
VisualAge Smalltalk

UML Designer User’s Guide
Version 5.5

IBM

Note

Before using this document, read the general information under “Notices” on page iii.

August 2000

This edition applies to Version 5.5 of the VisualAge Smalltalk products, and to all subsequent releases and
modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the level of
the product. The term “VisualAge,” as used in this publication, refers to the VisualAge Smalltalk product set.

Portions of this book describe materials developed by Object Technology International Inc. of Ottawa, Ontario,
Canada. Object Technology International Inc. is a subsidiary of the IBM Corporation.

If you have comments about the product or this document, address them to: IBM Corporation, Attn: IBM Smalltalk
Group, 621-107 Hutton Street, Raleigh, NC 27606-1490. You can fax comments to (919) 828-9633.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of
the intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction
with other products, except those expressly designated by IBM, are the
responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY, USA 10594.

IBM may change this publication, the product described herein, or both.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v VisualAge
v UML Designer

The following terms are trademarks of other companies:
v Rational (Rational Software Corporation)
v Microsoft (Microsoft Corporation)

Windows is a trademark of Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

© Copyright IBM Corp. 1997, 2000 iii

iv VisualAge Smalltalk: UML Designer User’s Guide

About this document

This document describes how to use the UML Designer feature. UML Designer is a
tool for capturing and organizing requirements and other high-level design
information as models, which can then be transformed into implementation using
VisualAge for Smalltalk, or into Java source code (.java files). You can also use
UML Designer to analyze and document existing Smalltalk applications.

This document is not intended to document object-oriented analysis and design. It
assumes you are familiar with VisualAge, Smalltalk, OO programming, and
Unified Modeling Language (UML) notation. If you are new to UML, see
“References” on page vi for some recommended references.

This document is divided into the following sections:
v “Part 1. Modeling concepts” on page 1 explains some of the basic concepts

behind modeling with UML Designer. It describes the available model elements
and the various transforms available to generate model elements and
implementation code.

v “Part 2. Using the UML Designer tools” on page 25 gives general information
about using the UML Designer browsers and diagrammers.

v “Part 3. Building models with UML Designer” on page 65 explains the process
of building a model by following a simple example through a “forward” process
of requirements, analysis, and design. If you want to get a quick start using
UML Designer, you can read this chapter first, referring to the earlier chapters if
you want more information.

Conventions used in this book
This book uses several conventions that you might not have seen in other product
manuals.

These highlighting conventions are used in the text:

Highlight
style Used for Example

Boldface New terms the first time they are
used

VisualAge uses construction from
parts to develop software by
assembling and connecting reusable
components called parts.

Items you can select, such as push
buttons and menu choices

Select Add Part from the Options
pull-down. Type the part’s class and
select OK.

Italics Special emphasis Do not save the image.

Titles of publications Refer to the VisualAge Smalltalk User’s
Guide.

Text that the product displays The status area displays Category:
Data Entry.

VisualAge programming objects, such
as attributes, actions, events, composite
parts, and script names

Connect the window’s
aboutToOpenWidget event to the
initializeWhereClause script.

© Copyright IBM Corp. 1997, 2000 v

Highlight
style Used for Example

Monospace
font

VisualAge scripts and other examples
of Smalltalk code

doSomething
| aNumber aString |
aNumber := 5 * 10.
aString := 'abc'.

Text you can enter For the customer name, type John
Doe

References
For more information about Unified Modeling Language (UML), refer to the
following documents:
v UML Distilled by Martin Fowler with Kendall Scott
v Unified Modeling Language User Guide by Grady Booch, James Rumbaugh, and

Ivar Jacobson
v Unified Modeling Language Reference Manual by James Rumbaugh, Grady Booch,

and Ivar Jacobson
v UML Semantics and UML Notation Guide, available from Rational Software

Corporation at www.rational.com.

Tell us what you think
The VisualAge Smalltalk web page has an online comment form. Please take a few
moments to tell us what you think about this book. The only way for us to know if
you are satisfied with our books or if we can improve their quality is through
feedback from customers like you.

vi VisualAge Smalltalk: UML Designer User’s Guide

http://www.software.ibm.com/ad/smalltalk

Contents

Notices iii
Trademarks iii

About this document v
Conventions used in this book v
References vi
Tell us what you think vi

Part 1. Modeling concepts 1

Chapter 1. Introduction to UML Designer 3
Features 3
Evolutionary approach 4
Semantic models 4

Chapter 2. Model elements 7
Common model elements 7

Model 7
Group 7
Stereotype 7
Diagram 7
Publication 7

Requirements model elements 8
Requirement 8
Use case 8
Scenario 9
Concept 9
Actor 9
Thing 9
Responsibility 9
Use case diagram 9

Analysis model elements 10
Protocol 10
Class diagram 11

Design model elements 11
Class design 11
Instance 12
Sequence diagram 12

Chapter 3. Transforms and code
generation 13
Going from requirements to analysis 13

Responsibility idioms 14
Java versus Smalltalk conventions 17
Finding protocols for participants 17

Going from analysis to design 18
Message idioms 18

Reverse engineering 22
Retrieving class designs 22
Retrieving protocols 22
Retrieving things 23

Part 2. Using the UML Designer
tools 25

Chapter 4. Using the browsers 27
The Relationships Browser 27

Spawning a new browser 28
Browsing groups 29
Browsing refinement and inheritance 29

The Path Browser 30
The Hierarchy Browser 31
Filtering 32

Filtering by task 32
Filtering by browser level. 32

Checking consistency 34
Browsing inconsistencies 34
Repairing inconsistencies 35

System settings 35

Chapter 5. Using the UML Designer
diagrammers 37
Diagrams 37
Using the diagrammers 38

Adding a node figure 38
Adding a connector figure 39
Direction and ownership of associations 41
Lamination 41
Association labeling 41
Display properties 42
Alignment 43
Deleting figures 43
Diagram synchronization 44
Panning and zooming 44
Creating GIF files 45
Printing 45

Use case diagrammer 46
Class diagrammer 47

Class figure display properties 47
Connector display options 49
Relationship properties 49

Sequence diagrammer 51
Creating instances 52
Creating method calls 53

Chapter 6. Configuration management
and version control 55
Editions and versions 55

Browsing and loading 55
Team development 57

Using the UML Designer browsers 57
Edition Browser 57
Hierarchical Change Browser 58

© Copyright IBM Corp. 1997, 2000 vii

Chapter 7. Importing and exporting
models 61
Object Extender import/export 61

Importing model elements from Object Extender 61
Exporting model elements to Object Extender . . 61

XMI import/export 62
Exporting from UML Designer to XMI 63
Importing from XMI to UML Designer 63

Part 3. Building models with UML
Designer 65

Chapter 8. Capturing requirements . . 67
Starting a new model 67
Adding Requirement elements 68

Chapter 9. Writing and analyzing use
cases 69
Adding Use Case elements 69
Making links between elements. 69

Adding a ″satisfies″ link 70
Analyzing a use case 70
Identifying actors 71

Adding an Actor element 71
Adding a hypertext link 71
Identifying things and responsibilities 72

Adding (and linking to) a new Thing element . . 72
Identifying responsibilities 72
Adding responsibility elements 73
Linking to participants 74

Identifying concepts 74
Adding a Concept element 75

Revising description text 75

Chapter 10. Use case diagrams 77
Creating a use case diagram 77
Adding a system figure 77
Adding a use case figure 78

Adding an actor figure 78
Other ways to create relationships 79

Deleting figures 79

Chapter 11. Protocols 81
Protocols and things 81
Generating a protocol 81
Message specifications 82

Generating using idioms 83
Changing parameter and attribute types 83

Opening the Path Browser 84
Changing attribute types 84
Changing message parameter types 84

Defining a message manually 85

Chapter 12. Designing classes and
building class diagrams 87
Opening the Class Diagrammer 87
Adding a class design figure 87
Establishing protocol conformance. 88

Adding a protocol figure 88
Generating stub method implementations . . . 89

Adding more elements 90
Creating associations 90

A closer look at associations 90
Adding associations to the diagram 91

Showing multiplicity 92

Chapter 13. Modeling existing Smalltalk
classes 95
Attaching a class design to an existing class . . . 95
Retrieving a protocol 96
Retrieving multiple classes at once 97

Chapter 14. Sequence diagrams 99
Creating a sequence diagram 99
Working with the Sequence Diagrammer 99

Adding objects to a sequence diagram 99
Adding method calls to the diagram 100

Adding the initial method call. 100
Adding the remaining method calls 101

Chapter 15. Publishing models 103
Publishing automatically 103

Including diagrams in a publication 104
Publishing manually 105

Creating a Publication element 105
Editing a Publication element 105
Generating output 107

Part 4. Appendixes 109

Index 111

viii VisualAge Smalltalk: UML Designer User’s Guide

Part 1. Modeling concepts

© Copyright IBM Corp. 1997, 2000 1

2 VisualAge Smalltalk: UML Designer User’s Guide

Chapter 1. Introduction to UML Designer

UML Designer is a tool for capturing and organizing requirements and other
high-level design information as models, which can then be transformed into
implementation using VisualAge for Smalltalk. You can also use UML Designer to
analyze and document existing Smalltalk applications.

A model is a means of analyzing, representing, and documenting a system. The
implementation of an object-oriented system can itself be regarded as an executable
model. But modeling can also help explain a design in terms of higher-level
abstractions (such as requirements and analysis objects) than the implementation
code itself.

UML Designer is tightly integrated with the VisualAge for Smalltalk programming
environment, with all models stored in the VisualAge for Smalltalk repository. This
integration provides several significant benefits:
v Models are treated as software components. The VisualAge for Smalltalk

repository provides configuration management and version control of all design
artifacts in the model, including import, export, and reconciliation capabilities.
Individual design elements, as well as entire models, can evolve through many
versions, and previous versions can always be retrieved.

v Model elements can be related to their implementations, and implementations
can be explained in terms of higher levels of abstraction. Traceability links make
it possible to navigate between model and implementation entities; they also
make it possible to propagate changes to the design model to accommodate
modifications discovered during implementation — so-called “round-trip
engineering”.

v The transformation from model to implementation is relatively straightforward,
and the Smalltalk language makes possible an object-oriented implementation.

UML Designer provides design artifacts and tools that are flexible and can be used
in many different ways. It prescribes no specific OO methodology; it is intended to
support those elements of OO analysis and design that are common to the major
methodologies and have generally proved most useful to working programmers.
UML Designer supports an evolutionary approach to software development, where
the design undergoes continual revision even after implementation has begun.

Features
UML Designer provides capabilities to build models and to present them. With the
UML Designer browsers and diagram editors, you can interactively create models
and can publish them as hardcopy or HTML documents.
v Modeling. Distinct design elements are provided for each stage of the modeling

process: requirements capture, analysis, and implementation. Elements are
organized into models representing subsystems, and traceability links make it
possible to maintain connections between design elements and eventual
implementation elements.

v Browsing. Specialized browsers make it possible to organize requirements, use
cases, and other OO design artifacts as named design elements. Each element
can have a natural-language description and hypertext links to other related
elements.

© Copyright IBM Corp. 1997, 2000 3

v Diagramming. Three graphical editors support the creation of diagrams using
the Unified Modeling Language (UML) notation. Diagrams are, in effect, tightly
integrated views of the underlying model, and they automatically reflect changes
to design elements.

v Publishing. UML Designer can generate documentation from models and the
design elements they contain. Supported output formats include HTML and RTF.

Evolutionary approach
UML Designer provides tools that support an evolutionary approach to modeling.
Traditional modeling techniques have typically assumed a “waterfall”
approach—moving forwards from requirements to implementation—but this is not
generally the preferred approach for OO development, which tends to be iterative.
In an OO project, it is equally likely that you will need to start with an existing
implementation or prototype and use modeling to reverse-engineer the analysis for
documentation purposes.

UML Designer is equally suited to either the “forward” or “backward” approach,
or (most typically) a mix of the two.

Semantic models
UML Designer uses three different semantic models, each representing a different
level of abstraction: requirements, analysis, and design. Each model also
corresponds roughly to a distinct phase in a traditional software development
process, although in reality you will likely move freely between them. Each model
has its own set of model elements representing artifacts appropriate to that level of
abstraction:

Requirements model

The requirements model provides elements you can use to capture the
requirements and boundaries of the system you are designing. The
requirements model focuses on the purposes and use cases for the system,
and usually also describes some elements that lie outside the bounds of the
system.

Requirements and use cases are formulated with the assistance of the
system’s intended users, and the users must also be able to verify the
requirements. Therefore, the analysis in the requirements model is
informal, text-based natural language.

Requirements model elements include requirements, use cases, actors,
things, and responsibilities.

Analysis model

The analysis model moves forward from requirements by adding more
detail and providing a rigorous specification of the system’s required
behavior.

The analysis centers around protocols, elements that describe behavior in
terms of abstract interfaces. Protocols are implementation-independent, but
they use a strict type-inheritance model that ensures rigor and internal
consistency. Protocols can be generated from things and responsibilities
identified during the requirements phase, generated from existing
Smalltalk classes, or created manually.

Analysis model elements include protocols, message specifications,
parameters, and return values.

4 VisualAge Smalltalk: UML Designer User’s Guide

Design model

The design model includes elements representing the actual system as
implemented in Smalltalk. You can use these elements to annotate the
Smalltalk implementation with traceability information to track how the
classes conform to the protocols defined in the analysis model.

Design model elements include classes, instances, and method calls.

UML Designer includes transforms that can automatically generate model elements
at one level of abstraction based on elements at another. For example, you can
generate a protocol and its messages based on a thing and its responsibilities.
These transforms also include the ability to generate stub implementation code in
either Smalltalk or Java.

You can also create links between model elements at different levels of abstraction
to trace how they evolve. These traceability links make it possible to track how
your implementation conforms to your design decisions, and how your design
satisfies your requirements.

Chapter 1. Introduction to UML Designer 5

6 VisualAge Smalltalk: UML Designer User’s Guide

Chapter 2. Model elements

This chapter describes the model elements supported under each of the UML
Designer semantic models. These elements and their relationships to one another
are defined in the UML Designer metamodel, which can itself be represented using
model elements and diagrams.

Common model elements

Model
A model is a collection of related design elements; these elements can include
requirements, use cases, objects, diagrams, and other artifacts of design. In the
VisualAge team library, a model is stored within the context of a Smalltalk
application.

All of the modeling work connected with designing a system is within the context
of a model, or a set of related models; a model can have another model as a
prerequisite. Model elements in a prerequisite model are visible, meaning they can
be accessed (and linked to) from the model specifying the prerequisite. Models can
have “uses” and “used by” relationships to other models.

Group
A group is an element you can use to collect related model elements together.
Groups do not correspond to any implementation; they are simply a convenient
means of organizing model elements according to arbitrary criteria. Groups are
useful for filtering the elements displayed in a browser or included in a
publication.

A group is also used as the underlying model element representing the system
boundary in a use case diagram.

Stereotype
A stereotype is a UML-defined element you can use to classify an element as
belonging to a user-defined subclass of an existing element. Stereotypes are useful
for indicating usage distinctions between elements of the same type, but with
different intent. Stereotypes are generally important for tools and code generation.

Diagram
A diagram is a graphical view of a model, exposing elements that convey
important information about a design. A diagram exists independently of any
diagrams it contains, but any changes to the underlying model are automatically
reflected in affected diagrams.

Publication
A publication is a model element used to generate formatted output from a model
(or some subset of a model) suitable for printing or online viewing. You can create
publication elements either automatically or manually. A publication, in effect,
describes a textual view of a set of model elements.

© Copyright IBM Corp. 1997, 2000 7

A publication element contains one or more topic elements, each of which can
contain other topics. Each topic contains a text element derived from the textual
contents of a model element. The text of a topic can contain hypertext links to the
text of other topics.

For more information about publishing, see “Chapter 15. Publishing models” on
page 103.

Requirements model elements

Requirement
A requirement describes a function the system must perform in order to meet its
fundamental business objectives. Requirements also help to define the boundaries
of the system; some functions, though important, might turn out to be outside the
scope of the system being developed. Requirements are formulated by the users of
the system and describe what the system must do.

There are no strict rules governing what you can include as a requirement, nor
what level of detail is appropriate. Indeed, the list is very likely to change over
time, as you gain a better understanding of the problem domain and the system
boundaries. You can use Requirement elements to capture any information that is
useful for setting the system’s objectives and that you want to capture for
documentation and tracking purposes. Ideally, requirements should be short,
succinct, and focused on the essential purpose of the system. Often, the
requirement’s title alone will suffice; other times, you might want to provide
further explanation, which you can enter as hypertext.

A requirement should avoid any unnecessary descriptions of how the system will
be implemented; instead, it should describe what the system must do for the user
in order to work successfully. If you have quantifiable requirements that must be
met, such as response times or scalability objectives, you can include these as well.

Use case
A use case is a specific case of usage, tracing a particular task through from start
to finish. Rather than concentrating on how the system functions, use cases describe
what the system must do from the user’s perspective. A use case begins with some
stimulus from someone or something outside the system (an actor, which we will
discuss in more detail shortly).

Though more detailed than requirements, use cases are still quite informal. A use
case should be a natural-language description, not pseudocode, and it should
avoid any unnecessary assumptions about implementation. A use case should do
the following:
v It should help to capture the purpose of the system from the user’s perspective.
v It should define the system boundaries by identifying external agents (actors).

The style and level of detail to use in writing use cases are matters of judgment
and experience. The amount of detail you should include depends upon the
novelty of the system and your familiarity with the problem domain. The level of
detail can also vary from one use case to another: some might describe high-level
interactions of real-world elements, while others might describe low-level
interactions of actual system objects (when such objects are known). But try to
avoid mixing levels of abstraction within a single use case.

8 VisualAge Smalltalk: UML Designer User’s Guide

Above all, remember that use cases are not formal; they are written in natural
language rather than adhering to any rigorous, readily programmable semantics.
This can lead to some imprecision or ambiguity, but it has the advantage of
making the requirements readily understandable to, and verifiable by, the users of
the system.

Scenario
A scenario is an instance of a use case. In other words, a scenario traces a
particular execution of a use case from start to finish, with specific conditions and
values. While a use case might encompass several possible outcomes depending
upon conditions, a scenario describes only one outcome. Consequently, there might
be multiple scenarios associated with a single use case.

Concept
A concept is any significant term or idea that is doesn’t necessarily qualify as an
actor or a thing. This category can include any aspect of the system you want to
capture, such as real-world objects outside the system or domain-specific
terminology. You might later decide that the idea described by a concept is also an
actor or a thing, in which case you can create links to indicate this relationship.

Actor
An actor is an entity outside the system that provides a stimulus setting a use case
in motion, or receiving the output from a use case. An actor is not actually part of
the system, but is some real-world entity that interacts with the system. Usually,
actors are human users, although they can also be other software or hardware
entities that initiate actions.

Thing
A thing (also called a domain object) is an entity inside the system. Things are
candidates to become objects in the eventual implementation.

A thing can be transformed into a protocol. See “Chapter 3. Transforms and code
generation” on page 13 for more information.

Responsibility
A responsibility is a duty of a thing or actor, something it must do in order for a
use case to complete successfully. Each thing or actor can have many
responsibilities, and each can collaborate with other things or actors in their
responsibilities. A responsibility of a thing is a candidate ultimately to become one
or more methods of an implementation object or a relationship between objects.

A responsibility can be transformed into a message specification. See “Chapter 3.
Transforms and code generation” on page 13 for more information.

Use case diagram
A use case diagram is a UML-compliant diagram that gives a visual representation
of the system being designed, its actors and use cases, and their relationships. For
more information about use case diagrams, see “Use case diagrammer” on page 46.

Chapter 2. Model elements 9

Analysis model elements

Protocol
A protocol is a specified object interface, a named set of message specifications
defining what messages an object must understand, what their parameters are, and
what their return values will be. A protocol defines a type rather than a class; it
does not say anything at all about implementation, only external behavior. Input
parameters and return values are specified in terms of other types, which must
also be defined by protocols.

A class is said to conform to a protocol if it implements all of the messages
defined by that protocol and adheres to the specified types for input and output
values. A class can conform to more than one protocol, so multiple inheritance of
types is possible.

In addition, protocols can refine other protocols. (This is similar to, but distinct
from inheritance among classes, which is implementation-based.) A refining protocol
can add additional message specifications, but it cannot remove any. It can also
refine the input and output types of the message specifications defined by the
supertype, but only in specific ways:
v The input parameter types can be less specific than those defined by the

supertype, accepting anything accepted by the supertype and more.
v The return type can be more specific than the one defined by the supertype,

returning only a subset of the possible types returned by the supertype.

A protocol can be generated from a thing, or it can be retrieved from an existing
class. See “Chapter 3. Transforms and code generation” on page 13 for more
information.

Message specification
A message specification is an element contained within a protocol. It defines a
single message signature, including parameters and return values. It can also
specify exceptions.

A message specification can be generated from a responsibility, or it can be
retrieved from an implemented method. See “Chapter 3. Transforms and code
generation” on page 13 for more information.

Parameter
A parameter element is part of a message specification. It defines the name and
type of a single message parameter. Type is specified in terms of a defined
protocol. The parameter can also specify aliasing (whether the parameter is the
same as the return value).

Return value
A return value element is part of a message specification. It specifies the name and
type of a message return value. Type is specified in terms of a defined protocol.
The return value can also specify aliasing (whether the return value is the same as
one of the message parameters).

Exception
An exception element is part of a message specification. It specifies a named error
condition that a message can raise. Identifying possible error conditions helps to
ensure that they are handled.

10 VisualAge Smalltalk: UML Designer User’s Guide

Class diagram
A class diagram is a UML-compliant diagram that shows the relationships between
classes, instances, and protocols in your model. For more information about class
diagrams, see “Class diagrammer” on page 47.

Design model elements

Class design
A class design is a model element that represents a class. A class design can be
(but does not have to be) connected to a real Smalltalk class. The class design,
rather than a real Smalltalk class, can then be connected to other model elements.
In a class diagram, each class figure is attached to a class design rather than to an
actual class.

Class designs provide an indirect coupling between your model and the actual
Smalltalk implementation. During design, you might not yet be ready to start
creating actual Smalltalk classes; instead, you can create class designs (which are
comparatively lightweight) without any underlying Smalltalk classes. (However,
you must create a real Smalltalk class if you want to create inheritance
relationships between class designs.)

Furthermore, you might not yet know what your actual classes will be named, or
you might want to use names other than the ones your actual classes will have
(this might be the case if you are documenting legacy classes). A class design can
have a different name from that of the Smalltalk class it is associated with; even if
the names are different, a class design will still reflect any changes made to the
underlying class.

Class designs also serve as a repository for class-related design information that is
not normally captured in a Smalltalk code. For example, a class design can have a
conformance link to one or more protocols, indicating that the attached class
should implement all of the methods defined by the protocols. By conforming to
protocols, class designs also specify information such as parameter and return
types, which otherwise are not specified by a Smalltalk class definition. (On the
other hand, class designs do not duplicate any information stored in the class itself,
such as its methods or instance variables.)

In effect, class designs provide a bridge between analysis elements (like protocols)
and implementation classes. They provide traceability links from implementation
classes back to the model elements from which they are derived.

A class design combines the interface of its Smalltalk class with those of any
protocols to which it conforms. Its methods, therefore, fall into two categories:
v Methods defined in a protocol to which the class design conforms. These are

called specified methods. A specified method might or might not actually be
implemented in the underlying class, if any.

v Methods defined in the underlying Smalltalk class the class design is linked to,
if any. These are called implemented methods. An implemented method might
or might not be specified by any protocols the class design conforms to.

Similarly, the attributes of a class design can be either specified or implemented (or
both).

Chapter 2. Model elements 11

A class design can be retrieved from an existing class. See “Chapter 3. Transforms
and code generation” on page 13 for more information.

Instance
An instance element represents a named instance of a class design, from which it
inherits its attributes. Essentially, an instance represents a sample object with state
information and specific values for its attributes. Instances are useful for building
examples and sequence diagrams.

Sequence diagram
A sequence diagram is a visual representation of a series of interactions between
the objects in your system. Unlike a class diagram, which is a representation of a
static model of the system, a sequence diagram is a representation of the dynamic
interaction of your system, serialized over time. For more information about
sequence diagrams, see “Sequence diagrammer” on page 51.

Method call
A method call appears within a sequence diagram and represents a message send
from one object to another, and the passing of control from the sender to the
receiver.

Method instance
A method instance (or activation) appears within a sequence diagram and
represents the active execution of a method, beginning with a message send and
ending with a return.

Method return
A method return appears within a sequence diagram and represents the return of
control from a method that has finished executing.

12 VisualAge Smalltalk: UML Designer User’s Guide

Chapter 3. Transforms and code generation

Each of the three UML Designer semantic models (requirements, analysis, and
design) represents a different level of abstraction, and each has its own set of
model elements. Although these elements represent distinct objects, in many cases
there is a logical correspondence between an element at one level of abstraction
and an element at the next level. For example, a Thing element (requirements
model) typically corresponds to a Protocol element (analysis model), which in turn
corresponds to a class (design and implementation model).

UML Designer provides transform capabilities that can map between model
elements at a different levels of abstraction. Transforming takes the selected
element, creates its corresponding element or elements, and automatically creates a
traceability link between them.

Transforms exist for both the “forward” mapping (requirements → analysis →
design) and the “backward” mapping (reverse engineering). “Forward” transforms
include:
v Generating protocols from things (going from requirements to analysis); this

includes generating protocol message specifications, associations, and attributes
from responsibilities

v Code generation (going from analysis to design and implementation); this
includes generating classes and methods from class designs and protocols

“Backward” transforms include:
v Retrieving protocols from Smalltalk classes and class designs; this includes

retrieving protocol message specifications from Smalltalk class methods
v Creating things from protocols

Going from requirements to analysis
The first phase in a “forward” development process, capturing requirements, yields
elements such as requirements, use cases, things, and actors. Of these, things are
most important from a transform perspective, because things represent domain
objects (and potential implementation classes). By transforming things into
protocols, you can move from requirements capture to analysis.

The Generate Protocol transform maps things to protocols and responsibilities to
protocol message specifications. The default mapping of things to protocols is
one-to-one: transforming a thing into a protocol results in the creation of a Protocol
element that, by default, has the same name as the thing. For example, a thing
called Car would result in a protocol called <Car>. You can rename the generated
protocol while still maintaining its traceability link back to the original thing.

The default mapping of a responsibility of a thing depends upon the idiom of the
responsibility; a responsibility and its participants will be mapped, according to its
idiom, into one or more message specifications and parameters. In this way, you
can go from the informality of responsibilities to the relative rigor of message
specifications.

You can transform responsibilities collectively or one at a time. You can also
modify the generated message specifications afterward.

© Copyright IBM Corp. 1997, 2000 13

Responsibility idioms
An idiom specifies a mapping of a responsibility into one of several predefined
implementations as message specifications. For a given responsibility, you can
choose one of four idioms:

Action
A responsibility to perform an arbitrary action or operation. This is a
general-purpose, nonspecific idiom that describes something the thing does.

Reference
A responsibility to keep a value that refers to another thing. This idiom
describes something the thing knows.

Value A responsibility to keep a value as an attribute. This idiom describes
something the thing keeps.

Identifier
A responsibility to keep a value that can be used to uniquely identify the
thing. This idiom describes an attribute the thing can be identified by.

For example a Customer thing might have the following responsibilities:

Idiom Responsibility
Action pay bill
Reference sales rep
Value account balance
Identifier customer number

An idiom provides guidance to UML Designer regarding how the responsibility
should be transformed into protocol message specifications and attributes. For each
idiom, there is a corresponding set of messages that would typically be used to
implement the responsibility. (Essentially, these are simple patterns: designs for
implementing common programming requirements.) Each idiom results in a
different combination of messages and attributes in the generated protocol, based
on what would typically be used for such a responsibility.

14 VisualAge Smalltalk: UML Designer User’s Guide

Action
Action is the simplest idiom, and describes an arbitrary, user-defined responsibility.
It is the default idiom for a new responsibility.

The Action idiom specifies a simple, one-to-one transform from a responsibility to
a protocol message specification. For each Action responsibility, UML Designer
generates a single message. The name of the message is the responsibility’s
implementation name, which by default is derived from the responsibility name;
for example, pay bill becomes payBill. (You can change the implementation name if
you prefer a different name.)

Participants are optional for an Action responsibility. If there are any participating
things in a responsibility, each participant becomes a message parameter whose
type is the default type derived from the participant. Message parameters must be
specified as protocols, so if a protocol does not yet exist for a participant, UML
Designer automatically generates an empty protocol for it.

You can specify a maximum cardinality of Many or 1. If you specify Many, the
default generated message name will be plural.

Question for Nick: Does cardinality have any other effect on an Action
responsibility?

No attributes or associations are generated for an Action responsibility.

Reference
A Reference responsibility specifies a value that the thing knows that is itself
another thing. In effect, this specifies an association for the implementing protocol.

Table 1. Summary of idioms and how they affect protocol generation

Idiom Messages generated Participants Attributes generated

Action one message based on
responsibility name

optional; each participant
becomes a message
parameter

None

Identifier getter and setter methods
based on responsibility
name

Optional; if no participant
specified, assumes similarly
named protocol or <Object>

One attribute, type
specified by participant

Reference v If max cardinality=1,
getter and setter methods

v If max cardinality=many,
collection API (add,
remove, and getter
methods)

Required (one or more) v One attribute, type
specified by participant
(or <Collection> if max
cardinality=many)

v Also generates an
association between the
protocols

Value v If max cardinality=1,
getter and setter methods

v If max cardinality=many,
collection API (add,
remove, and getter
methods)

Optional; if no participant
specified, assumes similarly
named protocol or <Object>

One attribute, type
specified by participant (or
<Collection> if max
cardinality=many)

Chapter 3. Transforms and code generation 15

At least one participant is required for a Reference responsibility; the participant
identifies the thing the responsibility refers to. In the generated protocol, UML
Designer generates an attribute to hold the reference; its type is that of the
implementing protocol for the participating thing. (If you specify more than one
participant, any of the specified types are permitted.)

In addition to the attribute, UML Designer generates a set of messages to get and
set the attribute’s value. The specific behavior varies depending upon the
maximum cardinality you specify (Many or 1):
v If you specify a maximum cardinality of 1, the protocol corresponding to the

participant is used as the generated attribute’s type. (If multiple participants are
specified, there is still only one attribute, which can be of any of the specified
types.) In addition, UML Designer generates getter and setter messages for the
attribute, using the appropriate protocols as the allowed types for their
parameters and return values.

v If you specify a maximum cardinality of Many (the default), the generated
attribute will be a collection, which can contain multiple items of the allowed
types. In this case, UML Designer generates a getter method for the collection,
along with add and remove messages for the elements in the collection.

In addition, for a Reference responsibility, UML Designer creates an association
between the generated protocol and any participating protocols. This is only an
association between protocols; it does not automatically become an association
between classes during the design phase.

Value
A Value responsibility describes a value that the thing knows. In some ways, this
is similar to a Reference, but in this case the thing being pointed to is not
necessarily interesting in its own right.

For each Value responsibility, UML Designer generates a protocol attribute to hold
the value, as well as a set of message specifications to get and set the attribute’s
value.

Specifying a participant is optional for a Value responsibility. If you specify a
participant, the corresponding protocol is used as the type of the generated
attribute and of the message parameters and return values. If no protocol exists for
the participant, UML Designer automatically generates one.

If you do not specify a participant, UML Designer checks for an existing thing with
a similar name to that of the responsibility. If it finds a match, it uses the
corresponding protocol as the type of the attribute. If it does not find a match, it
assumes <Object>. (See “Finding protocols for participants” on page 17 for more
information.)

In addition to the attribute, UML Designer generates a set of messages to get and
set the attribute’s value. The specific behavior varies depending upon the
maximum cardinality you specify (Many or 1):
v If you specify a maximum cardinality of 1 (the default), the protocol

corresponding to the participant is used as the generated attribute’s type. (If
multiple participants are specified, there is still only one attribute, which can be
of any of the specified types.) In addition, UML Designer generates getter and
setter messages for the attribute, using the appropriate protocols as the allowed
types for their parameters and return values.

v If you specify a maximum cardinality of Many, the generated attribute will be a
collection, which can contain multiple items of the allowed types. In this case,

16 VisualAge Smalltalk: UML Designer User’s Guide

UML Designer generates a getter method for the collection, along with add and
remove messages for the elements in the collection.

No associations are generated for a Value responsibility.

Identifier
An Identifier responsibility describes a value that the thing knows, and by which
it can be uniquely identified.

For each Identifier responsibility, UML Designer generates a protocol attribute to
hold the identifier, as well as getter and setter messages to access the attribute’s
value.

Specifying a participant is optional for an Identifier responsibility. If you specify a
participant, the corresponding protocol is used as the type of the generated
attribute and of the message parameters and return values. If no protocol exists for
the participant, UML Designer automatically generates one.

If you do not specify a participant, UML Designer checks for an existing thing with
a similar name to that of the responsibility. If it finds a match, it uses the
corresponding protocol as the type of the attribute. If it does not find a match, it
assumes <Object>. (See “Finding protocols for participants” for more information.)

Note: An identifier is, by definition, of a single specified type; if you specify more
than one participant for an Identifier responsibility, only the first is used
when transforming to a protocol.

No associations are generated for an Identifier responsibility.

Java versus Smalltalk conventions
In the system settings, you can specify that you want to generate Java code instead
of Smalltalk classes. If you select this option, UML Designer uses different
conventions when generating accessor messages from a responsibility.

The differences between the Smalltalk conventions and the Java conventions are as
follows:

Smalltalk conventions Java conventions

v add and remove messages specifications
return the added or removed object

v colons are used to indicate keyword
parameter positions

v add and remove message specifications do
not return the added or removed element

v colons are not used to indicate keyword
parameter positions

Finding protocols for participants
When you transform a responsibility into a message specification, the types of the
generated parameters and return values must be specified as protocols. Depending
upon your selections, UML Designer can use several different methods of choosing
which protocol to use for a parameter or return value.

If a responsibility specifies a participating thing, UML Designer uses the
implementing protocol of the thing as the type for the corresponding message
parameter.

Chapter 3. Transforms and code generation 17

However, participants are optional for responsibilities using the Value or Identifier
idioms, even though some of the generated messages take parameters. If you do
not specify a participant, UML Designer chooses a default parameter type as
follows:
1. If you have specified English link labeling in the system settings, UML

Designer looks for a noun in the responsibility implementation name. For
example:
v name in customerName

v date in dateOfBirth

v indicator in ownerIndicator

If you have not specified English link labeling, UML Designer uses the entire
implementation name. (For more information about the system settings, see
“System settings” on page 35.

2. Using the noun or implementation name, UML Designer then looks for a Thing
whose name matches. If it finds one, and the thing has an implementing
protocol, it uses that protocol. For example:
v name matches Name, a Thing element in the Kernel model; its implementing

protocol is<String>.
v indicator matches Indicator, a Thing element in the Kernel model; its

implementing protocol is <Boolean>.
3. If no Thing element matches, UML Designer then looks for a protocol whose

name matches the noun or implementation name. If it finds one, it uses that
protocol.
For example, Date matches the protocol <Date>.

4. If Relationships Browser cannot find a matching thing or protocol, it uses
<Object>.

Going from analysis to design
The analysis phase of a “forward” development process yields protocols and
message specifications. These elements can in turn be used to generate
implementation code.

Although much of the actual implementation of your program logic is still up to
you, some of the structure of objects and methods can often be deduced from
protocols and their message specifications. When you transform a protocol into a
class design, UML Designer can also generate an actual Smalltalk or Java class
with attributes and stub methods based on the messages of the protocol.
Depending on the idioms of the protocol messages, it might also be able to
generate default implementation code for the method.

UML Designer can generate both class and instance methods, although if you are
generating Java there are some limitations on class attributes. Class methods are
specified by a class conformance relationship between the protocol and the
implementation class; instance methods are specified by an instance conformance
relationship. (You can specify class or instance conformance when you transform a
protocol to a class design.)

Message idioms
As with the responsibilities of things, protocol message specifications are
characterized by idioms; however, message idioms are distinct from responsibility

18 VisualAge Smalltalk: UML Designer User’s Guide

idioms. When you transform a protocol into a class, message idioms control the
stub method implementations generated for the protocol’s messages.

Although message idioms are different from responsibility idioms, there are
correspondences between them. When you generate a protocol from a thing, UML
Designer automatically assigns an idiom to each generated message specification,
using the responsibility’s idiom to determine which idiom to assign to the
messages. (You can also manually select the idiom for a message specification.)

Idiom of responsibility Idioms of generated messages

Action General Message

Identifier v Getter

v Setter

Reference If max cardinality=1:

v Getter

v Setter

If max cardinality=Many:

v Getter

v Add

v Remove

Value If max cardinality=1:

v Getter

v Setter

If max cardinality=Many:

v Getter

v Add

v Remove

For each message idiom, UML Designer generates a different stub implementation
when transforming to a class. This section gives examples of both the Smalltalk
and Java code generated for each message idiom.

General Message
The General Message idiom is the most straightforward message idiom. It does
not make any assumptions about implementation, so it is appropriate for any
message. The method generated for a General Message idiom is effectively empty,
allowing you to add whatever logic you need. However, the generated method
includes comments that identify the parameter and return types for the method as
guidelines during implementation.

The following code shows the structure of the Smalltalk method generated from a
General Message protocol message with one parameter.
doSomething: p1

"Do something for the receiver

PARAMETERS
p1 : <Object>

RETURNS
<Object>"

Chapter 3. Transforms and code generation 19

"Put user defined code here."

Following is the Java code generated from a General Message protocol message
with one parameter.
/**
* Do something for the receiver
*
* @param aString
*
*/

public void doSomething (String aString) {

/* Put user defined code here. */

}

Add
The Add idiom describes a message that adds an item to a collection. This idiom is
automatically assigned to the “add” messages generated for a responsibility with
maximum cardinality of many. An Add message must have one parameter
representing the object to be added. A protocol containing an Add message must
also contain an attribute for the collection (this attribute is transformed into an
instance variable).

The following code shows the structure of the Smalltalk method generated from an
Add protocol message.
addMessage: p1

"Add the argument, p1, to the receiver's collection of aVariable.

PARAMETERS
p1 : <Object>

RETURNS
<Object>"

self aVariable add: p1.

|p1.

Following is the Java code generated from an Add protocol message.
/**
* Add the argument, p1, to the receiver's collection of aVariable.
*
* @param p1
*
*/

public void addMessage (Object p1) {
this.aVariable.addElement(p1);

}

Getter
The Getter idiom describes a message that returns the value of an attribute. A
Getter message cannot take any parameters, and the protocol must contain an
attribute to contain the attribute whose value is returned (this attribute is
transformed into an instance variable).

The following code shows the structure of the Smalltalk method generated from a
Getter protocol message.

20 VisualAge Smalltalk: UML Designer User’s Guide

getterMessage
"Answer the receiver's aVariable.

PARAMETERS
-none-

RETURNS
<Object>"

|aVariable.

Following is the Java code generated from a Getter protocol message.
/**
* Answer the receiver's aVariable.
*
*/

public void getGetterMessage () {
return this.aVariable;

}

Remove
The Remove idiom describes a message that removes an item from a collection.
This idiom is automatically assigned to the “remove” messages generated for a
responsibility with maximum cardinality of many. A Remove message must have
one parameter representing the object to be removed. A protocol containing a
Remove message must also contain an attribute for the collection (this attribute is
transformed into an instance variable).

The following code shows the structure of the Smalltalk method generated from a
Remove protocol message.
removeMessage: p1

"Remove the argument, p1, from the receiver's collection of aVariable.

PARAMETERS
p1 : <Object>

RETURNS
<Object>"

self aVariable remove: p1.

|p1.

Following is the Java code generated from a Remove protocol message.
/**
* Remove the argument, p1, from the receiver's collection of aVariable.
*
* @param p1
*
*/

public void removeMessage (Object p1) {
this.aVariable.removeElement(p1);

}

Setter
The Setter idiom describes a message that sets the value of an attribute. A Setter
message requires one parameter, and the protocol must contain an attribute to
contain the attribute whose value is being set (this attribute is transformed into an
instance variable).

The following code shows the structure of the Smalltalk method generated from a
Setter protocol message.

Chapter 3. Transforms and code generation 21

setterMessage: p1
"Set the receiver's aVariable to the argument p1.

PARAMETERS
p1 : <Object>

RETURNS
<Object>"

aVariable := p1.

|p1.

Following is the Java code generated from a Setter protocol message.
/**
* Set the receiver's aVariable to the argument p1.
*
* @param p1
*
*/

public void setSetterMessage (Object p1) {
this.aVariable = p1;

}

Reverse engineering
If you have existing Smalltalk code, you can use UML Designer transforms to
generate analysis and requirements elements. These “backward” transforms can
retrieve class designs from classes, protocols from class designs, and things from
protocols. These transforms can be useful if you want to document an existing
system.

Note: UML Designer does not currently support reverse engineering Java code.

Retrieving class designs
Retrieving classes creates Class Design elements based on existing Smalltalk
classes. This transform can create a class design for a single class, a selected group
of classes, or all the classes in an application. This transform is available from the
Relationships Browser and from the Class Diagrammer; see “Retrieving multiple
classes at once” on page 97 for more information.

The class or classes you want to retrieve must be visible from within your model,
which means they must be either in the model application or in a prerequisite
application. For each selected class, UML Designer creates a Class Design element,
with a traceability link back to the class as the real implementing class for the class
design.

You can also create a class design and manually link it to an existing class, either
from the Relationships Browser or the Class Diagrammer.

Retrieving protocols
For a class design that has a real implementing class, you can retrieve one or more
protocols. (You can also do this automatically while retrieving classes.) You can
retrieve a single protocol specifying all the methods of the class, or multiple
protocols, each specifying the methods in a particular category.

When you retrieve a protocol from a class design, UML Designer creates a new
Protocol element containing a message specification for each of the class design’s

22 VisualAge Smalltalk: UML Designer User’s Guide

methods. It also creates a traceability link between the protocol and the conforming
class design. You can also select methods for retrieval by category; this is useful if
you want to retrieve only some of the methods, or if you want to retrieve the
methods into several distinct protocols. UML Designer creates conformance links
between the class design and all of the protocols to which it conforms.

When you retrieve a protocol, UML Designer attempts to assign types to the
generated message parameters based on the names given to the parameters in the
Smalltalk code, if a matching protocol exists in the model or a prerequisite model.
For example, a method parameter called aString would result in a protocol
message parameter of type <String>.

Retrieving things
You can also reverse engineer requirements elements by retrieving things from
protocols. For each selected protocol, UML Designer creates a Thing element with a
traceability link to the protocol. The generated Thing element is empty (no
responsibilities are generated).

Chapter 3. Transforms and code generation 23

24 VisualAge Smalltalk: UML Designer User’s Guide

Part 2. Using the UML Designer tools

© Copyright IBM Corp. 1997, 2000 25

26 VisualAge Smalltalk: UML Designer User’s Guide

Chapter 4. Using the browsers

UML Designer provides three browsers you can use to view, navigate, and edit
your model elements:
v The Relationships Browser
v The Path Browser
v The Hierarchy Browser

All three browsers display model elements and their contents, but each displays
the relationships between elements differently.

The Relationships Browser
The Relationships Browser is the heart of UML Designer; you can use it to browse
and edit all of your model elements, and it has sophisticated filtering capabilities
that can help you work with the kinds of elements and relationships you’re
interested in.

With the default settings, the Relationships Browser has three panes. The leftmost
pane shows the available source elements; the source element is the starting point
for navigating in the browser. If you opened the browser from the Transcript
window, the leftmost pane lists all of the models in your image, and you can select
any one of them as the current source element.

When you select a source element, the middle pane of the Relationships Browser
then shows a list of possible relationships between that element and other
elements. For example, if you select a model in the leftmost pane, the middle pane
shows a list of relationships between the model and the elements it contains, such
as class designs, diagrams, use cases, and requirements. These relationships are the
predefined relationship types defined by the UML Designer metamodel.

© Copyright IBM Corp. 1997, 2000 27

The drop-down list at the bottom of the middle pane selects the relationship filter
used to control which of the possible relationships are shown. Some types of
model elements have a large number of possible relationships, so this filter is
useful for viewing a subset of them. The default relationship filter is Interesting
Relationships, which shows only the most useful relationships; most of the time,
you can leave the filter set to this setting. Other settings can show other subsets of
the possible relationships, or all of the possible relationships.

Note: The relationship filter is cumulative with other UML Designer filtering
options, which are available from the menu bar. See “Filtering” on page 32
for more information.

The bottom pane of the Relationships Browser is the hypertext pane. This pane
contains any descriptive text that applies to the model, relationship, or model
element currently selected. You can use the hypertext pane to write explanatory
text describing each element; the text can include hypertext links to other related
model elements.

When you select one of the relationships from the middle pane, the rightmost pane
shows all of the model elements that result from following the selected relationship
from the selected source element. For example, if you select Library Catalog in the
leftmost pane and Class Diagrams in the middle pane, the rightmost pane lists all of
the class diagrams defined in the Library Catalog model.

Spawning a new browser
From any UML Designer browser, you can open a new browser with a selected
element or elements as the source elements; this is called focusing. Focusing is
useful for following a long series of navigations, or getting a different view of an
element (for example, opening a Hierarchy Browser from a Relationships Browser).
You can focus on any element displayed in a browser (a source element or a target
element). There are several ways to do this:
v Double-click on an element to open the default Focus browser for that element.

(For most elements, the default is the Relationships Browser, although for some
it is different; for example, the default browser for a Publication element is the
Hierarchy Browser.) The selected element is source element in the new browser.

v Select one or more elements and then select Focus from the pop-up menu. This
also opens the default Focus browser for the selected elements, but this way you
can include multiple elements in the Source pane of the new browser.

v Select one or more elements and then select Open With from the pop-up menu.
A cascaded menu appears from which you can select from all of the possible
UML Designer browsers (and any applicable Smalltalk browsers). Use this
method if you want to use a browser other than the default Focus browser (for
example, if you want to open a Path Browser on a protocol).

Spawning a new browser on a relationship
You can also open a new browser to display the results of following a specified
relationship. There are two ways you can browse a relationship:
v To browse the destinations of a relationship, select a relationship and then select

Browse→Destinations from the pop-up menu. A browser opens showing the
destinations of the selected relationship in the source pane.

v To browse the connections for the relationship, select a relationship and then
select Browse→Connections from the pop-up menu. A browser opens showing
the connections to the destination in the source pane.

28 VisualAge Smalltalk: UML Designer User’s Guide

You can select connection elements for navigating, deleting, and editing just as
you can other model elements. This makes it possible to browse and edit the
properties of an association without opening a diagrammer.

Browsing groups
If you use groups to organize your model elements, you can have the
Relationships Browser display groups in an additional, separate pane. This makes
it easier to use groups to work on a subset of the elements in your model.

To show groups in the Relationships Browser, follow these steps:
1. Select System Settings from the Options menu.
2. In the System Settings window, go to the Browser page and select Show

Groups.
3. Close and reopen the Relationships Browser.

The additional second pane lists the groups in the current model. Select a group to
limit the browser to displaying only elements in the selected group; if you want to
see all elements, select the default group Everything. If you select a group, any
elements you create will be added to the selected group automatically.

Browsing refinement and inheritance
The Relationships Browser can optionally display refinement relationships
(including inheritance) in a hierarchical tree view. To enable this option, select
Show Refined By button on the Browser page of the system settings. (See
“System settings” on page 35 for more information.)

If you select this option, refining elements show up in the browser as nested
children in either the source pane or the destination pane. If an element has
children, a plus sign (+) button appears beside the element in the list. Select this
button to expand or collapse the list and display the refining elements.

There are several kinds of refining elements:
v Prerequisites of a model

Chapter 4. Using the browsers 29

v Refining protocols or messages
v Subclassing class designs
v Extending use cases

The Path Browser
The Path Browser is similar to the Relationships Browser, and it shows essentially
the same information. However, it offers a more concise layout and a larger
context. The Path Browser is helpful when you need to work with nested elements
or complex relationships, because it allows you to view multiple layers of
navigation within a single browser.

The Path Browser shows the successive navigation of not just one relationship, but
of up to four relationships, starting from the selected source element. For example,
you can use the Path Browser to browse a protocol, its message specifications, the
parameters of a selected message, and the type of a selected parameter, all in the
same browser.

There are two ways to open the Path Browser:
v In the Transcript window, select Path Browser from the UML Designer menu.
v In any UML Designer browser or diagrammer, select a model element and then

select Open With→Path Browser from the pop-up menu.

The leftmost pane of the Path Browser shows the source element. If you opened
the Path Browser from the Transcript window, the source element is a model (you
can select any available model from the list). If you opened the Path Browser from
a UML Designer browser or diagrammer, the source element is the element you
selected before opening the Path Browser.

Each successive pane of the Path Browser shows the elements satisfying the
selected relationship to the selected element in the previous pane. For example, if
you select a model in the leftmost pane and the Contents relationship in the
second pane, the second pane shows all of the elements contained in the model.
You can then select an element in the second pane and use the third pane to follow
another navigation (for example, you could browse the messages of a protocol).

30 VisualAge Smalltalk: UML Designer User’s Guide

The relationships available in each pane of the Path Browser are the same as the
relationships available in the Relationships Browser, and all of the same filtering
options are available; select the R push button beside the relationship drop-down
list to select a filter. As with the Relationships Browser, the visible relationships are
also affected by UML Designer global filtering options (see “Filtering” on page 32
for more information).

The Hierarchy Browser
The Hierarchy Browser presents model elements in a hierarchical tree view, with
elements arranged according to their containment relationships. This view is
similar to what you might see in a file browser. The Hierarchy Browser does not
show the actual relationships as elements; instead, it shows only the source and
destination model elements, arranged hierarchically from parent to child. The
Hierarchy Browser is particularly useful for browsing and editing nested elements
such as Publication elements. (See “Chapter 15. Publishing models” on page 103 for
more information.

There are two ways to open a Hierarchy Browser:
v In the Transcript window, select Hierarchy Browser from the UML Designer

menu.
v In any UML Designer browser or diagrammer, select a model element and then

select Open With→Hierarchy Browser from the pop-up menu.

The Hierarchy Browser has two panes; they can be arranged either vertically or
horizontally, depending upon the settings on the Browser page in the system
settings (see “System settings” on page 35 for more information). The first pane
(either top or left) shows the hierarchical tree view of model elements. The
top-level element is the element you selected before opening the Path Browser; if
you opened the browser from the Transcript window, all of the existing models are
listed as top-level elements.

If an element has any important relationships to other elements (such as
containment, conformance, or collaboration), a plus sign (+) appears beside the

Chapter 4. Using the browsers 31

element in the list. Click on the + to expand the list and see the related elements. If
an element is linked to by multiple others, it might appear multiple times in the
list.

Filtering
The Relationships Browser and the Path Browser have powerful filtering functions
that control the model elements and level of detail displayed. By using filtering,
you can limit the browsers to displaying only the model elements you’re interested
in, based either on your relative level of advancement or your current task.

There are two ways of filtering the browser contents:
v Filtering by task
v Filtering by browser level

You can use both kinds of filtering at the same time.

Filtering by task
To filter by task, select Tasks from the Options menu. This displayed a cascaded
menu from which you can select one of the following tasks:

All Not actually a task, All specifies no filtering. This is the default setting and
causes all relationships and elements to appear (subject to other selected
filters).

Requirements
Select the Requirements task filter to see only relationships and elements
in the requirements model (such as things and use cases).

Analysis
Select the Analysis task filter to see only relationships and elements in the
analysis model (such as protocols).

Design
Select the Design task filter to see only relationships and elements in the
design model (such as class designs).

Diagramming
Select the Diagramming task filter to see only relationships and elements
related to creating and publishing diagrams (such as diagram elements).

Organizing
Select the Organizing task filter to see only relationships and elements
related to organizing your model elements (such as groups).

Filtering by browser level
The Relationships Browser and the Path Browser can display relationships and
elements according to five different levels of detail. To change the browser level,
select Levels from the Options menu; this displays a cascaded menu from which
you can select the browser level you want to use. This setting globally affects all
Relationships Browsers and Path Browsers.

The higher the browser level, the more relationships appear in the Relationships
Browser and Path Browser. These levels are cumulative: each browser level
includes all of the relationships displayed at the lower levels, plus additional
relationships. Generally, you should use the lowest browser level that includes all
of the relationships you want to use, in order to avoid unnecessary clutter.

32 VisualAge Smalltalk: UML Designer User’s Guide

Note: Filtering by browser level works in conjunction with other UML Designer
filtering mechanisms (such as filtering by task or selecting a relationship
filter in the Relationships Browser). To see all of the relationships included
at the current browser level, you must do the following:
v Select Tasks→All from the Options menu to disable task filtering.
v Select All Relationships in the Relationships Browser.

Level 1: Basic
Browser level 1 includes only the basic structural relationships of the model. This
includes relationships that lead to semantically interesting direct children of the
source element (containment relationships); it also includes associations of the
source element.

It does not include cross-linking relationships, relationships that lead only to
″view″ elements such as diagrams and publications, or cross-referencing and
traceability relationships (see Level 2 for more information).

For example, Level 1 includes:
v Actors
v Things and responsibilities
v Protocols and messages
v Simple associations

Level 2: General
Browser level 2 adds additional semantic model relationships, as well as
relationships to ″view″ elements such as publications and diagrams. It also
includes semantically important cross-linking relationships (direct references other
than containment and hypertext relationships, such as a “satisfies” link from a use
case to a requirement), as well as a few cross-reference relationships (direct and
indirect connections that help in understanding the model, such as traceability and
“used by” links). This level is the default when you install UML Designer.

For example, Level 2 includes:
v Diagram elements
v Exceptions
v Conformance relationships
v Collaboration relationships

Level 3: Cross-reference
Browser level 3 adds additional relationships that show how model elements
depend upon one another. This can be helpful with a large or complex model. For
example, Level 3 includes:
v Dependencies between models
v Constraints
v Hypertext references between elements

Level 4: Meta
Browser level 4 adds some additional relationships that make it possible to
navigate some of the metamodel elements associated with your model element.
This includes the filters themselves, each a relationship in the metamodel (you can
select a filter to see the relationships available with that filter).

Chapter 4. Using the browsers 33

Level 5: Advanced
Browser level 5 includes all of the public UML Designer relationships. This
includes relationships that show the available elements of a particular type in the
model, according to the scoping criteria of the element and its parent relationships.

For example, level 5 includes:
v Available messages
v Available return values
v Available responsibilities
v Available publication topics

Checking consistency
Some circumstances can cause a model to have inconsistencies, such as missing
link destinations, out-of-scope references, or missing prerequisites. For example,
inconsistencies can be caused by loading a back-level edition or making changes to
a model with standard ENVY browsers rather than the UML Designer browsers.

UML Designer provides a tool to check for inconsistencies. To check consistency,
select the model or element you want to check and then select Check Consistency
from the pop-up menu. (You can also select Check Consistency from the Source or
Element menu of the Relationships Browser, depending upon where the element
you want to check appears. Checking an element also checks all of its children.

When the consistency check finishes, a window appears listing any errors and
asking whether you want to browse them. You have two choices:
v Select Yes to open a Hierarchy Browser from which you can repair the errors

manually.
v Select No to have UML Designer attempt to fix the errors automatically. If any

cannot be repaired automatically, UML Designer will then open a Hierarchy
Browser to display the remaining errors so you can repair them manually.

Browsing inconsistencies
If you select Yes, a Hierarchy Browser opens listing each error, with the involved
elements listed as children of the error. The text pane of the browser gives details
about the error and suggests what you might do to fix it.

Depending upon the nature of the error, there may be two different ways of
correcting it.
v To correct the error by deleting elements, select the error in the browser and

then select Make Consistent By Deleting from the pop-up menu. (This option is
available only if deleting an element is a viable option for correcting the
problem and will not create additional errors.)

v To attempt to repair the error automatically, select the error and then select
Make Consistent By Repairing from the pop-up menu. UML Designer will
attempt to repair the error; an error message appears if it is unable to do so.

34 VisualAge Smalltalk: UML Designer User’s Guide

Repairing inconsistencies
Following are the inconsistencies you are most likely to encounter:

Error Message Explanation Possible Repairs

Missing Object On Diagram A diagram points to one or
more missing objects.

v Reload the missing objects.

v Delete the figure.

Already Deleted An object has been marked
as deleted but is still in the
system in an inconsistent
state.

Reload the object.

Missing Destination One of the objects in a
relationship is missing.

v Load the missing object.

v Unlink from the missing
object.

Missing Parent The parent of an object is
missing.

Reload the parent.

Orphan An object is not referenced
by any other object (it has no
parent), possibly because of
damaged links.

Repair any damaged links. If
no links are damaged, delete
the orphaned object.

Out Of Scope A relationship references an
element that is not visible
(not in the same model or
one of its prerequisites).

v Move the referenced
element so it becomes
visible.

v Change the prerequisites.

v Remove the link.

Missing Back Reference
Relationship

One element points to
another, but the second does
not point back to the first.

Select Make Consistent By
Repairing to automatically
create the inverse link.

Modified But Not Saved An element contains changes
that have not been saved.

Save the element.

No Released Edition An element has not been
released to its parent. This
can happen if you version
elements with ENVY
browsers.

Select Make Consistent By
Repairing to release the
currently loaded edition.

Association Attachment Link
Error

The source or destination of
an association is incorrect.

v Correct the association.

v Delete the association.

System settings
In any of the three UML Designer browsers, you can select Options→System
Settings to display the UML Designer System Settings window. From this window
you can control options that affect how the browsers and diagrams display
information and other configurable UML Designer settings. Each tab in the System
Settings window controls a different aspect of the UML Designer environment:

UI Controls general user-interface options. This includes default filtering for
the Relationships Browser and Path Browser, as well as general options for
diagramming and UML Designer dialogs.

Browser
Controls the appearance of the UML Designer browsers. This includes

Chapter 4. Using the browsers 35

whether the Groups pane appears in the Relationships Browser, whether to
show refining elements, and the layout of the Hierarchy Browser.

Color/Font
Controls the appearance of the screen fonts used in the UML Designer
browsers and diagrammers. You can specify fonts for three different kinds
of emphasis: hypertext links, figure captions, and missing object captions.

General
Controls options related to default link labels and consistency checking.
See “Association labeling” on page 41 for more information.

Syntax
Controls the syntax used to parse and display protocol messages. You can
select any one of the following options:
v Standard UML syntax
v Smalltalk-style syntax
v Java-style syntax

Code Generation
Controls options related to transforms that generate implementation
classes. These options affect:
v The default prerequisite for any new models
v The specification of protocol messages generated from responsibilities
v The availability and appearance of transform dialogs
v The target language for generated code (Java or Smalltalk)

36 VisualAge Smalltalk: UML Designer User’s Guide

Chapter 5. Using the UML Designer diagrammers

UML Designer supports the creation of three types of UML-compliant diagrams:
v Use case diagrams
v Class diagrams
v Sequence diagrams

Each type of diagram presents models in a different way, and each has a separate
diagramming tool. However, the three diagrammers (and the three types of
diagrams) share many common characteristics.

Diagrams
Each model element in a UML Designer diagram is represented by a figure, a
graphical representation based on UML notation. A figure is attached to an
underlying model element, from which it takes most of its properties. Normally,
each model element can be represented by only one figure in a single diagram.

A figure also has additional characteristics of its own that control its visual
appearance. For example, the figure controls which aspects of the underlying
model element appear on the diagram, as well as purely visual attributes such as
color.

From a diagrammer, you can edit both the visual attributes of the figures; you can
also open browsers (using Open With) and make changes to the underlying model
elements.

A diagram has two types of figures:
v A node figure represents a structural model element (such as an actor, use case,

or class design).
v A connector figure joins two node figures and represents a link or association

between model elements. Each connector figure is owned by one of the node
figures it connects to.

Note: The term link here refers to a semantic connection between two objects (in
UML terms, a link is an instance of an association). This is distinct from a
hypertext link, which is not a formal semantic connection but simply a
navigational reference. Hypertext links are not represented on diagrams.

Figures can also have adornments, which are labels and other decorations that
carry semantic meaning on the diagram. The visual attributes of a figure (its font,
color, and position on the diagram) exist independently of the underlying model.

Adornments help to make a class diagram more understandable, and they convey
additional information about the model elements, including additional UML
semantics; for example, they can show the navigability and multiplicity of an
association. You can specify whether or not most adornments appear on a figure;
however, the properties described by adornments exist in the model, whether or
not the adornments themselves are displayed.

Using the UML Designer diagrammers, you can build models in two different
ways:

© Copyright IBM Corp. 1997, 2000 37

v You can add figures for existing model elements. This technique is useful for
documenting an existing model.

v You can add new figures and create new model elements for them at the same
time. You can use this technique to build a new model graphically.

Using the diagrammers
In order to build a diagram, you must first create a Diagram element in your
model. To create a diagram, do one of the following:
v In the Relationships Browser (or another UML Designer browser), select a model

and then select New→Class Diagram, New→Sequence Diagram, or New→Use
Case Diagram from the pop-up menu.

v In the middle pane of the Relationships Browser, select the type of diagram you
want to create and then select New from the pop-up menu.

To open a diagram for editing, double-click on the Diagram element in the
browser.

Adding a node figure
There are several ways to add a node figure to a diagram:
v Manually creating a new node figure and attaching it to a model element

(selected from a list or named directly)
v Copying a node figure from another diagram along with its attached model
v Copying a model element from a browser and pasting it into the diagram as a

figure
v Selecting Hide/Show Relationships to show an existing or candidate

relationship to an element not already on the diagram

Once you have added a figure, you can move it on the drawing surface to make
your diagram more readable.

Manually creating a node figure
To manually create a node figure and attach it to a model element, follow these
steps:
1. Select the figure you want from the tool bar. (If you prefer, you can select

Create Node Figure from the Tools menu and then select the figure you want
from the cascaded menu.)

2. Position the mouse pointer where you want the figure to appear (in an empty
area of the drawing surface) and then click mouse button 1.
When first added, an unattached figure is labeled with a question mark (?).

3. If you know the name of the model element you want to attach the figure to,
hold down the Alt key and click mouse button 1 on the figure label to directly
edit the label. UML Designer automatically attaches the figure to the element
that matches the name you specify.

4. If you want to select from a list of available elements, select Attach from the
pop-up menu of the figure. In the window that appears, select the model
element you want to attach to the figure. (You can also specify that you want to
create a new element.)

Note: This list does not normally include any model elements already
represented on the diagram.

38 VisualAge Smalltalk: UML Designer User’s Guide

Copying a node figure from another diagram
To copy an existing node figure from another diagram, follow these steps:
1. Select the figure you want to copy in the source diagram.
2. Select Copy from the Edit menu, or from the pop-up menu.
3. Go to the target diagram and place the mouse pointer in the location where

you want to paste the figure.
4. Select Paste Here from the pop-up menu. (You can also select Paste from the

Edit menu and then move the figure where you want it.)

The figure is copied along with its visual properties (color and font), and the new
copy is attached to the same model element as the original figure. (If the attached
element is in a different model from that of the diagram, the model name appears
in brackets.)

Copying a model element to a node figure
To copy a model element and paste it as a new node figure, follow these steps:
1. In the Relationships Browser or another UML Designer browser, select the

element you want to create a figure for.
2. Select Copy from the Element menu, or from the pop-up menu.
3. Go to the target diagram and place the mouse pointer in the location where

you want to paste the figure.
4. Select Paste Here from the pop-up menu. (You can also select Paste from the

Edit menu and then move the figure where you want it.)

The new figure is automatically attached to the model element you selected. (If the
attached element is in a different model from that of the diagram, the model name
appears in brackets.)

Adding a node figure with Hide/Show Relationships
You can use the Hide/Show Relationships choice on the pop-up menu of a node
figure to create connector figures for existing or new relationships (see “Adding a
connector with Hide/Show Relationships” on page 40 for more information). If the
element at the other end of the relationship is not already represented by a node
figure, UML Designer automatically creates one and adds it to your diagram.

Adding a connector figure
There are several ways to add a connector figure to a diagram:
v Manually creating a connector figure between two node figures
v Copying a connector figure from another diagram
v Copying a relationship from a browser and pasting it as a connector figure
v Displaying an existing or candidate connection by selecting Hide/Show

Relationships on the pop-up menu of a node figure

To reroute the path of a connector figure in a class diagram or use case diagram,
select the figure and then drag its selection handles.

Manually creating a new connector figure
To add a connector figure to a diagram, follow these steps:
1. Select the figure you want from the tool bar. (If you prefer, you can select

Select Relationship Figure from the Tools menu and then select the figure you
want from the cascaded menu.)

Chapter 5. Using the UML Designer diagrammers 39

2. Position the mouse pointer on the figure representing the source (owner) of the
relationship. For example, a class design owns its conformance relationships to
protocols; either node can be the owner of a simple association.

3. Click mouse button 1 to connect the source end of the relationship.
4. Move the mouse pointer to the figure representing the destination of the

relationship.
5. Click mouse button 1 to complete the relationship.

Copying a connector figure from another diagram
To copy an existing connector figure from another diagram, follow these steps:
1. Select the connector figure you want to copy in the source diagram.
2. Select Copy from the Edit menu, or from the pop-up menu.
3. Go to the target diagram.
4. Select Paste Here from the pop-up menu or Paste from the Edit menu.

The connector figure is copied along with its adornments. If both endpoints
already appear on the diagram, the connector automatically connects them; if
either or both are missing, they are copied along with the connector figure.

Copying a relationship to a connector figure
To copy a relationship between model elements and paste it as a new connector
figure, follow these steps:
1. In the Relationships Browser, select the relationship you want to create a figure

for. (You can select a relationship by browsing connections; see “Spawning a
new browser on a relationship” on page 28 for more information.)

2. Select Copy from the Source menu, or from the pop-up menu.
3. Go to the target diagram.
4. Select Paste Here from the pop-up menu or Paste from the Edit menu.

A new connector figure is created for the relationship you selected. If either or both
of the elements involved in the relationship are not yet represented in the diagram,
node figures for them are created as well.

Adding a connector with Hide/Show Relationships
You can create connector figures for existing or candidate relationships. To do this,
follow these steps:
1. Select the node figure you want to connect to.
2. Select Hide/Show Relationships from the pop-up menu.

A window appears listing any existing relationships (associations and links)
involving the selected element, followed by any identified candidate
relationships. A candidate relationship is identified with a plus sign (+).
A candidate relationship is a relationship that doesn’t yet exist in the model,
but can be created automatically. Candidate relationships include commonly
used “default” relationships. By selecting a candidate relationship, you can
quickly create the relationship, a connector figure for the relationship, and in
some cases, a node figure for the other endpoint. For example, you can create
(and link to) a new instance of a class design.

3. Select the relationship for which you want to create a connector figure from the
Hidden Relationships list. (You can also select multiple relationships at once.)

4. Select >> to add the relationship to the Shown Relationships list.
5. Select OK.

40 VisualAge Smalltalk: UML Designer User’s Guide

If you select a relationship that requires a new model element (for example, a
conformance link to a protocol that doesn’t yet exist), UML Designer prompts you
for confirmation before creating the new element. If either endpoint can be the
owner of a relationship (as with a simple association), UML Designer prompts you
for confirmation of the direction.

After you provide any necessary confirmations, the new connector figure (and new
node figure, if necessary) appear on the diagram. You can now rearrange the
diagram to place the new figures where you want them.

Direction and ownership of associations
For any connector, one of its endpoints (the nodes to which it is attached) is its
owner (or source). All model information about the connector is stored and
versioned as part of the owning model element. By default, the owning end of a
connector is indicated in a diagram by a solid semicircle, although you can disable
this indicator in the system settings.

For most connectors, ownership is determined by the semantics of the relationship;
for example, a conformance link is always owned by the conforming class design.
For simple associations, however, ownership is arbitrary, and either endpoint can
be the owner. The source element (the element you start with when creating the
association) is automatically designated the owner of the association. (This is true
for associations created in either the browsers or the diagrammers.) Once you
create an association, you cannot change the direction of ownership except by
deleting and re-creating it starting with the new source element.

Note: Direction of ownership is distinct from the UML concept of navigability,
which is represented on connector figures by arrowheads. Navigability
represents a UML semantic describing whether an association can be
traversed in a given direction in the implementation.

Lamination
Lamination refers to the merging of multiple connector figures into one in order to
reduce clutter. Lamination is useful in situations where multiple connector figures
share the same source or destination. Currently, lamination is only available for
inheritance and conformance relationships.

Lamination is automatic when you add multiple connector figures using the
Hide/Show Relationships menu option.

Association labeling
Text labels on associations are one type of adornment. Labels can show the name
of an association (for each direction), as well as the role names of the elements in
the association. Any or all of the following labels might appear on an association:
v The “to” association name, which initially defaults to the name of the

destination element
v The “from” association name, which initially defaults to the name of the source

element (the owner of the association)

Chapter 5. Using the UML Designer diagrammers 41

v The source role name
v The destination role name

There are a couple of ways you might decide to name an association:
v One style is to name the association with a verb describing the relationship,

making it possible to read the association (usually from left to right) as a
sentence.

v Another style is to name the association with a noun referring to the destination
entity, with plurality appropriate for the multiplicity of the association. This is
the default for the labels UML Designer automatically generates.

If you want the automatically generated labels to reflect the multiplicity of your
associations, select the Autoplural option on the General page of the system
settings.

Display properties
There are numerous display properties you can control for each diagram figure.
The available options vary between different kinds of figures.

General display properties for node figures
The following options are available on most node figures:
v Select Figure Properties to open a dialog from which you can specify fonts and

colors for the figure.
v Select Display Options→Move To Front or Display Options→Move To Back to

control whether a figure appears in front of or behind any other figures it
overlaps.

v

Select Display Options→Use Figure Specific Name if you want to give the
figure a name different from that of the attached model element.
If you select Use Figure Specific Name, you can then change the name of the
figure by selecting Rename from the pop-up menu. (If Use Figure Specific
Name is not selected, this option renames the figure and the attached model
element.)

v Select Display Options→Show Stereotype to show the stereotype of the attached
element above the figure name. (This option is available only if the attached
element is linked to a stereotype.)

v Select Display Options→Show Model If Different to show the name of the
model that contains the attached element, if different from the model containing
the diagram.

v Select Display Options→Show Properties to show the UML properties string for
the figure.

General display properties for connector figures
The following options are available on most connector figures:

42 VisualAge Smalltalk: UML Designer User’s Guide

v Select Figure Properties to open a dialog from which you can specify fonts and
colors for the figure.

v Select Role→Edit From or Role→Edit To to edit the role names of the source and
destination endpoints.

v Select Role→Show From or Role→Show To to control whether the source and
destination role labels are displayed.

v Select Navigation to specify the navigability of the connector. You can specify
any one of the following navigability options:
– None (no navigability)
– From (navigable toward the source element)
– To (navigable toward the destination element)
– Both (navigable in either direction)

Select Navigation→Show Navigation Arrow to control whether navigability is
indicated on the diagram by an arrowhead.

v Select Show All Labels or Hide All Labels to control whether any labels appear
on the connector figure.

Alignment
In addition to manually moving figures on a diagram, you can also use the Format
menu to automatically arrange your figures for readability or neatness.
v Select Align Horizontal to arrange two or more selected figures in a straight

horizontal line. You can align the top edges, bottom edges, or centers of the
figures.

v Select Align Vertical to arrange two or more selected figures in a straight
vertical line. You can align the left edges, right edges, or centers of the figures.

v Select Align To Grid to arrange one or more selected figures to the alignment
grid. (The grid is not visible, but it provides a quick way to align figures to
preset rows and columns.)

v Select Distribute By Edges to arrange three or more figures so the space
between them is equal. You can select to arrange the figures horizontally (select
Left To Right) or vertically (select Top To Bottom).

v Select Distribute By Centers to arrange three or more figures so the space
between their centers is equal. You can select to arrange the figures horizontally
(select Left To Right) or vertically (select Top To Bottom).

You can also interactively align figures by selecting Format from the Format menu.
This opens the Format window, from which you can select the alignment options
you want to apply to the selected figure or figures.

Deleting figures
There are two ways to delete a figure from a diagram.
v To delete the figure but leave the attached model element, select the figure and

then select Delete Figure from the pop-up menu (or press the Backspace key).
If you use this option, you can re-add the deleted figure, and only its visual
properties are lost.

v To delete the figure and its attached model element, select the figure and then
select Delete Figure And Model (or press the Del key).
If you use this option, you cannot re-add the figure unless you also re-create (or
reload) the element it represents.

Chapter 5. Using the UML Designer diagrammers 43

Diagram synchronization
UML Designer automatically keeps each diagram synchronized with its underlying
model. The diagram is updated if an element is deleted or changed, or if certain
properties are changed (for example, the types of message parameters shown on a
class figure). You can also force a resynchronization at any time by selecting
Refresh Browser from the Diagram menu.

If you make changes to a model element while editing a diagram, your changes
are immediately committed to the underlying model, even if you do not save the
diagram. To undo changes to a model element, load the previous edition of the
element (see “Loading elements” on page 56 for more information). Changes that
affect only the visual properties of a diagram (such as figure placement, fonts, and
colors) are saved only when you save the diagram. (If you make any such changes,
UML Designer prompts you to save the diagram when you close it.)

Note: The appearance of a diagram can change if you change display properties
(such as fonts) in the system settings, or if you change an aspect of an
element that affects how it appears (such as the length of its name). When
this happens, the diagrammers attempt to readjust the diagram
appropriately to accommodate the changes. In some cases, some connector
figures may appear to become unconnected to their endpoint node figures.
If this happens, just drag any loose endpoints to the correct locations.

Missing objects
When you open a diagram, the figures are checked against the underlying model
elements. If an element has been deleted or moved, its figure indicates a missing
object:

To repair a ″missing object″ error, do one of the following:
v If you want to keep the figure, re-create or reload the missing element.
v If you no longer need the figure, delete it.
v If the element has been moved to another model, use the Reattach menu choice

to attach the figure to the relocated element.

Panning and zooming
The visible area of the diagrammer’s drawing surface can be larger or smaller than
your actual diagram. You might want to zoom in on a complex diagram in order
to make it easier to read, or you might want to zoom out in order to see a large
diagram in its entirety. There are several ways to control what area of your
diagram is visible in the diagrammer.

Note: You can always get back to the default pan/zoom settings by selecting Reset
Pan/Zoom from the Tools menu. To center the diagram without changing
the zoom settings, select Center.

Zooming by percentage
To set the zoom percentage directly, select Zoom Percentage from the Tools menu
and then select a zoom percentage, from 10 (one-tenth normal size) to 200 (twice
normal size). You can also select Fit To Window to automatically set the zoom
percentage to the maximum value that allows the diagram to fit within the current
diagrammer window.

44 VisualAge Smalltalk: UML Designer User’s Guide

Dynamic pan/zoom
To dynamically change the pan/zoom settings and immediately see the results,

select Pan/Zoom from the tool bar or from the Tools menu. The mouse
pointer changes to a crosshair to indicate pan/zoom mode.

To pan the diagram, click and drag with mouse button 1. To zoom the diagram,
click and drag with mouse button 2 (drag up or left to zoom out, right or down to
zoom in). To reset to default pan/zoom settings, press the space bar.

Overview window
Select Overview from the Diagram menu to open a small window showing a
large-scale overview of the entire diagram, with a superimposed rectangle
representing the currently visible area.

To pan with the overview window, click mouse button 1 within the rectangle and
drag it to the part of the diagram you want to view. To zoom, use mouse button 1
to drag one of the selection handles at the corners of the rectangle to change the
size of the visible area. These changes are dynamically reflected in the main
diagrammer window.

Creating GIF files
To create a GIF graphic of your diagram, follow these steps:
1. Set panning and zooming so the diagram appears in the diagrammer window

exactly as you want it to appear in the GIF file. Only the visible areas of the
diagram are saved to GIF. (Select Zoom Percentage→Fit To Window from the
Tools menu to automatically bring the entire diagram into view.

2. Select Save As Gif File from the Diagram menu.
3. Specify the location and file name for the GIF graphic.

Note: If you plan to use this GIF in a publication, remember that the
publication uses the file name last used for the diagram at the time the
publication is generated. If you later use a different file name for the
diagram, you will need to regenerate the publication in order to pick up
the new GIF file in the output document.

4. Select OK to create the GIF file.

Printing
There are several ways to print a diagram:
v

Select Print from the Diagram menu to print the entire diagram at full size on
the default printer. If the diagram is too large to fit on a single page, it will be
printed on multiple pages which can then be assembled to show the complete
diagram.
Select Print Preview to see how the diagram will be printed using this option.

v Select Print Window to print the portion of the diagram currently visible in the
diagrammer window at the displayed zoom percentage.

v Select Print Scaled to print the entire diagram, scaled to fit on a single page.

You can control the following printing-related options:
v Select Diagram Print Setup to select a printer, or to control printer-specific

options (such as orientation).

Chapter 5. Using the UML Designer diagrammers 45

v Select Headers And Footers to control the headers and footers that appear on
the printed pages.

v Select Show Page Boundaries to see page boundaries in the diagrammer
window. This can help you arrange a multipage diagram.

v Select Include Blank Pages to control whether blank pages should be included
for parts of a multipage diagram where no figures appear.

Use case diagrammer
A use case diagram shows a visual representation of your use cases and actors and
the relationships among them. In addition, a use case diagram shows the system
boundary (represented in UML Designer by a Group element).

The following tools are available in the Use Case Diagrammer:

Selection: Allows selection and manipulation of existing figures.

Pan/zoom: Controls the size and position of the viewing area.

System: Creates a System figure, representing the grouping of elements
that make up the system.
Use case: Creates a use case figure.

Actor: Creates an actor figure.

Annotation: Creates a figure representing a note, comment, or
constraint.
Association: Creates a “uses” link between use cases.

Extension: Creates an “extends” link between use cases.

Constraint annotation: Creates a link between a constraint annotation
and a design element.
Sticky: Allows creation of multiple figures without reselecting on the
tool bar.

Each system figure in a use case diagram represents a system or subsystem and is
attached to a Group model element. You cannot attach a system figure to a group
that already contains use cases.

Placing a use case figure within a system figure also adds the use case element to
the corresponding group. If you move the use case figure outside the system
figure, the use case element is removed from the group. A use case figure outside a
system figure has a dotted border; a use case inside a system figure has a solid
border.

Select Hide/Show Relationships from the pop-up menu of a use case figure to
select from a list of existing and candidate relationships to other model elements.
Candidate relationships between use cases and actors, indicated by a plus sign (+),
are chosen based on the hypertext links that occur in the text of the use case. If
you select a candidate relationship, UML Designer prompts you to confirm the
direction of the relationship before creating it.

46 VisualAge Smalltalk: UML Designer User’s Guide

Class diagrammer
A class diagram is a visual representation of the class and protocol objects in your
system and their relationships to one another. For example, a class diagram can
show:
v classes and methods
v protocols and message specifications
v class instances
v associations between classes, protocols, or instances
v protocol conformance
v instantiation
v dependencies
v refinement and subclassing

The Class Diagrammer provides sophisticated capabilities for filtering which
aspects of your model elements you want to appear on the diagram, as well as the
level of detail displayed. For example, you can control which attributes and
methods are shown for class and protocol figures, and whether type information is
included (and in what syntax).

The following tools are available in the Class Diagrammer:

Selection: Allows selection and manipulation of existing figures.

Pan/zoom: Controls the size and position of the viewing area.

Protocol: Creates a figure representing a protocol.

Class: Creates a figure representing a class design.

Object : Creates a figure representing an object instance.

Annotation: Creates a figure representing a note, comment, or
constraint.
Inheritance: Creates a figure representing an inheritance relationship
between classes.
Conformance : Creates a figure representing a conformance relationship
between a class and a protocol.
Dependency: Creates a figure representing a dependency relationship
between a class and a protocol.
Association: Creates a figure representing a simple association
relationship between classes.
Aggregation: Creates a figure representing an aggregation relationship
between classes.
Constraint annotation: Creates a link between a constraint annotation
and a design element.
Sticky : Allows creation of multiple figures without reselecting on the
tool bar.

Class figure display properties
In addition to the general display properties, the following display properties are
available for class and instance figures:
v Select Display Options→Name Only to show only the name of the class. This

option hides any additional information (such as method names).

Chapter 5. Using the UML Designer diagrammers 47

If you select Name Only, you can also select Display Options→Use Small
Margins to make the figure as compact as possible.
These options is also available on instance figures.

v Select Display Options→Method Name Only to show only the names of the
methods of the class. This option hides additional information about methods,
such as parameters and return types.

v Select Display Options→Show Scope to show scope indicators for methods and
attributes. Scope indicates whether a method or attribute is public, private, or
protected.

v Select Display Options→Show Visibility to show visibility indicators for
methods and attributes. Visibility is affected by whether the methods are
specified in a protocol or implemented in a real class.

v Select Display Options→Attribute Name Only to show only the names of
attributes and not their types, scope, or visibility.

v Select Display Options→Method Name Only to show only the names of
methods and not their parameters, return values, scope, or visibility.

Filtering
The methods displayed in a class figure are method models; these are temporary
model elements, each representing a method. The list of method models is built
from the implemented methods of the real class, as well as the message
specifications in any protocols the class conforms to.

Likewise, the displayed attributes are attribute models, based on the variables of
the real class together with attributes specified in any protocols the class conforms
to.

A method or attribute defined in a protocol is specified; a method or attribute
implemented in a real class is implemented. There are therefore four possible
combinations:

Implemented Unimplemented

Specified Protocol and class Protocol only

Unspecified Class only Neither

In addition, a method or attribute is characterized by scope (whether it is defined
for the class or its instances) and visibility (public, private, or protected).

You can filter which methods appear on a class figure based on whether it is
specified or implemented, based on its scope, or arbitrarily. The following options
are available from the pop-up menu:
v Select Filtering Options to open a window from which you can specify which

categories of attributes and methods you want to appear in the figure. You can
filter based on the following criteria:
– Specified/unspecified
– Implemented/unimplemented
– Scope (instance/class)
– Visibility (public/private/protected)

v Select Methods to limit which methods appear in the figure. You can show only
specified methods, a limited number of methods, or all methods. Any hidden
methods are indicated with an ellipsis (...).

48 VisualAge Smalltalk: UML Designer User’s Guide

v Select Attributes to limit which attributes appear in the figure. You can show
only specified attributes, a limited number of attributes, or all attributes. Any
hidden attributes are indicated with an ellipsis (...).

Connector display options
In addition to the general display properties for connector figures, the following
properties are available from the pop-up menus of connector figures on a class
diagram:
v For a unidirectional connector (such as a conformance or refinement link),

selectName→Show to show a name label for the connector. If you want to
change the name of the connector, select Name→Rename.

v

For a bidirectional connector (such as a simple association):
– Select Name→Show From to show the name of the association from the source

element’s perspective. To change this name, select Name→Rename From.
– Select Name→Show To to show the name of the association from the

destination element’s perspective (the inverse association). To change this
name, select Name→Rename To.

In addition to the association names, you can also display the stereotype of the
association in each direction by selecting Name→Show Stereotype From and
Name→Show Stereotype To. These options are available only if the
corresponding name labels are displayed.

v For an association, select Multiplicity→Show From or Multiplicity→Show To to
control whether multiplicity labels appear on the source and destination ends of
the connector.
To change the multiplicity of the association, select Multiplicity→Edit From or
Multiplicity→Edit To. You can also select from several commonly used
multiplicity values:
– 0..1 To 1

– 0..1 To 0..*

– 0..* To 0..1

– 0..* To 0..*

v For an association, select Show From Qualified Attributes or Show To
Qualified Attributes to show qualifiers on the association. These options are
available only if you have linked constrained attributes in the relationship
properties. (See “Relationship properties” for more information.)

Relationship properties
To edit the properties of a relationship, double-click on the connector figure or
select Focus from its pop-up menu. This opens a window from which you can edit
the properties of the relationship represented by the connector figure. Note that
these properties apply to the relationship model, rather than to the connector
figure (although some of them might affect the visual appearance of the figure).

The relationship properties window has three pages: one for general properties,
and one for each role (direction) of the relationship. Depending upon the type of
relationship, some of the options might not be available.

Chapter 5. Using the UML Designer diagrammers 49

For associations, you can use the properties window to specify constraints on the
relationship. A constraint is a specific rule that restrains the allowed behavior of
the relationship, such as cardinality (multiplicity). Constraints should be observed
in your implementation.

Main page
The following settings are available on the Main page of the relationship properties
window:

Link Name
The name of the relationship for the indicated direction. (The name you
specify appears only if the Name label is displayed.)

Text The text for the relationship in the indicated direction. This text will appear
in any publications that include the relationship.

Role page
The following settings are available on each Role page of the relationship
properties window:

Id Specifies a unique internal identifier for the role.

Role Name
Specifies the role name that will appear on the diagram if role name labels
are displayed.

Stereotype
Specifies any user-defined stereotype that applies to the relationship. You
can select any available stereotype from the drop-down list. To define a
new stereotype, add a Stereotype element to the model; you will then need
to close and reopen the relationship settings in order to see the new
stereotype.

UML Stereotype
Specifies the UML-defined stereotype that applies to the relationship. You
can select from a list of four UML-defined stereotypes.

Is Unique
Specifies whether each instance of this relationship must be uniquely
identifiable.

Is Immutable
Specifies whether an instance of this relationship can be altered once it is
created.

Composition
Indicates whether the relationship represents an aggregation or
composition association. Aggregation is indicated on the connector figure
by an open diamond; composition is indicated by a solid diamond.

Aggregation indicates that the aggregated element is a child of the
aggregating element. Composition is a stronger form of aggregation,
indicating that the child element is an inherent part of the composing
element and cannot be meaningfully separated.

Min/Max
Specifies the multiplicity for this end of the association. (This is the same
as selecting Multiplicity→Edit From or Multiplicity→Edit To from the
pop-up menu of the connector figure.

Multiplicity is defined in termed of a minimum cardinality and a
maximum cardinality. The minimum cardinality (0–n) defines the

50 VisualAge Smalltalk: UML Designer User’s Guide

minimum number of instances required; the maximum cardinality (0–n or *
for many) defines the maximum number of instances allowed.

Ordering
Specifies whether the set of instances of a relationship are considered
ordered or sorted:
v Ordered: The instances are ordered in the sequence in which they are

added.
v Sorted: The instances are ordered according to some kind of sorting

(such as alphabetically).
v Unspecified: The ordering of the instances is not specified.

Cycles Specifies whether cyclic references are allowed using this relationship:
v No Cycles: Cyclic references are not allowed. If element A references

element B, element B may not reference element A.
v Indirect: Indirect cycles are allowed, but direct cycles are not. In other

words, if element A references element B, B may not reference A;
however, B may reference another element that references A.

v No Check: Both direct and indirect cycles are allowed.

Delete Check
Specifies whether this relationship has deletion constraints:
v Cascade: If the source is deleted, the destination should also be deleted.
v Control: The destination may not be deleted as long as the source refers

to it.
v No Check: No deletion constraints apply.

Implementation
Specifies properties that do not affect the semantics of the relationship but
do affect your implementation:
v Is By Reference: The relationship is implemented by value rather than

by reference (for example, by holding a collection of values or keys).
v Is Navigable: The relationship can be traversed in the direction of the

role. That is, given an instance of the source element, it is possible to
obtain an instance of the destination element through some
implementation of the relationship (this can be either physical, such as a
collection or database table, or derived).

v Is Derived: The relationship is computed indirectly from other
relationships or attributes. A derived association is indicated on a
diagram by a backslash (\) in front of its name label.

Attributes

Opens a window from which you can specify any constrained attributes
(qualifiers) for this end of the association. You can select any attribute
defined in the class or in any protocol it conforms to; you can also create
new attributes from this window. Qualifications appear in a box at the end
of the connector figure, if the option is selected to display qualified
attributes.

Sequence diagrammer
A sequence diagram is a visual representation of a sequence of interactions
between objects. A sequence diagram generally does not show all of the possible
interactions in your system; instead, it illustrates the interactions associated with
the implementation of a particular use case or scenario. A sequence diagram can

Chapter 5. Using the UML Designer diagrammers 51

help you validate your design by confirming that it accommodates your use cases.
It can also be a useful for documenting a system in which messages must be sent
in a particular order to work correctly.

The objects depicted in a sequence diagram are instances rather than classes. Each
object figure in a sequence diagram must be attached to an Instance model
element.

Note: Instance elements can reside in a different model from their class designs.
When you create a new instance element from a diagrammer, the new
instance is located in the same model as the diagram, which might not be
the same model as the class design being instantiated.

Each instance on a sequence diagram is represented by an instance figure at the
top of the diagram with a dotted lifeline extending downward. Message sends are
indicated as horizontal lines between object lifelines. Each message send can have
conditions and has a corresponding return value.

An object is considered active from the time it receives a message to the time it
returns control to the sender. This is indicated on the diagram by an activation, a
vertical bar along the active object’s lifeline between the message send and return
lines. Only an active object can send messages.

When you first open the Sequence Diagrammer, the drawing surface is empty
except for the system activation along the left edge. The system activation
represents the actor or object that initiates the sequence of messages shown in the
sequence diagram.

The following tools are available in the Sequence Diagrammer:

Selection : Allows selection and manipulation of existing figures.

Pan/zoom: Controls the size and position of the viewing area.

Object : Creates a figure representing an object instance.

Method call: Creates a figure representing a message send from one
object to another.
Annotation: Creates a figure representing a note, comment, or
constraint.
Constraint annotation: Creates a link between a constraint annotation
and a design element.
Sticky : Allows creation of multiple figures without reselecting on the
tool bar.

Creating instances
To add an instance figure to a sequence diagram, follow these steps:

1. Select Object from the tool bar.
2. Use mouse button 1 to place the new figure in an empty area of the diagram.

The object figure automatically appears at the top of the diagram, so only the
horizontal position is important.

3.

52 VisualAge Smalltalk: UML Designer User’s Guide

Select Attach from the pop-up menu of the new object figure. A window
appears listing the available class designs.

4. Select the class of the object. and then select OK.

It is important to remember that objects in a sequence diagram are instances, not
classes. Therefore, when you select a class design to attach, UML Designer
automatically creates a new anonymous instance of the selected class and attaches
the figure to the new instance.

If you want to use a named instance rather than an anonymous instance, deselect
Is Anonymous on the instance figure’s pop-up menu. You can then select Rename
to change the name of the instance. (If you rename an anonymous instance, Is
Anonymous is automatically deselected.

Creating method calls
To create a method call from one object to another, follow these steps:

1. Select Method call from the tool bar.
2. For a call to an instance method, click mouse button 1 on the sender’s lifeline

within an activation.
For a call to a class method, hold down the Alt key and click mouse button 1
on the sender’s lifeline within an activation.

3. Click mouse button 1 on the receiver’s lifeline.

Note: For a call to self, click mouse button 1 on the same object’s lifeline for
both sender and receiver.

4. In the dialog that appears, specify the message you want to send:
v In the Classes list, select the class that defines the method you want to call.

The list includes the class of the receiver as well as any classes it inherits
from.

Note: The list might include some candidate class designs, indicated by a
plus sign (+). These class designs do not yet exist in the visible
models, but it will be created automatically if you select one of their
methods. This happens if the real Smalltalk class of the selected object
inherits from ancestors which do not yet have class designs.

v In the Protocols list, select the protocol that specifies the method you want to
call. The list includes all protocols to which the selected class conforms.
(Select <unspecified> if the method you want to call is not specified in a
protocol.)

v In the Messages list, select the message you want to send.
5. Select OK. The new method call and its return appear as a method call figure.

In addition, the receiver’s lifeline now shows activation between the message
send and return.

Moving and resizing method call figures
After you create a method call figure, you can then move it and resize the
activation to make room for other method calls.

To move a method call figure, select the activation and then drag it up or down
with mouse button 1. This moves the entire method call, including the activation
and return call.

Chapter 5. Using the UML Designer diagrammers 53

To resize an activation, select the activation and then drag its bottom selection
handle. This changes the amount of space between the method send and the
return; you can do this to make room for more method calls.

Conditions and iteration
A method call can have a condition, an annotation (written in natural language or
pseudocode) that limits the conditions under which the message is sent.

To add or change the condition of a method call, select the message send figure
(the arrow going from sender to receiver) and then select Edit Condition from the
pop-up menu. Type the text of the condition (for example, x>0) and press Enter.

Iteration indicates that the message is sent multiple times to multiple receivers (for
example, iterating over a collection). To indicate iteration, select the message send
figure and then select Is Iterated from the pop-up menu. An asterisk (*) appears
beside the message send label to indicate iteration.

54 VisualAge Smalltalk: UML Designer User’s Guide

Chapter 6. Configuration management and version control

UML Designer design artifacts such as actors, use cases, and diagrams are stored
in the VisualAge repository, which provides versioning and management
capabilities. You can use the normal VisualAge (ENVY) team programming
capabilities for library management tasks such as importing, exporting, and
replication.

As with Smalltalk code, the library maintains a fine-grained edition history of
individual elements, allowing recovery of previous versions and configurations, as
well as identification of differences between editions. Version reconciliation is
similar to that used for Smalltalk code; however, UML Designer provides two new
browsers that are specifically designed to help with managing editions of your
models.

This section describes the special considerations that apply to team development
using UML Designer.

Editions and versions
Version control of models is similar to version control of Smalltalk code, but with
some differences to accommodate the extra subcomponents of the UML Designer
metamodel. Generally speaking, you can think of a model as an application with a
single class representing the model; in fact, a model is stored as an ENVY
application, with model elements stored within private storage classes.

For version control purposes, the elements in the model behave somewhat
similarly to the methods of a class, in that they are editioned and released
automatically when you save changes. Unlike methods, though, some model
elements can also have child elements. For example, a protocol contains message
specifications, which in turn contain parameters. To see the parent-child
relationships among elements, use the Contents filter in the Relationships Browser.

In order to make changes, you must have an open edition of the model. Each time
you save changes to a model element, a new edition is created for that element,
and the parent element points to the new edition. A model (like a class) is
versioned as a whole. Normally, only one user owns a model and its open editions,
but different users can have different editions open.

Each edition of a model or element points to the released edition of each element it
contains. An element is automatically released to its parent when it is created,
loaded, or changed. You can also use the UML Designer Editions Browser to
manually release a different edition.

Browsing and loading
To load a model that is not currently in your image, select Available from the
Source menu of the Relationships Browser (or from the pop-up menu in the list of
models). This option opens a standard ENVY applications browser from which you
can choose the application containing the model you want.

To load a different edition of a model that you already have loaded, do one of the
following in the Relationships Browser:

© Copyright IBM Corp. 1997, 2000 55

v To use the standard ENVY browsers, select Application→Browse Editions from
the Source menu, or from the pop-up menu in the list of models. This opens a
browser from which you can select the edition you want to load. This method is
usually fastest, because it loads the entire application at once rather than one
element at a time.

v Select Editions from the Source menu, or from the pop-up menu in the list of
models. This option opens a UML Designer Editions Browser from which you
can select the edition you want to load. This method shows more detail than the
standard ENVY browser, so it can be useful if you’re not sure which edition you
want.

Note: Any time you load a model using standard ENVY browsers (rather than the
UML Designer Editions Browser), you must manually refresh any open
UML Designer browsers in order to see the newly loaded model. There are
two ways to do this:
v To refresh a single browser, select Refresh Browser from the File menu of

the browser you want to refresh.
v To close all open browsers, select Reset All Browsers from the UML

Designer menu of the Transcript window. You can then reopen the
browsers you need.

Loading elements
Loading an edition of an element also loads the released editions of its children.
You can also manually load other editions of the elements. You can do this in
either of two ways:
v In the Relationships Browser, select a loaded element and then select Editions

from the pop-up menu. This opens a UML Designer Editions Browser from
which you can select the edition you want to load.

v In the Relationships Browser, select a relationship (such as Requirements) and
then select Available from the pop-up menu. This opens a browser from which
you can select the element and edition you want to load.

Note: You should always use the UML Designer Editions Browser or Hierarchical
Change Browser (rather than the standard ENVY browsers) to browse and
load editions of model elements. These browsers are designed to display
model elements. See “Using the UML Designer browsers” on page 57 for
more information.

Crash recovery
To recover from a crash, restart your image. If you have made changes to your
model more recently than the last time you saved your image, load the latest
edition of the model application. Loading the model automatically loads the
released child elements as well.

Composite objects
Certain types of elements, called composite objects, are stored within their parents,
limiting the ways in which they can be browsed and loaded. The following
elements, all part of message specifications, are composite objects:
v Parameter
v Parameter text
v Return value
v Return value text
v Attribute

56 VisualAge Smalltalk: UML Designer User’s Guide

Because these elements are embedded within their parents, you cannot browse
editions for them individually. To see the changes of a composite object, browse its
parent object (a message specification). When you browse a message specification,
its composite relationships are expanded and displayed inline so you can see the
contents of these objects.

You can use the Hierarchical Change Browser to selectively load different editions
of composite objects individually. See “Hierarchical Change Browser” on page 58
for more information.

Team development
Ownership of UML Designer components is at the model level. Therefore, it is not
currently possible to share ownership of a model (that is, all elements of a model
have the same owner). In order for multiple developers to work on the same
project, you must use one or both of the following strategies:
v Separate the project into multiple models, using prerequisites to provide

appropriate visibility among them.
v Have each developer work on a separate edition of the model, reconciling the

differences between the editions later. (The Hierarchical Change browser can
help you do this.)

Using the UML Designer browsers
UML Designer provides two new browsers intended to help you manage version
control of your models: a modified Edition Browser, and the Hierarchical Change
Browser.

Edition Browser
The UML Designer Edition Browser enables you to see the available editions of a
selected model element, along with summary information about each. You can use
this browser to load a different edition of a model element.

To open the Edition Browser, select a model element in the Relationships Browser
and then select Editions from the pop-up menu.

Chapter 6. Configuration management and version control 57

The top pane of the Editions Browser shows a list of the available editions and
versions of the selected model element. An asterisk (*) indicates the currently
loaded edition.

The bottom pane of the Editions Browser shows information about the edition
currently selected in the top pane. This information includes:
v Name
v Parent
v Links to other elements
v Contents

Browser options
You can use several browser options to control the information that appears in the
Edition Browser.
v Select Versions Only to include only named versions (no editions) in the

browser.
v Use Detailed Text to control how much information the browser shows about

the element’s links to other elements:
– If Detailed Text is selected, the browser lists each link separately, including

the type of relationship and the name of the linked element.
– If Detailed Text is not selected, the browser lists only the number of links of

each type.
v Use Max Editions to control how many editions the browser should show

(starting with the most recent and working backward). For an element with a
large number of older editions, this option can help to speed up library access,
particularly if Detailed Text is selected.

Hierarchical Change Browser
The Hierarchical Change Browser is a specialized UML Designer browser you can
use to compare and reconcile the differences between editions of an element. This
browser is particularly useful in a situation where different developers have been
working on different editions of the same model, and you now want to merge the
editions together into a single consistent edition.

To open the Hierarchical Change Browser, select an element in the Relationships
Browser and then do one of the following:
v Select Browse Changes→Previous Edition to compare the currently loaded

edition with the previous edition.
v Select Browse Changes→Another Edition to compare the currently loaded

edition with any other edition. You will be prompted to select the edition to
compare to.

58 VisualAge Smalltalk: UML Designer User’s Guide

The top left pane of the Hierarchical Change Browser shows which two editions
are being compared.

The top right pane of the browser lists, in a hierarchical tree view, all of the
elements that differ between the two editions being compared. The hierarchical
view arranges the elements according to their parent-child relationships (for
example, message specifications appear below the protocol they belong to).

Any element that changed between the two editions being compared appears in
the list. This change can either be a change in the element’s own contents, or a
change in the contents of a subelement it contains. For example, if the text of a use
case has changed, the use case appears in the list with the text listed below it.

Browsing and reconciling differences
When you select an element from the list, the bottom two panes of the browser
compare the contents of the two editions. The bottom left pane lists the contents of
the current edition; the bottom right pane lists the contents of the alternate edition.
These contents include the element’s links to other elements (including contained
elements); for a text element, the browser also shows the actual text so you can
compare the changes. Use the scroll bars to scroll through the lists.

To find differences between the two editions, click on the Next Difference button.
Each time you click on Next Difference, the browser highlights the next location
where the contents of the two panes differ. This can be an element that appears in
one edition and not in the other, or an element that has changed between the two
editions.

In order to reconcile two editions, for each difference you must decide which of
the editions you prefer. If you want to stay with the currently loaded edition, you
do not need to do anything; however, you might want to click on Remove From
List to hide the highlighted entries (this does not change anything in the actual
elements, but it helps to reduce clutter in the browser).

If you want to switch to the alternate edition, click on Load Alternative. This
changes the currently loaded edition so it matches the alternate edition (with
respect to the selected difference).

Chapter 6. Configuration management and version control 59

60 VisualAge Smalltalk: UML Designer User’s Guide

Chapter 7. Importing and exporting models

Object Extender import/export
The VisualAge Object Extender feature provides tools you can use to model, map,
and generate classes for persistent application objects. UML Designer can import
model information from, or export it to, Object Extender models. (Similarly, Object
Extender can import from or export to UML Designer models; see the VisualAge
Smalltalk ObjectExtender User’s Guide and Reference for more information.)

When you import model information from Object Extender, UML Designer
converts each selected model class into a protocol and a conforming class design,
using the same name as the Object Extender model class. If there is an associated
Smalltalk class generated from Object Extender, that class will also be linked as the
real implementing class of the class design.

For each attribute in the model class, UML Designer creates an attribute in the
generated protocol. If the attribute is marked as a required value in the model
class, UML Designer uses the Key Attribute idiom for the generated attribute.

In the generated class designs and protocols, UML Designer maintains any
inheritance relationships among the Object Extender model classes. If the model
class has no parent model class, the generated UML Designer class design and
protocol are children of the Object Extender default persistent class root
(configured in the Object Extender Model Browser’s generation options). The
Object Extender Base model, which contains class designs and protocols for the
most important Object Extender root classes, is automatically set as a prerequisite
for any model containing elements imported from Object Extender.

UML Designer also preserves any associations among the imported model classes,
provided both source and target of each association are being imported.

Importing model elements from Object Extender
To import model elements from Object Extender into a UML Designer model,
follow these steps:
1. In the Relationships Browser, select the model you want to contain the

imported elements. (Create a new model if necessary.)
2. Select Transforms→Import From Object Extender from the pop-up menu.

A prompter appears listing the available Object Extender models.
3. Select the Object Extender model that contains the model classes you want to

import. Then select OK.
4. When prompted, select the Object Extender model classes you want to import.

(Remember that if you want to preserve associations between classes, you must
import both the source and destination classes). Then select OK.

After the import operation completes, the target UML Designer model contains a
class design and a protocol for each selected Object Extender model class. You can
now use these elements in your model as with any other UML Designer elements.

Exporting model elements to Object Extender
To export class designs to Object Extender, follow these steps:

© Copyright IBM Corp. 1997, 2000 61

1. In the Relationships Browser, select the model containing the class designs you
want to export.

2. Select Transforms→Export To Object Extender from the pop-up menu.
A prompter appears listing the available Object Extender models.

3. If you want the exported model classes to be placed in an existing model, select
the target model and then select OK.
If you want to create a new Object Extender model for the exported model
classes, select <New> and then select OK. You can then specify the name of the
new model.

4. When prompted, select the UML Designer class designs you want to export.
(Remember that if you want to preserve associations between classes, you must
export both the source and destination classes.) Then select OK.

After the export operation completes, the target Object Extender model contains a
model class for each exported UML Designer class design. See the VisualAge
Smalltalk ObjectExtender User’s Guide and Reference for more information about
model classes imported from UML Designer.

XMI import/export
XMI (XML Metadata Interchange) is an open standard for exchanging object
programming and design information between application development tools and
repositories. Based on XML (Extensible Markup Language), XMI provides an
industry-standard format for sharing design information based on UML modeling
definitions. UML Designer can import model information from, or export it to,
XMI file streams.

The UML Designer XMI support uses XMI Version 1.0, which is based on the UML
1.1 metamodel. To view the UML 1.1 XMI Document Type Definition, inspect the
following Smalltalk expression in a workspace:XmiUmldImport dtdSource.

Not all XMI modeling elements are supported by UML Designer. The following
table shows which UML Designer elements can be imported from, or exported to,
XMI streams; it also shows how the UML Designer elements are mapped to
corresponding XMI elements. (A complete XMI stream will include additional
tagging; these are only the primary elements.)

UML Designer model element XMI element tag (primary only)

Model Model_Management.Model

Group Model_Management.Package

Class Design Foundation.Core.Class

Protocol Foundation.Core.Interface

Foundation.Core.DataType

Foundation.Data_Types.Enumeration

Foundation.Data_Types.Primitive

Message Foundation.Core.Operation

Parameter Foundation.Core.Parameter

Return Value Foundation.Core.Parameter

Attribute Foundation.Core.Attribute

Association Foundation.Core.Association

62 VisualAge Smalltalk: UML Designer User’s Guide

UML Designer model element XMI element tag (primary only)

Inheritance Foundation.Core.Generalization

Group Membership Model_Management.ElementReference

Actor Behavioral_Elements.Use_Cases.Actor

Use Case Behavioral_Elements.Use_Cases.UseCase

Stereotype Foundation.Extension_Mechanisms.Stereotype

Related Text Foundation.Extension_Mechanisms.TaggedValue
(with tag = 'documentation')

Exporting from UML Designer to XMI
To export UML Designer model elements to an XMI file, follow these steps:
1. In any UML Designer browser, select the source model.
2. Select Import/Export Tools→XMI export from the pop-up menu. (This option is

also available from the Source menu of the Relationships Browser, or the
Element menu of the Hierarchy Browser.)

3. When prompted, specify the location and file name for the exported XMI file.
4. Select Save to save the XMI file.

Importing from XMI to UML Designer
To import elements from an XMI file into a UML Designer model, follow these
steps:
1. Select Import/Export Tools→XMI import (new model) from the pop-up menu.

(This option is also available from the Source menu of the Relationships
Browser, or the Element menu of the Hierarchy Browser.)

2. When prompted, select the file containing the XMI stream you want to import.
3. When prompted, specify the name, namespace prefix, and application name of

the new UML Designer model that will contain the imported elements.
4. Select OK to begin the import operation. Importing might take several minutes

for a large model.

Note: An XMI stream can contain multiple model elements of the same type and
name, but in different namespaces. However, UML Designer has only one
namespace for each model. To resolve name conflicts, UML Designer
appends a unique suffix to any conflicting element name. The suffix is
automatically generated based on the model’s namespace prefix and a
number.

Chapter 7. Importing and exporting models 63

64 VisualAge Smalltalk: UML Designer User’s Guide

Part 3. Building models with UML Designer

© Copyright IBM Corp. 1997, 2000 65

66 VisualAge Smalltalk: UML Designer User’s Guide

Chapter 8. Capturing requirements

The first step in a “forward” development process is to capture the requirements
for the system being developed. (For more information about requirements, see
“Requirement” on page 8. For our example, we want to build a library catalog
system. Our users describe the system they want as follows:

The system must maintain a catalog of the available books in the library. Books must be
separately indexed by title, author, and Dewey Decimal System number. The system must
support registering newly acquired books and catalog queries to find existing books.

Based on this description (and perhaps conversations with users), we can then
begin to derive a list of discrete requirements for the system, and we can use UML
Designer to capture them.

Starting a new model
To start working in UML Designer, select Relationships Browser from the UML
Designer menu in the Transcript window. The Relationships Browser opens.

The Relationships Browser shows the available models, the design elements in
each model, and the relationships that exist among them. From here, you can
create new design elements, browse and modify their relationships, and launch the
other UML Designer browsers and editors. (For more information about the
Relationships Browser, see “The Relationships Browser” on page 27.)

When you first install UML Designer, three models are automatically included:
v Kernel Model includes design elements for some implementation-independent

common data types.
v Kernel Model—Java Examples includes design elements for Java data types.
v Kernel Model—Smalltalk Examples includes design elements for Smalltalk data

types.

Since you’re likely to need some of the basic data types in any system you design,
UML Designer, by default, makes the Kernel Model and Kernel Model—Smalltalk
Examples prerequisites for any models you create. (If you want to use Java data
types, you will need to manually add Kernel Model—Java Examples as a
prerequisite.) This means that the basic Smalltalk classes in the Kernel models are
automatically visible from any other model.

To begin modeling a new system, you must first create a new model in the
Relationships Browser:
1. Select Create Model from the Source menu, or from the pop-up menu in the

leftmost pane in the Relationships Browser.
2. When prompted, specify the following information about the new model:
v The specification name of the model. This can be any name you want to use

to identify the model. Our example will be a system to catalog library books,
so type Library Catalog.

v The namespace prefix for the model. This is an arbitrary string that will be
used as a prefix to uniquely identify the model and its elements in the

© Copyright IBM Corp. 1997, 2000 67

Smalltalk repository. You can accept the default value for this prefix, or you
can add your initials or some other unique identifier if you share the same
repository with other users.

v The Smalltalk application name for the model. This is the name that will be
used for the application containing the model elements. You will not
normally need to access this application directly, so in most cases you can
accept the default application name, which is the model name appended to
the namespace prefix.

3. Select OK. The new model appears in the list in the Relationships Browser.

Adding Requirement elements
By looking at the above description from our users, we might derive the following
individual requirements for the system:
v Keep a catalog of available books
v Index books by title, author, and Dewey number
v Support catalog queries

To add these requirements to the model, follow these steps:
1. Select Library Catalog from the list of models in the leftmost pane of the

Relationships Browser. The middle pane shows a list of possible relationships
to model elements the model might contain.

2. In the middle pane, select Requirements. The rightmost pane shows a list of
requirements already defined for the model; since we haven’t created any yet,
the list is empty.

3. Select New from the Relationships menu, or from the pop-up menu for the
selected relationship.

4. When prompted for the requirement name, type Keep a catalog of available books.

5. Select OK. The new requirement appears in the list.
6. Repeat the same process to add the other two requirements listed above.

After you have added all three requirements to the list, you can provide additional
descriptive text for each requirement. To do this, select the requirement you want
to describe, and then use the bottom text pane of the Relationships Browser to type
the requirement text. This text pane can contain any kind of description you want
to capture for the requirement; it can also contain hypertext links to other model
elements. Our example’s requirements are fairly straightforward and probably do
not need much more explanation at this stage. Instead, let’s move on to use cases.

68 VisualAge Smalltalk: UML Designer User’s Guide

Chapter 9. Writing and analyzing use cases

Once you have captured your initial requirements, you can write use cases for the
system, using Use Case elements to record them. For more information about use
cases, see “Use case” on page 8.

Adding Use Case elements
Based on the requirements for the library catalog system, we can identify three use
cases, each describing a particular user task:
v Adding a new book to the catalog
v Removing a book from the catalog
v Querying the catalog to find a book

To add these use cases to the Library Catalog model, follow these steps:
1. Select Use Cases in the middle pane of the Relationships Browser.
2. Select New from the Relationships menu, or from the pop-up menu in the

middle pane.
3. Type Adding a new book to the catalog.

4. Select OK. The new use case appears in the list in the rightmost pane.
5. Repeat the same procedure to add the other two use cases listed above.

A use case requires a carefully written description, rather than just a brief title. We
must now use the hypertext pane (at the bottom of the Relationships Browser) to
add detail to each use case. To edit the text of a use case, select the use case from
the list and type the text in the hypertext pane. You can use the hypertext pane’s
pop-up menu to save the text, just as in any Smalltalk browser.

Add the following text to the first use case, Adding a new book to the catalog:

A new book arrives at the library, and a librarian creates a new catalog entry with the
book’s author, title, and Dewey number. The catalog entry is then assigned a serial number
and registered in the catalog. The catalog uses the book’s Dewey number to print a
bookplate and spine label for the book.

When you have finished, save the text by selecting Save from the pop-up menu or
pressing Ctrl+S.

Optionally, you can add descriptive text for the other use cases you created. These
aren’t necessary for the rest of the example, because we will focus on the Adding a
new book use case.

Making links between elements
Use cases can be related to requirements. They elaborate upon what the
requirements entail, and in some cases they can uncover additional requirements.
Each use case satisfies one or more requirements; if a use case does not satisfy any
requirement, either a new requirement should be added, or the use case is outside
the scope of the system and should be dropped.

© Copyright IBM Corp. 1997, 2000 69

In UML Designer, you can create links between model elements in order to show
this “satisfies” relationship, as well as other relationships. Such links contribute to
traceability. Traceability is the ability to move between elements at different levels
of abstraction. For example, you can track which use cases satisfy each
requirement, or which requirements are satisfied by each use case. This traceability
helps to clarify why the elements in the model are what they are and how they
became that way.

Adding a ″satisfies ″ link
To add a “satisfies” link between a use case and a requirement, follow these steps:
1. Select Use Cases in the middle pane of the Relationships Browser.
2. Select Adding a new book to the catalog from the list.
3. Select Link→Satisfied Requirements from the pop-up menu of the use case. A

window appears listing the available requirements.
4. Select Keep a catalog of available books from the list.
5. Select >> to add the selected requirement to the list of linked requirements.
6. Select OK.

To see the effect of this link, double-click on Adding a new book to the catalog in
order to open a browser on that requirement. In the middle pane of the browser,
select the Satisfied Requirements relationship. You should see a list including Keep
a catalog of available books.

Optionally, you can add “satisfies” links from the other use cases you created.

Analyzing a use case
Once you have a use case description, you can analyze the use case to begin
identifying some of the elements that will play a part in the system. One way to
start is to look for all of the nouns in the use case description to see which ones
seem to refer to important elements of the system. Each time you find an
important idea in the use case, you can classify it as one of the following design
elements (see “Requirements model elements” on page 8 for more information on
these elements):
v An actor outside the system.
v A thing within the system (also called a domain object).
v A concept that needs to be recorded, but might not be a thing.
v Another related use case. There are two kinds of relationships that use cases can

have with one another:
– A use case can use another use case, represented by a simple “associated

with” relationship.
– A use case can extend another use case, represented by an “extends”

relationship.

Now, let’s take a look at the text of the Adding a book use case to see what other
design elements it refers to.

70 VisualAge Smalltalk: UML Designer User’s Guide

Identifying actors
The action of the Adding a book use case is initiated by a librarian, a human user.
This is a person who actually enters the information for a new book and initiates
the cataloging operation. Because the librarian exists outside the system and
provides the stimulus setting the use case in motion, the librarian is an actor. We
can now create an Actor element in the Library Catalog model to represent the
librarian.

Adding an Actor element
To create a new actor, follow these steps:
1. Select Actors in the middle pane of the Relationships Browser.
2. Select New from the Relationships menu, or from the pop-up menu of the

relationship.
3. When prompted for the name of the actor, type Librarian.
4. Select OK. The new actor appears in the list in the rightmost pane.

Adding a hypertext link
Since we have created an Actor element to represent the librarian, we can now
indicate the relationship between this actor and the use case in which it
participates. One way to do this is with a hypertext link in the use case
description.

To insert a hypertext link for the Librarian actor, follow these steps:
1. Select Use Cases in the middle pane of the Relationships Browser.
2. Select Adding a new book to the catalog from the list of use cases.
3. In the text pane, select the word librarian in the use case description. (You can

do this with the keyboard, by swiping the mouse, or by double-clicking on the
word.)

4. Select Insert Link→Reference from the pop-up menu of the text pane. A
window appears showing the different kinds of objects you can link to.

5. In this case, the object we want to link to is an actor, so select Actor from the
list. A list of available actors appears; at this point, we have only created one
actor, Librarian, so no other choices appear.

6. Select Librarian and then select OK.
7. A window now appears verifying the label for this actor you want to appear in

the text of the use case (the label of a link can be different from the name of the
destination element). If you wanted to change the wording of the reference to
the librarian in the use case description, you could change it here; for now,
select OK to accept the default.

An actor icon appears beside the word librarian to indicate the existence of a link
to an actor in the model. You can follow this hypertext link by double-clicking on
the linked word. This opens a browser on the Librarian actor.

Chapter 9. Writing and analyzing use cases 71

Identifying things and responsibilities
The object model of an OO system usually has a strong correspondence to the
actual real-world entities of the domain: for each domain entity (whether physical
or intangible), there is generally one or more corresponding implementation
objects. This “natural” model helps to make the system understandable, and it also
means that changes to the problem domain map well to changes in the software.

To choose the correct objects for the system, you need to identify the required
behavior of the objects. With UML Designer, you do this by creating things
(domain objects) and assigning responsibilities to them.

In the Adding a new book use case, there are several terms that refer to entities that
exist within the system (unlike the librarian, who is outside the system):
v library
v catalog entry
v catalog

These are candidates to become objects in the implemented system. We can now
create Thing elements in the Library Catalog model to represent each of these.

Adding (and linking to) a new Thing element
In the actor example above, we manually created a new Actor element for Librarian
and then separately created a hypertext link to it. This time, let’s let the system do
some of the work for us; we can simultaneously create a new element and a
hypertext link to it. To do this, follow these steps:
1. Select Use Cases in the middle pane of the Relationships Browser.
2. Select Adding a new book to the catalog from the list of use cases.
3. In the use case text, select the word library.
4. Select Insert Link→Reference from the pop-up menu in the text pane. A

window appears listing the different kinds of objects you can link to.
5. We want to link to a thing, so select Thing from the list. You can accept the

default name Library, which is derived from the selected text in the use case.
6. Select New, indicating that we want to create a new element.
7. Select OK to confirm the text label for the link.
8. Repeat the same process for catalog entry and catalog.

For each hypertext link, a Thing icon appears along the linked text in the use
case description indicating the link to a Thing element. If you select Things in the
middle pane of the Relationships Browser, you should see Catalog, Catalog entry,
and Library listed.

Identifying responsibilities
The next step is to identify the responsibilities of the domain objects. At this stage,
it can also be helpful to use “computer-free” techniques such as CRC cards to
identify responsibilities, entering the results as new responsibility elements. (CRC
cards—“Class-Responsibility-Collaboration” cards—are a technique developed by
Ward Cunningham and Kent Beck using index cards to represent candidate objects
in a system and elucidate their collaborations.)

To find responsibilities, go through the text of a use case and identify what the
things and actors must do. You can then assign each responsibility to the

72 VisualAge Smalltalk: UML Designer User’s Guide

appropriate thing or actor. In addition, each responsibility can be linked to
collaborating participants, the other things or actors that participate in the
responsibility.

Adding responsibility elements
Consider Catalog, which we have identified as a thing in the library catalog
example. Based on our use cases, Catalog (which we have identified as a thing)
might have the following responsibilities:
v Add catalog entry
v Assign accession number to entry
v Find entry by search criteria
v Remove catalog entry

To add these responsibilities of Catalog to the model, follow these steps:
1. Select Things in the middle pane of the Relationships Browser.
2. Select Catalog from the list of things.
3. Select New→Responsibility from the pop-up menu of Catalog. A window

appears prompting you for the details of the new responsibility.
4. Type Add catalog entry and select OK.
5. For Idiom, accept the default (Action). This responsibility describes something

Catalog does.
Don’t worry about participants for now; we will deal with those shortly.

6. Repeat the same procedure for the other responsibilities listed above.

Similarly, you can create responsibilities for actors by following the same steps.
Select the actor Librarian and add the following responsibilities:
v Input new catalog entry
v Classify book and assign Dewey number
v Query catalog using search criteria
v Remove existing catalog entry

Note: Because Actor elements are not transformed into protocols, actor
responsibilities do not have idioms.

Using another idiom
All of the responsibilities we have added for Catalog have been simple “action”
responsibilities. However, consider another Thing, Catalog Entry; it does not have
to do anything except keep track of its own attributes (author, title, and accession
number). We can define these as responsibilities using the Value idiom to give us a
head start on implementation later.

To add these responsibilities, follow these steps:
1. In the Relationships Browser, select Catalog Entry from the list of things.
2. Select New→Responsibility from the pop-up menu. A window appears

prompting you for the details of the new responsibility.
3. For Idiom, select Value. This responsibility describes something Catalog Entry

keeps.
4. In the Responsibility Namefield, type Author. (We phrase this responsibility as

a noun because it describes a value rather than an action.)
5. For Max Cardinality, select 1.

Chapter 9. Writing and analyzing use cases 73

6. Optionally, we could specify a participant defining the type of the value being
kept. At this point, though, we aren’t really interested in how the author will
be represented, so accept the default and select OK.

7. Repeat the same process for two other responsibilities, Title and Accession
Number.

Because we used the Value idiom for these responsibilities, UML Designer can
generate appropriate sets of messages when we transform Catalog Entry into a
protocol. We’ll see how this works in “Chapter 11. Protocols” on page 81.

Linking to participants
In addition to indicating the responsibilities of a thing or actor, you can also
indicate which other things or actors are collaborating participants in each
responsibility. To do this, you create a link from a defined responsibility to a thing
or actor that participates. (You can also specify participants along with idioms as
you create a new responsibility.)

In our example, three of the responsibilities of Catalog also involve catalog entries:
v Add catalog entry
v Assign accession number to entry
v Remove catalog entry

Each of these is a responsibility of Catalog, but each also involves another thing,
Catalog entry. Therefore, you can create a link from each of these responsibilities to
the Catalog entry element to indicate that it participates. To do so, follow these
steps:

1. Select Things in the middle pane of the Relationships Browser.
2. Double-click on Catalog. A browser opens on the Catalog element.
3. Select Responsibilities in the middle pane of the browser.
4. Select Add catalog entry from the list of responsibilities.
5. Select Link→Participants from the pop-up menu of the responsibility. A

window appears prompting you for the link destination.
6. A participant can be either an actor or a thing. In this case, Catalog entry is a

thing, so select Thing from the Available Types list.
7. Select Catalog entry.
8. Select >> to add Catalog entry to the list of linked participants.
9. Select OK.

10. Repeat the same process with Assign accession number to entry and Remove
catalog entry, adding Catalog entry as a participant in each responsibility.

11. Close the browser.

Identifying concepts
In addition to actors and things, there might be other important ideas described in
the use case that need to be documented. Going through the use case description,
we can identify terms that need additional explanation. As you do this, it’s
important to decide on standard terminology, in order to be sure everyone
understands the requirements the same way. Careful definition of terms can help
to overcome the imprecision and ambiguity inherent in natural language.

As a general rule, each term should refer to only one concept, and each concept
should be described by only one term. In addition, any domain-specific

74 VisualAge Smalltalk: UML Designer User’s Guide

terminology, or domain-specific usage of common terms, should be fully defined.
We can use concept elements to capture this information.

Adding a Concept element
In the Adding a new book use case, several phrases appear to be important concepts
that should be documented. For example, Dewey number is domain-specific
terminology that should be defined for the benefit of non-librarians. A description
can also help us understand how we need to represent it in the system.

The Dewey number is an attribute of a catalog entry, so it’s probably not a thing in
its own right; therefore, we’ll use a Concept element to define it. To do this, follow
these steps:
1. Select Use Cases in the middle pane of the Relationships Browser.
2. Select Adding a new book in the list of use cases.
3. Select the phrase Dewey number in the hypertext pane.
4. Create a hypertext reference link from the phrase to a new Concept element.

(Use the same process you used to create the links above, but select Concept as
the kind of object to link to.)

5. In the text pane for the new Dewey number concept element, type a description
of a Dewey number:
A Dewey number is a numerical classification identifying a book’s subject matter.

Another phrase that looks like a good candidate for a Concept element is serial
number. Like the Dewey number, the serial number is an attribute of a catalog
entry, so it is probably not a thing; however, it’s an important concept that
probably should be recorded. But suppose that, in trying to define serial number,
we find that our use case does not reflect correct terminology?

Revising description text
As you find out more about the problem domain, you will probably find that some
parts of your use cases or requirements are vague or inaccurate or do not reflect
the correct terminology. UML Designer accommodates this situation; you can
rename model elements and revise their contents while still preserving any links
between them. Furthermore, because all models are stored in the Smalltalk
repository, you can always return to a previous version.

For example, we might find out that librarians assign a new book an accession
number rather than a serial number. We now need to update our Adding a new book
use case, replacing the phrase “serial number” with “accession number”. The new
use case description should read:

A new book arrives at the library, and a librarian creates a new catalog entry with the
book’s author, title, and Dewey number. The catalog entry is then assigned an accession
number and registered in the catalog. The catalog uses the book’s Dewey number to print a
bookplate and spine label for the book.

Edit the use case text to use the correct terminology and then save the new text.
After you save it, select Text Editions from the pop-up menu in the hypertext
pane. A browser opens showing all of the saved editions of the text of this use
case; if you change your mind, you can always reload an older edition.

Chapter 9. Writing and analyzing use cases 75

76 VisualAge Smalltalk: UML Designer User’s Guide

Chapter 10. Use case diagrams

Once you have developed use cases and identified actors, you can create use case
diagrams to graphically depict your actors and use cases and the relationships
between them. The UML Designer Use Case Diagrammer helps you build
UML-compliant use case diagrams based upon the underlying model elements you
have defined.

Creating a use case diagram
To create a new use case diagram for the library catalog system, follow these steps:
1. Select Use Case Diagrams in the middle pane of the Relationships Browser.
2. Select New from the pop-up menu of the relationship.
3. When prompted for the name of the diagram, type Library catalog and then

select OK. The new diagram appears in the list in the rightmost pane.
4. Double-click on Library catalog in the list of use case diagrams to open the Use

Case Diagrammer.

Adding a system figure
The first step in building a use case diagram is to add a figure representing the
boundaries of the library catalog system. This boundary separates the use cases
(which are essentially part of the system) from the actors (which are outside the
system).

To add a new figure to the diagram, you first create the figure and then attach it to
an underlying model element. A system figure must be attached to a group
element, which we have not created; in this case, therefore, we will be adding a
node figure and creating an underlying model element simultaneously.

To add a system figure, follow these steps:

1. Select System from the tool bar.
2. Use mouse button 1 to place the icon in an empty area of the drawing surface.
When first added to the drawing surface, the icon is labeled with a question mark.
This indicates that it is not yet associated with an underlying model element. All
elements in UML Designer diagrams must be associated with underlying models.

3. Click mouse button 2 on the icon to display its pop-up menu.
4. Select Attach from the pop-up menu. A window appears showing the available

groups to attach to the system figure.
A group is an organizational element you can use to collect related model
elements together. In a use case diagram, a group is the underlying model
element for the system figure, which is essentially a grouping of related use
cases.

© Copyright IBM Corp. 1997, 2000 77

5. Because no groups yet exist in the library catalog model, type Library Catalog in
the Specify New Item field and then select New.

The system figure is now attached to the new group, and the label Library Catalog
appears in the diagram.

Adding a use case figure
The next step is to add a use case figure to the diagram. Because we have already
created several use cases, this time we only need to add a figure, which we can
then attach to an existing model element.

1. Select Use Case from the tool bar.
2. Click mouse button 1 to place the figure within the system figure.

Because it is not yet associated with an actual use case, the use case figure is
labeled with a question mark.

3. Select Attach from the pop-up menu of the use case figure. A window appears
listing the available use cases in the model.

4. Select Adding a new book to the catalog from the list.
5. Select OK.

The use case figure is now attached to the underlying use case and is labeled
appropriately.

Adding an actor figure
The next step is to show the link between the use case and an actor. For the use
case figure, we manually added the figure and then attached it to the underlying
element. This time, we’ll have UML Designer do some of the work for us:
1. Select the Adding a new book use case figure.
2. Select Hide/Show Relationships from the pop-up menu of the use case figure.

A window appears listing links for existing relationships involving the use case,
followed by any identified candidate links (candidate links are indicated by a
preceding +).
In this case, UML Designer has identified a candidate link between the Adding
a book use case and the Librarian actor. This link is suggested because of the
reference to Librarian (and the accompanying hypertext link) in the description
of the use case.

78 VisualAge Smalltalk: UML Designer User’s Guide

3. Select +(self >- (Associated With) -> Librarian <Actor>) from the Hidden
Relationships list.

4. Select >> to add the link to the Shown Relationships list. This creates an
explicit “associated with” link and indicates that you want the relationship to
be represented in the diagram.

5. Select OK.
6. A window appears prompting you to confirm the direction of the association.

Select Yes to confirm the default (from the actor to the use case).
7. An Actor figure attached to Librarian appears on the drawing surface. You can

now move this figure in order to rearrange the diagram any way you like.

Other ways to create relationships
There are two other ways you can create an explicit link between a use case and an
actor, or between two use cases:
v You can create an explicit “associated with” relationship in the Relationships

Browser. These links are independent of any hypertext links that might exist
between the elements and must be created as a separate step.
When you create an explicit relationship in the Relationships Browser, it is listed
as an existing relationship in the Use Case Diagrammer. However, it will still not
appear in the diagram unless you make it visible using Hide/Show
Relationships on the pop-up menu.

v You can add figures for the elements to the diagram, and then use

Association or Extension (depending upon the kind of link) to connect
them. Creating a visible association in a use case diagram automatically creates
an association between the underlying model elements.

Deleting figures
Because a diagram and its underlying model exist independently, it is possible to
delete a figure from the diagram without removing the attached element from the
model.

For example, we might decide we do not want the diagram to show the link
between the Librarian actor and the Adding a new book use case. To remove the link
figure without removing the actual link between the elements, follow these steps:
1. Select the link figure connecting the Librarian figure to the Adding a new book

figure.
2. Select Delete Figure from the link figure’s pop-up menu.

Chapter 10. Use case diagrams 79

To confirm that the link still exists (even though it is no longer shown), select
Hide/Show Relationships from the Librarian figure’s pop-up menu. You should
still see the link listed as an existing relationship. (To restore the figure to the
diagram, use the >> button to add it back to the list of shown relationships.)

80 VisualAge Smalltalk: UML Designer User’s Guide

Chapter 11. Protocols

By now we have developed a fairly good idea of the requirements of our system,
at least good enough for a first pass. We understand what use cases it must
support, we’ve identified the actors and things, and we know what their
responsibilities are. The next step is to begin analysis of the system, in order to
start figuring out how we will satisfy these requirements.

At this point, your first instinct might be to begin writing code, implementing
things as objects and responsibilities as methods. A better approach, however, is to
more closely examine the responsibilities of the things in the system in order to
understand how they work together. We can do this through the use of protocols.
(In fact, you can often do both: go ahead and sketch out some classes, but then
come back to analysis and use protocols to make sure the design is watertight.)

Rigorous use of protocols guarantees substitutability: any class conforming to a
given protocol (or to one refining that protocol) can be substituted for any other
class conforming to that same protocol. If a class conforms to the expected
protocol, type mismatches cannot happen. In Smalltalk terms, this means never
getting a doesNotUnderstand message.

Protocols and things
A reasonable initial assumption in modeling is that there will be one protocol (and
therefore one type) for each defined thing. In this simple mapping, the
responsibilities of the thing become message specifications in the protocol, defined
with more detail and more precision. This one-to-one mapping does not always
hold true, but it’s a good place to start.

Protocols provide an intermediate step in the complex transformation of
requirements into implementation code. Protocols themselves are not code, but are
abstract interface specifications that can be transformed into an OO
implementation in a fairly straightforward manner.

Generating a protocol
Once you have defined a thing and its responsibilities, you can use them to
automatically generate a protocol. When generating a protocol, UML Designer
assumes the default mapping of one message specification for each responsibility,
and it uses the names of the responsibilities to generate a default message name.
You can change this afterward if the generated message name is not satisfactory.
You can also make other manual changes, like adding message specifications,
splitting a protocol into two, or merging two protocols into one.

We’ve defined several responsibilities for the thing Catalog, so we can now
generate a protocol that implements the thing. To generate a protocol for Catalog,
follow these steps:
1. Select Things in the middle pane of the Relationships Browser.
2. Select Catalog from the list of things.
3. Select Transforms→Generate Protocol from the pop-up menu of Catalog.
4. In the window that appears, select Catalog from the Protocol Names list.

© Copyright IBM Corp. 1997, 2000 81

5. You can specify several options that affect the generated protocol:
v If you select Delete Existing Messages, the messages in an existing protocol

will be deleted before the new messages are generated. (This option is
available only if you are regenerating an existing protocol.)

v If you select Overwrite Existing Messages, the messages in an existing
protocol will be overwritten, but you can still reload them if you want to get
them back. (This option is available only if you are regenerating an existing
protocol.)

v If you select Generate Associations, UML Designer will create associations
between the generated messages and the responsibilities they implement.
(This option is selected by default.)

v If you select Generate Messages, UML Designer will generate messages in
the protocol. Otherwise, the generated protocol is empty. (This option is
selected by default.)

For our example, accept the default options and select OK to generate the
protocol.

Message specifications
To take a look at the protocol we just generated, select Protocols in the middle
pane of the Relationships Browser and then double-click on <Catalog>. A browser
opens from which we can explore the <Catalog> protocol.

In the new browser, select Messages in the middle pane. In the rightmost pane,
you should see a list of the message specifications that were automatically
generated for the protocol, based upon the responsibilities we defined earlier. UML
Designer uses a straightforward transformation to convert responsibility names
into message names that could eventually become Smalltalk or Java method
names. If the generated message names are not satisfactory, you can change them.

For the <Catalog> protocol, the following message specifications were automatically
generated from the responsibilities of the Catalog thing:

Responsibility Generated message specification

Add catalog entry #addCatalogEntry:

Assign accession number to entry
#assignAccessionNumberToEntry:

Find entry by search criteria #findEntryBySearchCriteria

Remove catalog entry #removeCatalogEntry:

Note that some of the generated message specifications end in colons, indicating
that they take parameters. This is because the corresponding responsibilities each
has a collaborating participant defined. To see more information about parameters,
double-click on #addCatalogEntry:. A browser opens on the #addCatalogEntry:
message specification, showing additional details of the message specification.

Select Parameters in the middle pane of the browser. In the rightmost pane, you
should see a single parameter listed: aCatalogEntry. This parameter was
automatically generated because the Add catalog entry responsibility had a link to
Catalog entry as a collaborating participant. Because of this relationship, UML
Designer assumes that an object representing the participating Catalog entry thing
will have to be passed to the method implementing the Add catalog entry
responsibility.

82 VisualAge Smalltalk: UML Designer User’s Guide

The type of a parameter must be defined by a protocol, and at this stage we have
not defined a protocol for Catalog entry. Therefore, the parameters of the generated
message specifications all have the default type <Object>, even though the
generated parameter names (such as aCatalogEntry) might suggest a different type.
Later, after you have generated protocols for all of the things in your design, you
can change the parameters of the message specifications to the correct types.

Generating using idioms
For another Thing element, Catalog Entry, we defined several responsibilities using
the Value idiom. Let’s see how these responsibilities become protocol messages:
1. Generate a protocol for Catalog Entry using the same procedure you used for

Catalog (select Transform→Generate Protocol and accept the default options).
2. After you generate the protocol, select Protocols from the list of relationships

and then select the new protocol, <CatalogEntry>.
3. Double-click on <CatalogEntry> to open a browser on the protocol.
4. In the middle pane of the new browser, select Messages. You should see a list

of messages defined in the protocol:
v accessionNumber

v accessionNumber:

v author

v author:

v title

v title:

These messages are the getters and setters for the values kept by the catalog
entry. UML Designer automatically generated these messages based on the
three responsibilities we specified for the CatalogEntry Thing.

5. In the middle pane of the browser, select Attributes. You should see a list of
attributes defined in the protocol:
v accessionNumber

v author

v title

These attributes represent the values kept by the catalog entry. UML Designer
also generated these attributes based on the three responsibilities we specified
for the CatalogEntry Thing.

Changing parameter and attribute types
When we defined the responsibilities of Catalog Entry, we didn’t specify any
participants. We can now make changes to the generated messages to specify the
appropriate types for the messages and attributes.

This time, let’s use the Path Browser, which will allow us to see everything we
need in one browser. The Path Browser shows the successive navigation of not just
one relationship, but of up to four relationships, starting from the selected source
element. With the Path Browser, therefore, we can browse a protocol, its message
specifications, the parameters of a selected message, and the type of a selected
parameter all in the same browser. (See “The Path Browser” on page 30 for more
information about the Path Browser.)

Chapter 11. Protocols 83

Opening the Path Browser
To open the Path Browser on the <CatalogEntry> protocol, follow these steps:
1. In the Relationships Browser, select Protocols in the middle pane.
2. Select <CatalogEntry> in the list of protocols.
3. Select Open With→Path Browser from the pop-up menu of <CatalogEntry>.

The leftmost pane of the Path Browser shows the starting point of the navigation
(the <CatalogEntry> protocol). Each successive pane shows a navigation from the
previous pane, as indicated by the selection in the drop-down list. The default
navigation for a protocol, Contents, appears in the second pane.

We can now use the Path Browser to browse the attributes and message
specifications of the <CatalogEntry> protocol, and make the changes we need to
make.

Changing attribute types
To change the types of the attributes of <CatalogEntry>, follow these steps:
1. Select #accessionNumber from the Contents pane of the Path Browser.

The next pane shows the default navigation, the types (protocols) currently
linked to the attribute. Because we did not specify any participants, the type of
#accessionNumber is defaulted to <Object>.

2. Select Link→Types from the pop-up menu of #accessionNumber.
3.

Use the << and >> buttons to add <Integer> to the Linked list and remove
<Object>. Select OK when you are finished.

4. Repeat the same process for #author and #title, specifying <String> as the type
for each.

Changing message parameter types
In addition to the attributes, the messages of <CatalogEntry> also need to be
changed to have parameters and return values of the correct types. To change the
parameter types, follow these steps:
1. Select accessionNumber: in the Contents pane of the Path Browser.

84 VisualAge Smalltalk: UML Designer User’s Guide

The default navigation for a message specification, Characterized by, appears
in the third pane. This navigation shows all of the parameters and return
values of the selected message specification. (If you wanted to see only the
input parameters, you could select the Parameters navigation in the third
pane).

2. Select anAccessionNumber in the Characterized by pane.
The default navigation for a parameter, Types, appears in the fourth pane. This
navigation shows the types (protocols) currently linked to this parameter.
Currently, the type is defaulted to <Object>.

3. Select Link→Types from the pop-up menu of anAccessionNumber. A window
appears prompting you to select which object types should be linked to the
selected parameter.

4. Use the << and >> buttons to add <Integer> to the Linked list and remove
<Object>. Select OK when you are finished.

5. Use the same procedure to change the parameter types for the other setter
methods, author: and title:. Both should take parameters of type <String>.

Changing return value types
Changing a return value type is similar to changing a parameter type. To change
the return value types for the messages of <CatalogEntry>, follow these steps:
1. Select accessionNumber: in the Contents pane of the Path Browser.
2. Select returns in the Characterized by pane. The Type pane indicates that the

return type is currently unspecified.
3. Select Link→Types from the pop-up menu of returns. A window appears

prompting you to select which object type should be linked to the selected
parameter.

4. Use the >> to add <Integer> to the Linked list. You do not need to remove
anything from the list; a return value has only one type by definition, so the
previous value is automatically removed. Select OK when you are finished.

5. Use the same procedure to change the parameter types for the other methods.
accessionNumber should return <Integer>, while the getter and setter methods
for author and title should all return <String>.

Defining a message manually
Suppose we now decide we want to add getter and setter messages to
<CatalogEntry> for storing the Dewey number. We could go back and define this as
a responsibility of the Catalog Entry Thing and regenerate the protocol, but let’s try
directly adding the responsibility to the protocol.

To add the new messages, follow these steps:
1. Select Protocols in the Relationships Browser.
2. Select <CatalogEntry> from the list of protocols.
3. Select New→Message Specification from the pop-up menu of <CatalogEntry>.
4. When prompted for the message specification, type the following (be sure to

include spaces on either side of the colon):
deweyNumber : <String>

This is the formal UML syntax declaring a message specification. It indicates a
unary message with no parameters that returns an object of type <String>. This
is the getter message for the deweyNumber attribute.

Chapter 11. Protocols 85

5. Use New→Message Specification again to add the setter message for the
deweyNumber attribute:
deweyNumber: (number: <String>): <String>

This is the UML syntax declaring a unary message taking one parameter of
type <String> and returning a <String>.

86 VisualAge Smalltalk: UML Designer User’s Guide

Chapter 12. Designing classes and building class diagrams

Our analysis so far has given us use cases, actors, things, responsibilities, and
protocols. Now we can use the model we have built to begin design. Until this
point, we have not made any assumptions about any particular implementation
technology (other than a general object-oriented approach), but it’s now time to
start mapping the model we have built to actual Smalltalk or Java classes to
implement it.

This design phase includes designing classes — in which you decide what your
classes will be and which protocols they conform to — and establishing
associations and links between them. Although you can create these relationships
nonvisually by using the Relationships Browser, it is probably easier to do so from
within the Class Diagrammer.

Opening the Class Diagrammer
To begin building a class diagram for the library catalog example, follow these
steps:
1. In the Relationships Browser, select Class Diagrams in the middle pane.
2. Select New from the pop-up menu of the relationship.
3. When prompted for the name of the new class diagram, type Library Catalog.
4. Select OK. The new Class Diagram element appears in the rightmost pane.
5. Double-click on Library Catalog in the rightmost pane. The Class Diagrammer

opens on the new diagram.

Adding a class design figure
To add a class design to the diagram, follow these steps:

1. Select Class from the tool bar.
2. Place the new figure on the drawing surface.

When first added to the drawing surface, the new figure is labeled with a
question mark. This is because it is not yet associated with any underlying
model element (in this case, a class design).

3. Click mouse button 2 on the figure to display its pop-up menu.
4. Select Attach from the pop-up menu.
5. A window appears prompting you for the class design you want to link to. The

one we want doesn’t exist yet, so instead of selecting from the list of available
class designs, type Catalog in the Specify New Item field at the bottom of the
window.

6. Select New.
7. The next window confirms the name of the new class design, and also confirms

that we want to create a real Smalltalk class in addition to the class design.
From here, you can specify the superclass and the Smalltalk application for the

© Copyright IBM Corp. 1997, 2000 87

new class; if you specify a class that already exists, UML Designer attaches the
class design to the existing class. Accept the defaults and select OK to create
the class design.

The new class design is created and attached to the figure, which is now labeled
Catalog.

When first created, the new class design figure is empty; it does not show any
methods or attributes. If the underlying Catalog class (which we just created) had
any methods or instance variables, they would appear in the class design figure. (If
you want to see the class definition, double-click on the Catalog class figure, or
select Open With→Class Browser from its pop-up menu, to open a class browser.)
In our case, however, we want to use a protocol to indicate the interface of the
Catalog class.

Establishing protocol conformance
The Catalog class is the implementation of the catalog, which we identified as a
thing earlier in our analysis. The Catalog class, therefore, will implement the
responsibilities of the catalog, which means that it will conform to the <Catalog>
protocol. (For the purpose of this discussion, the class and the class design are
effectively the same once we have linked them together.)

The <Catalog> protocol defines the interface of the catalog object in the system. The
protocol includes message specifications that define the messages the catalog object
must respond to, what types of parameters those messages require, and what types
of values they return. To conform to the <Catalog> protocol, the Catalog class must
implement an actual Smalltalk method for each of the messages specified in the
protocol. UML Designer can automatically generate the appropriate stub
implementations for these methods when protocol conformance is established.

Adding a protocol figure
To establish a conformance relationship between the Catalog class and the
<Catalog> protocol, follow these steps:

1. In the Class Diagrammer, select Protocol on the tool bar.
2. Add the Protocol figure to an empty area of the drawing surface.
3. Select Attach from the pop-up menu of the Protocol figure.
4. When prompted for the protocol to link to, select <Catalog>. Then select OK.

5. Select Conformance on the tool bar.
6. Click mouse button 1 on the Catalog class design figure to indicate that it is the

source of the relationship.
7. Click mouse button 1 on the <Catalog> protocol figure to indicate that it is the

destination of the relationship.

88 VisualAge Smalltalk: UML Designer User’s Guide

When you complete the connection, you should see methods appear in the Catalog
class design figure to show that it conforms to the <Catalog> protocol.

Now select Display Options→Method Name Only from the pop-up menu of the
Catalog class figure. This turns off the Method Name Only toggle so you can see
the complete method signatures.

The method signatures include specifications of the types of the parameters and
the return values of the methods. A plus sign (+) before a method signature
indicates that the method is specified (it is taken from the protocol the class
conforms to). Parentheses around the method name indicate that the method is
unimplemented, meaning that no real method implementation exists in the
underlying Smalltalk class.

Generating stub method implementations
At this point, although we have specified that the class design conforms to a
protocol, the actual Catalog class does not yet have real methods corresponding to
the ones in the class design. To have UML Designer generate stub
implementations, follow these steps:
1. Select Transforms→Generate Real Class from the pop-up menu of the Catalog

class figure.
2. In the window that appears, select Catalog as the name of the class to generate.
3. Select Replace Existing to indicate that we want to regenerate a class that

already exists in the image.
4. Select OK.

After the operation completes, the notation of the method signatures in the class
figure should change to indicate that the methods are now implemented.

To see the actual implementations, double-click on the Catalog class figure (or
select Open With→Class Browser from its pop-up menu) to open a class browser
on the Catalog class. You should see a new method category, generated, which
contains stub implementations of the methods specified in the <Catalog> protocol.

Chapter 12. Designing classes and building class diagrams 89

Adding more elements
We’ve now diagrammed the Catalog class and its conformance to the <Catalog>
protocol. In order to completely diagram our design as it stands, we need to add
the other classes and protocols we’ve come up with so we can show their
relationships to one another.

To add the other classes and protocols, follow these steps:

1. Select Class on the tool bar to add a second class figure to the diagram.
2. Select Attach from the pop-up menu of the new figure.
3. Attach the new figure to a new class design called Library. Specify that you

want to generate a real Smalltalk class.
4. Use the same procedure to add another class figure attached to a class design

(and Smalltalk class) called CatalogEntry.

5. Now select Protocol on the tool bar to add a second protocol figure to the
diagram.

6. Select Attach from the pop-up menu of the new figure.
7. Attach the new figure to the <CatalogEntry> protocol.

You should now have five design elements represented on the diagram:
v Catalog class
v <Catalog> protocol
v CatalogEntry class
v <CatalogEntry> protocol
v Library class

Creating associations
To complete our first pass at a class diagram, we must now connect the design
elements to one another to show the associations with one another. As you make
connections between design elements, you can move the elements around on the
drawing surface in order to keep the diagram neat and readable. The visual
arrangement of the figures in the diagram has no effect on the underlying model.

A closer look at associations
Before we add associations to our class diagram, we need to take a close look at
associations and their attributes.

The associations we’ve created up until this point (such as the connection between
the Catalog class and the <Catalog> protocol) are more correctly called links. In
UML terms, a link is an instance of an association, meaning that a semantic
relationship exists between the linked elements. A link represents an instance of
one of the types of relationships predefined by the UML and UML Designer
metamodels. Protocol conformance is an example of such a relationship; the link
between the Catalog class and the <Catalog> protocol is a specific instance of a
conformance relationship.

On the other hand, an association defines a type of relationship, but not a specific
instance of such a relationship. In other words, an association defines a possible
connection between objects in the system defined by your model, rather than being

90 VisualAge Smalltalk: UML Designer User’s Guide

part of the UML or UML Designer metamodel. Another way of looking at it is that
an association describes a possible set of links. An association has properties, such
as multiplicity, that place constraints on how it can be instantiated.

Adding associations to the diagram
To show the associations between the elements in the library catalog system, follow
these steps:

1. Use Conformance to connect the CatalogEntry class figure to the
<CatalogEntry> protocol figure. This indicates that the CatalogEntry class
conforms to the <CatalogEntry> protocol.

2. Use Association to connect the Catalog class figure (the source) to the
CatalogEntry class figure (the destination). This indicates that an association
exists between the two elements (a Catalog must keep track of CatalogEntry
objects).
When first created, an association is labeled with the default generated name,
which is based on the name of the destination element. We will change this
label later to more correctly describe the association.

3. Use Association to connect the Library class figure (the source) to the
Catalog class figure (the destination). Again, this indicates that an association
exists (in this case, a Library uses one or more Catalog objects to keep track of
its books).

4. Finally, use Dependency to connect the Catalog class figure (the source) to
the <CatalogEntry> protocol figure (the destination). This indicates that the
Catalog class figure depends upon the interface specified by the <CatalogEntry>
protocol. This is because some of the methods of Catalog require parameters of
type <CatalogEntry>.

With all of the relationships added, the relationships in the diagram should look
something like this (you may have arranged the figures differently):

Chapter 12. Designing classes and building class diagrams 91

Showing multiplicity
For our system, we can assume that a library has only one catalog, so the default
association name catalog is fine. However, we need to explicitly show the
multiplicity of the association:
1. Select the association between Library and Catalog.
2. Select Multiplicity→Edit From from the pop-up menu.
3. In the window that appears, specify
4. Now select Multiplicity→1-to-1 from the pop-up menu.

The association between Library and Catalog should now look something like this:

We also need to show multiplicity on the association between Catalog and
CatalogEntry. In this case, each catalog must work with multiple entries, though
each entry will be associated with only one catalog. To label this association, follow
these steps:
1. Select the association between Catalog and CatalogEntry.
2. Select Name→Show To from the pop-up menu. The default association name,

catalog entry, appears.
3. Because each catalog is associated with multiple entries, we need to change the

association name to be plural. Hold down the Ctrl key and click mouse button
1 on the label to directly edit it so it reads entries. When you are finished
editing the label, press Enter or click elsewhere on the diagram.

4. Select the association again.
5. Select Multiplicity→1-to-n from the pop-up menu.

The association between Catalog and CatalogEntry should now look something like
this:

92 VisualAge Smalltalk: UML Designer User’s Guide

The complete diagram, with labels, should now look something like this (again,
your diagram might be arranged differently):

This diagram shows the relationships between the objects we have defined in
initial iteration: Library, Catalog, and CatalogEntry. It also shows protocol
conformance and the dependency relationship between Catalog and the
<CatalogEntry> protocol. This tells us that any class that conforms to the
<CatalogEntry> protocol could be substituted for Catalog in this system.

Chapter 12. Designing classes and building class diagrams 93

94 VisualAge Smalltalk: UML Designer User’s Guide

Chapter 13. Modeling existing Smalltalk classes

In some situations, your model might need to describe one or more Smalltalk
classes that have already been implemented, “reverse engineering” analysis and
design artifacts.

With UML Designer, you can accomplish this by creating a corresponding class
design in your model for each existing Smalltalk class. Any Smalltalk class can be
attached to a class design, whether or not the class was generated by UML
Designer. You can also create protocols based on the methods of existing classes.

The simplest way to attach a class design to an existing class is to use the class
name as the class design name. When you create a class design with the same
name as an existing class, UML Designer by default suggests the existing class
when prompting which class the class design should be attached to. By accepting
the defaults, you can quickly create a class design and link it to an existing class.

However, you can also create a class design with a different name. When
prompted for the real class to link to, you can select any class that exists in the
image.

Attaching a class design to an existing class
For example, suppose we have a new requirement for the library catalog system:
we now want to track circulation, keeping records of which patrons have checked
out which books. This means we will almost certainly need a class to represent
borrowers. We could choose to build a new Borrower class for this purpose; but
suppose we then find out that we already have a LibraryPatron class that was
implemented for a system that prints library cards. The LibraryPatron class has the
following attributes, each with a getter and setter method:
v name
v address
v telephone
v card number

This seems to be everything we need, so now we just need to incorporate the
LibraryPatron class into our Library Catalog model. To do so, follow these steps:
1. Make sure a LibraryPatron class exists in the image. (You can create the class

yourself using the standard Smalltalk browsers; just add instance variables and
stub getters and setters for the attributes above.)

2. In the Class Diagrammer, add a new class figure to the drawing surface.
3. Select Attach from the pop-up menu of the new figure.
4. When prompted for the class design to link to, type Borrower in the Specify

New Item field.
5. Select New.
6. In the next window, make sure Link To Real Class is selected.
7. Specify LibraryPatron in the Class Name field. (The name of the underlying

Smalltalk class does not have to be the same as the name of the attached class
design.)

© Copyright IBM Corp. 1997, 2000 95

8. Select OK.

The new Borrower class figure should now be automatically populated with the
attributes and methods from the existing LibraryPatron class. Since the name of the
class design is different from that of the underlying class, the label of the class
figure gives both names.

Retrieving a protocol
We now have a Borrower class design, which shows the methods defined by the
LibraryPatron class. We can now perform some more reverse engineering and
retrieve a protocol from the class design. This can be valuable when modeling an
existing system; it makes it possible to formally type the parameters and return
values of a class and identify which common interfaces it supports. This can help
you find methods that do not accept or return the correct types. For a given class,
only some of its methods make up its public API, and these might be grouped into
one or more protocols to which the class conforms. You can designate one protocol
as its main protocol—the one defining the methods making up the primary
function of the class.

You can retrieve protocols from any class, even one that is not attached to a class
design. When you retrieve a protocol from a class, you can select which method
categories are included. In the retrieved protocol, UML Designer will create a
message specification for each method in the selected categories.

To retrieve a protocol from the methods of the LibraryPatron class, follow these
steps:
1. In the Class Diagrammer, select the Borrower class figure.
2. Select Transforms→Retrieve Protocol from the pop-up menu.
3. In the next window, select the category or categories of the methods you want

to retrieve into the protocol. Select And Categories if you want to retrieve only
the methods that are in all the selected categories; select Or Categories if you
want to retrieve all of the methods that are in any of the selected categories.
In the Borrower class, the methods are not categorized, so select Not categorized.

4. For now, you can accept the defaults in the other fields in the window. These
fields enable you to control the details of how the methods are retrieved into
the protocol:
v In the Methods field, you can specify that you want to replace any messages

in an existing protocol, if there is one. You can also control whether private,
public, or all methods are retrieved. (Typically, a protocol would include only
public methods.)

v In the Protocols field, you can specify a name for the protocol that is
different from that of the class design.

v In the Options field, you can specify whether you want to include methods
of the ancestors of the selected class.

96 VisualAge Smalltalk: UML Designer User’s Guide

5. Select OK to retrieve the protocol.

When UML Designer retrieves a protocol from an existing class design, it
automatically creates a “conforms” link between the class design and the retrieved
protocol. However, this link does not automatically appear in a class diagram. If
you go back to the Class Diagrammer, you can use Hide/Show Relationships to
make this conformance link visible.

Retrieving multiple classes at once
The procedure described above is useful for bringing a single existing class into
your model. Sometimes, though, you’ll need to create class designs for a whole
group of existing classes. This is particularly true in situations where you’re
modeling an entire system that has already been implemented.

Rather than bringing each class into the model one at a time, you can retrieve
them all at once from the Relationships Browser or the Class Diagrammer. To do
this from the Relationships Browser, follow these steps:
1. In the leftmost pane of the Relationships Browser, select the model you want to

contain the new class designs.
2. Select Retrieve Classes from the pop-up menu.
3. In the Classes list, select all of the classes for which you want to create class

designs in the model. Use the Filter field to limit the list to classes with a
specified prefix. Select All Classes if you want to see all classes in the image;
select Visible Classes to see only the classes visible from the current model.
The visible classes are those in the current model’s Smalltalk application or its
prerequisites. If the classes you want to select are not visible, you can use the
VisualAge Application Manager to make the application containing the classes
you want a prerequisite of the model application.

4. If you want to automatically create corresponding protocols as well as class
designs, select Retrieve Protocols. (If you are retrieving only a single class, you
can also specify a name for the protocol; if you are retrieving multiple classes,
UML Designer uses the default, which is the same as the class name.)

5. If you are retrieving protocols, use the Categories list to select the method
categories you want to include in the retrieved protocols. You must select at
least one category to include any message specifications in the generated
protocols.

6. Use the Options and Methods fields to control the details of how methods are
retrieved. (See the previous section for more information about these fields.)

7. Select OK. Class designs (and protocols, if selected) are now generated and
included in the current model.

Chapter 13. Modeling existing Smalltalk classes 97

98 VisualAge Smalltalk: UML Designer User’s Guide

Chapter 14. Sequence diagrams

The third type of UML diagram you can build with UML Designer is the sequence
diagram.

Like a class diagram, a sequence diagram is another view of the model; each figure
in a sequence diagram is attached to an underlying model element. Because a
sequence diagram depicts message sends and returns between objects, your class
designs must have some defined behavior before you can build a sequence
diagram.

A sequence diagram uses instances (rather than class designs) because it shows an
actual series of message sends between instantiated objects at run time. However,
you can also create and use instances in class diagrams or in the Relationships
Browser.

Creating a sequence diagram
For the library catalog system, we might want to create a sequence diagram that
shows adding a new book to the catalog (one of our use cases). The sequence
diagram will be a new model element added to the Library Catalog model.

To start working on a new sequence diagram, follow these steps:
1. In the Relationships Browser, select Sequence Diagrams in the middle pane.
2. Select New from the pop-up menu of the relationship.
3. When prompted, specify Adding a book as the name of the sequence diagram.

The new diagram element appears in the list in the rightmost pane.
4. Double-click on the new diagram. The Sequence Diagrammer opens.

Working with the Sequence Diagrammer

Adding objects to a sequence diagram
Three objects are involved in the “Adding a book” scenario:
v A Library object, representing the system context; this object creates the new

catalog entry and initiates the cataloguing operation.
v A Catalog object, which reads the necessary information from the catalog entry

and assigns it an accession number.
v A CatalogEntry object, which is created and cataloged.

To add these objects to the sequence diagram, follow these steps:

1. Select Object from the tool bar.
2. Use mouse button 1 to place the new figure near the left edge of the drawing

surface (adjacent to the system activation).
An object figure appears by default as an icon at the top of the drawing surface
with a dashed lifeline extending downward. The vertical placement of the
mouse pointer does not matter when you add a new object to a sequence
diagram; only its horizontal position is important.

3. Select Attach from the pop-up menu of the new object figure.

© Copyright IBM Corp. 1997, 2000 99

4. When prompted, select Library as the class design to link to. UML Designer
automatically creates a new instance element for the class design you select.

5. Select OK. The object figure is now labeled Library.
6. Repeat the same procedure for the other two object figures, attaching them to

Catalog and CatalogEntry respectively.

Adding method calls to the diagram
To show the sequence of events involved in adding a book to the catalog, you
must now add figures representing the method calls between the objects in the
diagram. Each figure shows a single method call between a sender and a receiver,
as well as the return after the method has completed. In addition, the sequence
diagram also shows activation on each object’s lifeline, so you can see which
objects are active (that is, which objects are currently executing in response to
method calls) at any given time.

In general terms, the sequence of events involved in adding a book to the catalog
goes something like this:
1. A librarian (an actor outside the system) uses the library system interface to

create a new catalog entry. The new catalog entry records the information
describing the new book.

2. The librarian uses the library system interface to add the new catalog entry to
the catalog.

3. The catalog queries the catalog entry for its descriptive information for
indexing purposes.

4. The catalog allocates an accession number and assigns it to the new entry.

Adding the initial method call
The first method call on a sequence diagram must originate from the system
activation at the left edge (only an active object can send a message to another
object). This initial method call represents a call from outside the diagram; in our
diagram, it represents input from an outside actor initiating the cataloging
operation. We have not yet defined an actual method for Library that would accept
external input, so for now we can use the standard yourself method as a
placeholder. This method call does not itself have any significance; it is used
simply to activate the Library object.

To add this method call to the diagram, follow these steps:

1. Select Method call from the tool bar.
2. Click mouse button 1 on the system activation to indicate the source of the

message (in this case, an object outside the diagram).
3. Click mouse button 1 on the Library object’s lifeline to indicate the receiver of

the message.

100 VisualAge Smalltalk: UML Designer User’s Guide

4. When prompted to choose a method, select Object in the Classes list, Object in
the Protocols list, and #yourself from the Messages list. This indicates that the
yourself method (inherited from Object and defined in the <Object> protocol) is
the target of the call.

5. Select OK. The method call to yourself, and its return, appear as a method call
figure. In addition, the Library object’s lifeline now shows activation between
the message send and return.

6. Select the activation for the yourself method call on the Library object’s lifeline.
7. Use mouse button 1 to drag the bottom selection handle downward,

lengthening the activation. (The activation of the Library object lasts for the
duration of the cataloging operation.)
As you add more method calls, you can continue to lengthen the activation as
needed. You can also move a method call and its associated activation up or
down by dragging the center of the activation.

Adding the remaining method calls
To build the rest of the sequence diagram, we need to add a series of instance

method calls. For each method call, select Method call, click on the source
object’s lifeline (within an activation), and then click on the target object’s lifeline.
Remember that you can resize or move activations in order to make room for
method calls, and you can also move the object figures to the left or right in order
to make the diagram readable.

Use the following illustration as a guide to show you how to construct the
diagram.

The sequence diagram shows the following series of method calls:

Chapter 14. Sequence diagrams 101

1. After instantiating a new CatalogEntry object, the LibraryObject uses setter
methods to set the title, author, and deweyNumber attributes of the new catalog
entry.

2. Library then sends the message addCatalogEntry: to Catalog, which tells it to take
the new entry, index it, and assign it an accession number.

3. Catalog, now active, uses getter methods to retrieve the title, author, and
deweyNumber attributes of the catalog entry. (At this point there would be some
additional processing to index the new entry, but that behavior is not currently
part of our model.)

4. Catalog sends the message assignAccessionNumberToEntry: to itself. This method
allocates a new accession number that can then be assigned to a catalog entry.
Note the stacked activations on the Catalog lifeline, indicating nested method
execution.

5. Finally, Catalog sends accessionNumber: to the CatalogEntry, assigning it the
newly allocated accession number.

102 VisualAge Smalltalk: UML Designer User’s Guide

Chapter 15. Publishing models

The UML Designer publishing features can generate formatted output based on the
contents of your model (or a subset of your model), in either HTML or RTF
format.

Publishing is a two-step process:
v The first step is to build a Publication element as part of the model. The

Publication element in turn contains a set of Topic elements, each of which is
linked to a model element.

v The second step is to generate HTML or RTF output based on the Publication
element. The output produced can then be browsed or printed.

A Publication element defines the structure and content of a published document
based on your model. It consists of a series of Topic elements, arranged in a
hierarchical fashion; the arrangement of Topic elements corresponds to the
organizational structure of the document that will be produced.

Each Topic element contains a text element; this text is what will appear in the
final output. The text can consist of literal text or hypertext links (which will be
resolved when you generate the final output).

There are two basic ways to publish your model:
v Automatically generating a publication element and output in one step
v Manually building a publication element and generating output

Publishing automatically
The fastest way to publish your model is to automatically generate the Publication
element and output document in a single step. This is generally the easiest way to
create published output, and you can publish any model this way.

To publish automatically, follow these steps:
1. In the Relationships Browser, select the element you want to publish. This can

either be the model element or an element within the model.
2. If you want to include the element and any elements it links to, select

Publish→With Children from the pop-up menu. For example, you might use
this option to publish an entire model, or to publish a protocol along with all of
its messages, parameters, and return values.
If you want to include only the selected element, select Publish→Single. The
resulting publication will include only the text of the selected element.

© Copyright IBM Corp. 1997, 2000 103

A dialog now appears prompting you for the publishing options you want to
use.

3. In the File name field, specify the name of the output file. Select the ... button
to open a file dialog from which you can select a location for the output file.

4. In the Save as type field, select the format of the published output:
v Select Hypertext Markup Language (HTML) if you want to create online

output viewable with a Web browser.
v Select Rich Text Format (RTF) if you want to create a hardcopy document.

RTF is compatible with most word-processing software such as Microsoft
Word.

5. In the Page size field, select the page size you want to use for an RTF
document. (This field is disabled if you have selected another output format.)

6. In the Groups To Include field, select which groups you want to include in the
published document. To include all elements regardless of group membership,
select Everything (this is the default).

7. Select the Create Publication Named check box if you want to save the
Publication element that is automatically created. This is not necessary if you
are only interested in the final output. There are several reasons you might
want to save the Publication element:
v To speed up processing the next time you publish the model. By saving the

Publication element, you can avoid having to generate it again later.
(However, remember that if you use the same Publication element later, it
won’t reflect any elements or links you have added or removed.)

v To manually modify the Publication element. You can add, remove, or
rearrange topics and the text they contain, and then regenerate the formatted
output. (For more information about modifying a Publication element, see
“Publishing manually” on page 105.)

8. Select OK to start publishing.

After the publishing operating finishes, you can open the output document using
the appropriate tool. If you selected RTF output, there will be a single file with the
name you specified. If you selected HTML output, there will be one or more
HTML files; the top-level file has the name you specified, while the other files use
the same name with a numeral appended.

Including diagrams in a publication
If your RTF or HTML publication includes any diagrams, the generated document
will contain references to these diagrams as Graphic Interchange Format (GIF) files.
However, the publication process does not generate the GIF files automatically. If
the GIF files are not present when you view or print the document, the diagrams
will not appear.

104 VisualAge Smalltalk: UML Designer User’s Guide

To create a GIF file of a diagram, follow these steps:
1. Open the diagram using the appropriate UML Designer diagrammer.
2. Adjust the zooming and centering of the diagram so it appears in the

diagrammer exactly as you want it to appear in the published document.
3. Select Save As GIF from the File menu.
4. Accept the default generated file name for the GIF file (the published document

will use this name to refer to the diagram). Save the GIF file to the same
directory that contains your published document.

If a diagram changes, you must repeat this process to update the GIF file. Because
the graphics are stored in separate files, it is not necessary to repeat the publication
process if only the diagrams have changed.

Publishing manually
If you prefer to customize your document, you can manually build the Publication
element from which the formatted output is generated. You can do this either by
creating a Publication element and adding topics to it one by one, or by
automatically generating a Publication element and then modifying it. (See
“Publishing automatically” on page 103 for more information about automatically
generating a Publication element.)

Creating a Publication element
To create a new, empty publication, follow these steps:
1. In the Relationships Browser, select Publications in the list of relationships. (If

Publications doesn’t appear in the list, select the All Relationships filter.)
2. Select New from the pop-up menu.
3. When prompted, specify a name for the new Publication element.

The new Publication element appears in the list of elements.

Editing a Publication element
To edit the contents of a Publication element, double-click on the element in the
Relationships Browser. (You can do this with any Publication element, whether
created manually or automatically.) A Focus browser opens showing you the

Chapter 15. Publishing models 105

contents of the publication.

The top pane of the Focus browser shows the hierarchical structure of the
publication. Each entry in the top pane is a Topic element, and their arrangement
reflects the organization of the finished document. (If the publication is a new one
you created manually, it contains only a single top-level topic representing the
publication as a whole.)

If a topic has subtopics, a plus sign (+) appears to the left of the topic in the list. To
see the subtopics, click on the + to expand the list. Click on the minus sign (−) to
collapse the list.

The bottom pane shows the hypertext contents of the selected topic. This is the text
that will appear in the formatted output; it can also contain links to other model
elements, which will be resolved in the final document.

Adding and removing topics
To add a topic to the publication, follow these steps:
1. Select the topic you want to add a subtopic to. (For a top-level document

division, select the topic representing the publication as a whole.)
2. Select New→Topic from the pop-up menu.
3. When prompted, specify the name you want to give the new topic.
4. Select OK or press Enter.

The new topic appears in the browser (you might need to click on + to see the
subtopics).

To remove a topic, select the topic you want to remove and then select Delete from
the pop-up menu.

Reordering topics
There are several ways you can change the order and placement of topics in a
publication.
v Select Ordering→Promote to move a topic up a level in the document structure

(putting it at the same level as its current parent).

106 VisualAge Smalltalk: UML Designer User’s Guide

v Select Ordering→Demote to move a topic down a level in the document
structure (making it a subtopic).

v Select Ordering→Up or Ordering→Down to change a topic’s place in the
document by one position, without changing its level.

v Select Ordering→Reorder To to move a topic elsewhere in the publication. A
window appears prompting you for the location you want to move the topic to.

Editing text
To add text to a topic, select the Topic element in the Focus browser and type the
text in the hypertext pane. Any text you enter will be included in the published
document.

In addition, you can include links to model elements, which will cause them to be
included in the publication. There are two kinds of links:
v A reference link causes a reference to an element to appear in the published

topic. In an HTML document, the reference is a hypertext link to a separate topic
containing the element text. (A reference link causes an additional topic
containing the element text to be included automatically when published.)
In an RTF document, a reference link causes the name of the element to appear
in the topic text, and a separate topic containing the element text is
automatically included.
Reference links are useful in situations where multiple topics refer to the same
element. This can avoid unnecessary duplication of text, since all of the links
will point to the same topic.

v An inline link causes the element’s text to be included directly in the topic text.

Generating output
Once you have built your publication, you can use it to generate formatted output
just as you would with any other model element.

To generate output from a publication, select the Publication element and then
select Publish from the pop-up menu. For more information, see “Publishing
automatically” on page 103.

Chapter 15. Publishing models 107

108 VisualAge Smalltalk: UML Designer User’s Guide

Part 4. Appendixes

© Copyright IBM Corp. 1997, 2000 109

110 VisualAge Smalltalk: UML Designer User’s Guide

Index

Special Characters
″backward″ development process 4, 13
″forward″ development process 4, 13

phases 4

A
abstraction, levels of 4
Action idiom 15
activation 12, 52
actor

adding figure to diagram 78
creating element 71
definition 9
identifying in use case 71

Add idiom 20
adornments 37

labels 41
aggregation 50
Align Horizontal menu choice 43
Align To Grid menu choice 43
Align Vertical menu choice 43
alignment of diagram figures 43
analysis model 4

model elements 10
association

creating 90
labeling 41
ownership 41
specifying constraints 50

attaching 87
attaching node figures 38
attribute

implemented 11
specified 11
type 84

Attribute Name Only menu choice 48
Attributes field of relationship

properties 51

B
Browse Connections menu choice 28
Browse Destinations menu choice 28
Browse Editions menu choice 56
browser levels 32

Advanced 34
Basic 33
Cross-reference 33
General 33
Meta 33

Browser settings 35
browsers 27

levels 32
refreshing 56
spawning 28

Browsing inconsistencies 34

C
capturing requirements 67
Center menu choice 44

Check Consistency menu choice 34
class design

adding figure to diagram 87
definition 11
retrieving from existing class 22, 97

class diagram 11
building 87
creating 87

Class diagrammer 47
opening 87

class figure
filtering methods and attributes 48

code generation 89
Java and Smalltalk conventions 17
system settings 36

Color/Font settings 36
composite objects 56
composition 50
Composition field of relationship

properties 50
concept

creating element 75
definition 9
identifying in use case 74

condition 54
configuration management 55
conformance 10

showing on class diagram 88
connector figure 37

adding 39
adding with Hide/Show Relationships

menu choice 40
copying from a model

relationship 40
copying from another diagram 40
general display properties 42

for class diagram connectors 49
lamination 41
manually creating 39

consistency, checking 34
constraints 50
crash recovery 56
Cycles field of relationship properties 51

D
Delete Check field of relationship

properties 51
Delete Figure And Model menu

choice 43
Delete Figure menu choice 43
deleting figures 79
design model 5

model elements 11
Detailed Text menu choice 58
diagram

class 11
creating 38
creating GIF file 45
definition 7
missing objects on 44
overview 37

diagram (continued)
panning and zooming 44
printing 45
refreshing 44
sequence diagram 51
synchronization 44
use case 9

diagram element 7
diagrammers 37

Class diagrammer 47
Use case diagrammer 46
using 38

Display Options menu choice 42
Distribute By Centers menu choice 43
Distribute By Edges menu choice 43

E
Edit Condition menu choice 54
Edit From menu choice 43
Edit To menu choice 43
Edition Browser 57
editions 55

browsing 55
loading 55
reconciling differences 59
text 75

Editions menu choice 56
exception 10
existing classes, modeling 95

F
figure 37

alignment 43
deleting 43
display properties 42

Figure Properties menu choice 42, 43
filtering 32

by browser level 32
by task 32
relationship filters 28

Filtering Options menu choice 48
Fit To Window menu choice 44
focusing 28
fonts 36
Format menu choice 43

G
General Message idiom 19
General settings 36
Getter idiom 20
GIF file, creating 45, 104
group 7, 46, 77

browsing 29

© Copyright IBM Corp. 1997, 2000 111

H
Hide All Labels menu choice 43
Hide/Show Relationships menu

choice 39, 40, 46
Hierarchical Change Browser 57, 58
Hierarchy Browser

opening 31
overview 31

hypertext link 71

I
Id field of relationship properties 50
Identifier idiom 17
idiom

and protocol generation 14
message 18

Add 20
General Message 19
Getter 20
Remove 21
Setter 21

responsibility 14, 73
Action 15
Identifier 17
Reference 15
Value 16

immutable relationship 50
Implementation field of relationship

properties 51
inconsistencies

browsing 34
finding 34
repairing 35

instance 12, 52
adding to instance diagram 52, 99

Is By Reference field of relationship
properties 51

Is Derived field of relationship
properties 51

Is Immutable field of relationship
properties 50

Is Iterated menu choice 54
Is Navigable field of relationship

properties 51
Is Unique field of relationship

properties 50
iteration 54
iterative development 4

J
Java 17

K
Kernel models 67

L
label 41
lamination 41
Levels menu choice 32
lifeline 52
link 37, 69

link 37, 69 (continued)
″satisfies″ 70

link labels 36
Link Name field of relationship

properties 50
Load Alternative menu choice 59

M
main protocol 96
Make Consistent By Deleting menu

choice 34
Make Consistent By Repairing menu

choice 34
Max Editions menu choice 58
message specification 10

browsing 82
defining manually 85
generating 13, 81, 83

method
implemented 11
specified 11

method call 12
adding to instance diagram 53, 100

method instance 12
Method Name Only menu choice 48
method return 12
Min/Max field of relationship

properties 50
missing objects 44
model

creating 67
definition 3, 7
prerequisites 67
semantic models 4

model elements 7
analysis model 10
common 7
design model 11
loading 56
requirements model 8

Move To Back menu choice 42
Move To Front menu choice 42
moving method call figures 53
multiplicity 50, 92
Multiplicity menu choice 49

N
Name menu choice 49
Name Only menu choice 47
navigability 43
Navigation menu choice 43
Next Difference menu choice 59
node figure 37

adding 38
adding with Hide/Show Relationships

menu choice 39
attaching 38
copying from another diagram 39
copying from model element 39
general display properties 42

class figures 47
manually creating 38

O
objects, missing 44
Ordering field of relationship

properties 51
Overview menu choice 45
ownership of associations 41

P
Pan/Zoom menu choice 45
panning a diagram 44
parameter 10

changing type 83
participant 72

linking to 74
protocol for 17

Path Browser 84
opening 30
overview 30

phases, development 4
prerequisites 67
printing diagrams 45
protocol 4

adding figure to class diagram 88
definition 10
finding for participants 17
generating 13, 81, 83
main protocol 96
mapping to thing 81
retrieving from class design 22, 96
using 81

publication
editing 105
element 7
generating 103

automatically 103
manually 105

generating output 107
GIF files for 45
including diagrams 104

Publish menu choice 103
publishing 103

Q
qualifier 51

showing on class diagram 49

R
reconciling editions 59
Reference idiom 15
refinement 10

browsing 29
Refresh Browser menu choice 44, 56
relationship

browsing 28
editing properties 49
ownership 41

Relationships Browser
opening 67
overview 27

Remove From List menu choice 59
Remove idiom 21
Rename menu choice 42
Repairing inconsistencies 35

112 VisualAge Smalltalk: UML Designer User’s Guide

requirement
capturing 67
creating 68
definition 8

requirements model 4
model elements 8

Reset All Browsers menu choice 56
Reset Pan/Zoom menu choice 44
responsibility

creating element 73
definition 9
identifying in use case 72

retrieving protocol 96
return value 10

changing type 85
reverse engineering 4, 22, 95
Role menu choice 43
Role Name field of relationship

properties 50

S
Save As Gif File menu choice 45
scenario 9
scope (method or attribute) 48
semantic models 4
sequence diagram

creating 99
definition 12

Setter idiom 21
Show All Labels menu choice 43
Show From menu choice 43
Show From Qualified Attributes menu

choice 49
Show Groups option 29
Show Model If Different menu choice 42
Show Navigation Arrow menu

choice 43
Show Refined By Button option 29
Show Scope menu choice 48
Show Stereotype From menu choice 49

Show Stereotype menu choice 42
Show Stereotype To menu choice 49
Show To menu choice 43
Show To Qualified Attributes menu

choice 49
Show Visibility menu choice 48
Smalltalk 17
stereotype 7
Stereotype field of relationship

properties 50
substitutability 81
System figure 77
System settings 35

T
Tasks menu choice 32
team development 57
text, revising 75
Text field of relationship properties 50
thing

creating element 72
definition 9
identifying in use case 72
linking to 72
mapping to protocol 81
retrieving from protocol 23

topic 106
traceability 70
transforms 5, 12
type 10
type, attribute 84
type, parameter 84
type, return value 85

U
UI settings 35
UML Designer

development process supported 4
evolutionary approach 4

UML Designer (continued)
features 3
integration with VisualAge for

Smalltalk 3
introduction 3
semantic models 4
transforms 5

UML Stereotype field of relationship
properties 50

Unified Modeling Language (UML) 4
syntax 36

unique relationship 50
use case

analyzing 70
creating 69
definition 8
description 69

use case diagram 9
creating 77

Use case diagrammer 46
use case figure 78
Use Figure Specific Name menu

choice 42
Use Small Margins menu choice 47

V
Value idiom 16
version control 55
Versions Only menu choice 58
visibility (method or attribute) 48

W
waterfall process 4

Z
Zoom Percentage menu choice 44
zooming a diagram 44

Index 113

	Notices
	Trademarks

	About this document
	Conventions used in this book
	References
	Tell us what you think

	Contents
	Part 1. Modeling concepts
	Chapter 1. Introduction to UML Designer
	Features
	Evolutionary approach
	Semantic models

	Chapter 2. Model elements
	Common model elements
	Model
	Group
	Stereotype
	Diagram
	Publication

	Requirements model elements
	Requirement
	Use case
	Scenario
	Concept
	Actor
	Thing
	Responsibility
	Use case diagram

	Analysis model elements
	Protocol
	Message specification
	Parameter
	Return value
	Exception

	Class diagram

	Design model elements
	Class design
	Instance
	Sequence diagram
	Method call
	Method instance
	Method return

	Chapter 3. Transforms and code generation
	Going from requirements to analysis
	Responsibility idioms
	Action
	Reference
	Value
	Identifier

	Java versus Smalltalk conventions
	Finding protocols for participants

	Going from analysis to design
	Message idioms
	General Message
	Add
	Getter
	Remove
	Setter

	Reverse engineering
	Retrieving class designs
	Retrieving protocols
	Retrieving things

	Part 2. Using the UML Designer tools
	Chapter 4. Using the browsers
	The Relationships Browser
	Spawning a new browser
	Spawning a new browser on a relationship

	Browsing groups
	Browsing refinement and inheritance

	The Path Browser
	The Hierarchy Browser
	Filtering
	Filtering by task
	Filtering by browser level
	Level 1: Basic
	Level 2: General
	Level 3: Cross-reference
	Level 4: Meta
	Level 5: Advanced

	Checking consistency
	Browsing inconsistencies
	Repairing inconsistencies

	System settings

	Chapter 5. Using the UML Designer diagrammers
	Diagrams
	Using the diagrammers
	Adding a node figure
	Manually creating a node figure
	Copying a node figure from another diagram
	Copying a model element to a node figure
	Adding a node figure with Hide/Show Relationships

	Adding a connector figure
	Manually creating a new connector figure
	Copying a connector figure from another diagram
	Copying a relationship to a connector figure
	Adding a connector with Hide/Show Relationships

	Direction and ownership of associations
	Lamination
	Association labeling
	Display properties
	General display properties for node figures
	General display properties for connector figures

	Alignment
	Deleting figures
	Diagram synchronization
	Missing objects

	Panning and zooming
	Zooming by percentage
	Dynamic pan/zoom
	Overview window

	Creating GIF files
	Printing

	Use case diagrammer
	Class diagrammer
	Class figure display properties
	Filtering

	Connector display options
	Relationship properties
	Main page
	Role page

	Sequence diagrammer
	Creating instances
	Creating method calls
	Moving and resizing method call figures
	Conditions and iteration

	Chapter 6. Configuration management and version control
	Editions and versions
	Browsing and loading
	Loading elements
	Crash recovery
	Composite objects

	Team development

	Using the UML Designer browsers
	Edition Browser
	Browser options

	Hierarchical Change Browser
	Browsing and reconciling differences

	Chapter 7. Importing and exporting models
	Object Extender import/export
	Importing model elements from Object Extender
	Exporting model elements to Object Extender

	XMI import/export
	Exporting from UML Designer to XMI
	Importing from XMI to UML Designer

	Part 3. Building models with UML Designer
	Chapter 8. Capturing requirements
	Starting a new model
	Adding Requirement elements

	Chapter 9. Writing and analyzing use cases
	Adding Use Case elements
	Making links between elements
	Adding a "satisfies" link

	Analyzing a use case
	Identifying actors
	Adding an Actor element

	Adding a hypertext link
	Identifying things and responsibilities
	Adding (and linking to) a new Thing element
	Identifying responsibilities
	Adding responsibility elements
	Using another idiom

	Linking to participants

	Identifying concepts
	Adding a Concept element

	Revising description text

	Chapter 10. Use case diagrams
	Creating a use case diagram
	Adding a system figure
	Adding a use case figure
	Adding an actor figure
	Other ways to create relationships

	Deleting figures

	Chapter 11. Protocols
	Protocols and things
	Generating a protocol
	Message specifications
	Generating using idioms
	Changing parameter and attribute types
	Opening the Path Browser
	Changing attribute types
	Changing message parameter types
	Changing return value types

	Defining a message manually

	Chapter 12. Designing classes and building class diagrams
	Opening the Class Diagrammer
	Adding a class design figure
	Establishing protocol conformance
	Adding a protocol figure
	Generating stub method implementations

	Adding more elements
	Creating associations
	A closer look at associations
	Adding associations to the diagram

	Showing multiplicity

	Chapter 13. Modeling existing Smalltalk classes
	Attaching a class design to an existing class
	Retrieving a protocol
	Retrieving multiple classes at once

	Chapter 14. Sequence diagrams
	Creating a sequence diagram
	Working with the Sequence Diagrammer
	Adding objects to a sequence diagram

	Adding method calls to the diagram
	Adding the initial method call
	Adding the remaining method calls

	Chapter 15. Publishing models
	Publishing automatically
	Including diagrams in a publication

	Publishing manually
	Creating a Publication element
	Editing a Publication element
	Adding and removing topics
	Reordering topics
	Editing text

	Generating output

	Part 4. Appendixes
	Index

