Programmer’s Reference

© Copyright IBM Corp. 1999 77

78 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 9. Resource classes
UlcAlert

A general-purpose message box. Although Alert is a shell and appears on
the parts palette, its properties cannot be reset after the instance has been
created, so this class is better used in code.

UlcAlert is typically opened as a child of UlcShell, as follows:
(UlcAlert confirm: 'Do you really want to quit?'

title: 'Please Confirm'
parent: aShell)

ifTrue: [aShell parent terminate]

UlcAlert handles itself with respect to its parent, so there is no need to add
alerts to UlcApplication.

UlcFont
Specifies the font to be used in ULC widgets. Plain, bold and italic are the
font styles currently available in ULC. They are defined in the pool
dictionary UlcWidgetConstants (UlcFontBoldStyleBit, UlcFontItalicStyleBit).

To set the style of a font, use the following:
aUlcFont fontStyle: UlcWidgetConstants::UlcFontBoldStyleBit

To set the font to normal, use the following:
aUlcFont fontStyle: 0

To reset the font dynamically, you must use the #setFont: method.

UlcIcon
Specifies a GIF image to be used in buttons, labels, and menu items. The
following code creates one with the name abc.gif:
UlcIcon fromFile: 'abc.gif'
UlcIcon fromFile: 'bitmaps\abc.gif'

Loading an icon resource from file uses CfsStream, so the file name passed
when creating a new instance of UlcIcon can be a simple filename as well
as a partially or fully qualified path name. In the ULC examples, all
resources can be found in the bitmaps subdirectory of the program folder.

UlcRGBColor
Specifies a color using standard RGB notation. Once created, color
instances are immutable.

To create an instance, use the following:
|someColor|
someColor := (UlcRGBColor new) initializeRed:244 green:244 blue:244.

© Copyright IBM Corp. 1999 79

80 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 10. Box parts

Box is a container for other widgets. Several Box-based parts exist on the palette,
as follows:
v Box provides a two-dimensional grid of rows and columns.
v Horizontal Box provides a single row.
v Vertical Box provides a single column.

Category
Ulc Canvas

Palette icon
Box

Horizontal Box

Vertical Box

Class name
UlcBox, UlcHBox, UlcVBox

Box attributes

Most of the following attributes are valid for two-dimensional boxes only.

backgroundColor
The background color of the part.

columns
The number of columns in the underlying grid.

cursor The ULC cursor that is in effect when the mouse pointer is over this part.
Possible settings are Crosshair, Text, and Wait. The default setting for this
part is indicated by <default>.

decoration
The set of colors and fonts owned by this part.

font The typeface used for text displayed on this part.

foregroundColor
The color of any text shown in the part, if applicable.

horizontalGap
The space between adjacent columns (in pixels).

margin
The space around the perimeter of the part (in pixels).

radioGroup
Determines behavior of RadioButton or CheckBox parts dropped in the
box.
v If radioGroup is set to true, only one radio button or check box can be

selected at any given time. If the box contains both radio buttons and
check boxes, one of either can be selected.

© Copyright IBM Corp. 1999 81

v If radioGroup is set to false, multiple radio buttons or check boxes can
be selected at any given time. This is the default value.

rows The number of rows in the underlying grid.

self The class instance itself. This is the only connectable attribute for
Horizontal Box and Vertical Box.

toolTipText
The text displayed in hover help for the part.

verticalGap
The space between adjacent rows (in pixels).

Box general advice

Code examples

The dimension of a new box is defined by sending the message #rows:columns: or
#rows:columns:radioGroup: to the class:
UlcBox rows: 3 columns: 5 radioGroup: false

All boxes define the gap between contained cells, which is set by sending
#setVerticalGap: or #setHorizontalGap: to the box. At initialization, use the methods
#verticalGap: or #horizontalGap:, as follows:
UlcHBox new horizontalGap: 5.

UlcVBox new verticalGap: 5.

UlcBox new
horizontalGap: 5;
verticalGap: 5;
yourself

Box also enables you to expand or align widgets within their cells. The UlcBox API
includes the following convenience methods:
v UlcBox>>#alignHorizontalCenter

v UlcBox>>#alignHorizontalExpand

v UlcBox>>#alignHorizontalLeft

v UlcBox>>#alignHorizontalRight

v UlcBox>>#alignVerticalBottom

v UlcBox>>#alignVerticalCenter

v UlcBox>>#alignVerticalExpand

v UlcBox>>#alignVerticalTop

For example, the following code aligns widgets in UlcBox to the top left corner of
their cells:
(UlcBox rows: 3 columns: 5 radioGroup: false)
alignVerticalTop;
alignHorizontalLeft;
yourself

Widgets are added to a box sequentially and fill the box row by row (left to right,
top to bottom). For more sophisticated layouts, you can specify that a widget uses
more than one cell. This is known as spanning. In the following code, the
familyName field is spanned over two cells:

82 VisualAge Smalltalk: Ultra Light Client Guide and Reference

(UlcBox rows: 3 columns: 5 radioGroup: false)
add: (UlcField new ulcName: 'familyName'; columns: 10; yourself)
horizontalSpan: 2
verticalSpan: nil

For more details on layout and alignment, see “ULC layout” on page 32.

Chapter 10. Box parts 83

84 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 11. Browser Context

The Browser Context part represents the default HTML browser in effect for the
desktop machine’s operating system.

Category
Ulc Models

Palette icon
Browser Context

Class name
UlcBrowserContext

Browser Context attributes
browserPath

The directory location of the browser program.

self The class instance itself.

© Copyright IBM Corp. 1999 85

86 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 12. Button
Category

Ulc Buttons

Palette icon
Button

Class name
UlcButton

Button attributes
backgroundColor

The background color of the part.

cursor The ULC cursor that is in effect when the mouse pointer is over this part.
Possible settings are Crosshair, Text, and Wait. The default setting for this
part is indicated by <default>.

decoration
The set of colors and fonts owned by this part.

enabled
Indicates whether the part can be selected.

enabler
The part whose state prompts activation of this part at run time. For more
information on connecting enablers, see “Chapter 6. Building ULC
applications visually” on page 45.

foregroundColor
The color of any text shown in the part, if applicable.

icon The name of the GIF file displayed in the part.

label The text displayed on the part.

mnemonic
The shortcut letter associated with this part.

popupMenu
An instance of UlcMenu that supports this part.

self The class instance itself.

toolTipText
The text displayed in hover help for the part.

Button events
action The button has been clicked.

© Copyright IBM Corp. 1999 87

Button general advice

Code examples

The following code creates a button with the label Delete:
UlcButton new label: 'Delete'

Tooltips, enablers, and mnemonics are features supported by all button-like classes.

Enablers

A feature required for buttons and menu items is to change their enable or disable
state depending on the state of another widget. In ULC, this is done with enablers.
An enabler informs its registered widgets that it has changed its state, and effects
the change of the enable or disable state on those widgets. The following classes
can serve as enablers:
v Entry Field
v Form Model
v List
v Table
v Tree

The following code uses UlcTable as the enabler for UlcButton:
(UlcButton new label: 'Delete';yourself) setEnabler: UlcTable new

The UlcTable instance tells the button to change its state to enable whenever there is
a item selected in the table.

Mnemonics

UlcButton also supports mnemonics (a single character). When the user presses that
key with the Alt key, the button behaves as if clicked. The following code sets
aButton’s mnemonic to the A key:
aButton setMnemonic: $A

88 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 13. CheckBox
Category

Ulc Buttons

Palette icon
CheckBox

Class name
UlcCheckBox

CheckBox attributes
backgroundColor

The background color of the part.

cursor The ULC cursor that is in effect when the mouse pointer is over this part.
Possible settings are Crosshair, Text, and Wait. The default setting for this
part is indicated by <default>.

decoration
The set of colors and fonts owned by this part.

enabled
Indicates whether the part can be selected.

font The typeface used for text displayed on this part.

foregroundColor
The color of any text shown in the part, if applicable.

formAttributeName
The name of the attribute from an associated domain object that is used to
set the state of this part.

formModel
An instance of UlcFormModel associated with this part. You must also set
formAttributeName.

group The radio group to which this button belongs.

label The text displayed on the part.

mnemonic
The shortcut letter associated with this part.

popupMenu
An instance of UlcMenu that supports this part.

selected
Indicates whether the part has been toggled on.

self The class instance itself.

toolTipText
The text displayed in hover help for the part.

value The string value that toggles this part on when it is connected to a Form
Model part.

© Copyright IBM Corp. 1999 89

CheckBox events
newlySelected

The part has just been toggled on.

selectionChanged
The part’s toggle state has changed.

CheckBox general advice

Code example

The corresponding widget for use in menus is UlcCheckBoxMenuItem. Example code
follows for both components:
UlcCheckBox new setSelected: true.
UlcCheckBoxMenuItem new label: 'Show Table'

Tooltips, enablers, and mnemonics are features supported by all button-like classes.

Enablers

A feature required for buttons and menu items is to change their enable or disable
state depending on the state of another widget. In ULC, this is done with enablers.
An enabler informs its registered widgets that it has changed its state, and effects
the change of the enable or disable state on those widgets. The following classes
can serve as enablers:
v Entry Field
v Form Model
v List
v Table
v Tree

90 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 14. CheckBox Menu Item
Category

Ulc Menus

Palette icon
CheckBox Menu Item

Class name
UlcCheckBoxMenuItem

CheckBox Menu Item attributes
accelerator

The shortcut key combination associated with this part.

backgroundColor
The background color of the part.

cursor The ULC cursor that is in effect when the mouse pointer is over this part.
Possible settings are Crosshair, Text, and Wait. The default setting for this
part is indicated by <default>.

decoration
The set of colors and fonts owned by this part.

enabled
Indicates whether the part can be selected.

enabler
The part whose state prompts activation of this part at run time. For more
information on connecting enablers, see “Chapter 6. Building ULC
applications visually” on page 45.

font The typeface used for text displayed on this part.

foregroundColor
The color of any text shown in the part, if applicable.

icon The name of the GIF file displayed in the part.

label The text displayed on the part.

mnemonic
The shortcut letter associated with this part.

selected
Indicates whether the part has been toggled on.

self The class instance itself.

toolTipText
The text displayed in hover help for the part.

CheckBox Menu Item events
action The menu item has been selected.

© Copyright IBM Corp. 1999 91

selectionChanged
The toggle state of the menu item has changed.

CheckBox Menu Item general advice

Several classes implement menu support. For more information, see “Menu general
advice” on page 113.

92 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 15. Column
Category

Ulc Lists

Palette icon
Column

Class name
UlcColumn

Column attributes
attributeName

The name of the attribute from an associated domain class that is used to
display instances of the class in this part. For details, see “List general
advice” on page 110.

converter
A subclass of UlcTypeConverter that validates and formats input in this part.
For more information about converters, see “Field general advice” on
page 98.

editable
Indicates whether the contents of the part can be edited at run time.

label The text displayed on the part.

renderer
The widget used to interpret or render a state within the part.

self The class instance itself.

width Initial width of the part in pixels. This attribute is explicitly necessary
because dimensions of this part must be known before the part is created
at run time.

Column general advice

The Column part is used within the Table part. For a code example, see “Table
general advice” on page 142.

© Copyright IBM Corp. 1999 93

94 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 16. ComboBox

The ComboBox part combines the aided recall of a list with the flexibility of an
entry field. For more information about the use of model parts with ComboBox,
see general advice for those parts.

Category
Ulc Lists

Palette icon
ComboBox

Class name
UlcComboBox

ComboBox attributes
attributeName

The name of the attribute from an associated domain class that is used to
display instances of the class in this part. For details, see “List general
advice” on page 110.

backgroundColor
The background color of the part.

cursor The ULC cursor that is in effect when the mouse pointer is over this part.
Possible settings are Crosshair, Text, and Wait. The default setting for this
part is indicated by <default>.

decoration
The set of colors and fonts owned by this part.

editable
Indicates whether the contents of the part can be edited at run time.

enabled
Indicates whether the part can be selected.

font The typeface used for text displayed on this part.

formAttributeName
The name of the attribute from an associated domain object that is used to
set the state of this part.

formModel
An instance of UlcFormModel associated with this part. You must also set
formAttributeName.

foregroundColor
The color of any text shown in the part, if applicable.

label Settable but not used in this part.

popupMenu
An instance of UlcMenu that supports this part.

preloadContents
Indicates whether the UI should initially load list contents into the part. By
default, this is set to true.

© Copyright IBM Corp. 1999 95

renderer
The widget used to interpret or render a state within the part.

rows The collection of domain objects associated with this part, if you choose
not to use a Table Model part.

selectedIndex
The index of the selected item (as Integer).

selectedItem
The highlighted item.

selectedString
The highlighted item (as String).

self The class instance itself.

tabelModel
The instance of UlcTableModel associated with this part, if you use one. You
must also set attributeName.

toolTipText
The text displayed in hover help for the part.

ComboBox events
itemInserted

An item has been inserted into the list.

selectionChanged
The user has selected a different item.

96 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 17. Field parts
Category

Ulc Data Entry

Palette icon
Entry Field

Multi-Line Edit

Class name
UlcField, UlcMultiLineField. UlcMultiLineField is a subclass of UlcField.

Field attributes
backgroundColor

The background color of the part.

columns
Width of the part (number of characters in the current font).

converter
A subclass of UlcTypeConverter that validates and formats input in this part.
For more information about converters, see “Field general advice” on
page 98.

cursor The ULC cursor that is in effect when the mouse pointer is over this part.
Possible settings are Crosshair, Text, and Wait. The default setting for this
part is indicated by <default>.

decoration
The set of colors and fonts owned by this part.

editable
Indicates whether the contents of the part can be edited at run time.

font The typeface used for text displayed on this part.

foregroundColor
The color of any text shown in the part, if applicable.

formAttributeName
The name of the attribute from an associated domain object that is used to
set the state of this part.

formModel
An instance of UlcFormModel associated with this part. You must also set
formAttributeName.

horizontalAlignment
The placement of text within the part. Possible settings are Center, Left,
and Right. The default setting for this part is indicated by <default>.

label The text displayed on the part.

notificationPolicy
Determines how often the part signals its valueChanged event:

© Copyright IBM Corp. 1999 97

v If notificationPolicy is set to Focus Change, the part defers the signal until
the UI focus switches out of the field (for example, the Tab key is
pressed or a button is clicked). This is the default value.

v If notificationPolicy is set to Immediate, the part signals each change (that
is, each keystroke) as it occurs.

password
Indicates whether an entry into the field should be masked, as in a
password field. false is the default value.

popupMenu
An instance of UlcMenu that supports this part.

selectionBackgroundColor
The background color of text that has been highlighted in the part.

selectionForegroundColor
The foreground color of text that has been highlighted in the part.

self The class instance itself.

toolTipText
The text displayed in hover help for the part.

value The current contents of the field.

Field events
action The field is in focus and the Enter key has been pressed.

valueChanged
The contents of the field have changed. A field does not signal this event if
it is connected to a Form Model part.

Field general advice

ULC provides the following converters:
v UlcDateValidator, which ensures that the input is a valid date.
v UlcRangeValidator, which ensures that the input is within a given range (between

minValue and maxValue, inclusive).
v UlcPercentValidator, which ensures that the input is a percentage value; that is, its

value is always between 0 and 100. It displays the value with a percent sign (%)
at the end. The following code associates a percent validator with UlcField:
aUlcField setConverter: UlcPercentValidator new

v UlcRegularExpressionValidator, which enables the setting of Perl-like regular
expressions for input validation.

Code examples

The columns property indicates the initial number of characters the field should
have. At creation time, the box layout mechanism attempts to provide the selected
number of characters or more.
UlcField new setColumnns: 50

Changing the text shown in the field is done by calling the #setValue: method, for
example:
aUlcField setValue: 'New text in my field'

98 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 18. Filler

The Filler part displays a blank cell to reserve a fixed amount of white space.

Category
Ulc Canvas

Palette icon
Filler

Class name
UlcFiller

Filler attributes
backgroundColor

The background color of the part.

cursor The ULC cursor that is in effect when the mouse pointer is over this part.
Possible settings are Crosshair, Text, and Wait. The default setting for this
part is indicated by <default>.

decoration
The set of colors and fonts owned by this part.

height Minimum vertical size (in pixels).

self The class instance itself.

width Minimum horizontal size (in pixels).

Filler general advice

Code example

The dimensions (in terms of cells) of a filler can be set with #height: and #width:
messages. In the following code, the empty cell would be on the upper left:
(UlcBox rows: 3 columns: 5)
add: UlcFiller new

© Copyright IBM Corp. 1999 99

100 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 19. Form Model

The Form Model part maps widgets from a set of entry parts onto a domain object.

Category
Ulc Models

Palette icon
Form Model

Class name
UlcFormModel

Form Model attributes
model The domain object for which Form Model acts as proxy.

notificationPolicy
Determines how often the part signals its modelChanged event:
v If notificationPolicy is set to Immediate, the part signals each change as it

occurs.
v If notificationPolicy is set to On Request, the part defers the signal until

your code sends the #saveInput message.

self The class instance itself.

veto Indicates whether changes are to be sent from the UI back to the domain
object without polling. If set to true, changes are sent automatically
without polling.

Form Model events
inputCanceled

Data held in the UI has been cleared from the form model.

inputSaved
Data has been sent from the UI to the domain object.

modelChanged
The state of the model has changed.

Form Model general advice

Code example

In the example below, the UlcFormModel is expected to be accessing an
(application) object that has an attribute accessible via #street and #street: from
UlcField:
|formModel box|

(formModel := UlcFormModel new) model: someObject.

box := UlcBox new)

© Copyright IBM Corp. 1999 101

add: (UlcField new columns: 10; formModelAttribute: 'street';
formModel: formModel; yourself).

UlcShell new add: box

The following parts (all of which are subclasses of UlcFormComponent) can be
associated with Form Model:
v CheckBox
v ComboBox
v Entry Field
v Label
v Pagebook
v RadioButton
v Slider

Form Model as enabler

UlcFormModel can act as the enabler for buttons and menu items, as follows:
cancelButton setEnabler: formModel

UlcFormModel sets the widget to its enable state when the user makes the first
change to one of the fields of a form.

For an example of using this part in the Composition Editor, see “Working with
Form Model parts” on page 54.

102 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 20. GroupBox
Category

Ulc Canvas

Palette icon
GroupBox

Class name
UlcBorder

GroupBox attributes
backgroundColor

The background color of the part.

cursor The ULC cursor that is in effect when the mouse pointer is over this part.
Possible settings are Crosshair, Text, and Wait. The default setting for this
part is indicated by <default>.

decoration
The set of colors and fonts owned by this part.

enabled
Indicates whether the part can be selected.

font The typeface used for text displayed on this part.

foregroundColor
The color of any text shown in the part, if applicable.

label The text displayed on the part.

margin
The space around the perimeter of the part (in pixels).

popupMenu
An instance of UlcMenu that supports this part.

self The class instance itself.

toolTipText
The text displayed in hover help for the part.

GroupBox general advice

Code example

UlcBorder draws an enclosing line (with a title) around other widgets, as follows:
(UlcBorder new label: 'Customer')
add: (UlcBox rows: 3 columns: 4);
yourself

© Copyright IBM Corp. 1999 103

104 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 21. Html Pane

The Html Pane part provides text-only display of a URL. For more comprehensive
URL support, use the Browser Context part.

Category
Ulc Canvas

Palette icon
Html Pane

Class name
UlcHtmlPane

Html Pane attributes
backgroundColor

The background color of the part.

cursor The ULC cursor that is in effect when the mouse pointer is over this part.
Possible settings are Crosshair, Text, and Wait. The default setting for this
part is indicated by <default>.

decoration
The set of colors and fonts owned by this part.

editable
Indicates whether the contents of the part can be edited at run time.

enabled
Indicates whether the part can be selected.

font The typeface used for text displayed on this part.

foregroundColor
The color of any text shown in the part, if applicable.

popupMenu
An instance of UlcMenu that supports this part.

self The class instance itself.

toolTipText
The text displayed in hover help for the part.

url The URL to be displayed in the pane.

veto Indicates whether the application should be polled before the pane locates
the target of a link selected from the pane:
v If veto is set to true, any URL link chosen by the user is sent back to the

application for confirmation before the target is loaded into the pane.
This is the default setting, but additional work is required to implement
this function. See “Html Pane general advice” on page 106 for details.

v If veto is set to false, the target URL is located and loaded without
polling.

© Copyright IBM Corp. 1999 105

Html Pane events
linkActivated

The user has selected a URL link from the pane.

linkActivatedVeto
The user has selected a URL link from the pane, and you want to poll the
application for access before loading the document.

linkError
The user has selected a URL link from the pane, and the URL cannot be
located.

Html Pane general advice

Setting up link polling

The Html Pane part enables you to poll the application for permission to load a
URL before the UI actually loads the document. Implementing this function
involves the following steps:
v Set the veto attribute to true.
v Listen for the linkActivatedVeto event.
v When the event is signaled, evaluate whether the document should be loaded. If

so, send the #setPage: aUrlString message. Otherwise, redirect program flow (for
example, put up an alert).

106 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 22. Label
Category

Ulc Data Entry

Palette icon
Label

Class name
UlcLabel

Label attributes
backgroundColor

The background color of the part.

cursor The ULC cursor that is in effect when the mouse pointer is over this part.
Possible settings are Crosshair, Text, and Wait. The default setting for this
part is indicated by <default>.

decoration
The set of colors and fonts owned by this part.

enabled
Indicates whether the part can be selected.

font The typeface used for text displayed on this part.

foregroundColor
The color of any text shown in the part, if applicable.

formAttributeName
The name of the attribute from an associated domain object that is used to
set the state of this part.

formModel
An instance of UlcFormModel associated with this part. You must also set
formAttributeName.

horizontalAlignment
The placement of text within the part. Possible settings are Center, Left,
and Right. The default setting for this part is indicated by <default>.

icon The name of the GIF file displayed in the part.

label The text displayed on the part.

popupMenu
An instance of UlcMenu that supports this part.

self The class instance itself.

toolTipText
The text displayed in hover help for the part.

verticalAlignment
The placement of text within the part. Possible settings are Bottom, Center,
and Top. The default setting for this part is indicated by <default>.

© Copyright IBM Corp. 1999 107

Label general advice

Code example

UlcLabel can show either text or an icon, as follows:
UlcLabel new label: 'a label string'.
aUlcLabel setIcon: (UlcIcon fromFile: 'abc.gif')

108 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 23. List

The List part holds a selectable collection of objects.

Category
Ulc Lists

Palette icon
List

Class name
UlcList

List attributes
attributeName

The name of the attribute from an associated domain class that is used to
display instances of the class in this part. For details, see “List general
advice” on page 110.

backgroundColor
The background color of the part.

cursor The ULC cursor that is in effect when the mouse pointer is over this part.
Possible settings are Crosshair, Text, and Wait. The default setting for this
part is indicated by <default>.

decoration
The set of colors and fonts owned by this part.

enabled
Indicates whether the part can be selected.

enabler
The part whose state prompts activation of this part at run time. For more
information on connecting enablers, see “Chapter 6. Building ULC
applications visually” on page 45.

font The typeface used for text displayed on this part.

foregroundColor
The color of any text shown in the part, if applicable.

height Initial height of the part in pixels. This attribute is explicitly necessary
because dimensions of this part must be known before the part can be
created at run time.

heightInRows
The number of entries that should initially be visible.

label Settable but not used in this part.

model The instance of UlcTableModel associated with this part, if you use one.

popupMenu
An instance of UlcMenu that supports this part.

rows The collection of domain objects associated with this part, if you choose
not to use a Table Model part.

© Copyright IBM Corp. 1999 109

selectedItem
The highlighted item.

selectedItems
The highlighted items (as a collection).

selectionBackgroundColor
The background color of text that has been highlighted in the part.

selectionForegroundColor
The foreground color of text that has been highlighted in the part.

selectionMode
Determines how many items may be selected from the list at once.
Allowable values are Multiple, Single, and Single Interval.

self The class instance itself.

toolTipText
The text displayed in hover help for the part.

width Initial width of the part in pixels. This attribute is explicitly necessary
because dimensions of this part must be known before the part is created
at run time.

List events
doubleClicked

The user has double-clicked an item in the part.

selectedItemChanged
A different item has been highlighted.

selectedItemsChanged
Different items have been highlighted.

selectionChanged
The user has selected a different item.

List general advice

Code example

UlcList can display a single attribute from a collection of objects, using
UlcTableModel to fetch the data:
|tableModel box|

(tableModel := UlcTableModel new) model: someAddress.

(box := UlcBox new)
add: (UlcList new

tableModel: formModel;
attributeName: 'street';
yourself).

UlcShell new add: box

In the Composition Editor, you can accomplish this by setting the attributeName
property to street and making the following connections:
v An attribute-from-script connection from a script that answers a collection of

addresses to the rows attribute of a Table Model part.

110 VisualAge Smalltalk: Ultra Light Client Guide and Reference

v An event-to-action connection from the rowsChanged event of the Table Model
part to the setModel action of the List part, passing in the self attribute of the
Table Model through a parameter connection. (Remember: An
attribute-to-attribute connection is only effective for initialization.)

Using List without a table model

From the Composition Editor, you can preload String values into the list by editing
the rows property. You can also assemble a collection of items in code and set the
rows attribute by passing in the collection. However, for most data of any
consequence, you are better off using a table model.

Chapter 23. List 111

112 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 24. Menu

The Menu part has two possible uses:
v Dropped on a Menubar part, it is integrated visually with the parent shell.
v Dropped on the free-form surface and connected to a UI part (for example,

Entry Field), it becomes a pop-up menu.

Category
Ulc Menus

Palette icon
Menu

Class name
UlcMenu

Menu attributes
backgroundColor

The background color of the part.

cursor The ULC cursor that is in effect when the mouse pointer is over this part.
Possible settings are Crosshair, Text, and Wait. The default setting for this
part is indicated by <default>.

decoration
The set of colors and fonts owned by this part.

enabled
Indicates whether the part can be selected.

font The typeface used for text displayed on this part.

foregroundColor
The color of any text shown in the part, if applicable.

label The text displayed on the part.

mnemonic
The shortcut letter associated with this part.

self The class instance itself.

toolTipText
The text displayed in hover help for the part.

Menu general advice

Several classes implement menu support.

To build a menu bar visually, drop a Menubar part on the free-form surface and
connect its self attribute to the menuBar attribute of a Shell part. Then drop Menu
parts on the Menubar part. VisualAge adds the appropriate parts and a connection
for each Menu part dropped.

© Copyright IBM Corp. 1999 113

To build a pop-up menu visually, drop a Menu part on the free-form surface and
connect its self attribute to the popupMenu attribute of a UI part.

Then drop any of the following parts on each Menu part:
v Menu Item
v CheckBox Menu Item
v Menu Separator

Mnemonics

Menus and their items support mnemonics. The following code sets the mnemonic
of a menu to F:
UlcMenu new
label: 'File';
setMnemonic: $F;
yourself

Code example

Creating a menu bar requires the following steps:
1. Create an instance of UlcMenuBar and add it to UlcShell.
2. Add instances of UlcMenu to the menu bar.
3. Add instances of UlcMenuItem to each menu.
4. Optionally, separate the menu items with UlcSeparator.

These steps are implemented as follows:
|shell menuBar fileMenu|
(shell := UlcShell new) setMenuBar: (menuBar := UlcMenuBar new). "(1)"
(fileMenu := UlcMenu new) "(part of step 2)"
label: 'File';
add: (UlcMenuItem new "(3)"
label: 'Quit';
addActionCallbackFor: shell
ulcApplication selector: #close clientData: nil;
yourself).

menuBar add: fileMenu "(remainder of step 2)"

114 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 25. Menubar
Category

Ulc Menus

Palette icon
Menubar

Class name
UlcMenuBar

Menubar attributes
backgroundColor

The background color of the part.

toolTipText
The text displayed in hover help for the part.

self The class instance itself.

Menubar general advice

Several classes implement menu support. For more information, see “Menu general
advice” on page 113.

© Copyright IBM Corp. 1999 115

116 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 26. Menu Item
Category

Ulc Menus

Palette icon
Menu Item

Class name
UlcMenuItem

Menu Item attributes
accelerator

The shortcut key combination associated with this part.

backgroundColor
The background color of the part.

cursor The ULC cursor that is in effect when the mouse pointer is over this part.
Possible settings are Crosshair, Text, and Wait. The default setting for this
part is indicated by <default>.

decoration
The set of colors and fonts owned by this part.

enabled
Indicates whether the part can be selected.

enabler
The part whose state prompts activation of this part at run time. For more
information on connecting enablers, see “Chapter 6. Building ULC
applications visually” on page 45.

foregroundColor
The color of any text shown in the part, if applicable.

icon The name of the GIF file displayed in the part.

label The text displayed on the part.

mnemonic
The shortcut letter associated with this part.

self The class instance itself.

toolTipText
The text displayed in hover help for the part.

Menu Item events
action The menu item has been clicked.

© Copyright IBM Corp. 1999 117

Menu Item general advice

Tooltips, enablers, and mnemonics are features supported by all button-like classes.

Enablers

A feature required for buttons and menu items is to change their enable or disable
state depending on the state of another widget. In ULC, this is done with enablers.
An enabler informs its registered widgets that it has changed its state, and effects
the change of the enable or disable state on those widgets. The following classes
can serve as enablers:
v Entry Field
v Form Model
v List
v Table
v Tree

Several classes implement menu support. For more information about assembling
menus, see “Menu general advice” on page 113.

118 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 27. Menu Separator
Category

Ulc Menus

Palette icon
Menu Separator

Class name
UlcSeparator

Menu Separator general advice

Code example

UlcSeparator groups menu items, as follows:
UlcMenu new
label: 'File"';
add: (UlcMenuItem new label: 'New';yourself);
addSeparator;
add: (UlcMenuItem new label: 'Close'; yourself)

Several classes implement menu support. For more information, see “Menu general
advice” on page 113.

© Copyright IBM Corp. 1999 119

120 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 28. Notebook

The Notebook part defines a collection of subforms (that is, pages), any of which
users can see by selecting the appropriate notebook tab. The Page part defines each
page.

Category
Ulc Canvas

Palette icon
Notebook

Class name
UlcNotebook

Notebook attributes
backgroundColor

The background color of the part.

currentPage
The page being displayed.

cursor The ULC cursor that is in effect when the mouse pointer is over this part.
Possible settings are Crosshair, Text, and Wait. The default setting for this
part is indicated by <default>.

decoration
The set of colors and fonts owned by this part.

enabled
Indicates whether the part can be selected.

font The typeface used for text displayed on this part.

foregroundColor
The color of any text shown in the part, if applicable.

height Initial height of the part in pixels. This attribute is explicitly necessary
because pages can be loaded on demand, and dimensions of this part must
be known before any pages are loaded.

label The name of the part instance.

pages The collection of UlcPage instances associated with this part.

popupMenu
An instance of UlcMenu that supports this part.

self The class instance itself.

tab The position of the current page in the page stack, expressed as an Integer.

tabPlacement
The orientation of notebook tabs. Possible settings are Top, Bottom, Left,
and Right.

toolTipText
The text displayed in hover help for the part.

© Copyright IBM Corp. 1999 121

veto Indicates whether the application should be polled before the UI changes
the page being shown:
v If veto is set to true, interception and polling is possible. This is the

default setting, but additional work is required to implement this
function. See “Notebook general advice” for details.

v If veto is set to false, pages are changed automatically without polling.

width Initial width of the part in pixels. This attribute is explicitly necessary
because pages can be loaded on demand, and dimensions of this part must
be known before any pages are loaded.

Notebook events
tabChanged

The user has changed the page.

tabChangedVeto
The user has attempted to change the page, and you want to poll the
application for access before changing the page.

Notebook general advice

Code example

The following code creates a notebook showing the account details of a customer
on one page and the credit details on another:
UlcNotebook new
add: self createAccountPage;
add: self createCreditPage;
yourself

The two create-methods each answer an instance of UlcNotebookPage.

Setting up page polling

The Notebook part enables you to poll the application for permission to change to
a specific page before the notebook actually changes the page. An example of this
might be to restrict access for the Administration page of a configuration notebook
to authenticated administrators only. Implementing this function involves the
following steps:
v Set the veto attribute to true.
v Listen for the tabChangedVeto event.
v When the event is signaled, evaluate whether the page change should be

allowed. If so, do nothing special. Otherwise, redirect program flow (for
example, put up an alert).

Usage of a Form Model part and notificationPolicy settings for the various parts also
influence the behavior of the UI.

122 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 29. Page

The Page part is used in notebooks and pagebooks.

Category
Ulc Canvas

Palette icon
Page

Class name
UlcNotebookPage

Page attributes
backgroundColor

The background color of the part.

cursor The ULC cursor that is in effect when the mouse pointer is over this part.
Possible settings are Crosshair, Text, and Wait. The default setting for this
part is indicated by <default>.

decoration
The set of colors and fonts owned by this part.

enabled
Indicates whether the part can be selected.

font The typeface used for text displayed on this part.

foregroundColor
The color of any text shown in the part, if applicable.

label The name of the part instance.

popupMenu
An instance of UlcMenu that supports this part.

self The class instance itself.

toolTipText
The text displayed in hover help for the part.

Page events
getContents

The contents of the selected page have been received from the application.

© Copyright IBM Corp. 1999 123

124 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 30. Pagebook

The Pagebook part defines a collection of subforms (that is, pages), one of which
can be activated dynamically depending on some state within the program. Think
of a pagebook as a notebook without tabs, where control over which page is
shown lies exclusively with the program, not the user. The Page part defines each
page.

Category
Ulc Canvas

Palette icon
Pagebook

Class name
UlcPagebook

Pagebook attributes
backgroundColor

The background color of the part.

currentPageLabel
The label for the page currently being displayed.

cursor The ULC cursor that is in effect when the mouse pointer is over this part.
Possible settings are Crosshair, Text, and Wait. The default setting for this
part is indicated by <default>.

decoration
The set of colors and fonts owned by this part.

font The typeface used for text displayed on this part.

foregroundColor
The color of any text shown in the part, if applicable.

formAttributeName
The name of the attribute from an associated domain object that is used to
set the state of this part.

formModel
An instance of UlcFormModel associated with this part. You must also set
formAttributeName.

height Initial height of the part in pixels. This attribute is explicitly necessary
because pages can be loaded on demand, and dimensions of this part must
be known before any pages are loaded.

popupMenu
An instance of UlcMenu that supports this part.

self The class instance itself.

toolTipText
The text displayed in hover help for the part.

width Initial width of the part in pixels. This attribute is explicitly necessary

© Copyright IBM Corp. 1999 125

because pages can be loaded on demand, and dimensions of this part must
be known before any pages are loaded.

Pagebook events
pageChanged

The pagebook has changed which page it is displaying.

Pagebook general advice

Code examples

In the following code, a separate page is defined for each of three types of banking
account:
| savings private loan |
(savings := UlcBox new)
ulcName: 'savings';
add: (UlcLabel new label: 'Special Rates on Savings accounts'; yourself)
horizontalAlignment: UlcWidgetConstants::UlcBoxLeftAlignment
verticalAlignment: UlcWidgetConstants::UlcBoxTopAlignment.

(private := UlcBox new)
ulcName: 'private';
alignVerticalTop;
alignHorizontalLeft;
add: (UlcLabel new label: 'Private Account Charges'; yourself);
add: (UlcField new ulcName: 'charges'; columns: 10; yourself).

(loan := UlcHBox new rows: 2; yourself)
ulcName: 'loan';
add: (UlcLabel new label: 'Number of Credits'; yourself);
add: (UlcField new ulcName: 'numberOfCredits'; columns: 10; yourself)
horizontalAlignment: UlcWidgetConstants::UlcBoxLeftAlignment
verticalAlignment: UlcWidgetConstants::UlcBoxTopAlignment.

UlcPageBook new
add: savings;
add: private;
add: loan;
yourself

The ulcName property of each box added to UlcPagebook can be passed in the
#setPage: message to activate that particular page, as follows:
aPagebook setPage: 'private'

UlcPagebook can set the current page based on the value of a specified attribute. For
example, suppose an application needs to support various address formats
depending on the residency of a person. Each address format is defined as a page
in UlcPagebook, with each page having as its name the country whose addresses it
handles. When the country of residence is selected, the book automatically sets the
correct current page. To define this interdependency, the form model of UlcPagebook
must be set to the one holding the country attribute. In UlcPagebook, its form
attribute-name is set to the form model’s country-of-residence attribute name, as
follows:
|person pageBook countries|

person := Person new.
countries := Array with: 'United States' with: 'Germany' with: 'Japan'.
pageBook := UlcPageBook new
formModel: person;

126 VisualAge Smalltalk: Ultra Light Client Guide and Reference

formAttributeName: 'countryOfResidence';
add: (UlcHBox new ulcName: 'United States';...; yourself);
add: (UlcHBox new ulcName: 'Germany'; ...; yourself);
add: (UlcHBox new ulcName: 'Japan'; ...; yourself);
yourself

Chapter 30. Pagebook 127

128 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 31. Progress Bar

Use the Progress Bar part to display the progress of any task between a minimum
(start) and a maximum (end) value.

Category
Ulc Buttons

Palette icon
Progress Bar

Class name
UlcProgressBar

Progress Bar attributes
backgroundColor

The background color of the part.

cursor The ULC cursor that is in effect when the mouse pointer is over this part.
Possible settings are Crosshair, Text, and Wait. The default setting for this
part is indicated by <default>.

decoration
The set of colors and fonts owned by this part.

enabled
Indicates whether the part can be selected.

font The typeface used for text displayed on this part.

foregroundColor
The color of any text shown in the part, if applicable.

maximumValue
The highest value represented on the part, expressed as an Integer.

minimumValue
The lowest value represented on the part, expressed as an Integer.

popupMenu
An instance of UlcMenu that supports this part.

self The class instance itself.

toolTipText
The text displayed in hover help for the part.

value The current amplitude setting for the part, expressed as Integer.

Progress Bar general advice

Coding example
UlcProgressBar new
minimumValue: 0;
maximumValue: 100;
value: 0;
yourself

© Copyright IBM Corp. 1999 129

130 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 32. RadioButton
Category

Ulc Buttons

Palette icon
RadioButton

Class name
UlcRadioButton

RadioButton attributes
backgroundColor

The background color of the part.

cursor The ULC cursor that is in effect when the mouse pointer is over this part.
Possible settings are Crosshair, Text, and Wait. The default setting for this
part is indicated by <default>.

decoration
The set of colors and fonts owned by this part.

enabled
Indicates whether the part can be selected.

foregroundColor
The color of any text shown in the part, if applicable.

formAttributeName
The name of the attribute from an associated domain object that is used to
set the state of this part.

formModel
An instance of UlcFormModel associated with this part. You must also set
formAttributeName.

group The radio group to which this button belongs.

label The text displayed on the part.

mnemonic
The shortcut letter associated with this part.

popupMenu
An instance of UlcMenu that supports this part.

selected
Indicates whether the part has been toggled on.

self The class instance itself.

toolTipText
The text displayed in hover help for the part.

value The string value that toggles this part on when it is connected to a Form
Model part.

© Copyright IBM Corp. 1999 131

RadioButton events
newlySelected

The part has just been toggled on.

selectionChanged
The part’s toggle state has changed.

RadioButton general advice

Code example

The following code groups radio buttons inside UlcBox and turns on radio group
mode:
UlcHBox new
setRadioGroup: true;
add: (UlcRadioButton new label: 'HighRisk'; yourself);
add: (UlcRadioButton new label: 'MediumRisk'; yourself);
add: (UlcRadioButton new label: 'LowRisk'; yourself);
yourself

Tooltips, enablers, and mnemonics are features supported by all button-like classes.

Enablers

A feature required for buttons and menu items is to change their enable or disable
state depending on the state of another widget. In ULC, this is done with enablers.
An enabler informs its registered widgets that it has changed its state, and effects
the change of the enable or disable state on those widgets. The following classes
can serve as enablers:
v Entry Field
v Form Model
v List
v Table
v Tree

132 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 33. Radio Group

The Radio Group part enables you to associate RadioButton or CheckBox parts that
are not located together on the user interface. (RadioButton or CheckBox parts
within a single GroupBox or Box part are automatically assigned to the same radio
group.)

Category
Ulc Models

Palette icon
Radio Group

Class name
UlcRadioGroup

This part has only one feature on its public interface: self. Connect this attribute to
the group attribute of the RadioButton or CheckBox parts that you wish to
associate.

© Copyright IBM Corp. 1999 133

134 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 34. Shell
Category

Ulc Canvas

Palette icon
Shell

Class name
UlcShell

Shell attributes
cursor The ULC cursor that is in effect when the mouse pointer is over this part.

Possible settings are Crosshair, Text, and Wait. The default setting for this
part is indicated by <default>.

enabled
Indicates whether the part can be selected.

font The typeface used for text displayed on this part.

icon The name of the GIF file displayed in the title bar of the shell.

menuBar
An instance of UlcMenuBar owned by this part.

modal Indicates whether the shell is modal.

popupMenu
An instance of UlcMenu that supports this part.

resizable
Indicates whether the shell can be resized by the user.

self The class instance itself.

title The text shown in the title bar for this part.

Shell events
aboutToOpen

The shell has been created and is about to be shown.

closeConfirmation
The shell has received confirmation that it can be closed.

moved
The position of the shell has changed.

resized
The size of the shell has changed.

windowActivated
The shell has moved to the top of the z-order.

windowClosed
The shell has been closed.

© Copyright IBM Corp. 1999 135

windowDeactivated
The shell is no longer at the top of the z-order.

windowDeiconified
The shell has been restored to the desktop from a minimized state.

windowHidden
The shell is now invisible.

windowIconified
The shell has been minimized off the desktop.

windowShown
The shell is now visible.

Shell general advice

Code example

The shell is owned and managed by UlcApplication. All shells under one instance of
UlcApplication belong to the same end-user application.
(UlcApplication on: UlcContext default)
add: (UlcShell new label: 'Customer Information'; yourself)

A shell can open other subshells (children) for which this shell acts as parent. The
following code opens an instance of UlcShell in modal state:
(UlcShell new label: 'Model Shell') modal: true

136 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 35. Slider
Category

Ulc Buttons

Palette icon
Slider

Class name
UlcSlider

Slider attributes
backgroundColor

The background color of the part.

cursor The ULC cursor that is in effect when the mouse pointer is over this part.
Possible settings are Crosshair, Text, and Wait. The default setting for this
part is indicated by <default>.

decoration
The set of colors and fonts owned by this part.

enabled
Indicates whether the part can be selected.

font The typeface used for text displayed on this part.

foregroundColor
The color of any text shown in the part, if applicable.

formAttributeName
The name of the attribute from an associated domain object that is used to
set the state of this part.

formModel
An instance of UlcFormModel associated with this part. You must also set
formAttributeName.

horizontal
Indicates whether the slider is horizontal. If set to false, the slider is
vertical. The default value is true.

label The text displayed on the part.

maximumValue
The highest value represented on the part, expressed as an Integer.

minimumValue
The lowest value represented on the part, expressed as an Integer.

popupMenu
An instance of UlcMenu that supports this part.

self The class instance itself.

toolTipText
The text displayed in hover help for the part.

value The current amplitude setting for the part, expressed as Integer.

© Copyright IBM Corp. 1999 137

Slider events
valueChanged

The value of the slider has been reset.

Slider general advice

Code example
UlcSlider new
horizontal: true;
minimumValue: 0;
maximumValue: 100;
value: 44;
yourself

If the values are not in the allowed range (0 to 100 in this example), the
corresponding extreme value is used (that is, if the value is set to 144, the widget
shows the value as 100).

138 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 36. Split Pane

The Split Pane part provides two separately scrollable components that are
separated by a user-adjustable divider.

Category
Ulc Canvas

Palette icon
Split Pane

Class name
UlcSplitPane

Split Pane attributes
backgroundColor

The background color of the part.

cursor The ULC cursor that is in effect when the mouse pointer is over this part.
Possible settings are Crosshair, Text, and Wait. The default setting for this
part is indicated by <default>.

decoration
The set of colors and fonts owned by this part.

dividerLocation
The position of the divider, expressed as a number from 0.0 (left/top) to
1.0 (right/bottom). A setting of 0.5 produces two pane components of
equal size.

enabled
Indicates whether the part can be selected.

font The typeface used for text displayed on this part.

foregroundColor
The color of any text shown in the part, if applicable.

leftComponent
In a horizontally oriented split pane, the left cell. (In a vertically oriented
split pane, this cell appears at the top.)

popupMenu
An instance of UlcMenu that supports this part.

rightComponent
In a horizontally oriented split pane, the right cell. (In a vertically oriented
split pane, this cell appears at the bottom.)

self The class instance itself.

toolTipText
The text displayed in hover help for the part.

vertical
Indicates whether the part is oriented vertically. The default setting is
false; the part appears horizontal.

© Copyright IBM Corp. 1999 139

140 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 37. Table
Category

Ulc Lists

Palette icon
Table

Class name
UlcTable

Table attributes
autoResize

Determines the resizing behavior of the table:
v Resize all distributes the dimensional change equally across all columns.
v Resize last column applies the dimensional change only to the

rightmost column.
v Resize off does not apply the dimensional change at all. Extra space is

left empty around the columns.

backgroundColor
The background color of the part.

cursor The ULC cursor that is in effect when the mouse pointer is over this part.
Possible settings are Crosshair, Text, and Wait. The default setting for this
part is indicated by <default>.

decoration
The set of colors and fonts owned by this part.

enabled
Indicates whether the part can be selected.

enabler
The part whose state prompts activation of this part at run time. For more
information on connecting enablers, see “Chapter 6. Building ULC
applications visually” on page 45.

font The typeface used for text displayed on this part.

foregroundColor
The color of any text shown in the part, if applicable.

headerBackgroundColor
The background color for each column header.

headerForegroundColor
The color of text in each column header.

height Initial height of the part in pixels. This attribute is explicitly necessary
because dimensions of this part must be known before the part can be
created at run time.

heightInRows
The number of entries that should initially be visible.

label Settable but not used in this part.

© Copyright IBM Corp. 1999 141

model The instance of UlcTableModel associated with this part.

popupMenu
An instance of UlcMenu that supports this part.

preloadColumns
The names of the columns to be loaded into the part at initialization (as a
collection of Strings).

rowHeight
The height of each row (in pixels).

rows The collection of domain objects associated with this part. This attribute is
read-only.

selectedItem
The highlighted item.

selectedItems
The highlighted items (as a collection).

selectionBackgroundColor
The background color of text that has been highlighted in the part.

selectionForegroundColor
The foreground color of text that has been highlighted in the part.

selectionMode
Determines how many items may be selected from the list at once.
Allowable values are Multiple, Single, and Single Interval.

self The class instance itself.

toolTipText
The text displayed in hover help for the part.

width Initial width of the part in pixels. This attribute is explicitly necessary
because dimensions of this part must be known before the part is created
at run time.

Table events
doubleClicked

The user has double-clicked an item in the part.

selectedItemChanged
A different item has been highlighted.

selectedItemsChanged
Different items have been highlighted.

selectionChanged
The user has selected a different item.

Table general advice

Code example

To display a list of addresses, you can use UlcTable with UlcTableModel.
UlcTableModel uses the same mechanism as UlcFormModel to access attributes from
the domain models, as follows:

142 VisualAge Smalltalk: Ultra Light Client Guide and Reference

|tableModel box|

(tableModel := UlcTableModel new) model: someModel.

(box := UlcBox new)
add: (UlcTable new

tableModel: tableModel;
add: (UlcColumn new

attributeName: 'street'; yourself);
add: (UlcColumn new

attributeName: 'zipCode'; yourself);
yourself).

UlcShell new add: box

UlcColumn is an integral part of UlcTable. UlcColumn uses the table’s model and
takes data from UlcTableModel using the attributeName property as key. Columns are
children of a table. They can be added (using #add:) to a UlcTable instance.

Chapter 37. Table 143

144 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 38. Table Model

The Table Model part maps multiple rows from a table to a collection of domain
objects.

Category
Ulc Models

Palette icon
Table Model

Class name
UlcTableModel

Table Model attributes
notificationPolicy

Determines how often the part signals the appropriate model-changed
event:
v If notificationPolicy is set to Focus Change, the part defers the signal until

the UI focus switches out of the table.
v If notificationPolicy is set to On Request, the part defers the signal until

your code sends the #saveInput message.
v If notificationPolicy is set to Row Change, the part signals an event every

time a row is changed.

prefetch
The number of rows sent from the application to the UI at initialization.

rowCount
The number of rows represented in the model.

rows Collection of rows in the model. This attribute is typically associated with
the underlying domain object.

self The class instance itself.

veto Indicates whether the application should be polled before changes to rows
are committed:
v If veto is set to true, interception and polling is possible. In this case,

your code must explicitly send changes back to the application.
v If veto is set to false, changes are posted to the UI Engine cache

automatically.

Table Model events
inputCanceled

Data held for the table has been cleared from the table model.

inputSaved
Data has been sent from the UI to the domain object.

rowsAdded
Rows have been added to the table model.

© Copyright IBM Corp. 1999 145

rowsChanged
Rows have been changed in the table model.

rowsRemoved
Rows have been removed from the table model.

setData
Data has been changed in the model, and the domain object is about to be
updated. Use this event to trigger adjustment of the data before it is used
to update the domain object.

Table Model general advice

The following parts (all of which inherit from UlcTableList) can be associated with
Table Model:
v ComboBox
v List
v Table

For code examples, see general advice for those parts.

For an example of using this part in the Composition Editor, see “Working with
Table Model parts” on page 56.

146 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 39. ToolBar

The ToolBar part is a menu-like widget that contains Button parts rather than
menu items. It can also contain Menu Separator parts; they appear in the running
tool bar as extra space between groups of buttons.

Category
Ulc Menus

Palette icon
ToolBar

Class name
UlcToolBar

ToolBar attributes
backgroundColor

The background color of the part.

borderPainted
Indicates whether a visible margin is painted around each button. Setting
this to true produces a more three-dimensional appearance.

buttonMargin
The space around the perimeter of each button (in pixels).

cursor The ULC cursor that is in effect when the mouse pointer is over this part.
Possible settings are Crosshair, Text, and Wait. The default setting for this
part is indicated by <default>.

decoration
The set of colors and fonts owned by this part.

enabled
Indicates whether the part can be selected.

floatable
Indicates whether the tool bar can be dragged out of its container onto the
desktop. When closed, a floating tool bar reappears at its original location
in the container.

margin
The space around the perimeter of the part (in pixels).

popupMenu
An instance of UlcMenu that supports this part.

self The class instance itself.

toolTipText
The text displayed in hover help for the part.

vertical
Indicates whether the part is oriented vertically. The default setting is
false; the part appears horizontal.

© Copyright IBM Corp. 1999 147

148 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 40. Tree
Category

Ulc Lists

Palette icon
Tree

Class name
UlcTree

Tree attributes
backgroundColor

The background color of the part.

cursor The ULC cursor that is in effect when the mouse pointer is over this part.
Possible settings are Crosshair, Text, and Wait. The default setting for this
part is indicated by <default>.

decoration
The set of colors and fonts owned by this part.

enabled
Indicates whether the part can be selected.

firstColumnLabel
The label for the default column of the tree.

font The typeface used for text displayed on this part.

foregroundColor
The color of any text shown in the part, if applicable.

label Settable but not used in this part.

model The instance of UlcTreeModel associated with this part.

popupMenu
An instance of UlcMenu that supports this part.

rootVisible
Indicates whether the root node is displayed in the tree.

rowHeight
The height of each row in pixels.

selectedItem
The highlighted item.

selectedItems
The highlighted items (as a collection).

selectionBackgroundColor
The background color of text that has been highlighted in the part.

selectionForegroundColor
The foreground color of text that has been highlighted in the part.

© Copyright IBM Corp. 1999 149

selectionMode
Determines how many items may be selected from the list at once.
Allowable values are Multiple, Single, and Single Interval.

self The class instance itself.

toolTipText
The text displayed in hover help for the part.

width Initial width of the part in pixels. This attribute is explicitly necessary
because dimensions of this part must be known before the part is created
at run time.

Tree events
doubleClicked

The user has double-clicked an item in the part.

nodeCollapsed
The user has collapsed a node of the tree.

nodeExpanded
The user has expanded a node of the tree.

selectedItemChanged
A different item has been highlighted.

selectedItemsChanged
Different items have been highlighted.

selectionChanged
The user has selected a different item.

150 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Chapter 41. Tree Model

The Tree Model part maps the nodes of UlcTree to a collection of domain objects.

Category
Ulc Models

Palette icon
Tree Model

Class name
UlcTreeModel

Tree Model attributes
childCountSelector

The method implemented by each node in the tree that answers the
number of children at that node.

childrenSelector
The method implemented by each node in the tree that answers the
collection of children at that node.

iconSelector
The method implemented by each node in the tree that answers the icon
used to represent that node.

labelSelector
The method implemented by each node in the tree that answers the text
used to represent that node.

model The domain object for which Tree Model acts as proxy.

rootSelector
The method that locates the root node.

self The class instance itself.

Tree Model events
nodesAdded

Leaves (nodes) have been added to the tree model.

nodesRemove(d)
Leaves have been removed from the tree model.

Tree Model general advice

Code example

This model implementation differs somewhat from the other ULC model classes in
that it assumes the domain object is an adapter for the tree displayed: UlcTreeModel
expects its domain instance to represent the entire tree. Model attributes must be
set to selectors implemented in the domain model rather than to a node directly.
The node is passed as a parameter with each of the selectors. Example code
follows:

© Copyright IBM Corp. 1999 151

|treeModel box|

(treeModel := UlcTreeModel new)
childCountSelector: #numberOfSubclassesOf:;
childrenSelector: #subclassesOf:;
iconSelector: #iconOf:;
labelSelector: #labelFor:;
model: someObject.

(box := UlcBox new)
add: (UlcTree new treeModel: treeModel; yourself).

UlcShell new add: box

The following attributes of UlcTreeModel must be configured:
v childCountSelector

v childrenSelector

v iconSelector

v labelSelector

v rootSelector

The values are all selectors that take one parameter. They are sent to the
UlcTreeModel domain model with the object for which the information is required.

To display the Smalltalk class hierarchy, the model representing the entire
hierarchy implements the following:
#numberOfSubclassesOf: aClass "attribute <childCountSelector>"
"answer the number of direct subclasses of aClass"

|aClass subclasses size

#subclassesOf: aClass "attribute <childrenSelector>"
"answer the collection of aClass' subclasses"

|aClass subclasses

#hierarchyRootOf: aClass "attribute <rootSelector>"
"answer the root class of aClass"

|theClass|

theClass := aClass.

[theClass superclass notNil] whileTrue: [theClass := theClass superclass].

|theClass

For an example of using this part in the Composition Editor, see “Working with
Tree Model parts” on page 58.

152 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Part 3. Appendixes

© Copyright IBM Corp. 1999 153

154 VisualAge Smalltalk: Ultra Light Client Guide and Reference

Index

Special Characters
#debugPrintString, configuring 70

A
Application Controller

default mode 22
expert mode 23
running 21

applications, deploying 63

B
border layout, description 33
Box part

description 81
example of using visually 50
layout and 34

Browser Context part 85
Button part 87

C
CheckBox Menu Item part 91
CheckBox part 89
Column part

description 93
example of using visually 57

ComboBox part 95
command options, UI Engine 18
command prompt, running ULC

applications from 66
common widget (CW) protocol,

comparison with ULC 31
composite parts 53
configuring #debugPrintString 70
connections, comparison with standard

VisualAge 45
context, customizing exception handling

by 72
contexts named in ULC 69
converters, use of in ULC 45

D
debugger, using with ULC 70
deploying ULC-based applications

extending environment size in
Windows 95 63

packaging in XD 63
production mode from a development

image 65

E
enablers

example of using 53
general description 45

Entry Field part 97

Entry Field part 97 (continued)
description 97

environment size, extending in Windows
95 63

exception handling, customizing 72

F
faceless half object

description 3
implementing 27

Filler part 99
Form Model part

description 101
example of using visually 54

frequently asked questions 74

G
GroupBox part

description 103
example of using visually 50

H
half object, description 3
Html Pane part 105
HTTP server

running 20
setup 13

I
image, tracing inside 70
implementing

faceless half object 27
national language support 43
UI half object 26

internationalization 42

J
Java support, setup 12

L
Label part 107
layout

border, description 33
box, description 34
design tips 35
pile, description 35
properties in visual composition 47
summary of types 32
widgets that implement 37

List part
description 109
example of using visually 52

M
Menu Item part 117
Menu part 113

Menu Separator part 119
Menubar part 115
model-based widgets

architecture 38
using with model parts 39

model parts
examples of using visually 54
general description 39

Multi-Line Edit part 97

N
named ULC contexts 69
national language support

implementing 43
restrictions 43
use of Java Unicode support 42

nonvisual parts 54
Notebook part

description 121
pile layout and 35

O
objects, implementing in ULC 25

P
Page part 123
Pagebook part 125
pile layout, description 35
pitfalls in ULC visual composition 46
production mode

description 7
development image, setup 65
standalone setup 10
web setup 11

Progress Bar part 129

R
Radio Group part 133
RadioButton part 131
resetting the ULC system 69
running

Application Controller 21
summary table 17
UI Engine 17
ULC applications, command line

options 66
ULC HTTP server 20

S
Server Smalltalk

concurrency issues 40
process management in business

logic 41
ULC and 40

© Copyright IBM Corp. 1999 155

setup
development image for production

mode 65
Java support 12
production mode, standalone 10
production mode, web 11
running application from

development image 11
ULC HTTP server 13

Shell part
feature description 135
general description 38

Slider part 137
Split Pane part 139

T
Table Model part

description 145
example of using visually 52, 56

Table part
description 141
example of using visually 57

test mode, description 5
To-Do List example 48
ToolBar part 147
tracing inside the Smalltalk image 70
Tree Model part

description 151
example of using visually 58

Tree part
description 149
example of using visually 58

U
UI Engine

command options 18
definition 3
description 5
running as applet 17
running as helper 18
running standalone 17

UI half object
description 3
implementing 26

ULC and Server Smalltalk 40
ULC Monitor 19
ULC objects, implementing 25
ULC parts

Box 81
Browser Context 85
Button 87
CheckBox 89
CheckBox Menu Item 91
Column 93
ComboBox 95
Entry Field 97
Filler 99
Form Model 101
GroupBox 103
Html Pane 105
Label 107
List 109
Menu 113
Menu Item 117
Menu Separator 119

ULC parts (continued)
Menubar 81
Multi-Line Edit 97
Notebook 121
Page 123
Pagebook 125
Progress Bar 129
Radio Group 133
RadioButton 131
Shell 135
Slider 137
Split Pane 139
Table 141
Table Model 145
ToolBar 147
Tree 149
Tree Model 151

ULC system, resetting 69

UlcAlert class 79

UlcFont class 79

UlcIcon class 79

UlcRGBColor class 79

Unicode, support for in UI half
objects 42

V
Variable parts 54

visual composition pitfalls in ULC 46

visual parts, description 46

W
widgets, general description 32

widgets, model-based 38

Windows 95, extending environment
size 63

156 VisualAge Smalltalk: Ultra Light Client Guide and Reference

IBMR

Printed in U.S.A.

