
VisualAge Smalltalk

Visualization Tools User’s Guide
Version 5.5

IBM

Note

Before using this document, read the general information under “Chapter 1. Notices” on page 1.

August 2000

This edition applies to Version 5.5 of the VisualAge Smalltalk products, and to all subsequent releases and
modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the level of
the product. The term “VisualAge,” as used in this publication, refers to the VisualAge Smalltalk product set.

Portions of this book describe materials developed by Object Technology International Inc. of Ottawa, Ontario,
Canada. Object Technology International Inc. is a subsidiary of the IBM Corporation.

If you have comments about the product or this document, address them to: IBM Corporation, Attn: IBM Smalltalk
Group, 621-107 Hutton Street, Raleigh, NC 27606-1490. You can fax comments to (919) 828-9633.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Notices 1
Trademarks 1

Chapter 2. About this book 3
Conventions used in this book 3

Chapter 3. Introduction to the
Visualization Tools 5

Chapter 4. The Object Visualizer 7
Opening the Object Visualizer 7
Selecting Classes to Visualize 7
Analyzing Object Activity with the Object Visualizer 8
Getting More Information about Objects 8
Example: Using the Object Visualizer 9
Opening the Cluster View 13
Analyzing Object Interaction with the Cluster View 13
Example: Using the Cluster View 14

Chapter 5. The Widget Scope 17
Using the Widget Scope 17
Working with Objects in the Widget Scope List . . 18
Adding Objects to the Visualizer Display from the
Widget Scope 19
Finding Out How an Application is Launched. . . 19

Chapter 6. The Snooper 21
Snooping Basics 21
Example: Snooping the System Transcript 21

Opening the Snooper 22
Expanding and Contracting Composite Objects 22
Advanced Hiding and Unhiding 23

Forms of Display 24
Examples: Displaying Collections 25
Adding Objects to the Visualizer Display from the
Snooper 26
Opening Other Tools from the Snooper 26
Watch Expressions 27
Example: Watch Expression 27
Searching Objects 29
Example: Searching 30
Assignments 31
The Evaluation Pane 32

Evaluating Expressions 32
Saving Expressions 33

Example of Working with Variables 34
Rebuilding the Snooper 35
Snooping as a Debugging Aid 36
Options and Display Controls 37
Example: Setting Options 38

© Copyright IBM Corp. 1997, 2000 iii

iv VisualAge Smalltalk: Visualization Tools User’s Guide

Chapter 1. Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of
the intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction
with other products, except those expressly designated by IBM, are the
responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY, USA 10594.

IBM may change this publication, the product described herein, or both.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v IBM
v VisualAge

© Copyright IBM Corp. 1997, 2000 1

2 VisualAge Smalltalk: Visualization Tools User’s Guide

Chapter 2. About this book

This book helps you use the Visualization Tools for VisualAge Smalltalk.

Conventions used in this book
This book uses the following highlighting conventions:

Highlight style Used for Example

Boldface New terms the first time they are
used

VisualAge uses construction from
parts to develop software by
assembling and connecting reusable
components called parts.

Items you can select, such as push
buttons and menu choices

Select Add Part from the Options
pull-down. Type the part’s class
and select OK.

Italics Special emphasis Do not save the image.

Titles of publications Refer to the VisualAge Smalltalk
User’s Guide.

Text that the product displays The status area displays Category:
Data Entry.

VisualAge programming objects,
such as attributes, actions, events,
composite parts, and script names

Connect the window’s
aboutToOpenWidget event to the
initializeWhereClause script.

Monospace font VisualAge scripts and other
examples of Smalltalk code

doSomething
| aNumber aString |
aNumber := 5 * 10.
aString := 'abc'.

Text you can enter For the customer name, type John
Doe

© Copyright IBM Corp. 1997, 2000 3

4 VisualAge Smalltalk: Visualization Tools User’s Guide

Chapter 3. Introduction to the Visualization Tools

The Visualization Tools feature is a growing suite of visual tools and associated
accessories for rapidly gaining an understanding of program (mis)behavior.

You can use these tools to observe program behavior, as it occurs, and to explore
object state and relationships.

The following chapters explain how to use the tools of this feature.
v “Chapter 4. The Object Visualizer” on page 7 describes a tool which provides a

visual representation of the behavior of objects in your program.
v “Chapter 5. The Widget Scope” on page 17 describes a tool which reveals the

objects ″behind the scenes″ of a visual interactive Smalltalk program, and allows
individual objects to be added to the Object Visualizer display.

v “Chapter 6. The Snooper” on page 21 describes a tool which provides a
hierarchical textual view as a means of exploring object state and relationships,
in order to discover objects to be added to the Object Visualizer displays.

Together, and along with the other tools of the IBM® Smalltalk programming
environment — debuggers, inspectors, and browsers — these tools form a very
powerful facility for understanding program behavior. This can be invaluable to a
programmer, because gaining an understanding of program behavior is central to
debugging, tuning, and reuse of programs, class libraries, and application
frameworks.

Although very simple in concept, these tools can lead to significant improvements
in the productivity of day-to-day Smalltalk programming.

© Copyright IBM Corp. 1997, 2000 5

6 VisualAge Smalltalk: Visualization Tools User’s Guide

Chapter 4. The Object Visualizer

The Object Visualizer is a tool that enables you to analyze object activity and
interaction. With this tool, you can visualize objects in your application, which
enables you to do the following:
v See how many instances of a class exist at any time during application execution
v Watch a visual representation of message traffic between objects
v Identify which objects are busiest, and which are most idle
v Determine which clusters of objects are closely related to one another, based on

the amount of message traffic between them

These tools can help you understand your application in order to correct problems
or improve performance. By analyzing the message traffic in your application, you
can identify potential trouble spots or bottlenecks.

The Object Visualizer provides two views that you can use to visually analyze
your application performance:
v The main Object Visualizer window is a visual representation of object

instances. For each visualized class, the Object Visualizer displays an icon
representing each instance of that class. This view also provides several
indicators you can use to track the level of message traffic between the instances.

v The Cluster View is a dynamic visual representation of the relationships
between objects. The Cluster View measures the level of interaction between
objects, visually arranging the objects to show which objects are closely related
(based upon the amount of message traffic between them). You can use the
Cluster View to analyze either classes or instances.

Note: This chapter describes the Object Visualizer as it appears in the base
VisualAge® for Smalltalk environment. When the Distributed Feature for IBM
Smalltalk is loaded, the Object Visualizer has additional function. Please see the
Distributed Feature User’s Guide for a description of that additional function.

Opening the Object Visualizer
To open the Object Visualizer, select Open Object Visualizer from the
Visualization menu of the System Transcript window. The Object Visualizer
window opens.

The Object Visualizer has two panes. On the left side is a list of the classes you
have selected for visualization. On the right side is an area where the Object
Visualizer displays a visual representation of the instances of each class. (If you
have not yet selected any classes, both panes are empty.)

Selecting Classes to Visualize
To visualize a class in the Object Visualizer, follow these steps:
1. Select Add Classes from the Class menu, or from the popup menu of the

left-hand pane.
2. A window appears listing all applications currently loaded in the image. Select

the application containing the class you want to visualize.

© Copyright IBM Corp. 1997, 2000 7

3. In the Classes list, select the class you want to visualize.
4. Select the >> push-button to add the class to the Selected Classes list.
5. When you have selected all of the classes you want to visualize, select the OK

push-button.

The names of the classes you selected appear in the left-hand pane of the Object
Visualizer.

To remove a class from the Object Visualizer, select the class and then select
Remove Classes from the Class menu, or from the popup menu in the left-hand
pane.

Analyzing Object Activity with the Object Visualizer
After you have added classes to the Object Visualizer, you can watch as instances
of those classes are created and as they send and receive messages. For each
instance of a visualized class, a box-shaped icon appears in the right-hand pane of
the Object Visualizer window, next to the name of its class.

The Object Visualizer uses animation to depict activity of the object instances it
displays. The animation provides three indicators of object activity:
v The activity indicator, a small horizontal line through each instance icon, moves

upward each time an object sends or receives a message. You can watch for this
motion in order to identify which objects are active.

v When an object is active, its color gradually changes. By default, each icon
starts out blue, which indicates the “coolest” state. As an object receives
messages and executes its methods, the color gradually changes to red, the
“warmest” state. This color change gives you a visual indicator of which objects
in your application are “hot”—that is, which objects are undergoing the most
activity.
Each icon is divided into two halves, which change color independently:
– The left side represents received messages. The more messages the object

receives, the warmer the left side becomes.
– The right side represents CPU utilization. The more processor time the object

uses, the warmer the right side becomes.

Note: The warming and cooling values of visualized objects are relative; in
other words, an object is considered hot if it has been very active in
comparison with other objects in the application. Therefore, an object
might appear hot at first, but then appear cooler as other objects in the
application catch up with it.

– If both the sender and receiver of a message are represented by icons in the
Object Visualizer, the view shows the message itself as a line drawn between
the objects. These lines always originate from the right side of the sender icon
and end at the left side of the receiver icon.

Getting More Information about Objects
The Object Visualizer also provides several options you can use to get more
information about the visualized objects. These options are available from the
popup menus of the icons in the Instances pane of the Object Visualizer. To access
this menu, place the mouse pointer over an instance icon and press mouse button
2. (You can also select an instance and then select an option from the Instance
menu.)

8 VisualAge Smalltalk: Visualization Tools User’s Guide

v Select Browse State to open a browser displaying the values of the object’s
instance variables. This browser is dynamically updated, so you can see the
values change as your application runs.

v Select Browse Behavior to open a browser displaying information about the
object’s methods. For each method, this browser indicates how many times that
method has been called, and how much CPU time it has used. This browser is
also dynamically updated as your application runs.

v Select Inspect to open a Smalltalk inspector on the object.
v Select Show Creator to see a visual indication of which object created the

selected object (usually by calling new). This indicator appears as a line drawn in
the Object Visualizer window, from the creator to the selected object. (If the
creator is not a visualized object, this line runs to the edge of the Object
Visualizer window.)
Select Hide Creator to remove the visual indicator of the object’s creator.

In addition, the following options on the Options menu apply to all visualized
objects:
v Select Show Animation to enable the animated activity indicator. This option is

selected by default.
v Select Show Message Path to enable the lines drawn to represent method calls

between objects. This option is selected by default.
v Select Show Object Identifier to label each instance icon with a unique numeric

identifier.
v Select Show Number Of Instances to see a count of the instances of each class.

The total number of instances appears after each class name in the Classes pane.
v Select Set Font to choose the font used in the Object Visualizer.
v Select Set Color to choose the colors used in the Object Visualizer.
v Select Set Delay Time to set the length of time the Object Visualizer delays after

processing and displaying one message, before proceeding on to the next
message. This option makes it possible to slow application execution in order to
more easily see individual method calls. By default, the Object Visualizer does
not insert a delay.

v Select Reset to reset all objects to their coolest state.

Example: Using the Object Visualizer
To see how the Object Visualizer displays object activity, try the following example.

We will examine the behavior of the sample application VtExampleApp, an
application which does some simple graph manipulation.

Note: You can follow the steps below, and get a feel for using the Object Visualizer,
even if you are unfamiliar with graph theory and don’t understand what the
example application is supposed to do. In fact, even though you are just a casual
observer, you may gain a bit of an understanding of the coarse structure of the
application’s behavior, just from this very brief visualization session!

1. From Visualization menu of the system transcript select Open Object
Visualizer. An Object Visualizer window will appear.

Chapter 4. The Object Visualizer 9

2. From the Class menu of the Object Visualizer, select Add Classes.... An Add
Classes window will appear.

3. Scroll the Applications column down, and select VtExampleApp. The Classes
column will fill with the classes of the VtExampleApp application.

4. Select VtExampleItem and VtExampleList in the Classes column.
5. Press the >> button. The two classes will move from Classes to Selected

Classes.
6. Press OK. VtExampleList and VtExampleItem will appear in the Object

Visualizer’s Classes column.

Note: When you first open an Object Visualizer, there may already be some
classes listed in the Classes column. This is because the Object Visualizer
remembers which classes were being visualized in the previous session and

Figure 1.

Figure 2.

Figure 3.

10 VisualAge Smalltalk: Visualization Tools User’s Guide

restores them at the start of the next session. If you wish, you can remove
such classes by selecting them and choosing Remove Classes from the Class
menu.

7. Open a new workspace, e.g. by selecting New from the File menu of the
System Transcript, and resize it to be fairly small.

8. Arrange the windows on your screen so that no other windows overlap with
the Object Visualizer window. Shrinking the workspace to barely reveal the
text that it will contain is a good idea.
This example concerns a VtExampleList, a slightly random graph of
VtExampleItems. During the setup, the items figure out which ones are
successors of each other. This can be seen quite clearly as follows.

9. Evaluate the expression VtExampleList new: 8. Watch the Object Visualizer. A
VtExampleList will appear (a divided blue box), and then a stream of
VtExampleItems (more divided blue boxes).
The VtExampleList will then send a message to each of the VtExampleItems.
As each message is being sent and the corresponding method is being
executed, a line appears between the two boxes that represent the sender and
receiver of the message.
Then each VtExampleItem will send a message to each other VtExampleItem
in turn.
In the next step, you will see that this behavior corresponds to initializing the
items of the graph, and then computing the successor sets of the items, to
connect the graph components.

10. Select the VtExampleList instance by clicking its center. A thin black border
will surround it, indicating that it has in fact been selected. Then select
Browse Behavior from the Instance menu of the Object Visualizer.
A window opens showing the methods that have been active for that object.
For each method, there is a count of the number of times it has been invoked,
and the amount of time that has been spent executing that method. The color
of an entry provides a relative indication of how active the method has been.
The browser shows that VtExampleList>>initialize: has been the most active by
far.

11. Open a behavior browser for the first VtExampleItem instance as well.
This browser shows that VtExampleItem>>shouldConnectTo: has been most
active of the VtExampleItem methods.
If you want to understand the program execution more fully, open browsers
on the application code, the methods VtExampleList>>initialize: and
VtExampleItem>>shouldConnectTo: in particular, and see how the activity
observed in the visualizer corresponds to the code.

Figure 4.

Chapter 4. The Object Visualizer 11

12. Close the behavior browser windows opened above.
13. In the workspace opened earlier, evaluate VtExampleList the bubbleSort.

Observe the behavior of the bubblesort computation, as the VtExampleList
repeatedly asks the items to compare themselves with other items.

14. Reset the visualizer display by selecting Reset from the Options menu.
The boxes all become blue, as they were when they were first created.
Now, we will visualize a rather crude breadth-first search, looking for a
″heavy path″, that is, one whose total heaviness is more than 10,000. (See the
code for the exact definition; but note that the example is contrived for
illustration rather than realism.)

15. Evaluate
(VtExampleList the heavyPath: 10000 depth: 6) inspect

.

Watch as one VtExampleItem experiences a great deal of usage, a few others
get some usage, and the rest are untouched. The heavily used node is the first
one in the (sorted) list; the other heavily-used ones are presumably its
successors. The heavy use of a few list items suggests the need for some
improvements to the algorithm.

16. If desired, slow the visualizer down by choosing the command Set Delay
Time from the Options menu, and setting the slider to 1. Rerun the
visualization by evaluating the heavyPath expression again. You can see the
paths from the root of the search.

17. End the visualization session as follows. Choose Select All from the Instance
menu of the Object Visualizer, and then choose Remove Instances from the

Figure 5.

Figure 6.

12 VisualAge Smalltalk: Visualization Tools User’s Guide

Instance menu. Then choose Select All from the Class menu, and choose
Remove Classes from the Class menu. Finally, close the Object Visualizer
window.

Opening the Cluster View
The Cluster View provides a dynamic representation of object relationships. In
order to visualize objects with the Cluster View, you must first add them to the
Object Visualizer. You can choose to view either classes or instances of objects that
are represented in the Object Visualizer.

To open the Cluster View, follow these steps:
1. Open the Object Visualizer, if it is not already open.
2. Add the classes you want to analyze to the Object Visualizer. (See “Selecting

Classes to Visualize” on page 7 for more information.)
3. Select either the classes or the instances you want to visualize with the Cluster

View. Select classes from the left-hand pane of the Object Visualizer window;
select instances from the right-hand pane. You can select classes or instances in
several ways:
v Use mouse button 1 to select individual objects.
v Use Ctrl+mouse button 1 to select multiple objects.
v Use marquee selection (moving the mouse while holding mouse button 1) to

select multiple objects.
v Select Select All from the Class or Instance menu to select all classes or

instances.
4. When you have finished selecting classes or objects, open the Cluster View in

one of the following ways:
v To visualize classes, select Browse Clusters from the Class menu.
v To visualize instances, select Browse Clusters from the Instance menu.

The Cluster View opens, showing the classes or instances you selected.

Analyzing Object Interaction with the Cluster View
In the Cluster View, each object is represented by a colored box containing the
name of the class or instance (instance names consist of the class name followed by
a number). When the Cluster View first opens, all of the objects you selected
appear in the center of the window. (Not all of the objects are visible, since they
are occupying the same screen position.)

As the application runs, the objects in the Cluster View drift away from the center,
spreading out across the window. Simultaneously, objects that send messages to
one another are mutually attracted. As you watch, you should see the objects in
the application form clusters based upon the amount of message traffic that passes
among them. Objects that remain far apart have little direct interaction; objects that
cluster tightly together send messages to one another frequently.

The pop-up menu in the Cluster View window provides several other options that
can help you analyze object interactions:
v Select Show Message Path from the pop-up menu to see a visual depiction of

method calls from one object to another. (This option is selected by default.) The
Cluster View shows method calls as lines that appear between objects and
disappear as method calls complete.

Chapter 4. The Object Visualizer 13

v Select Show Collaborations to see a permanent visual indication of which
objects interact with one another. Collaborations appear as solid lines between
objects. Any objects that have interacted at any time during application
execution are collaborators.

v Select Remove Objects to remove the selected object or objects from the Cluster
View. (This option is available only after you have selected at least one object
with the mouse.)
Removing an object from the Cluster View does not affect the object itself; it
only removes the object’s visual representation in the Cluster View.

v Select Reset to move all of the objects back to the starting position at the center
of the Cluster View. This option can help you to identify different clustering that
might emerge during different parts of application execution.
For example, objects that interact heavily during start-up might not continue to
interact later. By resetting the objects, you can undo the clustering that emerged
during start-up and see how the objects interact the rest of the time.

Example: Using the Cluster View
To see how the Cluster View displays object interaction, try the following example.
1. Open an Object Visualizer, and add the classes VtExampleItem and

VtExampleList, as in “Example: Using the Object Visualizer” on page 9.
2. Evaluate the code: VtExampleList new: 8.
3. In the Instances pane, choose Select All from the popup menu.
4. In the Instances pane, choose Browse Clusters from the popup menu.
5. An Instance Cluster View appears. It contains a labeled rectangle for each

instance. Initially, the rectangles are all positioned one over top of the other at
the center of the window.
If you wish, you may drag each instance apart from the others a bit using the
mouse.

6. Move the Instance Cluster View window so that it will not be hidden by the
workspace you are executing code in.

7. Evaluate the code,
VtExampleList the heavyPath: 10000 depth: 5

.

Watch as the items spread apart on the screen. The line flickering between
items shows messages being sent. When the animation is over, a small number
of instances will be clustered together near the center of the window. These are
the instances which interacted heavily with one another. The rest, relatively
unused, will be spread out further towards the edges of the window.

Figure 7.

14 VisualAge Smalltalk: Visualization Tools User’s Guide

8. Close the Instance Cluster View.
9. End the Object Visualizer session as in “Example: Using the Object Visualizer”

on page 9.

Figure 8.

Chapter 4. The Object Visualizer 15

16 VisualAge Smalltalk: Visualization Tools User’s Guide

Chapter 5. The Widget Scope

The Widget Scope is a tool that reveals objects ″behind the scenes″ of an interactive
Smalltalk application.

A user simply clicks anywhere on the screen, and the Widget Scope lists the
widget objects that produce that part of the display, as well as other objects that
implement the function provided by the application.

Widget scoping in conjunction with visualizing and snooping (pages 7 and 21),
constitutes an extremely powerful, yet practical and convenient, means of ″getting
to the bottom″ of behavior of unfamiliar applications and frameworks.

Without these tools, a programmer trying to gain an understanding of how an
application works (to fix it, to extend it, or to reuse parts of it) is faced with
roundabout schemes involving searching for classes by pattern matching on their
names, guessing at how to launch an application, and trying to get a debugger to
open at opportune times.

Using the Widget Scope
To open a Widget Scope window, select Open Widget Scope from the
Visualization menu of the System Transcript.

To reveal objects behind the scenes, you click the Probe button, and then click the
area of the screen in which you are interested.

For example, to find out what’s behind the scenes of a hierarchy browser, do the
following:
1. In the System Transcript, select Browse Hierarchy... from the Tools menu.
2. In the displayed prompter, type Object and click OK.
3. In the System Transcript, select Open Widget Scope from the Visualization

menu.
4. In the Widget Scope, click the Probe button. The cursor turns into a cross-hair.
5. Click in the center of the top-left pane of the hierarchy browser.

A list of objects then appears in the scrolled window of the Widget Scope. Objects
are listed one per line, with each line containing a tag, such as Hit or Parent. The
tag is followed by an object identifier which is the result of a printString message
sent to the object. The tags provide an indication of why the object is listed. For
instance, Hit indicates that the object is the one that was clicked with the probe;
Parent indicates that the object is a parent of a preceding object in the list.

As well, each widget object can have a number of objects displayed in indented
lines immediately below it. These are objects that hold callbacks on the widget. The
indented line contains the name of the callback, and an object identifier.

© Copyright IBM Corp. 1997, 2000 17

Working with Objects in the Widget Scope List
To work with the objects listed in the Widget Scope, you select an object by
clicking its line in the scrolled window of the Widget Scope, and then clicking one
of the buttons at the bottom of the Widget Scope.

The Flash button lets the user flash the selected object in order to verify that it is
in fact the object that the user thinks.

For example, after step 5 on page 17, you could:
1. Click the first line (which is the one for the object that was hit by the Probe

operation).
2. Click the Flash button in the Widget Scope. The upper-left pane of the

hierarchy browser disappears (!)
3. Click the Flash button again. The upper-left pane reappears. (Phew!)
4. Click the Parent - CwForm(form) line, and then click the Flash button

twice.Watch which part of the display flashes, as you click the Flash button.
5. Click the Parent - CwTopLevelShell(...) line, and then click the Flash button

twice.

(Note that you can use the pop-up menu of the Widget Scope scrolled window
instead of the buttons at the bottom of the Widget Scope.)

The Inspect button opens an inspector on the selected object, the Snoop button lets
the user snoop through the selected object (see Chapter 6), and the Browse button
allows browsing of the class of the selected object.

The CompEdit button opens the VisualAge Composition Editor on the selected
object (or its containing composite visual part) (assuming that the selected object is
a VisualAge part — such parts usually appear in the Widget Scope scrolled
window on lines containing strings like Abt...View e.g AbtShellView).

For example, you could:
1. Open a Widget Scope (as above).
2. In the Widget Scope, click the Probe button.
3. Click in the text area of the System Transcript.
4. In the scrolled window of the Widget Scope, click the first line: Hit -

CwText(text).
5. Click the Snoop button at the bottom of the Widget Scope. This opens a

Snooper on the CwText object.
6. Click the Probe button of the Widget Scope again.
7. This time, click in the text area of the Snooper window.
8. In the scrolled window of the Widget Scope, click the last line. It should

contain something like ...Callback - an AbtShellView(...)....
9. Click the CompEdit button at the bottom of the Widget Scope.

After a bit of a delay, a Composition Editor should appear showing Snoop’s
internal structure.

Don’t touch it!!! Close it right away.

18 VisualAge Smalltalk: Visualization Tools User’s Guide

Adding Objects to the Visualizer Display from the Widget Scope
Using the Widget Scope, you often find objects whose long-term behavior would
be interesting to observe. These objects can be added to the Object Visualizer
display directly from the Widget Scope. Simply select the objects of interest, and
click the Visualize button. If the Object Visualizer is not already open, it will be
opened. Then the objects of interest will appear.

For example, you could:
1. Open a Widget Scope, as above.
2. Open a Hierarchy Browser on Object, as above.
3. Click Probe.
4. Click the upper-left pane of the hierarchy browser.
5. In the scrolled window of the Widget Scope, click the last line. It should

contain something like an EtClassesBrowser.
6. In the Widget Scope, click the Visualize button.

An EtClassesBrowser object will appear in the Object Visualizer display.
7. In the upper-left pane of the hierarchy browser, double-click the Object line.

A large amount of activity is apparent in the visualizer display.
8. In the visualizer display, click the box representing the EtClassesBrowser object.

A black outline appears around it to indicate that it is selected.
9. From the Instances menu of the visualizer, select Browse Behavior.

Now you can see which methods do a lot of work as the class hierarchy is
expanded and contracted in the hierarchy browser pane.

To observe more of the activity that occurs during expanding and contracting, you
could select lines in the Widget Scope scrolled window, and click the Snoop
button. This would open a Snooper (see page 21) which you could use to find
more of the related objects. Then from the Snooper you could select objects and
press the Snooper Visualize button to view the newly discovered objects.

Finding Out How an Application is Launched
To find out how an application that is normally accessed through a menu is
actually launched, you can probe into menus.

Note: For this procedure to work, you must have already made at least one actual
use of the menu entry of interest. Also, for menus produced using the
VisualAge builder, you should instead use CompEdit to open a composition
editor in order to see what actions result from a menu entry. Finally, in
certain circumstances, probing the menubar as described below actually
results in a normal probe of the menubar widget, rather than a probe of the
associated menus.

To find out, for example, how a hierarchy browser is started up (perhaps for
purposes of being able to start it under control of a debugger), you could:
1. Open a Widget Scope as above.
2. Click the Probe button.
3. Click the Tools button in the System Transcript menu bar.
4. In the resulting prompter, double-click Tools, and then double-click Browse

Hierarchy.

Chapter 5. The Widget Scope 19

5. In the scrolled window of the Widget Scope, click the Menu Button - ... line
6. Click the Inspect button at the bottom of the Widget Scope.
7. In the resulting inspector, click selector, and see that the message

#openHierarchyBrowser is sent whenever the menu button is pushed. Then click
owner, and see that the message is sent to the class EtDevelopment. Finally,
select Browse Class from the Variables menu of the inspector, and peruse the
openHierarchyBrowser public class method in the ET-Internal category of the
class.

Congratulations! In less than a couple of minutes, you too can now launch
hierarchy browsers!

20 VisualAge Smalltalk: Visualization Tools User’s Guide

Chapter 6. The Snooper

The Snooper is a powerful tool that provides a hierarchical textual view of a
hierarchy of objects. Individual objects discovered using the Snooper may then be
added directly into the views provided by the Object Visualizer (page 7).

The Snooper also includes a set of buttons that provide a simple and direct means
for opening other tools of the IBM Smalltalk environment, such as visualizers,
browsers, and inspectors, on objects of interest. In addition, the Snooper provides a
code evaluation facility, a workspace, object searching, and limited views of its
own.

The Snooper can be used in combination with the other tools of the environment
to provide a powerful facility for investigating object structures and quickly
gaining an understanding of program behavior.

Snooping Basics
One way to open a Snooper on an object is to send it the snoop message.

The basic Snooper display is a list containing one line per object. Each line consists
of a name and a value. The value of a composite object is shown simply as a
<ClassName>. The value of a primitive object is simply printed. The first line in the
list is for the object being snooped. The name on the first line is self, and the value
is that of the object being snooped.

The subsequent lines in the list are for the components of the object being snooped.
By default, these lines are ordered alpahbetically according to name. The names of
the components are indented. In some cases, the sub-components of a component
will be shown immediately below it. Their names will be indented even farther.
Thus, the Snooper uses indentation to show structure.

Double-clicking a line of the Snooper display will expand an object, showing its
components on subsequent lines. If the object’s components are already shown,
double-clicking contracts the object, removing its components from the display.

Objects frequently have components that you are not currently interested in. You
may remove lines from the display by selecting them and choosing Hide Selected
Items from the Hide menu. Reveal Hidden Items will return them to the display.

If you are snooping many objects of similar classes, you may know that you will
never care about certain instance variables. You may tell the Snooper to always
hide those variables by the selecting them and choosing Hide Selected Names
from the Hide menu. Edit Automatically Hidden Names will let you tell the
Snooper to show those instance variables again.

Example: Snooping the System Transcript
The running example in this chapter deals with snooping around the System
Transcript object.

© Copyright IBM Corp. 1997, 2000 21

Opening the Snooper
1. In any workspace (e.g, the System Transcript itself) type Transcript snoop.
2. Select the words Transcript snoop.
3. Right-click, and choose Execute from the pop-up menu.
4. A Snooper will appear.

The Snooper shows the instance variables of the Transcript. For example, there
is an instance variable called confirmClose which is currently true . There is
another variable called fileMenu which is a CwMenu , which is a composite
object.

Expanding and Contracting Composite Objects
1. Double-click the fileMenu line to see the components of the fileMenu.

For example, the fileMenu has an instance variable title, whose value is the
string ’File’ .

2. Double-click the fileMenu line a second time, to contract the fileMenu.

22 VisualAge Smalltalk: Visualization Tools User’s Guide

The Snooper will return to its appearance as shown in 22. The components of
the fileMenu are no longer shown.

Advanced Hiding and Unhiding
1. Double-click the fileMenu line a third time, to redisplay the components of the

fileMenu.
2. Highlight the first three items indented under fileMenu, that is: armBlock,

configureBlock, and disarmBlock. (You may click the first item and drag through
to the last, or control-click on the three individual items).

3. From the Hide menu, select Hide Selected Items. (Or, press control+h).
The three lines vanish from the display. A marker appears by fileMenu,
indicating that it has hidden children. (Depending on which platform you are
using, the marker might be a right-pointing triangle, an exclamation mark, or
some other symbol.)

4. From the Hide menu, select Reveal Hidden Items. The three lines reappear,
as shown in 22.

5. Repeat step 3 to hide the three lines.
Hiding items is independent of contracting/expanding them. Once an item
has been hidden, it will stay hidden until it is revealed.

6. Double-click the fileMenu line once to contract it, and then double-click it
again to re-expand it. Note that the three hidden items are still hidden.
If you have many things hidden, Reveal Hidden Items redisplays them all. If
you want finer control, you can reveal only a few hidden items.

7. Select the fileMenu line. From the Hide menu, select Reveal+Expand Selected
(or press control+r).
The three hidden lines reappear, returning the display to its appearance as
shown in 22.
You may hide particular instance variables, so that they do not show for any
object.

8. Select the armBlock, configureBlock , and disarmBlock lines.
9. From the Hide menu, select Hide Selected Names. (Or, press control+n). The

three lines are hidden, as in 23.
10. Double-click the editMenu line.

Chapter 6. The Snooper 23

Note that the editMenu is another CwMenu, and so it has an armBlock,
configureBlock, and disarmBlock. But they are hidden, because their names are
hidden.
This is convenient for reducing clutter when exploring complicated structures.
It is often the case, e.g. when exploring VisualAge parts, that there are a large
number of instance variables, many of which are not of interest at a given
time.

The hidden lines may be unhidden as in step 7 on page 23. However, this can
only be used to reveal hidden items for objects which have already been
expanded. The Snooper will continue to hide the named instance variables
any time it subsequently expands an object. If you want to make the three
instance variables be visible by default again, use the Edit Automatically
Hidden Names selection in the Hide menu.

11. From the Hide menu, select Edit Automatically Hidden Names. A window
listing the hidden names will appear.

12. Control-click the three names in the window to unselect them. Press OK.
13. In the snoop window, the three instance variables have reappeared. If you

expand textMenu, you will notice that they are no longer hidden.

Forms of Display
The Snooper displays most objects by simply showing instance variable names and
values. For the standard collections, however, more effective displays are possible,

Indexable collections (Arrays, OrderedCollections, etc) are displayed via index. The
first element is given the name at: 1, the second is called at: 2, and so on.

24 VisualAge Smalltalk: Visualization Tools User’s Guide

Dictionaries are displayed by key. (By default, the keys are sorted alphabetically.)
The elements of the dictionary are named at: key.

Sets and other collections without a definite order are displayed in some arbitrary
order. Since the elements of a set are not distinguishable, the Snooper just calls
each one el:.

Strings and symbols are collections, but they act like constants and cannot be
expanded. (Expanding them would give a long and not terribly useful batch of
characters.)

Examples: Displaying Collections
1. 1. In a workspace, type

(OrderedCollection with: Transcript
with:5 with: #X) snoop

.
2. Select and evaluate the text.

3. Replace OrderedCollection with Set, and select and evaluate the text again.

4. Type and evaluate
|d|
d := Dictionary new.
d at: #a put: 'a'.
d at:#b put: Transcript.
d snoop.

If you try to expand a line containing an object that has no children, a marker
appears by its name. (Depending on which platform you are using, the marker
might be an omega, a left angle bracket, or some other symbol.)

Chapter 6. The Snooper 25

5. Double-click the a line to try to expand the string ’a’.

Adding Objects to the Visualizer Display from the Snooper
Objects discovered using the Snooper can be added to the Object Visualizer
display. This allows the long-term behavior of interesting objects to be observed as
program execution proceeds.

To add an object to the Visualizer display, simply click a line in the Snooper
display, and then click the Snooper Visualize button. The object represented by the
line will then appear in the Visualizer display. See page 19 for a description of
using visualization of individual objects.

Opening Other Tools from the Snooper
Other tools of the development environment can be opened on objects displayed
by the Snooper.

Browse, Composition Edit.

You may open browsers or composition editors on objects from a Snooper.
1. Evaluate Transcript snoop in a workspace window to open a Snooper on the

transcript, as in 22.
2. Select fileMenu.
3. From the Actions menu, select Browse. (Or, use the popup menu, or type

control+b).
An ordinary code browser opens up.

4. From the Actions menu, select Composition Edit.
A composition editor on the CwMenu class appears.

Snoop

You may open new Snoopers on objects in a Snooper.
1. Select fileMenu.
2. From the Actions menu, select Snoop. (Or, use the popup menu, or type

control+s).
Another Snooper appears, inspecting the value of the file menu.

Inspect and Basic Inspect

You may invoke inspectors from the Snooper. This may be preferable in some
cases, e.g., very large collections which you do not want to display in full.
1. Select fileMenu

2. From the Actions menu select Inspect.

26 VisualAge Smalltalk: Visualization Tools User’s Guide

An ordinary inspector on the file menu appears.

Snoop All References

You may snoop the collection of all references to a given object.
1. In a workspace, type 78 snoop.
2. Select the self line.
3. From the Actions menu select Snoop All References.
4. A new Snooper opens, showing all the objects in your image that refer to the

number 78.

Watch Expressions
The Snooper allows you to attach a watch expression to an object; the expression’s
value will be displayed on its own line, indented beneath the object’s line, just as if
the expression were an attribute of the object.
1. Select the line of the table that the expression will be evaluated upon.
2. From Hide select Watch Expression. (Or, select Watch Expression from the

popup menu.)
A (Code) window appears.

3. (Optional) Check that you are attaching the block to the right object, by looking
at the line on the window displaying its value, and the line beneath it
displaying its type.

4. Fill in the text block labelled Show value of: with the text of a one-argument
Smalltalk block, computing the desired value. The text block is initialized with
the start of a one-argument block.

5. (Optional) Type a name that the block will appear under. The name is initially
block. Hint: Starting the name with a tilde () will keep it from looking like an

instance variable.
6. (Optional) Make your block more resistant to updates of the underlying object

by specifying the class that the method should be applied to, and leaving Only
evaluate on specimens of that class selected.
Or, make your block more flexible by deselecting Only evaluate on specimens
of that class. This will evaluate the block on values of all classes (e.g., if you
have attached the block to an instance variable, and change the value of that
variable to one of another class).

Example: Watch Expression
Suppose that you want to know how big the transcript window is, in pixels. You’d
like this number to be easy to update. Unfortunately, it’s not an instance variable
of the transcript window or anything else. So, the Snooper allows you to write a
block of code and display its result.

1. Open a Snooper by evaluating Transcript snoop.
2. Select the self line.
3. From Hide select Watch Expression. (Or, select Watch Expression from the

popup menu.)

Chapter 6. The Snooper 27

4. A window titled (Code) appears

5. In the Show value of: box, complete the text to read [:x | x textWidget width *
x textWidget height]

6. Modify the Call it: field to read widget area.

7. Click on Do It.
8. Observe that a new name widget area has appeared, just as if it were an

instance variable. The actual value will vary, depending on how big your

28 VisualAge Smalltalk: Visualization Tools User’s Guide

Transcript window actually is.

9. Change the size of your Transcript window. Note that the value of the widget
area in the Snooper does not change — the Snooper has no way of knowing
that it should be updated.

10. Double-click any line of the Snooper, or press the Rebuild button. Note that
the value of the widget area is updated to reflect the current size.

Searching Objects
The Snooper allows you to search through a hierarchy of objects for values
satisfying a predicate (a boolean expression). The search is a depth-limited
depth-first search. There are many ways of tuning the search.
1. Press the Search button, opening a (Spy Search) window.
2. In the Search For tab of the (Spy Search) window, type a one-argument block

which answers true when applied to an object that you are looking for, and
false otherwise. If your block fails on a given argument (e.g., if you call x
accelerator and some x does not respond to #accelerator), the block is
considered to return false.

3. Select the depth of the search by picking a radio button at the bottom of the
window. The depth 2 is selected by default. Depths higher than 6 are available
by selecting the + radio button, then using the spinner. The search engine is
fairly slow, so large depths are not recommended.

4. (Optional) Prune the search. Select the Prune tab. Fill in the block of code titled
Only search under values which satisfy. This block is a two-argument block,
taking (1) the attribute name being searched, and (2) the value of that attribute.
When the block returns true, the search engine will look beneath that block.
Pruning can speed up the search — or can slow it down, because testing values
to be pruned (even with a very simple test) is expensive.

5. (Optional) On the Options tab, set the options that you want for the search.
v If you only want to open the hierarchical structure to show all the items that

you found, but not change the currently selected items, deselect Select all
matching items.

v If you do not want to hide all the items which do not meet your search
criterion, deselect Hide non-matching items.

Chapter 6. The Snooper 29

v If it will suffice to find only one item matching your requirements, select
Stop searching on first match. This can speed searches up tremendously.

v If you want to see a mediocre kind of progress indicator on the System
Transcript, select Show Progress On Transcript.

v If you don’t want to contract the tree before starting the search, deselect
Contract tree before searching.

v If you want to search under just the selected items, instead of the self item,
select Search under Just the Selected Items.

v If you want to flag the items that were found, select Mark Found Items
with, and then type or select a symbol in the combo box.

v If you are searching a structure with many common sub-objects, select Don’t
re-search objects (There is a substantial overhead for keeping track of which
objects have been searched).

6. When you are ready to search, press the Search! button.
The Snooper keeps a list of the searches you have performed. If you want to
repeat a search, possibly with modifications:

7. Press the Prev button (or Next button) until the search that you want to redo or
modify appears.

8. (Optional) Press the Copy button to create a new copy of that search, so that
changes you do will not modify the original one.

9. Update the controls as above, and perform your search.

Example: Searching
Suppose that you want to find and mark all the buttons in the Transcript which
have no accelerator key.

1. Open a Snooper on the Transcript window.
2. Press the Search button.
3. As the Search for: criterion, type

[:x |
(x respondsTo: #accelerator) and:

[x accelerator isNil]
]

(Note: the (x respondsTo: #accelerator) is not strictly necessary but may
result in a more efficient search.)

4. On the Options tab, select Mark Found Items with and select a symbol from
the pulldown.

5. Press Search!

30 VisualAge Smalltalk: Visualization Tools User’s Guide

The Snooper display contracts to only the self line. This is because there are no
such objects to depth 2 in the Transcript window. We will try again, increasing
the depth.

6. Press Search.
7. In the (Spy Search) pane, press Prev once, and then Copy.
8. Set the Search Depth to 4.
9. Press Search, and wait somewhat longer than before.

The Snooper shows up with certain values (those push buttons with no
accelerator) selected. They are also marked with the symbol you selected. (If
you later change the selection, the marks will remain.)

10. Select the first line found, and press control+r (or, from the Hide menu select
Reveal and Expand Selected) and confirm that indeed that button’s
accelerator is nil.

Assignments
Objects displayed by the Snooper can be assigned to global variables. These objects
can then be used in expressions in any workspace or in a built-in evaluation pane
of the Snooper.

By evaluating expressions referring to an object, sending it various messages,
observing their effect, and inspecting returned values, a user can learn more about
objects which have been discovered using the basic snooping operations.

The Snooper uses the global variable names X, Y, Z, and S. It uses single-letter
variable names for convenience and to avoid conflicts (most programs are likely to
use more descriptive names for their global variables).

To assign an object to X:
1. Select the object in the Snooper.
2. Press the X := button. (Or, press alt+X, or from the Actions menu or the popup

menu select X := selected item).
The variable X in any workspace will now refer to the object that was selected.

Chapter 6. The Snooper 31

To capture up to three objects as X, Y, and Z:
1. Select up to three objects in the Snooper.
2. From the Actions menu select X, Y, Z := selected items.

The global variable X will now refer to the first selected object; Y will refer to
the second selected object, if there were two or three (otherwise it will be
undefined); and Z will refer to the third selected object, if there were three
(otherwise it is undefined).

To assign any number of objects to an array called X:
1. Select the items.
2. From Actions select X := Array of selected items.

X will now refer to an array containing all of the selected objects.

To set the Snooper so that whenever an object is selected, it is assigned to S:
1. From the Options menu, select S := Single Selection. (Or, press control+alt+S).

(Note: This is very dangerous — it is far too easy to get confused about what item
is currently referred to by S — but it is useful on occasion).

The Evaluation Pane
The Snooper includes an evaluation pane that allows convenient entry and recall of
expressions and their values. Ordinarily the pane is not shown, to avoid taking up
space.

To show the evaluation pane:
1. From Actions, select Toggle Evaluation Pane. (Or, press alt+v).

The evaluation pane actually is two panes. The upper pane is a table showing
some expressions and their values; initially, it starts with just the global variables X,
Y, Z, and S. The lower pane is a fairly conventional workspace, with a few minor
differences. As you evaluate expressions in the workspace pane, they and their
values will appear in the table pane.

Evaluating Expressions
To evaluate an expression:
1. Type the expression in the workspace pane.
2. Press control+E. (Or, select Evaluate from the popup menu).

The value and the expression appear in the table pane.

Note: Unlike ordinary workspaces, it is not necessary to select the expression to be
evaluated; control+E evaluates the entire workspace contents by default.

Variations:
v The Evaluate Selection command (control+alt+E) evaluates only the selected

area of the workspace pane.
v The Eval & Snoop (control+Q) command evaluates the whole pane, and opens a

Snooper on the value.
v The Eval & Snoop Selection (control+alt+Q) command evaluates the selected

area and opens a Snooper on the value.

32 VisualAge Smalltalk: Visualization Tools User’s Guide

Editing commands are available on the popup menu of the workspace pane, or via
keyboard shortcuts.
v Cut (control+x) is standard.
v Paste (control+v) is standard.
v Copy (control+c) is standard.
v Select All (control+a) is standard.
v Clear (control+l) clears the entire workspace.
v Browse (control+b) opens a browser on the class whose name has been selected.

Several commands are available from the popup menu of the table pane.
v Snoop opens a Snooper on the value in the selected line.
v Edit copies the text of the expression in the selected line to the workspace,

suitable for modification and re-evaluation.
v Do It re-evaluates the expression in the selected line. The result of the

expression is ignored. This command is most useful when the expression has
side effects.

v X := assigns the value in the selected line to X.
v Clear lines deletes the values stored in the table.

Saving Expressions
Ordinarily, as new expressions are evaluated, the old ones sink towards the bottom
of the table. (By default, the global variables X, Y, Z do not sink.)

If you want to keep a value or expression readily available:
1. Select the line.
2. Select Keep Line Near Top from the popup menu of the table pane.

To reverse the process:
1. Select the line.
2. Select Let Line Sink.

It is sometimes useful to have a value or expression available in all the Snooper
evaluation panes.
1. Select the line.
2. Save Expression

Whenever you open a new Snooper, that expression and value are present in its
list of available values.

To reverse the process:
1. Select the line.
2. Select Unsave Expression

The expression will no longer appear in new Snoopers.
Similarly, the Unsave Everything command releases all the saved expressions.

Chapter 6. The Snooper 33

Example of Working with Variables
We will manipulate an array in several ways, showing off the features of the
evaluation pane.

1. In a workspace, type and evaluate (Array new: 13) snoop.
2. In the resulting snoop window, select the self line.
3. Press alt+X. (Or, push the X:= button, or from Actions or the popup menu

select X := Selected item). This sets the global variable X to the array.
4. Press alt+V. (Or, from Actions select Toggle Evaluation Pane).

5. Click on the workspace pane of the Snooper.
6. Type X at: 3 put: Transcript.
7. Press control+E. (Or, from the popup menu select Evaluate) to evaluate the

expression.

34 VisualAge Smalltalk: Visualization Tools User’s Guide

8. Press the Rebuild button.

9. Clear the workspace pane (control+l, or select Clear from the popup menu.
10. Type X select: [:v | v notNil], and evaluate it.
11. Note that a one-element array has appeared in the ″value″ column, and the

expression you evaluated in the ″expression″ column of the table pane.
12. Clear the workspace pane. Type X size, and evaluate it.
13. Note that 13 has appeared as the first value in the table pane.
14. Scroll the table down. Note that the value and select: expression from step 10

are further down in the table.
15. Select that line.
16. From the popup menu select Edit.
17. Note that X select: [:v | v notNil], the expression from step 10, appears

in the workspace pane.
18. Replace select: by reject:, and evaluate the resulting expression.
19. Note than an array of nil’s has appeared as the first element in the table, and

the 13 has dropped to a lower position.

Rebuilding the Snooper
Occasionally, objects that you are snooping may get updated, without the Snooper
being aware of the fact. The Rebuild button brings the Snooper back up to date,
and attempts to keep the display in the same configuration as much as possible.
That is, the Snooper attempts to keep the same parts of the object hierarchy
expanded, as long as they still exist when the rebuild is done.

In this example, you will create an OrderedCollection and snoop it while it is being
modified.
1. In a workspace, type and evaluate OrderedCollection new snoop.
2. In the Snooper showing that collection, select the self line, and push the X :=

button.

Chapter 6. The Snooper 35

3. In a workspace, type and evaluate X add: 1; add: Transcript; add: 3. (The
values displayed in the Snooper might not change at this point).

4. Press the Rebuild button in the Snooper. Note that the current value of the
collection appears in the Snooper.

5. Double-click the at: 2 line to expand the Transcript.

6. In the workspace, type and evaluate X at: 1 put: 'red fox'.
7. Press Rebuild in the Snooper. Note that the current value of the collection

appears, and that the Transcript is still expanded.
8. In the workspace, type and evaluate

X at: 3 put: (X at: 2).
X at:2 put: 'spotty cheetah'.

9. Press the Rebuild button. Note that none of the elements of the list are
expanded; it changed too much to keep it expanded.

.

Snooping as a Debugging Aid
It is often helpful to put snoop commands in programs that you are trying to
debug. The Snooper provides a few features to assist with that.
v By default, the title of a snoop window is an indication of the place from which

the snoop was invoked, plus the value being snooped. For example, if you call
snoop from the bar method of class Foo, on an object that prints as baz, then the
window title will be (Foo>>bar---baz).

v You may control the title of the snoop window with the #snoop: method. For
example, x snoop: 'x' opens a snoop window titled simply x.

v snoop and snoop: answer the receiver, making them convenient to use in
complex expressions.
For example, if you are trying to understand the expression
aFamilyTree oldestLivingMember favoriteAunt

coatOfArms = self coatOfArms

you could insert a snoop call without restructuring your code:
aFamilyTree oldestLivingMember favoriteAunt

snoop coatOfArms = self coatOfArms

36 VisualAge Smalltalk: Visualization Tools User’s Guide

or,
(aFamilyTree oldestLivingMember favoriteAunt
snoop: 'favoriteAunt') coatOfArms = self coatOfArms

(Note that parentheses are required in the second expression.)

The Snooper also records the stack trace, and allows you to browse any of the last
dozen or so methods called before the Snooper was invoked.
1. From Actions select Show Stack Trace.
2. A Stack Trace window pops up, showing the names of the last several

methods called. Usually one or two methods from SpyInspector class — that is,
from the Snooper itself — are at the top of the list, and your method is second
or third.

3. Double-clicking a line of the Stack Trace window opens a browser on that
method.

Options and Display Controls
There are several options controlling what is displayed, and how it is displayed by
the Snooper.

To control the space used for names, select Name Width from the Hide menu, and
then one of the percentages (10% - 60%). 30% is the default. 60% will give a great
deal of space for names, and may be helpful for viewing deeply nested structures.
10% makes as much space as possible available for values.

The Options menu includes several toggles.
v S := Single Selection.

This sets the Snooper into a mode in which, whenever a single item is selected,
it is also assigned to the global variable S. (When zero, two, or more are
selected, the variable is unassigned). This is quite dangerous, but useful in
conjunction with the Mark Appearances of Variables mode.

v Allow Error Prompters

Under some situations, the Snooper has the choice of presenting an error
message (the default), or silently ignoring the error (which may be set with this
option).

v Show Expansion Markers

The symbols indicating the presence of hidden children, or expanded objects
with no children, may be turned off with this toggle.

v Show Classes

It is often useful to see the classes of the displayed objects, not just their values.
This command toggles whether or not they are displayed.

v Sort

By default, the Snooper shows instance variables in alphabetical order. If this is
not appropriate, you may turn sorting off.

v Rebuild Tree On Refresh

If you are snooping a data structure that is constantly being mutated by other
processes, you will want to rebuild it frequently.This command causes the tree to
be rebuilt in detail whenever it is manipulated by the Snooper. It is, of course,
fairly slow.

v Mark Appearances Of Variables

Chapter 6. The Snooper 37

This puts markers on the tree whenever a value is the same object as one of the
global variables X, Y, Z, S. This is useful for telling when two values that print
the same are actually the same object. In conjunction with S := Single Selection,
it can be used to probe the sharing structure of objects.

v Save Options

Saves the current settings of the options, as the defaults for new Snoopers.

Example: Setting Options
1. Open a Snooper on the Transcript.
2. From Options select Show Classes (or press Alt+S).
3. Note that all the classes of objects are now visible.

4. Press Alt+S again to return to the original state.
5. In the Transcript, type

| a b |
a := EtWorkspace new.
b := EtWorkspace new.
(Array with: a with: b with: a) snoop

6. From Options select S := Single Selection (or, press control+alt+S).
7. From Options select Mark Appearance Of Variables (or, press alt+A.
8. Select the at: 1 line. (This has the effect of assigning that value to S.)

Note that a marker =S appears next to the at: 1 and at: 3 line. This indicates
that the values in those lines are identical to the global variable S. In
particular, they are the same an EtWorkspace.

38 VisualAge Smalltalk: Visualization Tools User’s Guide

Also note that no =S marker appears on at: 2. This indicates that its value is a
different an EtWorkspace.

9. Now, select the at: 2 line. (This has the effect of assigning its CwText(text)
value to S).

Note that an =S marker appears next to the at: 2 line, but not the at: 1 and at:
3 lines.

10. Press control+alt+S to turn off S := mode.
11. Press alt+S to turn off Mark Appearances of Variables mode.

Chapter 6. The Snooper 39

	Contents
	Chapter 1. Notices
	Trademarks

	Chapter 2. About this book
	Conventions used in this book

	Chapter 3. Introduction to the Visualization Tools
	Chapter 4. The Object Visualizer
	Opening the Object Visualizer
	Selecting Classes to Visualize
	Analyzing Object Activity with the Object Visualizer
	Getting More Information about Objects
	Example: Using the Object Visualizer
	Opening the Cluster View
	Analyzing Object Interaction with the Cluster View
	Example: Using the Cluster View

	Chapter 5. The Widget Scope
	Using the Widget Scope
	Working with Objects in the Widget Scope List
	Adding Objects to the Visualizer Display from the Widget Scope
	Finding Out How an Application is Launched

	Chapter 6. The Snooper
	Snooping Basics
	Example: Snooping the System Transcript
	Opening the Snooper
	Expanding and Contracting Composite Objects
	Advanced Hiding and Unhiding

	Forms of Display
	Examples: Displaying Collections
	Adding Objects to the Visualizer Display from the Snooper
	Opening Other Tools from the Snooper
	Watch Expressions
	Example: Watch Expression
	Searching Objects
	Example: Searching
	Assignments
	The Evaluation Pane
	Evaluating Expressions
	Saving Expressions

	Example of Working with Variables
	Rebuilding the Snooper
	Snooping as a Debugging Aid
	Options and Display Controls
	Example: Setting Options

