
VisualAge Smalltalk

Tivoli® Connection Guide and Reference
Version 5.5

IBM

Note

Before using this document, read the general information under “Notices” on page v.

August 2000

This edition applies to Version 5.5 of the VisualAge Smalltalk products, and to all subsequent releases and
modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the level of
the product. The term “VisualAge,” as used in this publication, refers to the VisualAge Smalltalk product set.

Portions of this book describe materials developed by Object Technology International Inc. of Ottawa, Ontario,
Canada. Object Technology International Inc. is a subsidiary of the IBM® Corporation.

If you have comments about the product or this document, address them to: IBM Corporation, Attn: IBM Smalltalk
Group, 621-107 Hutton Street, Raleigh, NC 27606-1490. You can fax comments to (919) 828-9633.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Notices v
Trademarks. v

Chapter 1. Introduction to Tivoli
Connection for Windows 1
What you get with Tivoli Connection 1

Tivoli Event parts. 1
Tivoli Enterprise Console interface 1

Tivoli Module Designer. 1

Chapter 2. Setting up Tivoli Connection 3
Installing Tivoli Connection 3
Setting up the Tivoli Enterprise Console interface . . 3

Chapter 3. Building an application with
Tivoli Connection 5
Supported events 5
Adding events visually 5
Adding events as messages 8

Initialize Tivoli Event DLL. 8
Application Startup Event 8
Application Close Event 8
Application Shutdown Event 8
Application Idle Event 8
Application Error Event 9
SQL Error 9
Application Send Event. 9

Chapter 4. Sending generic events. . . 11

Chapter 5. Generating Tivoli Events
from Smalltalk Exceptions 13

Defining a TivExceptionalEvent. 13
Signaling a TivExceptionalEvent 13
Using the Sample application 13

Chapter 6. Defining event classes . . . 15
Application event definitions 15

Chapter 7. Tivoli Help 17
VisualAge ManageWare for Tivoli Event
Components 17

Initialize Tivoli Event DLL 17
Application Startup Event 17
Application Idle Event. 17
Application Error Event 17
Application Send Event 18
Application Close Event 18
SQL Error 18

Generating a Tivoli Event from a Smalltalk
Exception 18

Defining a TivExceptionalEvent. 18
Signalling a TivExceptionalEvent 19
Using the Sample application 19

Sample Code 19
Sample Application. 20
TECEIF Description 20

Event Groups. 21
Configuration File Description (TECEIF.CFG) . . 21
Header File for TECEIF DLL 22
Standard BAROC Definitions for Managed
Applications 23
Standard BAROC Classes for Managed
Applications 24

© Copyright IBM Corp. 1997, 2000 iii

iv VisualAge Smalltalk: Tivoli® Connection Guide and Reference

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of
the intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction
with other products, except those expressly designated by IBM, are the
responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY, USA 10594.

IBM may change this publication, the product described herein, or both.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v IBM
v International Business Machines
v VisualAge®

The following terms are trademarks of Tivoli Systems Inc.:
v Tivoli
v Tivoli Enterprise
v Tivoli Enterprise Console™

v Tivoli Management Framework™

Windows® is a trademark of Microsoft® Corporation.

© Copyright IBM Corp. 1997, 2000 v

vi VisualAge Smalltalk: Tivoli® Connection Guide and Reference

Chapter 1. Introduction to Tivoli Connection for Windows

Distributed applications and the rise of network computing create a complex
environment where business applications require resources from the network,
databases, servers, and the internet. Where resources and applications are
business-critical, they must be managed to ensure their availability. The Tivoli
Management Framework provides an applications management solution that
covers the life cycle of an application, from deployment to monitoring and
administration.

With the Tivoli Connection feature, you can develop VisualAge applications that
can be managed by Tivoli Enterprise products. By instrumenting your application
with Tivoli events, you can communicate status information to the Tivoli
Enterprise Console (TEC). With Tivoli Module Designer (TMD), you can define
important management characteristics of your application to Tivoli Enterprise.

What you get with Tivoli Connection
The Tivoli Connection feature supplies the components for enabling development
of VisualAge applications that are Tivoli management-ready:
v Set of parts that allows you to generate standard Tivoli events from your

application
v An interface that sends your events to the Tivoli Enterprise Console

Tivoli Event parts
The set of parts provides interfaces to standard Tivoli events that include
application start-up, application close, and application error. By adding these parts
to your application, you can send events to the Tivoli Enterprise Console. Events
can be used to alert the TEC of significant changes in the state of your application,
such as error conditions or successful completion of tasks.

Both visual and non-visual interfaces to the event parts are provided. From the
Composition Editor, you can find the visual parts in the Tivoli Connection category
on the parts palette. A sample application illustrates how to use these parts. The
non-visual parts are defined in the TivoliConnectionRunApp application.

Tivoli Enterprise Console interface
In order to run your Tivoli-enabled application, you must include the dynamic link
library, TECEIF.DLL. This DLL provides the interface between the events generated
by your application and the event integration facility of the Tivoli Enterprise
Console.

Tivoli Module Designer
The Tivoli Module Designer is a tool for creating management-ready applications.
It automates the creation of Application Description Files (ADFs), which contain
the relevant management information for an application, including application
components, dependencies, installation requirements, directory path names,
monitors, tasks and component relationships. The ADFs conform to the
Applications Management Specification (AMS), a formal specification for
communicating information about an application between development and

© Copyright IBM Corp. 1997, 2000 1

operations. Developed in collaboration with customers and development tool
partners, AMS describes both the content and the format of the information which
must be transferred. The format is based on the industry-standard MIF format as
defined by the Desktop Management Task Force. With AMS, developers have a
standard way to communicated everything they know, and an administrator needs
to know, about an application.

Both Tivoli Module Designer and the AMS can be downloaded for free from
Tivoli’s web site.

2 VisualAge Smalltalk: Tivoli® Connection Guide and Reference

http://www.tivoli.com/products/index/module_designer
HTTP://WWW.TIVOLI.COM/

Chapter 2. Setting up Tivoli Connection

In order to use the Tivoli Connection feature, you must first install the feature and
set up your interface to the Tivoli Enterprise Console.

Installing Tivoli Connection
You can install Tivoli Connection by selecting Load Features... from the Options
menu on the VisualAge Organizer window. This will add the
TivoliConnectionRunApp and TivoliConnectionEditApp applications to your VisualAge
Organizer window.

Setting up the Tivoli Enterprise Console interface
The Tivoli Enterprise Console is a Tivoli product that collects event information
from a wide variety of sources, correlates the information to determine root-cause
problems, and performs automated responses. The Tivoli Connection feature
assumes that you already have TEC installed on a server in your network.

To run your Tivoli-enabled application, you need two files:
1. TECEIF.DLL

This DLL provides the interface between the events generated by your
application and the event integration facility of the Tivoli Enterprise Console.

2. TECEIF.CFG

The configuration file specifies the name of your TEC server and describes your
application. This file must be located in the same directory as the TECEIF.DLL
file. The TECEIF.DLL file reads this file when it is initialized.
The following entries are defined in the configuration file:

Server Machine name that receives the events.

TestMode
If YES, events are not sent to the server and the TECEIF.DLL creates a
TECEIF.LOG file in its directory to log events.

If NO, events are sent to the server without logging.

Application
Name of the application. If the Developer Kit has been used to define
the application, then this is the name found in the Global Description
File for the application.

AppVersion
Version of the application. If the Developer Kit has been used to define
the application, then this is the version specified in the Global
Description File for the application.

AdminRevision
An administrator revision string supplied when the application is
distributed.

Component
Name of the component. If the Developer Kit has been used to define
the application component, then this is the name found in the
Component Description File.

© Copyright IBM Corp. 1997, 2000 3

A sample file might contain the following statements:
v Server=TECServer

v TestMode=YES

v Application=MyApplication

v AppVersion1.0.0

v AdminRevision=Rev1

v Component=MyComponent

The default TECEIF.CFG file is defined as:
v Server=unknown

v TestMode=Yes

4 VisualAge Smalltalk: Tivoli® Connection Guide and Reference

Chapter 3. Building an application with Tivoli Connection

The event parts in Tivoli Connection allow you to easily build an application that
generates asynchronous events and sends them to the Tivoli/Enterprise Console.
You can include event parts in your application in two ways:
v Visually, by selecting event parts from the Tivoli Connection category on the

parts palette of the VisualAge Composition Editor.
v Non-visually, by sending messages in your scripts to the event parts.

Supported events
The event parts provide the interface to the TECEIF.DLL and define the following
events:
v Initialize Tivoli Event DLL initializes the TECEIF.DLL.
v Application Startup notifies the console that the application has started.
v Application Idle notifies the console that the application has been idle for a

given period of time.
v Application Error is sent when a runtime error occurs.
v Application Send is a generic event that you can define using the Smalltalk

message interface.
v Application Shutdown is sent when an application is shutting down.
v Application Close closes the TECEIF.DLL.
v SQL Error notifies the console that an SQL error has occurred.

Adding events visually
The events are located in the Tivoli Connection category on the parts palette of the
Composition Editor. First, select a Tivoli event part and drop it on the free-form
surface of your application. Then connect an application event to the action of the
part. For example, you might connect the openedWidget event for your application
window to the Application Start action of the part, Application Start Event.

A sample application, TivTecTestPart illustrates how to do this and can be found
in TivoliConnectionRunApp. The following figure shows the sample application in

© Copyright IBM Corp. 1997, 2000 5

the Composition Editor.

This sample shows how to visually connect event parts to add the following
events:
v Application Startup
v Application Idle
v Application Error
v Initialize Tivoli Event DLL
v Application Shutdown
v Application Close

The Initialize Tivoli Event DLL and Application Startup events are generated
when the openedWidget event is sent to the application window.

The Application Idle, Application Error, Application Shutdown, and Application
Close events are generated by the clicked event for the associated push buttons.
Error messages and error numbers can be selected from the Error text or Error
number drop-down boxes and used as input to the Application Error event.

This application should be run in test mode (TestMode=YES in TECEIF.CFG), so
that you can view the generated events in the logfile. The Display Logfile push
button displays the events that were generated and recorded in the logfile,
TECEIF.LOG, while running the sample application in test mode.

6 VisualAge Smalltalk: Tivoli® Connection Guide and Reference

A test application created from TivTecTestPart is shown in the following figure.

By selecting the Display Logfile push button you can view the contents of the
logfile as illustrated below.

The left box lists the generated events. When an event is selected, the detailed
information about the event is displayed in the Event detailsbox on the right.

Select the Close push button to return to the Test application.

The following figure illustrates how Tivoli events appear on the Tivoli Enterprise
Console.

Chapter 3. Building an application with Tivoli Connection 7

Adding events as messages
You can also add events to your application by adding event messages to your
scripts, or methods. The following sections describe the message interface for each
event.

Initialize Tivoli Event DLL
This event is generated by your application to initialize the TECEIF.DLL. It is sent
once and must precede other events.

tvInitTamEvents: source with: subSource

where sourceis the application name and subSourceis the application component
name that generates this event

Example: TivInitTAMEvent new tvInitTamEvents: ’MyApp’ with: ’InitComponent’

Application Startup Event
This event is generated when an application is started.

tvSendStartupEvent: aString

where aString is a text message

Example:TivApplicationStartupEvent new tvSendStartupEvent: ’MyApp’, Date
dateAndTimeNow

Application Close Event
This event is generated to close the TECEIF.DLL.

tvTecClose

Example:TivApplicationCloseEvent new tvTecClose

Application Shutdown Event
This event is generated when an application is shutting down.

tvSendShutdownEvent: aString

where aString is a text message

Example: TivApplicationShutdownEvent new tvSendShutdownEvent: ’MyApp
’,Date dateAndTimeNow

Application Idle Event
This event is generated when the program enters an extended period of inactivity.

tvSendIdleEvent: aString

where aString is a text message

Example: TivApplicationIdleEvent new tvSendIdleEvent: ’MyApp’

8 VisualAge Smalltalk: Tivoli® Connection Guide and Reference

Application Error Event
This event is generated when a critical application error occurs.

tvSendApplicationError: errorNum with: errorString

where errorNum is an error number and errorString is an appropriate error
message string

Example: TivApplicationErrorEvent new tvSendApplicationError: 14 with:
’myapp.dll not found’

SQL Error
This event is generated when an application encounters an error when interfacing
with an SQL database. If information is not available for some of the database
fields, an empty string should be specified.

tvSendSQLError: anArray

where anArrayis an Array object that contains:
v at: 1 - an Integer that contains standard SQL error code,
v at: 2 - a String object that contains name of database server,
v at: 3 - a String object that contains the name of the database,
v at: 4 - a String object that contains the name of the table in the database,
v at: 5 - a String object that contains an appropriate message.

Application Send Event
This event is used to send a generic event to the TECEIF interface. If you define a
new event, it must also be defined to the Tivoli Enterprise Console. See the next
section for an example of how to define a generic event.

Chapter 3. Building an application with Tivoli Connection 9

10 VisualAge Smalltalk: Tivoli® Connection Guide and Reference

Chapter 4. Sending generic events

The events described so far represent standard event classes that are pre-defined in
the TECEIF.DLL. The Application Send event is a generic event that is
pre-defined, but can be customized by supplying your own parameters.

The following sample code shows how to implement a generic application event.
| tec nameValueArray nameValuePairs nameValue anArray initArray rc1 |

nameValuePairs := 2.
nameValueArray :=TecEifNameValue new: 2.
nameValueArray at: 0 put: (
TecEifNameValue new
szName: 'date';
bInteger: 0;
szValue: 'Tue Aug 5 23:59:57 1997';
nValue: 23).

nameValueArray at: 1 put: (
TecEifNameValue new
szName: 'CommonWidgets';
bInteger: 0;
szValue: 'CwFileSelectionPrompter';
nValue: 17).

tec := TivTecEifWrapper new.
anArray := Array new: 5.
anArray at: 1 put: (tec nullTerminate: 'unknown class');

at: 2 put: (tec nullTerminate: (TecEifConstants at: 'EifHarmless'));
at: 3 put: 2;
at: 4 put: nameValueArray abtAsExternalPassedPointer;
at: 5 put: (tec nullTerminate: 'string').

initArray := Array new: 3.
initArray at: 1 put: (tec nullTerminate: 'e:\visualag\teceif.cfg').
initArray at: 2 put: (tec nullTerminate: 'My test Application').
initArray at: 3 put: (tec nullTerminate: 'ComponentId').

rc1 := tec tecTvInitEvents: initArray.
tec tecTvSendEvent: (anArray).
tec tecTvTecClose.

In this example,

nameValueArray defines two values that are passed as parameters: a date
string and a string that defines the widget that generates the event.

anArray defines the five parameters to the event: class name, severity,
nameValueArray size, nameValueArray , and a descriptive string.

initArray defines three parameters for initializing the TECEIF.DLL: name
of the configuration file, application name, and component name.

The last three statements in this example
v Initialize TECEIF.DLL from initArray

v Send the generic event with parameters in anArray

v Close the TECEIF.DLL

© Copyright IBM Corp. 1997, 2000 11

12 VisualAge Smalltalk: Tivoli® Connection Guide and Reference

Chapter 5. Generating Tivoli Events from Smalltalk Exceptions

When exceptions occur in your application, you may want to represent them as
events that are sent to the Tivoli Enterprise Console. The TivoliExceptionsApp
defines three classes that assist in generating an Application Error event when a
Smalltalk exception occurs.

TivExceptionalEvent is a subclass of ExceptionalEvent that provides an
interface to the TECEIF.DLL and generates an Application Error event
when an instance is signaled.

TivExceptionalEventRoot is a subclass of Object that defines a
TivExceptionalEvent instance that is the root, or parent, of all
TivExceptionalEvent instances.

TivSampleExceptionsCheckingAccount is a sample class that illustrates
how to define and signal TivExceptionalEvents.

Defining a TivExceptionalEvent
The TivSampleExceptionsCheckingAccount class methods define two exceptions
that are represented as class variables. One of the exceptions,
TivExCheckingAccountOverdrawn, is defined as

anExceptionalEvent := TivExceptionalEventRoot root newChild.
anExceptionalEvent description: 'Checking Account Overdrawn'.
anExceptionalEvent resumable: false.
anExceptionalEvent defaultHandler:
[: sig | System errorMessage sig description.
sig exitWith: 'done']

self TivExCheckingAccountOverdrawn: anExceptionalEvent.

Signaling a TivExceptionalEvent
The following TivSampleExceptionsCheckingAccount instance method illustrates
how the TivExCheckingAccountOverdrawn exception is signaled:

withdraw: anAmount
self balance >= anAmount
ifTrue: [self balance: self balance - anAmount]
ifFalse: [self class TivExCheckingAccountOverdrawn
signalWithArguments:
(OrderedCollection
with: self
with:(Association key:'balance' value: self balance)
with:(Association key:'amount' value: self amount))].

Using the Sample application
The sample generates a TivExCheckingAccountOverdrawn exception when the
following is executed:
TivSampleExceptionsCheckingAccount new withdraw: 10000.

The sample generates a TivExCheckingAccountInsuredAmountExceeded exception
when the following is executed:
TivSampleExceptionsCheckingAccount new deposit: 500000.

© Copyright IBM Corp. 1997, 2000 13

The Tivoli Application Error events that are generated by these exceptions are
logged to the file, TECEIF.LOG.

14 VisualAge Smalltalk: Tivoli® Connection Guide and Reference

Chapter 6. Defining event classes

The Tivoli Enterprise Console (TEC) provides rule-based management of
distributed events. TEC collects, processes, and automatically responds to common
management events such as server outages, lost network connections, or successful
completion of application tasks. Tivoli Connection assumes that TEC is installed on
a server in your network.

TEC events are defined by using the Basic Recorder of Objects in C (BAROC)
language. Once a BAROC definition for an event type has been imported into the
TEC rule base, events consistent with that definition will be recognized. See the
TEC documentation for a detailed description of how to create event definitions
and add them to the rule base.

The BAROC definitions for the application events supported by Tivoli Connection
are provided below. You must import these definitions, and any others you choose
to define, into the TEC rule base. The rule base must then be compiled and loaded
before TEC will begin recognizing the event instances as valid events. Refer to the
TEC documentation for a detailed description of event definition.

Application event definitions
TEC_CLASS:

Application_Event ISA EVENT
DEFINES {
source: default = "Application Name";
sub_source: default = "Component Name";
sub_origin: default = "TME Managed Node Name";
deployment_map: STRING ;
};

END
TEC_CLASS:

Application_notice ISA Application_Event
DEFINES {
severity: default = HARMLESS;
};

END
TEC_CLASS:

Application_warning ISA Application_Event
DEFINES {
severity: default = WARNING;
};

END
TEC_CLASS:

Application_error ISA Application_Event
DEFINES {
severity: default = CRITICAL;
};

END
TEC_CLASS:

Application_startup ISA Application_notice;
END
TEC_CLASS:

Application_idle ISA Application_notice;
END
TEC_CLASS:

Application_shutdown ISA Application_notice;
END
TEC_CLASS:

© Copyright IBM Corp. 1997, 2000 15

Application_System_error ISA Application_error
DEFINES {
error_number: INTEGER;
};

END
TEC_CLASS:

Application_SQL_error ISA Application_error
DEFINES {
sqlcode: INTEGER;
database: STRING;
table: STRING;
sqlca: STRING;
};

END

The following event slots are defined for application events:

source Application Name, as it appears in the ″Application Name″ attribute of the
Global Description File for the application. This field can be overridden in
the configuration file.

sub_source
Component Name, as it appears in the ″Component Name″ attribute of the
Component Description File for the component. This field can be
overridden in the configuration file.

origin IP address

sub_origin
operating system and version

hostname
local hostname, as obtained by the gethostname() function or equivalent

The library populates event slots as follows:
v

class from caller

source application name as passed in 2nd argument to tvInitTamEvents()

sub_source
component name as passed in 3rd argument to tvInitTamEvents()

origin IP address of local system discovered by the TECEIF DLL

sub_origin
Managed Node name from configuration file if available

hostname
from local gethostname() function or equivalent

adapter_host
same as hostname

severity
from caller, if non-NULL, otherwise default severity

message
from caller

16 VisualAge Smalltalk: Tivoli® Connection Guide and Reference

Chapter 7. Tivoli Help

VisualAge ManageWare for Tivoli Event Components
The following VisualAge for Smalltalk interfaces to the TECEIF DLL have been
defined to allow the following events can be sent from your program:
v Initialize Tivoli Event DLL
v Application Startup Event
v Application Idle Event
v Application Error Event
v Application Send Event
v Application Close Event
v SQL Error

Note: The path to the configuration file is assumed to be the same as the event
DLL, TECEIF.DLL.

The installation program will put the configuration file (TECEIF.CFG) and the
event DLL (TECEIF.DLL) in your root VisualAge directory.

Initialize Tivoli Event DLL
ClassName: TivInitTamEvents

Message interface: tvInitTamEvents: source with: subSource

This event is issued once by your application to initialize the event DLL.

The source is the application name.

The subSource is the application component name that generates this event.

Application Startup Event
This event should be sent during program startup.
tvSendStartupEvent: aString

Where aString is a String Object with an appropriate message.

Application Idle Event
This event is sent when the program enters an extended period of inactivity and
could be a security problem.
tvSendIdleEvent: aString

Where aString is a String Object with an appropriate message

Application Error Event
This event is sent when a critical application error occurs.
tvSendApplicationError: errorNum with: errorString

© Copyright IBM Corp. 1997, 2000 17

Where errorNum is an error number and errorString is an appropriate error message
string.

Application Send Event
The following would be used to send any generic event through the TECEIF
interface.
tecTvSendEvent

See the sample code for detail

Application Close Event
This event should be sent during program shutdown
tvSendShutdownEvent: aString

Where aString is a String Object with an appropriate message.

This message will also generate a tvTecClose event to shutdown TECEIF.

SQL Error
This event is sent when an application has an error interfacing with an SQL
database. You may not have information for some of the database fields. You
should supply an empty string in these situations.
tvSendSQLError: anArray

Where anArray is an Array object that contains:
v at: 1 - an Integer that contains standard SQL error code,
v at: 2 - a String object that contains name of database server,
v at: 3 - a String object that contains the name of the database,
v at: 4 - a String object that contains the name of the table in the database,
v at: 5 - a String object that contains an appropriate message.

Generating a Tivoli Event from a Smalltalk Exception
The TivExceptionsApp includes three classes that assist in generating a Tivoli
Application System Error event when a Smalltalk exception occurs.
1. TivExceptionalEvent is a subclass of ExceptionalEvent that provides an interface to

the TECEIF.DLL and generates an Application System Error event when an
instance is signalled.

2. TivExceptionalEventRoot is a subclass of Object that defines a TivExceptionalEvent
instance that is the root, or parent, of all TivExceptionalEvent instances.

3. TivSampleExceptionsCheckingAccount is a sample class that illustrates how to
define and signal TivExceptionalEvents.

Defining a TivExceptionalEvent
The TivSampleExceptionsCheckingAccount class methods define two exceptions that
are represented as class variables. One of the exceptions,
TivExCheckingAccountOverdrawn, is defined by

anExceptionalEvent := TivExceptionalEventRoot root newChild.
anExceptionalEvent description: 'Checking Account Overdrawn'.
anExceptionalEvent resumable: false.
anExceptionalEvent defaultHandler:

18 VisualAge Smalltalk: Tivoli® Connection Guide and Reference

[:sig | System errorMessage sig description.
sig exitWith: 'done'].

self TivExCheckingAccountOverdrawn: anExceptionalEvent.

Signalling a TivExceptionalEvent
The following TivSampleExceptionsCheckingAccount instance method illustrates how
the TivExCheckingAccountOverdrawn exception is signalled:

withdraw: anAmount
self balance >= anAmount

ifTrue: [self balance: self balance - anAmount]
ifFalse: [self class TivExCheckingAccountOverdrawn

signalWithArguments:
(OrderedCollection

with:self
with:(Association key:'balance'

value:self balance)
with:(Association key:'amount'

value:self amount))].

Using the Sample application
The sample will generate a TivExCheckingAccountOverdrawn exception when the
following is executed:

TivSampleExceptionsCheckingAccount new withdraw: 10000.

The sample will generate a TivExCheckingAccountInsuredAmountExceeded exception
when the following is executed:

TivSampleExceptionsCheckingAccount new deposit: 500000.

Note: The Tivoli Application System Error events that are generated by these
exceptions are logged to the file, TECEIF.LOG.

Sample Code
The following code sample implements the tvSendEvent API in the TECEIF.DLL
header:
| tec nameValueArray nameValuePairs nameValue anArray initArray rc1 |

nameValuePairs := 2.

nameValueArray :=TecEifNameValue new: 2.

nameValueArray at: 0 put: (
TecEifNameValue new
szName: 'date';
bInteger: 0;
szValue: 'Tue Nov 5 23:59:57 1996';
nValue: 23).

nameValueArray at: 1 put: (
TecEifNameValue new
szName: 'CommonWidgets';
bInteger: 0;
szValue: 'CwFileSelectionPrompter';
nValue: 17).

tec := TivTecEifWrapper new.

anArray := Array new: 5.

anArray at: 1 put: (tec nullTerminate: 'unknown class');

Chapter 7. Tivoli Help 19

at: 2 put: (tec nullTerminate: (TecEifConstants at: 'EifHarmless'));
at: 3 put: 2;
at: 4 put: nameValueArray abtAsExternalPassedPointer;
at: 5 put: (tec nullTerminate: 'string').

initArray := Array new: 3.

initArray at: 1 put: (tec nullTerminate: 'e:\visualag\teceif.cfg').
initArray at: 2 put: (tec nullTerminate: 'My test Application').
initArray at: 3 put: (tec nullTerminate: 'ComponentId').

rc1 := tec tecTvInitEvents: initArray.

tec tecTvSendEvent: (anArray).

tec tecTvTecClose.

Sample Application
This sample application demonstrates the visual use of the following events:
v Initialize Tivoli Event DLL
v Application Startup Event
v Application Idle Event
v Application Error Event
v Application Close Event

These events are located on the VisualAge parts palette in the IBM ManageWare
for Tivoli Parts category. In this example, the Initialize Tivoli Event DLL and
Application Startup Event events are generated when the application is started
(when the openWidget event occurs).

The Application Idle Event , Application Error Event , and Application Close Event
events are generated by the appropriate push button.

Error messages and error numbers can be selected from the can be selected from
the Error text or Error number drop-down boxes and used as input to the
Application Error event.

This application is intended to be run with in test mode, (TestMode=YES in the
Configuration file definition).

The Display logfile push button will display the events that were generated and
recorded in the logfile, TECEIF.log, during test mode.

TECEIF Description
This section provides a brief description of the approach for enabling an
application to send events to the Tivoli/Application Manager console using the
Tivoli Event Integration Facility (EIF).

Note: The Tivoli Manager™ of Applications 1.0 product does not support
application monitoring using EIF events. Monitoring is available only
through synchronous monitors. Monitoring of EIF events will be supported
in the Tivoli Manager of Applications 2.0.

v Event Groups
v Configuration file definition
v Header File for TECEIF DLL

20 VisualAge Smalltalk: Tivoli® Connection Guide and Reference

v Standard BAROC Definitions for Managed Application
v Standard BAROC Classes for Managed Applications

Event Groups
As T/MA imports new applications, it will generate and install an EIF event group
for each application. The event group will be set up with one filter set to the
Application Name. The Application Name can be specified by the tvInitTamEvents
call or can be overridden by an application= entry in the teceif configuration file
located on each target machine that is sending events.

These Event Groups will be used to filter events that are delivered to the T/MA
console and the T/MA event viewer. From the detailed event view, further filtering
by component, severity, origin, deployment group, etc., can be performed. Sends
an application event to the TEC. All standard event slots except for class, message
and severity are populated by the event DLL (or by the TEC server).

The library will populate event slots as follows:

class: from caller

source:
application name as passed in 2nd argument to tvInitTamEvents()

sub_source:
component name as passed in 3rd argument to tvInitTamEvents()

origin: IP address of local system discovered by the TECEIF DLL

sub_origin:
will use Managed Node name from configuration file if available

hostname:
from local gethostname() function or equivalent

adapter_host:
same as hostname

severity:
from caller, if non-NULL, otherwise default severity

message:
from caller

Configuration File Description (TECEIF.CFG)
The TECEIF.DLL will look for a TECEIF.CFG configuration file in the same
directory as the TECEIF.DLL.

The following entries will be read when the TECEIF.DLL is started:
v Server=
v TestMode=
v Application=
v AppVersion=
v AdminRevision=
v Component=

Server The TME or TMA machine name that will receive the events.

Chapter 7. Tivoli Help 21

TestMode
YES indicates that the TECEIF.DLL will only create a teceif.log file in the
same directory as the TECEIF.DLL and log the events to this file.

Application
The Application name from inside the .gdf file.

AppVersion
The application version from inside the .gdf file. Ex: 1.2.a

AdminRevision
An administrator revision string supplied when the application is
distributed.

Component
The component name from inside the .cdf file contains the .exe sending the
events.

The default teceif.cfg file will contain the following lines:
Server=unknown
TestMode=YES

Header File for TECEIF DLL
// TECEIF.H
// interface to the TECEIF .DLL to send events to a TEC server

#ifndef _TECEIF_H
#define _TECEIF_H

// only define _TECEIF_DLL in the TECEIF DLL
#ifdef _TECEIF_DLL
#define MYLIBAPI __declspec(dllexport)
#define MYREFAPI
#else
#define MYLIBAPI __declspec(dllimport)
#define MYREFAPI "C"
#endif

// severity defines can ether define or text string
#define EIF_FATAL "Fatal"
#define EIF_CRITICAL "Critical"
#define EIF_SEVERE "Severe"
#define EIF_WARNING "Warning"
#define EIF_HARMLESS "Harmless"
#define EIF_NORAML "Normal"

// a structure for passing name value pairs into send event calls

#define MAX_EIF_NAME 32
#define MAX_EIF_VALUE 256

// structure for name value pairs to be inserted into event
typedef struct tagNameValue
{
char szName[MAX_EIF_NAME]; // name for slot value
BOOL bInteger; // use integer or string field
int nValue; // integer field 32 bits
char szValue[MAX_EIF_VALUE]; // string field

} NAMEVALUE, *PNAMEVALUE;

// generic EIF initialization
long WINAPI tvInitEvents(

22 VisualAge Smalltalk: Tivoli® Connection Guide and Reference

char *szPathName, // full path to config file
char *pszSource, // application name from gdf file
char *pszSubSource); // component name from cdf file

// send event call
long WINAPI tvSendEvent(

char *pszClass, // class type from BAROC file
char *pszSeverity, // severity from list above
int nNumValues, // num of name/value pairs
PNAMEVALUE pNameValues, // name value pairs to include in event
char *pszMessage, // message which can include printf
...); // formatting NOTE: arg list must match
// formatting in szMessage as the compiler
// will not check this!

// shut down EIF
long WINAPI tvTecClose();

// TAM specific calls
long WINAPI tvInitTamEvents(

char *pszPathName, // full path to config file
char *pszApplicationName, // application name from gdf file
char *pszComponentName); // component name from CDF file

// event for program startup
long WINAPI tvSendStartupEvent(

char *pszMessage); // appropriate message

// event for program in idle state
long WINAPI tvSendIdleEvent(

char *pszMessage); // appropriate message

// event for program shutdown
long WINAPI tvSendShutdownEvent(

char *pszMessage); // appropriate message

// event for internal program error
long WINAPI tvSendApplicationError(

int nErrorNum, // internal error number
char *pszMessage); // appropriate message

// event for SQL login or transaction error
long WINAPI tvSendSQLError(

int nSQLCode, // standard SQL error code
char *pszServer, // name of database server
char *pszDataBase, // name of databse
char *pszTable, // table in database
char *pszMessage); // message

#endif

Standard BAROC Definitions for Managed Applications
The following event slots are defined for application events:

source = Application Name, as it appears in the ″Application Name″ attribute of
the GDF for the application. This field can be overridden by an application = entry
in the EIF configuration file.

sub_source = Component Name, as it appears in the ″Component Name″ attribute
of the CDF for the component, This field can be overridden by a component=
entry in the EIF configuration file.

origin = IP address

Chapter 7. Tivoli Help 23

sub_origin = The operating system and version.

hostname = local hostname, as obtained by the gethostname()

function or equivalent

Application developers can either use the standard event classes or derive their
own classes from the Application base event class.

Standard BAROC Classes for Managed Applications
TEC_CLASS:

Application_synchronous_monitor ISA Sentry2_0_Base
END

TEC_CLASS:
Application_process_failure ISA Sentry2_0_Base

END

TEC_CLASS:
Application_process_restart ISA Sentry2_0_Base

END

TEC_CLASS:
Application_performance_alert ISA Sentry2_0_Base

END

TEC_CLASS:
Application_out_of_resources ISA Sentry2_0_Base

END

TEC_CLASS:
Application_low_on_resources ISA Sentry2_0_Base

END

TEC_CLASS:
Application_message_logged ISA Sentry2_0_Base

END

TEC_CLASS:
Application_transaction_failure ISA Sentry2_0_Base

END

TEC_CLASS:
Application_communication_failure ISA Sentry2_0_Base

END

TEC_CLASS:
Application_security_alert ISA Sentry2_0_Base

END

TEC_CLASS:
Application_audit_alert ISA Sentry2_0_Base

END

TEC_CLASS:
Application_Event ISA EVENT

DEFINES {
source: default = "Application Name";
sub_source: default = "Component Name";
sub_origin: default = "TME Managed Node Name";

deployment_map: STRING ;
};

END

TEC_CLASS:
Application_notice ISA Application_Event

DEFINES {
severity: default = HARMLESS;
};

END

24 VisualAge Smalltalk: Tivoli® Connection Guide and Reference

TEC_CLASS:
Application_warning ISA Application_Event

DEFINES {
severity: default = WARNING;
};

END

TEC_CLASS:
Application_error ISA Application_Event

DEFINES {
severity: default = CRITICAL;
};END

TEC_CLASS:
Application_startup ISA Application_notice;

END

TEC_CLASS:
Application_idle ISA Application_notice;

END

TEC_CLASS:
Application_shutdown ISA Application_notice;

END

TEC_CLASS:
Application_System_error ISA Application_error

DEFINES {
error_number: INTEGER;
};

END

TEC_CLASS:
Application_SQL_error ISA Application_error

DEFINES {
sqlcode: INTEGER;
database: STRING;
table: STRING;
sqlca: STRING;
};

END

Chapter 7. Tivoli Help 25

	Contents
	Notices
	Trademarks

	Chapter 1. Introduction to Tivoli Connection for Windows
	What you get with Tivoli Connection
	Tivoli Event parts
	Tivoli Enterprise Console interface

	Tivoli Module Designer

	Chapter 2. Setting up Tivoli Connection
	Installing Tivoli Connection
	Setting up the Tivoli Enterprise Console interface

	Chapter 3. Building an application with Tivoli Connection
	Supported events
	Adding events visually
	Adding events as messages
	Initialize Tivoli Event DLL
	Application Startup Event
	Application Close Event
	Application Shutdown Event
	Application Idle Event
	Application Error Event
	SQL Error
	Application Send Event

	Chapter 4. Sending generic events
	Chapter 5. Generating Tivoli Events from Smalltalk Exceptions
	Defining a TivExceptionalEvent
	Signaling a TivExceptionalEvent
	Using the Sample application

	Chapter 6. Defining event classes
	Application event definitions

	Chapter 7. Tivoli Help
	VisualAge ManageWare for Tivoli Event Components
	Initialize Tivoli Event DLL
	Application Startup Event
	Application Idle Event
	Application Error Event
	Application Send Event
	Application Close Event
	SQL Error

	Generating a Tivoli Event from a Smalltalk Exception
	Defining a TivExceptionalEvent
	Signalling a TivExceptionalEvent
	Using the Sample application

	Sample Code
	Sample Application
	TECEIF Description
	Event Groups
	Configuration File Description (TECEIF.CFG)
	Header File for TECEIF DLL
	Standard BAROC Definitions for Managed Applications
	Standard BAROC Classes for Managed Applications

