
VisualAge Smalltalk

ObjectExtender User’s Guide and
Reference
Version 5.5

IBM

Note

Before using this document, read the general information under “Notices” on page v.

August 2000

This edition applies to Version 5.5 of the VisualAge Smalltalk products, and to all subsequent releases and
modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the level of
the product. The term “VisualAge,” as used in this publication, refers to the VisualAge Smalltalk product set.

Portions of this book describe materials developed by Object Technology International Inc. of Ottawa, Ontario,
Canada. Object Technology International Inc. is a subsidiary of the IBM® Corporation.

If you have comments about the product or this document, address them to: IBM Corporation, Attn: IBM Smalltalk
Group, 621-107 Hutton Street, Raleigh, NC 27606-1490. You can fax comments to (919) 828-9633.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1998, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Notices v
Trademarks. v

About this book vii
What this book includes vii
Who this book is for vii
About this feature vii
Conventions used in this book vii
Tell us what you think viii

Chapter 1. Introduction 1
Minimal intrusion to object and database design . . 2
High performance 2
Advanced transaction support 4
Advanced query support 5

Relationship support. 6
Seamless support for various database paradigms . . 6

Chapter 2. Concepts 9
Key elements managed by the framework 9
Key tasks you develop 9
Organizing your application 10
The main components of the framework. 11

Model framework 12
Relationship framework 12
Transaction framework 13
Mapping framework 14
Data store framework 16

Chapter 3. Quick tour 19
Choosing an approach to persistence 19
Using code generation services 19

Defining the model with the Model Browser . . 20
Importing a model from UML Designer 22
Defining the schema 22
Defining a data store map 24
Tuning the code as needed 25
Completing your application 25
Exporting your model to UML Designer 25

Chapter 4. Tools 27
The Model Browser. 27

Browser use 27
Browser description 28
Browser menu-bar choices 29

The Schema Browser 32
Browser use 32
Browser description 33
Browser menu-bar choices 33

The Map Browser 38
Browser use 38
Browser description 38
Browser menu-bar choices 39

The SQL Query Tool 41

The Status Tool 42

Chapter 5. Tasks 43
Tasks and samples overview. 43
Your first ObjectExtender application 43
Creating a model 43
Creating a class in the model 45
Creating the code for the model 45
Creating persistence support. 46
The department home collection class 47
Creating a view 49

Listing departments 49
Editing departments 49
Creating departments 51
Deleting departments 52
Creating a new top-level transaction each time
one is committed 53

Transactions in more depth 55
Nested transactions. 55
Switching between transactions. 57
Two top-level transactions 58

Visual programming for more than one transaction 58
Using the TransactedVariable part 59

Viewing multiple transactions 61
Transacted variables in editable container parts . . 62
Model to model relationships 63

One-to-many relationship. 64
Maintaining staff 65
Maintaining the department to staff relationship 68

Creating relationships 69
Creating one-to-one (1-1) relationships 69
Creating one-to-many (1-M) relationships . . . 72
Creating many-to-many (M-M) relationships . . 74

Mapping business objects to tables 78
Creating a single table map with no inheritance 78
Creating a secondary table map 78
Creating single table inheritance maps 79
Creating root/leaf inheritance maps 80
Using a composer for mapping an attribute to
multiple database fields 83
Using converters 84

Performance tuning. 85
Changing the locking type on a table 85
Setting preload paths 86
Creating Lite collections 86

Chapter 6. Reference 89
ObjectExtender runtime architecture 89

Programming model overview 89
The business object layer 90
The persistence layer 102
Metadata storage model 108

Writing your own services 110
Defining the persistence support code 110

User code sections 110

© Copyright IBM Corp. 1998, 2000 iii

Managing business objects 111
Using the data store 112
Creating, retrieving, deleting instances 112
Accessing relationships of a business object . . 113
Coding transactions manually and visually . . 113
Analyzing performance 115

Appendix. Restrictions 117

Glossary 123

Index 125

iv VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of
the intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction
with other products, except those expressly designated by IBM, are the
responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY, USA 10594.

IBM may change this publication, the product described herein, or both.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v AIX®

v DB2®

v CICS®

v IBM
v IMS™

v OS/2®

v VisualAge®

The following terms are trademarks of other companies:

Acrobat Reader Adobe Inc.
Microsoft® Microsoft Corporation
Netscape Netscape Inc.
Windows® Microsoft Corporation
UNIX® X/Open Company Limited

Windows is a trademark of Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

© Copyright IBM Corp. 1998, 2000 v

vi VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

About this book

This book contains introductory, sample, and reference information for the
VisualAge Smalltalk ObjectExtender feature.

What this book includes
The opening chapters contain high-level conceptual material followed by a brief
tour of the tasks you perform when using the feature. Samples are provided next
to guide you from simpler to more complex tasks. Finally, reference information
provides some of the lower-level details of the various framework components.

In addition to this book, be sure to check for feature updates on the web at
http://www.software.ibm.com/ad/smalltalk. Code for the samples will be
available for download from the site. Use the keywords, ObjectExtender, or
samples from the home page to search for any updates.

Who this book is for
This book is written for VisualAge application developers, database access
programmers, and object modelers, who need to develop a persistence layer for
large-scale enterprise applications. It is assumed that you are familiar with
developing applications using the VisualAge development environment. It is
helpful to be familiar with the concepts of persistence and transactions, however,
sufficient conceptual information is provided for those who may be addressing
these concepts for the first time.

About this feature
The VisualAge Smalltalk ObjectExtender Guide describes the ObjectExtender feature: a
powerful and extensive persistence framework. ObjectExtender enables your object
models to persist in relational data stores as well as provides linkages to legacy
data on CICS and IMS systems. Creating the persistence layer is accomplished
using the ObjectExtender tool set. The tool set helps you describe the business
objects in your model that will persist in a data store. The tools generate the
supporting code that services your persistent business objects.

Conventions used in this book
This book uses several conventions that you might not have seen in other product
manuals.

Tips and environment-specific information are flagged with icons:

Shortcut techniques and other tips

VisualAge for OS/2

VisualAge for Windows

VisualAge for UNIX platforms

© Copyright IBM Corp. 1998, 2000 vii

These highlighting conventions are used in the text:

Highlight
style Used for Example

Boldface New terms the first time they are
used

VisualAge uses construction from
parts to develop software by
assembling and connecting reusable
components called parts.

Items you can select, such as push
buttons and menu choices

Select Add Part from the Options
pull-down. Type the part’s class and
select OK.

Italics Special emphasis Do not save the image.

Titles of publications Refer to the VisualAge Smalltalk User’s
Guide.

Text that the product displays The status area displays Category:
Data Entry.

VisualAge programming objects, such
as attributes, actions, events, composite
parts, and script names

Connect the window’s
aboutToOpenWidget event to the
initializeWhereClause script.

Monospace
font

VisualAge scripts and other examples
of Smalltalk code

doSomething
| aNumber aString |
aNumber := 5 * 10.
aString := 'abc'.

Text you can enter For the customer name, type John
Doe

Tell us what you think
Please take a few moments to tell us what you think about this book. The only
way for us to know if you are satisfied with our books or if we can improve their
quality is through feedback from customers like you. There is an online reader’s
comment form on the VisualAge Smalltalk web page.

viii VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

http://www.software.ibm.com/ad/smalltalk

Chapter 1. Introduction

VisualAge Smalltalk ObjectExtender is an extensive and powerful persistence
framework providing a complete solution for building robust, scalable persistence
support for object models. Object models, represented by class hierarchies, are said
to be persistent when instances created from these classes can be stored to an
external data store such as a relational database.

ObjectExtender enables you to map objects and relationships between objects to
information stored in relational databases. It also provides linkages to legacy data
on a number of other systems. As a feature of both IBM’s VisualAge Smalltalk and
VisualAge for Java™ products, ObjectExtender is especially designed for
UI-intensive, nested transaction-type applications. This tight integration with the
VisualAge family enables you to leverage your current VisualAge investment and
expertise.

A rich set of integrated tools make the persistence effort minimal by providing:
v Automated code-generation services for underlying frameworks
v Import and export facilities for working with database schemas
v Import and export tools for VisualAge Smalltalk UML Designer models
v Debug and monitoring tools for performance tuning where desired
v Parts to assist visual programming and the building of a GUI to support the

transactional semantics of a nested transaction application

As object-oriented technology has matured in the industry, it has proven to be an
excellent solution for modeling problems, building prototypes, and rapidly
deploying applications. Though object models for these applications are often
reused in other applications, one of the costlier tasks of development has been that
of translating between object-oriented and non-object-oriented representations of
business models. Given that the majority of databases in use today are non
object-oriented, the task of mapping objects to relational database tables and legacy
data from various sources has been the missing piece in object persistence
standards. On a small scale, object persistence is not difficult to solve. However,
large scale applications introduce new requirements to frameworks that support
object persistence.

Underlying ObjectExtender is a framework that delivers on requirements that
apply to large scale applications. As with any good design, trade-offs and
compromises must be made. The better you understand your object model and
your data model, the better you will be prepared to take advantage of the
powerful function that ObjectExtender offers. ObjectExtender provides this support
in the following ways:
v Minimal intrusion to object and database design
v High performance
v Advanced transaction support
v Advanced query support
v Relationship support
v Seamless support for various database paradigms

A brief look at each of these requirements follows.

© Copyright IBM Corp. 1998, 2000 1

Minimal intrusion to object and database design
Close coupling between the two models, object and database, is history. Object
models only need to represent their application domain, not the database design.
This enables you to maintain an object-centric view of persistence rather than a
data-centric view of data stores. The number of persistence constructs required in
the application code is very low, keeping the persistence application model
relatively lightweight. Separating objects and database concepts is done by
employing meta-information. The loose connection between object model and
database is preserved through a rich set of mapping schemes.

ObjectExtender supports this meta-information layer through UML object models,
mapping models, and data models (schemas).

ObjectExtender is integrated with the visual aspects of programming as well such
that existing view components can work with framework.

High performance
System performance depends on many factors: server load, network throughput,
client application response time, and more. Database access can be optimized
according to these performance factors.

To optimize the number of database round trips and path length to data, a cache
and preload framework enables you to define your working set of data for any
task. This working set determines the amount of data that will be retrieved for a
given task.

Figure 1. Object model and database design. Using ObjectExtender, you can maintain a
distinct boundary between your object model and data store design. Neither design needs to
be retrofitted to accommodate the other.

2 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

When the set of objects you want to retrieve is very large, performance
degradation occurs when instantiating the objects all at once. A cache framework
prevents this problem by keeping objects in their native format as long as possible.

The set of data required to perform a task is often known ahead of time, or can be
derived from application hints. Minimizing the number of database round trips is
achieved by retrieving as much data as possible. The preload framework enables
you to tune performance in this manner. One example of this would be joining the
relational tables that form a composition tree.

In the diagram below, two Dept objects are retrieved from the database by the
application. Other related objects, Emp and Addr are also retrieved and loaded into
the cache to be instantiated at a later time, such as when accessed by a
user-interface dialog. This eliminates the extra trips to the database to fetch the
related objects.

Figure 2. Network round trips are reduced improving performance.

Figure 3. Caching framework. Using a caching strategy optimizes performance.

Chapter 1. Introduction 3

Support for Static SQL is available as well to reduce server load.

Advanced transaction support
The transaction framework enables you to support multiple users executing
concurrent and nested transactions that update the same objects. You can manage
multiple versions of objects in your image, and determine appropriate policies for
handling collisions and commits to the database.

The transaction framework treats the application and database memory spaces as if
they were one memory space; synchronizing them and managing collisions.

Figure 4. Preload strategy. Loading other objects ahead of time based on derivable data
and/or application hints reduces trips to the database.

4 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

Advanced query support
You can define very complex object models and relationships easily using the
powerful ObjectExtender tool set. The underlying query model is expressed in
object terms rather than on database-specific native terms. Several kinds of
mapping strategies encourage this loose coupling.

The code-generation function produces sophisticated SQL statements customized
for your object model. The SQL statements are consumed by service classes that
manage your data. Because the code-generation is done at development time, you
can benefit from the advantages of static SQL or tune them as desired rather than
having them generated at runtime.

Figure 5. Application and database memory spaces. The transaction framework enables you
to use one set of semantics that is understood by the database and the object model. This
makes managing synchronization between them easier.

Chapter 1. Introduction 5

The query generator supports:
v Equi-joins for loading chains of objects (no branches).
v Unions and set differences for loading complex composition trees.
v Left-outer-joins for loading trees that allow missing leaves.

Relationship support
Relationships between persistent objects are implemented using first-class link
objects. Links are hidden behind the generated accessors. Links automatically
manage:
v Object referential integrity
v Database key referential integrity
v Persistent state of the relationship (lazy retrieval).

Seamless support for various database paradigms
Large scale commercial applications typically need to access data from multiple
data stores.

The relational and procedure-call generation embedded in the framework provides
the linkages between the object model and the data store. These linkages are
established through generated service classes and include generated queries or
data access statements.

The service classes execute the generated SQL to map the object model to the
following relational data stores:
v DB2
v ORACLE
v ODBC
v JDBC

Table definitions can be read from an existing database schema. The service classes
also invoke the generated record mappings to access transactional data in
CICS/IMS or other legacy datastores.

Figure 6. Advanced query capability. Class hierarchy queries are expressed in object terms.

6 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

For each business object class there is a set of pluggable data access services. There
can be more than one services set per business object class. For example, a
relational service set and a procedure call service set. Activation of the data store
determines which service set a business object class is currently using.

Figure 7. Various database paradigms. Three data stores are shown: relational, hierarchical,
and data encapsulated within a service layer. ObjectExtender currently supports relational
databases and the encapsulated service layer.

Chapter 1. Introduction 7

8 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

Chapter 2. Concepts

Key elements managed by the framework
The primary elements managed by ObjectExtender are:
v Business objects. Business objects are typically the objects in your application

domain that you want to persist in a data store, a bank application’s Customer
and Account objects, for example.

v Relationships. Objects and relationships are very similar to the entities and
relationships of extended entity-relationship modeling. A primary responsibility
of ObjectExtender is to maintain the integrity of objects in the run-time image
and the corresponding persistent data store through the support of atomic
transactions. For example, a Customer object could have a one-to-many
relationship with a collection of Account objects such that each Customer knows
its set of Accounts, and each Account knows its Customer. The transactions
necessary to manage this relationship are transparent to you.

v Transactions. Transactions represent paths of code execution. For example, a
bank application might have a transaction that updates a customer account. The
code activity necessary to manipulate the persistent objects would take place in
the transaction.

Key tasks you develop
Building your object models on the ObjectExtender framework can be done in
several ways. How you begin depends upon whether your data store already
exists. Whether you are starting from scratch, or creating an application to persist
to a legacy database, it is best to separate your application domain into three
programming tasks:
v Object modeling
v Application programming
v Data access programming

These tasks can be implemented by a team of programmers or by one. In either
case, the framework addresses all of the details required for persistent object
behavior. For each task, browsers, tools, and code generation services are provided.

Object modeling involves defining the application domain in terms of objects and
the relationships between them. ObjectExtender facilitates the task of mapping
object models to a range of back-end storage and processing technologies, most
notably new and existing relational databases and transaction processing monitors.

Application programming comprises implementing scripts on the model objects,
relationships objects and other application objects that implement the functions,
business rules and user-interface of the application. ObjectExtender provides an
extensible transaction abstraction that gives application programmers a framework
to implement the logic of the basic use cases of an application.

Data access programming implements the individual services that map objects and
relationships in the object model to the underlying data store using such
mechanisms as SQL and transaction processing monitor based calls. For relational
databases, ObjectExtender provides a code generation services that create an
implementation of a data access service layer from a higher-level mapping
specification. The generated code is complete. Enhancement to the generated code

© Copyright IBM Corp. 1998, 2000 9

is only needed in special cases, for example, tuning the performance of special SQL
queries because of special knowledge of underlying data or application access
patterns, or because of unusual table structures in existing database schemas.

Organizing your application
The following diagram shows the organization of the application as seen by
ObjectExtender .

ObjectExtender helps you organize your application into three main components in
the following ways:
v Object Model. Using the Model Browser, you define the basic shape of your

persistent objects. In UML terms, you describe their attributes and associations.
Code generation services are used for creating the domain classes that will
contain the persistence support for your business objects.

v Transactions. Transactions represent paths of code execution. Transactions
guarantee the consistency of data in the image. You create transactions that
access and manipulate persistent objects. Any dialogs necessary for interaction
with the application user are implemented by you as well.

v Services. Services are classes that implement the low-level functionality required
to store and retrieve objects from the data store. Each persistent class has a
corresponding service class. Service classes can be generated automatically from
meta-information you provide by mapping your object model to a data schema.
The Schema Browser is used to define new or import existing database schemas,
and the Map Browser is used to map the object model and data schema.

The persistence framework coupled with the robust development tool set provide
everything you need to produce a relatively lightweight, industrial strength

Figure 8. Application organization. Object modeling, data access programming, application
programming: these tasks comprise the main elements for using the framework.

10 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

runtime framework for any application. As an OO developer, your main concern
can be the object model understood as a set of business objects with attributes
individually and relationships communally. This understanding is described using
the development tools which create meta-information that the persistence
framework uses to produce the persistence constructs that support your runtime
application.

Figure 1 encapsulates what ObjectExtender offers both in terms of development
and runtime environments.

The main components of the framework
ObjectExtender provides a runtime system for application developers. It is
supported by a rich set of tools that are used to provide input to transparent
frameworks which generate the persistent layer for object models. As a developer,
you will primarily use the tools, especially, if your object model is to persist in a
relational data store. It is helpful, however, to be acquainted with the main
frameworks, particularly if you want to create your own data services layer for
non-relational data stores, or, if you want to do some performance tuning.
Framework highlights are provided here; further details are in the reference
sections.

Figure 9. The development and runtime environment perspectives. Implementing your
application with ObjectExtender involves using browsers at each level of abstraction during
development. Each abstraction describes a particular aspect of your business objects to the
transparent framework . Each layer of the framework generates the necessary code and
services for the object model to persist in the runtime environment.

Chapter 2. Concepts 11

The ObjectExtender framework is composed of the following:
v Modeling framework
v Relationship framework
v Transaction framework
v Mapping framework
v Data store framework.

Model framework
The model framework supports describing the state and behavior of persistent
objects. The result is the runnable implementation of the object model.

The model framework provides a pure object interface to your application
supporting the description of model attributes and associations and implementing
accessors to the model data. It supports the concept of defining attributes for
uniquely identifying an object, that is, key attributes map to relational keys or key
transaction data tying models into relationships and transactions.

Relationship framework
Relationships are a missing feature of OO languages but an essential feature of
real-world applications and data. Relationships between persistent objects are
implemented using first-class link objects. The link objects manage:
v Object referential integrity
v Database key referential integrity
v Persistent state of the relationship

The relationship framework provides key to object-based user interfaces. It
automatically manages the following relationship semantics:

Figure 10. Components of the persistence framework. The subsystems underlying the
ObjectExtender feature are designed to address the persistence issues for both large and
small scale applications.

12 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

v Requiredness. Consider a relationship between a Person object and a Car object.
Person has a collection of Cars. Requiredness on this relationship might specify
that a Person requires at least one Car.

v Cardinality. Cardinality specifies how many objects may participate in the
relationship (one-to-one, or one-to-many). For example, the cardinality of the
Person-Car relationship could be defined as ″one-to-many″. That is, one Person
owns a collection of Cars.

v Inverse maintenance. Continuing with the one-to-many relationship, Person-Car,
the framework requires that one-to-many relationships be defined as two-way
(bi-directional) relationships. Thus, a Car object would have a one-to-one
relationship with a Person. If a Car is added to a Person’s collection, then the
framework ensures that the Car’s owner is set to that Person. Likewise, if a new
Car object were instantiated, the framework ensures the addition of the instance
to the collection belonging to Person.

Transaction framework
Operations on persistent objects have transaction semantics similar to the data
stores in which they persist. The transaction framework provides that all
operations within a transaction are either committed or rolled back together so that
a consistency is maintained within the OO environment. Transactions are
introduced into the persistence binding through a set of synchronization and
collision management schemes.

Synchronization schemes

Synchronization between application and data memory spaces is achieved by
various synchronization shemes. These schemes define when modified objects in
the application memory are sent to the database and when objects are refreshed in
the database. For example, a deferred write scheme would imply that modified
objects are first recorded within a transaction, then, when the transaction is
committed, the modified objects are automatically written to the database all at
once.

Figure 11. Relationships can be uni-directional and bi-directional. The diagram shows a
two-way (bi-directional) relationship: a one-to-many and one-to-one relationship between the
two classes.

Chapter 2. Concepts 13

Collision management schemes

Collision management schemes provide different approaches according to the
different types of transactions defined. Transactions with a high penalty for failure,
for example, could have a pessimistic collision prevention scheme, whereas
transactions with a low penalty for failure, that is, it is worth the risk of failure to
gain the efficiency, could have an optimistic collision detection scheme.

A flexible collision management scheme is based on the properties of the
transaction, the domain class, and the data store. For example, within a transaction
there may be participating objects that are not candidates for collision. When the
transaction directs its participants to lock their resources, the non-collision
candidates will do nothing since they have no resources that require locking.

The net effect of collision management strategies depend entirely on what the
underlying data store supports.

Mapping framework
The mapping framework enables you to map flat data to object inheritance
hierarchies. It can generate queries to retrieve appropriate data, determine the
appropriate object class for data based on discriminating fields, and resolve
relationships of abstract classes to existing subclasses. In addition, it implements
the conversion between data and objects. This is done by mapping the data schema
elements to object attributes. Object relationships can be populated from data
relationships (foreign keys) as well. Object queries are converted to data store
queries so that the appropriate objects can be retrieved.

Several kinds of mapping strategies are available.

Attribute mapping

Attributes of a class can be mapped to one or more columns in a table as well as
across many tables.

Inheritance mapping

Class hierarchies can map to single or multiple tables. Two kinds of partitioning
are supported:
v Figure 2 shows typed partitioning. A class hierarchy maps to a single database

table.

14 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

v Figure 3 shows vertical partitioning. A class hierarchy maps to root and leaf
database tables.

Relationship mapping

Objects can be mapped as one-to-one or one-to-many relationships.
v Figures 4 and 5 Show one-to-one relationships. One-to-one relationships can be

mapped a couple of ways:
– Using a backward pointing reference.

Figure 12. .

Figure 13. .

Chapter 2. Concepts 15

– Using a forward pointing reference.

v Figure 6 shows one-to-many relationships.

Data store framework
The data store framework implements the underlying data store for the persistence
system.

This is achieved by capturing a sufficient amount of database meta-information. A
logical structure of the data store is specified by the data store schema that
represents the structural relationships between schema elements. The logical

Figure 14. .

Figure 15. .

Figure 16. .

16 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

structure presents a more user-friendly specification for your object model since
often the physical schema of data stores have naming restrictions and other
contraints.

The data store framework presents interfaces for
v Connecting to a data store
v Executing database queries
v Managing transactions

Multiple data store types may be used in a single application.

A data store schema can be defined from scratch or imported from an existing
database.

Chapter 2. Concepts 17

18 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

Chapter 3. Quick tour

A quick tour of ObjectExtender follows.

Choosing an approach to persistence
There are different ways to begin using ObjectExtender:
v From scratch. In this scenario, you would define your model (or import it from

VisualAge UML Designer), define your schema (or generate one from the
model), define the data store map, and then use the code generation services to
create the domain classes and services.

v From legacy database. In this scenario, a legacy database exists but no object
model. You could import the schema from the existing database, define (or
import) your model (or generate one from the schema), define the data store
map, then use the code generation services as noted earlier.

Shortcuts: As mentioned, from an existing model, you can generate a default
schema and vice versa. Generating models from schemas, and schemas from
models is accomplished by using the ObjectExtender tools. The Model Browser has
a menu option for generating schemas, and the Schema Browser has one for
generating models. Consider this: if you have an existing database, you could
import your schema, generate your model from your schema, define the data store
map, and then use the code generation services.

The following discussion assumes you are using ObjectExtender to build an object
model from scratch. That is, you are defining the model, schema, and data store
map, and then using the code generation services. Rather than a concrete example
to follow, these highlights are intended to help you undertstand the overall process
for using ObjectExtender.

Creating the data services layer automatically or manually

Before we begin, a first consideration is how the data services layer will be built.
The data services layer is created using code generation services after you define a
model, schema, and data store map. You can use the code generations services to
create a complete set of data services when persisting to relational databases. The
code is complete and ready to run. You can fine tune it if necessary. If you are not
persisting to a relational data store, however, then you need to write your own
data services, but not completely from scratch. You can use the code generation
services to create code stubs which you can then complete according to the
requirements of your data store.

Using code generation services
The three main elements that are defined to support ObjectExtender applications
are the model, the schema and the data store map. The information, sometimes
referred to as metadata, for each of these is stored in a class in the repository.
When a model, schema or map is first created it can be edited without requiring it
to be saved. In this case all changes are recorded in the image and are only
available to you in the image. To save the work and make it available to other
users, use the Save option from each of the browsers. This will store the details of

© Copyright IBM Corp. 1998, 2000 19

the model, map or schema into a class in the repository. If a model, map or schema
requires saving the browser will indicate this in the text pane on the lower half of
the browser.

After a model, map or schema has been saved it can be loaded by other users into
their image by loading the storage class the same way any other class is loaded
from the repository. (Note that to load a class it must either be a version or else if
it is still an edition you must be the developer of the edition).

The browsers are not automatically refreshed when you load the metadata
information for a model, schema, or map. This is done with the load available
menu option. Selecting this option will hydrate the models, maps or schema in the
image from the list of loaded classes that are holding the metadata information. As
modifications are made to a model, schema, or map, the changes are recorded
locally in the image. The browser will indicate that the class is out of sync with the
image by indicating that it is dirty and requires saving. If you decide you do not
want to keep your modifications you can revert the model, map or schema to the
version last saved to its storage class by selecting the revert menu option. Once
you are ready to store your work into the repository the Save option will take the
definition of the model, map or schema from your image (which is always the
ones the browsers display) and store it into the repository. From here the class can
be versioned and then loaded and modified by another user.

It is good practice to version the class containing the metadata for the model, map
or schema before another user loads it into their image. Once the storage class has
been versioned it can be moved between repositories using the import and export
menu options. When the class is exported it takes the metadata with it allowing
ObjectExtender models, maps and schemas to be moved between repositories.

When creating a new object model using the ObjectExtender tools, the steps are as
follows:
1. Define the model. (You define a model directly in the Model Browser or import

a model developed with VisualAge UML Designer.)
2. Define the schema.
3. Define the data store map.
4. Generate the persistence support code using code generation services.
5. Perform any desired tuning.

Defining the model with the Model Browser
In brief, use the Model Browser to define your object model. Your object model is a
collection of business objects represented in terms of classes and associations. Once
defined, the persistence support for your model is created by using code
generation services.

To create a new object model, first determine the business objects in your model
that will persist to the data store, then create the classes and associations that will
represent your business objects.

Creating models. To create a model:
1. Launch the Model Browser.
2. Select New Model from the Models menu.
3. Name the model.
4. Click OK.

20 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

Creating classes. Continue defining the model by creating the classes and
associations that represent the business objects for the model. To create a class:
1. In the Models view, select the model name.
2. From the Classes menu, select New Class. This launches the Class Editor.
3. Provide a unique name for the class. Make sure that the name is unique not

only for your model but also for the classes loaded in your image.
4. Next, define attributes for the class:

a. In the Attributes tabbed dialog box, click New. This launches the Attribute
Editor.

b. Provide an attribute name.
c. Select an attribute type.
d. Click Value required. This indicates whether your model requires a value

for this attribute or not.
e. In the Attribute Editor, click OK.

5. Define the object identifier by selecting one or more of the defined attributes
and moving them to the Object ID view. To move an attribute in this view,
click on the double arrow (>>).

6. In theClass Editor, click OK.

Creating associations. To create an association between two classes:
1. From the Associations menu, select New Association.
2. Provide an association name.
3. Select two classes in the model that will have an association.
4. Each class will play a role for the other class. For each class, do the following:

a. Type a name for the role that the class will perform for the other class.
b. Specify whether the role is navigable from the other class in the association.
c. Specify the cardinality of the role. Cardinality is expressed by specifying the

Many, and Required choices in some combination.

Generating business objects. After you have completed the model description,
generate the domain classes using the code generation services.
v From the Models menu, select Generate, and then select the appropriate options

from the SmartGuide.

What the code generation services create. The generation of the model will
produce the following:
v Business object classes with accessors for all defined attributes and navigable

relationships.
v Home collection classes, which implement the instance creation, look up by key,

and allInstances support for a business object class.
v Key classes which look up business object instances using keys.
v Relationship classes, which manage relationships between business objects.

Once the business object classes are generated, you can create transactional instances
of the classes and manipulate them and their relationships in transactions. Refer to
“Managing business objects” on page 111.

Saving models. Save your model definition to an application and storage class that
you supply. Saving your model enables you to take advantage of the existing
library management functions. These functions are the same ones you use when
sharing code with other developers such as versioning, releasing, and loading
different editions of an application.

Suggestion: A useful naming convention is to name your application as follows:
XYZMetadataApp where the XYZ is some prefix you choose. Use this application to
store a model, schema, and map for a given application.

Chapter 3. Quick tour 21

Recommendation:Save the model definition to an application different from the
generated model calsses. The model will generate into any previously generated
schema that has the same name as the one it would have created. For existing
columns, it does not modify information such as field type or length. If attributes
or roles are deleted, the previously generated columns are not dropped and this is
managed by the user.

Importing a model from UML Designer
If you use the VisualAge UML Designer feature to model your application, you can
then import model elements from UML Designer into the ObjectExtender Model
Browser. To import from UML Designer, follow these steps:
1. In the Model Browser, select the model you want to contain the imported

model classes.
2. Select Import From UML Designer from the Models menu (or the pop-up

menu).
A window appears listing all available UML Designer models.

3. Select the UML Designer model that contains the elements you want to import
into ObjectExtender. Then select OK.
A window appears listing all of the UML Designer class designs in the selected
model.

4. Select the UML Designer class designs you want to import. Then select OK.

When the import operation completes, the selected ObjectExtender model contains
a model class for each of the imported UML Designer class designs. Information
from UML Designer is mapped to ObjectExtender as follows:
v The attributes of each UML Designer class design (and of any protocols it

conforms to) become attributes of the corresponding model class. An attribute is
not created in the ObjectExtender model if the UML Designer attribute’s type
protocol does not have a conforming instance class design.

v If the class design has an attribute using the Key Attribute idiom,
ObjectExtender generates an oid for the corresponding model class.

v Any associations between class designs are preserved as associations between
model classes, provided both source and target classes are imported for each
association.

v Inheritance relationships among class designs are preserved in the imported
model classes.

Defining the schema
In brief, use the Schema Browser to define a schema. The Schema Browser handles
descriptions of tables, their columns, and key (primary and foreign) definitions.

Creating schemas. To create a schema:
1. Launch the Schema Browser.
2. From the Schemas menu, select New Schema.
3. Name the schema.
4. Click OK.

Creating tables and columns. To create a table for your schema:
1. Select the schema name in the Schemas view.
2. From the Tables menu, select New Table. This launches the Table Editor.
3. Provide a logical table name. This is a logical name. It does not store in the

database.

22 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

4. Provide a physical table name. This name stores in the database.
5. Create the columns for the table:

a. In the Columns view, click New. This launches the Column Editor.
b. Provide a column name. This is a logical name.
c. Provide a physical column name. This name stores in the database.
d. Choose a Type for the column.
e. Under Type details, choose a Converter for the column. (Converters

translate data. For example, a CHAR datum in a database converts to a
Boolean object using the VapCharToBoolean converter).

f. Click Allow nulls accordingly.
g. In the Column Editor, click OK.

Select a column(s) to be the Primary key and click the double arrow (>>).
6. In the Table Editor, click OK.

Using Converters. A converter is used to change a class attribute type into another
type before storing to the database. When reading from the database, the converter
will change a particular database type into the correct class attribute type. For
example, if you have a class attribute that has a Date type and the database
column has a SQL type of DATE, no converter is needed. However, if you wanted
to take this same class attribute and store it in a database column of SQL type
VARCHAR, a converter is necessary because the class attribute of Date does not
map directly to this SQL type.

The default converter used for fixed character columns is the
VapTrimStringConverter. This converter truncates spaces from the end of the column
value. If an object’s identifier contains this column, object cache lookup is done
with the truncated value, thus eliminating the chance of false cache hits or multiple
cache entries. The drawback of this scenario is the key derived from a relating
object will have a truncated value, and the resulting query will not find the
appropriate rows in the database. Changing the converter to VapConverter will
solve the later problem, but you must be aware of trailing spaces that become
significant in object lookups.

Exporting schemas. Once your schema is defined, and saved, you will export the
schema to the database. Note that the column name used for constraints uses the
physical name.

You can wait to do this step until you are really ready to use the database. This is
done as follows:
1. From the Schemas menu, select the Import / Export Schema menu, then select

Export Entire Schema to Database.
2. Fill in the Database Connection Info dialog.
3. Click OK.

Saving schemas. Save your schema definition to an application and storage class
that you supply. Saving your schema enables you to take advantage of the existing
library management functions. These functions are the same ones you use when
sharing code with other developers such as versioning, releasing, and loading
different editions of an application.

Suggestion: A useful naming convention is to name your application as follows:
XYZMetadataApp where the XYZ is some prefix you choose. Use this application to
store a model, schema, and map for a given application.

Chapter 3. Quick tour 23

Recommendation: Save the schema definition to an application different from the
generated model calsses.

Defining a data store map
To do this step, you need a model and a schema.

In brief, use the Map Browser to define a data store map. A data store map
logically connects the object model description with the data store schema
description. This is used for code generation to determine the proper SQL and
supporting code needed for persisting the model objects. Using the Map Browser
you create table maps for your business objects. All of the table maps collectively
comprise your data store map.

Creating a table map consists of mapping the model attributes and relationships to
the schema. For each model attribute, you specify the column which should be
read to populate the attribute. For each relationship, you specify the foreign key
relationship which is its persistent representation.

When all of the table maps are defined, the persistence support for your data store
can then be created using code generation services.

Creating maps. To create a new data store map:
1. Launch the Map Browser.
2. From the Datastore_Maps menu, select New Datastore Map.
3. Provide a data store map name.
4. Select the names of the model and schema that you are going to map.
5. Click OK.

Creating table maps. A class must have at least one table map. The table map
specifies the database table to which the class will be mapped. Table maps contain
property and relationship maps which refer to columns and keys respectively. To
create a table map:
1. From the Table_Maps menu, select a table map. There are several kinds of

table maps.
2. Select the name of the database table you are mapping.
3. Click OK.

Creating property maps. Create property maps for each table map. To create a
property map:
1. From the Table Maps view, select the table map.
2. From the Table_Maps menu, select Edit Property Maps. This launches the

Property Map Editor.
3. Mapping attributes. In the Attributes tabbed dialog box, map the class

attributes to table columns by selecting the attribute, the type of map, and the
table column.

4. Mapping relationships. In the Association Roles tabbed dialog box, map the
class associations to foreign key relationships.

5. Click OK.

Generating services. When you have completed all of the table maps, generate the
data services using the code generation services.
v From the Datastore_Maps menu, select Generate Services, and then select the

appropriate options from the SmartGuide.

24 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

What the code generation services create. The code generation services will create
the following code:
v A DataStore class, which manages all the service classes for this data store map,

and manages the pool of database connections.
v A ServiceObject class which implements the appropriate services for each model

class, and is supported by:
– A QueryPool class containing the query specs for the basic services.
– Injector classes to organize query inputs.
– Extractor classes to organize the reading of query results into the appropriate

caches and data objects.
– A DataObject class for each business object class, which holds the raw data for

a business object and provides cache entry behavior and access to key values.

Saving data store maps. Save your data store map to an application and storage
class that you supply. Saving your map enables you to take advantage of the
existing library management functions. These functions are the same ones you use
when sharing code with other developers such as versioning, releasing, and
loading different editions of an application.

Suggestion: A useful naming convention is to name your application as follows:
XYZMetadataApp where the XYZ is some prefix you choose. Use this application to
store a model, schema, and map for a given application.

Tuning the code as needed
If desired, you can now perform any tuning or installation specific changes to the
generated code. These might include SQL editing, service caching improvements,
and more complex installation specific OID generation for example.

For example, suppose you need to a specific query ordered by a particular column
in a table. You could create the script myTableOrderedBySomeColumn in the
XYZYourClassQueryPool in the sql services protocol.

Always ensure that your altered set of service classes still support the full required
service protocols.

Completing your application
Having defined your model, schema, and map, and having generated the
persistent code layer for the model and data store, you can now begin building the
next layer of your application, a GUI layer for example. Using the Composition
Editor, you can use the parts in the ObjectExtender palette category which will
make your business objects transaction aware.

Exporting your model to UML Designer
Once you have defined your model with ObjectExtender, you can also export it to
UML Designer for further modeling and analysis.

To export your model to UML Designer, follow these steps:
1. In the Model Browser, select the model containing the model classes you want

to export to UML Designer.
2. Select Export To UML Designer from the Models menu (or the pop-up menu).

A window appears listing all of the available UML Designer models.
3. If you want the exported elements to be placed in an existing model, select the

target model and then select OK.

Chapter 3. Quick tour 25

If you want to create a new UML Designer model for the exported elements,
select <New> and then select OK. You can then specify the name of the new
model, which will be created for you.

4. When prompted, select the ObjectExtender model classes you want to export.
(Remember that if you want to preserve associations between classes, you must
export both the source and destination classes.) Then select OK.

When the export operation completes, the target UML Designer model contains a
class design and protocol for each exported ObjectExtender model class. See the
VisualAge Smalltalk UML Designer Guide for more information about model
elements exported from ObjectExtender.

26 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

Chapter 4. Tools

The ObjectExtender tools are a collection of development browsers, tools, and code
generation services that help you build persistence support for your application.
They are available from the ObjectExtender Tools option under the Transcript
menu.

The browsers are your main resources for building your application on the
ObjectExtender framework.

The browsers are used to describe your object model, database schema, and data
store mapping, as well as generate the code the framework needs to manage your
business objects. Using the Status and SQL Query tools, you can collect and study
information to ensure that your business objects are exhibiting the behavior you
expect.

The browsers and tools are briefly outlined below:
v Model Browser. For defining your object model, its classes and associations and

generating schemas from a defined model.
v Schema Browser. For defining a logical description of your data store to which

your object model will persist. Existing database schemas can be imported, and
models can be generated from schemas.

v Map Browser. For mapping your object model, or persistent classes, to your
logical (or database) schema. Each persistent class needs a map which associates
the attributes of the class with their corresponding columns (or fields) in the
database tables (or record) and also associates class associations with table
connections. You must first define your object model and schema before you can
map them.

v SQL Query Tool. For occasional use, when you need to query the database
directly. This tool is great for testing the generated query statements.

v Status Tool. For collecting various kinds of statistics during development, such
as looking at persistent object, data store, and transaction statistics.

The browsers do not allow any of the meta model entities to be modified if the
storage entity is an edition and its developer is not the current image user.

The Model Browser
The Model Browser is used to define the classes in an object model. The object
model consists of the classes that represent the business objects in your application
that will persist in a data store.
v Browser use
v Browser description
v Browser menu-bar choices

Browser use
Business objects are described through class descriptions. For example, in an object
model for a University you might describe: a Student class, a Faculty class, a Course
class, a Schedule class, and so on.

© Copyright IBM Corp. 1998, 2000 27

Describing a class with the Model Browser is similar to defining a class in a
Smalltalk browser. Each class consists of attributes (instance variables) and
relationships. Attributes typically describe the granularity of the objects you wish
to persist. Relationships describe how objects in your model are associated with
one another. In the University model, your Student and Faculty classes might have
attributes such as studentNumber and facultyNumber, respectively. In addition,
there might be a relationship between the two classes, a relationship between
Faculty and Student, for example. A Faculty object, for example, could have an
advisedStudents relationship, or role, with several Student objects.

There is a difference between describing a class in the Model Browser and defining
a class using other tools. Describing a class does not create an instance of the class.
It creates metadata for the class. The metadata is used later to generate the class
instance. The instance of the class is created when you use the Generate function
under the Models menu. Generating the code for your model is typically done
after you have described all the classes. If you need to make changes to your
model after you have generated the code, you need to generate the code again.

Browser description
The Model Browser is described below.

The Model Browser presents several views:
v Models. Displays the names of your models.
v Model Classes. Displays the names of the classes for a selected model.
v Attributes. Displays the names of the attributes for a selected class.
v Class Associations. Displays the associations or relationships defined between

the classes in the selected model.
v Information. This view is not labeled as such, but it is a read-only view that

provides descriptive information in a given context. For example, if you select
only the name of a given model, it will provide certain statistics about a model.

Each view is used successively to describe your model, its classes, and its
associations. It is easy to verify your design when complete by browsing the
contents and associations for each class. When your model definition is complete,
you can save it in the library. Models are stored as versions of the class
ModelStorageClass in the application VapMetadataStorage.

28 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

In addition to creating models with the Model Browser, you can also edit models,
and load other models into your image from the library. You can also use the
Model Browser to import and export model information between ObjectExtender
and UML Designer.

After you have designed your object model, you describe it using the Model
Browser, and then generate the code for it.

Creating a model involves giving it a name and then creating its classes and
associations. Creating classes for the model involves giving each class a name,
attributes, relationships, and key properties. Creating associations for the model
involves giving each association a name and defining the classes involved in the
association as well as naming the role each class plays in the association.

You create a model by selecting New Model from the Models menu, and
supplying a name for the model.

You create a class in your model by selecting New Class from the Classes menu.
This launches the Class Editor where you fill out the characteristics of the class
such as class name, superclass name, class attributes, or instance variables,
relationships the class might have with other classes, and key properties which will
uniquely identify the class from other classes.

Browser menu-bar choices
Most of the menu-bar choices for the Model Browser are described below.
v Models.

The following choices are available.

New Model
Start here when creating a new model. A dialog prompts you to provide
a model name. If you have an existing database there is a shortcut for
creating a new model. Using the Schema Browser you could import the
schema, then you could generate the model from the schema.

Delete Model
When you delete models, you are deleting them from your browser, not
the image.

Save Model
For saving model descriptions. You are prompted for an application and
a storage class name.

If you edit a model for which you have already generated domain
classes, remember to regenerate the code again for the model to pick up
your changes.

Load Available Models
Loads all the available models from the storage classes in your image.

Revert Selected Model
Reverts back to the previously saved version of the model.

Model Code Generation Options
Launches a dialog in which you can specify the following default
behavior when you generate the model.
– Model application name
– Generate persistent classes
– Generate VisualAge parts

Chapter 4. Tools 29

– Default persistent class root

Generate
Launches a dialog prompting you for an application name into which
your generated code will be stored.

Generate Schema From Model
Generates a database schema from the selected model. This is a shortcut
when you are creating an application from scratch. In like manner, you
can generate a model from an existing database schema using the
Schema Browser .

Import From Modeller
Imports class designs from VisualAge UML Designer into the selected
model as model classes. You can select which class designs you want to
import. Attributes, inheritance, and associations are preserved (provided
both source and target classes are imported for each association).

Export To Modeller
Exports model classes in the selected model to VisualAge UML Designer
as class designs and protocols. You can select which model classes you
want to export. Attributes, inheritance, and associations are preserved
(provided both source and target classes are exported for each
association).

v Classes.
Assuming you have created a model, you can then create classes for it. This
menu provides the choices for creating, editing, and deleting the classes for your
model. The choices are as follows:

New Class
Launches a Class Editor. Be sure to have the model selected first when
you select this.

Fill in the following fields to complete your class description:
– Name. The class name must be unique.
– Superclass. Provide the name of the superclass or use the default.
– Attributes. This tabbed dialog box is where you define your instance

variables. To define a new attribute, select New. This launches the
Attribute Editor where you fill in the attribute name and the attribute
type, and whether the attribute requires a value.

– Association Roles. This tabbed dialog box gives you visibility to all of
the roles that have been defined for the class. Class roles are defined

30 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

when you create Associations using the Association Editor. Be sure to
have the model selected for which you want to display and define
associations.

– Lite Collections. This tabbed dialog box enables you to define a
subset of attributes that you wish to collect and use in your
application in some way. To create a lite collection, select New, and
type a name. The name will appear in the list of Lite collections, and
the class attributes (properties) will display in the Class properties
view. Next, choose the class properties to include in the collection and
click Apply. Filter and packeting are optional. If you choose
packeting, this collection MUST be used with the packeting protocol,
either manually or with the packeting container.

– Object ID Specify one or more attributes to be the identifying
attributes for the class. Select an attribute and click >> to add it as an
object identifier.

v Attributes.

New Attribute
Launches the Attribute Editor. You can use this to create, edit, or delete
attributes for a selected class. Attributes typically describe the
granularity of the objects you wish to persist. Relationships describe
how objects in your model are associated with one another. In the
University model, your Student and Faculty classes might have attributes
such as studentNumber and facultyNumber, respectively.

v Associations You can create, edit, and delete associations between classes in
your object model using this option. Be sure to have the model selected.

New Association
Launches the Association Editor. Use this option to define a new
association between two classes in your object model

You must fill in the following to create the association between the
classes.
– Associated classes. Supply a name for the association that has

semantic meaning for your model. For example, an association name
of Student-Advisor indicates a relationship where one object is a
Student, the other object is an Advisor. This naming convention also
hints at the roles that each object will play in the relationship. You
must supply the names of the two classes that are in the association.
In this example, VapStudent, and VapFaculty.

– Associated between classes. In an association, each class plays a role,
that is, each class plays a role in or for the other class.

Chapter 4. Tools 31

In the Student-Advisor association, the VapFaculty plays the role of
advisor forVapStudent. The only role that VapStudent will play in the
VapFaculty class is that of advisedStudents, one of many advised
students.
The last part of definition for the association has to do with
navigability and cardinality (how many).
- Navigable. Marking the object navigable means that the role is

reachable from its counterpart class in the association. For example,
in the Student-Advisor association, checking the advisor role
would mean that VapStudent could ask the VapFaculty instance for
its advisor.

- Many. Specifying cardinality is done with this choice and the
Required choice.
You can specify the cardinality of the roles between the two classes
as follows:
v Required unchecked, Many unchecked. This defines a

zero-to-one (0:1) cardinality for the role in the association that is
played by this object.
When Required is unchecked it means that zero instances of this
object is valid in the association. When Many is unchecked, it
means that only one instance is allowed for the object to fulfill its
role in the association.

v Required checked. Many unchecked. This defines a one-to-one
(1:1) cardinality for the role.

v Required unchecked. Many checked. This defines zero-to-many
(0:many) cardinality for the role.

v Required checked. Many checked. This defines a one-to-many
(1:many) cardinality for the role.

In the illustration of the Student-Advisor association, the advisor
role played by VapFaculty could have a 0:1 cardinality in the
VapStudent object meaning that the VapStudent may or may not
have an advisor. The cardinality of the advisedStudents role
played by the VapStudent could be 0:many meaning that the
VapFaculty object may have no students to advise or many.

The Schema Browser
The Schema Browser is used to describe the schema of the relational database into
which the persistent classes are stored. A physical database with tables (for a
relational database) is required to support the object model. If the application was
developed completely from scratch, the ObjectExtender schema generation of the
Schema Browser with tools, could be used to create a schema. ObjectExtender
creates the necessary data definition language (DDL) for the database or creates the
tables, indices, and constraints directly from the schema.
v Browser use
v Browser description
v Browser menu-bar choices

Browser use
Describing a schema involves the usual tasks of defining any database schema,
namely, creating tables, columns, primary keys, foreign keys and so on.

32 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

The database tables can be defined from scratch or they can be read, that is,
imported, from an existing database.

Once you have described the schema, you can export the schema to the database,
or you can generate DDL or scripts to invoke later to create the schema in the
database.

Browser description
The Schema Browser is described below.

The Schema Browser presents several views:
v Schemas. Displays the names of your schemas .
v Tables. Displays the table names for a selected schema.
v Columns. Displays the column names for a selected table.
v Foreign Key Relationships. Displays the foreign key relationships for each table.
v Information. This view is not labeled as such, but it is a read-only view that

provides descriptive information in a given context. For example, if you select
only the name of a given schema, it will provide certain statistics about it.

Each view is used to progressively define your database schema. This involves
defining database tables with their columns and key definitions.

Browser menu-bar choices
Most of the menu-bar choices for the Schema Browser are described below.
v Schemas. From this menu option, you can create, edit, and delete schemas. You

can also import existing schemas from legacy databases. Exporting schemas to
database is done from these menu options as well. The following choices are
available.

New Schema
Start with this option when you are creating your own schema from
scratch. You are prompted for a name. When you enter physical names
for your tables, columns, and foreign keys, you must take into account
any limitations of the underlying database. For example, the DB2
database currently limits table and column names to 18 characters. If
you let ObjectExtender derive the physical names from the logical
names, ObjectExtender makes useful truncations and solves duplicates
by adding numbers. The maximum name length value can be set by
executing the following Smalltalk code:
VapDatabasePhysicalRules maximumLength: 18.

Chapter 4. Tools 33

Further customization of building physical names can be achieved
through subclassing the VapDatabasePhysicalRules class.

Delete Schema
This option deletes the schema. If you have saved it previously then it is
only deleted from the browser. You can reload it again if you change
your mind later and want it back.

Import / Export Schema
This option has several choices and granularities for importing and
exporting schemas, tables, and keys to and from the database, as well as
providing the capability to drop tables and keys from the database. The
choices are as follows:

Import Schema from Database
If you are working with legacy databases, this option will import
the schema for you. You will prompted to provide a name for
the schema. You will be then prompted to provide the database
connection information: Connection Type, Data Source, Userid,
and Password. The user is then prompted with a dialog to select
the desired tables to import. The user must select the
appropriate qualifier and then press the Build Table List button.
A choice list of available tables is then produced. The user
should select the desired choices and then select OK

Alter Schema From Database
If you have made changes to an existing schema that you have
previously exported, you can make minor changes with this
option

Export Entire Schema to Database
If you are defining your schema from scratch, this option will
export the schema to the database. You will be prompted to
provide a name for the schema. Export uses the physical name.
You will then be prompted to provide the database connection
information: Connection Type, Data Source, Userid, and
Password.

Export Schema Tables to Database
If you are adding new tables to existing databases, this option
will export the tables to the database for you.

Export Schema Keys to Database
If you are adding new keys to the database, this option will
export them for you.

Drop Schema Tables from Database
If you are eliminating tables from a database, this option will
drop them for you.

Drop Schema Keys from Database
If you are eliminating keys a database, this option will drop
them from for you.

Save Schema
Saves your schema definitions to an application and storage class you
supply.

Load Available Schemas
Loads all available schemas defined by storage classes in your image.

34 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

Revert Selected Schemas
Reverts to the previously saved version of your schema.

Generate DDL Script for Schema Creation
Generates Data Definition Language scripts for executing in a database
environment to generate your schema. The scripts are sent to the
informational view in the browser. You need to highlight and execute
them when you are ready to do so.

Generate Script for Schema Creation
Generates scripts for executing in your development environment to
generate the schema in the database. The scripts are sent to the
information view in the browser. You need to highlight and execute
them when you are ready to create the schema in the database.

Generate Methods for Schema Creation
Generates the scripts and saves them to a class you have already
created.

Generate Model From Schema
A model is generated directly from the selected schema.

v Tables

For creating, editing, deleting, and exporting database tables, the following
choices are available:

Export Tables
This option enables you to the following selective tasks on tables and
keys. An export uses the physical name of each element, including
tables, columns and keys.

Export Selected Tables to Database
Choose specific tables to export.

Export Selected Tables with Keys to Database
Choose specific keys to export.

Drop Selected Tables to Database
Choose specific tables to drop from the database.

Drop Selected Keys to Database
Choose specific keys to drop from the database.

New Table
This choice launches a Table Editor. Fill in the appropriate fields to
complete the table definition.

The Table Editor prompts your for the following information:

Chapter 4. Tools 35

– Name. This is a convenient logical name. Since most databases have
limitations on their physical names, this logical name is a convenient
way to provide a more descriptive name for the table.

– Physical Name. This is the physical name for the table as the
database will know it. Some databases have limitations on the name
length.

– Qualifier. Provide a qualifying name for the table. This is a unique
identifier for the table used in conjunction with the table name to
identify the table.

– Table columns. This is where you define the columns for the table. To
define a new column, click New.

– Primary key. Define the primary key for the table by selecting a
defined column name or names and clicking on the arrows.

You can also Edit, Copy, Delete, and Rename tables.

Generate DDL
Generates the Data Definition Language for the table for later uses.

v Columns. The following menu choices are available.

Columns

The Column Editor prompts you for the following:
– Name. This is a logical name relative to your object model. Since

most databases have limitations on their physical names, this logical
name is a convenient way to provide a more descriptive name for the
column.

– Physical Name. This is the physical name for the column as the
database will know it. Some databases have limitations on the name
length.

– Type details. This information contains the atomic information for the
column you are defining, that is, what type it will be, what kind of
converter it will need, and if it can be null.
- Type. From the database perspective, these are the types allowable

that the database understands.
- Converter. From the framework perspective, this is the converter

that will execute to translate the database representation of the data
into the object model representation.

Allow nulls. Check or uncheck if nulls are acceptable for the column.

Sort Columns
This is one choice of a pair of toggle switches. When selected, it is then
disabled to indicate it is active.

36 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

Do Not Sort Columns
This is one choice of a pair of toggle switches. When selected, it is then
disabled to indicate it is active.

Generate DDL
This option generated Data Definition Language for adding more
columns to an existing table. The DDL is sent to the information view
for highlighting and executing when ready.

v Foreign_Keys

For creating, editing and deleting foreign key relationships. The following
choices are available:

Foreign Key Relationships
This option launches the Foreign Key Relationship Editor.

To define a foreign key, supply the following information:
– Name. This is a logical name. It does not store in the database.
– Physical Name. The physical name stores in the database and often

has a length limit set by the database.
– Constraint exists in database.
– Primary key table. The primary key table is the table pointed to from

the foreign key table in the foreign key relationship.
– Foreign key table. The foreign key table points to the primary key

table by holding a foreign key whose value is equal to the primary
key of the primary key table. The foreign key table is dependent on
the primary key table to exist in the relationship.

Generate DDL
Generates the Data Definition Language for creating the foreign keys in
the database. The DDL is sent to the information view for highlighting
and executing when ready.

v ObjectExtender Tools. Other ObjectExtender tools and browsers can be launched
from this menu.

Rename Element
The Rename Element option ensures that all pointers to the element are
updated appropriately.

Chapter 4. Tools 37

The Map Browser
The Map Browser is used to logically connect the object model description with the
data store schema description. This enables the framework to generate the
necessary service code for such things as SQL queries and other supporting code
needed for persisting the model objects. The Map Browser with tools is used to
create mappings between class attributes and table columns. Class associations
must be mapped to table foreign keys.
v Browser use
v Browser description
v Browser menu-bar choices

Browser use
Mapping an object model to a data store is done by creating table maps and
property maps. A table map is required for the classes in your model that you
want to persist in the data store. The property maps are defined for each table map
by mapping object attributes to database columns.

In the Property Maps, two types of properties are shown. Maps prefixed with an a
represent attribute property maps between attributes in the object model and
columns. Maps prefixed with an r represent associations (r stands for relationship)
between interclass associations and foreign key relationships in the database
schema.

Browser description
The Map Browser is described below.

The Map Browser presents several views:
v Datastore Maps. Displays the names of your data store maps.
v Persistent Classes. Displays the names of your model classes which you will

map to database tables.
v Table Maps. Displays the names of the table maps. These are the maps between

your persistent classes and database tables.
v Property Maps. Displays the name of the property maps that are defined for

each table map. The property maps included are the class attribute to database
column mappings as well as class relationship to table relationship (connection)
mappings.

v Information. This view is not labeled as such, but it is a read-only view that
provides descriptive information in a given context. For example, if you select a
map it will provide certain statistics about the map.

38 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

In the Map Browser, you describe the mapping of each persistent class. A map is
required for each persistent model class.

For each attribute, you specify the columns which should be read to populate that
instance variable.

For each relationship, you specify the foreign key relationship which is its
persistent representation.

The first step in defining the mapping for a class if to define a table map to
contain the column and relationship maps. A class must have at least one table
map specifying the table to which the class will be mapped. Table maps contain
attribute and relationship maps which refer to columns and keys within the
mapped table.

Mapping rules allow fields that have field lengths to be mapped together as well
as fields of different data types.

Browser menu-bar choices
Most of the menu-bar choices for the Map Browser are described below.
v Datastore_Maps.

The following choices are available:

New Datastore Map
This launches the New Data Store Map dialog. Give your map a name,
and select the model and schema to map.

Delete Datastore Map
Deletes the selected map from the browser.

Save Datastore Map
Saves the map to an application and storage class that you supply.

Load Available Maps
This loads all available maps in your image.

Revert Selected Map
Loads the previously saved version of the map selected. Use this option
if you have made changes but want to discard them and go back to the
original.

Generation Options
Set default options for service code-generation.

v Persistent_Classes.

Chapter 4. Tools 39

Enable pessimistic locking
This is a toggle setting that enables pessimistic locking for the selected
model classes you are mapping to the data store.

Disable pessimistic locking
This is a toggle setting that disables pessimistic locking for the selected
model classes you are mapping to the data store.

v Table_Maps.

New Table Map
Several kinds of maps are supported from this option as follows.

Table Map with No Inheritance
This maps a single class to a single table.

Add Single Table Inheritance Table Map
Known as typed partitioning, this maps a class hierarchy to a
single database table.

Add Root/Leaf Inheritance Table Map
Known as vertical partitioning, this maps a class hierarchy to a
hierarchy of database tables.

Add Secondary Table Map
Secondary maps are used when a single persistent class is
mapped to more than one database table. For example, a
persistent class Department may have name, courses, and staff
mapped to the primary table (DEPT) and have other attributes
such as phoneNumber mapped to a secondary
table(DEPT_EXTRAS).

Edit Table Map

Delete Table Map

Edit Property Maps
Launches the Property Map Editor for modifications to property maps.

The Property Map Editor provides the means to map persistent class
attributes and relationships to database columns and foreign key
relationships. The editor contains two pages (tabbed dialog boxes): one
for mapping attributes and one for mapping relationships.

The attributes page allows the user to choose between a simple mapping
of an attribute (one attribute to one column) and a complex mapping (one
attribute to one or more columns).

If you choose the simple map type option, you are prompted with a
choice of columns and must pick one. If you choose a complex mapping
then the Complex Attribute Editor is used to map the attribute. With the
Complex Attribute Editor, you must complete two tasks:
1. Choose a Composer class.
2. Map each attribute of the complex attribute class to a database

column.

Example: Suppose a model class has an attribute address of type Address
and you wish to map the number , street, and zip attributes of the
Address to three separate columns in the database. You would select the
complex map type option from the Property Map Editor, then launch the
Complex Attribute Editor. The editor requires you to choose a composer

40 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

class (AddressComposer). When the composer has been selected, provide
the associated column for each of the Address attributes (number, street,
zip).

The relationships page allows you to map class relationships to database
foreign key relationships. This is a straightforward mapping along the
lines of simple attribute mapping. You select a foreign key relationship
for each class relationship.

v Property_Maps.

Show inherited properties
Gives visibility to inherited properties when mapping tables with
inheritance.

Do not show inherited properties
Turns off visibility to inherited properties for inheritance table maps.

Be part of optimistic predicate
Includes this attribute in a searched update.

The SQL Query Tool
The SQL Query Tool can be used to execute SQL code against the connection used
by a generated DataStore.

The SQL Query Tool is described below.

The SQL Query Tool presents two views:
v Text entry view. In this view you can enter and execute SQL commands.
v Results view. This is a read-only view which displays the results of the SQL

commands that you execute in the text entry view.

When you open the SQL Query Tool, you are prompted to supply the name of a
data store and then a connection to the database is made. The name of the data
store will be displayed on the window title.

In the illustration of the tool, you can see that a database connection has been
made with a data store named CEDUC. In addition, it is evident that an SQL
query has been entered and the results displayed in the information view.

SQL commands are entered in the text view.

To execute the command you must highlight the command, and then choose the
Execute SQL menu item from the text view’s pop-up menu.

Chapter 4. Tools 41

The Status Tool
The Status Tool can be used to monitor the transactions, views, and caches in the
systems, and to reset the state of various components. It is intended to alert you to
trouble-spots in your design such as performance problems and so on.

The Status Tool presents a single view where results of various system
interrogations are supplied. For example, you can interrogate the state of your
database connection, or analyze statistics on persistent objects, or home collections.
The menu items are descibed below.

View Use this menu item to view Home Collection Cache Statistics, Persistent
Object Statistics, Data Store Statistics, and Transaction Statistics.

Cleanup
This menu item allows you to perform cleanup functions including Clear
Home Collction Cache, Reset Data Store, and Release All Transactions.

Trace This menu item allows you to perform tracing functions including Basic
Trace and Detailed Trace.

Inspect
This menu item allows you to perform inspections including shared
transaction, current transaction. transaction, service object, DO cache,
relationship cache, and data store inspections.

Activate
This menu item allows you to Activate Data Store.

In the above illustration, the information shown in the results view was given
when Persistent Object Statistics was selected from the View menu.

42 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

Chapter 5. Tasks

Tasks and samples overview
This section uses samples to help you complete each task. The following sample
models are shipped with the ObjectExtender feature:
v AutoWorld
v Bank
v University

These models were constructed using the ObjectExtender tool set.

The samples require an installed database supported by this feature, such as DB2.

These models can be studied in-depth to learn how business objects and their
relationships are defined, how specific objects are mapped to their data store, what
their transaction isolation policies are, and so on.

If you prefer to do an example that gradually introduces you to the ObjectExtender
framework, follow the one in “Your first ObjectExtender application”. This example
leads you through a simple application using some of the business objects
described in the University model.

Your first ObjectExtender application
Creating an ObjectExtender application can be divided into building:
1. The model
2. The persistency support for the model
3. The views that work with the model.

Each of these parts can be worked on by different people at different times and
without impacting the other parts. This is one of the benefits of object-oriented
programming whereby an application can be constructed in layers.

The first example is to create a simple model entity with some attributes, persist it,
and then build some views to allow the entity to be listed, edited and deleted.

The next step is to then explore different ways of persisting the model as well as
other ways of building views over the model.

The model that is used as an example is one of a university. This will include a
number of entities including departments, faculties, students, course. To begin with
the department will be defined, then persisted using DB2 as the data store, and
then some VisualAge views built to allow departments to be listed, created, edited
and deleted.

Creating a model
The first step is to create a model.
1. Open the Model Browser from the ObjectExtender Tools menu on the

Transcript.
2. Select New Model from the Models menu.
3. Enter the name for the model: TstUniversity

© Copyright IBM Corp. 1998, 2000 43

Specifying storage details for the model

Each model has several storage entities associated with it that relate to how the
model is stored in the Envy manager. These entities are the metadata application
that is used to store the rules holding the information about how the model is
defined.

To hold the metadata for the example model, an application named TstMetadataApp
will be created. This should have a prerequisite of VapMetadataApp. The application
is created when you save the model as follows:
1. Select the model, TstUniversity, in the Models view.
2. Select Save Model from the Models menu.
3. Enter the application name: TstMetadataApp.

Next, you are prompted to enter a class name. This class will hold all of the
information about the TstUniversity model within the TstMetadataApp.

4. Enter the class name: TstUniversityModel

Because TstMetadataApp and TstUniversityModel are defined as classes in the Envy
manager, they are able to benefit from all of the source management features that
Envy provides, that is, they can be versioned to represent a baseline, exported from
one manager to another, and included in configuration maps to allow developers
to alternate between different consistent states of a model definition together with
the Smalltalk classes that implement the model.

Once we have defined the storage entity for TstUniversity, we can save the model
by selecting Save Model from the Models menu. This will create an edition of the
class TstUniversityModel in the application TstMetadataApp.

Notes:

1. Loading a model. If another developer loads the application, TstMetadataApp,
into their image they will not see the TstUniversity model in their Model
Browser by default. The model must be loaded by selecting Load Available
Models from the Models menu.

2. Saving a model. Saving a model will take the information changed in the
browser and store it in an edition of the class TstUniversityModel.

3. Reverting a model. Revert Selected Model (on the Models menu) will revert
the model to the last saved definition of the model in the TstUniversityModel
class.

44 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

Creating a class in the model
The first entity that we will create in the TstUniversity model is the department
model class. This is a relatively simple class with four attributes.
1. Select TstUniversity in the Models view.
2. Select New Class from the Classes menu.
3. Enter a class name: TstDepartment.

Add the four attributes as follows:

Attribute name Attribute type Value required

department String Yes

building String No

phone String No

room String No

For each attribute, do the following:
1. Click New in the Attributes tabbed dialog box. This launches the Attribute

Editor.
2. Type the attribute name: department, for example.
3. Select String from the Type menu.
4. Select OK.

For an object to exist in ObjectExtender it must have a unique identifier. This is
also known as an object identifier (OID). We will use the attribute, department, as
the OID for the Department class.

To define an object identifier, do the following:
1. Select the attribute, department, in the Attributes view.
2. Click >>.

This displays the name of the attribute in the Object ID list.

This concludes creating the class, TstDepartment.

Save the model.

Creating the code for the model
The next step is to generate the Smalltalk classes that will support the Department
class definition in our image. Before this can be done, we need to specify certain
things regarding the kind of generation we wish to perform the application into
which the generated Smalltalk classes will be stored.

Specifying the application into which the model is generated

Select the TstUniversityModel in the models view, then select Model Code
Generation Options from the Models menu.

This launches the following dialog.

Chapter 5. Tasks 45

The name of the application used to store the generated Smalltalk classes that will
make up the TstUniversity model should be TstUniversityModelApp. VisualAge will
automatically create this application if it does not exist but any existing application
can be used as long as it has a prerequisite of VapPersistence.

In addition to generating the Smalltalk code for the model classes, ObjectExtender
is able to generate public interface features and methods that will allow the model
classes to be used within a VisualAge composition editor. This should be selected
(checked). Likewise we also will use the ObjectExtender feature that is able to
generate persistent classes.

Generating the classes

The next step is to generate the Smalltalk classes that contain the code to support
the execution of the TstUniversity model. Select Generate from the Models menu
on the Model Browser.

The following classes will be generated:

TstDepartment
The business object class to support the behavior of the department.

TstDepartmentHome
The home collection class that has the protocol to create, list and find
instances of TstDepartment

TstDepartmentKey
The concrete class that is used to represent the key object of a Department

Creating persistence support
Before proceeding further with the example we will create some persistence
support. This will enable us to illustrate the features of the home collection class,
the support for transactions within ObjectExtender, and to start building views.
Good object-oriented applications should be separated into layers and the
persistence layer has the knowledge to store our business objects (that is, make
them persistent) as well as do lookups for us against the store.

The persistence support classes we will generate will enable us to store objects
locally within our image. This helps to iterate over the model schema and the
model classes and to build working views to get the application as far along as
possible without having to think about the issues associated with mapping the
business objects to a relational data store.

To generate the persistence support that will enable us to do local image
persistence, do the following:
1. From the Model Browser, select TstUniversity, in the Models view.
2. Select Generate Image Schema from the Models menu.

46 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

The persistent support classes are generated into the application,
TstUniversityServicesApp.

The following classes will be generated:

TstUniversityDataStore
The data store owns and manages a pool of data store connections
(sessions) and registers a home collection for each data store connection.

TstUniversityTstDepartmentDataObject
The data object class contains the data for a business object in the form in
which it was retrieved from the persistent store.

The data objects that support the businesss objects will be stored in the
image, and saved when the image is saved. To clear out these objects, and
start from an empty set of objects, evaluate the following code:

ImageServiceObject reset.

TstUniversityTstDepartmentServiceObject
The service object implements the Create/Read/Update/Delete (CRUD)
protocol and other navigation methods required when mapping data
objects to and from the persistent store.

Before working with objects in the model, the data store must be activated. To
continue, evaluate the following code:

TstUniversityDataStore singleton activate.

Because we generated the schema for local image persistence, the superclass of
TstUniversityDataStore is LocalImageDataStore which will use the image as the
mechanism for persistence.

The department home collection class
The home collection class is a very important class that collaborates with the
business object to provide a number of support services. It is a singleton class
which means there is only ever one instance in the image at any given time.

The primary tasks of the home collection are to provide support protocol for
creating, finding and accessing instances of the model class.

TstDepartmentHome singleton allInstances

This will return a collection of all TstDepartment objects. Note that this is different
than the class method, allInstances which will actually query the image for all
known instances of an object. The home collection object answers a collection of all
instances that were created through the public creation protocol on the home
collection itself. To illustrate this, evaluate the following code:

TstDepartment new.
TstDepartmentHome singleton allInstances.

Chapter 5. Tasks 47

The department that was created in the first statement does not show up in the list
of allInstances that the home collection returns. To create bona fide persistent
instance of the TstDepartment class the create method should be used on the home
collection.

Before working with our department objects we need to understand the transaction
model. At any one point in time there is always a current transaction inside of
which all of the work on business objects is done. A special transaction exists
which is the shared transaction. The shared transaction represents the persisted
view of the business model and is read only. To begin changing persisted objects a
new transaction must be started. Each transaction has a parent which is the
transaction into which it will commit its changes. A top-level transaction is one
which has a parent of the shared transaction, that is, when it is committed its
changes will be made persistent. Top-level transactions can be created with the
following method:

Transaction begin

To create objects a transaction must be started. The transaction allows work to be
undone and committed as a unit of work to the persistent store. To create data for
our sample we need to evaluate the following code in the System Transcript
window:

Transaction begin.
(TstDepartmentHome singleton create)

department: 'Math';
room: 'A2'.

Transaction current commit.

Now inspect the same code two more times to create English and History
departments. Provide a room number for each department as well.

To see the committed department the home collection can be queried for
allInstances.

TstDepartmentHome singleton allInstances.

Home collection also have ″lookup″ protocol to let us search for objects. Method to
help locate an object by the key are generated automatically, that is,
TstDepartmentHome has a method, findByDepartment: aDepartmentString.

| department |
Transaction begin.
department := TstDepartmentHome singleton findByDepartment: 'Math'.
department room: 'A3'.
Transaction current commit.

To delete an object it can be sent the unary method, markRemoved. This does not
actually delete the object but rather marks it to be deleted in the current
transaction and it is then deleted when the transaction is committed.

| department |
Transaction begin.

48 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

department := TstDepartmentHome singleton findByDepartment: 'Math'.
department markRemoved.
Transaction current commit.

Creating a view
The next step is to create some views that will list departments, as well as create,
delete, and edit departments.

In the Organizer, create a new application called TstUniversityViews. We will use
this application to put the view classes for our university model. The first view we
create will list departments and provide the capability to edit their details.

Listing departments
Create a new (visual) part for the TstUniversityViews application called
TstDepartmentView.

Open the Composition Editor on TstDepartmentView. To display the departments,
you will need to add a List part and a home collection part as follows:
1. Select the Lists category from the left column of the parts palette, and then

select the List part from the right column of the parts palette and drop it in the
Window part on the free-form surface.

2. Select Add Part from the Options menu, and type the class name,
TstDepartmentHome.

3. Connect the TstDepartmentHome attribute allInstances to the items attribute of the
List part.
This connection specifies that all department instances will display in the list.

Editing departments
To make the list editable is the next goal. To edit the details of a department, you
will select the department in the list and modify its data in text fields.

Do the following:
1. Add a Variable part. You can use Object Extender visual parts on the parts

palette or select Add Part from the Options menu, and type the class name,
TstDepartment. Select Variable, under Part Type. Select OK.

2. Connect the self attribute of TstDepartment to the selectedItem attribute of the List
part.

Chapter 5. Tasks 49

The variable will contain the object that represents the selected department as
individual departments from the list are selected. By connecting the attributes
of the department to some edit controls we can modify the details for a
selected department.
If we were to do these steps an exception would be raised by the shared
transaction stating that we attempted to write into a read-only version. This is
because persisted objects cannot be modified unless a transaction has been
started.

ObjectExtender has some visual parts to help you work with transactions. In the
Composition Editor, the parts palette has a category named | department |
Transaction begin. department := TstDepartmentHome singleton
findByDepartment: ’Math’. department markRemoved. Transaction current commit.
. The first ObjectExtender part to illustrate is the TopLevelTransaction part. This
part will always begin a new top-level transaction when the view on which it is
used is opened.

Do the following:
1. Add a TopLevelTransaction part on the free-form surface of the Composition

Editor.
2. Add a Push Button part to the Window part.
3. Label the push button: Save.
4. Connect the push button’s clicked event to the commit action of the

TopLevelTransaction part.
5. Add two text boxes from the Data Entry controls and add corresponding labels

for Building and Room. You can also use the Quick Form menu item and select
the building and room attributes.

6. Test the view by opening it and selecting the Math department.
7. Change its building and room and then close the view.
8. Open the view again.

Note that the changes were lost. This is because the transaction was not
committed.

9. Make some changes again and click Save.
This time the changes are committed to the shared transaction and made
persistent.

Open it again and note that the changes were lost. This is because the transaction
was not committed. Make some changes again and click Save. This time the
changes are committed to the shared transaction and made persistent.

50 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

Creating departments
To create departments, we will add another button with the label, New. This will
create a new department that is placed into the variable part. Do the following:
1. Add a Push Button part to the Window part.
2. Label the push button: New.
3. Connect the push button’s clicked event to the create action of the

TstDepartmentHome1 part.
4. Connect the normal result of the action, the newly created department, to the self

attribute of the TstDepartment1 .

To create new departments, you will need to add a Text part, and a label,
Department, for the department attribute. After you have added the Text part and
label for department, connect the Text part’s object attribute to the department
attribute of the TstDepartment1 variable.

Test the view as follows:
1. Click the Test button.
2. Click New on the TstDepartmentView.
3. Type the name of a new department: Philosophy.
4. Type a room number for the department: 101.
5. Click Save.
6. Close the view.
7. Open the view again to verify that the new department has been added.

As before, if we create the department (click New) without saving it (click
Save), the department will not be added because the transaction would not
have been committed.

The next step is to get the list of departments to refresh each time we add or
change a department. Also, we should ensure that the department itself cannot be
changed when we are editing a department. This is because the department is the
attribute we defined as the object identifier (OID) in the Map Browser, and it is the
effective key of the department business object. Changing the key of a business
object is not permitted once an object has been persisted because it means we will
no longer be able to retrieve it from the data store.

To ensure that the department’s key cannot be changed for an existing department
do the following:

Chapter 5. Tasks 51

v Connect the isNotPersistent attribute of the TstDepartment1 part to the enabled
attribute of the department Text part.
In this way, the Text part is only enabled when creating a department. When an
item is selected in the list, it means we are editing an existing persisted
department; its object identifier therefore cannot be modified.

To get the List part to refresh, we can do the following:
v Connect the committed event of the TopLevelTransaction1 part to the items action

of the List part.
The connection wire should be dotted indicating that we need to supply a
parameter. The parameter we need to supply is the allInstances attribute of the
TstDepartmentHome1 part. Connect value to allInstances.
Whenever the transaction is committed, the items of the List part are therefore
refreshed with the allInstances of the TstDepartment class.

v In the illustration, the event-to-action connection from the TopLevelTransaction
part to the List part is dragged out to the right to help make the view more
readable.

Deleting departments
Thus far, we can create departments, and edit existing ones. Deleting departments
is the next task we want to build into our application. Do the following:
1. Drop a Push Button part on the Window part and label it: Delete
2. Connect the clicked event of the Delete button to the remove action of the

TstDepartment1 variable.
All business objects have an action remove that will mark the object as removed.
Pressing Save after Delete would achieve this but it is probably easier to
commit the transaction immediately after you click Delete.

3. Connect the clicked event of the Delete button to the commit action of the
TopLevelTransaction1 part.
The last step is to ensure that the Delete button is disabled until there is
actually an object to delete. This can be done by connecting the selectionIsValid
attribute of the List part to the enabled attribute of the Delete button.

4. Test the view. It is possible now to add, edit, and delete departments.

52 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

Note that when the TopLevelTransaction1 part has been committed once, it cannot
be committed again. If this is done a walkback will occur informing you that you
attempted to modify a read-only version of an object. This is because once the
top-level transaction is committed, the shared transaction becomes the current
transaction and a new top-level transaction must be begun. The next step is to
modify the view such that we generate a new top-level transaction each time we
commit an existing one.

Creating a new top-level transaction each time one is
committed

A top-level transaction is created by sending the following message:

Transaction begin

The top-level transaction is a special transaction that is a child of the shared
transaction. It can also be created with the method:

Transaction shared beginChild

The TopLevelTransaction part, used in our example, will always create a fresh
top-level transaction when the view is opened. To generate new top-level
transactions each time one is committed, we will use a variable part for
TopLevelTransaction rather than a non-variable part and use the SharedTransaction
to create new top-level transactions as required. Visually, one can always reference
the SharedTransaction on a Composition Editor with the SharedTransaction part.
This part is always the same instance of the singleton shared transaction, even if it
is used on many different views. This behavior can be contrasted with the
TopLevelTransaction part that always generates a new top-level transaction each
time the view is opened.

For this reason, we will change the TopLevelTransaction part in our example to a
variable part. Changing the part to a variable part will give us more control over
when to create the transaction that will be used inside the variable.

There are two situations when we need to create a top-level transaction: (1) when
the view first opens, and (2) each time a commit happens.

Chapter 5. Tasks 53

Do the following:
1. From the ObjectExtender parts palette category, drop a SharedTransaction part

onto the free-form surface.
2. Drop a variable part for TopLevelTransaction onto the free-form surface. This

will replace the TopLevelTransaction part.
3. Reconnect the TopLevelTransaction part connections to the TopLevelTransaction

variable part, then delete the original TopLevelTransaction part.
4. Connect the openedWidget event of the Window part to the beginChild action of

the SharedTransaction and the result of this to the self attribute of the
TopLevelTransaction variable.
This ensures that when the view opens we have a top-level transaction to work
with.

5. Connect the committed event of the TopLevelTransaction variable to the
beginChild action of the SharedTransaction part.
This connection will generate a fresh top-level transaction each time one is
saved.Connect the result of the connection to the self attribute of the
TopLevelTransaction variable.

There are two conections from the commited event of the TopLevelTransaction
variable. One of these is to the SharedTransation part to regenerate a fresh
transaction and the other is to the items attribute of the List part to ensure that is
refreshed. It is important to ensure that the connection to the SharedTransaction
part is the first of these two that happens.
1. Select the TopLevelTransaction part and from its pop-up menu, choose Reorder

Connection From.
2. Drag the connections to make sure that the connections fire in the right order.

You can also use a Business Transaction in place of the Top-Level Transaction.

Note: When using ObjectExtender with Web Connection parts you must be
particularly aware of transaction scope. When possible, the scope of the
transaction should be limited to the equivalent of one page. If this design
does not fit your application, then you will need to place a handle to the
current transaction in session data. Each Web Connection part will then need
to retrieve the current transaction from the session data. This is best
accomplished by writing scripts.

54 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

|
|
|
|
|
|
|

Transactions in more depth
The example thus far works in a scenario with only one transaction. This is the
top-level transaction that is created initially when the view opens and regenerated
from the shared transaction each time it is committed. It is possible, however, to
have more than one transaction in existence at the same time. At any one point in
time only one transaction can be the current transaction. Whenever a transaction is
created it becomes the current one and whenever a transaction is committed or
rolled-back, the parent of the committed transaction will become the current
transaction after the commit. To illustrate this consider the following code:

Transaction reset

This will reset all transactions back to an initial state. Only the shared transaction
will exist.

Transaction current

The above therefore will return the shared transaction. This can also be done with
the explicit message:

Transaction shared

When a new top-level transaction is started, it is the current transaction. For
example,

Transaction begin.
Transaction current.

The current transaction is now the top-level transaction.

Transaction current rollback.
Transaction current.

The above code would roll back the top-level transaction, and the current
transaction would now be the shared transaction (the parent of the top-level
transaction).

Nested transactions
All transactions have a parent transaction. This is the transaction from which they
were created with the beginChild method.

Chapter 5. Tasks 55

|

The shared transaction has no parent transaction. It represents a persisted view of
the world. It could be thought as a proxy or gateway to the actual database which
is shared with other users.

The top-level transaction can be thought of as a special transaction which is a child
of the shared transaction. When it is committed, its changes are merged into the
shared transaction where they become persisted and permanent.

It is not just the shared transaction which can create child transactions. Any
transaction can create child transactions providing support for different levels of
nested transactions. The following code creates a top-level transaction, and then
creates a child of the top-level transaction. A department is created in the top-level
child and committed through to the shared transaction.

| topLevel topLevelChild |
topLevel := Transaction begin.
topLevelChild := topLevel beginChild.
TstDepartmentHome singleton create department: 'Geography'.
topLevelChild commit.

When the top-level child is committed it merges its changes into its parent, in the
above case, the parent is the top-level transaction. Inspecting allInstances from the
home collection, you will see that the Geography department has not yet been
persisted.

TstDepartmentHome singleton allInstances.

If the top-level transaction is committed, the changes are applied to the shared
transaction, and the new department will become persisted.

| topLevel topLevelChild |
topLevel := Transaction begin.
topLevelChild := topLevel beginChild.
TstDepartmentHome singleton create department: 'Geography'.
topLevelChild commit.
topLevel commit.

Intuitively, if we did not commit the top-level child, but only committed tht
top-level transaction, we might expect that the Geography department would not
become persisted. We have not explicitly committed the top-level child transaction
(the one in which the department was created) and therefore it has not been
applied to the top-level transaction. However, when a transaction is committed, all
of its child transactions are also committed.

| topLevel topLevelChild |
topLevel := Transaction begin.
topLevelChild := topLevel beginChild.

56 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

TstDepartmentHome singleton create department: 'Geography'.
topLevel commit.

The result of this is that the Geography department is persisted and becomes
visible in the shared transaction.

TstDepartmentHome singleton allInstances.

When a transaction is committed, it first commits all of its child transactions in the
order they were created, and then commits itself. Thus, by committing the topLevel
transaction, the Geography department is first pushed from the topLevelChild into
the topLevel and from there to the shared transaction.

Switching between transactions
In scenarios where there is more than one transaction being used, it is sometimes
necessary to switch back and forth between them. Any transaction can be made the
current transaction with the resume message.

The following example code illustrates this.

| transaction1 transaction2 |
transaction1 := Transaction begin: 'firstTransaction'.
transaction2 :=Transaction begin: 'secondTransaction'.
Transaction current inspect.

The inspection shows that transaction2 is the current transaction.

| transaction1 transaction2 |
transaction1 := Transaction begin: 'firstTransaction'.
transaction2 := Transaction begin: 'secondTransaction'.
transaction1 resume.
Transaction current inspect.

In the above example, transaction1 is the current transaction because it was
explicitly resumed.

| transaction1 transaction2 |
transaction1 := Transaction begin: 'firstTransaction'.
transaction2 := Transaction begin: 'secondTransaction'.
transaction2 suspend.
Transaction current inspect.

Chapter 5. Tasks 57

If a transaction is asked to suspend itself, the shared transaction will become the
current transaction. This occurs only if the transaction being asked to suspend itself
is actually the current transaction at the time it is suspended.

| transaction1 transaction2 |
transaction1 := Transaction begin: 'firstTransaction'.
transaction2 := Transaction begin: 'secondTransaction'.
transaction1 suspend.
Transaction current inspect.

In the above example, transaction2 is the current transaction after it is created, and
transaction1 therefore cannot be suspended; transaction2 remains as the current
transaction.

Two top-level transactions
The following scenario creates two top-level transactions and switches between
them. The Math department is created in the first transaction, the French
department in the second transaction. After the first transaction is committed, the
inspection of all department instances shows only the Math department, then the
second department is committed and both are visible when inspected.

| firstTransaction secondTransaction|
firstTransaction:= Transaction begin: 'firstTransaction'.
TstDepartmentHome singleton create department: 'Math'.
secondTransaction :=Transaction begin: 'secondTransaction'.
TstDepartmentHome singleton create department: 'French'.
firstTransaction commit.
Transaction current allInstances inspect.

At this point only the ’Math’ department has been committed.

Transaction current.

The shared transaction is the current transaction at this point. It was the parent of
the firstTransaction.

secondTransaction commit.
TstDepartmentHome singleton allInstances inspect.

Now both the ’Math’ and ’French’ department have been committed.

Visual programming for more than one transaction
The TstDepartmentView built earlier uses only one transaction. This is the top-level
transaction that it creates when it opens and regenerates each time it is committed.
There is no guarantee however that this top-level transaction is the current
transaction in a more complex scenario. Run the TstDepartmentView and create and
edit some departments. Then switch to the System transcript (without closing the
TstDepartmentView) and make the shared transaction the current transaction with
the following code:

Transaction shared resume

58 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

Switch back to the open instance of TstDepartmentView and try to create or edit
some department. You will get a walkback telling you that are trying to create or
modify objects in the shared transaction. This is because we explicitly switched the
shared transaction to be the current transaction. Access to both the
TstDepartmentHome part and the TstDepartment1 variable are done in the context of
the current transaction and, because the shared transaction is read-only, the view
will not work properly.

One way to program around this is to make the top-level transaction resume when
the TstDepartmentView receives focus. This can be done with a connection from the
gettingFocus event of the window to the resume action of the TstDepartment1
variable.

The problem with relying on the gettingFocus event is that it assumes that all work
done on the TstDepartmentView is while it has focus. In more advanced scenarios it
is possible that the view will ask questions of its objects without focus being
received, for example to repaint or refresh an area of the screen following an
expose event. It is also possible that more than one transaction can be going on
together on the same view. The solution to this is to have a mechanism of
specifying at design time an association between a part and a transaction and
having the guarantee that all access to the part is done within the context of that
transaction. This is provided for with the part TransactedVariable. This can be
found on the palette, under the ObjectExtender category.

Using the TransactedVariable part
The first example of using the transacted variable part will be to make the
TstDepartmentView transaction safe, that is, it will work in the correct transaction
regardless of whatever else is going on around it.

Making TstDepartmentView transaction safe

We will change the TstDepartmentView created earlier such that it shows details of
the department in both the top-level transaction and also the shared transaction.

The part TransactedVariable is a special type of variable part. It has all the
behavior of a variable except that it has an additional attribute transaction. When a
variable is given a transaction it will ensure that all actions, events and attributes
performed on the variable are within that transaction. For the TstDepartmentView
we need two transacted variables, one that has the department within the shared
transaction, and one that has the department within the top-level transaction.
1. Reopen the Composition Editor on TstDepartmentView.
2. Select Add Part from the Options menu, and type TstDepartment for the class

name.
3. Select Transacted Variable, under Part Type.

4. Move the connections you made for the TstDepartment1 variable part to the
transacted variable part, then delete the TstDepartment1 variable part.

Chapter 5. Tasks 59

5. Connect the self attribute of the TopLevelTransaction2 variable to the transaction
attribute of the transacted variable.
This will ensure that the variable TstDepartment1 always sets the attribute
values of its contents, the transaction, in the top-level transaction.

Now, test the view. Switch to the Transcript and get the shared transaction to
resume itself as described earlier. When you go back to the view and edit some
attributes of the selected department, the earlier walkback, caused by attempting to
update the shared transaction, no longer occurs. This is because of the connection
from the TopLevelTransaction variable to the transaction attribute of the
TstDepartment variable. This ensures that access to the variable’s value is always
done in the context of the specified transaction.

Go back to the System Transcript and look at the current transaction using the
method

Transaction current.

Note that it will be the top-level transaction (if you took the step to resume the
shared transaction earlier). The transacted variable part will ensure its contents are
always accessed in the context of its specified transaction but it will not change the
current transaction.

In addition to specifying the transaction in which the TstDepartment1 variable
should operate, we should also specify the same for the department home
collection. When the New is clicked, it performs the create action, thus the new
department should be created in the top-level transaction.

To create a transacted variable that contains the TstDepartmentHome1 part
1. Select the TstDepartmentHome1 part, and from its pop-up menu, select Create

Transacted Variable, then drop the transacted variable on the free-form surface.
The transacted variable is then added for you and the connection from the self
attribute of the TstDepartmentHome1 part to the new variable that will be
named transacted TstDepartmentHome1.

60 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

2. Connect the self attribute of the TopLevelTransaction1 variable to the transaction
attribute of this transacted variable and move all the connections from the
TstDepartmentHome1 part to the newly created transacted
TstDepartmentHome1 variable (except for the connection from the part to the
variable itself).

As was the case earlier, make sure that the ordering of the committed events from
the TopLevelTransaction are such that the connection to the SharedTransaction part
is first.

This view now ensures that the TstDepartment1 variable and the transacted
TstDepartment1 variable are always accessed within the context of the transaction
within the TopLevelTransaction1 variable, regardless of whatever else is going on
around the view in terms of which is the current transaction.

Viewing multiple transactions
To show the usage of the transacted variable part further, we will build a view that
shows the attributes for a department in both the shared transaction and the
top-level transaction. To do this, another transacted variable must be added that
contains the selected department object. This variable must be given the shared
transaction as its transaction.

To show the shared and top-level transactions, we will use multiple views. To
show the multiple views, we will create a form with the edit controls and
connections that we used formerly to show the details of the department. In
addition, we will add a transacted variable to the form.

Furthermore, we will promote the following attributes of TstDepartment1: self,
transaction, and remove. This will allow views that use this part to specify the
department that it should work with as well as the transaction in which it should
operate.

Chapter 5. Tasks 61

Create a new view, TstDeparmentTwoTransactionsView. Do the following:
v Add a List part.
v Add Push button parts for New, Delete, and Save operations as you did for

TstDepartmentView.
v Add two TstDeparmentEditForm parts, one above, one below the List part.

The top TstDepartmentEditForm will be used to show the selected department in
the shared transaction. When the form was built the attributes self of the
TstDepartment1 variable (representing the department which will be displayed)
and the attribute transaction were promoted.

v Add a SharedTransaction part and connect its self attribute to the
tstDepartment1Transaction attribute (the promoted transaction) of the
TstDepartmentEditForm

Transacted variables in editable container parts
The next example using transacted variable parts will be illustrated with editable
container parts. We will build a view that shows the list of all departments in a
Container Details part in which the values can be edited directly in the container
cells. We will show the departments that can be modified in the top-level
transaction, we will have a non-editable container that shows the shared
transaction.
1. Create a new view called TstDepartmentEditableContainersView from the

VisualAge organizer.
2. Add a Container Details part, and four Container Details columns.

62 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

3. Make these columns correspond to the attributes: department, phone, room, and
building.

4. Open the settings of the Container Details part and set the editable property to
be false.

5. Add the TstDepartmentHome part and create a transacted variable.
6. Connect the allInstances attibute from the transacted variable to the items of the

Container Details part.

The next step is to ensure that the transacted variabe will surface the collection of
TstDepartment objects in the context of the shared transaction. By default, this will
occur because if a transacted variable is not given an explicit transaction it will
always use the shared transaction. However, we can also explicitly specify this by
adding the shared transaction part and connecting its self attribute to the
transaction attribute of the transacted variable containing the department home
collection.

The next step is to add another Container Details part that will allow the
departments to be listed.
1. Resize the Window part to make room for another Container Details part.
2. Create a new transacted variable from the TstDepartmentHome part and name

this part top-level department home.
3. Set the editable property to true for the Container Details part.
4. Set the editable property to false for the department column.

Recall that department is the OID or key attribute for the department class and
that key atttibutes cannot be modified.

Model to model relationships
The TstUniversity model so far has just included the TstDepartment class. This
class has four attributes which are all of type String. The example will now be
extended to cover relationships.

Chapter 5. Tasks 63

Note that some of the examples in this section may require code patches to
actually run. Check the web site for any updates. The patches however are not
required to build the examples.

One-to-many relationship
We will create a model class called TstStaff and make a one to many relationship
between TstDepartment and TstStaff. This way a department can have many staff
and a staff member belongs to one department.

From the model browser create the TstStaff model. Give it the following attributes:

name String

number Integer

salary ScaledDecimal

title String

To add a relationship between the TstDepartment and TstStaff model classes select
the menu bar option Associations and select the menu choice New Associations.
Each relationship has a unique name, in this case it can be called departmentStaff .
The classes at either end of the relationship are specified as well as the role they
have with their counterpart. For example, aTstDepartment knows its Staff instances
with the role staff and a Staff object knows its TstDepartment instances with the
role department. The role name for the end of a many relationship is usually a
plural word, for example, customers, departments, or staff. Our relationship is
navigable from both ends in which case the Department will have a collection of
Staff instances and each Staff instance can have a department. The ’Role of Staff’
within the TstDepartment are set to be many such that a Department can have
more than one staff instances. The ’Role Of TstDepartment’ is not set to many
which implies that it is a one relationship, i.e. a Staff instance can only have one
TstDepartment across the relationship Neither end of the relationship is mandatory
so the Required check boxes are not set.

Having added the relationship the model should be saved and regenerated.

It is important to get good names for the role names as these are used to generate
methods. Generating the model will add the methods staff, addStaff: and
removeStaff: to the TstDepartment class, and the methods department and
department: to the TstStaff class.

Reminder: Whenever you generate or regenerate a model, you will need to
generate or regenerate the services code as well.

64 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

Maintaining staff
The first screen that we will build will allow staff to be maintained. This will be a
list screen and a separate screen to add and edit the staff. The first screen to build
is the edit screen. For this create a visual part named TstStaffEditView. Build the
screen as described below.

Understanding the notation: Instructions in this section do not follow the format
used thus far. Instead, the following devices are used:
1. Annotated diagrams: The user-interface is annotated with a series of numbers

next to each part and connection.
The numbers indicate the following:
v Parts are numbered sequentially using whole numbers.
v The numbers serve as indices in the reference tables.
v For parts with multiple connections, the indices in the table also specify the

order in which the connections must be made.
2. Reference tables: The tables specify what you need to know about the parts:

their names, property settings, and connections.
3. Comments: The comments provide important details, such as if you need to

promote a part. Any further information that may be helpful toward a better
understanding of the feature is also provided in this space.

Parts List

Part
Index

Part Class Part Name

1 AbtLabelView Label1

2 AbtShellView Window

3 AbtLabelView Label2

4 AbtTextView Text1

5 AbtLabelView Label3

6 AbtTextView Text2

7 AbtPushButtonView PushButton1

8 AbtTextView Text2

9 AbtTransactedVariable Staff1

10 AbtPushButtonView PushButton2

11 AbtVariable TopLevelTransaction1

Property Settings

Chapter 5. Tasks 65

Part
Index

Property Value

1 Object StaffId

3 Object FirstName

7 Object Cancel

8 Object LastName

9 PartType Staff

10 Object OK

11 PartType TopLevelTransaction

Connections

Source
Index

Source Feature Target
Index

Target Feature

9 staffId 1 object

9 firstName 3 object

9 lastName 8 object

9 isNotPersisted 3 enabled

11 self 9 transaction

7 clicked 2 closeWidget

10 clicked 3 commit

10 clicked 2 closeWidget

2 closedWidget 11 rollback

Comments: Promote the self feature of the TopLevelTransaction1 variable and also
the self feature of the Staff1 transacted variable. When this view is launched it can
be passed a Staff object and a top level transaction and it will allow the staffId,
firstName and lastName of the Staff object to be shown and modified. The OK
button commits the transaction and shuts the view down, and the cancel button
shuts the view down. When the view has been closed the transaction is rolledback
as it is no longer required. It is important that the two connections from the OK
button are in the correct order, that is, the transaction is committed and then the
view closed. If they were the other way around the view would close itself and
rollback the transaction before it was committed and the changes would be lost.

The next view that should be build is the one that will allow the existing staff to
be listed and new ones to be added and edited. Create a visual part called
TstStaffMaintenanceView and build it as follows:

66 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

Parts List

Part
Index

Parts List Part Name

1 AbtListView List1

2 AbtShellView Window

3 AbtPushButtonView PushButton2

4 AbtPushButtonView PushButton1

5 StaffHome (HomeCollection) StaffHome1

6 AbtAppBldrViewWrapperEditPart TstStaffEditView

7 AbtTransactedVariable transacted StaffHome1 (see comments)

8 SharedTransaction SharedTransaction1

9 AbtVariable TopLevelTransaction1

The transacted variable (7) is created by clicking on the StaffHome to bring up its
pop-up menu an selecting Create Transacted Variable.

Property Settings

Part
Index

Property Value

3 Object Edit

4 Object New

5 PartType StaffHome

6 PartType TstStaffEditView

7 See comments section

8 PartType SharedTransaction

9 PartType TopLevelTransaction

Comments: As mentioned in the comments above, this part is generated
automatically.

Connections

Source
Index

Source Feature Target
Index

Target Feature

Chapter 5. Tasks 67

5 allInstances 1 items

5 self 7 self (see comments)

4 clicked 8 beginChild

4 clicked 6 openWidget

4 clicked 7 create

3 clicked 8 beginChild

3 clicked 6 openWidget

3 clicked 6 staff1

9 self 7 transaction

Comments: In the above connections:
1. Each clicked event connects normalResult to the TopLevelTransaction. In

addition, the clicked event for the edit operation takes the value parameter
from the selectedItem of the list.

2. The connection between home collection and the transacted variable part
(self-self) is done automatically when you create the transacted variable.

Maintaining the department to staff relationship
We can now maintain Department and Staff separately. The next step is to allow
the relationship to be maintained. Assume that we have a department called
’Geography’ and a staff with id of 15. If we want to create a relationship between
the two, use the code as follows:

| dept staff |
Transaction begin.
dept := TstDepartmentHome singleton findByDepartment: 'Geography'.
staff := StaffHome singleton findByStaffId: '15'.
staff dept: dept.
Transaction current commit.

All we did in the code was to call the department: set method on the staff object.
Run the following code

(TstDepartmentHome singleton findByDepartment: 'Geography') staff

Note that the staff will appear in the department’s staff. The inverse link of the
relationship has been maintained. This is a very powerful feature of
ObjectExtender whereby because the relationship was defined to the model
browser with the knowledge of both ends of the relationship only one end of the
relationship has to be publicly maintained and the other end will be modified
automatically. This is also known as relationship handshaking.

To undo the relationship there are therefore two ways for it to be done, either by
setting the department to nil on the staff object, or else using the removeStaff:
method on the department. The example below uses the removeStaff: method:

| dept staff |
Transaction begin.
dept := TstDepartmentHome singleton findByDepartment: 'Geography'.

68 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

staff := StaffHome singleton findByStaffId: '15'.
dept removeStaff: staff.
Transaction current commit.

For the user interface we will allow the user to work with a department and add
and remove staff members. Modify the TstDepartmentEditView to add two list
boxes at the bottom. The left hand list box will show a list of all Staff instances
from the StaffHome. The right hand list box will show all staff from the staff
relationship attribute of the TstDepartment object. Two buttons allow staff to be
added and removed to the TstDepartment.

This concludes the relationship example.

Creating relationships
This section uses the Bank sample model, one of the several sample models that
are shipped with ObjectExtender. The topics explain how to construct one-to-one,
one-to-many, and many-to-many relationships.

Creating one-to-one (1-1) relationships
The Bank sample uses a one-to-one relationship for the VapAddress and the
VapCustomer business objects. This topic explains how to create a one-to-one
relationship using the ObjectExtender tools.

Do the following:
v Launch the Model Browser, and select Bank from the Models view.

The Customer-BillingAddress class association is an example of a one-to-one
relationship.

It was created as follows:
1. Select New Association from the Associations menu.

This launches the Association Editor.

Chapter 5. Tasks 69

2. In the Association name field, type Customer-BillingAddress.
3. Define the two Class sections.

a. In the left Class pane, select VapCustomer.
b. In the right Class pane, select VapAddress.
c. Type billingAddress for Role of VapAddress.
v Select Navigable.

This means VapAddress can be obtained from the VapCustomer object.
Leave Many and Required unselected. This sets a cardinality of
zero-to-one (0:1). When a cardinality of one-to-one (1:1) is desired, select
Required.

d. Type customerForBillingAddress for Role of VapCustomer.
e. Select Navigable.

This means VapCustomer can be obtained from the VapAddress object.
Leave Many and Required unselected.

4. Select OK.

You are now done with the Model Browser. The one-to-one relationship is defined.

Next, defining this relationship using schema semantics is shown. Mapping the
schema to the model will be the last step covered. These combined tasks provide
the required information for creating persistence support for your business objects.

Do the following:
v Launch the Schema Browser, and select Bank Sample from the Schemas view,

and select CUSTOMER from the Tables view.
The customer-billingaddress foreign key relationship is the one-to-one
relationship that corresponds to the Customer-BillingAddress class association
(relationship).

It was created as follows:
1. Select Foreign Key Relationship from the Foreign_Keys menu.

This launches the Foreign Key Relationship editor.

70 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

2. Type customer-billingaddress for the Name.
3. Type R7 for the Physical Name.
4. If a foreign key constraint does not exist on the database, make sure Constraint

exists in database is not selected.
5. Update the Relationship section:

a. Select ADDRESS for the Primary key table.
The Primary key column (read-only) will be updated with the primary key
from the table.

b. Select CUSTOMER for the Foreign key table.
In the Foreign key column, select the foreign key in the CUSTOMER table
which corresponds to the billing address, BILLADDR.

6. Select OK.

You are now done with the Schema Browser.

To complete the last step in defining the persistence layer for the one-to-one
relationship.
v Launch the Map Browser. Select Bank Sample from the Datastore Maps view,

and select VapCustomer from the Persistent Classes view, and then select
CUSTOMER from the Table Maps view.
The (r) billingAddress(customer-billingAddress) property map represents the
mapping from the billingAddress attribute from VapCustomer to the
customer-billingAddress foreign key relationship.

It was created as follows:
1. Select Bank Sample from the Datastore Maps view, VapCustomer from the

Persistent Classes view, and CUSTOMER from the Table Maps view.
2. Select Edit Property Maps from the Table_Maps menu.

This launches the Property Map Editor.
3. Click the Associations tab.

Chapter 5. Tasks 71

4. Change the [Not Mapped] value of the billingAddress association to
customer-billingaddress under Foreign Key Relationships.

5. Select OK.

This concludes defining the persistence layer for the one-to-one relationship.

Creating one-to-many (1-M) relationships
The Bank sample uses a one-to-many relationship for the VapBankBranch and the
VapAccount business objects. This topic explains how to create a one-to-many
relationship using the ObjectExtender tools.

Do the following:
v Launch the Model Browser. Select Bank from the Models view, and

VapBankBranch from the Model Classes view.
The BankBranch-Account class association is an example of a one-to-many
relationship.

It was created as follows:
1. Select New Association from the Associations menu.

This launches the Association Editor.

2. In the Association name field, type BankBranch-Account.
3. Define the two Class sections.

a. In the left Class pane, select VapAccount.
b. In the right Class pane, select VapBankBranch.
c. Type branch for Role of VapBankBranch.
v Select Navigable.

This means VapBankBranch can be obtained from the VapAccount object.
d. Type accounts for Role of VapAccount.
e. Select Navigable.

This means VapAccount can be obtained from the VapBankBranch object.
Select Many. This sets the cardinality to zero-to-many (0:M). If a cardinality
of one-to-many (1:M) is desired, select Required.

72 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

4. Select OK.

You are now done with the Model Browser. The one-to-many relationship is
defined.

Next, defining this relationship using schema semantics is shown. Finally, mapping
the schema to the model is the last step for completing the persistence layer.

Do the following:
v Launch the Schema Browser, and select Bank Sample from the Schemas view,

and select BRANCH from the Tables view.
The account-branch foreign key relationship is the one-to-many relationship that
corresponds to the BankBranch-Account class association (relationship).

It was created as follows.
1. Select Foreign Key Relationship from the Foreign_Keys menu.

This launches the Foreign Key Relationship editor.

2. Type account-branch for the Name.
3. Type R1 for the Physical Name.
4. If a foreign key constraint does not exist on the database, make sure Constraint

exists in database is not selected.
5. Update the Relationship section:

a. Select BRANCH for the Primary key table.
The Primary key column (read-only) will be updated with the primary key
from the table.

b. Select ACCOUNT for the Foreign key table.
In the Foreign key column, select the foreign key in the ACCOUNT table
which corresponds to the branch, BRANCHNO.

6. Select OK.

You are now done with the Schema Browser.

The last step in defining the persistence layer for the one-to-many relationship
follows.
v Launch the Map Browser, and select Bank Sample from the Datastore Maps

view, and select VapBankBranch from the Persistent Classes view, and then
select BRANCH from the Table Maps view.
The (r) accounts(account-branch) property map represents the mapping from the
accounts attribute from VapBankBranch to the account-branch foreign key
relationship.

Chapter 5. Tasks 73

It was created as follows.
1. Select Bank Sample from the Datastore Maps view, VapBankBranch from the

Persistent Classes view, and BRANCH from the Table Maps view.
2. Select Edit Property Maps from the Table_Maps menu.

This launches the Property Map Editor.
3. Click on the Associations tab.

4. Change the [Not Mapped] value of the accounts association to account-branch
under Foreign Key Relationships.

5. Select OK.

This concludes the persistence layer for the one-to-many relationship.

Creating many-to-many (M-M) relationships
The Bank sample uses a many-to-many relationship for the VapBrankBranch and the
VapCurrency business objects. With the current ObjectExtender implementation, you
must construct a many-to-many relationship by joining together two one-to-many
relationships: VapBankBranch-to-VapBranchToCurrency and VapCurrency-to-
VapBranchToCurrency. This topic explains how to create a many-to-many
relationship using the ObjectExtender tools.

Do the following:
v Launch the Model Browser. Select Bank from the Models view.

The bc to branch plus the bc to currency class associations is an example of a
many-to-many relationship (As mentioned, the current implementation for a
many-to-many relationship is to create two one-to-many relationships).

It was created as follows:
1. Select New Association from the Associations menu.

This launches the Association Editor.

2. In the Association name field, type bc to branch.
3. Define the two Class sections.

74 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

a. In the left Class pane, select VapBranchToCurrency.
b. In the right Class pane, select VapBankBranch.
c. Type branch for Role of VapBankBranch.
d. Select Navigable.

This means a VapBankBranch business object can be obtained from a
VapBranchToCurrency business object. .

e. Select Required. This sets a cardinality of one-to-one (1:1).
f. Type currencyAssociations for the Role of VapBankBranch.
g. Select Navigable.

This means a VapAccount business object can be obtained from a
VapBankBranch business object.

h. Select Many.
This sets a cardinality of zero-to-many (0:M). If a cardinality of one-to-many
(1:M) is desired, select Required.

4. Select OK.

Next, you define the second of the two one-to-many relationships.

Do the following:
1. Select New Association from the Associations menu.

This launches the Association Editor.

2. In the Association name field, type bc to currency.
3. Define the two Class sections.

a. In the left Class pane, select VapCurrency.
b. In the right Class pane, select VapBranchToCurrency.
c. Type branchAssociations for Role of VapBranchToCurrency.
d. Select Navigable.

This means a VapBankBranchToCurrency business object can be obtained from
a VapCurrency business object. .

e. Select Many. This sets a cardinality of one-to-one(1:1).
f. Type currency for the Role of VapCurrency.
g. Select Navigable.

This means a VapCurrency business object can be obtained from a
VapBankToCurrency business object.

h. Select Navigable.
i. Select Required.

This sets a cardinality of (1:1).
4. Select OK.

You are now done with the Model Browser. The many-to-many relationship is
defined.

Chapter 5. Tasks 75

Next, defining this relationship using schema semantics is shown. Mapping the
schema to the model will be the last step covered. These combined tasks provide
the required information for creating persistence support for your business objects.

Do the following:
v Launch the Schema Browser, and select Bank Sample from the Schemas view,

and select BRNCHCURR from the Tables view.
The bc-branch and bc-currencyforeign key relationship is the many-to-many
relationship that corresponds to the bc-to-branch and bc-to-currency class
associations.

It was created as follows.
1. Select Foreign Key Relationship from the Foreign_Keys menu.

This launches the Foreign Key Relationship editor.

2. Type bc-branch for the Name.
3. Type R4 for the Physical Name.
4. If a foreign key constraint does not exist on the database, make sure Constraint

exists in database is not selected.
5. Update the Relationship section:

a. Select BRANCH for the Primary key table.
The Primary key column (read-only) will be updated with the primary key
from the table.

b. Select BRNCHCURR for the Foreign key table.
In the Foreign key column, select the foreign key in the BRNCHCURR
table which corresponds to the branch, BRANCH.

6. Select OK.

Next, you will define the bc-currency side of the foreign key relationship.

Do the following:
1. Select Foreign Key Relationship from the Foreign_Keys menu.

This launches the Foreign Key Relationship editor.

76 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

2. Type bc-currency for the Name.
3. Type R5 for the Physical Name.
4. If a foreign key constraint does not exist on the database, make sure Constraint

exists in database is not selected.
5. Update the Relationship section:

a. Select CURRENCY for the Primary key table

The Primary key column (read-only) will be updated with the primary key
from the table.

b. Select BRNCHCURR for the Foreign key table.
In the Foreign key column, select the foreign key in the BRNCHCURR
table which corresponds to the currency, TYPE.

6. Select OK.

You are now done with the Schema Browser.

The last step in defining the persistence layer for the many-to-many relationship
follows.
v Launch the Map Browser, and select Bank Sample from the Datastore Maps

view , and select VapBranchToCurrency from the Persistent Classes view, and
then select BRNCHCURR from the Table Maps view.
The (r) branch (bc-branch) property map represents the mapping from the
currency attribute from VapBranchToCurrency to the bc-currency foreign key
relationship.

It was created as follows.
1. Select Bank Sample from the Datastore Maps view, VapBranchToCurrency

from the Persistent Classes view, and BRNCHCURR from the Table Maps
view.

2. Select Edit Property Maps from the Table_Maps menu.
This launches the Property Map Editor.

3. Click the Associations tab.

Chapter 5. Tasks 77

4. Change the [Not Mapped] value of the branch association to bc-branch under
Foreign Key Relationships.

5. Change the [Not Mapped] value of the bc-currency association to currency
under Foreign Key Relationships.

6. Select OK.

This concludes defining the persistence layer for the many-to-many relationship.

Mapping business objects to tables
Classes are always mapped to at least one table. Secondary table maps allow the
mapping of attributes to more than one table. ObjectExtender provides choices in
how class hierarchies are mapped to table structures. There are basically two ways
to match an inheritance tree to a relational database. Either you combine all
attributes of the class hierarchy in one table, or you have a table for each class and
establish the necessary foreign key relationships between the tables.

Creating a single table map with no inheritance
A table map with no inheritance is the most common type of mapping used. This
type of map will be used to map attributes and relationships from one persistent
object model class to one database table.

There are several examples of this type of mapping within the Bank sample model.

Launch the Map Browser, and select BankSample from the Datastore Maps view,
and then select VapCurrency in the Persistent Classes view. In the Table Maps
view, the CURRENCY table map listed is one example of a table map with no
inheritance.

It was created as follows:
1. Select VapCurrency from the Persistent Classes.
2. Select New Table Map from the Table_Maps menu.

This opens the Table Map with No Inheritance editor.

3. Select the CURRENCY table from the Table list.
4. Select OK.

The table map has been created but there are no property maps for this table map.
To map the attributes and associations for the table, select the CURRENCY table
map and then select Edit Property Maps from the Table_Maps menu.

Creating a secondary table map
A secondary table map is necessary when a persistent model class is mapped to
two or more database tables. An example of this type of mapping can be found in
the Bank sample model.

Launch the Map Browser, and select BankSample from the Datastore Maps view,
and then select VapCustomer from the Persistent Classes view.

78 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

Note that two table maps are present for the VapCustomer persistent class. The
CUSTDATA is the secondary table map.

It was created as follows
1. In the Bank sample schema, there needs to be a CUSTDATA and

CUSTOMER table with all of the necessary columns added. It is the
CUSTDATA table that is going to hold additional information for the
VapCustomer persistent class.

2. Create a foreign key relationship named custdata-customer where
CUSTOMER is the primary key table and CUSTDATA is the foreign key
table. (Recall this is done using the Schema Browser).

3. In the Map Browser, select VapCustomer.
4. Create the CUSTOMER table map with no inheritance.

Note that when mapping the attributes in the Property Map Editor for this
table, the birthDate, felon, rating, and sex will not get mapped because this
table does not have the fields necessary to map these attributes. All of the
associations can be mapped from this table.

5. From the Table_Maps menu, select New Table Map - Add Secondary Table
Map.

6. Select the CUSTDATA table from the Table menu.
7. Select the custdata-customer relationship from the Foreign Key Relationship

list.
8. Select OK.
9. Select the CUSTDATA table map.

10. Select Edit Property Maps from the Table Maps menu.
11. Select the corresponding table column for the class attributes: birthDate, felon,

rating, and sex.
12. Select OK.

Creating single table inheritance maps
A single table inheritance map is used to map two or more persistent model
classes to the same table. This is useful for persistent objects that have basically the
same data but different behaviors. An example of this type of mapping is included
with the Bank sample model.

Launch the Map Browser, and select BankSample from the Datastore Maps view,
and then select VapAccount from the Persistent Classes view.

Note that VapAccount has two subclasses: VapCheckingAccount and
VapSavingsAccount. All three of these classes map to the ACCOUNT table.

It was created as follows:
1. Select VapAccount from the Persistent Classes view.
2. From the Table_Maps menu, select New Table Map - Add Single Table

Inheritance Table Map.

Chapter 5. Tasks 79

3. Select ACCOUNT for the Table.
4. Type: $A for the Discriminator value.
5. Select OK.
6. Select VapCheckingAccount from the Persistent Classes view.
7. From the Table_Maps menu, select New Table Map - Add Single Table

Inheritance Table Map.
8. Select ACCOUNT for the Table.
9. Type: C for the Discriminator value.

10. Select OK.
11. Select VapSavingsAccount from the Persistent Classes view.
12. From the Table_Maps menu, select New Table Map - Add Single Table

Inheritance Table Map.
13. Select ACCOUNT for the Table.
14. Select TYPE for the Discriminator column.
15. Type: S for the Discriminator value.
16. Select OK.

The single table inheritance mapping is now defined.

For a model that has inheritance, when a new schema is generated a single table
inheritance approach is used. However, the table maps for the primary table is
created once but added twice to each class map. To correct this, select one of the
table maps and select the option in the browser to delete it.

Creating root/leaf inheritance maps
A root/leaf inheritance map is similar to the single table inheritance map, except
that each subclass may have additional information to the superclass and this
information will be stored in a separate table. When the subclass is instantiated, it
will obtain its information from its table as well as from the superclasses’ table. An
example of this type of mapping can be found in the AutoWorld example.

Launch the Model Browser and select AutoWorld from the Models view.
Double-click on VapVehicle to expand its hierarchy.

Below is a diagram of the class hierarchy for VapVehicle in the Model Browser.

80 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

If you open the Schema Browser and select AutoWorld, you will notice that there
is a separate table for each of the model objects in the VapVehicle class hierarchy
(VEHICLE, BUS, AUTOMOBILE, RACECAR).

Each of the leaf tables (AUTOMOBILE, RACECAR, and so on) have foreign key
relationships to their parent table. The important part of this example is how the
models from the Model Browser are mapped to the tables in the Schema Browser.
This can seen in the Map Browser.

1. Launch the Map Browser.
2. Select AutoWorld from the Datastore Maps view.
3. Select VapVehicle from the Persistent Classes. Double-click on this class to

expand its hierarchy.
4. From the Table_Maps menu, select New Table Map - Add Root/Leaf

Inheritance Table Map.
This opens the Root Leaf Inheritance Map editor.

5. Select VEHICLE for the Table.
6. Select VEHICLE_TYPE for Discriminator column.

Chapter 5. Tasks 81

Note that a discriminator value is not entered for the VEHICLE table because
the VapVehicle is only an abstract class and cannot be instantiated. If, in your
application, the root of the model hierarchy can be instantiated, you must
enter the discriminator value.

7. Ensure that the Root of the model hierarchy is selected.
8. Select OK.
9. Select VapAutomobile from the Persistent Classes view.

10. From the Table_Maps menu, select New Table Map - Add Root/Leaf
Inheritance Table Map.

11. Select AUTOMOBILE for the Table.
12. Type Automobile for the Discriminator value.
13. Type automobile to vehicle for the Foreign Key Relationship.
14. Select OK.
15. Select VapRaceCar from the Persistent Classes view.
16. From the Table_Maps menu, select New Table Map - Add Root/Leaf

Inheritance Table Map.
This opens the Root Leaf Inheritance Map editor.

17. Select RACECAR from the Table list.
18. Type RaceCar for the Discriminator value.
19. Select racecar to automobile from the Foreign Key Relationship menu.
20. Select OK.
21. Select VapBus from the Persistent Classes view.
22. From the Table_Maps menu, select New Table Map - Add Root/Leaf

Inheritance Table Map.
This opens the Root Leaf Inheritance Map editor.

82 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

23. Select BUS from the Table list.
24. Type Bus for the Discriminator value.
25. Select bus to vehicle from the Foreign Key Relationship menu.
26. Select OK.

The root/leaf inheritance table map is now defined.

Using a composer for mapping an attribute to multiple
database fields

A composer is used to map a single class attribute to multiple database columns.
For example, in the Bank sample, the name for VapCustomer is mapped to three
fields in the CUSTOMER table: FIRSTNAME, MIDINIT, and LASTNAME. If a
composer does not exist that matches your data, you can create one by creating a
new subclass of VapCustomer.

Note that composed attributes used as keys are not supported.

In this example, the VapNameComposer was created.

Do the following:
1. Create a new class, VapNameComposer, that is a subclass of VapComposer

VapAttributeComposer. Next, implement the following methods:
v sourceDatatype
v targetClass
v attributeNames
v objectFrom:
v dataFrom:

2. Implement an instance method called targetClass (The target class in this
example will be VapName). This should return the name of the class for the
instance created as a result of the objectFrom: message sent to the converter.
Note that in some cases it may be desirable to create your own target class
such as was done in this example.

3. Implement an instance method called attributeNames . It should return an array
of the attribute name strings from the target class. For example:

|#('firstName' 'middle' 'lastName')

4. Implement an instance method called objectFrom: . The argument will be an
array containing the values for the attribute string name from the method
attributeNames in the same order. This method will set the target class attributes
based on these values and return an instance of the target class. For example:

|VapName first: (array at: 1) middle: (array at: 2) last: (array at: 3))

Chapter 5. Tasks 83

5. Implement an instance method called sourceDatatype . This method should
return an array of the data elements’ class names passed as a parameter to the
objectFrom: message which is sent to the converter.
For example,

|#(String String String)

6. Implement an instance method called dataFrom: . The argument will be an
instance of the target class. This method is responsible for returning a collection
of objects that are to go to data store fields. For example:

|(Array
with: anObject firstName
with anObject middle
with: anObject last)

The VapName class is used in the Bank sample to map one attribute to several
columns. It was used as follows:
1. Launch the Model Browser.
2. Select Bank from the Models.
3. Select VapCustomer from the Model Classes.
4. Select Edit Class from the Classes menu.

This opens the Class Editor.
5. Click New to add a new attribute.

This opens the Attribute Editor.

6. Type name in the Name field.
7. Select VapName from the Type list.

VapName appears in the Type list because the new subclass of VapComposer,
VapNameComposer, was recognized with VapName as its target type. The target
type of any VapComposer subclasses you create will also appear here.

8. Select OK.

This concludes the example.

Changing part of a composed attribute like name does not cause the Customer
object to be marked ″dirty″ and updated in the database. To make the Customer
object dirty because of a name change, you must alter the name attribute through
the Customer’s setName accessor.

Also note that if you have a complex attribute type and you want to change the
composer type, you must delete the complex attribute map from the Map Browser
and recreate it in the Property Map Editor.

Using converters
There may be times when you need to convert data being read from the database
and being stored to the database. An example of this would be converting a

84 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

character to a Boolean. In the database, a value may be stored as ’Y’, but when it is
retrieved, it may be converted to the Boolean object true and vice versa. There are
many different types of converters that may be used, for example,
VapCharToBoolean, VapCharToString, and so on. You may also create your own
converter by subclassing from VapAbstractConverter.

The steps for using a converter are as follows:
1. Launch the Schema Browser.
2. Select a schema from the Schemas view.
3. Select a table from the Tables view.
4. Select Edit Table from the Tables menu.

This opens the Table Editor.
5. Select an existing column to edit from the Table columns view, and click on

Edit.
This opens the Column Editor.

6. Select the desired converter from the Converter list.
7. Select OK.

Various vendor database drivers treat single-character data differently. Some will
return a Character, some will return a String of length one. To be sure, if an
application may run with multiple drivers, type Char(1) fields as Strings, and use
the VapCharToString converter. It will guarantee that a String will always be
returned.

Performance tuning

Changing the locking type on a table
You can selectively enable the pessimistic locking policy for the classes that are
being mapped to the data store. By default the pessimistic locking is not enabled
for any of the classes in the model.

To enable pessimistic locking, do the following:
1. Launch the Map Browser.
2. Select the desired map from the Datastore Maps view.
3. Select the desired class from the Persistent Classes view.
4. Select Enable pessimistic locking from the Persistent_Classes menu.

If there is a class hierarchy, and pessimistic locking is desired, it must be enabled
in the subclass as well.

Chapter 5. Tasks 85

Setting preload paths
To set a default preload path for a class, do the following:
1. Launch the Map Browser.
2. Select the desired map from the Datastore Maps view, for example, Bank

Sample.
3. Select the desired class from the Persistent Classes view, for example,

VapCustomer.
4. Select Change default preload path from the Persistent_Classes menu.
5. Enter the attribute names (separated by spaces) that will be instantiated when

the object is first read form the database, for example, homeAddress
billingAddress.

6. Select OK.

Creating Lite collections
Lite Collections are useful for retrieving a subset of the information from a
particular object in the database without instantiating each object that is retrieved.
An example of the use of lite collections can be found within the Bank sample
model. Two lite collections were created for the VapAccount class.

The lite collections were created as follows:
1. Launch the Model Browser.
2. Select Bank from the Models view.
3. Select VapAccount from the Model Classes.
4. Select Edit Class from the Classes menu.

This launches the Class Editor.

5. Click on the Lite Collections tab.
6. Click New.

This launches a dialog.

86 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

7. Type byCustomer for the name of the lite collection.
8. Select OK.
9. Select Customer from the Filter property menu.

10. Select balance and accountNumber, the properties to be retrieved, from the
Class properties.

11. Select Suppports Packeting if you want packeting turned on.
12. Select Apply.
13. Select OK.

Chapter 5. Tasks 87

88 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

Chapter 6. Reference

This section covers the following topics:
v “ObjectExtender runtime architecture”

– “Programming model overview”
– “The business object layer” on page 90
– “The persistence layer” on page 102

v “Metadata storage model” on page 108
v “Writing your own services” on page 110
v “User code sections” on page 110
v “Managing business objects” on page 111

ObjectExtender runtime architecture
ObjectExtender provides transactional support and backend store mapping for
objects and relationships. The runtime system is separated into two major layers:
v Business object layer. The business object layer provides support for business

objects and the management of relationships between them. It also provides
transaction isolation (including support for nested transactions) for changes
made to business objects and relationships. The entire business object layer
including transaction and relationship support can run without the persistence
layer.

v Persistence layer. The persistence layer provides support for mapping objects to
and from legacy backends. Backends supported include relational databases and
″function call″ backends.

Programming model overview
ObjectExtender offers a single-level store model. Tracking which objects are
created, deleted or modified in a transaction is done by ObjectExtender. Thus, at
the highest level, the program flow is:
1. Start a transaction.
2. Create, Retrieve, Update and Delete objects, Navigate, Add and Remove from

relationships.
3. Commit or roll back the transaction.

ObjectExtender offers support for both optimistic (non-locking) and pessimistic
(locking) policies for managing transactions. In the case of optimistic management,
ObjectExtender defers all locking and updates on the backend store to the commit
phase of the ObjectExtender transaction. This means that, at least in the case of
optimistic transaction management, it is feasible to have long-running
ObjectExtender transactions that have good concurrency characteristics on the
backing store, because they do not consume locks or other significant backend
resources. In this case, the programming model looks more like:
1. Start a transaction.
2. Repeatedly interact with a user and Create, Retrieve, Update and Delete

objects, Navigate, Add and Remove from relationships.
3. Commit the transaction.

ObjectExtender supports nested transactions, so a more complete model would be:
1. Repeatedly interact with a user and Retrieve objects, Navigate relationships.
2. Start a transaction, t1.

© Copyright IBM Corp. 1998, 2000 89

3. Repeatedly interact with a user and Create, Retrieve, Update and Delete
objects, Navigate, Add and Remove from relationships.

4. Create a nested transaction, t2.
5. Repeatedly interact with a user and Create, Retrieve, Update and Delete

objects, Navigate, Add and Remove from relationships.
6. Commit or roll back the nested transaction t2.
7. Repeatedly interact with a user and Create, Retrieve, Update and Delete

objects, Navigate, Add and Remove from relationships.
8. Commit the top-level transaction t1.
9. Repeatedly interact with a user and Retrieve objects, Navigate relationships.

There is no requirement that a transaction complete before a thread creates a new
sibling transaction. For example, a thread may start a transaction, modify some
objects, suspend the transaction and create another, modify more objects, resume
and commit the first transaction and so on. There is also no requirement that
nested transaction complete before its parent resumes. Within a transaction,
modifications made in a parent transaction are visible, but modifications made in
uncommitted sibling or child transactions are not.

ObjectExtender also supports independent Transactions executing simultaneously
on separate threads, so the above program flows can be running simultaneously on
multiple threads of execution within the same Smalltalk program. Nested
transactions must always run on the same thread as their parent.

The business object layer
The business object layer is implemented in part by a small runtime and in part by
a small set of interface and behavior requirements for business objects. Code
generation support is supplied (in the ObjectExtender tool set) to generate code
(and selectively update previously-generated code) for business object and
relationship classes from a high-level description of the classes and their
relationships.

Business objects and their relationships are described using an extended entity
relationship model using a UML vocabulary. Supported features include business
object inheritance and relationship cardinality, navigability and inverses. Business
objects are not required to inherit from a common root, although an abstract class
with suitable behaviors is provided for convenience. Separate classes are generated
for relationships to allow business rules to be written governing relationships. In
addition to the business object classes that are generated, Key classes and
HomeCollection classes are generated for each business object.

New methods can be freely added to business objects using normal browsers
without any need to regenerate any part of the runtime system. Only when
structural changes are made to objects (adding, deleting or changing an attribute or
relationship definition) is there any requirement to regenerate. Non-managed fields
can also be added without regeneration.

HomeCollections
ObjectExtender generates a HomeCollection class for each business object class. The
protocol on HomeCollection classes is the one defined by Component Broker
(createFromKey:, findByPrimaryKey:).

ObjectExtender does not prescribe how the HomeCollections are located by the
application code. A default mechanism is supplied that will store a singleton
HomeCollection instance in a static variable of each HomeCollection class, and this
mechanism may be used by application code to locate appropriate HomeCollection

90 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

instances. However, the ObjectExtender framework never uses this access path, and
application programmers are free to store and locate HomeCollection instances in
other ways.

HomeCollections also have the following responsibilities:
v Knowing the DataStore they are attached to.

This is a responsibility of HomeCollections for persistent business objects only. A
DataStore represents a particular backend store (for example, a database or a set
of CICS TPs) that stores objects from a model. The HomeCollection provides the
mapping of a set of classes to a data store.

v Knowing the service implementation to be used for all instances from this home.
In fact, the HomeCollection is the object that maps the business object layer to a
particular DataStore and service object implementation. HomeCollection classes for
persistent objects subclass from a different class from HomeCollection classes for
non-persistent classes. The persistent HomeCollection classes have extra protocol
for dealing with this mapping of objects to a backend.

v Knowing the isolation policy implementation for the BusinessObject class.
This means understanding whether objects in this home use optimistic
(non-locking) or pessimistic (locking) transaction isolation, and providing an
appropriate implementation object for the same.

v Knowing about other related homes for the same object model on the same data
store.
A HomeCollection knows about the home for its business object’s superclass and
also about the homes for its business object’s subclasses. It also knows about the
homes for all of the relationships from its business object. (Relationships have
homes as well).

Transaction overview
The transaction model supports concurrent and nested transactions.

A nested transaction is a tree of transactions. The subtrees can be flat or nested
transactions. At the leaf level, transactions are flat. The root of the tree is the
top-level transaction; all others are subtransactions. A transaction’s predecessor in
the tree is a parent; a subtransaction at the next lower level is a child. A
subtransaction can either commit or roll back; its commit will not take effect,
unless the parent transaction commits. Therefore, any subtransaction can finally
commit only if the top-level transaction commits. The rollback of a transaction
anywhere in the tree causes all its subtransactions to roll back.

The commit of a subtransaction makes its results accessible only to the parent
transaction. All objects held by a parent transaction can be made accessible to its
subtransactions. Changes made by a subtransaction are not visible to its siblings, in
case they execute concurrently.

There is always at least one active transaction: a global read-only transaction,
which is called the shared transaction. When a new (read/write) top-level
transaction is created, it becomes a child of the shared transaction. When there are
multiple transactions, the application must explicitly set which of the transactions
is the current one. All the modifications to the business objects are recorded by the
current transaction.

Chapter 6. Reference 91

Each transaction has its own view. A view is snapshot (of a subset) of the
application’s business object model. Each business object is divided into two parts:
a shell and a version. An object’s business behavior is in the shell, and the
instance data is in the version. When a business object is first accessed (get/set a
property) within a transaction, a new version of the object is added to the current
transaction’s view. The new version is based on the version in the parent
transaction’s view (if the parent transaction’s view does not contain a version of
the object, the parent will first create a version for itself based on its parent). When
any object refers to a business object, it actually refers to the business object’s shell.
The shell dynamically connects itself to the current version in the current
transaction’s view. This way the shell/version pair implements a dynamic
reference to a business object.

Each transaction has a resource coordinator. The resource coordinator’s
responsibility is to ensure that the modifications made within the transaction
become persistent across multiple resources. A resource provides the ACID
properties for a particular connection to a data store.

Figure 17. Transaction instance coordination. The UML diagram shows the coordination of
the shared, top-level, and child transaction instances .

92 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

On commit, a transaction’s view is merged to its parent transaction’s view (the
top-level view is merged to the shared view), and the view and the resources are
synchronized. When receiving the commit request, the transaction first tests if its
view can be merged to its parent’s view. The default test is that if the same object
has been modified in both parent and child views, the views cannot be merged. If
the test fails, the transaction will be rolled back. If the test succeeds, the transaction
requests its resource coordinator to synchronize the view and the resources. The
resource coordinator passes each version in the view to a corresponding resource.
The coordinator then prepares and commits the changes to the resources. For
nested transactions, the coordinator includes only resources that support nesting (if
none of the resources supports nesting, the nesting happens only within the
application memory). If the synchronization fails, the transaction will
be rolled back. If the synchronization succeeds, the transaction’s view is merged

with the parent view and the transaction is marked to be committed.

Figure 18. Transaction/View/Version flow. The UML diagram shows the flow of the
Transaction/View/Version model.

Figure 19. Transaction states. The UML diagram depicts the flow of the Transaction states.

Chapter 6. Reference 93

Transaction isolation policies
ObjectExtender has a Transaction class. Transactions represent paths of code
execution. You access and manipulate data in your business objects within
transactions.

New transactions are created by invoking the static method begin on Transaction.
This always creates a new top-level transaction. To create a nested transaction, you
send beginChild to an existing transaction. Each thread of execution has a notion of
a current transaction. You can get the current transaction for the current thread of
execution by sending current to Transaction.

Transaction Isolation: ObjectExtender manages isolation of changes between
transactions. Isolation of changes between transactions means that outside the
scope of a transaction, changes made within the transaction will not be seen until
the transaction commits.

ObjectExtender supports both optimistic and pessimistic approaches to
implementation of transaction isolation.

ObjectExtender implements transaction isolation according to the policies for the
transaction and for the (service implementations for) HomeCollections.

The Transaction specifies either Repeatable Read or Unrepeatable Read isolation
level.

The service implementation for the HomeCollection specifies either non-locking or
locking implementation. The service objects therefore have implementation for:
v Non-locking Repeatable Read
v Non-locking Unrepeatable Read
v Locking Repeatable Read
v Locking Unrepeatable Read

Any given service implementation is required only to contain implementations of
an non-locking or locking set, because the non-locking/locking flag is not
changeable for a service. The locking capability for a class is specified by checking
or unchecking the Enable pessimistic locking menu item for a persistent class in
the Map Browser. The transaction isolation policy is specified by calling the
methods supportRepeatableReads() or supportUnrepeatableReads() on a Transaction.

Repeatable Read: This is an isolation policy value that can be specified on a
transaction-by-transaction basis. Repeatable Read guarantees that if the same
object is fetched multiple times within the same transaction, (for example, using
findByPrimaryKey:), then the fetched object will have the same attribute values each
time. It is the rough analog of the DB2® read stability isolation level

Unrepeatable Read: This is an isolation policy value that can be specified on a
transaction-by-transaction basis. Unrepeatable Read guarantees that if a business
object is used within a transaction, then the attribute values of the business object
within a transaction will not be affected by uncommitted changes to the business
object in sibling transactions. However, if a sibling transaction commits before the
current transaction, changes made in the sibling may become visible in the current
transaction. This is the rough analog of the DB2 cursor stability isolation level.

Non-locking Implementation of Repeatable Read (Copy on read): This is an
implementation of Repeatable Read specified on a type-by-type basis that uses
copying. A copy of the data of each business object (including its associated data

94 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

object) will be made the first time it is read within a transaction. Within this
transaction, subsequent read or write access to the object, or navigation to the
object, or query returning the object will use the data from this copy.

Non-locking Implementation of Unrepeatable Read (Copy on write): This is an
implementation of Unrepeatable Read specified on a type-by-type basis that uses
copying. A copy of the data of each business object (including its associated data
object) will be made the first time it is updated within a transaction. (Read-only
access prior to the first write will use the shared copy of the data for the BO.)
Within this transaction, subsequent read or write access to the object, or navigation
to the object, or query returning the object will use this copy. Copies are not made
on read. This means that if an application reads an object, and later re-reads the
object (or reuses a stored reference to the object) it may see changed attribute
values. In the current implementation, if you keep a reference to the object, you
will only see changes made by sibling committed transactions that execute within
the same process. If no reference to the object is held, you may see changes
committed by transactions executing in other processes. However, we do not
preclude the possibility that changes made by sibling transactions in other
processes will be visible in the future even if a reference to the object is held.

Locking Implementation of Repeatable Read (Lock on read): This is an
implementation of Repeatable Read specified on a type-by-type basis that uses
locking. An object-level shared lock is acquired on each business object the first
time it is read within a transaction. All subsequent attempts to acquire an update
lock on this object in other transactions (except child transactions of the current
transaction) will cause blocking or an exception. If the object is subsequently
updated within the transaction, the lock will be upgraded to an update lock. In the
persistence layer (see later) locks will also be acquired on the underlying data store
to block other writers (if the object has only been read) and readers (if the object
has also been updated) outside the current process. One option that can be
specified for locking is not to procure a lock at all. This is typically used when it is
known that the access patterns of the application require procurement of a lock on
another object first. For example, it might be possible to specify no locking on
LineItems if the only way to get to LineItems is through the owning Invoice object
(which would be locked). Note that this is not the same as non-locking.
Non-locking says that we expect conflicts on an object, but will detect and resolve
these conflicts at commit time. Locking says that we expect no conflict.

Locking Implementation of Unrepeatable Read (Lock on write): This is an
implementation of Unrepeatable Read specified on a type-by-type basis that uses
locking. A lock is acquired on each business object the first time it is updated
within a transaction. All subsequent attempts to acquire a write lock on this object
in other transactions (except child transactions of the current transaction) will
cause blocking or an exception. In the persistence layer locks will also be acquired
on the underlying data store to block other writers and readers outside the current
process. In the current implementation, if you keep a reference to the object, you
will only see changes made by sibling committed transactions that execute within
the same process. If no reference to the object is held, you may see changes
committed by transactions executing in other processes. However, we do not
preclude the possibility that changes made by sibling transactions in other
processes will be visible in the future even if a reference to the object is held. One
option that can be specified for locking is not to procure a lock at all. This is
typically used when it is known that the access patterns of the application require
procurement of a lock on another object first. For example, it might be possible to
specify no locking on LineItems if the only way to get to LineItems is through the
owning Invoiceobject (which would be locked). Note that this is not the same as

Chapter 6. Reference 95

non-locking. Non-locking says that we expect conflicts on an object, but will detect
and resolve these conflicts at commit time. Locking says that we expect no conflict.

Transaction API
Transaction provides the following class protocol:

#begin
Begin an anonymous top-level transaction.

#begin: aName
Begin a named top-level transaction (name is used only for printing and
debugging.

#current
Aswer the current transaction.

#currentView
Answer the current transaction’s view.

#reset Discard all transactions.

#resume
Set the current transaction.

#shared
Answer the shared transaction.

#suspend
Suspend the current transaction.

#topLevelDo:
Evaluate the block in the context of a new top-level transaction which is
then comitted. Ensure that the current transaction before this method is
executed resumes itself as the current transaction.

Transaction provides the following instance protocol:

#beginChild
Begin an anonymous child transaction.

#beginChild: aName
Begin a named child transaction.

#commit
Request a transaction to commit. The application must handle the potential
failure exceptions.

#commitOrRollback
Request a transaction to commit. In case of failure rollback the transaction.
Return a Boolean indicating success, true means committed, false means
rolled-back.

#commitWhenFailureDo: aFailureBlock
Request a transaction to commit. On failure execute the failure block.

#commitWhenSuccessDo: aSuccessBlock
Request a transaction to commit. On success execute the success block.

#commitWhenSuccessDo: aSuccessBlock whenFailureDo: aFailureBlock
Request a transaction to commit. On success execute the success block, and
on failure execute the failure block.

#evaluate
Execute a block within the transaction.

96 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

#isActive
Test if the transaction is active.

#isChild
Test if the transaction is a child transaction.

#isCommitted
Test if the transaction is committed.

#isDescendantOf:
Test if the transaction is descendant of another transaction.

#isMarkedRollback
Test if the transaction is marked to be rolled back.

#isolationPolicy
Answer transaction’s isolation policy.

#isolationPolicy:
Sets the transaction’s isolation policy.

#isRolledBack
Test if the transaction is rolled back.

#isShared
Test if the transaction is a shared transaction.

#isTopLevel
Test if the transaction is a top level transaction.

#name Anser the transaction’s name.

#name:
Set the transaction’s name.

#parent
Answer child transaction’s parent transaction.

#resume
Resume the transaction (make it the current one).

#rollback
Request a transaction to rollback.

#supportDirtyReads
Sets the isolation policy to support dirty reads.

#supportRepeatableReads
Sets the isolation policy to support repeatable reads.

#supportUnrepeatableReads
Sets the isolation policy to create unrepeatable reads.

#suspend
Suspend the transaction (if current, reset the current).

Setting the transaction’s isolation policy
This section contains a collection of code examples for using the collision
management policies for your transaction layer.

Isolation policy: tries to lock objects. To set the transaction’s isolation policy such
that it tries to lock objects, use the following API.

Chapter 6. Reference 97

tx1 supportRepeatableReads "this is the default"

Isolation policy: do not try to lock objects. To set the transaction’s isolation policy
such that it does not try to lock objects:

tx1 supportUnrepeatableReads

Timing: when the objects lock. If the transaction supports repeatable reads, the
locking-capable objects are locked when
v They are touched, that is,

faculty name: 'Dr. Salo'

v They are read from the database using allInstances or findByPrimaryKey.

Handling exceptions. In the above cases, the application must be prepared to
handle the ExVapObjectLocked exception, which is raised when the attempt to
acquire the lock fails.

tx1 := Transaction begin.
[depts := VapDepartment singleton allInstances. "..."]

when: ExVapObjectLocked
do: [:aSignal | "notify the user that the object is locked"]

Explicit locking. An object can be explicitly locked regardless of the transaction’s
locking policy.

[faculty lock]
when: ExVapObjectLocked
do:[:aSignal | "notify the user that the object is already locked"]

Explicit refresh. An object can be explicitly refreshed from the database.

faculty refresh

Collision detection predicates. If the object has collision detection predicates, the
transaction fails when the object is updated in the database.

faculty := VapFaculty singleton findByPrimaryKey: aKey.
faculty name: 'Dr. Rich'.
tx1
commitWhenFailureDo:

98 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

[:aSignal | tx1 rollback.
"notify the user that there is a collision"].

The failed object is always the first argument of the signal.

[aSignal | aBo := "aSignal argument ..."]

Depending on the exception the signal may have additional arguments, like the
native SQL error.

Object uniqueness
Every business object defined to ObjectExtender must be identifiable by a unique
key. One of the features of ObjectExtender is that it guarantees that only one
instance of an object will exist within a transaction scope for a particular unique
key. Each transaction keeps a registry of objects that have been read or written
within that transaction. Whenever an object is requested, either in a query or by
navigating a relationship, ObjectExtender will check if this object is already in the
registry of this transaction or one of its parents. If it is, the object in the registry
will be used.

Shared transaction
For client applications with a UI, it is very important to manage reads of objects
outside of any transaction scope. This is not just a matter of convenience, but of
semantics.

The model that ObjectExtender supports is as follows:
v The application can navigate through data, populating UI lists ″outside of

transaction scope″.
v When you modify an object or relationship, the application should begin a

top-level transaction.
v When a top-level transaction commits, the changes are committed to the external

backing store and also applied to the objects that are ″outside of transaction
scope″.

To support this model, ObjectExtender supports the notion of a special read-only
Shared Transaction that is the parent of all top-level transactions.

Note that this model cannot be supported using simply top-level and nested
transactions, because the model depends on the fact that the level of transaction
that commits to the external store is the level above the Shared Transaction. In
ObjectExtender, only top-level transactions commit to backing stores.

The SharedTransaction always runs with a Unrepeatable Read isolation policy. This
allows the transaction registry to be weak, so that objects read in the shared
transaction are not held onto after the last application reference to them is gone.

For transactions whose isolation policy is Unrepeatable Read, the registry is a
weak structure. This means that if there are no other references to the object in the
image, it may be reclaimed by the garbage collector. If the transaction isolation
policy is Repeatable Read, the registry structure is strong. This guarantees that if
the same query is executed twice in succession, the same objects with the same

Chapter 6. Reference 99

attribute and relationship values will be returned the second time, even if no
reference to the objects were kept in between queries.

Weakness is only implemented in the Smalltalk version of the product at this time.

The ″shell ″ business object
Within the scope of a single transaction, all references to a business object of a
particular key value are guaranteed to point to the same business object instance.
Since the transaction may have numerous nested transactions, and since
ObjectExtender supports optimistic (non-locking) transaction isolation, this means
that ObjectExtender has to manage different values of the data of this business
object in different nested transaction scopes.

In fact, because of the outer shared transaction, each top-level transaction is in fact
a nested transaction for this purpose. This means that the same business object
(BO) key value is resolved to reference the same BO instance, even across top-level
transactions, so this mechanism is required for the simple non-nested top-level
transaction case as well as for the nested case.

ObjectExtender implements this capability of having different values for the data of
a single instance of an object in different transactions by generating special get and
set methods that must be used to access the fields of an object. When an object is
first touched within a transaction, a copy of the values of all the managed fields of
the object is taken and stored associated with the transaction. The generated get
and set methods will always return the value of the fields from the copy held in
the transaction.

Some important characteristics of the way this works follow:
v There is no requirement that the class of the hidden copies of the data for

business objects be the same as the class for the business objects themselves (by
default they are, currently). The only protocol on the hidden copies of the state
for business objects is primGetSomeAttribute and primSetSomeAttribute:.

v The hidden copies of the data for business objects used for optimistic
(non-locking) transaction isolation are completely transparent to the application
programmer and the business object programmer.

v Pointers in the hidden copies of the data for business objects never point to
copies of data. They always point back to the original business object instance.

v We call the original business object instance the ″shell″ business object , to
distinguish it from the copies whose sole purpose is to store the field values for
a particular transaction.

v All business object methods are executed on shell business objects. User logic
never executes on the hidden copies of the state for business objects.

v All access to managed instance variables for a business object is required to go
through generated get and set methods. Currently there is no check for
violations of this rule. The reasons for this rule are:
– The generated get and set methods contain special logic to get and set values

into the correct copy for the current transaction.
– The generated set methods contain special logic to register the object as

modified in the current transaction.
– The generated get and set methods contain special logic to update and

de-reference relationships.
v The special variable, super, can be used without special consideration because it

always (correctly) points to a shell business object.

100 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

Event Signaling
An overview of the ObjectExtender event signaling follows.

ObjectExtender supports the registration of listeners and signaling of events on
business objects and relationships.

A code-generation object will cause all ObjectExtender-managed attributes to be
created as attributes.

Listener registration is transaction-sensitive in ObjectExtender. Whenever a listener
is registered for an object within a transaction, ObjectExtender will create a listener
list within the transaction for that object if it has not already been created and add
the listener to the list.

The initial listener list for a propertyChanged event in a transaction is always empty,
even if the parent transaction had a non-empty property list. This means that
listeners in the parent transaction will not be (immediately) notified of changes
that happen within a child transaction.

ObjectExtender will signal a changed event whenever a property value is signaled.
Only listeners that were added within the current transaction will be notified.

Whenever a transaction is committed, its modified objects are promoted to its
parent, and any resulting changes to attributes will trigger a corresponding
propertyChanged notification. This notification will go to listeners registered in the
parent transaction.

ObjectExtender LinkCollections for relationships signal changes for adding and
removing objects within them. ObjectExtender LinkCollections also signal an
elementChanged event whenever one of their elements signals a propertyChanged
event. This allows containers that display details of elements within the collection
to get notifications of changes without having to add themselves as
propertyChanged listeners of every element of the relationship.

Whenever a change to a LinkCollections is promoted to a parent transaction as part
of transaction commit, a suitable sequence of add and remove events is signaled in
the parent transaction.

Whenever a property of an object is modified, ObjectExtender will not only signal
the propertyChanged event for the object itself, but will also signal a corresponding
elementChanged event for every relationship that the object participates in.

BOManagers, Versions, and VersionStates
ObjectExtender requires each ″shell″ business object (BO) to be able to return a
BOManager object.

The BOManager object has the following responsibilities:
v Remember the HomeCollection for the BO.
v Remember the key for the BO.
v Create a temporary key for new objects that do not yet have one.
v Return the read or write version for the BO in the current transaction, creating it

if it does not already exist.
v Hold the lock object for a BO.
v Cache the most recently used transaction version for rapid access.

Chapter 6. Reference 101

In order to track the state and data values of an object within a particular
transaction, ObjectExtender creates Version and VersionState objects for each object
that is read or updated within a transaction. The Version objects are the objects that
are actually stored in the transaction registries, keyed by BO key. (Recall that it is
the transaction registries that are used to implement object uniqueness within a
transaction and to track which objects are ″dirty″ in a transaction). Version objects
are also cached by BOManagers for rapid repeat access within the same transaction.

A Version object has the following responsibilities:
v Remember the transaction the version is in.
v Remember the ″shell″ BO for the version.
v Remember the hidden copy of the data for the BO.
v Remember the last modification count of the version. This count is bumped

every time the version is updated.
v Remember the last modification count of the parent version at the time the

version was made This value is used to know whether the version of the BO in
the parent transaction has been modified subsequent to this version being
created. This is used to collect optimistic (non-locking) transaction isolation
collisions.

v Remember the state of the version. This is encapsulated in a separate state
object. The basic states are
– initial
– new
– retrieved
– deleted.

v Handle state transitions. For example, objects may go from retrieved to modified
or deleted.

v Detect transaction isolation collisions (delegated to the state objects and isolation
policies).

v Acquire and release locks (requested by transaction isolation policy, performed
when a version is first created for read or write, delegated to isolation
implementor).

v Register version in transaction registry.
v For persistent BO versions perform the appropriate Create/Read/Update/Delete

(CRUD) on the database based on version state to reflect changes. This is driven
by the resource object during transaction commit, and is interpreted by the
versions helper state object.

VersionState objects are helper objects for version objects.

The persistence layer
In addition to the support for objects, relationships and transactions provided by
the business object layer, ObjectExtender provides support for persistence by
mapping objects to a database or ″function call″ backend.

The persistence layer is implemented by generating parallel class hierarchies of
classes to the business object hierarchy. Instances of these parallel classes are
responsible for mapping the business objects and relationships to and from the
backend store.

Two of these hierarchies are:
v DataObject
v ServiceObject.

102 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

DataObjects
Data objects contain the data for a business object in the form in which it was
retrieved from the persistent store. Each persistent business object points to a data
object, and there is a direct correspondence between the managed fields of the
business object and the fields of the data object. DataObjects are the principle
entries in the cache (discussed later).

ServiceObjects
Service objects read data from the persistent store to create data objects, and store
data from data objects in the persistent store to support the
Create/Read/Update/Delete (CRUD) operations and navigation operations
required by the persistent object application.

ObjectExtender can generate stubs for these services if it does not understand the
backend datastore.

For SQL, ObjectExtender can generate full service implementations.

The SQL statements executed are all pre-calculated and stored in methods.
Currently, both dynamic and static SQL are suppported.

The ServiceObjects have a couple of generated helper classes that understand the
shape of the data objects, the shape of the SQL result rows (which may contain
data for several objects) and how to map between them. These helper classes
include Extractors, Injectors, and QueryPools.

For some cases, it is necessary to execute multiple statements of SQL (for example,
to update, insert an object that spans multiple tables), and to extract multiple
objects of differing types from a result set. This is handled transparently to the
application.

For fetch-ahead, BOs are made immediately for the root object being fetched. For
the fetch-ahead objects, only DOs are created and are entered in the DO cache for
future use.

Modification of generated code is supported, even encouraged. This may be
necessary or desirable for performance tuning and to handle complex legacy data
cases.

Mapping
ObjectExtender generates service implementations for relational databases from a
set of mapping specifications. The things you can specify include:
v Mapping object attributes to table columns

– Map object attributes to one table
– Map object attributes to multiple tables

v Mapping relationships to foreign keys
– One-to-one
– One-to-many

v Mapping inheritance
– Map all subclasses to the same table with discriminator field
– Map all subclasses to separate tables with duplicate columns for inherited

attributes (requires union queries for superclass extents)
– Map each subclass to a supplementary table containing subclass-specific

attributes only (requires join queries)

Caching
ObjectExtender implements a two-level caching scheme to enhance performance.

Chapter 6. Reference 103

The first level is an object cache, in the form of transaction registries that are
scoped by transaction. They ensure uniqueness of BOs and help to implement the
isolation required. The existence of the object cache allows the BOs to remain in
the client application for the duration of the transaction without having to reread
from the datastore each time they are referenced by the application.

The second level of caching is the DO cache, which comes into play during
fetch-ahead. Entries in the cache are (wrappers around) DataObjects (DOs) and
special cache entries for relationships. All DOs created from a read service
invocation that are not part of the target object type’s extent are placed in the
corresponding DO caches until needed.

The DO cache should not be confused with the transaction registries:
v Transaction registries ensure correct object uniqueness within a transaction

scope, whereas the cache is a simple optimization technique to prevent
redundant access to the backend data store.

v Transaction registries are NEVER emptied until the transaction completes
(although they may be weak for transactions whose isolation policy is not
Repeatable Read), whereas the cache may be emptied arbitrarily often according
to installed policies (LRU, time-expiration, and so on) without altering
transaction semantics.

The DO cache is used only for pre-fetch objects. DOs are removed from the cache
as soon as a BO is made for the DO. This is because the BO is being installed in a
transaction registry of a transaction (and all its ancestors) and all future sharing
will happen through the BOs in the registry.

There are no implemented mechanisms for flushing or controlling the size of the
cache. This is a potential problem, because aggressive pre-fetch of DOs that are not
subsequently converted to BOs will cause the cache to grow in an unmanaged
manner.

There is no implemented policy for controlling the staleness of DO data. This is a
potential problem, because arbitrarily stale data in DOs can be used for an
arbitrary length of time. This problem only exists for optimistic (non-locking)
transaction isolation. The following are the two scenarios that can cause problems:
v A BO gets stuck in the shared transaction for an arbitrarily long period of time

without getting refreshed. This can happen so long as someone keeps a strong
reference to the BO.

v A DO gets stuck in the cache for an arbitrarily long period of time. This is
discussed above. These problems will be fixed in the next release, probably by
allowing an age limit for DOs to be specified on a type-by-type basis. DOs in the
cache that are past their sell-by date will not be used to create new BOs. BOs in
transactions that do not specify Repeatable Read (for example, the shared
transaction) whose DOs are past their sell-by date will have their DOs refreshed
from the database on the next DO access.

Implementation note: The cache is a distributed structure. The cache for the DOs
for a particular BO type is hung off of the HomeCollection for the BO. Each
Relationship type also has its own cache. In ObjectExtender, related HomeCollections
know about each other, and each network of HomeCollection instances include
objects that represent the relationship types (these are currently instances of the
generated relationship class, but this may change after the first release). If you will,
the HomeCollection instance represents a particular BO type in the context of a data
store, and these relationship objects perform the same role for the Relationship
types. The cache for a relationship is keyed by the primary key of the BO that

104 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

owns the relationship. The relationship cache entry for a BO key consists of a
collection of BO primary keys for the target BO type of the relationship.
Relationship cache entries get filled indirectly. For example, if there is a
single-valued relationship from Faculty to Department, and a FacultyHome
allInstances query is performed, we already have all the information needed to
completely fill the cache for the Department-to-Faculty inverse relationship. Only
queries that return complete relationship information like this one will cause the
relationship cache to get loaded.

Preload
You can specify the depth to which data for an object should be retrieved from the
database in a single read query.

Preload is specified in ObjectExtender by defining paths. An example of a path is
invoices.lineItems. A path is relative to an existing object or relationship, and can
be thought of as a sequence of relationship names to navigate through. So for a
Customer object (or for a relationship collection of Customer objects),
invoices.lineItems would be a path to all lineItems for that Customer (or those
Customers).

ObjectExtender allows paths to be defined as part of the map for an object. Thus
invoices.lineItems would be a reasonable path for the Customer object.

You can define a default preload path for a class. This does not generate extra
services or protocol, but modifies the default retrieve services used by
findByPrimaryKey: and by relationships that point to the class.

To set a default preload for a class map you could do something similar to the
following:

| tableMap |
tableMap :=
((VapDataStoreMap mapAt: 'CeducCLIDB2')

mapAt: 'VapDepartment')
defaultPreloadPath: #('faculty').

This would set the faculty data as the retrieval depth for VapDepartment. Thus,
whenever VapDepartment was retrieved from the database, Faculty data would be
retrieved also.

Restrictions. The following restrictions apply:
v When preloading trees of objects (across relationships), pessimistic locking is

supported only for the root object of the tree.
v Application control of preload paths is not supported.

Custom queries
ObjectExtender provides a simple framework that allows you to add your own
custom query methods to HomeCollections with associated service implementations.
A custom query will return a Vector of business objects that currently exist in the
database. The query will not retrieve an object that was created by the Home but
not yet committed to the database.

ObjectExtender does not support static or dynamic queries on relationship
collections, nor does it automatically generate custom queries on HomeCollections.

Chapter 6. Reference 105

DataStore
The class, DataStore, is responsible for owning and managing a pool of database
connections. For each database connnection, it registers a home collection.

ODBC restriction: The ODBC spec does not include the types BLOB and CLOB
which are IBM CLI extensions to the spec. When using the JDBC-ODBC Bridge,
this type is not supported. The DB2 JDBC Drivers work well with these types.

ResourceManagers
Each top-level transaction has a ResourceManager instance. The resource manager
instance for a top-level transaction will create a Resource instance for each Resource
used by the transaction.

Resources
A Resource instance manages a resource, for example, a database connection, for a
single transaction instance.

Transaction commit flow
The flow through Transaction commit processing is as follows:

Transaction commit
Get the resourceManager for the Transaction and tell it

to synchronize the transaction
ResourceManager synchronize: aTransaction
Sort all the versions according to the resource they belong to
For each version in the transaction, add the version to the version list
of the correct resource for that version

Prepare all the resources
For each resource sort the versions to satisfy referential integrity
Go through the versions in order telling them to synchronize using the

resource's session
For each version, perform appropriate CRUD

Commit all the resources
Commit the DB transaction

External collision management
When using optimistic (non-locking) transaction isolation, ObjectExtender detects
collisions on the database by overqualifying the update SQL query. You can specify
which columns of the table should be included in the overqualified query in the
map for the class. Use the Be part of optimistic predicate selection from the
Property Maps menu item in the Map Browser.

Lite collections
A ″lite″ collection is a subset of an existing business object. It is an optimization
feature. Creating lite collections is useful for building views that display different
parts of a business object.

For example, if you were building a view to display selective data from Course
objects for a University, a lite collection for Course would only retrieve the
attributes: name, credit, and courseNumber from the data store.

Lite collections, therefore, read only a subset of attributes for an object. In this
respect, they are very useful for displaying a choice in a list, for example. Lite
collections return partially to completely populated data objects, not business
objects. As a result, when displaying attributes retrieved in a lite collection, you
must use the data object’s methods.

106 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

Lite collections support the ″drill-down″ data access approach often seen in GUI
intensive applications. GUI applications that open a series of nested dialogs on a
set of data are prime candidates for using lite collections.

Lite collections have protocol to instantiate persistent objects. The message
#getBusinessObject can be sent to an element of the collection to instantiate it, for
example, say you have a lite collection with twenty objects and you want to
instantiate the last one, you could do the following:

aLiteCollection last getBusinessObject.

The notion of ″packeting″ lite collections is supported as well. For example, say
you have a Student object. Consider there are twenty thousand Students enrolled in
the University. You can ″packet″ the amount of Students retrieved from the data store.

Using the Course scenario described earlier, a code example follows. Three lite
collections for Course are shown:
v byDepartment: consists of key, nameProperty, and dept data, sorted by dept.
v names: consists of key, and nameProperty.
v byCredit: consists of key and nameProperty, sorted by credit.

The code would be as follows:

| courseClass key nameProperty credit dept |

courseClass := (Model modelNamed: 'University') classNamed: 'Course'.
key := courseClass attributeNamed: 'number'.
nameProperty := courseClass attributeNamed: 'name'.
credit := courseClass attributeNamed: 'credit'.
dept := courseClass associationEndNamed: 'department'.

LightCollectionSpec
name: 'byDepartment'
namespace: courseClass
properties: (Array with: key with: nameProperty with: dept)
filterProperty: dept.

LightCollectionSpec
name: 'names'
namespace: courseClass
properties: (Array with: key with: nameProperty).

LightCollectionSpec
name: 'byCredit'
namespace: courseClass
properties: (Array with: key with: nameProperty)
filterProperty: credit.

This example is just for illustration purposes. You do not need to hand code lite
collections. Lite collections are much easier to create using the Model Browser.

Defining complex mappings
ObjectExtender supports defining complex mappings of object attributes to column
values.

Complex mappings of a single attribute to a single column: ObjectExtender
supports the notion of a converter.

Chapter 6. Reference 107

A converter is an object that converts a column value to and from a corresponding
object format. The conversion performed by a converter may be arbitrarily
complex. You can code your own converter classes.

Converters are associated with columns in a schema definition, and are used
wherever that schema is used. Converters encode the ″real meaning″ of a database
column in object terms. An example of a converter is one that interprets a Y or an
N in a CHAR field of a database as a Boolean object.

You likely will need to create your own converters from time to time. For example,
you might have to convert a database integer to an IP address object. To create
your own converters, subclass under VapAbstractConverter, which has a simple
protocol that converters must implement.

Complex mappings of a single attribute to a multiple columns: ObjectExtender
also supports the notion of a composer.

A composer is responsible for mapping a number of separate DataObject attribute
values as a single complex BusinessObject attribute value.

The aggregation performed by a composer may be arbitrarily complex, and you
can code your own composer classes.

Composers are associated with maps: composers define how schema values are
mapped into a particular object model. An example of a composer would be one
that mapped street, city and zip columns into an Address object.

Composers are used to create attribute values that are complex objects. These
attributes do not have unique keys, and so cannot be referenced from other objects
and cannot be modeled as separate top level objects with relationships to their
owners.

Metadata storage model
When defining your object model, schema, and maps with the ObjectExtender
browsers, in effect, you are describing metadata. The metadata is used by the
framework to create the domain classes that will instantiate and service your
business objects. When compared to typical class browsers, the Model, Schema,
and Map browsers can be thought of as metadata browsers. That is, when
browsing a class with a typical class browser, you are browsing the real class
definition with all of its state and behavior. The metadata browsers are used to
describe your object model to the ObjectExtender framework so that it can build a
persistent layer for your business objects. Therefore, the metadata browsers are
only concerned with the pertinent details to make your business objects persist.
However, like the typical class browsers, ObjectExtender metadata browsers are
integrated with the Envy features so that you can save editions of your object
model in the repository.

The ObjectExtender framework makes use of Envy features to store networks of
objects such as Model or Schema into a private field of a User-Defined classes.
Each entity (Model, Schema or Map) is associated with and stored to a unique
class. This gives you the flexibility to store and save different versions of the entity
by maintaining different versions of the associated storage class.

The hierarchy of storage classes is as follows:

108 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

VapStorage
ModelStorageClass
UserDefinedModelStorageClass-1
UserDefinedModelStorageClass-2
UserDefinedModelStorageClass-n

SchemaStorageClass
UserDefinedSchemaStorageClass-1
UserDefinedSchemaStorageClass-2
UserDefinedSchemaStorageClass-n

MapStorageClass
UserDefinedMapStorageClass-1
UserDefinedMapStorageClass-2
UserDefinedMapStorageClass-n

The browsers recognize new entities that you create as well as entities that are
stored in storage classes. For example, if you open a Model Browser and select
Load Available Models, the image is scanned for subclasses of ModelStorageClass.
For each subclass found, a model is reconstructed from the saved format. The
model is then cached and displayed in the browser. This operation will not write
over models which are currently cached and displayed in the browser. If you
change and save the model, it will be stored back to its associated storage class. If
the storage class is an open edition, then the new model, the one that you have
just changed, will overwrite the previously stored copy. If the storage class was not
an open edition then a new edition will be created and the new model will be
saved there.

When you create a new model and save it for the first time, the Model Browser
prompts you for a class and application name. If the application does not exist
then it will be created.

TheModel Browser also provides a way to restore the copy you are currently
browsing to the match the stored copy. If you make changes and decide you want
to restore the original, you can do so by choosing the Revert model option.

To maintain consistent sets of associated models, schemas, and maps, it is assumed
that you will use these Envy features just as you would when developing
applications outside the ObjectExtender framework.

For example, suppose you want to use the application named
WizBangProjectPersistenceApp which contains the three storage classes:
WizBangModelStorage, WizBangSchemaStorage, and WizBangMapStorage to store other
versions of models, schemas, and maps.

Envy versioning could be employed to do something like this:
WizBangProjectPersistenceApp ProjectMilestone 1

WizBangModelStorageClass 1.0
WizBangSchemaStorageClass 1.0
WizBangMapStorageClass 1.0

Loading this version of WizBangProjectPersistenceApp would make its associated
storage classes (and therefore their stored metadata entities) available to the Model,
Schema, and Map Browsers.

Chapter 6. Reference 109

Writing your own services
If you are not using a relational database to persist your object model, you need to
write your own data services. However, you can still use the code generation
services to create code stubs that you can complete according to your data store
requirements. After you have defined your object model, you can generate the stub
service classes.
1. From the Model Browser, select your model and then select Generate.
2. In the Generation SmartGuide, select Data Service Classes and Interfaces and

press Next.
3. Select Stub Schema.
4. Provide a package name where the stub service classes should be generated

and press Finish.
Stub classes will be created for your Data Store, Data Object, and Service
Object.

Defining the persistence support code
The code stubs generated by the code generation services can be completed in the
appropriate manner for your specific data store. In particular, the execute methods
for the service classes must be completed and the data object class must be
implemented to retrieve values from the appropriate data structures.

See the implementation of the ″execute...″ scripts in RelationalServiceObject class to
see how results should be cached, returned, and errors reported. These scripts
illustrate the typical operations needed to work with a data store.

User code sections
In addition to providing code generation services, ObjectExtender also provides a
way for you to insert your own code into methods created by these services. This
open path into the generated code is provided in the event that you have special
application requirements that may call for unique processing. In this way, you can
take advantage of the services that ObjectExtender provides as well as add your
own processing.

Using the user code sections in the generated methods guarantees that your code
will remain intact across regenerations of your model. When you regenerate
existing code, the code generator will merge the lines you added into the
regenerated version of the method.

User code sections in ObjectExtender are delimited in the methods using
comments.

methodName
"Method comments..."

|methodTemporaryVariables |

methodCode...

"Begin user code {section name}"
"End user code"

User code sections are generated in the following classes:

110 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

v BusinessObject attribute primitive getter methods (pre/post-Get)
v BusinessObject attribute primitive setter methods (post-Set).
v BusinessObject attribute public getter methods (post-Get).
v BusinessObject attribute public setter methods (pre-Set).
v BusinessObject relationship public setter methods (pre/post-Set).
v BusinessObject preStore: (pre-Store).
v Key initializeFromBO: (post-initialize).
v Key setInBO: (post-Set).
v DataObject attribute setter (pre-Set).
v DataObject attribute getter (pre-Get).

User code sections are generated in the business object, key, and data object
classes.

In some cases, specific methods are noted. In other cases, the generic getter/setter
terminology is used indicating attribute accessor methods. The names of the user
code sections are given in parentheses. These names are found in the comments of
the user code section. Think of them as labels for the user code that suggest what
is to done at a particular linear section in the code.

accountNumber
"Get the value of the attribute accountNumber in the current transaction"

| value |

value := self bom versionDataForRead primAccountNumber.

"Begin user code {post-Get}"
"End user code"

Managing business objects
Once you have created your model, schema, and data store map, and generated
their supporting code, you can then create the application layer that will manage
the business objects. If you plan to create a user interface, you can use the parts in
theObjectExtender palette category on the Composition Editor. These parts are
transaction-aware, that is, they understand transaction semantics such as #begin,
and #commit.

Depending on your requirements, you can build nearly all of your application
using VisualAge tools with very little scripting; you can build the persistence layer
with the ObjectExtender tool set, and the user interface with the Composition
Editor utilizing the ObjectExtender parts as well as the other parts available for
building user interfaces.

If your application will not utilize a user interface, there are some details you will
need to code in the code to manage your business objects, such as activating the
data store, beginning transactions, creating business objects, and so on.

This section collects some of the details useful for programmers who are applying
business rules and application logic to the model domain.

Chapter 6. Reference 111

Using the data store
Activating the data store. Before attempting to read or write any business objects,
you must activate the appropriate data store. This is done by sending #activate to
the singleton of your data store class. This will associate the appropriate service
classes to the home collections, and initialize any required database connections. A
sample data store activation would be similar to the following:

yourBusObjDataStore singleton activate

When testing your code, you can also activate a data store using the Status Tool.

Creating, retrieving, deleting instances
Creating business objects. There are a number of ways to create persistence
instances. The first is to create a persistent instance with the create protocol on the
home collection.

Before this can be done, a data store and non-read-only transaction must have been
activated. There is one data store for each map that has had services generated
from it and the map provides the layer between the model domain objects and the
persistent back end.

Having created an object with the create protocol, it can be modified and/or
deleted in the transaction in which it was created or within a transaction that is
nested from the transaction in which it was created. If any attempt is made to
access the object in a transaction other than these, a VapVersionNotFound
exception will be raised.

Before persisting the object (which will happen when the TopLevelTransaction is
committed) the key must have been supplied to the object. The key is the set of
attribute and association roles that were specified as the object identifier (OID) in
the Model Browser. For example, if the object has a key of name, the following
protocol would be sufficient:

Another way of creating an object with a specific key is with the createFromKey
method on the home collection:

The code generation services will create a helper method that has a specific create
method that has one parameter for each OID element.

Retrieving business objects. Instances of business objects can be retrieved by
creating an instance of the appropriate key class and asking a home collection to
find the corresponding instance.

DepartmentHome singleton findByPrimaryKey: (DepartmentKey with: 'CIS')

Asking for all instances. All instances of a persistent class can be retrieved by
sending a message to the home collection for the business object. This will always
execute a query against the database to retrieve a Vector of business object
instances. This method returns all instances that exist in the database, not the
instances that exist only in the image.

Deleting business objects. Send the remove() message to primary objects to delete
them, and secondaryRemove() for deleting cascaded objects.

112 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

Accessing relationships of a business object
You can access the relationships of a business object instance by invoking the
generated relationship accessors. When the relationship is many-valued, the result
will be a specialized collection, which provides transactional support for
relationship collections. It responds to most collection protocol, and will return the
correct relationship value for the current transaction.

Coding transactions manually and visually
Creating transactions. You can begin a new TopLevelTransaction with:

Transaction begin: 'MyTransaction'.

Creating nested transactions. You can begin a new nested transaction by sending
#beginChild: to an existing transaction:

aTransaction beginChild: 'MyChildTransaction'

Creating named transactions. Transactions can also have names to identify them in
debugging and to aid in collision management. Refer to “Transaction overview” on
page 91 for more details.

Commit and rollback strategies. Transactions can be ended with a variety of
commit and rollback methods which allow the specification of success and failure
actions. Refer to “Transaction API” on page 96 for more details.

Transaction isolation policies. Transaction isolation policies can be specified for
each Transaction. These policies control the behavior of transaction view version
copying, merging, and promotion to the shared view.

ObjectExtender Parts

Several parts are available to enable you to work with transactions visually.

SharedTransaction. This part represents a distinguished or singleton instance of
the SharedTransaction.

TopLevelTransaction. The TopLevelTransaction part represents a top level
transaction. When this part is used in a composition editor it will create the top
level transaction during the initialization phase of the view. This helps to ensure
that the view’s current transaction has been switched to the top level transaction
before any of the connections are initialized.

TransactedVariable. In some circumstances, the applet or view is only working
with a single current transaction. In this case the standard variable part (supplied
in VisualAge) can be used to allow objects to be connected together and to the user
interface parts. In some views, however, there may be several active transactions
and the programmer needs to ensure that a specific variable on the view is
″pegged″ to a given transaction. This is done with the TransactedVariable part. The
transacted variable has all of the behavior of the standard variable part except that
it has one additional property: transaction. When the transacted variable part is
given a transaction it will ensure that all connections are done with that transaction
as the current transaction. Having executed the connection, the previous current
transaction will be resumed. This allows connections to be guaranteed to get and

Chapter 6. Reference 113

set the value of the object within the transacted variable that is for the transaction
that has been specified, irrespective of what the current transaction is at the point
when the connection is activated. With the standard VisualAge variable part , the
current transaction would be the one in which the get or set method was executed.

BusinessTransaction In some view scenarios, when a transaction is committed, you
may want the view to remain open, in other scenarios, you may want to close the
view. For example, an OK button might commit a view’s changes and close the
view whereas a Save button might commit the changes and keep the view open.

Whenever a transaction is committed, its state changes from active to committed
and its parent transaction will be resumed. Any attempt to resume the committed
(or rolled back) transaction will cause a VapTransactionFailure exception to be
thrown. The developer must therefore begin a new transaction to allow the user to
remain in the view at the same transaction nesting level.

The business transaction caters for such a scenario. It has a read only property of
transaction which it will lazily initialize to a new TopLevelTransaction (Lazy
initialization means that the transaction is created when it is first asked for if it has
not been previously created and is null). When its transaction is committed (either
through the commit() and rollback() methods on the BusinessTransaction part or by
the transaction being committed elsewhere) a fresh transaction will be created by
the part. When the transaction is regenerated the part signals the transaction
property (which is bound to the transaction event). If the transaction property of
the BusinessTransaction is connected to the transaction property of a
TransactedVariable this will cause the TransactedVariable to refresh itself with the
version of its object in the new transaction and the user is allowed to continue
working with the transacted variable’s contents.

By default the BusinessTransaction will create a new TopLevelTransaction the first
time its transaction property is retrieved. Rather than create this as a child of the
SharedTransaction the part will create a private ReadOnly transaction that it uses
as the parent of its transaction. The reason for this is that when a transaction is
committed its parent will be resumed. If a TopLevelTransaction is committed the
SharedTransaction will be resumed. The SharedTransaction is not able to have any
new objects created into it, including read only objects that are newly read in from
the data store. By having the ReadOnly transaction as the parent however ensures
that in the gap between the transaction being committed and refreshed the current
transaction is able to read and refresh objects. This behavior can be toggled with
the property createReadOnlyParent on the part.

It is also possible to explicitly set the parent transaction that the
BusinessTransaction part should use to create its child transaction. This is done
through the writable property parentTransaction on the part. This allows views
that have to support nested transactions to be constructed by connecting the
transaction property of one BusinessTransaction to the parentTransaction property
of another. The latter transaction will be a nested child of the former, and the
BusinessTransaction parts will ensure that whatever combination of transactions
get committed or rolled back that both parts have valid transactions that are nested
from one another.

Because the business transaction lazily initializes its transaction when it is first
asked for, there are some circumstances where this is done before the parent
transaction is set. In this case it may be the desired behavior that the previously
lazily initialized transaction (which will not be a child transaction of the new
parent transaction) should be rolled back. This is the default behavior. If this is not

114 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

the desired behavior, that is, when the parent transaction is set on the part any
previously generated transactions are left active, the boolean property
rollbackTransactionWhenParentChanges should be toggled.

Analyzing performance
There are different ways you can analyze and tune performance for persistence.
The Status Tool can be used to monitor the transactions, views, and caches in the
system. You can use it to reset the state of various components as you unit test and
get your code working.

Executing SQL. The SQL Query Tool can be used to execute SQL code against the
data store connection.

Tracing code paths. The Trace class provides a singleton trace object that has a
default output stream and switches for trace levels.

Debugger settings: Catching exceptions. You can also take advantage of the
Workbench-Window-Debugger-Caught Exceptions dialog to get better debugging
for exceptions thrown within try/catch or synchronized blocks.

Chapter 6. Reference 115

116 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

Appendix. Restrictions

In addition to restrictions, this section documents workarounds and suggestions
that may be useful to product users.

Home createFromKey:

When creating a new object, you can create it with the Home createFromKey:
method. If that key contains relationships (really the keys of the related objects)
then the related objects cannot be new objects. If you want to set a relationship to a
new object, you should use create and then set the relationships with the new
object (NOT the key), or use the createWith:with: helpers on the homes. The reason
behind these restrictions is that the key of a new object is not guaranteed to be
permanent, so we do not support lookup of a new instance by key, therefore a
relationship to that new object by key alone can’t be resolved. For example:

| b1 newBranch c bc |
b1 := VapBankBranchHome singleton findByBranchNumber:'BR001'.
newBranch := VapBankBranchHome singleton createWithBranchNumber:'BR999'.
c := VapCurrencyHome findByCurrencyType: 'CRC01'.

"Relate two existing objects: Works OK"
bc := VapBranchCurrencyHome createForBranch: b1 currency: c.

"Relate one existing object and one new using helper:
Sets relationshipvalue directly, Works OK"
bc := VapBranchCurrencyHome createForBranch: newBranch currency: c.

"Relate one existing object and one new using createFromKey:
Does not work!"
bc := VapBranchCurrencyHome

createFromKey: (VapBankBranchKey with: newBranch key with: c key).

"also: until newBranch is committed to the data store and the
Shared Transaction, you can't find it by key,
ala: VapBankBranchHome singleton findByBranchNumber: 'BR999'. "

Residual instance variables on model regeneration

If you delete class attributes in a model for which you have already generated
code, and then regenerate the model, you may encounter the following problem:
your instance variables represented by the attributes you deleted will still exist in
the class, however their getter and setter methods will be properly deleted.

DBCS character text field entry

You cannot enter DBCS characters in ObjectExtender browsers and tools except for
one case:
1. Physical name for tables, columns, and keys.

In addition to Physical name, there is a corresponding (optional) logical name
field (Name) for tables. If you import a schema from a database, which has
double-byte characters, enter logical names for each physical name, you must
enter single-byte characters for the logical name.

Mapping, relationships, and preload limitations

Inheritance Mappings

© Copyright IBM Corp. 1998, 2000 117

1. Disinheritance not supported.
2. Remapping of superclass map ivar/relationship maps not supported.
3. Mixing inheritance strategies within one mapped inheritance hierarchy is

untested.
4. Use of discriminators outside of inheritance mappings is untested.
5. Multiple column discriminators is not supported.
6. Discriminators that are also keys is untested.
7. Relationships among classes within a mapped inheritance hierarchy has not

been fully tested.
8. Distinct table inheritance is not supported.
9. Use of foreign key relationships that are not ″primary key to primary key″ in

root/leaf inheritance mapping is untested

Abstract Mapped Classes
1. Abstract mapped classes are supported only within inheritance mappings. We

assume that the abstract class is mapped to an (abstract) table in the database.
Otherwise abstract mapped classes are not supported.

Relationships
1. Relationships across data stores are not (fully) supported
2. Relationships involving ″non-standard″ foreign keys are not supported, for

example:
a. keys that do not match either with the number columns or column types
b. keys involving transformations of the key data
c. keys involving column or database functions

3. Many to Many relationships with hidden tables are not fully supported

Class Mapped to Multiple Tables
1. Foreign key relationships that not ″primary key to primary key″ (i.e.

″backward″ 1 to 1) are not tested
2. Classes split over data stores are not directly supported

Preloading. There is a known bug with preloading relationships on a class whose
target classes are mapped to the same class (or inheritance hierarchy). The query
generated is incorrect. This occurs in the following scenarios:
1. Class with relationship to self (or some other member of its own inheritance

hierarchy).
2. Class with two or more relationships to the same target class (or classes in the

same inheritance hierarchy).
3. Relationships between classes in the same inheritance hierarchy.

Single character data and vendor DB drivers

Various vendors’ database drivers treat single-character data differently. Some will
return a Character, some will return a String of length one. To be safe, if an
application may run with multiple drivers, type Char(1) fields as strings, and the
VapCharToString converter will guarantee that a string will always be returned.

IC instruction not preloaded

For all VisualAge users using ICs, they must load the following two config maps
before using ICs, 1) Envy/Packager IC Instructions, and 2) VisualAge IC
Instructions

118 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

For ObjectExtender users, you must load one more instruction: VisualAge
Persistence IC Instructions

These instructions must be loaded in this order.

Composed object does not make aggregate dirty

When using composed objects, the aggregate object is not marked ″dirty″ in a
partial update scenario. For example, TstCustomer object has a name which is a
composed object. When an update partial name operation is performed (first name
or last name) the object is not marked dirty, so the changed object will not be
written into the data store. To force the change, you must change the other
attribute of the object.

Global reset does not clean up database connections

If you attempt to clean up database connections using the ″Global ObjectExtender
Reset″, and you get an unknown abtError, you may still have a dead connection to
the DB. One workaround for this is to evaluate the following:

AbtDbmSystem startUp

Generate models first before other code-gens

As a general rule, always generate code for models before generating services code
or stub code for schema or local image persistence. If you generate code without a
model present a walkback will occur stating that the model is missing.

Backwards 1:1 relationships

If you have backwards 1:1 relationships, you must always regenerate the services
after generating the model. Model generation assumes that all 1:1 relationships are
forwards, service generation uses the maps to correct those which were backwards.

When Changing composer types

If you have a complex attribute map, and you want to change the Composer type,
you need to delete the Complex attribute map from the Map Browser and recreate
it in the Property Map Editor.

Specialization for cascade delete

A specialization of BusinessObject>>#abtRemove is available for cascade delete
operations. The cascade responsibility is divided between the two remove methods.
#abtRemove is sent by the application to the root object being deleted. This method
can be overridden to disconnect the root object from its parent object. The default
implementation of #abtRemove just calls #markRemoved. #markRemoved should
be specialized to perform any disconnects and cascades which an object should
perform whether or not it is the root. It should not disconnect from its parent
object here. It should not disconnect any connections to child objects, since these
connections are required to perform operation sorting for referential integrity
constraints. An example might go like this:

Appendix. Restrictions 119

VapCustomer>>#abtRemove
self bankBranch: nil. "disconnect from parent"
super #abtRemove "calls #markRemoved"

VapCustomer>>#markRemoved
self accounts do: [:acc | acc markRemoved]. "cascades to transactions, etc."
self homeAddress markRemoved.
self billingAddress markRemoved.

"you could also disconnect any non-aggregate associations here"

Foreign keys used in 1-1 relationships

If foreign keys are used for 1-1 relationships, the association must be navigable.
For example, suppose you have the following :

Model:
Customer <-------> Address

1. homeAddress
2. billingAddress

Schema:

Customer table contains homeAddress and billingAddress columns
which are foreign keys to Address table.

You must then define both model associations navigable. Otherwise, on inserting
customer, it will not insert the address first, and you will get an insert customer
error because the address parent key does not exist.

Service Generation should generate #executeSingleUpdate: for No key object

The problem occurs when a model class has only properties which are part of its
OID.

An association object, modeling a join table, is a good example.

Say you have a model class called BranchToCurrency which is an association
between Branch and Currency, its only properties are two associations, and these
two associations make up the OID of the BranchToCurrency object. Since the
database row only has key fields, there are no updatable fields, and our UPDATE
query will not work properly.

The workaround is to override the service method #executeSingleUpdate: to do
nothing. The application developer should structure their use of these kinds of
objects so that the application never tries to update one, always adding or
removing new instances rather than changing an existing one. The override above
is just to catch a case where the app accidentally updates an object, maybe by
disconnecting a related object.

Pre-req for user-defined composers

Model and service applications which use Composers need to make sure their
pre-reqs are updated to include their application which define any user-defined
model and composers. For example, if a model has a property which is a Name,
and the maps specify that a composer called NameComposer should be used, then
the generated model application must pre-req the application defining Name, and
the generated service app must pre-req the application defining NameComposer.

120 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

No converter for AbtMonetaryAmount

A converter for AbtMonetaryAmount is not provided, use ScaledDecimal instead.

Workaround for Sun core exiting VisualAge ObjectExtender application

On Soliaris platforms, if you encounter a core dump on exiting VisualAge
ObjectExtender application (runtime), the workaround is to comment the method
#shutDown in class PlatformLibrary, then re-package the application.

Appendix. Restrictions 121

122 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

Glossary

ACID. A mnemonic for the properties a transaction
should have to satisfy the Object Management Group
Transaction Service specifications. A transaction should
be Atomic, its result should be Consistent, Isolated
(independent of other transactions) and Durable (its
effect should be permanent).

atomic. An atomic database transaction is one which
is guaranteed to complete successfully or not at all. If
an error prevents a partially-performed transaction
from proceeding to completion, it must be ″backed-out″
to prevent the database from being left in an
inconsistent state.

BO. Business object. This term denotes the objects in
your problem domain that you wish to persist in a data
store.

cardinality. Cardinality expresses the constraints on
the number of instances that are related through a
relationship.

code-generation. The function whereby code is
generated automatically given certain specifications.

CB. Component Broker.

connect/disconnect. The attachment (or unattachment)
of a target business object to/from a link.

consistency. In the context of ACID: a transaction is a
correct transformation of the state. The actions taken as
a group do not violate any of the integrity constraints
associated with the state. This requires that the
transaction be a correct program.

counter. Referring to the other side of a two-way
business object relationship.

CRUD. Create/Read/Update/Delete, the four basic
types of operations on database rows, records.
ObjectExtender provides these operations on objects as
well.

data model. The term, data model is used here, to
make a distinction between it and an object model that
you wish to persist. For example, the schema for a
relational database represents the data model. Your
object model is represented differently and will not
need to be tightly coupled with the data model
representation.

DDL. Data Definition Language. A language enabling
the structure and instances of a database to be defined
in a human- and machine-readable form.

DO. DO is an acronym for data object. Data objects
contain the data for the business objects. The data is in
the form in which it was retrieved from the data store.

durability. In the context of ACID: Once a transaction
completes successfully (commits), its changes to the
state survive failures.

framework. In object-oriented systems, a set of classes
that embodies an abstract design for solutions to a
number of related problems.

home collection. Home collections provide the logical
home for business objects. They provide APIs for
creating or locating instances.

hydration. The activity of populating the properties
and relationships of a model object.

isolation. In the context of ACID: even though
transactions execute concurrently, it appears to each
transaction, T, that others executed either before T or
after T, but not both.

link. The infrastructure that connects source and
target business objects in a relationship.

metadata. Any information which describes according
to prescribed specification a target data.

multiplicity. See cardinality.

nested transaction. A nested transaction is a tree of
transactions, the sub-trees of which are either nested or
flat transactions. Transactions at the leaf level are flat
transactions. The transaction at the root of the tree is
called the top-level transaction; the others are called
subtransactions. A transaction’s predecessor in the tree
is called a parent; a subtransaction at the next lower
level is also called a child . A subtransaction can either
commit or roll back; its commit will not take effect
though, unless the parent transaction commits.
Therefore, any subtransaction can finally commit only if
the top-level transaction commits. The rollback of a
transaction anywhere in the tree causes all its
subtransactions to roll back.

object model. Object model is to data model what a
hierarchy of classes is to a schema of database tables. It
is simply a distinction between the two representations
of how the data is represented.

OO. Object-oriented. Can apply to analysis, design,
and programming disciplines.

persistence. A property of a programming language
where created objects and variables continue to exist
and retain their values between runs of the program.

© Copyright IBM Corp. 1998, 2000 123

This is in contrast to transient objects that cease
existing when the application that created them is not
running.

pre-fetch. The notion of defining a path to set of data
that you want to preload from data store to object
model to reduce the number of database trips
improving performance.

relationship. As understood in the context of the
ObjectExtender framework, a relationship is an instance
variable in a business object which contains a reference
to another persistent object.

transaction. A unit of interaction with a DBMS or
similar system. It must be treated in a coherent and
reliable way independent of other transactions.

UML. Universal Modeling Language.

124 VisualAge Smalltalk: ObjectExtender User’s Guide and Reference

Index

B
BusinessObject

accessing 113

C
caching 3, 103
cardinality 13, 32
code, user 110
code generation options 29
collision management 94

examples 97
Repeatable Read 94

locking implementation of 95
non-locking implementation of 95

Unrepeatable Read 94
locking implementation of 96
non-locking implementation of 95

commit
transaction flow 106

complex mappings 107
multiple attribute to single

column 108
single attribute to single column 107

composer 40
converter

adding your own 108

D
DataObject 103
DataStore 6, 106

activating the 112
DBCS 117
debugging 115

gather statistics 115
monitoring 115
query 115
Trace 115

E
entry path 19
Envy

managing versions of models 108
event signalling 101

external collision management 106

F
fetch-ahead 3, 103, 105

restrictions 105, 117
setting a default 105

G
generating

schema to model 30

H
HomeCollections 90

L
lite collections 31
loose coupling 2

M
mapping 14, 103

attributes 103
inheritance 103
relationships 103

metadata storage model 108
minimal intrusion 2
multiplicity 13, 32

O
object uniqueness 99

registry 99
weak structure 100

optimization 2, 3, 103, 105
restrictions 105, 117
setting a default 105

P
paths of entry 19
prefetch 3, 103, 105

prefetch 3, 103, 105 (continued)
restrictions 105, 117
setting a default 105

preload 3, 103, 105
restrictions 105, 117
setting a default 105

programming model 89

Q
queries 5, 105
query 5, 105

R
relationship 12

cardinality 13
inverse 13
ownership 13

Resource 106
ResourceManager 106

S
service object 103
shell business object 100

T
Transaction 94

API 96
concurrent 4
nested 4
registries 104
shared 99
top-level 99

transaction isolation policy 94
examples 97
Repeatable Read 94

locking implementation of 95
non-locking implementation of 95

Unrepeatable Read 94
locking implementation of 96
non-locking implementation of 95

U
user code section 110

© Copyright IBM Corp. 1998, 2000 125

	Contents
	Notices
	Trademarks

	About this book
	What this book includes
	Who this book is for
	About this feature
	Conventions used in this book
	Tell us what you think

	Chapter 1. Introduction
	Minimal intrusion to object and database design
	High performance
	Advanced transaction support
	Advanced query support
	Relationship support

	Seamless support for various database paradigms

	Chapter 2. Concepts
	Key elements managed by the framework
	Key tasks you develop
	Organizing your application
	The main components of the framework
	Model framework
	Relationship framework
	Transaction framework
	Mapping framework
	Data store framework

	Chapter 3. Quick tour
	Choosing an approach to persistence
	Using code generation services
	Defining the model with the Model Browser
	Importing a model from UML Designer
	Defining the schema
	Defining a data store map
	Tuning the code as needed
	Completing your application
	Exporting your model to UML Designer

	Chapter 4. Tools
	The Model Browser
	Browser use
	Browser description
	Browser menu-bar choices

	The Schema Browser
	Browser use
	Browser description
	Browser menu-bar choices

	The Map Browser
	Browser use
	Browser description
	Browser menu-bar choices

	The SQL Query Tool
	The Status Tool

	Chapter 5. Tasks
	Tasks and samples overview
	Your first ObjectExtender application
	Creating a model
	Creating a class in the model
	Creating the code for the model
	Creating persistence support
	The department home collection class
	Creating a view
	Listing departments
	Editing departments
	Creating departments
	Deleting departments
	Creating a new top-level transaction each time one iscommitted

	Transactions in more depth
	Nested transactions
	Switching between transactions
	Two top-level transactions

	Visual programming for more than one transaction
	Using the TransactedVariable part

	Viewing multiple transactions
	Transacted variables in editable container parts
	Model to model relationships
	One-to-many relationship
	Maintaining staff
	Maintaining the department to staff relationship

	Creating relationships
	Creating one-to-one (1-1) relationships
	Creating one-to-many (1-M) relationships
	Creating many-to-many (M-M) relationships

	Mapping business objects to tables
	Creating a single table map with no inheritance
	Creating a secondary table map
	Creating single table inheritance maps
	Creating root/leaf inheritance maps
	Using a composer for mapping an attribute to multipledatabase fields
	Using converters

	Performance tuning
	Changing the locking type on a table
	Setting preload paths
	Creating Lite collections

	Chapter 6. Reference
	ObjectExtender runtime architecture
	Programming model overview
	The business object layer
	HomeCollections
	Transaction overview
	Transaction isolation policies
	Transaction API
	Setting the transaction's isolation policy
	Object uniqueness
	Shared transaction
	The "shell" business object
	Event Signaling
	BOManagers, Versions, and VersionStates

	The persistence layer
	DataObjects
	ServiceObjects
	Mapping
	Caching
	Preload
	Custom queries
	DataStore
	ResourceManagers
	Resources
	Transaction commit flow
	External collision management
	Lite collections
	Defining complex mappings

	Metadata storage model

	Writing your own services
	Defining the persistence support code

	User code sections
	Managing business objects
	Using the data store
	Creating, retrieving, deleting instances
	Accessing relationships of a business object
	Coding transactions manually and visually
	Analyzing performance

	Appendix. Restrictions
	Glossary
	Index

