

NetView for AIX
Programmer's Reference

Version 4

Document Number SC31-8165-00

April 8, 1996

NetView for AIX

Programmer's Reference

Version 4

SC31-8165-00

IBM

NetView for AIX

Programmer's Reference

Version 4

SC31-8165-00

 Note

Before using this product, read the general information under “Notices” on page xv.

First Edition (July 1995)

This document applies to IBM NetView for AIX (feature 5608), which is a feature of SystemView for AIX (5765-527). IBM NetView
for AIX runs under the AIX Operating System for RISC System/6000 Version 3 Release 2 (5756-030) or Version 4 Release 1
(5765-393). This product is based, in part, on Hewlett-Packard Company's OpenView product.

Publications are not stocked at the address given below. If you want more IBM publications, ask your IBM representative or write to
the IBM branch office serving your locality.

A form for your comments is provided at the back of this document. If the form has been removed, you may address comments to:

 IBM Corporation
 Department CGMD

P.O. Box 12195
Research Triangle Park, North Carolina 27709

 U.S.A.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1992, 1995. All rights reserved.

The following statement pertains to portions hereof:

 Copyright Hewlett-Packard Company 1991, 1995. All rights reserved. Reproduced by permission.

 Copyright Dartmouth College 1992. All rights reserved. Reproduced by permission.

 Copyright American Computer & Electronics Corporation 1996. All rights reserved. Reproduced by permission.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . xv
Trademarks . xv

About This Book . xvii
Who Should Use This Book . xvii
How to Use This Book . xvii

Highlighting and Operation Naming Conventions . xvii
Format of Reference Pages . xviii
Meaning of Function Numbers . xviii

Where to Find More Information . xix

Chapter 1. Function Tables for NetView for AIX Man Pages . 1
Graphical User Interface Routines . 1
SNMP Routines . 12
WinSNMP Functions . 14
XMP Functions . 16
Filtering and Thresholding Functions . 18
GTM API Routines . 18
Collection Facility Routines . 21
Client/Server APIs . 22
Security Functions . 22
Miscellaneous Functions . 23
Introductions . 23

Chapter 2. Reference Pages . 25
at_array_to_oid(3) . 26
at_free(3) . 27
at_oid_match(3) . 28
at_oid_to_array(3) . 29
at_oid_to_str(3) . 30
at_str_to_oid(3) . 31
gtmdump(8) . 32
mp_abandon(3) . 34
mp_action_req(3) . 36
mp_action_rsp(3) . 39
mp_bind(3) . 42
mp_cancel_get_req(3) . 44
mp_cancel_get_rsp(3) . 47
mp_create_req(3) . 49
mp_create_rsp(3) . 52
mp_delete_req(3) . 55
mp_delete_rsp(3) . 58
mp_error_message(3) . 61
mp_event_report_req(3) . 62
mp_event_report_rsp(3) . 65
mp_get_next_req(3) . 67
mp_get_req(3) . 69
mp_get_rsp(3) . 72
mp_initialize(3) . 75
mp_receive(3) . 76

 Copyright IBM Corp. 1992, 1995 iii

mp_set_req(3) . 81
mp_set_rsp(3) . 84
mp_shutdown(3) . 87
mp_unbind(3) . 88
mp_version(3) . 90
mp_wait(3) . 93
nvCollectionAdd(3) . 95
nvCollectionAddCallback(3) . 98
nvCollectionDelete(3) . 100
nvCollectionDone(3) . 102
nvCollectionError(3) . 103
nvCollectionErrorMsg(3) . 104
nvCollectionEvaluate(3) . 105
nvCollectionFreeDefn(3) . 107
nvCollectionGetAllForObject(3) . 109
nvCollectionGetInfo(3) . 111
nvCollectionGetTimestamp(3) . 113
nvCollectionIntersect(3) . 114
nvCollectionListCollections(3) . 116
nvCollectionModify(3) . 117
nvCollectionOpen(3) . 119
nvCollectionRead(3) . 121
nvCollectionResolve(3) . 122
nvCollectionUnion(3) . 124
nvFilterDefine(3) . 126
nvFilterDelete(3) . 129
nvFilterErrorMsg(3) . 130
nvFilterFreeNameList(3) . 131
nvFilterGet(3) . 132
nvFilterGetNameList(3) . 134
NVisClient(3) . 136
nvotChangeArcDetails(3) . 137
nvotChangeArcIconInGraph(3) . 141
nvotChangeArcLabelInGraph(3) . 146
nvotChangeArcStatus(3) . 150
nvotChangeBoxBackground(3) . 154
nvotChangeBoxDetails(3) . 157
nvotChangeBoxIconInGraph(3) . 160
nvotChangeBoxLabelInGraph(3) . 163
nvotChangeBoxPositionInGraph(3) . 166
nvotChangeGraphBackground(3) . 169
nvotChangeGraphDetails(3) . 172
nvotChangeGraphIcon(3) . 175
nvotChangeGraphIconInGraph(3) . 178
nvotChangeGraphLabelInGraph(3) . 181
nvotChangeGraphPositionInGraph(3) . 184
nvotChangeRootGraphIcon(3) . 187
nvotChangeRootGraphLabel(3) . 190
nvotChangeUnderlyingArcIcon(3) . 193
nvotChangeVertexDetails(3) . 197
nvotChangeVertexIconInBox(3) . 200
nvotChangeVertexIconInGraph(3) . 203
nvotChangeVertexLabelInBox(3) . 206
nvotChangeVertexLabelInGraph(3) . 209

iv Programmer's Reference

nvotChangeVertexPositionInBox(3) . 212
nvotChangeVertexPositionInGraph(3) . 215
nvotChangeVertexStatus(3) . 218
nvotCreateArcInGraph(3) . 221
nvotCreateBoxInGraph(3) . 227
nvotCreateGraph(3) . 232
nvotCreateGraphInGraph(3) . 235
nvotCreateParallelUnderlyingArc(3) . 240
nvotCreateProvidingSap(3) . 245
nvotCreateRootGraph(3) . 249
nvotCreateSerialUnderlyingArc(3) . 253
nvotCreateUsingSap(3) . 258
nvotCreateVertexInBox(3) . 261
nvotCreateVertexInGraph(3) . 265
nvotDeleteArc(3) . 269
nvotDeleteArcFromGraph(3) . 272
nvotDeleteBox(3) . 276
nvotDeleteBoxFromGraph(3) . 278
nvotDeleteGraph(3) . 281
nvotDeleteGraphFromGraph(3) . 283
nvotDeleteProvidingSap(3) . 286
nvotDeleteUnderlyingArc(3) . 289
nvotDeleteUsingSap(3) . 292
nvotDeleteVertex(3) . 295
nvotDeleteVertexFromBox(3) . 297
nvotDeleteVertexFromGraph(3) . 299
nvotDone(3) . 302
nvotFree(3) . 304
nvotGetArcsInGraph(3) . 307
nvotGetArcObjectId(3) . 310
nvotGetBoxesInGraph(3) . 314
nvotGetBoxObjectId(3) . 317
nvotGetBoxesWhichVertexIsMemberOf(3) . 320
nvotGetError(3) . 323
nvotGetErrorMsg(3) . 326
nvotGetGraphObjectId(3) . 327
nvotGetGraphsInGraph(3) . 330
nvotGetGraphsWhichArcIsMemberOf(3) . 333
nvotGetGraphsWhichBoxIsMemberOf(3) . 338
nvotGetGraphsWhichGraphIsMemberOf(3) . 341
nvotGetGraphsWhichVertexIsMemberOf(3) . 344
nvotGetSapsOnVertex(3) . 347
nvotGetVertexObjectId(3) . 350
nvotGetVerticesInBox(3) . 353
nvotGetVerticesInGraph(3) . 356
nvotInit(3) . 359
nvotSetCenterBoxForGraph(3) . 362
nvotSetCenterGraphForGraph(3) . 365
nvotSetSynchronousCreation(3) . 368
nvotVertexHandler(3) . 370
nvSnmpBlockingGetTable(3) . 376
nvSnmpErrString(3) . 379
nvSnmpTrapOpenFilter(3) . 380
nvs_Audit(3) . 384

 Contents v

nvs_deleteSecContext(3) . 386
nvs_getClientPerms(3) . 388
nvs_isClientAuthorized(3) . 391
nvs_SecErrMsg(3) . 394
nvs_isSecOn(3) . 395
om_copy(3) . 396
om_copy_value(3) . 398
om_create(3) . 400
om_decode(3) . 402
om_delete(3) . 404
om_encode(3) . 406
om_get(3) . 408
om_instance(3) . 412
om_put(3) . 414
om_read(3) . 417
om_remove(3) . 419
om_write(3) . 421
OVDefaultServerName(3) . 424
OVeDeregister(3) . 425
OVeFilterAttr(3) . 427
OVeRegister(3) . 431
OVmib_get_objid_name(3) . 433
OVmib_read_objid(3) . 434
OVsnmpAddVarBind(3) . 435
OVsnmpBlockingSend(3) . 437
OVsnmpClose(3) . 440
OVsnmpConfAllocEntry(3) . 442
OVsnmpConfAllocWcList(3) . 443
OVsnmpConfClose(3) . 444
OVsnmpConfCopyEntry(3) . 445
OVsnmpConfCreateEntry(3) . 446
OVsnmpConfDbName(3) . 448
OVsnmpConfDeleteCache(3) . 449
OVsnmpConfDeleteEntry(3) . 450
OVsnmpConfExportFile(3) . 452
OVsnmpConfFileName(3) . 454
OVsnmpConfFreeDest(3) . 456
OVsnmpConfFreeEntry(3) . 457
OVsnmpConfFreeWcList(3) . 459
OVsnmpConfOpen(3) . 460
OVsnmpConfImportFile(3) . 463
OVsnmpConfParseEntry(3) . 465
OVsnmpConfPrintCntl(3) . 467
OVsnmpConfPrintDest(3) . 468
OVsnmpConfPrintEntry(3) . 469
OVsnmpConfReadCntl(3) . 470
OVsnmpConfReadDefault(3) . 472
OVsnmpConfReadEntry(3) . 474
OVsnmpConfReadNextDest(3) . 476
OVsnmpConfReadNextEntry(3) . 478
OVsnmpConfReadWcList(3) . 480
OVsnmpConfResolveDest(3) . 482
OVsnmpConfStoreCntl(3) . 484
OVsnmpConfStoreDefault(3) . 486

vi Programmer's Reference

OVsnmpConfStoreEntry(3) . 488
OVsnmpCreatePdu(3) . 490
OVsnmpDoRetry(3) . 492
OVsnmpErrString(3) . 494
OVsnmpFixPdu(3) . 495
OVsnmpFreePdu(3) . 497
OVsnmpGetRetryInfo(3) . 499
OVsnmpIntro(5) . 501
OVsnmpOpen(3) . 507
OVsnmpRead(3) . 510
OVsnmpRecv(3) . 512
OVsnmpSend(3) . 514
OVsnmpTrapOpen(3) . 517
OVsPMD_API(3) . 520
OVuTL(3) . 522
OVwAckMapClose(3) . 528
OVwAckUserSubmapCreate(3) . 530
OVwAddActionCallback(3) . 532
OVwAddAlertCallback(3) . 535
OVwAddCallback(3) . 539
OVwAddHelpCallback(3) . 541
OVwAddInput(3) . 543
OVwAddMenuItem(3) . 545
OVwAddMenuItemFunction(3) . 547
OVwAddObjMenuItem(3) . 550
OVwAddObjMenuItemFunction(3) . 552
OVwAddToolPalItem(3) . 555
OVwAlertMsg(3) . 558
OVwApiIntro(5) . 560
OVwBeginMapSync(3) . 573
OVwCheckAction(3) . 575
OVwConfirmAcknowledgeObjectsCB(3) . 578
OVwConfirmCapabilityChangeCB(3) . 580
OVwConfirmCreateObjectsCB(3) . 582
OVwConfirmCreateSubmapsCB(3) . 584
OVwConfirmCreateSymbolsCB(3) . 586
OVwConfirmDeleteObjectsCB(3) . 588
OVwConfirmDeleteSubmapsCB(3) . 590
OVwConfirmExplodeObjectCB(3) . 592
OVwConfirmHideSymbolsCB(3) . 594
OVwConfirmManageObjectsCB(3) . 596
OVwConfirmMoveSymbolCB(3) . 599
OVwConfirmObjectStatusCB(3) . 601
OVwCreateAction(3) . 603
OVwCreateApp(3) . 607
OVwCreateMenu(3) . 611
OVwCreateMenuItem(3) . 613
OVwCreateObjMenuItem(3) . 616
OVwCreateSubmap(3) . 619
OVwCreateSymbol(3) . 623
OVwDbAppendEnumConstants(3) . 633
OVwDbCreateField(3) . 635
OVwDbCreateObject(3) . 638
OVwDbDeleteObject(3) . 641

 Contents vii

OVwDbFieldNameToFieldId(3) . 643
OVwDbGetEnumConstants(3) . 645
OVwDbGetFieldInfo(3) . 648
OVwDbGetFieldValue(3) . 650
OVwDbGetFieldValues(3) . 654
OVwDbGetFieldValuesByObjects(3) . 656
OVwDbGetUniqObjectName(3) . 658
OVwDbHostnameToObjectId(3) . 660
OVwDbInit(3) . 662
OVwDbListFields(3) . 664
OVwDbListObjectsByFieldValue(3) . 667
OVwDbNameToObjectId(3) . 670
OVwDbSelectionNameToObjectId(3) . 672
OVwDbSetEnumConstants(3) . 674
OVwDbSetFieldValue(3) . 676
OVwDbSetSelectionName(3) . 679
OVwDbUnsetFieldValue(3) . 681
OVwDisplaySubmap(3) . 683
OVwDone(3) . 685
OVwEndSessionCB(3) . 686
OVwError(3) . 688
OVwErrorMsg(3) . 689
OVwEventIntro(5) . 691
OVwFileDescriptor(3) . 694
OVwFindMenuItem(3) . 696
OVwGetAppConfigValues(3) . 698
OVwGetAppName(3) . 701
OVwGetConnSymbol(3) . 702
OVwGetFirstAction(3) . 706
OVwGetFirstMenuItem(3) . 708
OVwGetFirstMenuItemFunction(3) . 710
OVwGetFirstObjMenuItem(3) . 712
OVwGetFirstObjMenuItemFunction(3) . 715
OVwGetFirstRegContext(3) . 717
OVwGetMapInfo(3) . 719
OVwGetMenuItemPath(3) . 721
OVwGetMenuPathSeparator(3) . 723
OVwGetObjectInfo(3) . 725
OVwGetObjectMenuItemPath(3) . 727
OVwGetRegContext(3) . 729
OVwGetSelections(3) . 731
OVwGetSubmapInfo(3) . 733
OVwGetSymbolInfo(3) . 735
OVwGetSymbolsByObject(3) . 737
OVwHighlightObject(3) . 739
OVwInit(3) . 741
OVwIsIdNull(3) . 743
OVwListObjectsOnMap(3) . 745
OVwListSubmaps(3) . 747
OVwListSymbols(3) . 750
OVwListSymbolTypes(3) . 753
OVwLockRegUpdates(3) . 755
OVwMainLoop(3) . 757
OVwMapCloseCB(3) . 759

viii Programmer's Reference

OVwMapOpenCB(3) . 761
OVwPeekOVwEvent(3) . 763
OVwPending(3) . 765
OVwProcessEvent(3) . 767
OVwRegIntro(5) . 769
OVwRenameRegContext(3) . 795
OVwSaveRegUpdates(3) . 797
OVwSelectListChangeCB(3) . 799
OVwSetBackgroundGraphic(3) . 801
OVwSetStatusOnObject(3) . 803
OVwSetSubmapName(3) . 806
OVwSetSymbolApp(3) . 808
OVwSetSymbolBehavior(3) . 810
OVwSetSymbolLabel(3) . 813
OVwSetSymbolPosition(3) . 815
OVwSetSymbolStatusSource(3) . 820
OVwSetSymbolType(3) . 822
OVwShowHelp(3) . 825
OVwSubmapCloseCB(3) . 827
OVwSubmapOpenCB(3) . 829
OVwUserSubmapCreateCB(3) . 831
OVwVerifyAdd(3) . 833
OVwVerifyAppConfigChange(3) . 839
OVwVerifyConnect(3) . 842
OVwVerifyDeleteSymbol(3) . 846
OVwVerifyDescribeChange(3) . 849
OVwXtAddInput(3) . 852
OVwXtMainLoop(3) . 855
SnmpCleanup(3) . 858
SnmpClose(3) . 860
SnmpContextToStr(3) . 862
SnmpCountVbl(3) . 865
SnmpCreatePdu(3) . 867
SnmpCreateSession(3) . 869
SnmpCreateVbl(3) . 872
SnmpDecodeMsg(3) . 874
SnmpDeleteVb(3) . 876
SnmpDuplicatePdu(3) . 878
SnmpDuplicateVbl(3) . 880
SnmpEncodeMsg(3) . 882
SnmpEntityToStr(3) . 884
SnmpFreeContext(3) . 886
SnmpFreeDescriptor(3) . 888
SnmpFreeEntity(3) . 890
SnmpFreePdu(3) . 892
SnmpFreeVbl(3) . 894
SnmpGetLastError(3) . 896
SnmpGetLastErrorStr(3) . 898
SnmpGetPduData(3) . 900
SnmpGetRetransmitMode(3) . 903
SnmpGetRetry(3) . 905
SnmpGetTimeout(3) . 907
SnmpGetTranslateMode(3) . 909
SnmpGetVb(3) . 911

 Contents ix

SnmpOidCompare(3) . 913
SnmpOidCopy(3) . 915
SnmpOidToStr(3) . 917
SnmpRecvMsg(3) . 919
SnmpRegister(3) . 922
SnmpSelect(3) . 925
SnmpSendMsg(3) . 927
SnmpSetPduData(3) . 930
SnmpSetRetransmitMode(3) . 932
SnmpSetRetry(3) . 934
SnmpSetTimeout(3) . 936
SnmpSetTranslateMode(3) . 938
SnmpSetVb(3) . 940
SnmpStartup(3) . 942
SnmpStrToContext(3) . 945
SnmpStrToEntity(3) . 948
SnmpStrToOid(3) . 951
XnvApplicationShell(3) . 953
XnvTopLevelShell(3) . 956

Chapter 3. XOM Package . 959
Class Hierarchy . 959
Class Definitions . 959

Chapter 4. XMP API Management Service Packages . 963
General Information . 963
OM Class Hierarchies . 963
The OM Classes . 969

Chapter 5. XMP API Management Contents Packages . 1033
LNV Package Object Identifier . 1033
DMI Package Object Identifier . 1033

Chapter 6. Using NetView for AIX GTM Data Structures . 1061
Basic Structures . 1061
Table Structures . 1064
Type Structures . 1068

Glossary and Bibliography . 1077

Glossary . 1079

Bibliography . 1107
NetView for AIX Publications . 1107
IBM RISC System/6000 Publications . 1107
NetView Publications . 1108
TCP/IP Publications for AIX (RS/6000, PS/2, RT, 370) . 1108
AIX SNA Services/6000 Publications . 1108
Internet Request for Comments (RFCs) . 1108
Related Publications . 1109

x Programmer's Reference

 Tables

1. Graphical User Interface Routines and Their Reference Pages . 1
2. SNMP Routines and Their Reference Pages . 12
3. WinSNMP Functions and Their Reference Pages . 15
4. XMP Functions and Their Reference Pages . 16
5. Filtering and Thresholding Functions and Their Reference Pages 18
6. GTM API Routines and Their Reference Pages . 18
7. Collection Facility Routines and Their Reference Pages . 21
8. Client/Server APIs and Their Reference Pages . 22
9. Security Functions and Their Reference Pages . 22

10. Miscellaneous Functions and Their Reference Pages . 23
11. API Introductions and Their Reference Pages . 23
12. Service Primitives . 76
13. Validity of Completion Flag Values . 77
14. Valid CMIS-Service-Error Values for each Confirm Primitive . 78
15. Bitmask Permissions for nvs_getClientPerms API . 388
16. Output of logging INFORMATIVE messages in the OVEXTERNAL subsystem 526
17. Output of Tracing in OVEXTERNAL Subsystem . 527
18. Return Codes . 563
19. EUI API Events and Their Callbacks . 691
20. Widget Resources for XnvApplicationShell . 954
21. Widget Resources for XnvTopLevelShell . 957
22. General Information about the XOM Package . 959
23. Attributes Specific to Encoding . 960
24. Attributes Specific to External . 960
25. Attributes Specific to Object . 961
26. General Information about the Management Service Packages 963
27. Hierarchical Organization of Management Service OM Classes 964
28. OM Attributes of an Action-Error Object . 971
29. OM Attributes of an Action-Error-Info Object . 972
30. OM Attributes of an Action-Info Object . 973
31. OM Attributes of an Action-Reply Object . 973
32. OM Attributes of an Action-Type-Id Object . 974
33. OM Attributes of an AE-Title . 975
34. OM Attributes of an Application-Syntax Object . 975
35. OM Attributes of an Attribute Object . 976
36. OM Attributes of an Attribute-Error Object . 976
37. OM Attributes of an Attribute-Id Object . 978
38. OM Attributes of an Attribute-Id-Error Object . 978
39. OM Attributes of an Attribute-Id-List Object . 979
40. OM Attributes of an AVA Object . 979
41. OM Attributes of a Base-Managed-Object-Id Object . 980
42. OM Attributes of a CMIS-Action-Argument Object . 981
43. OM Attributes of a CMIS-Action-Result Object . 982
44. OM Attribute of a CMIS-Cancel-Get-Argument Object . 982
45. OM Attributes of a CMIS-Create-Argument Object . 983
46. OM Attributes of a CMIS-Create-Result Object . 984
47. OM Attributes of a CMIS-Delete-Argument Object . 984
48. OM Attributes of a CMIS-Delete-Result Object . 985
49. OM Attributes of a CMIS-Event-Report-Argument Object . 986
50. OM Attributes of a CMIS-Event-Report-Result Object . 987

 Copyright IBM Corp. 1992, 1995 xi

51. OM Attributes of a CMIS-Filter Object . 988
52. OM Attributes of a CMIS-Get-Argument Object . 988
53. OM Attributes of a CMIS-Get-List-Error Object . 990
54. OM Attributes of a CMIS-Get-Result Object . 990
55. OM Attributes of a CMIS-Linked-Reply-Argument Object . 991
56. OM Attributes of a CMIS-Service-Error Object . 992
57. Problem and Parameter Values for a CMIS-Service-Error Object 992
58. OM Attributes of a CMIS-Set-Argument Object . 994
59. OM Attributes of a CMIS-Set-List-Error Object . 996
60. OM Attributes of a CMIS-Set-Result Object . 996
61. OM Attributes of a Communications-Error Object . 997
62. OM Attributes of a Community-Name Object . 998
63. OM Attributes of a Complexity-Limitation Object . 998
64. OM Attributes of a Context Object . 999
65. OM Attributes of a Create-Object-Instance Object . 1001
66. OM Attributes of a Delete-Error Object . 1002
67. OM Attributes of a DS-DN Object . 1002
68. OM Attributes of a DS-RDN Object . 1003
69. OM Attributes of an Entity-Name Object . 1003
70. OM Attributes of an Error Object . 1004
71. OM Attributes of an Error-Info Object . 1004
72. OM Attributes of an Event-Reply Object . 1005
73. OM Attributes of an Event-Type-Id Object . 1006
74. OM Attributes of an External-AC Object . 1006
75. OM Attributes of a Filter-Item Object . 1007
76. OM Attributes of a Get-Info-Status Object . 1008
77. OM Attributes of an Invalid-Argument-Value Object . 1009
78. OM Attributes of a Library-Error Object . 1010
79. OM Attributes of a Missing-Attribute-Value Object . 1011
80. OM Attributes of a Modification Object . 1012
81. OM Attributes of a Multiple-Reply Object . 1013
82. OM Attributes of a Network-Address Object . 1014
83. OM Attributes of a No-Such-Action Object . 1014
84. OM Attributes of a No-Such-Action-Id Object . 1015
85. OM Attributes of a No-Such-Argument Object . 1015
86. OM Attributes of a No-Such-Event-Id Object . 1016
87. OM Attributes of a No-Such-Event-Type Object . 1016
88. OM Attributes of an Object-Class Object . 1017
89. OM Attributes of an Object-Instance Object . 1017
90. OM Attributes of an Object-Syntax Object . 1018
91. OM Attributes of a Processing-Failure Object . 1018
92. OM Attributes of a Scope Object . 1019
93. OM Attributes of a Session Object . 1021
94. OM Attributes of a Set-Info-Status Object . 1022
95. OM Attributes of a Simple-Syntax Object . 1023
96. OM Attributes of an SNMP-Get-Argument Object . 1024
97. OM Attributes of an SNMP-Get-Result Object . 1024
98. OM Attributes of an SNMP-Response Object . 1025
99. OM Attributes of an SNMP-Service-Error Object . 1025
100. OM Attributes of an SNMP-Set-Argument Object . 1026
101. OM Attributes of an SNMP-Set-Result Object . 1027
102. OM Attributes of an SNMP-Trap-Argument Object . 1027
103. OM Attributes of a Specific-Error-Info Object . 1028
104. OM Attributes of a Substring Object . 1029

xii Programmer's Reference

105. OM Attributes of a Substrings Object . 1030
106. OM Attributes of a System-Error Object . 1030
107. OM Attributes of a Var-Bind Object . 1031
108. Object Identifiers for LNV Attributes . 1033
109. Information Syntax for LNV Attribute Value . 1033
110. OM Attributes of a CMOT-System-Id . 1033
111. Object Identifiers for DMI Object Classes . 1034
112. Object Identifiers for DMI Attributes . 1034
113. Object Identifiers for DMI Attribute Groups . 1037
114. Object Identifiers for DMI Notifications . 1037
115. Object Identifiers for DMI Parameters . 1038
116. Object Identifiers for DMI Name Bindings . 1038
117. Object Identifiers for DMI Packages . 1038
118. DMI Attribute Value Syntaxes . 1039
119. DMI Notification Information Syntaxes . 1041
120. DMI Parameter Value Syntaxes . 1042
121. OM Attributes of an Additional-Information . 1042
122. OM Attributes of an Alarm-Info . 1042
123. OM Attributes of an Alarm-Status . 1043
124. OM Attributes of an Allomorphs . 1043
125. OM Attributes of an Attribute-Identifier-List . 1043
126. OM Attributes of an Attribute-List . 1043
127. OM Attributes of a Setof-Attribute-Value-Change-Definition . 1043
128. OM Attributes of an Attribute-Value-Change-Definition . 1044
129. OM Attributes of an Attribute-Value-Change-Info . 1044
130. OM Attributes of an Availability-Status . 1044
131. OM Attributes of a Back-Up-Destination-List . 1045
132. OM Attributes of a Back-Up-Relationship-Object . 1045
133. OM Attributes of a Capacity-Alarm-Threshold . 1045
134. OM Attributes of a Control-Status . 1045
135. OM Attributes of a Setof-Correlated-Notifications . 1045
136. OM Attributes of a Correlated-Notifications . 1046
137. OM Attributes of a Correlated-Notifications-1 . 1046
138. OM Attributes of a Setof-Counter-Threshold . 1046
139. OM Attributes of a Counter-Threshold . 1046
140. OM Attributes of a Destination . 1047
141. OM Attributes of a Multiple . 1047
142. OM Attributes of a Setof-Gauge-Threshold . 1047
143. OM Attributes of a Gauge-Threshold . 1047
144. OM Attributes of a Group-Objects . 1047
145. OM Attributes of a Setof-Intervals-Of-Day . 1048
146. OM Attributes of a Intervals-Of-Day . 1048
147. OM Attributes of a Management-Extension . 1048
148. OM Attributes of a Monitored-Attributes . 1048
149. OM Attributes of a Notify-Threshold . 1048
150. OM Attributes of a Object-Info . 1049
151. OM Attributes of an Observed-Value . 1049
152. OM Attributes of a Packages . 1049
153. OM Attributes of a Setof-Prioritised-Object . 1049
154. OM Attributes of a Prioritised-Object . 1050
155. OM Attributes of a Probable-Cause . 1050
156. OM Attributes of a Procedural-Status . 1050
157. OM Attributes of a Proposed-Repair-Actions . 1050
158. OM Attributes of a Relationship-Change-Info . 1051

 Tables xiii

159. OM Attributes of a Security-Alarm-Detector . 1051
160. OM Attributes of a Security-Alarm-Info . 1051
161. OM Attributes of a Service-User . 1052
162. OM Attributes of a Simple-Name-Type . 1052
163. OM Attributes of a Specific-Identifier . 1052
164. OM Attributes of a Specific-Problems . 1052
165. OM Attributes of a State-Change-Info . 1053
166. OM Attributes of a Stop-Time . 1053
167. OM Attributes of a Setof-Supported-Features . 1053
168. OM Attributes of a Supported-Features . 1053
169. OM Attributes of a System-Id . 1054
170. OM Attributes of a System-Title . 1054
171. OM Attributes of a Threshold-Info . 1054
172. OM Attributes of a Threshold-Level-Ind . 1055
173. OM Attributes of a Up . 1055
174. OM Attributes of a Down . 1055
175. OM Attributes of a Tide-Mark . 1055
176. OM Attributes of a Tide-Mark-Info . 1055
177. OM Attributes of a Time24 . 1056
178. OM Attributes of a Setof-Week-Mask . 1056
179. OM Attributes of a Week-Mask . 1056

xiv Programmer's Reference

 Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make them available in all countries in which IBM operates. Any reference to an IBM product, program, or
service is not intended to state or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of the intellectual property
rights of IBM may be used instead of the IBM product, program, or service. The evaluation and verifica-
tion of operation in conjunction with other products, except those expressly designated by IBM, are the
responsibility of the user.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

500 Columbus Avenue
 Thornwood, NY 10594
 USA

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

 Site Counsel
 IBM Corporation

P.O. Box 12195
3039 Cornwallis Road
Research Triangle Park, NC 27709-2195

 USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement.

This document is not intended for production use and is furnished as is without any warranty of any kind,
and all warranties are hereby disclaimed including the warranties of merchantability and fitness for a par-
ticular purpose.

 Trademarks

The following terms, denoted by an asterisk (*) at their first occurrences in this publication, are trademarks
of IBM Corporation in the United States or other countries:

The following terms, denoted by a double asterisk (**) at their first occurrences in this publication, are
trademarks of other companies in the United States or in other countries:

AIX IBM NetView
AIXwindows InfoExplorer PS/2
APPN NETCENTER RISC System/6000
SystemView

 Copyright IBM Corp. 1992, 1995 xv

CompuServe CompuServe, Inc.
Motif Open Software Foundation
NFS SUN Microsystems Inc.
X Window System Massachusetts Institute of Technology

xvi Programmer's Reference

About This Book

The NetView for AIX Programmer's Reference provides reference information for
programmers who are already familiar with the programming tasks involved in cus-
tomizing the IBM* NetView* for AIX* program or in writing or customizing network
management applications that interface with the NetView for AIX program. This
book is to be used in conjunction with the NetView for AIX Programmer's Guide.

Who Should Use This Book
Programmers who are customizing the NetView for AIX program or writing or cus-
tomizing network management applications that are to be used through the
NetView for AIX windows interface should refer to this book for detailed
descriptions of API functions. These programmers should have programming expe-
rience in the following areas:

 � C-programming language
 � Data communications
 � Networking
� AIX Operating System

How to Use This Book
This book is most helpful when the reader understands the following book con-
ventions:

� Highlighting and naming conventions

� Reference page format (including heading definitions)

Highlighting and Operation Naming Conventions
The following highlighting conventions are used in this book, with the noted
exceptions:

Bold Identifies commands and shell script paths (except in reference
information), default values, user selections, daemon paths (on first
occurrence), and flags (in parameter lists).

Italics Identifies parameters whose actual names or values are to be sup-
plied by the user, and terms that are defined in the following text.

Monospace Identifies subjects of examples, messages in text, examples of
portions of program code, examples of text you might see dis-
played, information you should actually type, and examples used
as teaching aids.

The NetView for AIX operation naming convention used in this book shows the
location of the operation in relation to the menu bar or context menu. The naming
convention follows the format shown in this example:

Monitor..Network Configuration..Addresses

In this example, Monitor is a menu bar or context menu option, Network
Configuration is an operation available from the Monitor submenu, and Addresses
is an option that is available when you select Network Configuration.

 Copyright IBM Corp. 1992, 1995 xvii

Some operations require you to make selections from several layers of submenus
before you reach the submenu containing the operation.

Format of Reference Pages
The detailed descriptions of NetView for AIX commands, daemons, files, and appli-
cations follow the standard reference page format. Each NetView for AIX reference
page may include any of the following sections:

Purpose Brief description of the major function of the subject

Related Functions List of functions that are related to and are described in
the same reference page as the main function

Syntax Syntax showing command line options

Dependencies Description of any dependencies for the use of the
subject

Description Detailed description of the functions and uses of the
subject

Parameters List of parameters associated with a subject and an
explanation of the parameter and its possible and
default values

Return Values List of values returned by the subject upon completion
or failure

Error Codes List of error codes returned by the subject upon failure

Flags List of command line flags associated with the subject,
with an explanation of the flag, and its possible and
default values

Examples Specific examples showing command usage and
formats of files

Implementation Specifics Identification of the package of each subject

Libraries List of libraries to which you need to link to compile a
program that uses the function

Files List of files used by the subject

Warning Note about a problem that might involve damage to the
program

Related Information List of related subjects in this book, NetView for AIX
documentation, Internet Request for Comments, and
other information sources

Meaning of Function Numbers
The parenthetical function numbers associated with the heading of each man page
have the following meanings:

1 User commands

3 Library routines

4 Files

xviii Programmer's Reference

5 Administrative files

8 Administrative commands

Note: Some of the reference pages refer to reference pages that are not in the
NetView for AIX Programmer's Reference but that can be accessed through the
man command.

Where to Find More Information
The “Bibliography” on page 1107 describes publications that can be helpful when
using the NetView for AIX program. The Internet Request for Comments (RFC)
documents listed are shipped on the NetView for AIX program installation media
and are installed in the /usr/OV/doc directory.

The following sources provide specific information that is not documented in the
NetView for AIX Version 4 library:

� The /usr/lpp/nv6000/README file provides additional information about the
NetView for AIX program.

� The online help facility provides task, dialog box, and graphical interface infor-
mation to help you use this program.

� For more information about Simple Network Management Protocol (SNMP),
Transmission Control Protocol/Internet Protocol (TCP/IP), and general network
basics, the following list contains recommended reading:

Rose, Marshall T. The Simple Book: An Introduction to Management of
TCP/IP-based Internets. Englewood Cliffs, NJ: Prentice-Hall, 1994. (ISBN
0-13-177254-6)

Comer, Douglas. Internetworking with TCP/IP: Principles, Protocols, and
Architecture, Volume 1. New York, NY: Prentice-Hall, 1991. (ISBN
0-13-468505-9)

Black, Uyless. Network Management Standards. The OSI, SNMP, and
CMOL Protocols. New York, NY: McGraw-Hill, 1992. (ISBN
0-07-005554-8)

 About This Book xix

xx Programmer's Reference

Chapter 1. Function Tables for NetView for AIX Man Pages

The tables in this section provide the following information about the reference pages in this manual:

� Name of the function or reference page
� Brief description of the purpose
� Page number to see in this book for a complete description.

These tables describe the following functions:

� Graphical User Interface Routines
 � SNMP Routines
 � XMP Functions
� Filtering and Thresholding Functions
� GTM API Routines

 � Miscellaneous Functions
 � Introductions
� Collection Facility Routines

 � Security Functions
 � Client/Server APIs

Graphical User Interface Routines

Table 1 (Page 1 of 12). Graphical User Interface Routines and Their Reference Pages

Routine Name Description See Page

OVwAckMapClose(3) Acknowledges a map close event 528

OVwAckUserSubmapCreate(3) Acknowledges a user submap create event 530

OVwAddActionCallback(3) Registers a callback for a registered action 532

OVwAddAlertCallback(3) Registers handlers of NetView for AIX alerts 535

OVwAddCallback(3) Registers procedures to process NetView for
AIX events

539

OVwAddHelpCallback(3) Registers a handler for application help
requests

541

OVwAddInput(3) Adds an event source 543

OVwAddMenuItem(3) Adds a menu item to a menu 545

OVwAddMenuItemFunction(3) Adds a menu item function to a menu item 547

OVwAddObjMenuItem(3) Adds an item to the Object Menu 550

OVwAddObjMenuItemFunction(3) Adds a function to an Object Menu's menu
item

552

OVwAddToolPalItem(3) Adds a tool item to the Tool Window 555

OVwAlertMsg(3) Issues a NetView for AIX alert message 558

OVwApiIntro(5) Provides an overview of the OVw API 560

OVwBeginMapSync(3) Begins map synchronization phase 573

OVwCheckAction(3) Enables applications to check the validity of
other NetView for AIX applications' actions

575

ñA callback for an event might not be generated if the event resulted from an API call instead of a graphical user
interface (GUI) action.

 Copyright IBM Corp. 1992, 1995 1

Table 1 (Page 2 of 12). Graphical User Interface Routines and Their Reference Pages

Routine Name Description See Page

OVwClearBackgroundGraphic(3) Clears the background picture from the speci-
fied submap

801

OVwClearSymbolApp(3) Clears application interest in a symbol 808

OVwConfirmAcknowledgeObjectsCB(3)ñ Functions as a callback for an acknowledge
object event

578

OVwConfirmAddSymbolCB(3)ñ Functions as a callback for an add symbol
event

833

OVwConfirmAppConfigCB(3)ñ Functions as a callback for an application con-
figuration change event

839

OVwConfirmCapabililtyChangeCB(3)ñ Functions as a callback for an object capability
change event

580

OVwConfirmCompoundStatusCB(3)ñ Functions as a callback for compound status
events

601

OVwConfirmConnectSymbolsCB(3)ñ Functions as a callback for a connect symbols
event

842

OVwConfirmCreateObjectsCB(3)ñ Functions as a callback for a create object
event

582

OVwConfirmCreateSubmapsCB(3)ñ Functions as a callback for a create submap
event

584

OVwConfirmCreateSymbolsCB(3)ñ Functions as a callback for a create symbol
event

586

OVwConfirmDeleteObjectsCB(3)ñ Functions as a callback for a delete object
event

588

OVwConfirmDeleteSubmapsCB(3)ñ Functions as a callback for a delete submap
event

590

OVwConfirmDeleteSymbolsCB(3)ñ Functions as a callback for a delete symbol
event

846

OVwConfirmDescribeCB(3)ñ Functions as a callback for a describe change
event

849

OVwConfirmExplodeObjectCB(3)ñ Functions as a callback for an explode object
event

592

OVwConfirmHideSymbolsCB(3)ñ Functions as a callback for a hide symbol
event

594

OVwConfirmManageObjectsCB(3)ñ Functions as a callback for a manage object
event

596

OVwConfirmMoveSymbolCB(3)ñ Functions as a callback for a move symbol
event

599

OVwConfirmObjectStatusCB(3)ñ Functions as a callback for a change object
status event

601

OVwConfirmSymbolStatusCB(3)ñ Functions as a callback for a change symbol
status event

601

OVwConfirmUnhideSymbolsCB(3)ñ Functions as a callback for an unhide symbol
event

594

ñA callback for an event might not be generated if the event resulted from an API call instead of a graphical user
interface (GUI) action.

2 Programmer's Reference

Table 1 (Page 3 of 12). Graphical User Interface Routines and Their Reference Pages

Routine Name Description See Page

OVwConfirmUnmanageObjectsCB(3)ñ Functions as a callback for an unmanage
object event

596

OVwConfirmUnacknowledgeObjectsCB(3)ñ Functions as a callback for an unacknowledge
object event

578

OVwCopyMapInfo(3) Allocates memory for OVwMapInfo structure
and returns a pointer to a copy of the speci-
fied map structure

719

OVwCreateAction(3) Creates the specified action in the current reg-
istration context

603

OVwCreateApp(3) Creates the specified NetView for AIX applica-
tion by creating registration information for it

607

OVwCreateComponentSymbol(3) Creates a symbol representing the object
identified by objectId on the child submap of a
component object identified by parentId

623

OVwCreateComponentSymbolByName(3) Creates a symbol representing the object
identified by name on the child submap of a
component object identified by parentId

623

OVwCreateConnSymbol(3) Creates a connection symbol representing an
object identified by objectId between two icon
symbols identified by endpoint1 and endpoint2
on the submap identified by submapId

623

OVwCreateConnSymbolByName(3) Creates a connection symbol representing an
object identified by name between two icon
symbols identified by endpoint1 and endpoint2
on a submap of an open map

623

OVwCreateMenu(3) Creates a menu in the current registration
context

611

OVwCreateMenuItem(3) Creates a menu item in the current registration
context

613

OVwCreateObjMenuItem(3) Creates a menu item in the current registration
context

616

OVwCreateSubmap(3) Creates a submap 619

OVwCreateSymbol(3) Creates a symbol 623

OVwCreateSymbolByName(3) Creates a symbol representing the object with
the name field value indicated by the specified
name

623

OVwCreateSymbolByHostName(3) Creates a symbol representing the object
identified by the specified IP host name

623

OVwCreateSymbolBySelectionName(3) Creates a symbol representing the object
identified by the specified selection name

623

OVwCreateSymbols(3) Creates symbols 623

OVwDbAppendEnumConstants(3) Appends constants to an existing enumeration 633

OVwDbCreateField(3) Creates a field in the object database 635

OVwDbCreateObject(3) Creates an object in the OVW object database 638

ñA callback for an event might not be generated if the event resulted from an API call instead of a graphical user
interface (GUI) action.

 Chapter 1. Function Tables for NetView for AIX Man Pages 3

Table 1 (Page 4 of 12). Graphical User Interface Routines and Their Reference Pages

Routine Name Description See Page

OVwDbCreateObjectByHostname(3) Creates an object in the OVW object database
through a host name

638

OVwDbCreateObjectBySelectionName(3) Creates an object in the OVW object database
through a selection name

638

OVwDbDeleteField(3) Deletes a field in the object database 635

OVwDbDeleteObject(3) Deletes an object from the OVW object data-
base

641

OVwDbFieldIdToFieldName Returns the name of the field that has the field
ID fieldId

643

OVwDbFieldNameToFieldId(3) Returns the field ID of the field that has the
field name fieldName

643

OVwDbFreeEnumConstants Frees the memory allocated for an
OVwEnumConstants structure

645

OVwDbFreeFieldBindList Frees the memory allocated for an
OVwFieldBindList structure

654

OVwDbFreeFieldInfo Frees the memory allocated for an
OVwFieldInfo structure

648

OVwDbFreeFieldList Frees the memory allocated for an
OVwFieldList structure

664

OVwDbFreeFieldValue Frees the memory allocated for an
OVwFieldValue structure

650

OVwDbFreeObjectFieldList Frees the memory allocated for an
OVwObjectFieldList structure

656

OVwDbFreeObjectIdList Frees the memory allocated for an
OVwObjectIdList structure

667

OVwDbGetCapabilityFieldValues Returns a list of all field values for capability
fields for a specified object

654

OVwDbGetEnumConstants(3) Returns a list of all text value sets in the enu-
merated data type

645

OVwDbGetEnumName Translates an index into an enumerated con-
stant

645

OVwDbGetEnumValue Translates an enumerated constant into an
index value

645

OVwDbGetFieldBooleanValue Returns the Boolean value set for a field of
type ovwBooleanField for a specified object

650

OVwDbGetFieldEnumByName Returns the value set for a field of type
ovwEnumField for a specified object

650

OVwDbGetFieldEnumByValue Returns the value set for a field of type
ovwEnumField for a specified object

650

OVwDbGetFieldInfo(3) Returns information about a database field 648

OVwDbGetFieldIntegerValue(3) Returns the integer value set for a field of type
ovwInitField for a specified object

650

OVwDbGetFieldStringValue(3) Returns the string value set for a field of type
ovwStringField for a specified object

650

ñA callback for an event might not be generated if the event resulted from an API call instead of a graphical user
interface (GUI) action.

4 Programmer's Reference

Table 1 (Page 5 of 12). Graphical User Interface Routines and Their Reference Pages

Routine Name Description See Page

OVwDbGetFieldValue(3) Returns the value of a specified field for a
specified object

650

OVwDbGetFieldValues(3) Returns a list of all the field values for a speci-
fied object

654

OVwDbGetFieldValuesByObjects(3) Returns the value set for a specified field for a
list of objects

656

OVwDbGetNameFieldValues(3) Returns a list of all field values for name fields
for a specified object

654

OVwGetObjMenuItem(3) Retrieves registration information for the speci-
fied object menu item in the current registra-
tion context

616

OVwDbGetUniqObjectName(3) Returns a unique name for an object 658

OVwDbHostnameToObjectId(3) Returns the object ID for the object whose IP
host name is hostname

660

OVwDbInit(3) Initializes the OVwDb API 662

OVwDbListFields(3) Returns a list of object database fields 664

OVwDbListObjectsByFieldValue(3) Returns a list of objects from the OVW object
database that have a single specific value set
for a field

667

OVwDbListObjectsByFieldValues(3) Returns a list of objects from the OVW object
database that have all the field values speci-
fied by a list of fields

667

OVwDbNameToObjectId(3) Returns the ObjectID of the object that has a
specified name in a specified name field

670

OVwDbObjectIdToHostname(3) Returns the IP hostname for the object identi-
fied by objectId

660

OVwDbObjectIdToSelectionName(3) Returns the selection name for the object
identified by objectId

672

OVwDbSelectionNameToObjectId(3) Returns the ObjectId of the object that has a
selection name matching the value provided
by selectionName

672

OVwDbSetEnumConstants(3) Sets values for a field of type ovwEnumField 674

OVwDbSetFieldBooleanValue(3) Sets values for a field of type
ovwBooleanField

676

OVwDbSetFieldEnumByName(3) Sets by index the value of a field of type
ovwEnumField

676

OVwDbSetFieldEnumByValue(3) Sets by value the value of a field of type
ovwEnumField

676

OVwDbSetFieldIntegerValue(3) Sets the value for a field of type
ovwIntegerField

676

OVwDbSetFieldStringValue(3) Sets a value for a field of type ovwStringField 676

OVwDbSetFieldValue(3) Sets the value for the field specified by fieldId
for a specified object

676

ñA callback for an event might not be generated if the event resulted from an API call instead of a graphical user
interface (GUI) action.

 Chapter 1. Function Tables for NetView for AIX Man Pages 5

Table 1 (Page 6 of 12). Graphical User Interface Routines and Their Reference Pages

Routine Name Description See Page

OVwDbSetHostname(3) Sets the value of the IP Hostname field for a
specified object

679

OVwDbSetSelectionName(3) Sets the value of the Selection Name field for
a specified object

679

OVwDbUnsetFieldValue(3) Unsets the value of a specified field for a
specified object

681

OVwDbUnsetFieldValues(3) Unsets the values of fields in a list for a speci-
fied object

681

OVwDeleteAction(3) Deletes the specified action in the current reg-
istration context

603

OVwDeleteApp(3) Deletes the specified NetView for AIX applica-
tion registration

607

OVwDeleteField(3) Deletes a field in the object database 635

OVwDeleteMenu(3) Deletes the specified menu from the current
registration context

611

OVwDeleteMenuItem(3) Deletes the specified menu item from the
current registration context

613

OVwDeleteObjMenuItem(3) Deletes registration information for the speci-
fied object menu item in the current registra-
tion context

616

OVwDeleteSubmap(3) Deletes a submap from the open map 619

OVwDeleteSymbol(3) Deletes the symbol identified by symbolId from
the open map

623

OVwDeleteSymbols(3) Deletes symbols in a list from the open map 623

OVwDisplaySubmap(3) Displays a submap of the open map 683

OVwDoAction(3) Starts any registered application action 575

OVwDone(3) Terminates an application's connection to the
NetView for AIX program

685

OVwEndMapSync(3) Ends map synchronization phase 573

OVwEndSessionCB(3)ñ Functions as a callback for an end-of-session
event

686

OVwError(3) Specifies the error code set by the last OVw
API call

688

OVwErrorMsg(3) Describes OVw API error codes 689

OVwEventIntro(3) Introduces NetView for AIX graphical user
interface events

691

OVwFileDescriptor(3) Accesses the NetView for AIX program's com-
munications channel

694

OVwFindMenuItem(3) Finds a menu item 696

OVwFreeActionRegInfo(3) Frees the memory allocated for an
OVwActionRegInfo structure

603

OVwFreeAppRegInfo(3) Frees the memory allocated for an
OVwAppRegInfo structure

607

ñA callback for an event might not be generated if the event resulted from an API call instead of a graphical user
interface (GUI) action.

6 Programmer's Reference

Table 1 (Page 7 of 12). Graphical User Interface Routines and Their Reference Pages

Routine Name Description See Page

OVwFreeMapInfo(3) Frees the memory allocated for an
OVwMapInfo structure

719

OVwFreeObjectInfo(3) Frees the memory allocated for an
OVwObjectInfo structure

725

OVwFreeObjectList(3) Frees the memory allocated for an
OVwObjectList structure

745

OVwFreeSubmapInfo(3) Frees memory allocated for an
OVwSubmapInfo structure

733

OVwFreeSubmapList(3) Frees the memory allocated for an
OVwSubmapList structure

747

OVwFreeSymbolInfo(3) Frees memory allocated for an
OVwSymbolInfo structure

735

OVwFreeSymbolList(3) Frees the memory allocated for an
OVwSymbolList structure

750

OVwFreeSymbolTypeList(3) Frees the memory allocated for an
OVwSymbolTypeList structure

753

OVwGetAction(3) Retrieves registration information for the speci-
fied action in the current registration context

603

OVwGetApp(3) Retrieves registration information for the appli-
cation that is the current registration context

607

OVwGetAppConfigValues(3) Gets application configuration parameters 698

OVwGetAppName(3) Returns the name of the running application 701

OVwGetConnSymbol(3) Gets a connection symbol 702

OVwGetFirstAction(3) Returns the name of the first action registered
in the current registration context

706

OVwGetFirstMenuItem(3) Returns the ID of the first menu item regis-
tered in the current registration context

708

OVwGetFirstMenuItemFunction(3) Returns the type and argument for the first
function bound to a menu item in the current
registration context

710

OVwGetFirstObjMenuItem(3) Returns the ID of the first object menu item
registered in the current registration context

712

OVwGetFirstObjMenuItemFunction(3) Returns the type and argument for the first
function bound to an object menu item in the
current registration context

712

OVwGetFirstRegContext(3) Returns the name of the first application in the
NetView for AIX program's list of registered
applications

717

OVwGetMapInfo(3) Returns information about the open map 719

OVwGetMenuItem(3) Retrieves registration information for the speci-
fied menu item in the current registration
context

613

OVwGetMenuItemMenu(3) Returns the ID of the menu to which an item
is attached

721

ñA callback for an event might not be generated if the event resulted from an API call instead of a graphical user
interface (GUI) action.

 Chapter 1. Function Tables for NetView for AIX Man Pages 7

Table 1 (Page 8 of 12). Graphical User Interface Routines and Their Reference Pages

Routine Name Description See Page

OVwGetMenuItemPath(3) Returns the path location of a menu item in
the NetView for AIX menu bar structure

721

OVwGetMenuPathSeparator(3) Returns the current string used to separate
menu labels in a menu path string

723

OVwGetNextAction(3) Returns the name of the first action registered
in the current registration context

706

OVwGetNextMenuItem(3) Returns the ID of the next menu item regis-
tered in the current registration context

708

OVwGetNextObjMenuItem(3) Returns the ID of the next object menu item
registered in the current registration context

712

OVwGetNextMenuItemFunction(3) Returns the type and argument for the next
function bound to a menu item in the current
registration context

710

OVwGetNextObjMenuItemFunction(3) Returns the type and argument for the next
function bound to an object menu item in the
current registration context

715

OVwGetNextRegContext(3) Returns the name of the next application in
the NetView for AIX program's list of regis-
tered applications

717

OVwGetObjectInfo(3) Returns map-specific object information 725

OVwGetObjMenuItemMenu(3) Returns the ID of the object menu to which an
item is attached

727

OVwGetObjMenuItemPath(3) Returns the path location of a menu item in
the NetView for AIX menu bar structure

727

OVwGetRegContext(3) Returns the name of the current registration
context

729

OVwGetSelections(3) Returns the list of selected objects on the
open map

731

OVwGetSubmapInfo(3) Returns information about a submap on the
open map

733

OVwGetSymbolInfo(3) Returns information about a symbol on the
open map

735

OVwGetSymbolsByObject(3) Returns a list of all the symbols that represent
an object on the open map

737

OVwHighlightObject(3) Highlights all the symbols representing a spec-
ified object on the open map

739

OVwHighlightObjects(3) Highlights all the symbols representing the
objects in a list on the open map

739

OVwInit(3) Initializes an application's connection to the
NetView for AIX program

741

OVwIsIdEqual(3) Compares OVw API IDs 743

OVwIsIdNull(3) Tests an OVw API ID to determine whether it
is NULL

743

ñA callback for an event might not be generated if the event resulted from an API call instead of a graphical user
interface (GUI) action.

8 Programmer's Reference

Table 1 (Page 9 of 12). Graphical User Interface Routines and Their Reference Pages

Routine Name Description See Page

OVwListObjectsOnMap(3) Returns a filtered list of the objects on the
open map

745

OVwListSubmaps(3) Returns a filtered list of the submaps on the
open map

747

OVwListSymbols(3) Returns a filtered list of symbols on a submap
of the open map

750

OVwListSymbolTypeCaps(3) Returns a list of the capability field values that
would be set if you add an object to the map
using this symbol type

753

OVwListSymbolTypes(3) Returns a list of all the currently registered
symbol types

753

OVwLockRegUpdates(3) Acquires permission for the application to
make subsequent calls that modify NetView
for AIX registration information

755

OVwMainLoop(3) Defines a while loop that continuously proc-
esses NetView for AIX events and
application-registered input events

757

OVwMapCloseCB(3)ñ Functions as a callback for a map close event 759

OVwMapOpenCB(3)ñ Functions as a callback for a map open event 761

OVwPeekInputEvent(3) Determines whether an application's regis-
tered input source has input awaiting proc-
essing

763

OVwPeekOVwEvent(3) Determines whether a specific type of NetView
for AIX event is awaiting processing

763

OVwPending(3) Determines whether a NetView for AIX event
or application-registered event is awaiting
processing

765

OVwProcessEvent(3) Processes a pending NetView for AIX event 767

OVwQueryAddSymbolCB(3)ñ Functions as a callback for a query add
symbol event

833

OVwQueryAppConfigCB(3)ñ Functions as a callback for a query application
configuration event

839

OVwQueryConnectSymbolsCB(3)ñ Functions as a callback for a query connect
symbols event

842

OVwQueryDeleteSymbolsCB(3)ñ Functions as a callback for a query delete
symbols event

846

OVwQueryDescribeCBñ Functions as a callback for a query describe
symbols event

849

OVwRegIntro(5) Introduces NetView for AIX graphical user
interface registration files

769

OVwRenameRegContext(3) Changes the name of a NetView for AIX regis-
tration context

795

OVwRemoveActionCallback(3) Unregisters a callback for a registered action 532

ñA callback for an event might not be generated if the event resulted from an API call instead of a graphical user
interface (GUI) action.

 Chapter 1. Function Tables for NetView for AIX Man Pages 9

Table 1 (Page 10 of 12). Graphical User Interface Routines and Their Reference Pages

Routine Name Description See Page

OVwRemoveAlertCallback(3) Unregisters a callback for a NetView for AIX
alert

535

OVwRemoveCallback(3) Unregisters procedures to process NetView for
AIX events

539

OVwRemoveHelpCallback(3) Unregisters a callback for application help
requests

541

OVwRemoveInput(3) Removes an event source 543

OVwRemoveMenuItem(3) Removes a menu item from a menu in current
context

545

OVwRemoveMenuItemFunction(3) Removes a menu item function from a menu
item in current context

547

OVwRemoveObjMenuItem(3) Removes a menu item from an object menu in
current context

550

OVwRemoveObjMenuItemFunction(3) Removes a menu item function from an object
menu item in current context

552

OVwRemoveToolPalItem(3) Removes a tool item from the Tool Window 555

OVwSaveRegUpdates(3) Saves modifications to registration information 797

OVwSelectListChangeCB(3)ñ Functions as a callback for a selection list
change event

799

OVwSetAction(3) Modifies registration information for the speci-
fied action in the current registration context

603

OVwSetApp(3) Modifies registration information for the appli-
cation that is the current registration context.

607

OVwSetAppConfigValues(3) Sets application configuration parameters 698

OVwSetBackgroundGraphic(3) Sets the background graphic for a specified
submap

801

OVwSetMenuItem(3) Modifies registration information for the speci-
fied menu item in the current registration
context

613

OVwSetObjMenuItem(3) Modifies registration information for the speci-
fied object menu item in the current registra-
tion context

616

OVwSetMenuPathSeparator(3) Sets the character string used to separate
menu labels in a menu path string to a speci-
fied value

723

OVwSetRegContext(3) Sets the name of the current registration
context to that of the specified application

729

OVwSetStatusOnObject(3) Sets the status of all symbols on the open
map of the specified object that have the
symbol status source ovwObjectStatusSource

803

OVwSetStatusOnObjects(3) Sets the object status on multiple objects 803

ñA callback for an event might not be generated if the event resulted from an API call instead of a graphical user
interface (GUI) action.

10 Programmer's Reference

Table 1 (Page 11 of 12). Graphical User Interface Routines and Their Reference Pages

Routine Name Description See Page

OVwSetStatusOnSymbol(3) Sets the status of a specified symbol if the
symbol has status source
ovwSymbolStatusSource and if the application
has permission to modify the symbol

803

OVwSetStatusOnSymbols(3) Sets the symbol status on symbols in a list 803

OVwSetSubmapName(3) Sets the name of a submap 806

OVwSetSymbolApp(3) Sets application interest in a symbol 808

OVwSetSymbolBehavior(3) Sets the behavior of a symbol 810

OVwSetSymbolLabel(3) Sets the label of a symbol 813

OVwSetSymbolPosition(3) Sets the position of a symbol 815

OVwSetSymbolStatusSource(3) Sets the status source of a symbol 820

OVwSetSymbolType(3) Sets the symbol type of a symbol 822

OVwShowHelp(3) Requests presentation of help information 825

OVwSubmapCloseCB(3)ñ Functions as a callback for a submap close
event.

827

OVwSubmapOpenCB(3)ñ Functions as a callback for a submap open
event

829

OVwUndoRegUpdates(3) Destroys all changes to registration informa-
tion since the last call to
OVwSaveRegUpdates or
OVwLockRegUpdates

797

OVwUnLockRegUpdates(3) Releases previously acquired update permis-
sions

755

OVwUserSubmapCreateCB(3)ñ Functions as a callback for a user submap
create event

831

OVwVerifyAdd(3) Validates the addition of a symbol 833

OVwVerifyAppConfigChange(3) Validates a change of application configuration
values

839

OVwVerifyConnect(3) Validates the user-selected connect operation
for two symbols

842

OVwVerifyDeleteSymbol(3) Validates the deletion of symbols by a user 846

OVwVerifyDescribeChange(3) Validates the change of information describing
an object by the user

849

OVwXtAddInput(3) Registers the NetView for AIX event source
with X

852

OVwXtAppAddInput(3) Registers the NetView for AIX event source
with X for a specified X application context

852

OVwXtAppMainLoop(3) Dispatches NetView for AIX events, input
events registered with the NetView for AIX
program, and X events for a specified X appli-
cation context

855

ñA callback for an event might not be generated if the event resulted from an API call instead of a graphical user
interface (GUI) action.

 Chapter 1. Function Tables for NetView for AIX Man Pages 11

Table 1 (Page 12 of 12). Graphical User Interface Routines and Their Reference Pages

Routine Name Description See Page

OVwXtMainLoop(3) Dispatches NetView for AIX events, input
events registered with the NetView for AIX
program, and X events

855

ñA callback for an event might not be generated if the event resulted from an API call instead of a graphical user
interface (GUI) action.

 SNMP Routines

Table 2 (Page 1 of 3). SNMP Routines and Their Reference Pages

Routine Name Description See Page

nvSnmpBlockingGetTable(3) Retrieves an entire table from the MIB in a
blocking manner

376

nvSnmpErrString(3) Returns SNMP-specific error strings 379

nvSnmpGetTable(3) Retrieves an entire table from the MIB in a
non-blocking manner

376

nvSnmpGetTableElement(3) Retrieves the specified element from the
OVsnmpVarBind structure returned by
nvSnmpBlockingGetTable or one of its related
functions

376

nvSnmpTrapOpenFilter(3) Opens a session with EMS to receive SNMP
filtered traps in a non-X environment

380

nvSnmpXGetTable(3) Retrieves an entire table from the MIB if
XtMainLoop or an equivalent function is used
to manage file I/O multiplexing

376

nvSnmpXTrapOpenFilter(3) Opens a session with EMS to receive SNMP
filtered traps in an X environment

380

OVsnmpAddNullVarBind(3) Creates and initializes a new OVsnmpVarBind
data structure

435

OVsnmpAddTypedVarBind(3) Creates and initializes a new OVsnmpVarBind
data structure and allocates space for the
value of the variable

435

OVsnmpAddVarBind(3) Allocates space for and initializes an
OVsnmpVarBind data structure for getting and
setting variables

435

OVsnmpBlockingSend(3) Sends an SNMP PDU and receives the
response

437

OVsnmpClose(3) Frees resources allocated by a session
created by a call to OVsnmpOpen

440

OVsnmpConfAllocEntry(3) Allocates dynamic storage for an
OVsnmpConfEntry structure

442

OVsnmpConfAllocWcList(3) Allocates dynamic storage for an
OVsnmpConfWcList structure

443

OVsnmpConfClose(3) Closes an SNMP Configuration Database 444

OVsnmpConfCopyEntry(3) Allocates a new OVsnmpConfEntry and copies
the contents of the old OVsnmpConfEntry to
the new one

445

12 Programmer's Reference

Table 2 (Page 2 of 3). SNMP Routines and Their Reference Pages

Routine Name Description See Page

OVsnmpConfCreateEntry(3) Creates a configuration record in the SNMP
Configuration Database

446

OVsnmpConfDbName(3) Determines the name of the SNMP Configura-
tion Database

448

OVsnmpConfDeleteCache(3) Removes all cached SNMP configuration data
from an open database

449

OVsnmpConfDeleteEntry(3) Deletes a record from the SNMP Configuration
Database

450

OVsnmpConfExportFile(3) Dumps the contents of the SNMP Configura-
tion Database to a file

452

OVsnmpConfFileName(3) Determines the pathname of the Version 2
backward-compatibility SNMP configuration file
associated with the SNMP Configuration Data-
base

454

OVsnmpConfFreeDest(3) Frees an OVsnmpConfDest structure and its
contents

456

OVsnmpConfFreeEntry(3) Frees an OVsnmpConfEntry structure and its
contents

457

OVsnmpConfFreeWcList(3) Frees an OVsnmpConfWcList structure and its
contents

459

OVsnmpConfOpen(3) Opens an SNMP Configuration database for
subsequent use

460

OVsnmpConfImportFile(3) Replaces the contents of the SNMP Config-
uration Database with configuration informa-
tion obtained from a Version 2 compatible
configuration file

463

OVsnmpConfParseEntry(3) Parses a line in Version 2 ovsnmp.conf file
form and produces an OVsnmpConfEntry
structure

465

OVsnmpConfPrintCntl(3) Prints the database control information to
stdout

467

OVsnmpConfPrintDest(3) Prints the resolved SNMP configuration
parameters for the target destination to stdout

468

OVsnmpConfPrintEntry(3) Prints the SNMP configuration parameters for
a target, wildcard, or global default to stdout

469

OVsnmpConfReadCntl(3) Reads the control parameters of the SNMP
Configuration Database

470

OVsnmpConfReadDefault(3) Reads the global default paramenters in the
SNMP Configuration Database

472

OVsnmpConfReadEntry(3) Reads the parameters for the target node from
the SNMP Configuration Database

474

OVsnmpConfReadNextDest(3) Reads the next configuration entry from the
SNMP Configuration Database cache

476

OVsnmpConfReadNextEntry(3) Reads the next configuration entry from the
SNMP Configuration Database

478

OVsnmpConfReadWcList(3) Reads the wildcard entries from the SNMP
Configuration Database as a singly linked list

480

 Chapter 1. Function Tables for NetView for AIX Man Pages 13

Table 2 (Page 3 of 3). SNMP Routines and Their Reference Pages

Routine Name Description See Page

OVsnmpConfResolveDest(3) Returns the resolved SNMP configuration
parameters for a target node

482

OVsnmpConfStoreCntl(3) Stores the control parameters for the SNMP
Configuration Database

484

OVsnmpConfStoreDefault(3) Stores the global default SNMP configuration
parameters in the SNMP Configuration Data-
base

486

OVsnmpConfStoreEntry(3) Stores the SNMP configuration parameters for
a target in the SNMP Configuration Database

488

OVsnmpCreatePdu(3) Allocates an OVsnmpPdu data structure of the
specified type

490

OVsnmpDoRetry(3) Retransmits pending SNMP requests 492

OVsnmpErrString(3) Returns SNMP-specific error strings 494

OVsnmpFixPdu(3) Deletes a variable with an error from an
SNMP PDU

495

OVsnmpFreePdu(3) Frees all memory associated with the speci-
fied PDU

497

OVsnmpGetRetryInfo(3) Gets information about pending SNMP
requests to be retransmitted

499

OVsnmpIntro(5) Introduces the ovsnmp library 501

OVsnmpOpen(3) Establishes an active SNMP session for com-
munication with an SNMP agent

507

OVsnmpRead(3) Receives SNMP messages on all active ses-
sions

510

OVsnmpRecv(3) Receives an SNMP PDU for a specified
session

512

OVsnmpSend(3) Sends an SNMP PDU in non-blocking mode 514

OVsnmpTrapOpen(3) Connects to the trapd daemon and sets up to
receive traps in a non-X environment

517

OVsnmpXClose(3) Frees resources allocated by a session
created by a call to OVsnmpXOpen in an X
environment

440

OVsnmpXOpen(3) Establishes an active SNMP session for com-
munication with an SNMP agent in an X envi-
ronment

507

OVsnmpXSend(3) Sends an SNMP PDU in non-blocking mode in
an X environment

514

OVsnmpXTrapOpen(3) Connects to the trapd daemon and sets up to
receive traps in an X environment

517

 WinSNMP Functions

14 Programmer's Reference

Table 3 (Page 1 of 2). WinSNMP Functions and Their Reference Pages

Routine Name Description See Page

SnmpCleanup(3) Deallocates all WinSNMP application
resources

858

SnmpClose(3) Closes a WinSNMP session 860

SnmpContextToStr(3) Retrieves a textual context descriptor corre-
sponding to the given WinSNMP context

862

SnmpCountVbl(3) Counts the number of varbinds in a varbindlist
structure

865

SnmpCreatePdu(3) Creates an SNMP protocol data unit (PDU) for
use in subsequent communication requests

867

SnmpCreateSession(3) Creates a WinSNMP session and initializes
resources for subsequent communication func-
tions

869

SnmpCreateVbl(3) Creates and initializes a new varbindlist struc-
ture

872

SnmpDecodeMsg(3) Decodes the specified SNMP message 874

SnmpDeleteVb(3) Deallocates resources associated with the
specified WinSNMP varbindlist

876

SnmpDuplicatePdu(3) Duplicates the specified PDU 878

SnmpDuplicateVbl(3) Duplicates the specified varbindlist structure 880

SnmpEncodeMsg(3) Encodes an SNMP message without sending
it

882

SnmpEntityToStr(3) Returns a textual string for the given
WinSNMP entity

884

SnmpFreeContext(3) Deallocates resources for the specified
WinSNMP context

886

SnmpFreeDescriptor(3) Deallocates resources associated with the
specified WinSNMP descriptor object

888

SnmpFreeEntity(3) Deallocates resources for the specified
WinSNMP entity

890

SnmpFreePdu(3) Deallocates resources for the specified
WinSNMP PDU

892

SnmpFreeVbl(3) Deallocates resources associated with the
specific VBL

894

SnmpGetLastError(3) Indicates why the last WinSNMP operation
failed

896

SnmpGetLastError(3) Provides a textual description of why the last
WinSNMP operation failed

898

SnmpGetPduData(3) Extracts data from the specified PDU 900

SnmpGetRetransmitMode(3) Indicates the retransmission mode currently in
effect

903

SnmpGetRetry(3) Retrieves the retry value for the specified
entity

905

SnmpGetTimeout(3) Retrieves timeout information for the specified
entity

907

 Chapter 1. Function Tables for NetView for AIX Man Pages 15

Table 3 (Page 2 of 2). WinSNMP Functions and Their Reference Pages

Routine Name Description See Page

SnmpGetTranslateMode(3) Indicates the entity/context translation mode
currently in effect

909

SnmpGetVb(3) Extracts the varbind identified by the supplied
index from a varbindlist structure

911

SnmpOidCompare(3) Lexicographically compares two object identi-
fiers (OIDs)

913

SnmpOidCopy(3) Duplicates the specified OID 915

SnmpOidToStr(3) Converts a WinSNMP OID into a dotted
numeric string

917

SnmpRecvMsg(3) Retrieves results of a completed SNMP
request or trap for the specified session

919

SnmpRegister(3) Registers the calling application to receive or
discontinue trap and inform notifications

922

SnmpSelect(3) Checks the I/O status of multiple file descrip-
tors and message queues, handling SNMP file
descriptors transparently

925

SnmpSendMsg(3) Sends an SNMP message to the specified
destination entity

927

SnmpSetPduData(3) Updates the specified PDU with data supplied
by the calling application

930

SnmpSetRetransmitMode(3) Sets the retransmission mode for subsequent
SnmpSendMsg operations

932

SnmpSetRetry(3) Sets the number of retries for subsequent
communication with the specified entity

934

SnmpSetTimeout(3) Sets the timeout value for the specific entity 936

SnmpSetTranslateMode(3) Sets the entity/context translate mode 938

SnmpSetVb(3) Adds and updates varbinds in a varbindlist
structure

940

SnmpStartup(3) Initializes and allocates the necessary
resources to perform other WinSNMP func-
tions

942

SnmpStrToContext(3) Defines a WinSNMP context identified by the
input string

945

SnmpStrToEntity(3) Creates a WinSNMP entity identified by the
null-terminated input string

948

SnmpStrToOid(3) Converts a textual object identifier into an
internal WinSNMP OID

951

 XMP Functions

Table 4 (Page 1 of 3). XMP Functions and Their Reference Pages

Routine Name Description See Page

at_array_to_oid(3) Encodes an array of integers into an OID 26

at_free(3) Frees memory that has been allocated by an
XMP function call

27

16 Programmer's Reference

Table 4 (Page 2 of 3). XMP Functions and Their Reference Pages

Routine Name Description See Page

at_oid_match(3) Compares two OM object-identifier values 28

at_oid_to_array(3) Decodes an OID into an array of integers 29

at_oid_to_str(3) Decodes an OID into an ASCII string 30

at_str_to_oid(3) Encodes an ASCII string into an OID 31

mp_abandon(3) Abandons locally the result of a pending,
asynchronous operation or notification

34

mp_action_req(3) Requests an action from managed objects 36

mp_action_rsp(3) Replies to a confirmed action request 39

mp_bind(3) Opens a management session 42

mp_cancel_get_req(3) Cancels in an orderly manner the result of a
pending get operation that is executing in
asynchronous mode

44

mp_cancel_get_rsp(3) Replies to a requested cancel-get operation 47

mp_create_req(3) Creates a new managed-object instance 49

mp_create_rsp(3) Replies to a requested create operation 52

mp_delete_req(3) Deletes managed objects 55

mp_delete_rsp(3) Replies to a requested delete operation 58

mp_error_message(3) Returns an error message describing a partic-
ular error

61

mp_event_report_req(3) Reports a notification emitted by a managed
object

62

mp_event_report_rsp(3) Replies to a previously reported management
notification

65

mp_get_next_req(3) Retrieves the next SNMP management infor-
mation

67

mp_get_req(3) Retrieves management information 69

mp_get_rsp(3) Replies to a requested get operation or
get-next operation

72

mp_initialize(3) Initializes the XOM workspace 75

mp_receive(3) Retrieves the parameter of a management
operation or notification

76

mp_set_req(3) Modifies the attribute values of managed
objects

81

mp_set_rsp(3) Replies to a requested set operation 84

mp_shutdown(3) Frees or discards a workspace 87

mp_unbind(3) Terminates a management session 88

mp_version(3) Negotiates features of the interface and
service

90

mp_wait(3) Suspends the caller until a management
message is available from one or more bound
sessions

93

om_copy(3) Duplicates a private object 396

 Chapter 1. Function Tables for NetView for AIX Man Pages 17

Table 4 (Page 3 of 3). XMP Functions and Their Reference Pages

Routine Name Description See Page

om_copy_value(3) Copies a string value from one private object
to another

398

om_create(3) Creates a new private object 400

om_decode(3) Creates an unencoded version of an encoded
private object

402

om_delete(3) Deletes a private or service-generated object 404

om_encode(3) Encodes an OM object 406

om_get(3) Creates a public copy of all or particular parts
of a private object

408

om_instance(3) Checks the class of an object 412

om_put(3) Adds or replaces attributes in a private object 414

om_read(3) Reads a string segment in a private object 417

om_remove(3) Removes attribute values from a private object 419

om_write(3) Writes a segment of a string into a private
object

421

Filtering and Thresholding Functions

Table 5. Filtering and Thresholding Functions and Their Reference Pages

Routine Name Description See Page

nvFilterDefine(3) Creates a new filtering rule or updates an
existing rule

126

nvFilterDelete(3) Removes a filtering rule from a filter file 129

nvFilterErrorMsg(3) Retrieves the error message that corresponds
to an nvFilter API error return code

130

nvFilterFreeNameList(3) Frees the memory allocated during creation of
the list of filtering rule names

131

nvFilterGet(3) Retrieves the contents of a filtering rule 132

nvFilterGetNameList(3) Retrieves a list of all filtering rules in a filter
file

134

OVeDeregister(3) Deregisters the caller from receiving events
from the listed network nodes

425

OVeFilterAttr(3) Builds an event filter attribute that can be used
in a call to OVeRegister

427

OVeRegister(3) Registers the caller with EMS to receive
events from the listed network nodes

431

GTM API Routines

Table 6 (Page 1 of 4). GTM API Routines and Their Reference Pages

Routine Name Description See Page

nvotChangeArcDetails(3) Changes the contents of the details variable
for the specified arc.

137

18 Programmer's Reference

Table 6 (Page 2 of 4). GTM API Routines and Their Reference Pages

Routine Name Description See Page

nvotChangeArcIconInGraph(3) Changes the icon representing an arc in a
graph.

141

nvotChangeArcLabelInGraph(3) Changes the label on an arc in a graph. 146

nvotChangeArcStatus(3) Changes one or more status values of an arc. 150

nvotChangeBoxBackground(3) Changes the background image for the child
submap of a box graph.

154

nvotChangeBoxDetails(3) Changes the contents of the details variable
for the specified box graph.

157

nvotChangeBoxIconInGraph(3) Changes the icon representing a box graph in
a graph.

160

nvotChangeBoxLabelInGraph(3) Changes the label on a box in a graph. 163

nvotChangeBoxPositionInGraph(3) Changes the position of a box graph icon in a
graph submap.

166

nvotChangeGraphBackground(3) Changes the background image for the child
submap of a graph.

169

nvotChangeGraphDetails(3) Changes the contents of the details variable
for the specified graph.

172

nvotChangeGraphIcon(3) Changes the icon and label of orphan graphs,
boxes, and vertices.

175

nvotChangeGraphIconInGraph(3) Changes the icon representing a graph in a
graph.

178

nvotChangeGraphLabelInGraph(3) Changes the label on a graph in a graph. 181

nvotChangeGraphPositionInGraph(3) Changes the position of a graph icon in a
graph submap.

184

nvotChangeRootGraphIcon(3) Changes the icon representing the root graph. 187

nvotChangeRootGraphLabel(3) Changes the label on the root graph. 190

nvotChangeUnderlyingArcIcon(3) Changes an underlying arc symbol and label. 193

nvotChangeVertexDetails(3) Changes the contents of the details variable
for the specified vertex.

197

nvotChangeVertexIconInBox(3) Changes the icon representing a vertex in a
box graph.

200

nvotChangeVertexIconInGraph(3) Changes the icon representing a vertex in a
graph.

203

nvotChangeVertexLabelInBox(3) Changes the label on a vertex in a box graph. 206

nvotChangeVertexLabelInGraph(3) Changes the label on a vertex in a graph. 209

nvotChangeVertexPositionInBox(3) Changes the position of a vertex icon in a box
graph submap.

212

nvotChangeVertexPositionInGraph(3) Changes the position of a vertex icon in a
graph submap.

215

nvotChangeVertexStatus(3) Changes one or more status values of a
vertex.

218

nvotCreateArcInGraph(3) Creates an arc in a graph. 221

nvotCreateBoxInGraph(3) Creates a box graph in a graph. 227

 Chapter 1. Function Tables for NetView for AIX Man Pages 19

Table 6 (Page 3 of 4). GTM API Routines and Their Reference Pages

Routine Name Description See Page

nvotCreateGraph(3) Creates a graph of graph type GRAPH or
BOX.

232

nvotCreateGraphInGraph(3) Creates a graph in a graph. 235

nvotCreateParallelUnderlyingArc(3) Creates an arc that lies under another arc. 240

nvotCreateProvidingSap(3) Creates a SAP of type providing. 245

nvotCreateRootGraph(3) Creates a root graph. 249

nvotCreateSerialUnderlyingArc(3) Creates an arc that lies under another arc. 253

nvotCreateUsingSap(3) Creates a SAP of type using. 258

nvotCreateVertexInBox(3) Creates a vertex in a box graph. 261

nvotCreateVertexInGraph(3) Creates a vertex in a graph. 265

nvotDeleteArc(3) Deletes an arc. 269

nvotDeleteArcFromGraph(3) Deletes an arc from a graph. 272

nvotDeleteBox(3) Deletes a box graph. 276

nvotDeleteBoxFromGraph(3) Deletes a box graph from a graph. 278

nvotDeleteGraph(3) Deletes a graph. 281

nvotDeleteGraphFromGraph(3) Deletes a graph from a graph. 283

nvotDeleteProvidingSap(3) Deletes a SAP of type providing. 286

nvotDeleteUnderlyingArc(3) Deletes an underlying arc relationship to its
parent arc.

289

nvotDeleteUsingSap(3) Deletes a SAP of type using. 292

nvotDeleteVertex(3) Deletes a vertex. 295

nvotDeleteVertexFromBox(3) Deletes a vertex from a box graph. 297

nvotDeleteVertexFromGraph(3) Deletes a vertex from a graph. 299

nvotDone(3) Closes the socket connection to gtmd. 302

nvotFree(3) Frees memory allocated by a get routine. 304

nvotGetArcsInGraph(3) Gets a list of all arcs contained in a graph. 307

nvotGetArcObjectId(3) Gets an arc ObjectId from the OVW database. 310

nvotGetBoxesInGraph(3) Gets a list of all box graphs contained in a
graph.

314

nvotGetBoxObjectId(3) Gets a box graph ObjectID from the OVW
database.

317

nvotGetBoxesWhichVertexIsMemberOf(3) Gets a list of all boxes of which a vertex is
member

320

nvotGetError(3) Retrieves the error code set by the last func-
tion call.

323

nvotGetErrorMsg(3) Converts a return code into a string. 326

nvotGetGraphObjectId(3) Gets a graph ObjectId from the OVW data-
base.

327

nvotGetGraphsInGraph(3) Gets a list of all graphs contained in a graph. 330

nvotGetGraphsWhichArcIsMemberOf(3) Gets a list of all graphs of which an arc is a
member.

333

20 Programmer's Reference

Table 6 (Page 4 of 4). GTM API Routines and Their Reference Pages

Routine Name Description See Page

nvotGetGraphsWhichBoxIsMemberOf(3) Gets a list of all graphs of which a box is
member.

338

nvotGetGraphsWhichGraphIsMemberOf(3) Gets a list of all graphs of which a child graph
is a member.

341

nvotGetGraphsWhichVertexIsMemberOf(3) Gets a list of all graphs of which a vertex is
member

344

nvotGetSapsOnVertex(3) Gets a list of all SAPs associated with a
vertex.

347

nvotGetVertexObjectId(3) Gets a vertex ObjectId from the OVW data-
base.

350

nvotGetVerticesInBox(3) Gets a list of all vertices contained in a box
graph.

353

nvotGetVerticesInGraph(3) Gets a list of all vertices contained in a graph. 356

nvotInit(3) Opens a socket connection to gtmd. 359

nvotSetCenterBoxForGraph(3) Specifies which box graph icon is to be the
center of a star graph submap.

362

nvotSetCenterGraphForGraph(3) Specifies which graph icon is to be the center
of a star graph submap.

365

nvotSetSynchronousCreation(3) Specifies whether OVw object IDs are to be
returned in synchronous mode.

368

nvotVertexHandler(3) Provides open access to all tables, variables,
and operations defined in the NetView for AIX
Generic Topology MIB.

370

Collection Facility Routines

Table 7 (Page 1 of 2). Collection Facility Routines and Their Reference Pages

Routine Name Description See Page

nvCollectionAdd(3) Defines new collections of objects 95

nvCollectionAddCallback(3) Registers procedures to process collection
facility events

98

nvCollectionDelete(3) Deletes a collection definition 100

nvCollectionDone(3) Closes a connection to the collection facility
server

102

nvCollectionError(3) Returns the error code sent by the last col-
lection facility API call

103

nvCollectionErrorMsg(3) Returns a textual description of a collection
facility API error code

104

nvCollectionEvaluate(3) Evaluates a rule and returns a list of objects
that fit the rule

105

nvCollectionFreeDefn(3) Frees memory used for collection facility func-
tions

107

nvCollectionGetAllForObject(3) Obtains a list of all collections the specified
object is a member of

109

 Chapter 1. Function Tables for NetView for AIX Man Pages 21

Table 7 (Page 2 of 2). Collection Facility Routines and Their Reference Pages

Routine Name Description See Page

nvCollectionGetInfo(3) Obtains the description and rule defined for a
collection

111

nvCollectionGetTimestamp(3) Returns the last time a collection was updated 113

nvCollectionIntersect(3) Finds the intersection of two collections 114

nvCollectionListCollections(3) Obtains a list of all collections currently
defined

116

nvCollectionModify(3) Modifies a collection definition 117

nvCollectionOpen(3) Establishes a connection to the collection
facility server

119

nvCollectionRead(3) Reads collection facility events 121

nvCollectionResolve(3) Obtains a list of all objects currently in a spec-
ified collection

122

nvCollectionUnion(3) Finds the union of two collections 124

 Client/Server APIs

Table 8. Client/Server APIs and Their Reference Pages

Routine Name Description See Page

NVisClient(3) Checks to see if an application is running on a
client or a server

136

OVDefaultServerName(3) Determines the name of the default server to
which a client should connect

424

 Security Functions

Table 9. Security Functions and Their Reference Pages

Routine Name Description See Page

nvs_Audit(3) Defines a format for audit entries to be
entered in the security logfile.

384

nvs_DeleteSecContext(3) Closes a NetView for AIX client's security
context with the NetView for AIX security
server.

386

nvs_getClientPerms(3) Obtains a bitmask representation of the per-
missions a user has for different NetView for
AIX functions

388

nvs_isClientAuthorized Query a user's access to NetView for AIX
functions to determine if a user can perform
an action

391

nvs_SecErrMsg(3) Returns status message from security API
calls

394

nvs_isSecOn(3) Determines whether NetView for AIX security
is active

395

22 Programmer's Reference

 Miscellaneous Functions

Table 10. Miscellaneous Functions and Their Reference Pages

Routine Name Description See Page

gtmdump(3) Monitors GTM trap reception and dumps the
contents of the GTM database to a file for
problem determination purposes.

32

OVmib_get_objid_name(3) Converts a MIB variable object identifier to its
textual name

433

OVmib_read_objid(3) Converts a MIB variable name to its object
identifier format

434

OVsDone(3) Notifies ovspmd that a well-behaved object
manager is exiting

520

OVsInit(3) Returns a file descriptor for interprocess com-
munication with ovspmd

520

OVsInitComplete(3) Notifies ovspmd when a well-behaved object
manager has finished initializing

520

OVsPMD_API(3) Describes routines for well-behaved daemon
process in the NetView for AIX program

520

OVsReceive(3) Receives a command from ovspmd when
called by a well-behaved object manager

520

OVuLog(3) Enables programs to issue logging messages
through the nettl logging facility

522

OVuTL(3) Enables programs to provide logging and
tracing output

522

OVwTLInit(3) Initializes the software and hostname fields in
the logging and tracing output

522

OVwTrace(3) Enables programs to issue tracing messages
through the nettl tracing facility

522

XnvApplicationShell(3) Functions as the main top-level window for an
application managed by the NetView for AIX
graphical user interface

953

XnvTopLevelShell(3) Functions as the main top-level window for an
application managed by the NetView for AIX
graphical user interface

956

 Introductions

Table 11. API Introductions and Their Reference Pages

Page Name Description See Page

OVsnmpIntro(5) Introduces the SNMP API 501

OVwApiIntro(5) Introduces the OVw (End User Interface) API 560

OVwRegIntro(5) Introduces the registration files used by
NetView for AIX

769

 Chapter 1. Function Tables for NetView for AIX Man Pages 23

24 Programmer's Reference

 Chapter 2. Reference Pages

This chapter contains the reference (man) pages for the NetView for AIX program. These reference
pages are organized alphabetically. You can also access these reference pages through the
Help..NetView for AIX Library menu option or by using the man command.

 Copyright IBM Corp. 1992, 1995 25

 at_array_to_oid(3)

 at_array_to_oid(3)

 Purpose

Encodes an array of integers into an OID

 Syntax
 #include <xom.h>
 #include <xmp.h>

OM_return_code at_array_to_oid (unsigned int num_element,
unsigned int \obj_id_array,
OM_string \new_obj_id);

 Description

The at_array_to_oid creates an Object Identifier string from an array of integers. The XOM API requires
that Object Identifier strings be input to the API as BER encoded Object Identifiers. The BER encoded
string is returned in malloc'ed memory, which you should free by calling at_free.

 Parameters
num_element Specifies the number of elements in the array of integers.

obj_id_array Specifies a pointer to the first integer in the array of integers to be encoded.

new_obj_id Specifies a pointer to the newly encoded Object Identifier string. When the string is no
longer needed, the memory can be deallocated with the at_free command.

 Return Values

If successful, at_array_to_oid returns a value of [OM_SUCCESS]. If unsuccessful, at_array_to_oid returns
one of the following error codes.

 Error Codes
[OM_MEMORY_INSUFFICIENT] The service cannot allocate the main memory it needs to complete

the function.

[OM_POINTER_INVALID] In the C-language interface, a pointer that is not valid was provided
as a function argument or as the receptacle for a function result.

[OM_WRONG_VALUE_LENGTH] An attribute has, or would have, a value that violates the value length
constraints in force.

[OM_WRONG_VALUE_MAKEUP] An attribute has, or would have, a value that violates a constraint of
the value's syntax.

26 Programmer's Reference

 at_free(3)

 at_free(3)

 Purpose

Frees memory that has been allocated by an XMP function call

 Syntax
 #include <xom.h>
 #include <xmp.h>

OM_return_code at_free(void \ptr);

 Parameters
ptr Specifies a pointer to the memory that needs to be freed

 Return Values

The at_free command always returns [OM_SUCCESS].

 Chapter 2. Reference Pages 27

 at_oid_match(3)

 at_oid_match(3)

 Purpose

Compares two OM object identifier values

 Syntax
 #include <xom.h>
 #include <xmp.h>

OM_boolean at_oid_match(OM_object_identifier \oid1,
OM_object_identifier \oid2);

 Parameters
oid1 Specifies the first object identifier string

oid2 Specifies the second object identifier string

 Return Values

If the strings are equal, at_oid_match returns the constant [OM_TRUE]. If the strings are unequal, it
returns the constant [OM_FALSE].

28 Programmer's Reference

 at_oid_to_array(3)

 at_oid_to_array(3)

 Purpose

Decodes an OID into an array of integers

 Syntax
 #include <xom.h>
 #include <xmp.h>

OM_return_code at_oid_to_array (OM_string obj_id,
unsigned int \num_element,
unsigned int \\obj_id_array);

 Description

The at_oid_to_array command creates an array of integers from a BER encoded Object Identifier string.
The XOM API returns Object Identifier strings in a BER encoded format. This routine decodes the BER
and places the data into an array of integers allocated by the function. When no longer needed, you
should free the array of integers by calling at_free.

 Parameters
obj_id Specifies the BER encoded Object Identifier string

num_element Specifies the number of elements of the array is returned in this integer

obj_id_array Specifies a pointer in which the address of the newly created array will be placed.
The array can be freed by using at_free when no longer needed.

 Return Values

If successful, at_oid_to_array returns a value of [OM_SUCCESS]. If unsuccessful, at_oid_to_array returns
one of the following error codes.

 Error Codes
[OM_POINTER_INVALID] In the C-language interface, a pointer that is not valid was specified as a

function argument or as the receptacle for a function result.

[OM_WRONG_VALUE_LENGTH]
An attribute has, or would have, a value that violates the value length
constraints in effect.

 Chapter 2. Reference Pages 29

 at_oid_to_str(3)

 at_oid_to_str(3)

 Purpose

Decodes an OID into an ASCII string

 Syntax
 #include <xom.h>
 #include <xmp.h>

OM_return_code at_oid_to_str (OM_string obj_id,
char \\obj_id_str);

 Description

The at_oid_to_str command creates an ASCII string from a BER encoded Object Identifier string. The
XOM API returns Object Identifier strings in a BER encoded format. This routine decodes the BER and
places the data into an ASCII string of integers separated by periods (for example, 1.3.6.1.2.1.1.2.0). The
memory for the ASCII string is allocated by the interface and should be freed after it is no longer needed
by calling at_free.

 Parameters
obj_id Specifies the BER encoded Object Identifier string

obj_id_str Specifies a pointer to the ASCII representation of the object identifier string that is returned in
this pointer. You can free this string by calling at_free.

 Return Values

If successful, at_oid_to_str command returns a value of [OM_SUCCESS]. If unsuccessful, at_oid_to_str
command returns one of the following error codes.

 Error Codes
[OM_MEMORY_INSUFFICIENT]

The service cannot allocate the main memory it needs to complete the
function.

[OM_WRONG_VALUE_LENGTH]
An attribute has, or would have, a value that violates the value length
constraints in effect.

[OM_WRONG_VALUE_MAKEUP]
An attribute has, or would have, a value that violated a value syntax con-
straint in effect.

30 Programmer's Reference

 at_str_to_oid(3)

 at_str_to_oid(3)

 Purpose

Encodes an ASCII string into an OID

 Syntax
 #include <xom.h>
 #include <xmp.h>

OM_return_code at_str_to_oid (char \obj_id_str,
OM_string \new_obj_id);

 Description

The at_str_to_oid command creates an Object Identifier string from a character string. The character
string is a sequence of integers represented in ASCII characters separated by periods, (for example,
1.3.6.1.2.1.1.2.0). The XOM API requires that Object Identifier strings be input to the API as BER
encoded Object Identifiers. The BER encoded string is returned in malloc'ed memory, which should be
freed by calling at_free.

 Parameters
obj_id_str Specifies a pointer to a string of characters which represent the Object

Identifier

new_obj_id Specifies a pointer to the newly encoded Object Identifier string. When
the string is no longer needed, the memory can be deallocated with the
at_free function.

 Return Values

If successful, at_str_to_oid returns a value of [OM_SUCCESS]. If unsuccessful, at_str_to_oid returns one
of the following error codes.

 Error Codes
[OM_MEMORY_INSUFFICIENT]

The service cannot allocate the main memory it needs to complete the
function.

[OM_POINTER_INVALID] In the C-language interface, a pointer that is not valid was specified as a
function argument or as the receptacle for a function result.

[OM_WRONG_VALUE_LENGTH]
An attribute has, or would have, a value that violates the value length
constraints in effect.

[OM_WRONG_VALUE_MAKEUP]
An attribute has, or would have, a value that violated a value syntax con-
straint in effect.

 Chapter 2. Reference Pages 31

 gtmdump(8)

 gtmdump(8)

 Purpose

Displays the contents of gtmd database

 Syntax

gtmdump [-h] [-g filename] [-o filename] [-d filename]

 Description

The gtmdump command is a tool for troubleshooting problems with the GTM database. It provides two
functions:

� Provides a complete view of the GTM database

� Monitors GTM trap processing

 Flags
-h Displays the usage screen.

-g [filename] Causes gtmdump to issue generic GET operations to all Open Topology MIB tables. Each
table entry is printed to the output file. If a filename in not specified, the output is printed
to stdout.

The tables are dumped in the following sequence:

 � Vertex
 � SimpleConnection
 � UnderlyingConnection
 � Arc
 � UnderlyingArc
 � Graph
 � Member
 � MemberArc
 � AttachedArc
� Additional Graph information
� Additional Member information

 � Sap

-o filename Monitor mode. Each processed notification is appended to a file, in a table entry format,
and in the same sequence as they are processed by gtmd. A filename is required if you
specify this option.

-d filename Monitor mode. The function is similar to option [-o], except that the output is in a format
that assists a NetView for AIX support person in analyzing a problem. A filename is
required if you specify this option.

Pressing Enter terminates the options [-o] and [-d].

32 Programmer's Reference

 gtmdump(8)

 Examples

The following sequence of steps sets up the gtmdump tool to monitor gtmd output. The notifications are
printed in the file 'dump_D.out', which can be sent to NetView for AIX support to create the problem again.

 1. Clear databases

2. Issue ovstart to start daemons

3. gtmdump -d dump_D.out

4. Start discovery/manager process

5. End gtmdump tool

 Related Information
 � See ovobjprint.

 Chapter 2. Reference Pages 33

 mp_abandon(3)

 mp_abandon(3)

 Purpose

Abandons locally the result of a pending, asynchronous operation or notification

 Syntax
 #include <xom.h>
 #include <xmp.h>

MP_status mp_abandon(OM_private_object session,
OM_sint invoke_id);

 Description
� This function abandons the result of an outstanding, asynchronous function call. The function is no

longer outstanding after this function returns, and the result (or the remaining results, in the case of
multiple linked replies) is never returned by mp_receive.

Note: The abandon function call does not abandon the outstanding asynchronous call itself, but only
its results.

� The mp_abandon function call is successful even if the operation or notification to be abandoned no
longer exists or is not confirmed. In this case, the abandon operation is without effect.

 Parameters
session

Specifies the management session in which the confirmed operation or notification was
requested. This is the private object of the OM class Session that was previously returned
from mp_bind.

invoke_id
Specifies the specific outstanding asynchronous operation submitted through the session to be
terminated. If the outstanding operation is a nonconfirmed service, the abandon operation is
without effect. The value of invoke_id must be the value returned by the function call that
initiated the asynchronous management operation to be abandoned.

 Return Values

If successful, mp_abandon returns the constant [MP_SUCCESS]. If unsuccessful, mp_abandon returns
one of the following error codes.

34 Programmer's Reference

 mp_abandon(3)

 Error Codes
� The constant [MP_NO_WORKSPACE]
� The constant [MP_INVALID_SESSION]
� The constant [MP_INSUFFICIENT_RESOURCES]
� Any problem value for a Communications-Error
� Any problem value for a System-Error
� One of the following problem values for a Library-Error:

[BAD_CLASS] An argument that was not valid was specified.

[BAD_PROCEDURAL_USE]
A linked reply that was not valid was specified.

[BAD_SESSION] A session that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[SESSION_TERMINATED]
The session is terminated and the results of an outstanding operation is no
longer available.

 Related Information
� See “mp_bind(3)” on page 42.

 Chapter 2. Reference Pages 35

 mp_action_req(3)

 mp_action_req(3)

 Purpose

Requests an action from managed objects

 Syntax
 #include <xom.h>
 #include <xmp.h>

MP_status mp_action_req(OM_private_object session,
 OM_private_object context,
 OM_object argument,
 OM_private_object \result_return,

OM_sint \invoke_id_return);

 Description

This function can be requested in a confirmed mode or a nonconfirmed mode. A reply is expected in
confirmed mode, while none is expected in nonconfirmed mode.

This function can be called in both synchronous and asynchronous modes.

 Parameters
session Specifies the management session against which this operation is performed. This

is the private object of the OM class Session that was previously returned from
mp_bind.

context Specifies the management context to be used for this operation. This parameter is
a private object of the OM class Context, or the constant
[MP_DEFAULT_CONTEXT]. This parameter defines the modes of operation and
the possible addressing and access-control parameters.

argument Specifies the information supplied as the parameter of an action to be performed.
This information is an instance of a subclass of the OM class Action-Argument. For
a CMIS action operation, the supplied parameter is an instance of the OM class
CMIS-Action-Argument.

result_return Specifies a private object. Upon successful completion of a synchronous call, when
the operation was requested in a confirmed mode, the result can be one of the
following:

� An instance of the subclass of the OM class Action-Result. For a CMIS action
request, the result is an instance of the OM class CMIS-Action-Result.

� An instance of the OM class Multiple-Reply, which is a set of instances of the
subclass of the OM class Linked-Reply-Argument. Each instance of the OM
class CMIS-Linked-Reply-Argument contains one of the following OM attributes:

[ACTION_ERROR] A partial, negative result of a confirmed action opera-
tion.

[ACTION_RESULT] A partial, successful result of a confirmed action opera-
tion.

36 Programmer's Reference

 mp_action_req(3)

[PROCESSING_FAILURE]
When processing the operation, a general failure was
encountered after the partial results were sent.

Otherwise, in nonconfirmed mode, no results are expected and the result_return
parameter is undefined. The constant [MP_ABSENT_OBJECT] indicates the
absence of a result.

In asynchronous mode, this parameter is undefined.

invoke_id_return Specifies the invoke identification of the initiated management operation, when
invoked in asynchronous mode. This value allows the results retrieved through the
mp_receive function to be matched with the original request. In synchronous mode,
this parameter is undefined. It is applicable only in a confirmed mode.

 Return Values

If used in asynchronous mode, the return value for mp_action_req indicates whether the action was com-
pleted or whether it was initiated. If used in asynchronous mode, it indicates whether the action was
initiated.

If successfully completed when used in synchronous mode or successfully initiated when used in asyn-
chronous mode, mp_action_req returns the constant [MP_SUCCESS]. If uncompleted when used in syn-
chronous mode or not initiated when used in asynchronous mode, mp_action_req returns an error code.

 Error Codes

If unsuccessful, mp_action_req returns one of the following error codes.

� The constant [MP_NO_WORKSPACE]
� The constant [MP_INVALID_SESSION]
� The constant [MP_INSUFFICIENT_RESOURCES]
� Any problem value for a Communications-Error
� Any problem value for a System-Error
� One of the following problem values for a CMIS-Service-Error:

[ACCESS_DENIED] The request operation was not performed due to security reasons.

[CLASS_INSTANCE_CONFLICT]
The managed-object instance is not a member of the specified class.

[COMPLEXITY_LIMITATION] The requested operation was not performed, because an OM attri-
bute, such as scope, filter, or synchronization was too complex.

[INVALID_ARGUMENT_VALUE]
The event argument value was out of range or otherwise inappro-
priate.

[INVALID_FILTER] Contains an assertion that is not valid or an unrecognized logical
operator.

[INVALID_SCOPE] The scope value is not valid.

[NO_SUCH_ACTION] The action type is not recognized.

[NO_SUCH_ARGUMENT] The event or action is not recognized.

[NO_SUCH_OBJECT_CLASS] The managed-object class is not recognized.

[NO_SUCH_OBJECT_INSTANCE]
The managed-object instance is not recognized.

 Chapter 2. Reference Pages 37

 mp_action_req(3)

[PROCESSING_FAILURE] A general failure was encountered during the processing of an oper-
ation.

[SYNCHRONIZATION_NOT_SUPPORTED]
This type of synchronization is not supported.

� One of the following problem values for a Library-Error:

[BAD_ARGUMENT] An argument that was not valid was specified.

[BAD_CLASS] The OM class of either an argument, result, linked-reply, or error is not sup-
ported for this option.

[BAD_CONTEXT] A context argument that was not valid was specified.

[BAD_SESSION] A session that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[NOT_SUPPORTED] An attempt was made to use an option that is not available or was not agreed
upon for use on the session.

[SESSION_TERMINATED]
The session is terminated and the results of an outstanding operation is no
longer available.

[SIZE_LIMIT_EXCEEDED]
The maximum number of linked responses, about which the requested service
should return information, has been reached.

[TIME_LIMIT_EXCEEDED]
The maximum elapsed time, within which the requested service must be pro-
vided, has been reached. The OM attribute parameter specifies a
Multiple-Reply object, which contains received partial results. The syntax is
object(Multiple-Reply). This OM attribute can be absent.

 Related Information
� See “mp_abandon(3)” on page 34.
� See “mp_action_rsp(3)” on page 39.
� See “mp_bind(3)” on page 42.
� See “mp_receive(3)” on page 76.

38 Programmer's Reference

 mp_action_rsp(3)

 mp_action_rsp(3)

 Purpose

Replies to a confirmed action request

 Syntax
 #include <xom.h>
 #include <xmp.h>

MP_status mp_action_rsp(OM_private_object session,
 OM_private_object context,
 OM_object response,

OM_sint invoke_id);

 Parameters
session

Specifies the management session against which this operation is performed. This is the
private object of the OM class Session that was previously returned from mp_bind.

context
Specifies the management context to be used for this operation. This parameter must be a
private object of the OM class Context, or the constant [MP_DEFAULT_CONTEXT].

response
Specifies the information supplied as the response to an action. This information can be one of
the following:

� An instance of a subclass of the OM class Linked-Reply-Argument. An instance of the OM
class CMIS-Linked-Reply-Argument expresses a partial result (linked reply). This instance
contains one of the following OM attributes:

[ACTION_ERROR] A partial, negative result of a confirmed action operation.

[ACTION_RESULT] A partial, successful result of a confirmed action operation.

[PROCESSING_FAILURE]
When processing the operation, a general failure was encountered
after the partial results were sent.

� An instance of a subclass of the OM class Action-Result, which is the information supplied
as the single reply to an action. This reply indicates the successful completion of the oper-
ation. For a CMIS operation, the response is an instance of the OM class
CMIS-Action-Result.

� An instance of a subclass of the OM class Service-Error, which indicates the failure of the
action. For a CMIS operation, one of the following problem values for a
CMIS-Service-Error, as well as its associated parameter, can be sent as a reply:

[ACCESS_DENIED] The request operation was not performed due to security
reasons.

[CLASS_INSTANCE_CONFLICT]
The managed-object instance is not a member of the
specified class.

 Chapter 2. Reference Pages 39

 mp_action_rsp(3)

[COMPLEXITY_LIMITATION] The requested operation was not performed, because an
OM attribute, such as scope, filter, or synchronization was
too complex.

[INVALID_ARGUMENT_VALUE]
The event argument value was out of range or otherwise
inappropriate.

[INVALID_FILTER] Contains an assertion that is not valid or an unrecognized
logical operator.

[INVALID_SCOPE] The scope value is not valid.

[NO_SUCH_ACTION] The action type is not recognized.

[NO_SUCH_ARGUMENT] The event or action is not recognized.

[NO_SUCH_OBJECT_CLASS] The managed-object class is not recognized.

[NO_SUCH_OBJECT_INSTANCE]
The managed-object instance is not recognized.

[PROCESSING_FAILURE] A general failure was encountered during the processing
of an operation.

[SYNCHRONIZATION_NOT_SUPPORTED]
This type of synchronization is not supported.

� The constant [MP_ABSENT_OBJECT], which indicates one of the following possibilities:

– The result is NULL (absent) because no object was selected.
– This is the last response following a chain of linked replies.

invoke_id
Specifies the invoke identification of the requested operation to which the reply applies.

 Return Values

If successful, mp_action_rsp returns the constant [MP_SUCCESS.] If unsuccessful, mp_action_rsp returns
one of the following error codes.

 Error Codes
� The constant [MP_NO_WORKSPACE]
� The constant [MP_INVALID_SESSION]
� The constant [MP_INSUFFICIENT_RESOURCES]
� Any problem value for a Communications-Error
� Any problem value for a System-Error
� One of the following problem values for a Library-Error:

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not supported
for this operation.

[BAD_CONTEXT] A context argument that is not valid was specified.

[BAD_ERROR] A service error that is not valid was specified.

[BAD_LINKED_REPLY]
A linked reply that is not valid was specified.

[BAD_RESULT] A result that is not valid was specified.

[BAD_SESSION] A session that was not valid was specified.

40 Programmer's Reference

 mp_action_rsp(3)

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[NO_SUCH_OPERATION]
The library has no knowledge of the designated operation and notification in
progress, or the response does not match the invoked operation and notifica-
tion.

[NOT_SUPPORTED] An attempt was made to use an option that is not available or was not agreed
upon for use in this session.

[SESSION_TERMINATED]
The session was terminated and the results of an outstanding operation are
no longer available.

 Related Information
� See “mp_action_req(3)” on page 36.

� See “mp_bind(3)” on page 42.

� See “mp_receive(3)” on page 76.

 Chapter 2. Reference Pages 41

 mp_bind(3)

 mp_bind(3)

 Purpose

Opens a management session

 Syntax
 #include <xom.h>
 #include <xmp.h>

MP_status mp_bind(OM_object session,
 OM_workspace workspace,

OM_private_object \bound_session_return);

 Parameters
session Specifies a manager session, together with other details of the service

required. This parameter can be either a public object or a private object.
The constant [MP_DEFAULT_SESSION] can also be used as the value of this
parameter, causing a new session to be created with default values for all its
OM attributes. If the OM attribute requestor-Title is specified, only one session
can be opened with the same value of this OM attribute.

The OM attribute requestor-Title is required for manager sessions that need to
process indications using the mp_receive function call. This is normal for
agents, and for managers that expect to process incoming event reports.

workspace Specifies the workspace (obtained from a call to mp_initialize), which is to be
associated with the session. All function results from management operations
using this session are returned as private objects in this workspace. If the
session parameter is a private object, it must be a private object in this work-
space.

bound_session_return Specifies a private object. Upon successful completion, it contains an instance
of a management session, which can be used as a parameter to other func-
tions (for example, mp_get_req). This parameter is a new private object if the
value of session was MP_DEFAULT_SESSION or a public object; otherwise, it
is the private object that was supplied as a parameter. If a private object was
supplied, the session provided should not be already in use. The function
supplies default values for any of the OM attributes that were not present in
the session instance supplied as a parameter. This function also sets the
value of the file-Descriptor OM attribute.

 Return Values

If successful, mp_bind returns the constant [MP_SUCCESS]. If unsuccessful, mp_bind returns one of the
following error codes.

42 Programmer's Reference

 mp_bind(3)

 Error Codes
� The constant [MP_NO_WORKSPACE]
� The constant [MP_INVALID_SESSION]
� The constant [MP_INSUFFICIENT_RESOURCES]
� Any problem value for a Communications-Error
� Any problem value for a System-Error
� One of the following problem values for a Library-Error:

[BAD_ADDRESS] An address that is not valid was specified.

[BAD_SESSION] A session that was not valid was specified.

[BAD_TITLE] A title that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[NOT_SUPPORTED] An attempt was made to use an option that is not available or was not agreed
upon for use in this session.

[TOO_MANY_SESSIONS]
Additional management sessions can not be started.

 Related Information
� See “mp_unbind(3)” on page 88.

 Chapter 2. Reference Pages 43

 mp_cancel_get_req(3)

 mp_cancel_get_req(3)

 Purpose

Cancels in an orderly manner the result of a pending get operation that is executing in asynchronous
mode

 Syntax
 #include <xom.h>
 #include <xmp.h>

MP_status mp_cancel_get_req(OM_private_object session,
 OM_private_object context,
 OM_object argument,

OM_sint \invoke_id_return);

 Description
� This function cancels the result of an outstanding, asynchronous mp_get_req function call in an orderly

manner. The mp_get_req function is no longer outstanding after the service confirmation of the
cancel-get operation is received by mp_receive. Any subsequent replies to the get operation are not
returned by mp_receive.

� This service is defined as a confirmed service. A single reply is expected.

� This function can be called in both synchronous and asynchronous modes.

 Parameters
session Specifies the management session in which the get operation was requested.

This is the private object of the OM class Session that was previously returned
from mp_bind.

context Specifies the management context to be used for this operation. This parameter
is a private object of the OM class Context, or the constant
[MP_DEFAULT_CONTEXT]. This parameter defines the modes of operation and
the possible addressing and access-control parameters.

argument Specifies the specific outstanding asynchronous get operation to be terminated.
The supplied parameter is an instance of a subclass of the OM class
Cancel-Get-Argument. For an instance of the OM class
CMIS-Cancel-Get-Argument, the value of the OM attribute get-Invoke-Id must be
the value returned by the mp_get_req function call that initiated the get operation
to be canceled.

invoke_id_return Specifies the invoke identification of the initiated cancel-get asynchronous opera-
tion. This value allows the results retrieved through the mp_receive function to be
matched with the original request. In synchronous mode, this parameter is unde-
fined.

44 Programmer's Reference

 mp_cancel_get_req(3)

 Return Values

The return value for this function indicates whether mp_cancel_get_req was initiated.

If initiated and successfully completed when used in synchronous mode or asynchronous mode,
mp_cancel_get_req returns the constant [MP_SUCCESS.]

If the action did not complete successfully when used in synchronous mode, mp_cancel_get_req returns
one of the following error codes.

 Error Codes
� The constant [MP_NO_WORKSPACE]
� The constant [MP_INVALID_SESSION]
� The constant [MP_INSUFFICIENT_RESOURCES]
� Any problem value for a Communications-Error
� Any problem value for a System-Error
� One of the following problem values for a CMIS-Service-Error:

[MISTYPED_OPERATION]
The invoke identifier of the get operation does not refer to a get operation.

[NO_SUCH_INVOKE_ID]
The invoke identifier of the get operation is not recognized.

[PROCESSING_FAILURE]
A general failure was encountered during processing of the operation.

� One of the following problem values for a Library-Error:

[BAD_CONTEXT] A context argument that was not valid was specified.

[BAD_SESSION] A session that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[NO_SUCH_OPERATION]
The library has no knowledge of the designated operation and notification in
progress, or the response does not match the invoked operation and notifica-
tion.

[NOT_SUPPORTED] An attempt was made to use an option that is not available or was not agreed
upon for use in this session.

[SESSION_TERMINATED]
The session was terminated and the results of an outstanding operation are
no longer available.

 Chapter 2. Reference Pages 45

 mp_cancel_get_req(3)

If the action did not complete successfully when used in asynchronous mode, mp_cancel_get_req returns
one of the following error codes:

� The constant [MP_NO_WORKSPACE]
� The constant [MP_INVALID_SESSION]
� The constant [MP_INSUFFICIENT_RESOURCES]
� One of the following problem values for a Library-Error:

[BAD_CONTEXT] A context argument that was not valid was specified.

[BAD_SESSION] A session that is not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a tran-
sient system error by retrying the affected system call.

[NO_SUCH_OPERATION] The library has no knowledge of the designated operation and notification
in progress, or the response does not match the invoked operation and
notification.

[NOT_SUPPORTED] An attempt was made to use an option that is not available or was not
agreed upon for use in this session.

[SESSION_TERMINATED]
The session was terminated and the results of an outstanding operation
are no longer available.

 Related Information
� See “mp_bind(3)” on page 42.
� See “mp_cancel_get_rsp(3)” on page 47.
� See “mp_receive(3)” on page 76.

46 Programmer's Reference

 mp_cancel_get_rsp(3)

 mp_cancel_get_rsp(3)

 Purpose

Replies to a requested cancel-get operation

 Syntax
 #include <xom.h>
 #include <xmp.h>

MP_status mp_cancel_get_rsp(OM_private_object session,
 OM_private_object context,
 OM_object response,

OM_sint invoke_id);

 Description
� A last reply to the canceled, outstanding get operation has to be issued to indicate the completion of

the get operation. That last reply contains the service error canceled-operation.

� No further replies to the canceled operation are issued.

 Parameters
session Specifies the management session against which this operation is performed. This is the

private object of the OM class Session that was previously returned from mp_bind.

context Specifies the management context to be used for this operation. This parameter is a private
object of the OM class Context, or the constant [MP_DEFAULT_CONTEXT].

response Specifies the information supplied as the response to a cancel-get operation. This information
can be one of the following:

� The constant [MP_ABSENT_OBJECT], which indicates the successful completion of the
operation.

� An instance of a subclass of the OM class Service-Error, which indicates the failure of the
operation.

For an instance of the OM class CMIS-Service-Error, one of the following problem values
for a CMIS-Service-Error, as well as its associated parameter, can be sent as a reply:

[MISTYPED_OPERATION]
The invoke identifier of the get operation does not refer to a get
operation.

[NO_SUCH_INVOKE_ID] The invoke identifier of the get operation is not recognized.

[PROCESSING_FAILURE]
A general failure was encountered during processing of the
operation.

invoke_id Specifies the invoke identification of the requested cancel-get operation to which the reply
applies.

 Chapter 2. Reference Pages 47

 mp_cancel_get_rsp(3)

 Return Values

If successful, mp_cancel_get_rsp returns the constant [MP_SUCCESS]. If unsuccessful,
mp_cancel_get_rsp returns one of the following error codes.

 Error Codes
� The constant [MP_NO_WORKSPACE]
� The constant [MP_INVALID_SESSION]
� The constant [MP_INSUFFICIENT_RESOURCES]
� Any problem value for a Communications-Error
� Any problem value for a System-Error
� One of the following problem values for a Library-Error:

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not supported
for this operation.

[BAD_CONTEXT] A context argument that was not valid was specified.

[BAD_ERROR] A service error that is not valid was specified.

[BAD_PROCEDURAL_USE]
The procedure used for linked replies does not comply with the ISO and
X/Open standards, or the permitted service primitive chaining was violated.

[BAD_SESSION] A session that is not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[NO_SUCH_OPERATION]
The library has no knowledge of the designated operation and notification in
progress, or the response does not match the invoked operation and notifica-
tion.

[SESSION_TERMINATED]
The session was terminated and the results of an outstanding operation are
no longer available.

 Related Information
� See “mp_bind(3)” on page 42.
� See “mp_cancel_get_req(3)” on page 44.
� See “mp_receive(3)” on page 76.

48 Programmer's Reference

 mp_create_req(3)

 mp_create_req(3)

 Purpose

Creates a new managed-object instance

 Syntax
 #include <xom.h>
 #include <xmp.h>

MP_status mp_create_req(OM_private_object session,
 OM_private_object context,
 OM_object argument,
 OM_private_object \result_return,

OM_sint \invoke_id_return);

 Description
� This function is used to request the creation of a new managed-object instance.

� This function is defined as a confirmed service. A single reply is expected.

� This function can be called in both synchronous and asynchronous modes.

 Parameters
session Specifies the management session against which this operation is performed. This

is the private object of the OM class Session that was previously returned from
mp_bind.

context Specifies the management context to be used for this operation. This parameter is
a private object of the OM class Context, or the constant
[MP_DEFAULT_CONTEXT]. This parameter defines the modes of operation and
the possible addressing and access-control parameters.

argument Specifies the information supplied as the parameter of a create operation. This
information is an instance of a subclass of the OM class Create-Argument. For a
CMIS create operation, the supplied parameter is an instance of the OM class
CMIS-Create-Argument.

result_return Specifies a private object. Upon successful completion of a synchronous call, the
result may be one of the following:

� An instance of a subclass of the OM class Create-Result. For a CMIS opera-
tion, the result is an instance of the OM class CMIS-Create-Result.

� The constant [MP_ABSENT_OBJECT], which may be returned if the requester
of the create operation provided the name of the new managed-object instance.

invoke_id_return Specifies the invoke identification of the initiated management operation, when
invoked in asynchronous mode. This value allows the results retrieved through the
mp_receive function to be matched with the original request. In synchronous mode,
this parameter is undefined.

 Chapter 2. Reference Pages 49

 mp_create_req(3)

 Return Values

The return value for this function indicates whether the create operation was completed, if used in syn-
chronous mode, or whether the create operation was initiated, if used in asynchronous mode.

If successful, mp_create_req returns the constant [MP_SUCCESS]. If unsuccessful, mp_create_req
returns one of the following error codes.

 Error Codes
� The constant [MP_NO_WORKSPACE]
� The constant [MP_INVALID_SESSION]
� The constant [MP_INSUFFICIENT_RESOURCES]
� Any problem value for a Communications-Error
� Any problem value for a System-Error
� One of the following problem values for a CMIS-Service-Error:

[ACCESS_DENIED]
The request operation was not performed due to security reasons.

[CLASS_INSTANCE_CONFLICT]
The managed-object instance is not a member of the specified class.

[DUPLICATE_MANAGED_OBJECT_INSTANCE]
The new managed-object instance value provided by the invoker of the create operation is
already registered for a managed object of the specified class.

[INVALID_ATTRIBUTE_VALUE]
The attribute value was out of the valid range or otherwise inappropriate.

[INVALID_OBJECT_INSTANCE]
The name of the object instance does not comply with the naming rules.

[MISSING_ATTRIBUTE_VALUE]
A required attribute value was not specified, and a default value was not available.

[NO_SUCH_ATTRIBUTE]
The identifier of an attribute, or an attribute group, is not recognized.

[NO_SUCH_OBJECT_CLASS]
The managed-object class is not recognized.

[NO_SUCH_OBJECT_INSTANCE]
The managed-object instance is not recognized.

[NO_SUCH_REFERENCE_OBJECT]
The reference-object instance is not recognized.

[PROCESSING_FAILURE]
A general failure was encountered during the processing of an operation.

� One of the following problem values for a Library-Error:

[BAD_ARGUMENT] An argument that is not valid was specified.

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not supported
for this operation.

[BAD_CONTEXT] A context argument that was not valid was specified.

[BAD_SESSION] A session that is not valid was specified.

50 Programmer's Reference

 mp_create_req(3)

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[NOT_SUPPORTED] An attempt was made to use an option that is not available or was not agreed
upon for use in this session.

[SESSION_TERMINATED]
The session was terminated and the results of an outstanding operation are
no longer available.

[TIME_LIMIT_EXCEEDED]
The maximum elapsed time within which the requested service must be pro-
vided has been reached. The OM attribute parameter specifies a
Multiple-Reply object, which contains received partial results. Its syntax is
object(Multiple-Reply). This OM attribute can be absent.

 Related Information
� See “mp_abandon(3)” on page 34.
� See “mp_bind(3)” on page 42.
� See “mp_cancel_get_rsp(3)” on page 47.
� See “mp_receive(3)” on page 76.

 Chapter 2. Reference Pages 51

 mp_create_rsp(3)

 mp_create_rsp(3)

 Purpose

Replies to a requested create operation

 Syntax
 #include <xom.h>
 #include <xmp.h>

MP_status mp_create_rsp(OM_private_object session,
 OM_private_object context,
 OM_object response,

OM_sint invoke_id);

 Parameters
session Specifies the management session against which this operation is performed. This is the

private object of the OM class Session that was previously returned from mp_bind.

context Specifies the management context to be used for this operation. This parameter is a private
object of the OM class Context, or the constant [MP_DEFAULT_CONTEXT].

response Specifies the information supplied as the single response to a create operation. This infor-
mation can be one of the following:

� An instance of a subclass of the OM class Create-Result, which indicates the successful
completion of the operation. For a CMIS create operation, the response is an instance of
the OM class CMIS-Create-Result.

� The constant [MP_ABSENT_OBJECT], which is returned if the create operation was suc-
cessful and if the requester of the create operation provided the name of the new
managed-object instance.

� An instance of a subclass of the OM class Service-Error, which indicates the failure of
the requested operation. For a CMIS create operation, one of the following problem
values for a CMIS-Service-Error, as well as its associated parameter, can be sent as a
reply:

[ACCESS_DENIED]
The request operation was not performed due to security reasons.

[CLASS_INSTANCE_CONFLICT]
The managed-object instance is not a member of the specified class.

[DUPLICATE_MANAGED_OBJECT_INSTANCE]
The new managed-object instance value provided by the invoker of the create
operation is already registered for a managed object of the specified class.

[INVALID_ATTRIBUTE_VALUE]
The attribute value was out of the valid range or otherwise inappropriate.

[INVALID_OBJECT_INSTANCE]
The name of the object instance does not comply with the naming rules.

[MISSING_ATTRIBUTE_VALUE]
A required attribute value was not specified, and a default value was not
available.

52 Programmer's Reference

 mp_create_rsp(3)

[NO_SUCH_ATTRIBUTE]
The identifier of an attribute, or an attribute group, is not recognized.

[NO_SUCH_OBJECT_CLASS]
The managed-object class is not recognized.

[NO_SUCH_OBJECT_INSTANCE]
The managed-object instance is not recognized.

[NO_SUCH_REFERENCE_OBJECT]
The reference-object instance is not recognized.

[PROCESSING_FAILURE]
A general failure was encountered during the processing of an operation.

invoke_id Specifies the invoke identification of the requested operation to which the reply applies.

 Return Values

The mp_create_rsp command returns a value to indicate whether the response was completed.

If successful, mp_create_rsp returns the constant [MP_SUCCESS]. If unsuccessful, mp_create_rsp
returns one of the following error codes.

 Error Codes
� The constant [MP_NO_WORKSPACE]
� The constant [MP_INVALID_SESSION]
� The constant [MP_INSUFFICIENT_RESOURCES]
� Any problem value for a System-Error
� Any problem value for a Communications-Error
� One of the following problem values for a Library-Error:

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not supported for
this operation.

[BAD_CONTEXT] A context argument that was not valid was specified.

[BAD_ERROR] A service error that is not valid was specified.

[BAD_RESULT] A result that is not valid was specified.

[BAD_SESSION] A session that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system management
service. This error is returned if the XMP API cannot clear a transient system
error by retrying the affected system call.

[NO_SUCH_OPERATION]
The library has no knowledge of the designated operation and notification in
progress, or the response does not match the invoked operation and notifica-
tion.

[SESSION_TERMINATED]
The session is terminated and the results of an outstanding operation is no
longer available.

 Chapter 2. Reference Pages 53

 mp_create_rsp(3)

 Related Information
� See “mp_bind(3)” on page 42.
� See “mp_create_req(3)” on page 49.
� See “mp_receive(3)” on page 76.

54 Programmer's Reference

 mp_delete_req(3)

 mp_delete_req(3)

 Purpose

Deletes managed objects

 Syntax
 #include <xom.h>
 #include <xmp.h>

MP_status mp_delete_req(OM_private_object session,
 OM_private_object context,
 OM_object argument,
 OM_private_object \result_return,

OM_sint \invoke_id_return);

 Description

This service is defined as a confirmed service, which can be called in both synchronous and asynchro-
nous modes. A reply is expected.

 Parameters
session Specifies the management session against which this operation is performed. This is

the private object of the OM class Session that was previously returned from mp_bind.

context Specifies the management context to be used for this operation. This parameter is a
private object of the OM class Context, or the constant [MP_DEFAULT_CONTEXT].
This parameter defines the modes of operation and the possible addressing and
access-control parameters.

argument Specifies the information supplied as the parameter of a delete operation. This infor-
mation is an instance of a subclass of the OM class Delete-Argument. For a CMIS
delete operation, the supplied parameter is an instance of the OM class
CMIS-Delete-Argument.

result_return Specifies a private object. Upon successful completion of a synchronous call, the
result can be one of the following:

� An instance of a subclass of the OM class Delete-Result. For a CMIS operation,
the result is an instance of the OM class CMIS-Delete-Result.

� An instance of the OM class Multiple-Reply, which is a set of instances of a sub-
class of the OM class Linked-Reply-Argument. Each instance of the OM class
CMIS-Linked-Reply-Argument contains one of the following OM attributes:

 – delete-Error
 – delete-Result
 – processing-Failure

� The constant [MP_ABSENT_OBJECT], which indicates the absence of a result, if
no managed object was selected for the operation.

invoke_id_return Specifies the invoke identification of the initiated management operation when invoked
in asynchronous mode. This value allows the results retrieved through the
mp_receive function to be matched with the original request. In synchronous mode,
this parameter is undefined.

 Chapter 2. Reference Pages 55

 mp_delete_req(3)

 Return Values

The return value for this function indicates whether the delete operation was completed if used in synchro-
nous mode; or whether the delete operation was initiated, if used in asynchronous mode.

If successful, mp_delete_req returns the constant [MP_SUCCESS]. If unsuccessful, mp_delete_req
returns one of the following error codes.

 Error Codes
� The constant [MP_NO_WORKSPACE]
� The constant [MP_INVALID_SESSION]
� The constant [MP_INSUFFICIENT_RESOURCES]
� Any problem value for a Communications-Error
� Any problem value for a System-Error
� One of the following problem values for a CMIS-Service-Error:

[ACCESS_DENIED] The request operation was not performed due to security reasons.

[CLASS_INSTANCE_CONFLICT] The managed-object instance is not a member of the specified
class.

[COMPLEXITY_LIMITATION] The requested operation was not performed, because an OM attri-
bute, such as scope, filter, or synchronization was too complex.

[INVALID_FILTER] Contains an assertion that is not valid or an unrecognized logical
operator.

[INVALID_SCOPE] The scope value is not valid.

[NO_SUCH_OBJECT_CLASS] The managed-object class is not recognized.

[NO_SUCH_OBJECT_INSTANCE]
The managed-object instance is not recognized.

[PROCESSING_FAILURE] A general failure was encountered during the processing of an
operation.

[SYNCHRONIZATION_NOT_SUPPORTED]
This type of synchronization is not supported.

� One of the following problem values for a Library-Error:

[BAD_ARGUMENT] An argument that was not valid was specified.

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not supported
for this operation.

[BAD_CONTEXT] A context argument that was not valid was specified.

[BAD_SESSION] A session that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[NOT_SUPPORTED] An attempt was made to use an option that is not available or was not agreed
upon for use on the session.

[SESSION_TERMINATED]
The session is terminated and the results of an outstanding operation is no
longer available.

56 Programmer's Reference

 mp_delete_req(3)

[TIME_LIMIT_EXCEEDED]
The maximum elapsed time, within which the requested service must be pro-
vided, has been reached. The OM attribute parameter specifies a
Multiple-Reply object, which contains received partial results. The syntax is
object(Multiple-Reply). this OM attribute can be absent.

 Related Information
� See “mp_abandon(3)” on page 34.
� See “mp_bind(3)” on page 42.
� See “mp_delete_rsp(3)” on page 58.
� See “mp_receive(3)” on page 76.

 Chapter 2. Reference Pages 57

 mp_delete_rsp(3)

 mp_delete_rsp(3)

 Purpose

Replies to a requested delete operation

 Syntax
 #include <xom.h>
 #include <xmp.h>

MP_status mp_delete_rsp(OM_private_object session,
 OM_private_object context,
 OM_object response,

OM_sint invoke_id);

 Parameters
session Specifies the management session against which this operation is performed. This is the

private object of the OM class Session that was previously returned from mp_bind.

context Specifies the management context to be used for this operation. This parameter is a private
object of the OM class Context, or the constant [MP_DEFAULT_CONTEXT.]

response Specifies the information supplied as the response to a delete operation. This information can
be one of the following:

� An instance of a subclass of the OM class Linked-Reply-Argument, which expresses a
partial result (linked reply). Each instance of the OM class CMIS-Linked-Reply-Argument
contains only one of the following OM attributes:

 – delete-Error
 – delete-Result
 – processing-Failure

� An instance of a subclass of the OM class Delete-Result, which is supplied as the single
reply to a delete operation. This instance indicates the successful completion of the opera-
tion. For a CMIS operation, this response is an instance of the OM class
CMIS-Delete-Result.

� An instance of a subclass of the OM class Service-Error. For an instance of the OM class
CMIS-Service-Error, one of the following problem values for a CMIS-Service-Error, as well
as its associated parameter, can be sent as a reply:

[ACCESS_DENIED] The request operation was not performed due to security
reasons.

[CLASS_INSTANCE_CONFLICT]
The managed-object instance is not a member of the speci-
fied class.

[COMPLEXITY_LIMITATION] The requested operation was not performed, because an
OM attribute, such as scope, filter, or synchronization was
too complex.

[INVALID_FILTER] Contains an assertion that is not valid or an unrecognized
logical operator.

[INVALID_SCOPE] The scope value is not valid.

58 Programmer's Reference

 mp_delete_rsp(3)

[NO_SUCH_OBJECT_CLASS]
The managed-object class is not recognized.

[NO_SUCH_OBJECT_INSTANCE]
The managed-object instance is not recognized.

[PROCESSING_FAILURE] A general failure was encountered during the processing of
an operation.

[SYNCHRONIZATION_NOT_SUPPORTED]
This type of synchronization is not supported.

� The constant [MP_ABSENT_OBJECT], which indicates two possibilities:

– The result is NULL (absent) because no object was selected.
– This is the last response following a chain of linked replies.

invoke_id Specifies the invoke identification of the requested operation to which the reply applies.

 Return Values

The mp_delete_rsp command returns a value to indicate whether the response was completed.

If successful, mp_delete_rsp returns the constant [MP_SUCCESS]. If unsuccessful, mp_delete_rsp
returns one of the following error codes.

 Error Codes
� The constant [MP_NO_WORKSPACE]
� The constant [MP_INVALID_SESSION]
� The constant [MP_INSUFFICIENT_RESOURCES]
� Any problem value for a Communications-Error
� Any problem value for a System-Error
� One of the following problem values for a Library-Error:

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not supported
for this operation.

[BAD_CONTEXT] A context argument that was not valid was specified.

[BAD_ERROR] A service error that is not valid was specified.

[BAD_LINKED_REPLY]
A linked reply that is not valid was specified.

[BAD_RESULT] A result that is not valid was specified.

[BAD_SESSION] A session that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[NO_SUCH_OPERATION]
The library has no knowledge of the designated operation and notification in
progress, or the response does not match the invoked operation and notifica-
tion.

 Chapter 2. Reference Pages 59

 mp_delete_rsp(3)

[NOT_SUPPORTED] An attempt was made to use an option that is not available or was not agreed
upon for use in this session.

[SESSION_TERMINATED]
The session was terminated and the results of an outstanding operation are
no longer available.

 Related Information
� See “mp_bind(3)” on page 42.
� See “mp_delete_req(3)” on page 55.
� See “mp_receive(3)” on page 76.

60 Programmer's Reference

 mp_error_message(3)

 mp_error_message(3)

 Purpose

Returns an error message describing a particular error

 Syntax
 #include <xom.h>
 #include <xmp.h>

OM_uint mp_error_message(MP_status error,
 OM_uint length,

unsigned char \error_text_return);

 Description

The requester provides a buffer-address parameter and a buffer-length parameter. The text of the error
message is stored in the buffer of the requester and the length is returned.

 Parameters
error Specifies the value that is returned from a function call.

length Specifies the length of the buffer. The error text buffer is an unsigned character
array.

error_text_return Specifies a message describing the error. The error message text is terminated by
a NULL character.

The text of the error is truncated if the length of the error-text buffer is less than the
length of the text of the error message.

 Return Values

The return value for mp_error_message indicates the length of the returned message.

Note: If length has the value 0 (zero) and if error_text_return is undefined, for example, if it has the
NULL value, this function does not return any text. Instead, the function returns only the length
required to contain the error message.

The mp_error_message function returns no errors. A default error message reports faulty parameters and
other problems.

 Chapter 2. Reference Pages 61

 mp_event_report_req(3)

 mp_event_report_req(3)

 Purpose

Reports a notification emitted by a managed object

 Syntax
 #include <xom.h>
 #include <xmp.h>

MP_status mp_event_report_req(OM_private_object session,
 OM_private_object context,
 OM_object argument,
 OM_private_object \result_return,

OM_sint \invoke_id_return);

 Description

The mp_event_report_req function can be requested in a confirmed or nonconfirmed mode. A reply is
expected in confirmed mode, but none is expected in nonconfirmed mode. An SNMP trap can be sent
only in a nonconfirmed mode.

This function can be called in both synchronous and asynchronous modes.

 Parameters
session Specifies the management session against which this operation is performed. This

is the private object of the OM class Session that was previously returned from
mp_bind.

context Specifies the management context to be used for this operation. This parameter is
a private object of the OM class Context, or the constant
[MP_DEFAULT_CONTEXT]. This parameter defines the modes of operation and
the possible addressing and access-control parameters.

argument Specifies the information supplied as the parameter of the notification to be
reported. This information can be one of the following:

� For a CMIS event report, an instance of the OM class
CMIS-Event-Report-Argument

� For an SNMP trap, an instance of the OM class SNMP-Trap-Argument.

result_return Specifies a private object. Upon successful completion of a synchronous call, when
the service was requested in a confirmed mode, the result is one of the following:

� An instance of the OM class CMIS-Event-Report-Result
� The constant [MP_ABSENT_OBJECT], which indicates the absence of a result.

invoke_id_return Specifies the invoke identification of the initiated management operation when
invoked in asynchronous mode. This value allows the results retrieved through the
mp_receive function to be matched with the original request. In synchronous mode,
this parameter is undefined. It is applicable only in a confirmed mode.

62 Programmer's Reference

 mp_event_report_req(3)

 Return Values

The return value for this function indicates whether the report operation was completed, if used in synchro-
nous mode, or whether the report operation was initiated if used in asynchronous mode.

If successful, mp_event_report_req returns the constant [MP_SUCCESS]. If unsuccessful,
mp_event_report_req returns one of the following error codes.

 Error Codes
� The constant [MP_NO_WORKSPACE]
� The constant [MP_INVALID_SESSION]
� The constant [MP_INSUFFICIENT_RESOURCES]
� Any problem value for a Communications-Error
� Any problem value for a System-Error
� One of the following problem values for a CMIS-Service-Error:

[INVALID_ARGUMENT_VALUE]
The event argument value was out of range or otherwise inappropriate.

[NO_SUCH_ARGUMENT] The event or action is not recognized.

[NO_SUCH_EVENT_TYPE]
The event is not recognized.

[NO_SUCH_OBJECT_CLASS]
The managed-object class is not recognized.

[NO_SUCH_OBJECT_INSTANCE]
The managed-object instance is not recognized.

[PROCESSING_FAILURE] A general failure was encountered during the processing of an operation.

� One of the following problem values for a Library-Error:

[BAD_ARGUMENT] An argument that was not valid was specified.

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not sup-
ported for this operation.

[BAD_CONTEXT] A context argument that was not valid was specified.

[BAD_SESSION] A session that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a tran-
sient system error by retrying the affected system call.

[NOT_SUPPORTED] An attempt was made to use an option that is not available or was not
agreed upon for use on the session.

[SESSION_TERMINATED]
The session is terminated and the results of an outstanding operation is no
longer available.

[TIME_LIMIT_EXCEEDED]
The maximum elapsed time, within which the requested service must be
provided, has been reached. The OM attribute parameter specifies a
Multiple-Reply object, which contains received partial results. The syntax
is object(Multiple-Reply). This OM attribute can be absent.

 Chapter 2. Reference Pages 63

 mp_event_report_req(3)

 Related Information
� See “mp_abandon(3)” on page 34.
� See “mp_bind(3)” on page 42.
� See “mp_event_report_rsp(3)” on page 65.
� See “mp_receive(3)” on page 76.

64 Programmer's Reference

 mp_event_report_rsp(3)

 mp_event_report_rsp(3)

 Purpose

Replies to a previously reported management notification

 Syntax
 #include <xom.h>
 #include <xmp.h>

MP_status mp_event_report_rsp(OM_private_object session,
 OM_private_object context,
 OM_object response,

OM_sint invoke_id);

 Parameters
session Specifies the management session against which this operation is performed. This is the

private object of the OM class Session that was previously returned from mp_bind.

context Specifies the management context to be used for this operation. This parameter is a private
object of the OM class Context, or the constant [MP_DEFAULT_CONTEXT]. This parameter
defines the modes of operation and the possible addressing and access-control parameters.

response Specifies the information supplied as the response to a reported event. This information is one
of the following:

� An instance of a subclass of the OM class Event-Report-Result, which indicates the suc-
cessful completion of the operation. For a CMIS operation, the response is an instance of
the OM class CMIS-Event-Report-Result.

� The constant [MP_ABSENT_OBJECT], which indicates the absence of a result and means
that the notification was completed successfully.

� An instance of a subclass of the OM class Service-Error, which indicates the failure of the
notification:

– For a CMIS operation, an instance of the OM class CMIS-Service-Error. The following
problem values for a CMIS-Service-Error, as well as its associated parameter, can be
sent as a reply:

[INVALID_ARGUMENT_VALUE]
The event argument value was out of range or otherwise
inappropriate.

[NO_SUCH_ARGUMENT] The event or action is not recognized.

[NO_SUCH_EVENT_TYPE]
The event is not recognized.

[NO_SUCH_OBJECT_CLASS]
The managed-object class is not recognized.

[NO_SUCH_OBJECT_INSTANCE]
The managed-object instance is not recognized.

[PROCESSING_FAILURE]
A general failure was encountered during the processing of
an operation.

 Chapter 2. Reference Pages 65

 mp_event_report_rsp(3)

invoke_id Specifies the returned invoke identification of the reported notification to which the response
applies.

 Return Values

The return value for this function indicates whether the response was completed.

If successful, mp_event_report_rsp returns the constant [MP_SUCCESS]. If unsuccessful,
mp_event_report_rsp returns one of the following error codes.

 Error Codes
� The constant [MP_NO_WORKSPACE]
� The constant [MP_INVALID_SESSION]
� The constant [MP_INSUFFICIENT_RESOURCES]
� Any problem value for a Communications-Error
� Any problem value for a System-Error
� One of the following problem values for a Library-Error:

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not supported
for this operation.

[BAD_CONTEXT] A context argument that is not valid was specified.

[BAD_ERROR] A service error that is not valid was specified.

[BAD_LINKED-REPLY] A linked reply that is not valid was specified.

[BAD_SESSION] A session that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[NO_SUCH_OPERATION]
The library has no knowledge of the designated operation and notification in
progress, or the response does not match the invoked operation and notifica-
tion.

[SESSION_TERMINATED]
The session was terminated and the results of an outstanding operation are
no longer available.

 Related Information
� See “mp_bind(3)” on page 42.
� See “mp_event_report_req(3)” on page 62.
� See “mp_receive(3)” on page 76.

66 Programmer's Reference

 mp_get_next_req(3)

 mp_get_next_req(3)

 Purpose

Retrieves the next SNMP management information

Note: Using the get-next function can prevent a manager session from being portable on both the ISO
CMIS and SNMP environments. For this reason, it is recommended that you avoid using this
facility.

 Syntax
 #include <xom.h>
 #include <xmp.h>

MP_status mp_get_next_req(OM_private_object session,
 OM_private_object context,
 OM_object argument,
 OM_private_object \result_return,

OM_sint \invoke_id_return);

 Description

This function supports the SNMP get-next operation. It can be used only when the SNMP package has
been selected using mp_version.

This function is defined as a confirmed service and can be called in both synchronous and asynchronous
modes. A reply is expected.

 Parameters
session Specifies the management session against which this operation is performed. This is

the private object of the OM class Session that was previously returned from mp_bind.

context Specifies the management context to be used for this operation. This parameter is a
private object of the OM class Context, or the constant [MP_DEFAULT_CONTEXT].
This parameter defines the modes of operation and the possible addressing and
access-control parameters.

argument Specifies the information supplied as the parameter of a get-next operation is an
instance of the OM class SNMP-Get-Argument.

result_return Specifies a private object. Upon successful completion of a synchronous call, the
result is an instance of the OM class SNMP-Get-Result, which contains a list of the
variables and the values that were read.

invoke_id_return Specifies the returned invoke identification of the management operation, when used
in asynchronous mode. This value allows the results retrieved through the
mp_receive function to be matched with the original request. In synchronous mode,
this parameter is undefined.

 Chapter 2. Reference Pages 67

 mp_get_next_req(3)

 Return Values

The return value for this function indicates whether the operation was completed, if used in synchronous
mode; or whether the operation was initiated, if used in asynchronous mode.

If successful, mp_get_next_req returns the constant [MP_SUCCESS]. If unsuccessful, mp_get_next_req
returns one of the following error codes.

 Error Codes
� The constant [MP_NO_WORKSPACE]
� The constant [MP_INVALID_SESSION]
� The constant [MP_INSUFFICIENT_RESOURCES]
� Any problem value for a Communications-Error
� Any problem value for a System-Error
� Any problem value for a SNMP-Service-Error
� One of the following problem values for a Library-Error:

[BAD_ARGUMENT] An argument that was not valid was specified.

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not supported
for this operation.

[BAD_CONTEXT] A context argument that was not valid was specified.

[BAD_SESSION] A session that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[NOT_SUPPORTED] An attempt was made to use an option that is not available or was not agreed
upon for use on the session.

[SESSION_TERMINATED]
The session is terminated and the results of an outstanding operation is no
longer available.

[TIME_LIMIT_EXCEEDED]
The maximum elapsed time, within which the requested service must be pro-
vided, has been reached. The OM attribute parameter specifies a
Multiple-Reply object, which contains received partial results. The syntax is
object(Multiple-Reply). This OM attribute can be absent.

[TOO_MANY_OPERATIONS]
Additional management operations cannot be performed, until at least one
asynchronous operation has been completed.

 Related Information
� See “mp_abandon(3)” on page 34.
� See “mp_get_rsp(3)” on page 72.
� See “mp_bind(3)” on page 42.
� See “mp_receive(3)” on page 76.

68 Programmer's Reference

 mp_get_req(3)

 mp_get_req(3)

 Purpose

Retrieves management information

 Syntax
 #include <xom.h>
 #include <xmp.h>

MP_status mp_get_req(OM_private_object session,
 OM_private_object context,
 OM_object argument,
 OM_private_object \result_return,

OM_sint \invoke_id_return);

 Description
� This service is defined as a confirmed service. A reply is expected.

� This function can be called in both synchronous and asynchronous modes. When used in asynchro-
nous mode, the results of this operation can be discarded locally (through mp_abandon, as with other
asynchronous calls). The remote operation also can be terminated (through mp_cancel_get_req).

 Parameters
session Specifies the management session against which this operation is performed. This

is the private object of the OM class Session that was previously returned from
mp_bind.

context Specifies the management context to be used for this operation. This parameter is
a private object of the OM class Context, or the constant
[MP_DEFAULT_CONTEXT]. This parameter defines the modes of operation and
the possible addressing and access-control parameters.

argument Specifies an OM object that provides the information about which attributes are to
be retrieved. This parameter is an instance of a subclass of the OM class
Get-Argument:

� For a CMIS get operation, the supplied parameter is an instance of the OM
class CMIS-Get-Argument.

� For an SNMP get operation, the supplied parameter is an instance of the OM
class SNMP-Get-Argument.

result_return Specifies a private object. Upon successful completion of a synchronous call, the
result can be one of the following:

� For a CMIS get operation:

– An instance of the OM class CMIS-Get-Result.

 Chapter 2. Reference Pages 69

 mp_get_req(3)

– An instance of the OM class Multiple-Reply, which is a set of instances of
the OM class CMIS-Linked-Reply-Argument. Each instance of the OM class
CMIS-Linked-Reply-Argument contains one of the following attributes:

 - get-List-Error
 - get-Result
 - processing-Failure

– The constant [MP_ABSENT_OBJECT], which indicates the absence of a
result, if no managed objects were selected for the operation.

� For an SNMP get operation, an instance of the OM class SNMP-Get-Result,
which contains a list of the variables and their values.

invoke_id_return Specifies the returned invoke identification of the management operation, when
used in asynchronous mode. This value allows the results retrieved through the
mp_receive function to be matched with the original request. In synchronous mode,
this parameter is undefined.

 Return Values

The return value for this function indicates whether the action was completed, if used in synchronous
mode; or whether it was initiated, if used in asynchronous mode.

If successful, mp_get_req returns the constant [MP_SUCCESS]. If unsuccessful, mp_get_req returns one
of the following error codes.

 Error Codes
� The constant [MP_NO_WORKSPACE]
� The constant [MP_INVALID_SESSION]
� The constant [MP_INSUFFICIENT_RESOURCES]
� Any problem value for a Communications-Error
� Any problem value for a System-Error
� Any problem value for an SNMP-Service-Error
� One of the following problem values for a CMIS-Service-Error:

[ACCESS_DENIED]
The request operation was not performed due to security reasons.

[CLASS_INSTANCE_CONFLICT]
The managed-object instance is not a member of the specified class.

[COMPLEXITY_LIMITATION]
The requested operation was not performed, because an OM attribute, such as scope,
filter, or synchronization was too complex.

[GET_LIST_ERROR]
One or more attribute values were not read.

[INVALID_FILTER]
Contains an assertion that is not valid or an unrecognized logical operator.

[INVALID_SCOPE]
The scope value is not valid.

[NO_SUCH_OBJECT_CLASS]
The managed-object class is not recognized.

70 Programmer's Reference

 mp_get_req(3)

[NO_SUCH_OBJECT_INSTANCE]
The managed-object instance is not recognized.

[OPERATION_CANCELLED]
The get operation was canceled by a cancel-get operation, and no further attribute values
will be returned by this invocation of the get service.

[PROCESSING_FAILURE]
When processing the operation, a general failure was encountered after the partial results
were sent.

[SYNCHRONIZATION_NOT_SUPPORTED]
This type of synchronization is not supported.

� One of the following problem values for a Library-Error:

[BAD_ARGUMENT] An argument that was not valid was specified.

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not supported
for this operation.

[BAD_CONTEXT] A context argument that was not valid was specified.

[BAD_SESSION] A session that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[NOT_SUPPORTED] An attempt was made to use an option that is not available or was not agreed
upon for use on the session.

[SESSION_TERMINATED]
The session is terminated and the results of an outstanding operation is no
longer available.

[SIZE_LIMIT_EXCEEDED]
The maximum number of linked responses, about which the requested service
should return information, has been reached.

[TIME_LIMIT_EXCEEDED]
The maximum elapsed time, within which the requested service must be pro-
vided, has been reached. The OM attribute parameter specifies a
Multiple-Reply object, which contains received partial results. The syntax is
object(Multiple-Reply). This OM attribute can be absent.

 Related Information
� See “mp_abandon(3)” on page 34.
� See “mp_bind(3)” on page 42.
� See “mp_cancel_get_req(3)” on page 44.
� See “mp_get_rsp(3)” on page 72.
� See “mp_receive(3)” on page 76.

 Chapter 2. Reference Pages 71

 mp_get_rsp(3)

 mp_get_rsp(3)

 Purpose

Replies to a requested get operation or get-next operation

 Syntax
 #include <xom.h>
 #include <xmp.h>

MP_status mp_get_rsp(OM_private_object session,
 OM_private_object context,
 OM_object response,

OM_sint invoke_id);

 Parameters
session Specifies the management session against which this operation is performed. This is the

private object of the OM class Session that was previously returned from mp_bind.

context Specifies the management context to be used for this operation. This parameter is a private
object of the OM class Context, or the constant [MP_DEFAULT_CONTEXT].

response Specifies the information supplied as the response to a get or get-next operation.

The response to a CMIS get operation can be one of the following:

� An instance of the OM class CMIS-Linked-Reply-Argument, which expresses a partial result
(linked reply). This parameter contains only one of the following OM attributes:

 – get-List-Error
 – get-Result
 – processing-Failure

� An instance of the OM class CMIS-Get-Result, which is the information supplied as the
single reply to a CMIS get operation. It indicates the successful completion of the opera-
tion.

� An instance of the OM class CMIS-Service-Error, which indicates either that the operation
has failed or that it has been canceled.

One of the following problem values for a CMIS-Service-Error, as well as its associated
parameter, can be sent as a reply:

[ACCESS_DENIED] The request operation was not performed due to security
reasons.

[CLASS_INSTANCE_CONFLICT]
The managed-object instance is not a member of the specified
class.

[COMPLEXITY_LIMITATION]
The requested operation was not performed, because an OM
attribute, such as scope, filter, or synchronization was too
complex.

[GET_LIST_ERROR] One or more attribute values were not read.

72 Programmer's Reference

 mp_get_rsp(3)

[INVALID_FILTER] Contains an assertion that is not valid or an unrecognized
logical operator.

[INVALID_SCOPE] The scope value is not valid.

[NO_SUCH_OBJECT_CLASS]
The managed-object class is not recognized.

[NO_SUCH_OBJECT_INSTANCE]
The managed-object instance is not recognized.

[OPERATION_CANCELLED]
The get operation was cancelled by a cancel-get operation, and
no further attribute values will be returned by this invocation of
the get service.

[PROCESSING_FAILURE]
A general failure was encountered during processing of the
operation.

[SYNCHRONIZATION_NOT_SUPPORTED]
The type of synchronization is not supported.

� The constant [MP_ABSENT_OBJECT], which indicates two possibilities:

– The result is NULL (absent) because no object was selected.
– This is the last response following a chain of linked replies.

The response to an SNMP get operation or an SNMP get-next operation can be one of the
following:

� An instance of the OM class SNMP-Get-Result, which indicates the successful completion
of the SNMP get operation or get-next operation. The OM attribute var-Bind-List contains
the list of variables with the values that were read.

� An instance of the OM class SNMP-Service-Error, which indicates the failure of the opera-
tion. Any problem value for an SNMP-Service-Error, including its associated parameter,
can be sent as a reply.

invoke_id Specifies the invoke identification of the requested operation to which the reply applies.

 Return Values

The mp_get_rsp command returns a value to indicate whether the response was completed.

If successful, mp_get_rsp returns the constant [MP_SUCCESS]. If unsuccessful, mp_get_rsp returns one
of the following error codes.

 Error Codes
� The constant [MP_NO_WORKSPACE]
� The constant [MP_INVALID_SESSION]
� The constant [MP_INSUFFICIENT_RESOURCES]
� Any problem value for a Communications-Error.
� Any problem value for a System-Error.
� One of the following problem values for a Library-Error:

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not supported
for this operation.

[BAD_CONTEXT] A context argument that was not valid was specified.

 Chapter 2. Reference Pages 73

 mp_get_rsp(3)

[BAD_ERROR] A service error that is not valid was specified.

[BAD_LINKED-REPLY] A linked reply that is not valid was specified.

[BAD_RESULT] A result that is not valid was specified.

[BAD_SESSION] A session that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[NO_SUCH_OPERATION]
The library has no knowledge of the designated operation and notification in
progress, or the response does not match the invoked operation and notifica-
tion.

[NOT_SUPPORTED] An attempt was made to use an option that is not available or was not agreed
upon for use in this session.

[SESSION_TERMINATED]
The session was terminated and the results of an outstanding operation are
no longer available.

 Related Information
� See “mp_bind(3)” on page 42.
� See “mp_get_req(3)” on page 69.
� See “mp_get_next_req(3)” on page 67.
� See “mp_receive(3)” on page 76.

74 Programmer's Reference

 mp_initialize(3)

 mp_initialize(3)

 Purpose

Initializes the XOM workspace

 Syntax
 #include <xom.h>
 #include <xmp.h>

OM_workspace mp_initialize(void);

 Description
� This function performs any necessary initialization of the API, including the creation of a workspace.

This function also performs any initialization of the API with the underlying MIS provider.

� This function must be called before any other management interface functions are called.

� This function can be called several times. In this case, each call returns a workspace that is distinct
from other workspaces created by mp_initialize but not yet deleted by mp_shutdown.

 Return Values

If successful, mp_initialize returns a handle to a workspace in which OM objects can be created and
manipulated. Only objects that have been created in this workspace can be used as parameters to the
other management interface functions. If unsuccessful, mp_initialize returns NULL.

 Related Information
� See “mp_shutdown(3)” on page 87.

 Chapter 2. Reference Pages 75

 mp_receive(3)

 mp_receive(3)

 Purpose

Retrieves the parameter of a management operation or notification; retrieves the partial result (linked
reply) or the complete result of an asynchronous management operation or notification

 Syntax
 #include <xom.h>
 #include <xmp.h>

MP_status mp_receive(OM_private_object session,
 OM_sint \primitive_return,
 OM_sint \mode_return,
 OM_sint \completion_flag_return,
 MP_status \operation_notification_status_return,
 OM_private_object \result_or_argument_return,

OM_sint \invoke_id_return);

 Parameters
session Specifies the management session against which this management operation or notification is

performed. This is the private object of the OM class Session that was previously returned
from mp_bind.

This function does not report any problem values for a Communications-Error or a
Service-Error as return values. Any such errors, which relate to the completed asynchronous
operation or notification, are reported in operation_notification_status_return.

primitive_return
Specifies one of the following service primitives:

It determines the management operation or notification of this result or parameter.

This result is valid only if completion_flag_return has the value [MP_T_COMPLETED],
[MP_T_INCOMING], or [MP_T_PARTIAL].

Table 12. Service Primitives

Indicate Confirm

MP_GET_IND MP_GET_CNF

MP_GET_NEXT_IND MP_GET_CNF

MP_SET_IND MP_SET_CNF

MP_ACTION_IND MP_ACTION_CNF

MP_CREATE_IND MP_CREATE_CNF

MP_DELETE_IND MP_DELETE_CNF

MP_EVENT_REPORT_IND MP_EVENT_REPORT_CNF

MP_CANCEL_GET_IND MP_CANCEL_GET_CNF

76 Programmer's Reference

 mp_receive(3)

mode_return
When the value is [MP_T_CONFIRMED], the invoked management operation or the reported
management notification has to be confirmed. A reply is expected. When the value is
[MP_T_NON_CONFIRMED], the requested management service is not to be confirmed.

This result is valid only if completion_flag_return has the value [MP_T_INCOMING].

completion_flag_return
Takes one of the following values to indicate the status of outstanding asynchronous operations
or notifications:

 � [MP_T_COMPLETED]

At least one outstanding asynchronous operation or notification has been completed, and
its result (positive as well as negative) is available.

 � [MP_T_INCOMING]

An incoming operation or notification indication is available.

 � [MP_T_NOTHING]

There are neither outstanding asynchronous operations or notifications, nor incoming indi-
cations.

 � [MP_T_OUTSTANDING]

There are outstanding asynchronous operations or notifications, but none has been com-
pleted (even partially) yet.

 � [MP_T_PARTIAL]

At least one outstanding asynchronous operation has been processed, and a partial result
is available.

This result is valid only if the return value of the function is [MP_SUCCESS]. The validity of
the other results in that case is given in the following table:

Table 13. Validity of Completion Flag Values

Completion Flag Value Primitive Mode Operation
or Notifica-
tion Status

Result or
Parameter

Invoke ID

[MP_T_COMPLETED] Yes (*) No Yes Yes (*) Yes

[MP_T_INCOMING] Yes Yes No Yes Yes

[MP_T_NOTHING] No No No No No

[MP_T_OUTSTANDING] No No No No No

[MP_T_PARTIAL] Yes (*) No Yes Yes (*) Yes

Note: An asterisk (*) indicates that the result is valid only if operation_notification_status_return has the value
[MP_SUCCESS].

operation_notification_status_return
This result is valid only if completion_flag_return has the value [MP_T_COMPLETED] or
[MP_T_PARTIAL].

The operation_notification_status_return parameter takes one of the following values to indicate
whether the asynchronous management operation or notification was executed successfully:

� The constant [MP_SUCCESS], if the operation or notification was successful

 Chapter 2. Reference Pages 77

 mp_receive(3)

� An instance of the OM class CMIS-Linked-Reply-Argument, containing the partial result of
an asynchronous operation.

� One of the following error values, if an error occurred during execution of the operation or
notification:

– The constant [MP_NO_WORKSPACE]
– The constant [MP_INVALID_SESSION]
– The constant [MP_INSUFFICIENT_RESOURCES]
– Any problem value for a Communications-Error.
– Any problem value for a SNMP-Service-Error
– One of the problem values for a CMIS-Service-Error. The possible error values are

listed for each operation in the following table.

Table 14. Valid CMIS-Service-Error Values for each Confirm Primitive

Error Values ACT CAN CRE DEL EVE GET SET

[ACCESS_DENIED] yes yes yes yes yes

[CLASS_INSTANCE_CONFLICT] yes yes yes yes yes

[COMPLEXITY_LIMITATION] yes yes yes yes

[DUPLICATE_MANAGED_OBJECT] yes

[GET_LIST_ERROR] yes

[INVALID_ARGUMENT_VALUE] yes yes

[INVALID_ATTRIBUTE_VALUE] yes

[INVALID_FILTER] yes yes yes yes

[INVALID_OBJECT_INSTANCE] yes

[INVALID_SCOPE] yes yes yes yes

[MISSING_ATTRIBUTE_VALUE] yes

[MISTYPED_OPERATION] yes

[NO_SUCH_ACTION] yes

[NO_SUCH_ARGUMENT] yes yes

[NO_SUCH_ATTRIBUTE] yes

[NO_SUCH_EVENT_TYPE] yes

[NO_SUCH_INVOKE_ID] yes

[NO_SUCH_OBJECT_CLASS] yes yes yes yes yes yes

[NO_SUCH_OBJECT_INSTANCE] yes yes yes yes yes yes

[NO_SUCH_REFERENCE_OBJECT] yes

[OPERATION_CANCELLED] yes

[PROCESSING_FAILURE] yes yes yes yes yes yes yes

[SET_LIST_ERROR] yes

[SYNCHRONIZATION_NOT_SUPPORTED] yes yes yes yes

Note: The confirm primitives are abbreviated as follows in the table headers:

ACT = MP_ACTION_CNF
CAN = MP_CANCEL_GET_CNF
CRE = MP_CREATE_CNF
DEL = MP_DELETE_CNF
EVE = MP_EVENT_REP_CNF
GET = MP_GET_CNF
SET = MP_SET_CNF

78 Programmer's Reference

 mp_receive(3)

result_or_argument_return
Specifies the result of the (partially) completed asynchronous operation or notification, the
parameter of the invoked management operation or the parameter of the reported management
notification.
The value of this result or parameter is the constant [MP_ABSENT_OBJECT] in each of the
following cases:

� The operation was one which does not return a result (for example, mp_cancel_get).

� No object was selected for the operation.

� This is the last response following a chain of linked replies.

Otherwise, the OM class of the OM object is the OM class of the result (or partial result) of the
asynchronous operation or notification, or the OM class of the parameter of the invoked opera-
tion or reported notification. The particular class of the OM object can be determined by using
the OM functions.

This result is valid if the return value of the function is [MP_SUCCESS]; completion_flag_return
has the value [MP_T_COMPLETED] or [MP_T_PARTIAL]; and
operation_notification_status_return has the value [MP_SUCCESS].

This result is also valid if the return value of the function is [MP_SUCCESS], and
completion_flag_return has the value [MP_T_INCOMING].

invoke_id_return
Specifies the invoke identification or notification or the operation for which an error, a result, or
a parameter is being returned.

This result is valid only if the return value of the function is [MP_SUCCESS], and
completion_flag_return has the value [MP_T_COMPLETED], [MP_T_PARTIAL], or
[MP_T_INCOMING].

 Return Values

If successful, mp_receive returns the constant [MP_SUCCESS]. If unsuccessful, mp_receive returns one
of the following error codes.

 Error Codes
� The constant [MP_NO_WORKSPACE]
� The constant [MP_INVALID_SESSION]
� The constant [MP_INSUFFICIENT_RESOURCES]
� Any problem value for a System-Error
� One of the following problem values for a Library-Error:

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not supported
for this operation.

[BAD_SESSION] A session that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[SESSION_TERMINATED]
The session is terminated and the results of an outstanding operation are no
longer available.

 Chapter 2. Reference Pages 79

 mp_receive(3)

 Related Information
� See “mp_bind(3)” on page 42.

80 Programmer's Reference

 mp_set_req(3)

 mp_set_req(3)

 Purpose

Modifies the attribute values of managed objects

 Syntax
 #include <xom.h>
 #include <xmp.h>

MP_status mp_set_req(OM_private_object session,
 OM_private_object context,
 OM_object argument,
 OM_private_object \result_return,

OM_sint \invoke_id_return);

 Description
� The CMIS service can be requested in a confirmed mode or a nonconfirmed mode. A reply is

expected in a confirmed mode, while none is expected in a nonconfirmed mode. The SNMP service
can be requested only in a confirmed mode.

� This function can be called in both synchronous and asynchronous modes.

 Parameters
session Specifies the management session against which this operation is performed. This

is the private object of the OM class Session that was previously returned from
mp_bind.

context Specifies the management context to be used for this operation. This argument is a
private object of the OM class Context, or the constant [MP_DEFAULT_CONTEXT].
This parameter defines the modes of operation and the possible addressing and
access-control parameters.

argument Specifies an OM object that provides the information about which attributes are to
be updated. This parameter is an instance of a subclass of the OM class
Set-Argument:

� For a CMIS set operation, the supplied argument is an instance of the OM class
CMIS-Set-Argument.

� For an SNMP set operation, the supplied argument is an instance of the OM
class SNMP-Set-Argument.

 Chapter 2. Reference Pages 81

 mp_set_req(3)

result_return Specifies a private object. Upon successful completion of a synchronous call,
when the operation was requested in a confirmed mode, the result can be one of
the following:

� For a CMIS set operation:

– An instance of the OM class CMIS-Set-Result.

– An instance of the OM class Multiple-Reply, which is a set of instances of a
subclass of the OM class CMIS-Linked-Reply-Argument. This instance con-
tains one of the following OM attributes:

 - processing-Failure
 - set-List-Error
 - set-Result

� For an SNMP set operation, the result is an instance of the OM class
SNMP-Set-Result, which contains the requested list of variables with the values
that were modified.

Otherwise, in nonconfirmed mode, no results are expected. The constant
[MP_ABSENT_OBJECT] denotes the absence of a result.

invoke_id_return Specifies the invoke identification of the initiated management operation, when
invoked in asynchronous mode. This value allows the results retrieved through the
mp_receive function to be matched with the original request. In synchronous mode,
this parameter is undefined. It is applicable only in a confirmed mode.

 Return Values

The return value for this function indicates whether the action was completed, if used in synchronous
mode; or whether it was initiated, if used in asynchronous mode.

If successful, mp_set_req returns the constant [MP_SUCCESS]. If unsuccessful, mp_set_req returns one
of the following error codes.

 Error Codes
� The constant [MP_NO_WORKSPACE]
� The constant [MP_INVALID_SESSION]
� The constant [MP_INSUFFICIENT_RESOURCES]
� Any problem value for a Communications-Error
� Any problem value for a System-Error
� Any problem value for an SNMP-Service-Error
� One of the following problem values for a CMIS-Service-Error:

[ACCESS_DENIED] The request operation was not performed due to security reasons.

[CLASS_INSTANCE_CONFLICT]
The managed-object instance is not a member of the specified class.

[COMPLEXITY_LIMITATION] The requested operation was not performed, because an OM attri-
bute, such as scope, filter, or synchronization was too complex.

[INVALID_FILTER] Contains an assertion that is not valid or an unrecognized logical
operator.

82 Programmer's Reference

 mp_set_req(3)

[INVALID_SCOPE] The scope value is not valid.

[NO_SUCH_OBJECT_CLASS] The managed-object class is not recognized.

[NO_SUCH_OBJECT_INSTANCE]
The managed-object instance is not recognized.

[PROCESSING_FAILURE] A general failure was encountered during the processing of an oper-
ation.

[SET_LIST_ERROR] One or more attribute values were not modified.

[SYNCHRONIZATION_NOT_SUPPORTED]
This type of synchronization is not supported.

� One of the following problem values for a Library-Error:

[BAD_ARGUMENT] An argument that was not valid was specified.

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not supported
for this operation.

[BAD_CONTEXT] A context argument that was not valid was specified.

[BAD_SESSION] A session that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[NOT_SUPPORTED] An attempt was made to use an option that is not available or was not agreed
upon for use on the session.

[SESSION_TERMINATED]
The session is terminated and the results of an outstanding operation are no
longer available.

[SIZE_LIMIT_EXCEEDED]
The maximum number of linked responses, about which the requested service
should return information, has been reached.

[TIME_LIMIT_EXCEEDED]
The maximum elapsed time, within which the requested service must be pro-
vided, has been reached. The OM attribute parameter specifies a
Multiple-Reply object, which contains received partial results. The syntax is
object(Multiple-Reply). This OM attribute can be absent.

[TOO_MANY_OPERATIONS.]
Additional management operations can not be performed until at least one
asynchronous operation has been completed.

 Related Information
� See “mp_abandon(3)” on page 34.
� See “mp_bind(3)” on page 42.
� See “mp_receive(3)” on page 76.
� See “mp_set_rsp(3)” on page 84.

 Chapter 2. Reference Pages 83

 mp_set_rsp(3)

 mp_set_rsp(3)

 Purpose

Replies to a requested set operation

 Syntax
 #include <xom.h>
 #include <xmp.h>

MP_status mp_set_rsp(OM_private_object session,
 OM_private_object context,
 OM_object response,

OM_sint invoke_id);

 Parameters
session

Specifies the management session against which this operation is performed. This is the
private object of the OM class Session that was previously returned from mp_bind.

context
Specifies the management context to be used for this operation. This parameter is a private
object of the OM class Context, or the constant [MP_DEFAULT_CONTEXT].

response
Specifies the information supplied as the response to the requested set operation.

The response to a CMIS set operation can be one of the following:

� An instance of the OM class CMIS-Linked-Reply-Argument, which indicates a partial result
(linked reply). This instance contains one of the following OM attributes:

 – processing-Failure
 – set-List-Error
 – set-Result

� An instance of the OM class CMIS-Set-Result, which is supplied as the single reply to a
CMIS set operation and indicates the successful completion of the operation.

� An instance of the OM class CMIS-Service-Error, which indicates the failure of the opera-
tion. One of the following problem values for a CMIS-Service-Error, including its associated
parameter, can be sent as a reply:

[ACCESS_DENIED] The request operation was not performed due to security
reasons.

[CLASS_INSTANCE_CONFLICT]
The managed-object instance is not a member of the
specified class.

[COMPLEXITY_LIMITATION] The requested operation was not performed, because an
OM attribute, such as scope, filter, or synchronization was
too complex.

[INVALID_FILTER] Contains an assertion that is not valid or an unrecognized
logical operator.

[INVALID_SCOPE] The scope value is not valid.

84 Programmer's Reference

 mp_set_rsp(3)

[NO_SUCH_OBJECT_CLASS] The managed-object class is not recognized.

[NO_SUCH_OBJECT_INSTANCE]
The managed-object instance is not recognized.

[PROCESSING_FAILURE] A general failure was encountered during the processing
of an operation.

[SET_LIST_ERROR] One or more attribute values were not modified.

[SYNCHRONIZATION_NOT_SUPPORTED]
This type of synchronization is not supported.

� The constant [MP_ABSENT_OBJECT], which indicates two possibilities:

– The result is NULL (absent) because no object was selected.
– This is the last response following a chain of linked replies.

The response to an SNMP set operation can be one of the following:

– An instance of the OM class SNMP-Set-Result, which indicates the successful com-
pletion of the SNMP set operation.

The single OM attribute var-Bind-List contains the requested list of variables with the
corresponding values that were modified.

– An instance of the OM class SNMP-Service-Error, which indicates the failure of the
operation. Any problem value for an SNMP-Service-Error, along with its associated
parameter, can be sent as a reply.

invoke_id
Specifies the invoke identification of the requested operation to which the reply applies.

 Return Values

The mp_set_rsp command returns a value to indicate whether the response was completed. If successful,
mp_set_rsp returns the constant [MP_SUCCESS]. If unsuccessful, mp_set_rsp returns one of the fol-
lowing error codes.

 Error Codes
� The constant [MP_NO_WORKSPACE]
� The constant [MP_INVALID_SESSION]
� The constant [MP_INSUFFICIENT_RESOURCES]
� Any problem value for a Communications-Error
� Any problem value for a System-Error
� One of the following problem values for a Library-Error:

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not supported
for this operation.

[BAD_CONTEXT] A context argument that was not valid was specified.

[BAD_ERROR] A service error that is not valid was specified.

[BAD_LINKED_REPLY]
A linked reply that is not valid was specified.

[BAD_RESULT] A result that is not valid was specified.

[BAD_SESSION] A session that was not valid was specified.

 Chapter 2. Reference Pages 85

 mp_set_rsp(3)

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[NO_SUCH_OPERATION]
The library has no knowledge of the designated operation and notification in
progress, or the response does not match the invoked operation and notifica-
tion.

[NOT_SUPPORTED] An attempt was made to use an option that is not available or was not agreed
upon for use in this session.

[SESSION_TERMINATED]
The session was terminated and the results of an outstanding operation are
no longer available.

 Related Information
� See “mp_bind(3)” on page 42.
� See “mp_receive(3)” on page 76.
� See “mp_set_req(3)” on page 81.

86 Programmer's Reference

 mp_shutdown(3)

 mp_shutdown(3)

 Purpose

Frees or discards a workspace

 Syntax
 #include <xom.h>
 #include <xmp.h>

MP_status mp_shutdown(OM_workspace workspace);

 Description
� This function deletes a workspace established by mp_initialize and enables the service to release

resources.

� No other management interface functions should be called after this function, except for mp_initialize.

� All the remaining open sessions are closed, all the remaining private OM objects are deleted, and the
workspace is deleted. Service-generated public objects must be deleted by calling om_delete explic-
itly, since they are not affected by mp_shutdown.

 Parameters
workspace

Specifies the handle to the workspace.

 Return Values

If successful, mp_shutdown returns the constant [MP_SUCCESS]. If unsuccessful, mp_shutdown returns
one of the following error codes.

 Error Codes
 � [MP_NO_WORKSPACE]
 � [MP_INSUFFICIENT_RESOURCES]

 Related Information
� See “mp_initialize(3)” on page 75.

 Chapter 2. Reference Pages 87

 mp_unbind(3)

 mp_unbind(3)

 Purpose

Terminates a management session

 Syntax
 #include <xom.h>
 #include <xmp.h>

MP_status mp_unbind(OM_private_object session);

 Description
� By terminating a given management session, this function makes the parameter session unavailable

for use with other interface functions (except mp_bind()). This means the results of any outstanding
asynchronous operations, which were initiated using the given session, can no longer be received.
(Such operations can be terminated prematurely.) For this reason, it is recommended that you
process all outstanding asynchronous operations with mp_receive before using mp_unbind.

� The unbound session can be used again as an argument to mp_bind, possibly after modification by
the XOM functions. When it is no longer required, the session must be deleted using the om_delete
function call.

 Parameters
session Specifies the management session, which is to be unbound. This is the private object of the

OM class Session that was previously returned from mp_bind. The value of the file-Descriptor
OM attribute is [MP_NO_VALID_FILE_DESCRIPTOR] if the function succeeds. The other OM
attributes are unchanged.

 Return Values

The mp_unbind command returns a value to indicate whether session was unbound successfully. If suc-
cessful, mp_unbind returns the constant [MP_SUCCESS]. If unsuccessful, mp_unbind returns one of the
following error codes.

 Error Codes
� The constant [MP_NO_WORKSPACE]
� The constant [MP_INVALID_SESSION]
� The constant [MP_INSUFFICIENT_RESOURCES]
� One of the following problem values for a Library-Error:

[BAD_CLASS] The OM class of an argument, result, linked-reply, or error is not supported
for this operation.

[BAD_SESSION] A session that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

88 Programmer's Reference

 mp_unbind(3)

[SESSION_TERMINATED]
The session is terminated and the results of an outstanding operation are no
longer available.

This function does not return a Communications-Error or any management service errors.

 Related Information
� See “mp_bind(3)” on page 42.

 Chapter 2. Reference Pages 89

 mp_version(3)

 mp_version(3)

 Purpose

Negotiates features of the interface and service

 Syntax
 #include <xom.h>
 #include <xmp.h>

MP_status mp_version(OM_workspace workspace,
MP_feature feature_list[]);

 Description

This function negotiates features of the XMP API, which are represented by object identifiers. The CMIS
package and the SNMP package, specified in Chapter 4, “XMP API Management Service Packages” on
page 963, and the Management Contents packages, specified in Chapter 5, “XMP API Management Con-
tents Packages” on page 1033, are negotiable features.

 Parameters
workspace Specifies the handle to the workspace.

feature_list Specifies an ordered sequence of features, each represented by an object identifier. The
sequence is terminated by an object identifier having no components (a length of 0 (zero)
and any value of the data pointer in the C language representation).

 Return Values
activated If the function completed successfully, the result contains an ordered sequence of

Boolean values, with the same number of elements as the feature_list. If true, each value
indicates that the corresponding feature is now part of the interface. If false, each value
indicates that the corresponding feature is not available.

In the C language binding, the result is combined with the feature_list argument as a
single array of structures of type MP_feature, which is defined as:

typedef struct {
 OM_object_identifier feature;
 OM_boolean activated;
 } MP_feature;

The mp_version command returns a value to indicate whether the response was completed. If successful,
mp_version returns the constant [MP_SUCCESS]. If unsuccessful, mp_version returns one of the fol-
lowing error codes.

90 Programmer's Reference

 mp_version(3)

 Error Codes
� The constant [MP_NO_WORKSPACE]
� The constant [MP_INSUFFICIENT_RESOURCES]
� Any problem value for a System-Error
� The miscellaneous Library-Error

The mp_version command does not return a Communications-Error or any management service error.

 Implementation Specifics

Although it should never fail in a production system, you may experience problems with mp_version() calls
in a development environment, where libraries, library paths, object identifiers, and other elements are
constantly changing. If you experience problems with mp_version– that is, if it is unable to load a
package– read the following information.

When a program calls mp_version to request that an OM package be loaded, XMP will do the following:

Step 1. Read the configuration file /usr/OV/conf/xmpcfg.dat. Locate the oid in the configuration and get
the name of the corresponding library file.

Step 2. Call the AIX load() subroutine to bring this library into memory.

The following errors can occur during this process:

� The configuration file does not exist.

Execute the command ls -l /usr/OV/conf/xmpcfg.dat and check whether the file is there. If it is not
you will have to reinstall the product or get one from backup.

� The configuration file cannot be read.

This may be a file permission problem. Log in as the userid that executes the program that calls
mp_version and execute the command cat /usr/OV/conf/xmpcfg.dat to see whether the file can be
read. If the file is there but cannot be read, log in as root and execute the command chmod 444
/usr/OV/conf/xmpcfg.dat .

� The oid in the mp_version package does not match the one in the configuration file.

This is most likely caused by including a header file that is not compatible with the configuration file in
use. Check whether the oid in the call to mp_version matches one of those in the configuration file. If
not, recompile your program with the correct header file or get a new library.

� The library cannot be loaded

If your library is present, is readable, and matches an entry in the configuration file, but mp_version
cannot load a package from it, there may be a problem in your library path. If the environment vari-
able LIBPATH is defined in the context of the process, XMP lets the operating system resolve the path
to the library file to be loaded. The system will then check all the directories in the LIBPATH to locate
the library. See the description of the load() routine for more details.

If LIBPATH is not defined, XMP explicitly adds /usr/OV/lib in the front of the library name, so that the
library will be loaded from there.

If you set your LIBPATH make sure that the directory where the libraries reside is part of the LIBPATH
or XMP will not be able to load your OM packages.

 Chapter 2. Reference Pages 91

 mp_version(3)

 Related Information
� See “mp_bind(3)” on page 42.
� See “mp_initialize(3)” on page 75.

92 Programmer's Reference

 mp_wait(3)

 mp_wait(3)

 Purpose

Suspends the caller until a management message is available from one or more bound sessions

 Syntax
 #include <xom.h>
 #include <xmp.h>

MP_status mp_wait(MP_waiting_sessions bound_session_list[]
 OM_workspace workspace,

OM_uint32 timeout);

 Description

Once mp_wait indicates that there are messages available, you should call mp_receive repeatedly until it
returns MP_T_NOTHING or MP_T_OUTSTANDING, that is, until you have received all messages avail-
able) before calling mp_wait again.

 Parameters
bound_session_list Specifies a list of management sessions upon which to wait. Each list value is a

private object of the OM class Session, and a flag that indicates if there are any
messages in that session. The last value must be the constant
[MP_DEFAULT_SESSION].

workspace Specifies the workspace (obtained from a call from mp_initialize), in which an
MP_status OM object is created if the return value is something other than the con-
stant [MP_SUCCESS]. Sessions specified in the bound_session_list do not need to
be from this workspace.

timeout Specifies the maximum number of milliseconds for which the requester is sus-
pended before obtaining a response, when there are no messages from the list of
sessions. A value of zero specifies an indefinite timeout.

 Return Values

The mp_wait command returns a value to indicate whether the action was completed. If successful,
mp_wait returns the following return values:

� The constant [MP_SUCCESS]. A successful completion means either that a message is available
from a session or that the timeout limit has been reached. The mp_receive function must be called to
determine whether a message is available.

� Activated(OM_boolean). If the function was completed successfully, this result contains an ordered
sequence of Boolean values, with the same number of elements as the bound_session_list . If true,
each value indicates that the corresponding Session has data waiting in queue. If false, each value
indicates that the corresponding Session does NOT have data waiting in queue.

 Chapter 2. Reference Pages 93

 mp_wait(3)

In the C binding, this result is combined with the bound_session_list argument as a single array of
structures of type MP_waiting_sessions, which is defined as:

typedef struct {
 OM_private_object bound_session;
 OM_boolean activated;
 } MP_waiting_sessions;

If unsuccessful, mp_wait returns one of the following error codes.

 Error Codes
� The constant [MP_NO_WORKSPACE]
� The constant [MP_INVALID_SESSION]
� The constant [MP_INSUFFICIENT_RESOURCES]
� Any problem value for a System-Error
� One of the following problem values for a Library-Error:

[BAD_ADDRESS] An address that is not valid was specified.

[BAD_SESSION] A session that was not valid was specified.

[BAD_WORKSPACE] A workspace argument that was not valid was specified.

[MISCELLANEOUS] A miscellaneous error occurred during interaction with the system manage-
ment service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

[SESSION_TERMINATED]
The session is terminated and the results of an outstanding operation are no
longer available.

 Related Information
� See “mp_bind(3)” on page 42.
� See “mp_initialize(3)” on page 75.
� See “mp_receive(3)” on page 76.

94 Programmer's Reference

 nvCollectionAdd(3)

 nvCollectionAdd(3)

 Purpose

Defines new collections of objects

 Syntax
#include <OV/ovw_obj.h>
#include <OV/OV_nvCollection.h>
#include <OV/OV_nvCollectionErrs.h>

int nvCollectionAdd(char \name,
 char \desc,
 char \rule,
 int force);

 Description

The nvCollectionAdd function adds a new collection of objects to the Collection Facility. You provide a
name for the collection, a description, and the rule for determining which objects fit into the collection.
Note that this call can be CPU-intensive if the collection is large.

 Parameters
 name

Specifies the name of the collection

 desc
Provides a description of what is in the collection

 rule
Provides a rule for determining which objects fit into the collection. The rule is specified using one of
the following constructs:

IN 'object1 object2...'
Selects a list of objects, separated by blanks. If more than one object is speci-
fied, the list must be enclosed in single quotes.

field op value Selects objects in the object database that meet the criteria specified in this
expression, such as isRouter=true.

field is a field in the object database, such as isRouter.

op is one of the following logical operators:

 � =
 � !=
 � <
 � >
 � <=
 � >=

If field or value has spaces in the text (such as 'SNMP sysObjectId'), enclose
the text in single quotes.

 Chapter 2. Reference Pages 95

 nvCollectionAdd(3)

IN_SUBNET Selects objects within the specified subnet

IN_COLLECTION Selects objects in another previously defined collection.

These rules can be made more complex by joining simple rules with AND, &&, OR, ||, and ! operators
within parentheses. For example, you might specify the following rule:

((isRouter=true) AND ((IN_SUBNET 9.67.96.ð) || (IN_SUBNET 9.6ð.1ðð.ð)))

 force
Forces the add function if a dependent collection does not exist.

 Return Values

If successful, nvCollectionAdd returns a value of 0. If unsuccessful, nvCollectionAdd returns a value of −1.

 Error Codes
[NV_COLLECTION_SUCCESS] Successful operation.

[NV_COLLECTION_COLLECTION_EXISTS]
The collection cannot be created because another collection with that
name already exists.

[NV_COLLECTION_INVALID_RULE]
For some reason, the rule cannot be processed. Check the Boolean
logic and any other collection names you specified.

[NV_COLLECTION_FIELD_NOT_VALID]
The field specified in field op value is not a valid field.

[NV_COLLECTION_OUT_OF_MEMORY]
There is not enough memory to store the new collection information.

[NV_COLLECTION_DEPENDENCY_NOT_FOUND]
The collection being added uses another collection in its definition,
and that collection cannot be found.

[NV_COLLECTION_OVw_ERROR] An error occurred while trying to add the collection to the object data-
base.

 Files

When compiling a program that uses nvCollectionAdd, you need to include the following files:

 � ovw_obj.h
 � OV_nvCollection.h
 � OV_nvCollectionErrs.h

 Libraries

When compiling a program that uses nvCollectionAdd, you need to link to the following libraries:

 /usr/OV/lib/libov.a

 /usr/OV/lib/libovw.a

 /usr/OV/lib/libcollection.a

96 Programmer's Reference

 nvCollectionAdd(3)

 Related Information
� See “nvCollectionAddCallback(3)” on page 98.

� See “nvCollectionError(3)” on page 103.

 Chapter 2. Reference Pages 97

 nvCollectionAddCallback(3)

 nvCollectionAddCallback(3)

 Purpose

Registers procedures to process collection facility events

 Syntax
#include <OV/ovw_obj.h>
#include <OV/OV_nvCollection.h>
#include <OV/OV_nvCollectionErrs.h>

int nvCollectionAddCallback(nvCollectionEvent event,
 nvCollectionCallback callback,
 void \callback_data);

 Description

The nvCollectionAddCallback function adds an application callback procedure for handling the events
associated with the collection facility. Events include:

� Adding a new collection

� Deleting a collection

� Modifying the description or rule for a collection

� Adding or removing an object from an existing collection

 � Collection errors

You should register for the error event if you are registering for any other events. This notifies the
program that the connection to the collection facility daemon (nvcold) has been lost.

 Parameters
 event

Specifies the collection facility event that should be processed. Collection facility events are as
follows:

NV_COLLECTION_ADDED
New collection was added

NV_COLLECTION_DELETED
Collection was deleted

NV_COLLECTION_DESC_MODIFIED
The description for a collection was modified

NV_COLLECTION_RULE_MODIFIED
The rule for defining which objects belong in the collection was modified

NV_COLLECTION_OBJ_ADDED
An object was added to a collection

NV_COLLECTION_OBJ_DELETED
An object was deleted from a collection

98 Programmer's Reference

 nvCollectionAddCallback(3)

NV_COLLECTION_ERROR
An unspecified error occurred.

 callback
Specifies a procedure to invoke for the specified event.

 callback_data
Specifies a pointer to data that is passed to the callback procedure.

 Return Values

If successful, the nvCollectionAddCallback return value is 0 (zero). If unsuccessful, it returns −1 (negative
one).

 Error Codes
[NV_COLLECTION_SUCCESS] Successful completion.

[NV_OUT_OF_MEMORY] There is not enough memory to complete the operation.

 Files

When compiling a program that uses nvCollectionAddCallback, you need to include the following files:

 � ovw_obj.h
 � OV_nvCollection.h
 � OV_nvCollectionErrs.h

 Libraries

When compiling a program that uses nvCollectionAddCallback, you need to link to the following libraries:

 /usr/OV/lib/libov.a

 /usr/OV/lib/libovw.a

 /usr/OV/lib/libcollection.a

 Related Information
� See “nvCollectionAdd(3)” on page 95.

 Chapter 2. Reference Pages 99

 nvCollectionDelete(3)

 nvCollectionDelete(3)

 Purpose

Deletes a collection definition

 Syntax
#include <OV/ovw_obj.h>
#include <OV/OV_nvCollection.h>
#include <OV/OV_nvCollectionErrs.h>

int nvCollectionDelete(char \name);

 Description

The nvCollectionDelete function deletes a collection definition.

 Parameters
 name

Specifies the name of the collection

 Return Values

If successful, nvCollectionDelete returns a value of 0. If unsuccessful, nvCollectionDelete returns a value
of −1.

 Error Codes
NV_COLLECTION_SUCCESS Successful operation.

NV_COLLECTION_DOES_NOT_EXIST
The specified collection is not defined and cannot be deleted.

[NV_COLLECTION_DEPENDENCY_EXISTS]
Another collection is dependent on this collection. This collection is
specified as part of another collection's definition.

 Files

When compiling a program that uses nvCollectionDelete, you need to include the following files:

 � ovw_obj.h
 � OV_nvCollection.h
 � OV_nvCollectionErrs.h

100 Programmer's Reference

 nvCollectionDelete(3)

 Libraries

When compiling a program that uses nvCollectionDelete, you need to link to the following libraries:

 /usr/OV/lib/libov.a

 /usr/OV/lib/libovw.a

 /usr/OV/lib/libcollection.a

 Related Information
� See “nvCollectionAddCallback(3)” on page 98.

� See “nvCollectionError(3)” on page 103.

 Chapter 2. Reference Pages 101

 nvCollectionDone(3)

 nvCollectionDone(3)

 Purpose

Closes a connection to the collection facility server

 Related Functions
 nvCollectionXDone

 Syntax
#include <OV/ovw_obj.h>
#include <OV/OV_nvCollection.h>
#include <OV/OV_nvCollectionErrs.h>

int nvCollectionDone();

int nvCollectionXDone();

 Description

The nvCollectionDone function closes the connection to the collection facility server.

The nvCollectionXDone function should be used if you used nvCollectionXOpen to open the connection to
the server.

 Files

When compiling a program that uses nvCollectionDone or nvCollectionXDone, you need to include the
following files:

 � ovw_obj.h
 � OV_nvCollection.h
 � OV_nvCollectionErrs.h

 Libraries

When compiling a program that uses nvCollectionDone or nvCollectionXDone, you need to link to the fol-
lowing libraries:

 /usr/OV/lib/libov.a

 /usr/OV/lib/libovw.a

 /usr/OV/lib/libcollection.a

 Related Information
� See “nvCollectionOpen(3)” on page 119.

� See “nvCollectionXOpen(3)” in “nvCollectionOpen(3)” on page 119.

102 Programmer's Reference

 nvCollectionError(3)

 nvCollectionError(3)

 Purpose

Returns the error code set by the last collection facility API call

 Syntax
#include <OV/ovw_obj.h>
#include <OV/OV_nvCollection.h>
#include <OV/OV_nvCollectionErrs.h>

int nvCollectionError();

 Description

The nvCollectionError function returns the error value set by the previous collection facility API call. It can
be tested immediately after a failed collection facility call (either a −1 or a NULL pointer) to determine the
exact reason for the failure.

 Examples

The following code example illustrates the way nvCollectionError can be used with nvCollectionErrorMsg:

if (nvCollectionOpen() < ð) {
fprintf(stderr, “foo: %s\n”, nvCollectionErrorMsg(nvCollectionError()));

 exit(1);
 }

 Files

When compiling a program that uses nvCollectionError, you need to include the following files:

 � ovw_obj.h
 � OV_nvCollection.h
 � OV_nvCollectionErrs.h

 Libraries

When compiling a program that uses nvCollectionError, you need to link to the following libraries:

 /usr/OV/lib/libov.a

 /usr/OV/lib/libovw.a

 /usr/OV/lib/libcollection.a

 Related Information
� See “nvCollectionErrorMsg(3)” on page 104.

 Chapter 2. Reference Pages 103

 nvCollectionErrorMsg(3)

 nvCollectionErrorMsg(3)

 Purpose

Returns a textual description of a collection facility API error code

 Syntax
#include <OV/ovw_obj.h>
#include <OV/OV_nvCollection.h>
#include <OV/OV_nvCollectionErrs.h>

char \ nvCollectionErrorMsg(int error);

 Description

The nvCollectionErrorMsg function maps a collection facility API error code to a string that contains text
describing the meaning of the specified error code.

 Examples

The following code example illustrates the way nvCollectionError can be used with nvCollectionErrorMsg:

if (nvCollectionOpen() < ð) {
fprintf(stderr, “foo: %s\n”, nvCollectionErrorMsg(nvCollectionError()));

 exit(1);
 }

 Files

When compiling a program that uses nvCollectionErrorMsg, you need to include the following files:

 � ovw_obj.h
 � OV_nvCollection.h
 � OV_nvCollectionErrs.h

 Libraries

When compiling a program that uses nvCollectionErrorMsg, you need to link to the following libraries:

 /usr/OV/lib/libov.a

 /usr/OV/lib/libovw.a

 /usr/OV/lib/libcollection.a

 Related Information
� See “nvCollectionError(3)” on page 103.

104 Programmer's Reference

 nvCollectionEvaluate(3)

 nvCollectionEvaluate(3)

 Purpose

Evaluates a rule and returns a list of objects that fit the rule

 Syntax
#include <OV/ovw_obj.h>
#include <OV/OV_nvCollection.h>
#include <OV/OV_nvCollectionErrs.h>

OVwObjectIdList \ nvCollectionEvaluate(char \ rule);

 Description

The nvCollectionEvaluate function can be used to determine which objects in a network will be included in
collections that use the specified rule.

 Parameters
 rule

Provides a rule for determining which objects fit into the collection. The rule is specified using one of
the following constructs:

IN 'object1 object2...'
Selects a list of objects, separated by blanks. If more than one object is speci-
fied, the list must be enclosed in single quotes.

field op value Selects objects in the object database that meet the criteria specified in this
expression, such as isRouter=true.

field is a field in the object database, such as isRouter.

op is one of the following logical operators:

 � =
 � !=
 � <
 � >
 � <=
 � >=

If field or value has spaces in the text (such as 'SNMP sysObjectId'), enclose
the text in single quotes.

IN_SUBNET Selects objects within the specified subnet

IN_COLLECTION Selects objects in another previously defined collection.

These rules can be made more complex by joining simple rules with AND, &&, OR, ||, and ! operators
within parentheses. For example, you might specify the following rule:

((isRouter=true) AND ((IN_SUBNET 9.67.96.ð) || (IN_SUBNET 9.6ð.1ðð.ð)))

 Chapter 2. Reference Pages 105

 nvCollectionEvaluate(3)

 Return Values

If successful, nvCollectionEvaluate returns a pointer to an OVw object ID list. If unsuccessful,
nvCollectionEvaluate returns NULL.

 Error Codes
NV_COLLECTION_SUCCESS Successful operation.

NV_COLLECTION_INVALID_RULE
For some reason, the rule cannot be processed. Check the Boolean
logic and any other collection names you specified.

NV_COLLECTION_FIELD_NOT_VALID
One of the fields specified in the rule is invalid.

 Files

When compiling a program that uses nvCollectionEvaluate, you need to include the following files:

 � ovw_obj.h
 � OV_nvCollection.h
 � OV_nvCollectionErrs.h

 Libraries

When compiling a program that uses nvCollectionEvaluate, you need to link to the following libraries:

 /usr/OV/lib/libov.a

 /usr/OV/lib/libovw.a

 /usr/OV/lib/libcollection.a

106 Programmer's Reference

 nvCollectionFreeDefn(3)

 nvCollectionFreeDefn(3)

 Purpose

Frees memory used for collection facility functions

 Related Functions
 nvCollectionFreeList
 nvCollectionFreeChangeList

 Syntax
#include <OV/ovw_obj.h>
#include <OV/OV_nvCollection.h>
#include <OV/OV_nvCollectionErrs.h>

void nvCollectionFreeDefn(nvCollectionDefn \defn);

void nvCollectionFreeList(nvCollectionList \list);

void nvCollectionFreeChangeList(nvCollectionChangeList \list);

 Description

The nvCollectionFreeDefn function frees memory used for returning collection definitions.

The nvCollectionFreeList function frees memory used for returning lists of collections.

The nvCollectionFreeChangeList function frees memory used for returning lists of changes to collections.

 Parameters
 defn

Specifies a pointer to a collection definition.

 list
Specifies a pointer to a collection list.

 Files

When compiling a program that uses nvCollectionFreeDefn, nvCollectionFreeChangeList, or
nvCollectionFreeList, you need to include the following files:

 � ovw_obj.h
 � OV_nvCollection.h
 � OV_nvCollectionErrs.h

 Chapter 2. Reference Pages 107

 nvCollectionFreeDefn(3)

 Libraries

When compiling a program that uses nvCollectionFreeDefn, nvCollectionFreeChangeList, or
nvCollectionFreeList, you need to link to the following libraries:

 /usr/OV/lib/libov.a

 /usr/OV/lib/libovw.a

 /usr/OV/lib/libcollection.a

108 Programmer's Reference

 nvCollectionGetAllForObject(3)

 nvCollectionGetAllForObject(3)

 Purpose

Obtains a list of all collections the specified object is a member of.

 Syntax
#include <OV/ovw_obj.h>
#include <OV/OV_nvCollection.h>
#include <OV/OV_nvCollectionErrs.h>

nvCollectionList \ nvCollectionGetAllForObject(OVwObjectId objectid);

 Description

The nvCollectionGetAllForObject function returns a list of all collections the specified object is a member
of.

 Parameters
 objectid

Specifies the object ID of the object for which you want information.

 Return Values

If successful, nvCollectionGetAllForObject returns a list of collections. If unsuccessful,
nvCollectionGetAllForObject returns NULL.

 Error Codes
[NV_COLLECTION_SUCCESS] Successful operation.

[NV_COLLECTION_OUT_OF_MEMORY]
There is not enough memory to complete the operation.

[NV_COLLECTION_DOES_NOT_EXIST]
The specified collection is not defined.

 Files

When compiling a program that uses nvCollectionGetAllForObject, you need to include the following files:

 � ovw_obj.h
 � OV_nvCollection.h
 � OV_nvCollectionErrs.h

 Chapter 2. Reference Pages 109

 nvCollectionGetAllForObject(3)

 Libraries

When compiling a program that uses nvCollectionGetAllForObject, you need to link to the following
libraries:

 /usr/OV/lib/libov.a

 /usr/OV/lib/libovw.a

 /usr/OV/lib/libcollection.a

 Related Information
� See “nvCollectionError(3)” on page 103.

110 Programmer's Reference

 nvCollectionGetInfo(3)

 nvCollectionGetInfo(3)

 Purpose

Obtains the description and rule defined for a collection

 Syntax
#include <OV/ovw_obj.h>
#include <OV/OV_nvCollection.h>
#include <OV/OV_nvCollectionErrs.h>

int nvCollectionGetInfo(char \name,
 char \\desc,
 char \\rule);

 Description

The nvCollectionGetInfo function returns the description and the rule that have been defined for the speci-
fied collection. Because the return values for the description and the rule are dynamically allocated, you
must free the strings when they are no longer needed.

 Parameters
 name

Specifies the collection for which you want information

 desc
Specifies the address of a pointer to the description returned for the collection. This will point to the
retrieved data.

 rule
Specifies the address of a pointer to the rule returned for the collection. This will point to the retrieved
data.

 Return Values

If successful, nvCollectionGetInfo returns a value of 0. If unsuccessful, it returns a value of −1.

 Error Codes
[NV_COLLECTION_SUCCESS] Successful operation.

[NV_COLLECTION_DOES_NOT_EXIST]
The specified collection is not defined.

[NV_COLLECTION_OUT_OF_MEMORY]
There is not enough memory to store the collection information.

 Chapter 2. Reference Pages 111

 nvCollectionGetInfo(3)

 Files

When compiling a program that uses nvCollectionGetInfo, you need to include the following files:

 � ovw_obj.h
 � OV_nvCollection.h
 � OV_nvCollectionErrs.h

 Libraries

When compiling a program that uses nvCollectionGetInfo, you need to link to the following libraries:

 /usr/OV/lib/libov.a

 /usr/OV/lib/libovw.a

 /usr/OV/lib/libcollection.a

 Related Information
� See “nvCollectionError(3)” on page 103.

� See “nvCollectionFreeDefn(3)” on page 107.

112 Programmer's Reference

 nvCollectionGetTimestamp(3)

 nvCollectionGetTimestamp(3)

 Purpose

Returns the last time a collection was updated.

 Syntax
#include <OV/ovw_obj.h>
#include <OV/OV_nvCollection.h>
#include <OV/OV_nvCollectionErrs.h>

time_t nvCollectionGetTimestamp(char \ name);

 Description

The nvCollectionGetTimestamp function can be used to determine the last time a collection was updated.

 Parameters
 name

Specifies the name of the collection for which a timestamp is to be returned.

 Return Values

If successful, nvCollectionEvaluate returns a timestamp. If unsuccessful, nvCollectionGetAllForObject
returns −1.

 Error Codes
[NV_COLLECTION_SUCCESS] Successful operation.

[NV_COLLECTION_DOES_NOT_EXIST]
The collection specified does not exist.

[NV_COLLECTION_OUT_OF_MEMORY]
There is not enough memory to store the collection information.

 Files

When compiling a program that uses nvCollectionGetTimestamp, you need to include the following files:

 � ovw_obj.h
 � OV_nvCollection.h
 � OV_nvCollectionErrs.h

 Libraries

When compiling a program that uses nvCollectionGetTimestamp, you need to link to the following libraries:

 /usr/OV/lib/libov.a

 /usr/OV/lib/libovw.a

 /usr/OV/lib/libcollection.a

 Chapter 2. Reference Pages 113

 nvCollectionIntersect(3)

 nvCollectionIntersect(3)

 Purpose

Finds the intersection of two collections

 Related Functions
 nvCollectionListIntersect

 Syntax
#include <OV/ovw_obj.h>
#include <OV/OV_nvCollection.h>
#include <OV/OV_nvCollectionErrs.h>

OVwObjectIdList \ nvCollectionIntersect(char \name1,
 char \name2);

OVwObjectIdList \ nvCollectionListIntersect(char \name1,
 OVwObjectIdList \list);

 Description

The nvCollectionIntersect function finds the intersection between two collections. A list is generated of all
objects that are members in both collections.

The nvCollectionListIntersect function finds the intersection between a collection and an object ID list. A
list is generated of all objects from the object list that are in the collection.

 Parameters
 name1

Specifies the name of the first collection to be intersected

 name2
Specifies the name of the second collection to be intersected

 list
Specifies a list of object IDs.

 Return Values

If successful, nvCollectionIntersect and nvCollectionListIntersect return a list of object IDs. If unsuccessful,
they return NULL.

114 Programmer's Reference

 nvCollectionIntersect(3)

 Error Codes
[NV_COLLECTION_SUCCESS] Successful operation.

[NV_COLLECTION_DOES_NOT_EXIST]
The specified collection is not defined and cannot be intersected.

[NV_COLLECTION_OUT_OF_MEMORY]
There is not enough memory to store the collection information.

 Files

When compiling a program that uses nvCollectionIntersect or nvCollectionListIntersect, you need to
include the following files:

 � ovw_obj.h
 � OV_nvCollection.h
 � OV_nvCollectionErrs.h

 Libraries

When compiling a program that uses nvCollectionIntersect or nvCollectionListIntersect, you need to link to
the following libraries:

 /usr/OV/lib/libov.a

 /usr/OV/lib/libovw.a

 /usr/OV/lib/libcollection.a

 Related Information
� See “nvCollectionError(3)” on page 103.

� See “nvCollectionUnion(3)” on page 124.

� See “nvCollectionListUnion(3)” in “nvCollectionUnion(3)” on page 124.

 Chapter 2. Reference Pages 115

 nvCollectionListCollections(3)

 nvCollectionListCollections(3)

 Purpose

Obtains a list of all collections currently defined

 Syntax
#include <OV/ovw_obj.h>
#include <OV/OV_nvCollection.h>
#include <OV/OV_nvCollectionErrs.h>

nvCollectionList\ nvCollectionListCollections();

 Description

The nvCollectionListCollections function returns a list of all collections that are currently defined. Because
the return values for the description and the rule are dynamically allocated, you must use the
nvCollectionFreeList function to free the strings when they are no longer needed.

 Return Values

If successful, nvCollectionListCollections returns a list of defined collections. Otherwise, it returns NULL.

 Files

When compiling a program that uses nvCollectionListCollections, you need to include the following files:

 � ovw_obj.h
 � OV_nvCollection.h
 � OV_nvCollectionErrs.h

 Libraries

When compiling a program that uses nvCollectionListCollections, you need to link to the following libraries:

 /usr/OV/lib/libov.a

 /usr/OV/lib/libovw.a

 /usr/OV/lib/libcollection.a

 Related Information
� See “nvCollectionError(3)” on page 103.

� See “nvCollectionFreeList(3)” in “nvCollectionFreeDefn(3)” on page 107.

116 Programmer's Reference

 nvCollectionModify(3)

 nvCollectionModify(3)

 Purpose

Modifies a collection definition

 Syntax
#include <OV/ovw_obj.h>
#include <OV/OV_nvCollection.h>
#include <OV/OV_nvCollectionErrs.h>

int nvCollectionModify(char \name,
 char \desc,
 char \rule);

 Description

The nvCollectionModify function changes the description or rule for an existing collection. Note that this
call can use large amounts of CPU time.

 Parameters
 name

Specifies the name of the collection to be modified

 desc
Specifies the modified description for the collection

 rule
Specifies the modified rule for determining which objects are included in the collection. Rules can be
specified with any of the following:

� A list of IP addresses

� A NetView for AIX field (such as isRouter)

� Another collection name

� A subnet mask or address

 Return Values

If successful, nvCollectionModify returns a value of 0. If unsuccessful, nvCollectionModify returns a value
of −1.

 Error Codes
[NV_COLLECTION_SUCCESS] Successful operation.

[NV_COLLECTION_DOES_NOT_EXIST]
The specified collection is not defined and cannot be modified.

[NV_COLLECTION_OUT_OF_MEMORY]
There is not enough memory to store the modified collection informa-
tion.

 Chapter 2. Reference Pages 117

 nvCollectionModify(3)

[NV_COLLECTION_INVALID_RULE]
For some reason, the rule cannot be processed. Check the Boolean
logic and any other collection names that you specified.

[NV_COLLECTION_FIELD_NOT_VALID]
A field specified in the rule to be modified is invalid.

[NV_COLLECTION_PARSING_ERROR]
The rule cannot be parsed correctly. Check any logical operators you
specified.

 Files

When compiling a program that uses nvCollectionModify, you need to include the following files:

 � ovw_obj.h
 � OV_nvCollection.h
 � OV_nvCollectionErrs.h

 Libraries

When compiling a program that uses nvCollectionModify, you need to link to the following libraries:

 /usr/OV/lib/libov.a

 /usr/OV/lib/libovw.a

 /usr/OV/lib/libcollection.a

118 Programmer's Reference

 nvCollectionOpen(3)

 nvCollectionOpen(3)

 Purpose

Establishes a connection to the collection facility server

 Related Functions
 nvCollectionXOpen

 Syntax
#include <OV/ovw_obj.h>
#include <OV/OV_nvCollection.h>
#include <OV/OV_nvCollectionErrs.h>

int nvCollectionOpen();

int nvCollectionXOpen();

 Description

The nvCollectionOpen function establishes a connection with the collection facility nvcold daemon. If suc-
cessful, nvCollectionOpen returns a file descriptor. This file descriptor can be used later to register for
specific events defined for the collection facility.

nvCollectionXOpen establishes a connection with the collection facility nvcold daemon. Use this routine
when you want X Window System to manage your main loop of your program when it is waiting for event
notification.

 Return Values

If successful, nvCollectionOpen returns a positive value greater than zero. If unsuccessful,
nvCollectionOpen returns a negative value.

 Error Codes
[NV_COLLECTION_SUCCESS] Successful operation.

[NV_COLLECTION_ALREADY_INITIALIZED]
A connection to the Collection Facility has already been initiated.

[NV_COLLECTION_OUT_OF_MEMORY]
There is not enough memory to resolve the collection.

[NV_COLLECTION_CONNECTION_LOST]
The connection to the Collection Facility was interrupted.

 Chapter 2. Reference Pages 119

 nvCollectionOpen(3)

 Files

When compiling a program that uses nvCollectionOpen, you need to include the following files:

 � ovw_obj.h
 � OV_nvCollection.h
 � OV_nvCollectionErrs.h

 Libraries

When compiling a program that uses nvCollectionOpen, you need to link to the following libraries:

 /usr/OV/lib/libov.a

 /usr/OV/lib/libovw.a

 /usr/OV/lib/libcollection.a

 Related Information
� See “nvCollectionAddCallback(3)” on page 98.

� See “nvCollectionError(3)” on page 103.

120 Programmer's Reference

 nvCollectionRead(3)

 nvCollectionRead(3)

 Purpose

Reads collection facility events

 Syntax
#include <OV/ovw_obj.h>
#include <OV/OV_nvCollection.h>
#include <OV/OV_nvCollectionErrs.h>

int nvCollectionRead(int sock_fd);

 Description

The nvCollectionRead function reads the specified socket, and if there is a collection facility event, it calls
the callback routine for that event as specified on a nvCollectionAddCallback call. The sock_fd variable
specifies the socket on which the response will be received. If there is no data available,
nvCollectionRead will not take any action and will return.

This call should be used within a select loop or similar construct. You do not need to use this call if you
used nvCollectionXOpen rather than nvCollectionOpen.

 Parameters
 sock_fd

Specifies the TCP socket to watch for collection facility events.

 Files

When compiling a program that uses nvCollectionRead, you need to include the following files:

 � ovw_obj.h
 � OV_nvCollection.h
 � OV_nvCollectionErrs.h

 Libraries

When compiling a program that uses nvCollectionRead, you need to link to the following libraries:

 /usr/OV/lib/libov.a

 /usr/OV/lib/libovw.a

 /usr/OV/lib/libcollection.a

 Related Information
� See “nvCollectionDone(3)” on page 102.

� See “nvCollectionOpen(3)” on page 119.

� See “nvCollectionError(3)” on page 103.

� See “nvCollectionErrorMsg(3)” on page 104.

 Chapter 2. Reference Pages 121

 nvCollectionResolve(3)

 nvCollectionResolve(3)

 Purpose

Obtains a list of all objects currently in a specified collection

 Syntax
#include <OV/ovw_obj.h>
#include <OV/OV_nvCollection.h>
#include <OV/OV_nvCollectionErrs.h>

OVwObjectIdList \nvCollectionResolve(char \name);

 Description

The nvCollectionResolve function returns a list of all objects currently included in the specified collection.

 Parameters
 name

Specifies the name of the collection

 Return Values

If successful, nvCollectionResolve returns a pointer to an OVw object ID list. If unsuccessful,
nvCollectionResolve returns NULL.

 Error Codes
[NV_COLLECTION_SUCCESS] Successful operation.

[NV_COLLECTION_DOES_NOT_EXIST]
The collection specified cannot be found in the list of defined col-
lections.

[NV_COLLECTION_OUT_OF_MEMORY]
There is not enough memory to resolve the collection.

 Files

When compiling a program that uses nvCollectionResolve, you need to include the following files:

 � ovw_obj.h
 � OV_nvCollection.h
 � OV_nvCollectionErrs.h

122 Programmer's Reference

 nvCollectionResolve(3)

 Libraries

When compiling a program that uses nvCollectionResolve, you need to link to the following libraries:

 /usr/OV/lib/libov.a

 /usr/OV/lib/libovw.a

 /usr/OV/lib/libcollection.a

 Related Information
� See “nvCollectionGetInfo(3)” on page 111.

� See “nvCollectionListCollections(3)” on page 116.

 Chapter 2. Reference Pages 123

 nvCollectionUnion(3)

 nvCollectionUnion(3)

 Purpose

Finds the union of two collections

 Related Functions
 nvCollectionUnionList

 Syntax
#include <OV/ovw_obj.h>
#include <OV/OV_nvCollection.h>
#include <OV/OV_nvCollectionErrs.h>

OVwObjectIdList \ nvCollectionUnion(char \name1,
 char \name2);

OVwObjectIdList \ nvCollectionListUnion(char \name1,
 OVwObjectIdList \list);

 Description

The nvCollectionUnion function finds the union between two collections. A list is generated of all objects
in each of the collections.

nvCollectionListUnion finds the union between a collection and an object list. A list is generated of all
objects from the object list as well as those in the collection.

 Parameters
 name1

Specifies the name of the first collection

 name2
Specifies the name of the second collection

 list
Specifies a list of object IDs.

 Return Values

If successful, nvCollectionUnion and nvCollectionListUnion return a pointer to an OVw object ID list. If
unsuccessful, they return NULL.

 Error Codes
[NV_COLLECTION_SUCCESS] Successful operation.

[NV_COLLECTION_DOES_NOT_EXIST]
One of the specified collections is not defined.

[NV_COLLECTION_OUT_OF_MEMORY]
There is not enough memory to store the collection information.

124 Programmer's Reference

 nvCollectionUnion(3)

 Files

When compiling a program that uses nvCollectionUnion or nvCollectionUnionList, you need to include the
following files:

 � ovw_obj.h
 � OV_nvCollection.h
 � OV_nvCollectionErrs.h

 Libraries

When compiling a program that uses nvCollectionUnion or nvCollectionUnionList, you need to link to the
following libraries:

 /usr/OV/lib/libov.a

 /usr/OV/lib/libovw.a

 /usr/OV/lib/libcollection.a

 Related Information
� See “nvCollectionIntersect(3)” on page 114.

� See “nvCollectionListIntersect(3)” in “nvCollectionIntersect(3)” on page 114.

 Chapter 2. Reference Pages 125

 nvFilterDefine(3)

 nvFilterDefine(3)

 Purpose

Creates new filtering rule or updates existing rule

 Syntax
#include <nvFilter.h>

int nvFilterDefine (struct FilterNode \Filter, char \FileName, char \FilterStr, int Update);

 Description

The nvFilterDefine function creates a new filtering rule or updates an existing rule. An include file,
/usr/OV/include/nvFilter.h, is provided. This file contains the function prototypes and the filter structure.
The structure has the following definition:

struct FilterNode
{
 char \FilterName;
 char \FilterDescription;

struct FilterNode \Next;
}

 FilterName Specifies a pointer to the name of a filtering rule.

 FilterDescription Specifies a pointer to the description of a filtering rule. This field is optional.
If no description exists, the pointer to the description is NULL.

 Next Specifies a pointer to the next FilterNode. This field is used only by the
nvFilterGetNameList API.

 Parameters
 Filter Specifies a pointer to a filter structure containing the name of the filtering rule

and optionally a description of the rule.

 FileName Specifies a pointer to the path and name of the filter file.

 FilterStr Specifies a pointer to the content of the filtering rule.

 Update Specifies 0 (zero) for do not update and 1 for update content if rule exists.

Keyword Syntax

! NOT (logical negation)

&& AND (logical and)

|| OR (logical or)

The following list describes the keywords in the syntax used to define filters.

 CLASS=value
SNMP enterprise match on enterprise ID. Value is given in dot notation, for example, 1.2.3.4.55

126 Programmer's Reference

 nvFilterDefine(3)

 IP_ADDR=value
SNMP agent-addr match on IP address. Value is given in dot notation, for example, 192.155.13.57.
Registration for an IP_ADDR permits receipt of agent-generated traps, as well as internal events
related to that IP_ADDR.

 LOGGED_TIME <= time_string
Time that was logged before the time in time_string, where time_string has the form
dd:mm:yy:hh:mm:ss (24 hour clock, GMT)

 LOGGED_TIME >= time_string
Time that was logged after the time in time_string, where time_string has the form dd:mm:yy:hh:mm:ss
(24 hour clock, GMT)

 PRESENT = SNMP_TRAP
Presence of SNMP Trap

 SNMP_TRAP=value
Match on SNMP Generic Trap Type, where the Generic Type is an integer

 SNMP_SPECIFIC=value
Match on SNMP Specific Trap Type, where the Specific Type is an integer

 TIME_PERIOD=time_constant
Relative time period (integer seconds) for frequency filters

 THRESHOLD <= frequency
Number of event occurrences is less than or equal to frequency (integer) during TIME_PERIOD

 THRESHOLD >= frequency
Number of event occurrences is greater than or equal to frequency (integer) during TIME_PERIOD

Note: When included in an expression for nvSnmpTrapOpenFilter, the keywords THRESHOLD and
TIME_PERIOD must be ANDed (never ORed) and grouped within parentheses as in the following
example:

filter = PRESENT=SNMP_TRAP && (THRESHOLD <= 5 && TIME_PERIOD = 3ð)

Specifying more than 250 filter objects will result in an error.

 Return Values

If successful, nvFilterDefine returns 0 (zero). If unsuccessful, it returns one of the following nonzero error
codes.

 Error Codes
[NVFILTER_FILE_ACCESS_ERROR] The filter file could not be accessed. Check the file permissions

and try again.

[NVFILTER_MEMORY_ACCESS_ERROR]
Memory could not be allocated.

[NVFILTER_DUPLICATE_FILTERNAME] The filter name already exists in the file and the caller did not
specify an update.

[NVFILTER_MAX_BUFFERSIZE_EXCEEDED]
The filter contents, the filter description, plus the keywords
exceeded 20K bytes, which is the maximum buffer size.

 Chapter 2. Reference Pages 127

 nvFilterDefine(3)

 Libraries

When you are compiling a program that uses nvFilterDefine, you need to link to the following library:

 /usr/OV/lib/libnvfilter.a

 Related Information
� See “nvFilterDelete(3)” on page 129.

� See “nvFilterErrorMsg(3)” on page 130.

� See “nvFilterFreeNameList(3)” on page 131.

� See “nvFilterGet(3)” on page 132.

� See “nvFilterGetNameList(3)” on page 134.

128 Programmer's Reference

 nvFilterDelete(3)

 nvFilterDelete(3)

 Purpose

Removes a filtering rule from the filter file

 Syntax
#include <nvFilter.h>

int nvFilterDelete(char \RuleName, char \FileName);

 Description

The nvFilterDelete function removes a filtering rule from the filter file. An include file,
/usr/OV/include/nvFilter.h, is provided. This file contains the function prototype.

 Parameters
 RuleName Specifies a pointer to the name of the filtering rule to delete.

 FileName Specifies a pointer to the path and name of the filter file.

 Return Values

If successful, nvFilterDelete returns 0 (zero). If unsuccessful, it returns one of the following nonzero error
codes.

 Error Codes
[NVFILTER_FILE_NOT_FOUND] The specified filter file was not found.

[NVFILTER_FILE_ACCESS_ERROR] The filter file could not be accessed. Check the file permissions
and try again.

[NVFILTER_MEMORY_ACCESS_ERROR]
Memory could not be allocated.

[NVFILTER_FILTERNAME_NOT_FOUND]
The specified filtername was not found in the file.

 Libraries

When compiling a program that uses nvFilterDelete, you need to link to the following library:

 /usr/OV/lib/libnvfilter.a

 Related Information
� See “nvFilterDefine(3)” on page 126.

� See “nvFilterErrorMsg(3)” on page 130.

� See “nvFilterFreeNameList(3)” on page 131.

� See “nvFilterGet(3)” on page 132.

� See “nvFilterGetNameList(3)” on page 134.

 Chapter 2. Reference Pages 129

 nvFilterErrorMsg(3)

 nvFilterErrorMsg(3)

 Purpose

Retrieves the error message that corresponds to an nvFilter API return code

 Syntax
#include <nvFilter.h>
char \nvFilterErrorMsg(int Retcode);

 Description

The nvFilterErrorMsg function retrieves the error message that corresponds to an nvFilter API return code.
An include file, /usr/OV/include/nvFilter.h, is provided. This file contains the function prototype.

 Parameters
 Retcode Specifies the return code from an unsuccessful nvFilter API call.

 Return Values

If successful, nvFilterErrorMsg returns the error message. If unsuccessful, it returns a NULL string.

 Libraries

When compiling a program that uses nvFilterErrorMsg, you need to link to the following library:

 /usr/OV/lib/libnvfilter.a

 Related Information
� See “nvFilterDefine(3)” on page 126.

� See “nvFilterDelete(3)” on page 129.

� See “nvFilterFreeNameList(3)” on page 131.

� See “nvFilterGet(3)” on page 132.

� See “nvFilterGetNameList(3)” on page 134.

130 Programmer's Reference

 nvFilterFreeNameList(3)

 nvFilterFreeNameList(3)

 Purpose

Frees the memory allocated during the creation of a list of filtering rule names

 Syntax
#include <nvFilter.h>

void nvFilterFreeNameList (struct FilterNode \FilterList);

 Description

The nvFilterFreeNameList function frees the memory allocated during the creation of the list of filtering rule
names. An include file, /usr/OV/include/nvFilter.h, is provided. This file contains the function prototypes
and the filter structure. The structure has the following definition:

struct FilterNode
{
 char \FilterName;
 char \FilterDescription;

struct FilterNode \Next;
}

 FilterName Specifies a pointer to the name of a filtering rule.

 FilterDescription Specifies a pointer to the description of a filtering rule. The field is optional. If no
description exists, the pointer to the description is NULL.

 Next Specifies a pointer to the next FilterNode. This field is used only by the
nvFilterGetNameList API.

 Parameters
 FilterList Specifies a pointer to the first item in the filter list.

 Return Values There is no return parameter.

 Libraries

When compiling a program that uses nvFilterFreeNameList, you need to link to the following library:

 /usr/OV/lib/libnvfilter.a

 Related Information
� See “nvFilterDefine(3)” on page 126.

� See “nvFilterDelete(3)” on page 129.

� See “nvFilterErrorMsg(3)” on page 130.

� See “nvFilterGet(3)” on page 132.

� See “nvFilterGetNameList(3)” on page 134.

 Chapter 2. Reference Pages 131

 nvFilterGet(3)

 nvFilterGet(3)

 Purpose

Retrieves the contents of the filtering rule

 Syntax
#include <nvFilter.h>

int nvFilterGet (struct FilterNode \Filter, char \FileName,

char \Buffer, int \BufLen, int Expand);

 Description

The nvFilterGet function retrieves the contents of the filtering rule. This function returns the first occur-
rence of the filter name. An include file, /usr/OV/include/nvFilter.h, is provided. This file contains the
function prototypes and the filter structure. The structure has the following definition:

struct FilterNode
{
 char \FilterName;
 char \FilterDescription;

struct FilterNode \Next;
}

 FilterName Specifies a pointer to the name of a filtering rule.

 FilterDescription Specifies a pointer to the description of a filtering rule. This field is optional. If no
description exists, the pointer to the desciption is NULL.

 Next Specifies a pointer to the next FilterNode. This field is used only by the
nvFilterGetNameList API.

Space is allocated for the rule description on each call to the nvFilterGet routine. Your application is
responsible for deallocating this memory between calls to this routine. This technique is illustrated in
NetView for AIX Programmer's Guide.

 Parameters
 Filter Specifies a pointer to a filter structure containing the name of the filtering rule. If a

description exists for the specified rule, it is returned in the FilterDescription field.

 FileName Specifies a pointer to the path and name of the filter file.

 Buffer Specifies a pointer to the memory location where the rule will be written. If this field
is NULL, an error is returned and the length of the filtering rule will be returned in
the BufLen parameter.

 BufLen Specifies a pointer to the size of the buffer. If the buffer is too small, an error is
returned and BufLen is changed to reflect the actual size of the filtering rule.

 Expand Specifies 0 (zero) for do not expand references to other filtering rules and
hostnames, and 1 for expand the references.

132 Programmer's Reference

 nvFilterGet(3)

 Return Values

If successful, nvFilterGet returns 0 (zero), unless the buffer field is NULL. If so, nvFilterGet returns
[NVFILTER_INSUFFICIENT_SPACE]. If unsuccessful, it returns one of the following nonzero error codes.

 Error Codes
[NVFILTER_FILE_NOT_FOUND] The specified filter file was not found.

[NVFILTER_FILE_ACCESS_ERROR]
The filter file could not be accessed. Check the file permissions and
try again.

[NVFILTER_MEMORY_ACCESS_ERROR]
Memory could not be allocated.

[NVFILTER_INSUFFICIENT_SPACE]
The buffer was too small for the specified filtering rule. BufLen is set
to the size of the rule.

[NVFILTER_FILTERNAME_NOT_FOUND]
The specified filtername was not found in the file.

[NVFILTER_HOSTNAME_RESOLUTION_ERROR]
The reference to a hostname could not be resolved.

[NVFILTER_FILTER_RESOLUTION_ERROR]
The reference to another filtering rule could not be expanded.

[NVFILTER_FILTER_REFERENCE_ERROR]
The filtering rule has an incorrect format.

[NVFILTER_TIME_FORMAT_ERROR]
The time has an incorrect format. It must be in the format HH:MM:SS.

 Libraries

When compiling a program that uses nvFilterGet, you need to link to the following library:

 /usr/OV/lib/libnvfilter.a

 Related Information
� See “nvFilterDefine(3)” on page 126.

� See “nvFilterDelete(3)” on page 129.

� See “nvFilterErrorMsg(3)” on page 130.

� See “nvFilterFreeNameList(3)” on page 131.

� See “nvFilterGetNameList(3)” on page 134.

 Chapter 2. Reference Pages 133

 nvFilterGetNameList(3)

 nvFilterGetNameList(3)

 Purpose

Retrieves a list of all filtering rules in a filter file

 Syntax
#include <nvFilter.h>

int nvFilterGetNameList (char \FileName, struct FilterNode \\FilterList);

 Description

The nvFilterGetNameList function retrieves a list of all the unique filtering rule names in the filter file. If the
filter file contains duplicate names, the nvFilterGetNameList function does not return these duplicates. An
include file, /usr/OV/include/nvFilter.h, is provided. This file contains the function prototypes and the filter
structure. The structure has the following definition:

struct FilterNode
{
 char \FilterName;
 char \FilterDescription;

struct FilterNode \Next;
}

 FilterName Specifies a pointer to the name of a filtering rule.

 FilterDescription Specifies a pointer to the description of a filtering rule. This field is optional. If no
description exists, the pointer to the description is NULL.

 Next Specifies a pointer to the next FilterNode. This field is used only by the
nvFilterGetNameList API.

 Parameters
 FileName Specifies the path and name of the filter file.

 FilterList Specifies the address of a pointer to be set by nvFilterGetNameList. If the function
returns successfully, it will contain the address of the first FilterNode in the linked
list.

 Return Values

If successful, nvFilterGetNameList returns 0 (zero). If unsuccessful, it returns one of the following nonzero
error codes.

 Error Codes
[NVFILTER_FILE_NOT_FOUND] The filter file was not found.

[NVFILTER_FILE_ACCESS_ERROR] The filter file could not be accessed. Check the file permissions
and try again.

[NVFILTER_MEMORY_ACCESS_ERROR]
Memory could not be allocated.

134 Programmer's Reference

 nvFilterGetNameList(3)

[NVFILTER_FILTER_FILE_EMPTY] The specified filter file is empty.

[NVFILTER_INCORRECT_FILTER_FILE_FORMAT]
The specified filter file did not contain any filtering rules that were in
the correct format.

 Libraries

When compiling a program that uses nvFilterGetNameList, you need to link to the following library:

 /usr/OV/lib/libnvfilter.a

 Related Information
� See “nvFilterDefine(3)” on page 126.

� See “nvFilterDelete(3)” on page 129.

� See “nvFilterErrorMsg(3)” on page 130.

� See “nvFilterFreeNameList(3)” on page 131.

� See “nvFilterGet(3)” on page 132.

 Chapter 2. Reference Pages 135

 NVisClient(3)

 NVisClient(3)

 Purpose

Checks to see if an application is running on a client or a server

 Syntax
#include <nvDefServ.h>

int NVisClient ();

 Description

The NVisClient function determines whether an application is running on a NetView for AIX client or
server, for example, a distributed application that has daemons on both the server and clients.

Applications that are launched from the menu bar and are installed on each client probably do not need to
know if they are running on a client or server.

 Return Values

If the machine is a server, NVisClient returns a value of 0 (FALSE). If the machine is a client, NVisClient
returns a value of 1 (TRUE).

 Files

When compiling a program that uses NVisClient, you need to include the following files:

 � nvDefServ.h

 Libraries

When compiling a program that uses NVisClient, you need to link to the following library:

 /usr/OV/lib/libovw.a

 Related Information
� See “OVDefaultServerName(3)” on page 424.

136 Programmer's Reference

 nvotChangeArcDetails(3)

 nvotChangeArcDetails(3)

 Purpose

Changes the contents of the details variable in the database

 Syntax
nvotReturnCode nvotChangeArcDetails (
 nvotNameBindingType arcNameBinding,
 nvotProtocolType aEndpointProtocol,
 char \ aEndpointName,
 nvotProtocolType zEndpointProtocol,
 char \ zEndpointName,
 int arcIndexId,
 nvotOctetString \ arcDetails)

 Description

The nvotChangeArcDetails routine changes the contents of the details variable associated with the arc
named by aEndpoint, zEndpoint and arcIndexId.

An arc connects arc endpoints: two vertices, two graphs, a vertex to a graph or a graph to a vertex. An
arc is recognized and referenced by its aEndpoint, zEndpoint and arcIndexId.

The arcNameBinding parameter helps to identify the arc endpoints. See the following parameters section
for a detailed description. The arcNameBinding must always be compatible with the values passed in the
aEndpointProtocol and zEndpointProtocol parameters.

Endpoints of class graph must exist; otherwise, the arc details are not changed and the error codes
NVOT_A_ENDPOINT_GRAPH_DOES_NOT_EXIST or
NVOT_Z_ENDPOINT_GRAPH_DOES_NOT_EXIST are set. The GTM interface does not support auto-
matic creation of graphs.

If an endpoint of class vertex does not exist, it is automatically created. Also, the arc is created with
default values and the details changed. This is part of GTM's recovery strategy for lost traps. However, a
vertex endpoint is NOT created if the other endpoint is a reference to a nonexistent graph.

The nvotProtocolType is a union of an enumerated type with a char pointer as defined in the nvotTypes.h
file. Special care must be taken when setting aEndpointProtocol and zEndpointProtocol. Setting these
variables to a nvotVertexProtocolType value if arcNameBinding identifies the endpoint as a graph causes
unpredictable errors. This is similar to setting a char pointer to an integer value.

 Parameters
arcNameBinding Specifies the class of the objects in each endpoint of the arc. An endpoint can

be either a vertex or a graph. The following values are supported:

ARC_VERTEX_VERTEX_NAME_BINDING
Indicates that either endpoint is a vertex

ARC_VERTEX_GRAPH_NAME_BINDING
Indicates that aEndpoint is a vertex and zEndpoint is a graph

 Chapter 2. Reference Pages 137

 nvotChangeArcDetails(3)

ARC_GRAPH_VERTEX_NAME_BINDING
Indicates that aEndpoint is a graph and zEndpoint is a vertex

ARC_GRAPH_GRAPH_NAME_BINDING
Indicates that either endpoint is a graph

If any value other than the preceding values is used, it is rejected by the GTM
interface and the error code NVOT_INVALID_NAME_BIND is set.

Arcs can be handled based on their direction. For more information about the
direction of arcs, see “nvotInit(3)” on page 359. Regardless of which direction
was set in the nvotInit routine, the arcNameBinding parameter always identi-
fies what value is set in the aEndpointProtocol and zEndpointProtocol vari-
ables.

aEndpointProtocol/zEndpointProtocol
Specifies the protocol of the object identified as the aEndpoint or zEndpoint,
respectively, of this arc. If aEndpoint or zEndpoint is to be a vertex,
aEndpointProtocol or zEndpointProtocol, respectively, must be set with a value
from the enumerated type nvotVertexProtocolType, which is defined in the file
nvotTypes.h. Otherwise, aEndpoint or zEndpoint is a graph, and
aEndpointProtocol or zEndpointProtocol, respectively, is a pointer to a valid
character string in memory.

aEndpointName/zEndPointName
Specifies the name of the object identified as the aEndpoint or zEndpoint,
respectively, of this arc. Both the endpoint name and the endpoint protocol
are required to identify the object at one of the endpoints of this arc. This
parameter can be any string of characters. Once specified, the same name
must be used in any reference to this graph.

arcIndexId Distinguishes an arc from other arcs between the same endpoints. (Two
endpoints can be connected by several different arcs.) The arcIndexId is an
integer value.

arcDetails Contains particular information that applications store for future retrieval. The
information stored in this variable is for the application's use only. For
example, the application might copy the data of a structure into this variable by
doing a memcpy(arcDetails->octetString, (char *) applStruct, sizeof(applStruct))
and arcDetails->octetLength = sizeof(applStruct). Although nvotOctetString
allows for any size strings and the interface does not check the size of
boxDetails, any character exceeding 256 is truncated by the NetView for AIX
object database.

 Return Values
nvotReturnCode The nvotChangeArcDetails routine returns an nvotReturnCode that can

assume the values described in the following error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_ENDPOINT_GRAPH_INVALID_INDEX]
The endpoint graph index is not valid. An endpoint graph protocol
or name must not be NULL.

138 Programmer's Reference

 nvotChangeArcDetails(3)

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_ARC_INVALID_INDEX] The arc index is not valid. It must be a positive integer.

[NVOT_A_ENDPOINT_GRAPH_DOES_NOT_EXIST]
The graph defined as the A endpoint of the arc does not exist in
the GTM database.

[NVOT_Z_ENDPOINT_GRAPH_DOES_NOT_EXIST]
The graph defined as the Z endpoint of the arc does not exist in
the GTM database.

[NVOT_INVALID_NAME_BINDING] The name binding is not valid. It must be a number defined in the
nvotTypes.h file.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If ((rc = nvotGetError()) != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example stores the character string mystring in the myLineArcDetails variable of the arc
created in the example in “nvotCreateArcInGraph(3)” on page 221.

#include <nvot.h>

nvotReturnCode rc;
char myString [5ð] = {"The quick brown fox jumped over the lazy dogs back"};

/\\\\\\\\\\\\\\\ Define vertices V1 and V2 \\\\\\\\\\\\\\\\\/
nvotProtocolType oneEndpoint.vertexProtocol = STARLAN;
char \ oneEndpointName = "My_Vertex_V1";
nvotProtocolType otherEndpoint.vertexProtocol = STARLAN;
char \ otherEndpointName = "My_Vertex_V2;
char \ myLineArcLabel = "My_Line_Arc";
int arcNumber = 1;

nvotOctetString \ myLineArcDetails = NULL;

myLineArcDetails.octetString = malloc (sizeof (myString));
myLineArcDetails.octetLength = (sizeof (myString));
memcpy (myLineArcDetails.octetString, :myString, sizeof (myString));

if ((rc = nvotChangeArcDetails (ARC_VERTEX_VERTEX_NAME_BINDING,
 oneEndpointlType,

 Chapter 2. Reference Pages 139

 nvotChangeArcDetails(3)

 oneEndpointName,
 otherEndpoint,
 otherEndpointName,
 arcNumber,

myLineArcDetails)) == NVOT_SUCCESS)

printf ("myString has been stored in %s.\n", myLineArcLabel);
 else

printf ("Error occurred storing myString in %s.\n", myLineArcLabel);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateArcInGraph(3)” on page 221.

140 Programmer's Reference

 nvotChangeArcIconInGraph(3)

 nvotChangeArcIconInGraph(3)

 Purpose

Changes an arc icon in a graph

 Syntax
#include <nvot.h>

nvotReturnCode nvotChangeArcIconInGraph (
 nvotGraphProtocolType graphProtocol,
 char \ graphName,
 nvotNameBindingType arcNameBinding,
 nvotProtocolType aEndpointProtocol,
 char \ aEndpointName,
 nvotProtocolType zEndpointProtocol,
 char \ zEndpointName,
 int arcIndexId,
 char \ icon)

 Description

The nvotChangeArcIconInGraph routine changes the icon representing the arc identified by
aEndpointProtocol, zEndpointName, zEndpointProtocol, zEndpointName, and arcIndexId that is associated
with the graph identified by graphProtocol and graphName.

The containing graph must exist. Otherwise, the arc icon is not changed and the error code
NVOT_GRAPH_DOES_NOT_EXIST is returned.

An arc connects arc endpoints: two vertices, two graphs, a vertex to a graph, or a graph to a vertex. An
arc is recognized and referenced by its aEndpoint, zEndpoint and arcIndexId. The following parameters
are required:

 � graphProtocol
 � graphName
 � aEndpointProtocol
 � aEndpointName
 � zEndpointProtocol
 � zEndpointName
 � arcIndexId

If one of these parameters is not provided, the error code NVOT_GRAPH_INVALID_INDEX or
NVOT_ARC_INVALID_INDEX is returned.

The arcNameBinding parameter helps to identify the arc endpoints. See the parameters section for a
detailed description. The arcNameBinding must always be compatible with the values passed in the
aEndpointProtocol and zEndpointProtocol parameters.

Endpoints of class graph must exist. Otherwise the arc icon is not changed and either the error code
NVOT_A_ENDPOINT_GRAPH_DOES_NOT_EXIST or
NVOT_Z_ENDPOINT_GRAPH_DOES_NOT_EXIST is returned.

 Chapter 2. Reference Pages 141

 nvotChangeArcIconInGraph(3)

If endpoints of class vertex do not exist, they are automatically created and the arc icon is changed. This
is part of the GTM's recovery strategy for lost traps. However, a vertex endpoint is NOT created and the
arc icon is not changed if the other endpoint is a reference to a nonexistent graph.

The nvotProtocolType is a union of an enumerated type with a char pointer as defined in the nvotTypes.h
file. Special care must be taken when setting the aEndpointProtocol and zEndpointProtocol parameters.
To set these variables with an nvotVertexProtocolType value if arcNameBinding identifies the endpoint as
a graph causes unpredictable errors. This is similar to setting a char pointer to an integer value.

To be supported by the nvotChangeArcIconInGraph routine, the icon must be a valid option selected from
the file /usr/OV/conf/C/oid_to_sym. However, if the icon is not passed, it must be set to NULL. A pointer
that is not valid can cause unpredictable errors. If NULL is passed, the arc icon is changed to the default
symbol Connection:Generic .

 Parameters
graphProtocol Specifies the protocol of the graph that contains the arc. This is the graph of

which this arc is a member arc. For more information, refer to the file
/usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the graph that contains the arc. Both the graphName
and graphProtocol parameters are required to identify the containing graph.
This parameter is a string of characters used to create the graph.

arcNameBinding Specifies the class of the objects in each endpoint of the arc. An endpoint can
be either a vertex or a graph. The following values are supported:

ARC_VERTEX_VERTEX_NAME_BINDING
Indicates that either endpoint is a vertex.

ARC_VERTEX_GRAPH_NAME_BINDING
Indicates that aEndpoint is a vertex and zEndpoint is a graph

ARC_GRAPH_VERTEX_NAME_BINDING
Indicates that aEndpoint is a graph and zEndpoint is a vertex.

ARC_GRAPH_GRAPH_NAME_BINDING
Indicates either endpoint is a graph

If a value other than those in the preceding list is used, it is rejected by the
GTM interface and the error code NVOT_INVALID_NAME_BIND is set.

Arcs are handled based on their direction. For more information about arc
direction, see “nvotInit(3)” on page 359. Regardless of the selection made in
the nvotInit routine, arcNameBinding always identifies what value is set in the
aEndpointProtocol and zEndpointProtocol variables.

aEndpointProtocol/zEndpointProtocol
Specifies the protocol of the object identified as the aEndpoint or
aEndpointProtocol, respectively, of this arc. If aEndpoint or zEndpoint is a
vertex, aEndpointProtocol or zEndpointProtocol, respectively, must be set to a
value from the enumerated type nvotVertexProtocolType defined in the file
nvotTypes.h. Otherwise, aEndpoint or zEndpoint is a graph, and
aEndpointProtocol or zEndpointProtocol, respectively, is a pointer to a valid
character string in memory.

142 Programmer's Reference

 nvotChangeArcIconInGraph(3)

aEndpointName Specifies the name of the object identified as the aEndpoint of this arc. Both
the aEndpointName and aEndpointProtocol parameters are required to identify
the object at the aEndpoint of this arc. This parameter can be any string of
characters. Once specified, the same name must be used in any reference to
this graph.

arcIndexId Distinguishes an arc from other arcs between the same endpoints. (Two
endpoints can be connected by several different arcs.) The arcIndexId is an
integer value.

icon Specifies a new symbol to represent the arc in the NetView for AIX external
user interface. The symbol can be a line, a dotted line, and so forth. For
details about selecting an icon, refer to the file /usr/OV/conf/C/oid_to_sym.

 Return Values
nvotReturnCode The nvotChangeArcIconInGraph routine returns an nvotReturnCode that can

assume the values described in the following error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol or name must
not be NULL.

[NVOT_ENDPOINT_GRAPH_INVALID_INDEX]
The endpoint graph index is not valid. An endpoint graph
protocol or name must not be NULL.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a
positive integer and a vertex name must not be NULL.

[NVOT_ARC_INVALID_INDEX] The arc index is not valid. It must be a positive integer.

[NVOT_GRAPH_DOES_NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_A_ENDPOINT_GRAPH_DOES_NOT_EXIST]
The graph defined as the A endpoint of the arc does not exist
in the GTM database.

[NVOT_Z_ENDPOINT_GRAPH_DOES_NOT_EXIST]
The graph defined as the Z endpoint of the arc does not exist
in the GTM database.

[NVOT_INVALID_NAME_BINDING] The name binding is not valid. It must be a number defined
in the nvotTypes.h file.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a con-
nection with gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY] Memory allocation error. The system might be out of
memory.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during
operation. Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

 Chapter 2. Reference Pages 143

 nvotChangeArcIconInGraph(3)

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example changes the icon of the arc created in the example in “nvotCreateArcInGraph(3)”
on page 221.

#include <nvot.h>

nvotReturnCode rc;

/\\\\\\\\\\\\\\\ Define the parent graph \\\\\\\\\\\\\\\\\\\\\/
nvotGraphProtocolType myGraphProt = "1.3.6.1.2.1.2.2.1.3.11";
char \ myGraphName = "My_Graph";

/\\\\\\\\\\\\\\\ Define vertices V1 and V2 \\\\\\\\\\\\\\\\\/
nvotProtocolType oneEndpoint.vertexProtocol = STARLAN;
char \ oneEndpointName = "My_Vertex_V1";
nvotProtocolType otherEndpoint.vertexProtocol = STARLAN;
char \ otherEndpointName = "My_Vertex_V2;

/\\\\\\\\\\\\\\\ Define arcs attributes \\\\\\\\\\\\\\\\\\\\\\\\\\\\\/
char \ myDotDashArcIcon = "1.3.6.1.2.1.2.2.1.3.53.4";

char \ myLineArcLabel = "My_Line_Arc"
int arcNumber = 1;

if ((rc = nvotChangeArcIconInGraph (myGraphProt,
 myGraphName,
 ARC_VERTEX_VERTEX_NAME_BINDING,
 oneEndpoint,
 oneEndpointName,
 otherEndpoint,
 otherEndpointName,
 arcNumber,

myDotDashArcIcon)) == NVOT_SUCCESS)

printf ("Arc icon of %s changed.\n", myLineArcLabel);
 else

printf ("An error occurred changing %s icon.\n", myLineArcLabel);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

144 Programmer's Reference

 nvotChangeArcIconInGraph(3)

 Related Information
� See “nvotChangeArcLabelInGraph(3)” on page 146.
� See “nvotCreateArcInGraph(3)” on page 221.

 Chapter 2. Reference Pages 145

 nvotChangeArcLabelInGraph(3)

 nvotChangeArcLabelInGraph(3)

 Purpose

Changes an arc label in a graph

 Syntax
#include <nvot.h>

nvotReturnCode nvotChangeArcLabelInGraph (
 nvotGraphProtocolType graphProtocol,
 char \ graphName,
 nvotNameBindingType arcNameBinding,
 nvotProtocolType aEndpointProtocol,
 char \ aEndpointName,
 nvotProtocolType zEndpointProtocol,
 char \ zEndpointName,
 int arcIndexId,
 char \ label)

 Description

The nvotChangeArcLabelInGraph routine changes the label of the arc identified by aEndpointProtocol,
zEndpointName, zEndpointProtocol, zEndpointName, and arcIndexId that is associated with the graph
identified by graphProtocol and graphName.

The containing graph must exist. Otherwise, the arc label is not changed and the error code
NVOT_GRAPH_DOES_NOT_EXIST is returned.

An arc connects arc endpoints: two vertices, two graphs, a vertex to a graph, or a graph to a vertex. An
arc is recognized and referenced by its aEndpoint, zEndpoint and arcIndexId. The following parameters
are required:

 � graphProtocol
 � graphName
 � aEndpointProtocol
 � aEndpointName
 � zEndpointProtocol
 � zEndpointName
 � arcIndexId

If one of these parameters is not provided, the error code NVOT_GRAPH_INVALID_INDEX or
NVOT_ARC_INVALID_INDEX is returned.

The arcNameBinding parameter helps to identify the arc endpoints. See the parameters section for a
detailed description. The arcNameBinding must always be compatible with the values passed in the
aEndpointProtocol and zEndpointProtocol parameters.

Endpoints of class graph must exist. Otherwise the arc icon is not changed and either the error code
NVOT_A_ENDPOINT_GRAPH_DOES_NOT_EXIST or
NVOT_Z_ENDPOINT_GRAPH_DOES_NOT_EXIST is returned.

146 Programmer's Reference

 nvotChangeArcLabelInGraph(3)

If endpoints of class vertex do not exist, they are automatically created and the arc icon is changed. This
is part of the GTM's recovery strategy for lost traps. However, a vertex endpoint is NOT created and the
arc icon is not changed if the other endpoint is a reference to a nonexistent graph.

The nvotProtocolType is a union of an enumerated type with a char pointer as defined in the nvotTypes.h
file. Special care must be taken when setting the aEndpointProtocol and zEndpointProtocol parameters.
To set these variables with an nvotVertexProtocolType value if arcNameBinding identifies the endpoint as
a graph causes unpredictable errors. This is similar to setting a char pointer to an integer value.

The label parameter is a character string displayed under a symbol in the NetView for AIX EUI. Usually, it
is a human-readable character string that helps to visually identify a network resource. Although the label
must be a valid pointer, NULL is accepted. A pointer that is not valid can cause unpredictable errors. If
NULL is passed, a concatenation of aEndpointName + zEndpointName + arcIndexId is displayed in place
of the label.

 Parameters
graphProtocol Specifies the protocol of the graph that contains the arc. This is the graph of

which this arc is a member arc. For more information, refer to the file
/usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the graph that contains the arc. Both the graphName
and graphProtocol parameters are required to identify the containing graph.
This parameter is a string of characters used to create the graph.

arcNameBinding Specifies the class of the objects in each endpoint of the arc. An endpoint can
be either a vertex or a graph. The following values are supported:

ARC_VERTEX_VERTEX_NAME_BINDING
Indicates that either endpoint is a vertex.

ARC_VERTEX_GRAPH_NAME_BINDING
Indicates that aEndpoint is a vertex and zEndpoint is a graph

ARC_GRAPH_VERTEX_NAME_BINDING
Indicates that aEndpoint is a graph and zEndpoint is a vertex.

ARC_GRAPH_GRAPH_NAME_BINDING
Indicates either endpoint is a graph

If a value other than those in the preceding list is used, it is rejected by the
GTM interface and the error code NVOT_INVALID_NAME_BIND is set.

Arcs are handled based on their direction. For more information about arc
direction, see “nvotInit(3)” on page 359. Regardless of the selection made in
the nvotInit routine, arcNameBinding always identifies what value is set in the
aEndpointProtocol and zEndpointProtocol variables.

aEndpointProtocol/zEndpointProtocol
Specifies the protocol of the object identified as the aEndpoint or
aEndpointProtocol, respectively, of this arc. If aEndpoint or zEndpoint is a
vertex, aEndpointProtocol or zEndpointProtocol, respectively, must be set to a
value from the enumerated type nvotVertexProtocolType defined in the file
nvotTypes.h. Otherwise, aEndpoint or zEndpoint is a graph, and
aEndpointProtocol or zEndpointProtocol, respectively, is a pointer to a valid
character string in memory.

 Chapter 2. Reference Pages 147

 nvotChangeArcLabelInGraph(3)

aEndpointName Specifies the name of the object identified as the aEndpoint of this arc. Both
the aEndpointName and aEndpointProtocol parameters are required to identify
the object at the aEndpoint of this arc. This parameter can be any string of
characters. Once specified, the same name must be used in any reference to
this graph.

arcIndexId Distinguishes an arc from other arcs between the same endpoints. (Two
endpoints can be connected by several different arcs.) The arcIndexId is an
integer value.

label When you click the right mouse button on an arc symbol, a pull-down menu is
displayed. In its upper line, the menu shows a label for the arc. The arc label
parameter specifies a string of characters to be displayed in this pull-down
menu.

 Return Values
nvotReturnCode The nvotChangeArcLabelInGraph routine returns an nvotReturnCode that can

assume the values described in the following error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol or name must not
be NULL.

[NVOT_ENDPOINT_GRAPH_INVALID_INDEX]
The endpoint graph index is not valid. An endpoint graph protocol
or name must not be NULL.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_ARC_INVALID_INDEX] The arc index is not valid. It must be a positive integer.

[NVOT_GRAPH_DOES_NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_A_ENDPOINT_GRAPH_DOES_NOT_EXIST]
The graph defined as the A endpoint of the arc does not exist in
the GTM database.

[NVOT_Z_ENDPOINT_GRAPH_DOES_NOT_EXIST]
The graph defined as the Z endpoint of the arc does not exist in
the GTM database.

[NVOT_INVALID_NAME_BINDING] The name binding is not valid. It must be a number defined in the
nvotTypes.h file.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

148 Programmer's Reference

 nvotChangeArcLabelInGraph(3)

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example changes the label of the arc created in the example in “nvotCreateArcInGraph(3)”
on page 221.

#include <nvot.h>

nvotReturnCode rc;

/\\\\\\\\\\\\\\\ Define the parent graph \\\\\\\\\\\\\\\\\\\\\/
nvotGraphProtocolType myGraphProt = "1.3.6.1.2.1.2.2.1.3.11";
char \ myGraphName = "My_Graph";

/\\\\\\\\\\\\\\\ Define vertices V1 and V2 \\\\\\\\\\\\\\\\\/
nvotProtocolType oneEndpoint.vertexProtocol = STARLAN;
char \ oneEndpointName = "My_Vertex_V1";
nvotProtocolType otherEndpoint.vertexProtocol = STARLAN;
char \ otherEndpointName = "My_Vertex_V2;

/\\\\\\\\\\\\\\\ Define arcs attributes \\\\\\\\\\\\\\\\\\\\\\\\\\\\\/
char \ myDotDashArcLabel = "My_Dotted_Arc"
char \ myLineArcLabel = "My_Line_Arc"
int arcNumber = 1;

if ((rc = nvotChangeArcLabelInGraph (myGraphProt,
 myGraphName,
 ARC_VERTEX_VERTEX_NAME_BINDING,
 oneEndpoint,
 oneEndpointName,
 otherEndpoint,
 otherEndpointName,
 arcNumber,

myDotDashArcLabel)) == NVOT_SUCCESS)

printf ("Arc label of %s changed.\n", myLineArcLabel);
 else

printf ("An error occurred changing %s label.\n", myLineArcLabel);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotChangeArcIconInGraph(3)” on page 141.
� See “nvotCreateArcInGraph(3)” on page 221.

 Chapter 2. Reference Pages 149

 nvotChangeArcStatus(3)

 nvotChangeArcStatus(3)

 Purpose

Changes the status of an arc

 Syntax
nvotReturnCode nvotChangeArcStatus (
 nvotNameBindingType arcNameBinding,
 nvotProtocolType aEndpointProtocol,
 char \ aEndpointName,
 nvotProtocolType zEndpointProtocol,
 char \ zEndpointName,
 int arcIndexId,
 statusType arcStatus)

 Description

The nvotChangeArcStatus routine changes the status of an arc named by aEndpoint, zEndpoint and
arcIndexId.

An arc connects arc endpoints: two vertices, two graphs, a vertex to a graph, or a graph to a vertex. An
arc is recognized and referenced by its aEndpoint, zEndpoint and arcIndexId.

The arcNameBinding parameter helps to identify the arc endpoints. See the following parameters section
for a detailed description. The arcNameBinding must always be compatible with the values passed in the
aEndpointProtocol and zEndpointProtocol parameters.

Endpoints of class graph must exist; otherwise the arc status is not changed and the error codes
NVOT_A_ENDPOINT_GRAPH_DOES_NOT_EXIST or
NVOT_Z_ENDPOINT_GRAPH_DOES_NOT_EXIST is set. The GTM interface does not support automatic
creation of graphs.

If an endpoint of class vertex does not exist, it is automatically created. Also, the arc is created with
default values and the status changed. This is part of the GTM's recovery strategy for lost traps.
However, a vertex endpoint is NOT created if the other endpoint is a reference to an nonexistent graph.

The nvotProtocolType is a union of an enumerated type with a char pointer as defined in the nvotTypes.h
file. Special care must be taken when setting aEndpointProtocol and zEndpointProtocol. Setting these
variables to a nvotVertexProtocolType value if arcNameBinding identifies the endpoint as a graph causes
unpredictable errors. This is similar to setting a char pointer to an integer value.

The arcStatus parameter reflects the status of a network connection. The statusType is defined in the file
nvotTypes.h. The possible values are mapped into a combination of four status attributes: operational
state, alarm status, availability status, and unknown status. For a detailed explanation, see the section
about state management variables in the NetView for AIX Programmer's Guide. If the value passed is not
valid, the operation is rejected and error code NVOT_INVALID_STATUS is returned.

150 Programmer's Reference

 nvotChangeArcStatus(3)

 Parameters
arcNameBinding Specifies the class of the objects in each endpoint of the arc. An endpoint can

be either a vertex or a graph. The following values are supported:

ARC_VERTEX_VERTEX_NAME_BINDING
Indicates that either endpoint is a vertex

ARC_VERTEX_GRAPH_NAME_BINDING
Indicates that aEndpoint is a vertex and zEndpoint is a graph

ARC_GRAPH_VERTEX_NAME_BINDING
Indicates that aEndpoint is a graph and zEndpoint is a vertex

ARC_GRAPH_GRAPH_NAME_BINDING
Indicates that either endpoint is a graph

If any value other than the preceding values is used, it is rejected by the GTM
interface and the error code NVOT_INVALID_NAME_BIND is set.

Arcs can be handled based on their direction. For more information about the
direction of arcs, see “nvotInit(3)” on page 359. Regardless of which direction
was set in the nvotInit routine, the arcNameBinding parameter always identi-
fies what value is set in the aEndpointProtocol and zEndpointProtocol vari-
ables.

aEndpointProtocol/zEndpointProtocol
Specifies the protocol of the object identified as the aEndpoint or zEndpoint,
respectively, of this arc. If aEndpoint or zEndpoint is to be a vertex,
aEndpointProtocol or zEndpointProtocol, respectively, must be set with a value
from the enumerated type nvotVertexProtocolType, which is defined in the file
nvotTypes.h. Otherwise, aEndpoint or zEndpoint is a graph, and
aEndpointProtocol or zEndpointProtocol, respectively, is a pointer to a valid
character string in memory.

aEndpointName/zEndPointName
Specifies the name of the object identified as the aEndpoint or zEndpoint,
respectively, of this arc. Both the endpoint name and the endpoint protocol
are required to identify the object at one of the endpoints of this arc. This
parameter can be any string of characters. Once specified, the same name
must be used in any reference to this graph.

arcIndexId Distinguishes an arc from other arcs between the same endpoints. (Two
endpoints can be connected by several different arcs.) The arcIndexId is an
integer value.

arcStatus Specifies a set of values to represent the status of a connection. This param-
eter is a combination of MIB variables OperationalState, AlarmStatus,
AvailabilityStatus and UnknownStatus. The statusType is defined in the file
nvotTypes.h.

 Return Values
nvotReturnCode The nvotChangeArcStatus routine returns an nvotReturnCode that can assume

the values described in the following error codes section.

 Chapter 2. Reference Pages 151

 nvotChangeArcStatus(3)

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_ENDPOINT_GRAPH_INVALID_INDEX]
The endpoint graph index is not valid. An endpoint graph protocol
or name must not be NULL.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_ARC_INVALID_INDEX] The arc index is not valid. It must be a positive integer.

[NVOT_INVALID_STATUS] The status is not valid. It must be a number defined in the
nvotTypes.h file.

[NVOT_A_ENDPOINT_GRAPH_DOES_NOT_EXIST]
The graph defined as the A endpoint of the arc does not exist in
the GTM database.

[NVOT_Z_ENDPOINT_GRAPH_DOES_NOT_EXIST]
The graph defined as the Z endpoint of the arc does not exist in
the GTM database.

[NVOT_INVALID_NAME_BINDING] The name binding is not valid. It must be a number defined in the
nvotTypes.h file.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If ((rc = nvotGetError()) != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example changes the status of one the arcs created in the example given in
“nvotCreateArcInGraph(3)” on page 221.

#include <nvot.h>

nvotReturnCode rc;
nvotProtocolType oneEndpoint.vertexProtocol = STARLAN;
char \ oneEndpointName = "My_Vertex_V1";
nvotProtocolType otherEndpoint.vertexProtocol = STARLAN;
char \ otherEndpointName = "My_Vertex_V2;
char \ myLineArcLabel = "My_Line_Arc";
int arcNumber = 1;

nvotStatusType myLineArcStatus = STATUS_MARGINAL;

if ((rc = nvotChangeArcStatus (ARC_VERTEX_VERTEX_NAME_BINDING,

152 Programmer's Reference

 nvotChangeArcStatus(3)

 oneEndpoint,
 oneEndpointName,
 otherEndpoint,
 otherEndpointName,
 arcNumber,

myLineArcStatus)) == NVOT_SUCCESS)

printf ("Arc status of arc %s changed.\n", myLineArcLabel);
 else

printf ("An error occurred changing %s status.\n", myLineArcLabel);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateArcInGraph(3)” on page 221.
� See “nvotGetArcsInGraph(3)” on page 307.
� See “nvotInit(3)” on page 359.

 Chapter 2. Reference Pages 153

 nvotChangeBoxBackground(3)

 nvotChangeBoxBackground(3)

 Purpose

Changes the background of a box map

 Syntax
#include <nvot.h>

nvotReturnCode nvotChangeBoxBackground (
 nvotGraphProtocolType boxProtocol,

char \ boxName,
char \ boxBackground)

 Description

The nvotChangeBoxBackground routine changes the image displayed in the background of the submap
into which the box given by boxProtocol and boxName is exploded.

The protocol and name parameters uniquely identify objects in the GTM database. The boxProtocol and
boxName parameters are required. If one of these parameters is not provided, the error code
NVOT_BOX_INVALID_INDEX is returned.

If the graph specified does not exist in the GTM database, its submap does not exist either and the error
code NVOT_BOX_DOES_NOT_EXIST is returned.

If a graph that matches boxProtocol and boxName but whose graphType attribute is not set to BOX exists
in the GTM database, its background is not changed and either NVOT_GRAPH_ALREADY_EXIST or
NVOT_OTHER_TYPE_GRAPH_EXIST is returned.

 Parameters
boxProtocol Specifies the protocol of the child box graph. For more information about

specifying a box graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

boxName Specifies the name of the child box graph. Both the boxName and
boxProtocol parameters are required to uniquely identify the child box graph.
This parameter is a string of characters used to create the box graph.

boxBackground Specifies an image to be displayed in the background of the submap into
which this box is exploded. Background is usually an image of a geographic
region that helps to illustrate a submap. You can select a background image
from among the bitmap files in the default directory /usr/OV/backgrounds .

 Return Values
nvotReturnCode The nvotChangeBoxBackground routine returns an nvotReturnCode that can

assume the values described in the following error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

154 Programmer's Reference

 nvotChangeBoxBackground(3)

[NVOT_BOX_INVALID_INDEX] The box index is not valid. A box graph protocol or name must
not be NULL.

[NVOT_BOX_DOES_NOT_EXIST] The box graph does not exist in the GTM database.

[NVOT_GRAPH_ALREADY_EXIST] A graph already exists with the same protocol and name for which
this call is attempting to create a graph, box, or root graph.

[NVOT_OTHER_TYPE_GRAPH_EXIST]
Another type of graph exists. This call is attempting to create a
graph, box, or root graph with a protocol and name already used
for a graph of type INVALID or OTHER.

[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example changes the background in the submap of the graph created in the example in
“nvotCreateGraphInGraph(3)” on page 235.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType my_STARLAN_GraphsProt = "1.3.6.1.2.1.2.2.1.3.11";
char \ myBox_STARLAN_GraphName = "My_Box_STARLAN_Graph";

char \ my_NEW_BackgroundMap = "usa";

if ((rc = nvotChangeBoxBackground (my_STARLAN_GraphsProt,
 myBox_STARLAN_GraphName,

my_NEW_BackgroundMap)) == NVOT_SUCCESS)

printf ("Background of box graph %s changed.\n", myBox_STARLAN_GraphName);
 else

printf ("Error occurred changing %s background.\n",myBox_STARLAN_GraphName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Chapter 2. Reference Pages 155

 nvotChangeBoxBackground(3)

 Files

nvot.h

 Related Information
� See “nvotCreateRootGraph(3)” on page 249.
� See “nvotCreateGraphInGraph(3)” on page 235.
� See “nvotCreateBoxInGraph(3)” on page 227.

156 Programmer's Reference

 nvotChangeBoxDetails(3)

 nvotChangeBoxDetails(3)

 Purpose

Changes the contents of the details variable in the GTM database

 Syntax
#include <nvot.h>

nvotReturnCode nvotChangeBoxDetails (
 nvotGraphProtocolType boxProtocol,
 char \ boxName,
 nvotOctetString \ boxDetails)

 Description

The nvotChangeBoxDetails routine changes the contents of the details variable associated with the box
graph identified by boxProtocol and boxName.

The protocol and name parameters uniquely identify objects in the GTM database. The boxProtocol and
boxName parameters are required. If one of these parameters is not provided, the error code
NVOT_BOX_INVALID_INDEX is returned.

If the box graph specified does not exist in the GTM database, the operation is rejected and the error code
NVOT_BOX_DOES_NOT_EXIST is returned.

If a graph that matches boxProtocol and boxName but whose graphType attribute is not set to BOX exists
in GTM database, its details variable is not changed and either NVOT_GRAPH_ALREADY_EXIST or
NVOT_OTHER_TYPE_GRAPH_EXIST is returned.

 Parameters
boxProtocol Specifies the protocol of the box graph. For more information about specifying

a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

boxName Specifies the name of the box graph. Both the boxName and boxProtocol
parameters are required to uniquely identify the box graph in the GTM data-
base. This parameter is a string of characters used to create the box graph.

boxDetails Contains particular information that applications store for future retrieval. The
information stored in this variable is for the application's use only. For
example, the application might copy the data of a structure into this variable by
doing a memcpy(boxDetails->octetString, (char *) applStruct,
sizeof(applStruct)) and boxDetails->octetLength = sizeof(applStruct). Although
nvotOctetString allows for any size strings and the interface does not check
the size of boxDetails, any character exceeding 256 is truncated by the
NetView for AIX object database.

 Return Values
nvotReturnCode The nvotChangeBoxDetails routine returns an nvotReturnCode that can

assume the values described in the following error codes section.

 Chapter 2. Reference Pages 157

 nvotChangeBoxDetails(3)

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_BOX_INVALID_INDEX] The box index is not valid. A box graph protocol or name must
not be NULL.

[NVOT_BOX_DOES_NOT_EXIST] The box graph does not exist in the GTM database.

[NVOT_GRAPH_ALREADY_EXIST] A graph already exists with the same protocol and name for which
this call is attempting to create a graph, box, or root graph.

[NVOT_OTHER_TYPE_GRAPH_EXIST]
Another type of graph exists. This call is attempting to create a
graph, box, or root graph with a protocol and name already used
for a graph of type INVALID or OTHER.

[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example stores the contents of myStruct snd myString into the boxDetails variable attri-
bute of My_Box.

#include <nvot.h>
typedef struct { int var1;
 int var2;
 } structType;

structType myStruct = { 11, 22 };
char myString [5ð] = ["The quick brown fox jumped over the lazy dogs back"];

nvotOctetString myBoxDetails;
char \ auxDetailsPtr;
myBoxDetails.octetString = malloc (sizeof (myStruct) + sizeof (myString));
myBoxDetails.octetLength = (sizeof (structType) + sizeof (myString));
auxDetailsPtr = myBoxDetails.octetString;

memcpy (myBoxDetails.octetString, (char \) :myStruct, sizeof (myStruct));
auxDetailsPtr = myBoxDetails.octetString + sizeof (myStruct);
memcpy (auxDetailsPtr, :myString, sizeof (myString));

nvotReturnCode rc;

158 Programmer's Reference

 nvotChangeBoxDetails(3)

nvotGraphProtocolType myBoxProt = "1.3.6.1.2.1.2.2.1.3.17";
char \ myBoxName = "My_Box";

if ((rc = nvotChangeBoxDetails (myBoxProt,
 myBoxName,

:myBoxDetails)) == NVOT_SUCCESS)

printf ("myString has been stored in %s.\n", myBoxName);
 else

printf ("Error occurred storing myString in %s.\n", myBoxName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateRootGraph(3)” on page 249.
� See “nvotCreateBoxInGraph(3)” on page 227.

 Chapter 2. Reference Pages 159

 nvotChangeBoxIconInGraph(3)

 nvotChangeBoxIconInGraph(3)

 Purpose

Changes a box graph icon in a graph

 Syntax
#include <nvot.h>

nvotReturnCode nvotChangeBoxIconInGraph (
 nvotGraphProtocolType graphProtocolParent,
 char graphNameParent,
 nvotGraphProtocolType boxProtocol,
 char \ boxName,
 char \ icon)

 Description

The nvotChangeBoxIconInGraph routine changes the icon representing the box graph identified by
boxProtocol and boxName and that is displayed in the submap of the graph identified by
graphProtocolParent and graphNameParent.

The protocol and name parameters uniquely identify objects in the GTM database. The
graphProtocolParent, graphNameParent, boxProtocol and boxName parameters are required. If one of
these parameters is not provided, the error code NVOT_GRAPH_INVALID_INDEX is returned.

If either the parent or box graph does not exist in the GTM database, the box graph icon is not changed
and the error code NVOT_GRAPH_DOES_NOT_EXIST or NVOT_BOX_DOES_NOT_EXIST is returned.
Automatic creation of box graphs is not supported.

To be supported by the nvotChangeBoxIconInGraph routine, the icon must be a valid option selected from
the file /usr/OV/conf/C/oid_to_sym. However, if the icon is not passed, it must be set to NULL. A pointer
that is not valid can cause unpredictable errors. If NULL is passed, the box graph icon is changed to the
default symbol Computer:Generic .

 Parameters
graphProtocolParent Specifies the protocol of the containing graph. For more information about

specifying a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphNameParent Specifies the name of the containing graph. Both the graphNameParent and
graphProtocolParent parameters are required to uniquely identify the parent
graph in GTM the database. This parameter is a string of characters used to
create the parent graph.

boxProtocol Specifies the protocol of the child box graph. For more information about
specifying a box graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

boxName Specifies the name of the child box graph. Both the boxName and
boxProtocol parameters are required to uniquely identify the child box graph.
This parameter is a string of characters used to create the box graph.

icon Specifies a symbol to represent the child box graph in the NetView for AIX
EUI. Valid symbols are defined in the file /usr/OV/conf/C/oid_to_sym.

160 Programmer's Reference

 nvotChangeBoxIconInGraph(3)

 Return Values
nvotReturnCode The nvotChangeBoxIconInGraph routine returns an nvotReturnCode that can

assume the values described in the following error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol or name must
not be NULL.

[NVOT_GRAPH_DOES_NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_BOX_INVALID_INDEX] The box index is not valid. A box graph protocol and name
must not be NULL.

[NVOT_BOX_DOES_NOT_EXIST] The box graph does not exist in the GTM database.

[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or
member table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY] Memory allocation error. The system might be out of
memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a con-
nection with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during
operation. Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example changes the icon of the box created in the example in “nvotCreateBoxInGraph(3)”
on page 227.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType my_STARLAN_GraphsProt = "1.3.6.1.2.1.2.2.1.3.11";

char \ myRoot_STARLAN_GraphName = "My_Root_Graph";

char \ myBox_STARLAN_GraphName = "My_Box_STARLAN_Graph";
char \ my_NEW_BoxIcon = "1.3.6.1.2.1.2.2.1.3.9.1ð";

if (rc = nvotChangeBoxIconInGraph (my_STARLAN_GraphsProt,
 myRoot_STARLAN_GraphName,
 my_STARLAN_GraphsProt,
 myBox_STARLAN_GraphName,

my_NEW_BoxIcon) == NVOT_SUCCESS)

 Chapter 2. Reference Pages 161

 nvotChangeBoxIconInGraph(3)

printf ("Box icon of box graph %s changed.\n", myBox_STARLAN_GraphName);
 else

printf ("An error occurred changing %s icon.\n", myBox_STARLAN_GraphName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateBoxInGraph(3)” on page 227.
� See “nvotChangeBoxLabelInGraph(3)” on page 163.

162 Programmer's Reference

 nvotChangeBoxLabelInGraph(3)

 nvotChangeBoxLabelInGraph(3)

 Purpose

Changes a box graph label in a graph

 Syntax
#include <nvot.h>

nvotReturnCode nvotChangeBoxLabelInGraph (
 nvotGraphProtocolType graphProtocolParent,

char \ graphNameParent,
 nvotGraphProtocolType boxProtocol,

char \ boxName,
char \ label)

 Description

The nvotChangeBoxLabelInGraph routine changes the label of the box graph identified by boxProtocol and
boxName and displayed in the submap of the graph identified by graphProtocolParent and
graphNameParent.

The protocol and name parameters uniquely identify objects in the GTM database. The
graphProtocolParent, graphNameParent, boxProtocol and boxName parameters are required. If one of
these parameters is not provided, the error code NVOT_GRAPH_INVALID_INDEX is returned.

If either the parent or child box graph does not exist in the GTM database, the box label is not changed
and the error code NVOT_GRAPH_DOES_NOT_EXIST or NVOT_BOX_DOES_NOT_EXIST is returned.
Automatic creation of box graphs is not supported.

The label parameter is a character string displayed under a symbol in the NetView for AIX EUI. Usually, it
is a human-readable character string that helps to visually identify a resource in a topology map. Although
the label must be a valid pointer, NULL is accepted. A pointer that is not valid can cause unpredictable
errors. If NULL is passed, the boxName string is displayed in place of the label.

 Parameters
graphProtocolParent Specifies the protocol of the containing graph. For more information about

specifying a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphNameParent Specifies the name of the containing graph. Both the graphNameParent and
graphProtocolParent parameters are required to uniquely identify the parent
graph in GTM the database. This parameter is a string of characters used to
create the parent graph.

boxProtocol Specifies the protocol of the child box graph. For more information about
specifying a box graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

boxName Specifies the name of the child box graph. Both the boxName and
boxProtocol parameters are required to uniquely identify the child box graph.
This parameter is a string of characters used to create the box graph.

 Chapter 2. Reference Pages 163

 nvotChangeBoxLabelInGraph(3)

label Specifies a human-readable character string to be displayed under the box
graph symbol in the NetView for AIX EUI. This parameter must be a valid
character string or NULL.

 Return Values
nvotReturnCode The nvotChangeBoxLabelInGraph routine returns an nvotReturnCode that can

assume the values described in the following error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol or name must not
be NULL.

[NVOT_GRAPH_DOES_NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_BOX_INVALID_INDEX] The box index is not valid. A box graph protocol or name must
not be NULL.

[NVOT_BOX_DOES_NOT_EXIST] The box graph does not exist in the GTM database.

[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example changes the label of the box graph created in the example in
“nvotCreateBoxInGraph(3)” on page 227.

#include <nvot.h>

nvotReturnCode rc;

nvotReturnCode rc;

nvotGraphProtocolType my_STARLAN_GraphsProt = "1.3.6.1.2.1.2.2.1.3.11";

char \ myRoot_STARLAN_GraphName = "My_Root_Graph";

char \ myBox_STARLAN_GraphName = "My_Box_STARLAN_Graph";
char \ my_NEW_BoxLabel = "My_Workstation_Box";

164 Programmer's Reference

 nvotChangeBoxLabelInGraph(3)

if (rc = nvotChangeBoxLabelInGraph (my_STARLAN_GraphsProt,
 myRoot_STARLAN_GraphName,
 my_STARLAN_GraphsProt,
 myBox_STARLAN_GraphName,

my_NEW_BoxLabel) == NVOT_SUCCESS)

printf ("Box icon of box graph %s changed.\n", myBox_STARLAN_GraphName);
 else

printf ("An error occurred changing %s icon.\n", myBox_STARLAN_GraphName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateBoxInGraph(3)” on page 227.
� See “nvotChangeBoxIconInGraph(3)” on page 160.

 Chapter 2. Reference Pages 165

 nvotChangeBoxPositionInGraph(3)

 nvotChangeBoxPositionInGraph(3)

 Purpose

Changes the position of a box graph icon in a graph submap

 Syntax
#include <nvot.h>

nvotReturnCode nvotChangeBoxPositionInGraph (
 nvotGraphProtocolType graphProtocolParent,

char \ graphNameParent,
 nvotGraphProtocolType boxProtocol,

char \ boxName,
 nvotPositionType newPosition)

 Description

The nvotChangeBoxPositionInGraph routine changes the position of a symbol representing the box graph
identified by boxProtocol and boxName and associated with the graph identified by graphProtocolParent
and graphNameParent.

The parent graph must have been created with the layout algorithm set to NONE_LAYOUT.

The protocol and name parameters uniquely identify objects in the GTM database. The
graphProtocolParent, graphNameParent, boxProtocol, and boxName parameters are required. If one of
these parameters is not provided, the error code NVOT_GRAPH_INVALID_INDEX is returned.

If the parent graph does not exist or it exists but its graphType is not set to GRAPH, the box position is
not changed and the error code NVOT_GRAPH_DOES_NOT_EXIST is returned.

If the box graph does not exist or it exists but its graphType is not set to BOX, the box position is not
changed and the error code NVOT_BOX_DOES_NOT_EXIST is returned. Automatic creation of graph is
not supported.

The nvotPositionType parameter, as defined in the file nvotTypes.h, accepts the following four variables:
xCoordinate, yCoordinate, xGrid and yGrid. The xGrid and yGrid variables determine a scale on which the
coordinate system is defined.

The grid and coordinate do not necessarily determine the exact physical location in the window where the
symbol is displayed. However, they determine a virtual position for the symbol based on the virtual size of
the submap.

The symbol size can be affected either by the grid values or by the coordinate values. For example, if the
symbol position is set too far from the center or from another symbol, x and y grid are reset to a value that
keeps the distances proportional and allows all symbols in the submap to be displayed. This placement of
symbolx has the effect of a zoomout.

For best results, use the same xGrid and yGrid values for all symbols in the same submap.

166 Programmer's Reference

 nvotChangeBoxPositionInGraph(3)

 Parameters
graphProtocolParent Specifies the protocol of the parent graph. For more information about speci-

fying a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphNameParent Specifies the name of the parent graph. Both the graphNameParent and
graphProtocolParent parameters are required to uniquely identify the parent
graph.

boxProtocol Specifies the protocol of the box graph. For more information about specifying
a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

boxName Specifies the name of the box graph. Both the boxName and boxProtocol
parameters are required to uniquely identify the box graph. This parameter is
a string of characters used to create the box graph.

newPosition Specifies the values of the variables xCoordinate, yCoordinate, xGrid and
yGrid in a structure defined in the file nvotTypes.h.

 Return Values
nvotReturnCode The nvotChangeBoxPositionInGraph routine returns an nvotReturnCode that

can assume the values described in the following error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol or name must not
be NULL.

[NVOT_GRAPH_DOES_NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_BOX_INVALID_INDEX] The box index is not valid. A box graph protocol or name must
not be NULL.

[NVOT_BOX_DOES_NOT_EXIST] The box graph does not exist in the GTM database.

[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Chapter 2. Reference Pages 167

 nvotChangeBoxPositionInGraph(3)

 Examples

The following example changes the position of a child box graph.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType my_STARLAN_GraphsProt = "1.3.6.1.2.1.2.2.1.3.11";

char \ myRoot_STARLAN_GraphName = "My_Root_Graph";
char \ myBox_STARLAN_GraphName = "My_Box_STARLAN_Graph";

nvotPositionType myBoxGraphPosition = { 5ðð, /\ xCoordinate \/
5ðð, /\ yCoordinate \/
1ððð, /\ xGrid \/

 1ððð /\ yGrid \/
 };

if ((rc = nvotChangeBoxPositionInGraph (my_STARLAN_GraphsProt,
 myRoot_STARLAN_GraphName,
 my_STARLAN_GraphsProt,
 myBox_STARLAN_GraphName,

myBoxGraphPosition)) == NVOT_SUCCESS)

printf ("Positioning of graph %s symbol changed.\n",
 myBox_STARLAN_GraphName);
 else

printf ("An error occurred changing %s icon position.\n",
 myBox_STARLAN_GraphName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateBoxInGraph(3)” on page 227.
� See “nvotChangeGraphPositionInGraph(3)” on page 184.

168 Programmer's Reference

 nvotChangeGraphBackground(3)

 nvotChangeGraphBackground(3)

 Purpose

Changes the background of a graph map

 Syntax
#include <nvot.h>

nvotReturnCode nvotChangeGraphBackground (
 nvotGraphProtocolType graphProtocol,

char \ graphName,
char \ graphBackground)

 Description

The nvotChangeGraphBackground routine changes the image displayed in the background of the submap
into which the graph given by graphProtocol and graphName is exploded.

The protocol and name parameters uniquely identify objects in the GTM database. The graphProtocol and
graphName parameters are required. If one of these parameters is not provided, the error code
NVOT_GRAPH_INVALID_INDEX is returned.

If the graph specified does not exist in the GTM database, its submap does not exist either and the error
code NVOT_GRAPH_DOES_NOT_EXIST is returned.

If a graph that matches graphProtocol and graphName but does not have its graphType attribute set to
GRAPH exists in the GTM database, its background is not changed and either
NVOT_BOX_ALREADY_EXIST or NVOT_OTHER_TYPE_GRAPH_EXIST is returned.

 Parameters
graphProtocol Specifies the protocol of the root graph. For more information about specifying

a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the root graph. Both the graphName and graphProtocol
parameters are required to uniquely identify the root graph in the GTM data-
base. This parameter is a string of characters used to create the root graph.

graphBackground Specifies an image to be displayed in the background of the submap into
which this graph is exploded. Background is usually an image of a geographic
region that helps to illustrate a submap. You can select a background image
from among the bitmap files in the default directory /usr/OV/backgrounds .

 Return Values
nvotReturnCode The nvotChangeGraphBackground routine returns an nvotReturnCode that can

assume the values described in the following error codes section.

 Chapter 2. Reference Pages 169

 nvotChangeGraphBackground(3)

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol or name must not
be NULL.

[NVOT_GRAPH_DOES_NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_BOX_ALREADY_EXIST] A box already exists with the same protocol and name for which
this call is attempting to create a graph, box, or root graph.

[NVOT_OTHER_TYPE_GRAPH_EXIST]
Another type of graph exists. This call is attempting to create a
graph, box, or root graph with a protocol and name already used
for a graph of type INVALID or OTHER.

[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example changes the background in the submap of the graph created in the example in
“nvotCreateGraphInGraph(3)” on page 235.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType mySDLCGraphsProt = "1.3.6.1.2.1.2.2.1.3.17";
char \ myChildSDLCGraphName = "My_Child_SDLC_Graph";

char \ my_NEW_BackgroundMap = "usa";

if ((rc = nvotChangeGraphBackground (mySDLCGraphsProt,
 myChildSDLCGraphName,

my_NEW_BackgroundMap)) == NVOT_SUCCESS)

printf ("Graph background of graph %s changed.\n", myChildSDLCGraphName);
 else

printf ("Error occurred changing %s background.\n", myChildSDLCGraphName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

170 Programmer's Reference

 nvotChangeGraphBackground(3)

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateRootGraph(3)” on page 249.
� See “nvotCreateGraphInGraph(3)” on page 235.
� See “nvotCreateBoxInGraph(3)” on page 227.

 Chapter 2. Reference Pages 171

 nvotChangeGraphDetails(3)

 nvotChangeGraphDetails(3)

 Purpose

Changes the contents of the details variable in the database

 Syntax
#include <nvot.h>

nvotReturnCode nvotChangeGraphDetails (
 nvotGraphProtocolType graphProtocol,
 char \ graphName,
 nvotOctetString \ graphDetails)

 Description

The nvotChangeGraphDetails routine changes the contents of the details variable associated with the
graph identified by graphProtocol and graphName.

The protocol and name parameters uniquely identify objects in the GTM database. The graphProtocol and
graphName parameters are required. If one of these parameters is not provided, the error code
NVOT_GRAPH_INVALID_INDEX is returned.

If the graph specified does not exist in the GTM database, the operation is rejected and the error code
NVOT_GRAPH_DOES_NOT_EXIST is returned.

If a graph that matches graphProtocol and graphName but whose graphType attribute is not set to
GRAPH exists in the GTM database, its details variable is not changed and either
NVOT_BOX_ALREADY_EXIST or NVOT_OTHER_TYPE_GRAPH_EXIST is returned.

 Parameters
graphProtocol Specifies the protocol of the graph. For more information about specifying a

graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the graph. Both the graphName and graphProtocol
parameters are required to uniquely identify the graph in the GTM database.
This parameter is a string of characters used to create the graph.

graphDetails Contains particular information that applications store for future retrieval. The
information stored in this variable is for the application's use only. For
example, the application might copy the data of a structure into this variable by
doing a memcpy(graphDetails->octetString, (char *) applStruct,
sizeof(applStruct)) and graphDetails->octetLength = sizeof(applStruct).
Although nvotOctetString allows for any size strings and the interface does not
check the size of graphDetails, any character exceeding 256 is truncated by
the NetView for AIX object database.

 Return Values
nvotReturnCode The nvotChangeGraphDetails routine returns an nvotReturnCode that can

assume the values described in the following error codes section.

172 Programmer's Reference

 nvotChangeGraphDetails(3)

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol or name must not
be NULL.

[NVOT_GRAPH_DOES_NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_BOX_ALREADY_EXIST] A box already exists with the same protocol and name for which
this call is attempting to create a graph, box, or root graph.

[NVOT_OTHER_TYPE_GRAPH_EXIST]
Another type of graph exists. This call is attempting to create a
graph, box, or root graph with a protocol and name already used
for a graph of type INVALID or OTHER.

[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example stores the contents of myStruct into the graphDetails variable attribute of
My_Graph.

#include <nvot.h>
typedef struct { int var1, int var2 } structType;

structType myStruct = { 11, 22 };
nvotOctetString myGraphDetails;

myGraphDetails.octetString = malloc (sizeof (structType));
myGraphDetails.octetLength = sizeof (structType);

memcpy (myGraphDetails.octetString, (char \) :myStruct, sizeof (structType));

nvotReturnCode rc;

nvotGraphProtocolType myGraphProt = "1.3.6.1.2.1.2.2.1.3.17";
char \ myGraphName = "My_Graph";

if ((rc = nvotChangeGraphDetails (myGraphProt,
 myGraphName,

:myGraphDetails)) == NVOT_SUCCESS)

 Chapter 2. Reference Pages 173

 nvotChangeGraphDetails(3)

printf ("myStruct has been stored in %s.\n", myGraphName);
 else

printf ("Error occurred storing myStruct in %s.\n", myGraphName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateRootGraph(3)” on page 249.
� See “nvotCreateGraphInGraph(3)” on page 235.

174 Programmer's Reference

 nvotChangeGraphIcon(3)

 nvotChangeGraphIcon(3)

 Purpose

Changes the icon and label of orphan graphs, boxes, and vertices

 Related Functions
 nvotChangeGraphLabel
 nvotChangeBoxIcon
 nvotChangeBoxLabel
 nvotChangeVertexIcon
 nvotChangeVertexLabel

 Syntax
#include <nvot.h>

nvotReturnCode nvotChangeGraphIcon (
 nvotGraphProtocolType graphProtocol,

char \ graphName,
char \ icon)

nvotReturnCode nvotChangeGraphLabel (
 nvotGraphProtocolType graphProtocol,

char \ graphName,
char \ label)

nvotReturnCode nvotChangeBoxIcon (
 nvotGraphProtocolType boxProtocol,
 char \ boxName,
 char \ icon)

nvotReturnCode nvotChangeBoxLabel (
 nvotGraphProtocolType boxProtocol,
 char \ boxName,
 char \ label)

nvotReturnCode nvotChangeVertexIcon (
 nvotVertexProtocolType vertexProtocol,

char \ vertexName,
char \ icon)

nvotReturnCode nvotChangeVertexLabel (
 nvotVertexProtocolType vertexProtocol,

char \ vertexName,
char \ label)

 Description

Usually graph, vertex, and box symbol and label information is stored in the member table. This is to
allow for the display of a particular symbol on each graph submap where these objects belong.

However, underlying arc endpoint objects might not be members of upper level graphs and therefore do
not carry symbol and label information to be displayed in the arc submap. These orphan graphs, boxes,

 Chapter 2. Reference Pages 175

 nvotChangeGraphIcon(3)

or vertices carry their symbol and label information in their own primary table (for example, graph and
vertex tables).

The protocol and name uniquely identify objects in the GTM database. Thus, graphProtocol, graphName,
boxProtocol, boxName, vertexProtocol, and vertexName are mandatory parameters. If they are not speci-
fied, the operation is not successful and a non-zero return code is set.

If a graph or box does not exist in the GTM database, and the interface has been initialized with
CheckOn=TRUE, the icon and label for the object will not be changed, and the error
NVOT_GRAPH_DOES_NOT_EXIST or NVOT_BOX_DOES_NOT_EXIST is returned. Automatic creation
of graphs is not permitted.

If a vertex does not exist in the GTM database, it is automatically created, and its icon or label is set
according to these routines.

Although the icon and label are the target of these routines, they are not mandatory. The icon must be a
valid option chosen from the usr/OV/conf/C/oid_to_sym file. If these parameters are not passed, they
must be set to NULL. A pointer that is not valid might cause unpredictable errors. If NULL is passed in
the icon parameter, the default value Network:Generic is used for graphs, Computer:Generic is used for
boxes, and Cards:Generic is used for vertices. If NULL is passed in the label parameter, the
graphName, boxName, or vertexName is used.

 Parameters
graphProtocol, boxProtocol, vertexProtocol

Specifies the protocol of the graph, box, or vertex. For more information on specifying a graph pro-
tocol, see the /usr/OV/conf/oid_to_protocol file. Vertex protocol is an enumerated type defined in the
file nvotTypes.h.

graphName, boxName, vertexName
Specifies the name of the graph, box, or vertex. It is a string of characters previously used to create
the object.

graphIcon, boxIcon, vertexIcon
Specifies a symbol to represent the graph, box, or vertex on the OVW display. Valid symbols are
defined in the file /usr/OV/conf/C/oid_to_sym.

graphLabel, boxLabel, vertexLabel
Specifies the label under the graph, box, or vertex symbol on the OVW display. Label is any string of
characters.

 Return Values
nvotReturnCode These routines return an nvotReturnCode that can assume the values

described in the error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol must be a posi-
tive integer and a graph name must not be NULL.

[NVOT_GRAPH_DOES_NOT_EXIST] The specified graph is not found in the GTM database.

[NVOT_BOX_INVALID_INDEX] The box index is not valid. A box protocol must be a positive
integer and a box name must not be NULL.

176 Programmer's Reference

 nvotChangeGraphIcon(3)

[NVOT_BOX_DOES_NOT_EXIST] The specified box is not found in the GTM database.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a posi-
tive integer and a vertex name must not be NULL.

[NVOT_GTMD_INVALID_RESPONSE] GTM invalid response. A query to a graph or member table
returned an unexpected response from GTMd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a con-
nection with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during
operation. Issue the nvotInit routine again.

A printable message string is accessible through a call to the routine nvotGetErrorMsg as in the following
example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Libraries
 � libnvot.a

 Files
 � nvot.h

 Related Information
� See “nvotCreateGraph(3)” on page 232.

 Chapter 2. Reference Pages 177

 nvotChangeGraphIconInGraph(3)

 nvotChangeGraphIconInGraph(3)

 Purpose

Changes a graph icon in a graph

 Syntax
#include <nvot.h>

nvotReturnCode nvotChangeGraphIconInGraph (
 nvotGraphProtocolType graphProtocolParent,

char \ graphNameParent,
 nvotGraphProtocolType graphProtocol,

char \ graphName,
char \ icon)

 Description

The nvotChangeGraphIconInGraph routine changes the icon representing the graph identified by
graphProtocol and graphName and displayed in the submap of the graph identified by
graphProtocolParent and graphNameParent.

The protocol and name parameters uniquely identify objects in the GTM database. The
graphProtocolParent, graphNameParent, graphProtocol, and graphName parameters are required. If one
of these parameters is not provided, the error code NVOT_GRAPH_INVALID_INDEX is returned.

If either the parent or child graph does not exist in the GTM database, the graph icon is not changed and
the error code NVOT_GRAPH_DOES_NOT_EXIST is returned. Automatic creation of graphs is not sup-
ported.

To be supported by the nvotChangeGraphIconInGraph routine, the icon must be a valid option selected
from the file /usr/OV/conf/C/oid_to_sym. However, if the icon is not passed, it must be set to NULL. A
pointer that is not valid can cause unpredictable errors. If NULL is passed, the graph icon is changed to
the default symbol Network:Network .

 Parameters
graphProtocolParent Specifies the protocol of the containing graph. For more information about

specifying a graph protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphNameParent Specifies the name of the containing graph. Both the graphNameParent and
graphProtocolParent parameters are required to uniquely identify the parent
graph in the GTM database. This parameter is a string of characters used to
create the parent graph.

graphProtocol Specifies the protocol of the child graph. For more information about speci-
fying a graph protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the child graph. Both the graphName and
graphProtocol parameters are required to uniquely identify the child graph.
This parameter is a string of characters used to create the child graph.

icon Specifies a symbol to represent the child graph in the NetView for AIX EUI.
Valid symbols are defined in the file /usr/OV/conf/C/oid_to_sym.

178 Programmer's Reference

 nvotChangeGraphIconInGraph(3)

 Return Values
nvotReturnCode The nvotChangeGraphIconInGraph routine returns an nvotReturnCode that

can assume the values described in the following error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol or name must not
be NULL.

[NVOT_GRAPH_DOES_NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example changes the icon of the graph created in the example in
“nvotCreateGraphInGraph(3)” on page 235.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType mySDLCGraphsProt = "1.3.6.1.2.1.2.2.1.3.17";

char \ myRootSDLCGraphName = "My_Root_Graph";
char \ myChildSDLCGraphName = "My_Child_SDLC_Graph";

char \ mySDLCGraphIcon = "1.3.6.1.2.1.2.2.1.3.1ð.11";

if (rc = nvotChangeGraphIconInGraph (mySDLCGraphsProt,
 myRootSDLCGraphName,
 mySDLCGraphsProt,
 myChildSDLCGraphName,

mySDLCGraphIcon) == NVOT_SUCCESS)

printf ("Graph icon of graph %s changed.\n", myChildSDLCGraphName);
 else

printf ("An error occurred changing %s icon.\n", myChildSDLCGraphName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Chapter 2. Reference Pages 179

 nvotChangeGraphIconInGraph(3)

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateGraphInGraph(3)” on page 235.
� See “nvotChangeGraphLabelInGraph(3)” on page 181.

180 Programmer's Reference

 nvotChangeGraphLabelInGraph(3)

 nvotChangeGraphLabelInGraph(3)

 Purpose

Changes a graph label in a graph

 Syntax
#include <nvot.h>

nvotReturnCode nvotChangeGraphLabelInGraph (
 nvotGraphProtocolType graphProtocolParent,

char \ graphNameParent,
 nvotGraphProtocolType graphProtocol,

char \ graphName,
char \ label)

 Description

The nvotChangeGraphLabelInGraph routine changes the label of the graph identified by graphProtocol
and graphName that is displayed in the submap of the graph identified by graphProtocolParent and
graphNameParent.

The protocol and name parameters uniquely identify objects in the GTM database. The
graphProtocolParent, graphNameParent, graphProtocol and graphName parameters are required. If one
of these parameters is not provided, NVOT_GRAPH_INVALID_INDEX is returned.

If either the parent or child graph does not exist in GTM database, the graph label is not changed and the
error code NVOT_GRAPH_DOES_NOT_EXIST is returned. Automatic creation of graphs is not sup-
ported.

The label parameter is a character string displayed under a symbol in the NetView for AIX EUI. Usually, it
is a human-readable character string that helps to visually identify a resource in a topology map. Although
the label must be a valid pointer, NULL is accepted. A pointer that is not valid can cause unpredictable
errors. If NULL is passed, the graphName string is displayed in place of the label.

 Parameters
graphProtocolParent Specifies the protocol of the containing graph. For more information about

specifying a graph protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphNameParent Specifies the name of the containing graph. Both the graphNameParent and
graphProtocolParent parameters are required to uniquely identify the parent
graph in the GTM database. This parameter is a string of characters used to
create the parent graph.

graphProtocol Specifies the protocol of the child graph. For more information about speci-
fying a graph protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the child graph. Both the graphName and
graphProtocol parameters are required to uniquely identify the child graph.
This parameter is a string of characters used to create the child graph.

 Chapter 2. Reference Pages 181

 nvotChangeGraphLabelInGraph(3)

label Specifies a human-readable character string to be displayed under the graph
symbol in the NetView for AIX EUI. It must be a valid character string or
NULL.

 Return Values
nvotReturnCode The nvotChangeGraphLabelInGraph routine returns an nvotReturnCode that

can assume the values described in the following error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol or name must not
be NULL.

[NVOT_GRAPH_DOES_NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example changes the label of the graph created in the example in
“nvotCreateGraphInGraph(3)” on page 235.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType mySDLCGraphsProt = "1.3.6.1.2.1.2.2.1.3.17";

char \ myRootSDLCGraphName = "My_Root_Graph";
char \ myChildSDLCGraphName = "My_Child_SDLC_Graph";

char \ my_NEW_SDLC_GraphLabel = "My_NEW_SDLC_Graph";

if (rc = nvotChangeGraphLabelInGraph (mySDLCGraphsProt,
 myRootSDLCGraphName,
 mySDLCGraphsProt,
 myChildSDLCGraphName,

my_NEW_SDLC_GraphLabel) == NVOT_SUCCESS)

182 Programmer's Reference

 nvotChangeGraphLabelInGraph(3)

printf ("Graph icon of graph %s changed.\n", myChildSDLCGraphName);
 else

printf ("An error occurred changing %s icon.\n", myChildSDLCGraphName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateGraphInGraph(3)” on page 235.
� See “nvotChangeGraphIconInGraph(3)” on page 178.

 Chapter 2. Reference Pages 183

 nvotChangeGraphPositionInGraph(3)

 nvotChangeGraphPositionInGraph(3)

 Purpose

Changes position of a graph icon in a graph submap

 Syntax
#include <nvot.h>

nvotReturnCode nvotChangeGraphPositionInGraph (
 nvotGraphProtocolType graphProtocolParent,

char \ graphNameParent,
 nvotGraphProtocolType graphProtocol,

char \ graphName,
 nvotPositionType newPosition)

 Description

The nvotChangeGraphPositionInGraph routine changes the position of a symbol representing the graph
identified by graphProtocol and graphName and associated with the graph identified by
graphProtocolParent and graphNameParent.

The parent graph must have been created with layout algorithm set to NONE_LAYOUT.

The protocol and name parameters uniquely identify objects in the GTM database. The
graphProtocolParent, graphNameParent, graphProtocol and graphName parameters are required. If one
of these parameters is not provided, the error code NVOT_GRAPH_INVALID_INDEX or
NVOT_BOX_INVALID_INDEX is returned.

If the parent graph or the child graph does not exist or they exist but their graphType attribute is not set to
GRAPH, the child graph symbol position is not changed and the error code
NVOT_GRAPH_DOES_NOT_EXIST is returned. Automatic creation of the child graph is not supported.

The nvotPositionType, as defined in the file nvotTypes.h, accepts the following four variables:
xCoordinate, yCoordinate, xGrid and yGrid. The xGrid and yGrid variables determine a scale on which the
coordinate system is defined.

The grid and coordinate do not necessarily determine the exact physical location in the window where the
symbol is displayed. However, they determine a virtual position for the symbol based on the virtual size of
the submap.

The symbol size can be affected either by the grid values or by the coordinate values. For example, if the
symbol position is set too far from the center or from another symbol, x and y grid are reset to a value that
keeps the distances proportional and allows all symbols in the submap to be displayed. This placement of
symbols has the effect of a zoomout.

For best results, use the same xGrid and yGrid values for all symbols in the same submap.

184 Programmer's Reference

 nvotChangeGraphPositionInGraph(3)

 Parameters
graphProtocolParent Specifies the protocol of the parent graph. For more information about speci-

fying a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphNameParent Specifies the name of the parent graph. Both the graphNameParent and
graphProtocolParent parameters are required to uniquely identify the parent
graph.

graphProtocol Specifies the protocol of the child graph. For more information about speci-
fying a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the child graph. Both the graphName and
graphProtocol parameters are required to uniquely identify the child graph.

newPosition This parameter is a structure defined in the file nvotTypes.h that specifies the
values of the variables xCoordinate, yCoordinate, xGrid and yGrid.

 Return Values
nvotReturnCode The nvotChangeGraphPosition routine returns an nvotReturnCode that can

assume the values described in the following error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol or name must not
be NULL.

[NVOT_GRAPH_DOES_NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Chapter 2. Reference Pages 185

 nvotChangeGraphPositionInGraph(3)

 Examples

The following example changes the position of a child graph symbol.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType mySDLCGraphsProt = "1.3.6.1.2.1.2.2.1.3.17";

char \ myRootSDLCGraphName = "My_Root_Graph";
char \ myChildSDLCGraphName = "My_Child_SDLC_Graph";

nvotPositionType myGraphPosition = { 5ðð, /\ xCoordinate \/
5ðð, /\ yCoordinate \/
1ððð, /\ xGrid \/

 1ððð /\ yGrid \/
 };

if ((rc = nvotChangeGraphPositionInGraph (mySDLCGraphsProt,
 myRootSDLCGraphName,
 mySDLCGraphsProt,
 myChildSDLCGraphName,

myGraphPosition)) == NVOT_SUCCESS)

printf ("Positioning of graph %s symbol changed.\n", myChildSDLCGraphName);
 else

printf ("An error occurred changing %s icon position.\n",
 myChildSDLCGraphName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateGraphInGraph(3)” on page 235.
� See “nvotChangeBoxPositionInGraph(3)” on page 166.

186 Programmer's Reference

 nvotChangeRootGraphIcon(3)

 nvotChangeRootGraphIcon(3)

 Purpose

Changes a root graph icon

 Syntax
#include <nvot.h>

nvotReturnCode nvotChangeRootGraphIcon (
 nvotGraphProtocolType graphProtocol,

char \ graphName,
char \ icon)

 Description

The nvotChangeRootGraphIcon routine changes the icon representing the root graph identified by
graphProtocol and graphName and displayed in the NetView for AIX root map.

The protocol and name parameters uniquely identify objects in the GTM database. The graphProtocol and
graphName parameters are required. If one of these parameters is not provided, the error code
NVOT_GRAPH_INVALID_INDEX is returned.

If the root graph specified does not exist in the GTM database, the icon does not exist and the error code
NVOT_ROOT_GRAPH_DOES_NOT_EXIST is returned.

If a graph that matches graphProtocol and graphName but is not a root graph exists in the GTM database,
its icon is not changed and an error code such as NVOT_GRAPH_ALREADY_EXIST,
NVOT_BOX_ALREADY_EXIST, or NVOT_OTHER_TYPE_GRAPH_EXIST is returned.

To be supported by the nvotChangeRootGraphIcon routine, the icon parameter must be a valid option
selected from the file /usr/OV/conf/C/oid_to_sym. However, if the icon is not passed, it must be set to
NULL. A pointer that is not valid can cause unpredictable errors. If NULL is passed, the root graph icon
is changed to the default symbol Network:Network .

 Parameters
graphProtocol Specifies the protocol of the root graph. For more information about specifying

a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the root graph. Both the graphName and graphProtocol
parameters are required to uniquely identify the root graph in the GTM data-
base. This parameter is a string of characters used to create the root graph.

icon Specifies a symbol to represent the root graph in the NetView for AIX EUI.
Valid symbols are defined in the file /usr/OV/conf/C/oid_to_sym.

 Return Values
nvotReturnCode The nvotChangeRootGraphIcon routine returns an nvotReturnCode that can

assume the values described in the following error codes section.

 Chapter 2. Reference Pages 187

 nvotChangeRootGraphIcon(3)

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol or name must not
be NULL.

[NVOT_ROOT_GRAPH_DOES_NOT_EXIST]
The root graph does not exist. A root graph must be created
before issuing this call.

[NVOT_GRAPH_ALREADY_EXIST] A graph already exists with the same protocol and name for which
this call is attempting to create a graph, box, or root graph.

[NVOT_BOX_ALREADY_EXIST] A box already exists with the same protocol and name for which
this call is attempting to create a graph, box, or root graph.

[NVOT_OTHER_TYPE_GRAPH_EXIST]
Another type of graph exists. This call is attempting to create a
graph, box, or root graph with a protocol and name already used
for a graph of type INVALID or OTHER.

[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example changes the icon of the root graph created in the example in
“nvotCreateRootGraph(3)” on page 249.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType myRootGraphProt = "1.3.6.1.2.1.2.2.1.3.17";
char \ myRootGraphName = "My_Root_Graph";
char \ my_NEW_RootGraphIcon = "1.3.6.1.2.1.2.2.1.3.9.11";

if ((rc = nvotChangeRootGraphIcon (myRootGraphProt,
 myRootGraphName,

my_NEW_RootGraphIcon)) == NVOT_SUCCESS)

printf ("Graph icon of graph %s changed.\n", myRootGraphName);
 else

188 Programmer's Reference

 nvotChangeRootGraphIcon(3)

printf ("An error occurred changing %s icon.\n", myRootGraphName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateRootGraph(3)” on page 249.
� See “nvotChangeRootGraphLabel(3)” on page 190.

 Chapter 2. Reference Pages 189

 nvotChangeRootGraphLabel(3)

 nvotChangeRootGraphLabel(3)

 Purpose

Changes a root graph label

 Syntax
#include <nvot.h>

nvotReturnCode nvotChangeRootGraphLabel (
 nvotGraphProtocolType graphProtocol,

char \ graphName,
char \ label)

 Description

The nvotChangeRootGraphLabel routine changes the label under the icon of the root graph identified by
graphProtocol and graphName and displayed in the NetView for AIX root map.

The protocol and name parameters uniquely identify objects in the GTM database. The graphProtocol and
graphName parameters are required. If one of these parameters is not provided, the error code
NVOT_GRAPH_INVALID_INDEX is returned.

If the root graph specified does not exist in the GTM database, the label does not exist and the error code
NVOT_ROOT_GRAPH_DOES_NOT_EXIST is returned.

If a graph that matches graphProtocol and graphName but is not a root graph exists in the GTM database,
its label is not changed and an error code such as NVOT_GRAPH_ALREADY_EXIST,
NVOT_BOX_ALREADY_EXIST, or NVOT_OTHER_TYPE_GRAPH_EXIST is returned.

The label parameter is a character string displayed under a symbol in the NetView for AIX EUI. Usually, it
is a human-readable character string that helps to visually identify a resource in a topology map. Although
the label must be a valid pointer, NULL is accepted. A pointer that is not valid can cause unpredictable
errors. If NULL is passed, the graphName string is displayed in place of the label.

 Parameters
graphProtocol Specifies the protocol of the root graph. For more information about specifying

a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the root graph. Both the graphName and graphProtocol
parameters are required to uniquely identify the root graph in the GTM data-
base. This parameter is a string of characters used to create the root graph.

label Specifies a human-readable character string to be displayed under the root
graph symbol in the NetView for AIX EUI. This parameter must be a valid
character string or NULL.

 Return Values
nvotReturnCode The nvotChangeRootGraphLabel routine returns an nvotReturnCode that can

assume the values described in the following error codes section.

190 Programmer's Reference

 nvotChangeRootGraphLabel(3)

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol or name must not
be NULL.

[NVOT_ROOT_GRAPH_DOES_NOT_EXIST]
The root graph does not exist. A root graph must be created
before issuing this call.

[NVOT_GRAPH_ALREADY_EXIST] A graph already exists with the same protocol and name for which
this call is attempting to create a graph, box, or root graph.

[NVOT_BOX_ALREADY_EXIST] A box already exists with the same protocol and name for which
this call is attempting to create a graph, box, or root graph.

[NVOT_OTHER_TYPE_GRAPH_EXIST]
Another type of graph exists. This call is attempting to create a
graph, box, or root graph with a protocol and name already used
for a graph of type INVALID or OTHER.

[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example changes the label of the root graph created in the example in
“nvotCreateRootGraph(3)” on page 249.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType myRootGraphProt = "1.3.6.1.2.1.2.2.1.3.17";
char \ myRootGraphName = "My_Root_Graph";
char \ my_NEW_RootGraphLabel = "My_NEW_RootGraphLabel";

if ((rc = nvotChangeRootGraphLabel (myRootGraphProt,
 myRootGraphName,

my_NEW_RootGraphLabel)) == NVOT_SUCCESS)

printf ("Graph icon of graph %s changed.\n", myRootGraphName);
 else

 Chapter 2. Reference Pages 191

 nvotChangeRootGraphLabel(3)

printf ("An error occurred changing %s icon.\n", myRootGraphName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateRootGraph(3)” on page 249.
� See “nvotChangeRootGraphIcon(3)” on page 187.

192 Programmer's Reference

 nvotChangeUnderlyingArcIcon(3)

 nvotChangeUnderlyingArcIcon(3)

 Purpose

Changes an underlying arc symbol and label

 Related Functions
 nvotChangeUnderlyingArcLabel

 Syntax
#include <nvot.h>

nvotReturnCode nvotChangeUnderlyingArcIcon (
 nvotNameBindingType arcNameBindingParent,
 nvotProtocolType aEndpointProtocolParent,
 char \ aEndpointNameParent,
 nvotProtocolType zEndpointProtocolParent,
 char \ zEndpointNameParent,
 int arcIndexIdParent,
 nvotNameBindingType arcNameBinding,
 nvotProtocolType aEndpointProtocol,
 char \ aEndpointName,
 nvotProtocolType zEndpointProtocol,
 char \ zEndpointName,
 int arcIndexId,
 char \ ulaIcon)

nvotReturnCode nvotChangeUnderlyingArcLabel (
 nvotNameBindingType arcNameBindingParent,
 nvotProtocolType aEndpointProtocolParent,
 char \aEndpointNameParent,
 nvotProtocolType zEndpointProtocolParent,
 char \zEndpointNameParent,
 int arcIndexIdParent,
 nvotNameBindingType arcNameBinding,
 nvotProtocolType aEndpointProtocol,
 char \aEndpointName,
 nvotProtocolType zEndpointProtocol,
 char \zEndpointName,
 int arcIndexId,
 char \ulaLabel)

 Description

These routines change the icon and label for an underlying arc. The icon is the symbol used to display
the arc on a submap. The label is a human-readable string that is displayed when you press the right
mouse button on the symbol of an arc.

The first six parameters identify the parent arc. The next six identify the underlying arc. All these parame-
ters are mandatory.

The parent arc as well as the underlying arc must exist in order for these routines to complete success-
fully.

 Chapter 2. Reference Pages 193

 nvotChangeUnderlyingArcIcon(3)

 Parameters
arcNameBindingParent and arcNameBinding

Specifies the class of the objects in each endpoint of the parent arc and the underlying arc, respec-
tively. The endpoint can be a vertex or a graph. The allowed values are:

ARC_VERTEX_VERTEX_NAME_BINDING
Indicates that either of the endpoints is a vertex.

ARC_VERTEX_GRAPH_NAME_BINDING
aEndpoint is a vertex and zEndpoint is a graph.

ARC_GRAPH_VERTEX_NAME_BINDING
aEndpoint is a graph and zEndpoint is a vertex.

ARC_GRAPH_GRAPH_NAME_BINDING
Indicates either of the endpoints is a graph.

A value other than those in the previous list is rejected by the interface and the error code
NVOT_INVALID_NAME_BINDING is set.

a/zEndpointProtocolParent and a/zEndpointProtocol
Specifies the protocol of the object identified as the endpoint of the parent arc and the underlying arc,
respectively. If aEndpoint is to be a vertex, aEndpointProtocol must be set to a value from the enu-
merated type nvotVertexProtocolType defined in the file nvotTypes.h. Otherwise, aEndpoint is a
graph, and aEndpointProtocol is a pointer to a valid character string in memory.

a/zEndpointNameParent and a/zEndpointName
Specifies the name of the object identified as the endpoint of the parent arc and the underlying arc,
respectively. The endpointName and endpointProtocol are required to identify the object at a certain
endpoint of an arc. It must be the same string of characters used in the creation of the underlying arc.

arcIndexIdParent and arcIndexId
Specifies indexes (integer values) that distinguish one arc among others between the same endpoints,
respectively, of the parent arc and the underlying arc.

It is possible to connect the same two endpoints with several arcs. This parameter provides the
means to distinguish between arcs named by the same endpoints.

ulaIcon
Specifies a new symbol to represent this underlying arc in the OVW display. The symbol can be a
line, a dotted line, and so on. Refer to the /usr/OV/conf/C/oid_to_sym for details on how to choose an
icon.

ulaLabel
Specifies a string of characters that represents the label for the arc. This arc label is displayed in the
upper line of the drop down menu that is shown when the right mouse button is clicked on an arc
symbol.

 Return Values
nvotReturnCode The nvotChangeUnderlyingArcIcon routine returns an nvotReturnCode that can

assume the values described in the error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

194 Programmer's Reference

 nvotChangeUnderlyingArcIcon(3)

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a posi-
tive integer and a vertex name must not be NULL.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol must be a posi-
tive integer and a graph name must not be NULL.

[NVOT_ARC_INVALID_INDEX] The arc index is not valid. An arc protocol must be a positive
integer and an arc name must not be NULL.

[NVOT_ULA_INVALID_INDEX] The ULA index is not valid. A ULA protocol must be a positive
integer and a ULA name must not be NULL.

[NVOT_ARC_DOES_NOT_EXIST] The parent arc for which you are creating an underlying arc
does not exist in the GTM database.

[NVOT_INVALID_NAME_BINDING] Invalid name binding. The name must be a number defined in
nvotTypes.h.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a con-
nection with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during
operation. Issue the nvotInit routine again.

The example below changes one of the underlying arcs created in the example given in the routine
“nvotCreateParallelUnderlyingArc(3)” on page 240 with a new symbol and label.

#include <nvot.h>

nvotReturnCode RC;
nvotProtocolType aEndpointProtocolParent.vertexProtocol = STARTLAN;
char \ aEndpointNameParent = "My_Vertex_V1";
nvotProtocolType zEndpointProtocolParent.vertexProtocol = STARTLAN;
char \ zEndpointNameParent = "My_Vertex_V2";
int arcIndexIdParent = 1;
nvotProtocolType aEndpointProtocol.vertexProtocol = STARTLAN;
char \ aEndpointName = "My_Vertex_V3";
nvotProtocolType zEndpointProtocol.vertexProtocol = STARTLAN;
char \ zEndpointName = "My_Vertex_V4";
int arcIndexId = 1;
char \ newIcon = "1.3.6.1.2.1.2.2.1.3.54.4";
char \ newLabel = "New_Label_For_V1V2_Ula";

RC = nvotChangeUnderlyingArcIcon (ARC_VERTEX_VERTEX_NAME_BINDING,
 aEndpointProtocolParent, aEndpointNameParent,
 zEndpointProtocolParent, zEndpointNameParent,
 arcIndexIdParent,
 ARC_VERTEX_VERTEX_NAME_BINDING,
 aEndpointProtocol, aEndpointName,
 zEndpointProtocol, zEndpointName,
 arcIndexId, newIcon);

printf("Change Ula Icon = %s\n", nvotGetErrorMsg(RC));

RC = nvotChangeUnderlyingArcLabel (ARC_VERTEX_VERTEX_NAME_BINDING,
 aEndpointProtocolParent, aEndpointNameParent,
 zEndpointProtocolParent, zEndpointNameParent,

 Chapter 2. Reference Pages 195

 nvotChangeUnderlyingArcIcon(3)

 arcIndexIdParent,
 ARC_VERTEX_VERTEX_NAME_BINDING,
 aEndpointProtocol, aEndpointName,
 zEndpointProtocol, zEndpointName,
 arcIndexId, newLabel);

printf("Change Ula Label = %s\n", nvotGetErrorMsg(RC));

 Libraries
 � libnvot.a

 Files
 � nvot.h

 Related Information
� See “nvotCreateSerialUnderlyingArc(3)” on page 253.

� See “nvotCreateParallelUnderlyingArc(3)” on page 240.

196 Programmer's Reference

 nvotChangeVertexDetails(3)

 nvotChangeVertexDetails(3)

 Purpose

Changes the contents of the details variable in the GTM database

 Syntax
#include <nvot.h>

nvotReturnCode nvotChangeVertexDetails (
 nvotVertexProtocolType vertexProtocol,
 char \ vertexName,
 nvotOctetString \ vertexDetails)

 Description

The nvotChangeVertexDetails routine changes the contents of the details variable associated with the
vertex identified by vertexProtocol and vertexName.

The protocol and name parameters uniquely identify objects in the GTM database. The vertexProtocol
and vertexName parameters are required. If one of these parameters is not provided, the error code
NVOT_VERTEX_INVALID_INDEX is returned.

If the vertex does not exist in the GTM database, it is automatically created with default attribute values
and has its details variable set to the value passed in vertexDetails. This is part of GTM's recovery
strategy for lost traps.

 Parameters
vertexProtocol Specifies the protocol of the vertex. Vertex protocol is an enumerated type

defined in the file nvotTypes.h.

vertexName Specifies the name of the vertex. This parameter can be any string of charac-
ters that, in conjunction with vertexProtocol, identifies a vertex in the GTM
database.

vertexDetails Contains particular information that applications store for future retrieval. The
information stored in this variable is for the application's use only. For
example, the application might copy the data of a structure into this variable by
doing a memcpy(vertexDetails->octetString, (char *) applStruct,
sizeof(applStruct)) and vertexDetails->octetLength = sizeof(applStruct).
Although nvotOctetString allows for any size strings and the interface does not
check the size of vertexDetails, any character exceeding 256 is truncated by
the NetView for AIX object database.

 Return Values
nvotReturnCode The nvotChangeVertexDetails routine returns an nvotReturnCode that can

assume the values described in the following error codes section.

 Chapter 2. Reference Pages 197

 nvotChangeVertexDetails(3)

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example stores the contents of myStruct into the vertexDetails variable of My_Vertex.

#include <nvot.h>
typedef struct { int var1, int var2 } structType;

structType myStruct = { 11, 22 };
nvotOctetString myVertexDetails;

myVertexDetails.octetString = malloc (sizeof (structType));
myVertexDetails.octetLength = (sizeof (structType)) };

memcpy (myVertexDetails.octetString, (char \) :myStruct, sizeof (structType));

nvotReturnCode rc;
nvotVertexProtocolType myVertexProt = STARLAN;
char \ myVertexName = "My_Vertex";

if ((rc = nvotChangeVertexDetails (myVertexProt,
 myVertexName,

:myVertexDetails)) == NVOT_SUCCESS)

printf ("myStruct has been stored in %s.\n", myVertexName);
 else

printf ("Error occurred storing myStruct in %s.\n", myVertexName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

198 Programmer's Reference

 nvotChangeVertexDetails(3)

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateRootGraph(3)” on page 249.
� See “nvotCreateGraphInGraph(3)” on page 235.

 Chapter 2. Reference Pages 199

 nvotChangeVertexIconInBox(3)

 nvotChangeVertexIconInBox(3)

 Purpose

Changes a vertex icon in a box

 Syntax
#include <nvot.h>

nvotReturnCode nvotChangeVertexIconInBox (
 nvotGraphProtocolType boxProtocol,

char \ boxName,
 nvotVertexProtocolType vertexProtocol,

char \ vertexName,
char \ icon)

 Description

The nvotChangeVertexIconInBox routine changes the icon representing the vertex identified by
vertexProtocol and vertexName and associated with the box graph identified by boxProtocol and
boxName.

The protocol and name parameters uniquely identify objects in the GTM database. The boxProtocol,
boxName, vertexProtocol and vertexName parameters are required. If one of these parameters is not
provided, the error code NVOT_BOX_INVALID_INDEX or NVOT_VERTEX_INVALID_INDEX is returned.

If the containing box graph does not exist, the vertex icon is not changed and the error code
NVOT_BOX_DOES_NOT_EXIST is returned.

If the vertex does not exist in the GTM database, it is automatically created with default attribute values
and has its icon changed. This is part of GTM's recovery strategy for lost traps.

To be supported by the nvotChangeVertexIconInBox routine, the icon must be a valid option selected from
the file /usr/OV/conf/C/oid_to_sym. However, if the icon is not passed, it must be set to NULL. A pointer
that is not valid can cause unpredictable errors. If NULL is passed, the vertex icon is changed to the
default symbol Cards:Generic .

 Parameters
boxProtocol Specifies the protocol of the containing box graph. For more information about

specifying a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

boxName Specifies the name of the box graph. Both the graphName and graphProtocol
parameters are required to uniquely identify the box graph in the GTM data-
base. This parameter is a string of characters used to create the graph.

vertexProtocol Specifies the protocol of the vertex. Vertex protocol is an enumerated type
defined in the file nvotTypes.h.

vertexName Specifies the name of the vertex. This parameter can be any string of charac-
ters that, in conjunction with vertexProtocol, identifies a vertex in GTM data-
base.

200 Programmer's Reference

 nvotChangeVertexIconInBox(3)

icon Specifies a symbol to represent the vertex in the NetView for AIX EUI. Valid
symbols are defined in the file /usr/OV/conf/C/oid_to_sym.

 Return Values
nvotReturnCode The nvotChangeVertexIconInBox routine returns an nvotReturnCode that can

assume the values described in the error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_BOX_INVALID_INDEX] The box index is not valid. A box graph protocol or name must
not be NULL.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_BOX_DOES_NOT_EXIST] The box graph does not exist in the GTM database.

[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example changes the icon of the vertex created in the example in
“nvotCreateVertexInBox(3)” on page 261. Icon is changed to Cards:Generic .

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType myBoxProt = "1.3.6.1.2.1.2.2.1.3.11";
char \ myBoxName = "My_Box_Graph";

nvotVertexProtocolType myVertexProt = STARLAN;
char \ myVertexName = "My_Vertex";
char \ myVertexIcon = "1.3.6.1.2.1.2.2.1.3.1.1";

if (rc = nvotChangeVertexIconInBox (myBoxProt,
 myBoxName,
 myVertexProt,
 myVertexName,

 Chapter 2. Reference Pages 201

 nvotChangeVertexIconInBox(3)

myVertexIcon) == NVOT_SUCCESS)

printf ("Vertex icon of vertex %s changed.\n", myVertexName);
 else

printf ("An error occurred changing %s icon.\n", myVertexName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateVertexInBox(3)” on page 261.

202 Programmer's Reference

 nvotChangeVertexIconInGraph(3)

 nvotChangeVertexIconInGraph(3)

 Purpose

Changes a vertex icon in a graph

 Syntax
#include <nvot.h>

nvotReturnCode nvotChangeVertexIconInGraph (
 nvotGraphProtocolType graphProtocol,

char \ graphName,
 nvotVertexProtocolType vertexProtocol,

char \ vertexName,
char \ icon)

 Description

The nvotChangeVertexIconInGraph routine changes the icon representing the vertex identified by
vertexProtocol and vertexName and which is associated with the graph identified by graphProtocol and
graphName.

The protocol and name parameters uniquely identify objects in GTM database. The graphProtocol,
graphName, vertexProtocol and vertexName parameters are required. parameters, If one of these param-
eters is not provided, the error code NVOT_GRAPH_INVALID_INDEX or
NVOT_VERTEX_INVALID_INDEX is returned.

If the containing graph does not exist, the vertex icon is be changed and the error code
NVOT_GRAPH_DOES_NOT_EXIST is returned.

If the vertex does not exist in the GTM database, it is automatically created with default attribute values
and has its icon changed. This is part of GTM's recovery strategy for lost traps.

To be supported by the nvotChangeVertexIconInGraph routine, an icon must be a valid option selected
from the file /usr/OV/conf/C/oid_to_sym. However, if an icon is not passed, it must be set to NULL. A
pointer that is not valid can cause unpredictable errors. If NULL is passed, the vertex icon is changed to
the default symbol Cards:Generic .

 Parameters
graphProtocol Specifies the protocol of the containing graph. For more information about

specifying a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the graph. Both the graphName and graphProtocol
parameters are required to uniquely identify the graph in the GTM database.
This parameter is a string of characters used to create the graph.

vertexProtocol Specifies the protocol of the vertex. Vertex protocol is an enumerated type
defined in the file nvotTypes.h.

vertexName Specifies the name of the vertex. This parameter can be any string of charac-
ters that, in conjunction with vertexProtocol, identifies a vertex in GTM data-
base.

 Chapter 2. Reference Pages 203

 nvotChangeVertexIconInGraph(3)

icon Specifies a symbol to represent the vertex in the NetView for AIX EUI. Valid
symbols are defined in the file /usr/OV/conf/C/oid_to_sym.

 Return Values
nvotReturnCode The nvotChangeVertexIconInGraph routine returns an nvotReturnCode that

can assume the values described in the following error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol or name must not
be NULL.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_GRAPH_DOES_NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

204 Programmer's Reference

 nvotChangeVertexIconInGraph(3)

 Examples

The following example changes the icon of the vertex created in the example in
“nvotCreateVertexInGraph(3)” on page 265.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType my_STARLAN_GraphProt = "1.3.6.1.2.1.2.2.1.3.11";
char \ my_STARLAN_GraphName = "My_STARLAN_Graph";

nvotVertexProtocolType myVertexProt = STARLAN;
char \ myVertexName = "My_Vertex";
char \ myVertexIcon = "1.3.6.1.2.1.2.2.1.3.12.1";

if (rc = nvotChangeVertexIconInGraph (my_STARLAN_GraphProt,
 my_STARLAN_GraphName,
 myVertexProt,
 myVertexName,

myVertexIcon) == NVOT_SUCCESS)

printf ("Vertex icon of vertex %s changed.\n", myVertexName);
 else

printf ("An error occurred changing %s icon.\n", myVertexName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateVertexInGraph(3)” on page 265.

 Chapter 2. Reference Pages 205

 nvotChangeVertexLabelInBox(3)

 nvotChangeVertexLabelInBox(3)

 Purpose

Changes the label of a vertex in a box

 Syntax
#include <nvot.h>

nvotReturnCode nvotChangeVertexLabelInBox (
 nvotGraphProtocolType boxProtocol,

char \ boxName,
 nvotVertexProtocolType vertexProtocol,

char \ vertexName,
char \ label)

 Description

The nvotChangeVertexLabelInBox routine changes the label of a vertex identified by vertexProtocol and
vertexName and associated with the box graph identified by boxProtocol and boxName.

The protocol and name parameters uniquely identify objects in the GTM database. The boxProtocol,
boxName, vertexProtocol, and vertexName parameters are required. If one of these parameters is not
provided, the error code NVOT_BOX_INVALID_INDEX or NVOT_VERTEX_INVALID_INDEX is returned.

If the containing box graph does not exist, the vertex label is not changed and the error code
NVOT_BOX_DOES_NOT_EXIST is returned.

If the vertex does not exist in the GTM database, it is automatically created with default attribute values
and has its label changed. This is part of GTM's recovery strategy for lost traps.

Label is a character string displayed under a symbol in the NetView for AIX EUI. Usually, it is a human-
readable character string that helps to visually identify a network resource. Although the label parameter
must be a valid pointer, NULL is accepted. A pointer that is not valid can cause unpredictable errors. If
NULL is passed, the vertexName string is displayed in place of the label.

 Parameters
boxProtocol Specifies the protocol of the containing box graph. For more information about

specifying a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

boxName Specifies the name of the box graph. Both the graphName and graphProtocol
parameters are required to uniquely identify the box graph in the GTM data-
base. This parameter is a string of characters used to create the graph.

vertexProtocol Specifies the protocol of the vertex. Vertex protocol is an enumerated type
defined in the file nvotTypes.h.

vertexName Specifies the name of the vertex. This parameter can be any string of charac-
ters that, in conjunction with vertexProtocol, identifies a vertex in GTM data-
base.

label Specifies a symbol to represent the vertex in the NetView for AIX EUI. Valid
symbols are defined in the file /usr/OV/conf/C/oid_to_sym.

206 Programmer's Reference

 nvotChangeVertexLabelInBox(3)

 Return Values
nvotReturnCode The nvotChangeVertexLabelInBox routine returns an nvotReturnCode that can

assume the values described in the following error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_BOX_INVALID_INDEX] The box index is not valid. A box graph protocol or name must
not be NULL.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_BOX_DOES_NOT_EXIST] The box graph does not exist in the GTM database.

[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Chapter 2. Reference Pages 207

 nvotChangeVertexLabelInBox(3)

 Examples

The following example changes the label of the vertex created in the example in
“nvotCreateVertexInGraph(3)” on page 265.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType myBoxProt = "1.3.6.1.2.1.2.2.1.3.11";
char \ myBoxName = "My_Box_Graph";

nvotVertexProtocolType myVertexProt = STARLAN;
char \ myVertexName = "My_Vertex";
char \ myVertexLabel = "My_NEW_STARLAN_Vertex";

if (rc = nvotChangeVertexLabelInGraph (myBoxProt,
 myBoxName,
 myVertexProt,
 myVertexName,

myVertexLabel) == NVOT_SUCCESS)

printf ("Vertex label of vertex %s changed.\n", myVertexName);
 else

printf ("An error occurred changing %s label.\n", myVertexName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateVertexInBox(3)” on page 261.

208 Programmer's Reference

 nvotChangeVertexLabelInGraph(3)

 nvotChangeVertexLabelInGraph(3)

 Purpose

Changes the label of a vertex in a graph

 Syntax
#include <nvot.h>

nvotReturnCode nvotChangeVertexLabelInGraph (
 nvotGraphProtocolType graphProtocol,

char \ graphName,
 nvotVertexProtocolType vertexProtocol,

char \ vertexName,
char \ label)

 Description

The nvotChangeVertexLabelInGraph routine changes the label of a vertex identified by vertexProtocol and
vertexName and associated with the graph identified by graphProtocol and graphName.

The protocol and name parameters uniquely identify objects in GTM database. The graphProtocol,
graphName, vertexProtocol and vertexName parameters are required. If one of these parameters is not
provided, the error code NVOT_GRAPH_INVALID_INDEX or NVOT_VERTEX_INVALID_INDEX is
returned.

If the containing graph does not exist, the vertex label is not changed and the error code
NVOT_GRAPH_DOES_NOT_EXIST is returned.

If the vertex does not exist in the GTM database, it is automatically created with default attribute values
and has its label changed. This is part of GTM's recovery strategy for lost traps.

Label is a character string displayed under a symbol in an NetView for AIX window. Usually, it is a human
readable character string that helps to visually identify of a network resource. Although the label param-
eter must be a valid pointer, NULL is accepted. Invalid pointer can cause unpredictable errors. If NULL is
passed, the vertexName string is displayed in place of the label.

 Parameters
graphProtocol Specifies the protocol of the containing graph. For more information about

specifying a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the graph. Both the graphName and graphProtocol
parameters are required to uniquely identify the graph in the GTM database.
This parameter is a string of characters used to create the graph.

vertexProtocol Specifies the protocol of the vertex. Vertex protocol is an enumerated type
defined in the file nvotTypes.h.

vertexName Specifies the name of the vertex. This parameter can be any string of charac-
ters that, in conjunction with vertexProtocol, identifies a vertex in GTM data-
base.

 Chapter 2. Reference Pages 209

 nvotChangeVertexLabelInGraph(3)

label Specifies a symbol to represent the vertex in the NetView for AIX EUI. Valid
symbols are defined in the file /usr/OV/conf/C/oid_to_sym.

 Return Values
nvotReturnCode The nvotChangeVertexLabelInGraph routine returns an nvotReturnCode that

can assume the values described in the following error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol or name must not
be NULL.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_GRAPH_DOES_NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

210 Programmer's Reference

 nvotChangeVertexLabelInGraph(3)

 Examples

The following example changes the label of the vertex created in the example in
“nvotCreateVertexInGraph(3)” on page 265.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType my_STARLAN_GraphProt = "1.3.6.1.2.1.2.2.1.3.11";
char \ my_STARLAN_GraphName = "My_STARLAN_Graph";

nvotVertexProtocolType myVertexProt = STARLAN;
char \ myVertexName = "My_Vertex";
char \ myVertexLabel = "My_NEW_STARLAN_Vertex";

if (rc = nvotChangeVertexLabelInGraph (my_STARLAN_GraphProt,
 my_STARLAN_GraphName,
 myVertexProt,
 myVertexName,

myVertexLabel) == NVOT_SUCCESS)

printf ("Vertex label of vertex %s changed.\n", myVertexName);
 else

printf ("An error occurred changing %s label.\n", myVertexName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateVertexInGraph(3)” on page 265.

 Chapter 2. Reference Pages 211

 nvotChangeVertexPositionInBox(3)

 nvotChangeVertexPositionInBox(3)

 Purpose

Changes position of a vertex icon in a box submap

 Syntax
#include <nvot.h>

nvotReturnCode nvotChangeVertexPositionInBox (
 nvotGraphProtocolType boxProtocol,

char \ boxName,
 nvotVertexProtocolType vertexProtocol,

char \ vertexName,
 nvotPositionType newPosition)

 Description

The nvotChangeVertexPositionInBox routine changes the position of a symbol representing the vertex
identified by vertexProtocol and vertexName and associated with the box graph identified by boxProtocol
and boxName.

The containing box must have been created with layout algorithm set to NONE_LAYOUT.

The protocol and name parameters uniquely identify objects in the GTM database. The boxProtocol,
boxName, vertexProtocol and vertexName parameters are required. If one of these parameters is not
provided, the error code NVOT_BOX_INVALID_INDEX or NVOT_VERTEX_INVALID_INDEX is returned.

If the containing box does not exist or it exists but its graphType attribute is not set to BOX, the vertex
symbol position is not changed and the error code NVOT_BOX_DOES_NOT_EXIST is returned.

If the vertex does not exist in the GTM database, it is automatically created with default attribute values.
Its member association to the parent box is also created and its symbol position is set to the values in
newPosition. This is part of GTM's recovery strategy for lost traps.

The nvotPositionType, as defined in the file nvotTypes.h, accepts the following four variables:
xCoordinate, yCoordinate, xGrid, and yGrid. The variables xGrid and yGrid determine a scale on which
the coordinate system is defined.

The grid and coordinate do not necessarily determine the exact physical location in the window where the
symbol is displayed. However, they determine a virtual position for the symbol based on the virtual size of
the submap.

The symbol size can be affected either by the grid values or by the coordinate values. For example, if the
symbol position is set too far from the center or from another symbol, x and y grid are reset to a value that
keeps the distances proportional and allows all symbols in the submap to be displayed. This placement of
symbols has the effect of a zoomout.

For best results, use the same xGrid and yGrid values for all symbols in the same submap.

212 Programmer's Reference

 nvotChangeVertexPositionInBox(3)

 Parameters
boxProtocol Specifies the protocol of the containing box. For more information about spec-

ifying a box graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

boxName Specifies the name of the box graph. Both the boxName and boxProtocol
parameters are required to uniquely identify the box in the GTM database.
This parameter is a string of characters used to create the box.

vertexProtocol Specifies the protocol of the vertex. Vertex protocol is an enumerated type
defined in the file nvotTypes.h.

vertexName Specifies the name of the vertex. It can be any string of characters that, in
conjunction with vertexProtocol, identifies a vertex in the GTM database.

newPosition This parameter is a structure defined in the file nvotTypes.h that specifies the
values of the variables xCoordinate, yCoordinate, xGrid and yGrid.

 Return Values
nvotReturnCode The nvotChangeVertexPositionInBox routine returns an nvotReturnCode that

can assume the values described in the following error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_BOX_INVALID_INDEX] The box index is not valid. A box graph protocol or name must
not be NULL.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_BOX_DOES_NOT_EXIST] The box graph does not exist in the GTM database.

[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Chapter 2. Reference Pages 213

 nvotChangeVertexPositionInBox(3)

 Examples

The following example changes the position of the vertex symbol in the box graph submap.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType myBoxGraphProt = "1.3.6.1.2.1.2.2.1.3.17";
char \ myBoxGraphName = "My_Box_Graph";

nvotVertexProtocolType myVertexProt = SDLC;
char \ myVertexName = "My_Vertex";

nvotPositionType myVertexPosition = { 1ðð, /\ xCoordinate \/
1ðð, /\ yCoordinate \/
1ððð, /\ xGrid \/

 1ððð /\ yGrid \/
 };

if ((rc = nvotChangeVertexPositionInBox (myBoxGraphProt,
 myBoxGraphName,
 vertexProt,
 vertexName,

myVertexPosition)) == NVOT_SUCCESS)

printf ("Positioning of vertex %s symbol changed.\n", myVertexName);
 else

printf ("Error occurred changing %s symbol position.\n", myVertexName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateBoxInGraph(3)” on page 227.
� See “nvotChangeVertexPositionInGraph(3)” on page 215.

214 Programmer's Reference

 nvotChangeVertexPositionInGraph(3)

 nvotChangeVertexPositionInGraph(3)

 Purpose

Changes position of a vertex icon in a graph submap

 Syntax
#include <nvot.h>

nvotReturnCode nvotChangeVertexPositionInGraph (
 nvotGraphProtocolType graphProtocol,

char \ graphName,
 nvotVertexProtocolType vertexProtocol,

char \ vertexName,
 nvotPositionType newPosition)

 Description

The nvotChangeVertexPositionInGraph routine changes the positioning of a symbol representing the
vertex identified by vertexProtocol and vertexName and associated with the graph identified by
graphProtocol and graphName.

The containing graph must have been created with layout algorithm set to NONE_LAYOUT.

The protocol and name parameters uniquely identify objects in the GTM database. The graphProtocol,
graphName, vertexProtocol and vertexName parameters are required. If one of these parameters is not
provided, the error code NVOT_GRAPH_INVALID_INDEX or NVOT_VERTEX_INVALID_INDEX is
returned.

If the containing graph does not exist or it exists but its graphType attribute is not set to GRAPH, the
vertex symbol position is not changed and the error code NVOT_GRAPH_DOES_NOT_EXIST is returned.

If the vertex does not exist in the GTM database, it is automatically created with default attribute values.
Its member association to the parent graph is also created and its symbol position is set to the values in
newPosition. This is part of GTM's recovery strategy for lost traps.

The nvotPositionType, as defined in the file nvotTypes.h, accepts the following four variables:
xCoordinate, yCoordinate, xGrid, and yGrid. The xGrid and yGrid variables determine a scale on which
the coordinate system is defined.

The grid and coordinate do not necessarily determine the exact physical location in the window where the
symbol is displayed. However, they determine a virtual position for the symbol based on the virtual size of
the submap.

The symbol size can be affected either by the grid values or by the coordinate values. For example, if the
symbol position is set too far from the center or from another symbol, x and y grid are reset to a value that
keeps the distances proportional and allows all symbols in the submap to be displayed. This placement of
symbols has the effect of a zoomout.

For best results, use the same xGrid and yGrid values for all symbols in the same submap.

 Chapter 2. Reference Pages 215

 nvotChangeVertexPositionInGraph(3)

 Parameters
graphProtocol Specifies the protocol of the containing graph. For more information about

specifying a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the graph. Both the graphName and graphProtocol
parameters are required to uniquely identify the graph in the GTM database.
This parameter is a string of characters used to create the graph.

vertexProtocol Specifies the protocol of the vertex. Vertex protocol is an enumerated type
defined in the file nvotTypes.h.

vertexName Specifies the name of the vertex. This parameter can be any string of charac-
ters that, in conjunction with vertexProtocol, identifies a vertex in GTM data-
base.

newPosition This parameter is a structure defined in the file nvotTypes.h that specifies the
values of the variables xCoordinate, yCoordinate, xGrid and yGrid.

 Return Values
nvotReturnCode The nvotchangeVertexPositionInGraph routine returns an nvotReturnCode that

can assume the values described in the following error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol or name must not
be NULL.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_GRAPH_DOES_NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

216 Programmer's Reference

 nvotChangeVertexPositionInGraph(3)

 Examples

The following example changes the position of the vertex in the root graph submap to the upper left
corner.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType myRootGraphProt = "1.3.6.1.2.1.2.2.1.3.17";
char \ myRootGraphName = "My_Root_Graph";

nvotVertexProtocolType myVertexProt = SDLC;
char \ myVertexName = "My_Vertex";

nvotPositionType myVertexPosition = { ð, /\ xCoordinate \/
ð, /\ yCoordinate \/
1ððð, /\ xGrid \/

 1ððð /\ yGrid \/
 };

if ((rc = nvotChangeVertexPositionInGraph (myRootGraphProt,
 myRootGraphName,
 vertexProt,
 vertexName,

myVertexPosition)) == NVOT_SUCCESS)

printf ("Positioning of vertex %s symbol changed.\n", myVertexName);
 else

printf ("Error occurred changing %s symbol position.\n", myVertexName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateVertexInGraph(3)” on page 265.
� See “nvotChangeVertexPositionInBox(3)” on page 212.

 Chapter 2. Reference Pages 217

 nvotChangeVertexStatus(3)

 nvotChangeVertexStatus(3)

 Purpose

Changes the status of a vertex

 Syntax
#include <nvot.h>

nvotReturnCode nvotChangeVertexStatus (
 nvotVertexProtocolType vertexProtocol,

char \ vertexName,
 statusType vertexStatus)

 Description

The nvotChangeVertexStatus routine changes the status of a vertex identified by vertexProtocol and
vertexName in the GTM database. This routine consequently changes the color of the symbol repres-
enting the vertex in the NetView for AIX EUI.

The protocol and name parameters uniquely identify of objects in the GTM database. The vertexProtocol
and vertexName parameters are required. If one of these parameters is not provided, the error code
NVOT_VERTEX_INVALID_INDEX is returned.

If the vertex does not exist in the GTM database, it is automatically created with default attribute values
and has its status changed. This is part of GTM's recovery strategy for lost traps.

The vertexStatus reflects the status of a network resource. The statusType is defined in the file
nvotTypes.h. The possible values are mapped into a combination of four status attributes: operational
state, alarm status, availability status, and unknown status. For a detailed explanation, see the section
about state management variables in the NetView for AIX Programmer's Guide. You can handle these
status attribute individually through the basic routine calls. If the value passed is not valid, the operation is
rejected and error code NVOT_INVALID_STATUS is returned.

 Parameters
vertexProtocol Specifies the protocol of the vertex. Vertex protocol is an enumerated type

defined in the file nvotTypes.h.

vertexName Specifies the name of the vertex. This parameter can be any string of charac-
ters that, in conjunction with vertexProtocol, identifies a vertex in the GTM
database.

vertexStatus Specifies a set of values to represent the status of a resource. This parameter
is a combination of MIB variables OperationalState, AlarmStatus,
AvailabilityStatus and UnknownStatus. The statusType is defined in the file
nvotTypes.h.

 Return Values
nvotReturnCode The nvotChangeVertexStatus routine returns an nvotReturnCode that can

assume the values described in the following error codes section.

218 Programmer's Reference

 nvotChangeVertexStatus(3)

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_INVALID_STATUS] The status is not valid. It must be a number defined in the
nvotTypes.h file.

[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example changes the status of the vertex created in the example in
“nvotCreateVertexInGraph(3)” on page 265.

#include <nvot.h>

nvotReturnCode rc;

nvotVertexProtocolType myVertexProt = STARLAN;
char \ myVertexName = "My_Vertex";
nvotStatusType myVertexStatus = STATUS_CRITICAL;

if ((rc = nvotChangeVertexStatus (myVertexProt,
 myVertexName,

myVertexStatus) == NVOT_SUCCESS)

printf ("Vertex status of vertex %s changed.\n", myVertexName);
 else

printf ("An error occurred changing %s status.\n", myVertexName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries

/usr/OV/lib/libnvot.a

 Files

nvot.h

 Chapter 2. Reference Pages 219

 nvotChangeVertexStatus(3)

 Related Information
� See “nvotCreateVertexInGraph(3)” on page 265.

220 Programmer's Reference

 nvotCreateArcInGraph(3)

 nvotCreateArcInGraph(3)

 Purpose

Creates an arc in a graph

 Syntax
OVwObjectId nvotCreateArcInGraph (
 nvotGraphProtocolType graphProtocol,
 char \ graphName,
 nvotNameBindingType arcNameBinding,
 nvotProtocolType aEndpointProtocol,
 char \ aEndpointName,
 nvotProtocolType zEndpointProtocol,
 char \ zEndpointName,
 int arcIndexId,
 char \ icon,
 char \ label,
 nvotOctetString \ arcDetails,
 nvotStatusType status);

 Description

The nvotCreateArcInGraph routine creates an arc and associate it with a graph. The graph containing the
arc must exist. Otherwise the arc will not be created and an error code will be set. An arc can connect
two vertices, two graphs, a vertex to a graph, or a graph to a vertex. The vertices and graphs connected
by arcs are called arc endpoints. An arc is recognized and referenced by its aEndpoint, zEndpoint and
arcIndexId.

The arcNameBinding parameter helps to identify the arc endpoints. A detailed description follows in the
item Parameters. The arcNameBinding must be compatible with the values passed in the
aEndpointProtocol and zEndpointProtocol parameters.

Endpoints of class graph must exist. Otherwise, the arc will not be created and an error code will be set.
The GTM interface does not support automatic creation of graphs.

Endpoints of class vertex are automatically created if they do not exist. This is part of the GTM recovery
strategy for lost traps. However, a vertex endpoint will NOT be created if the other endpoint refers to a
nonexistent graph.

An arc can be a member of several graphs at the same time. If the arc already exists, this routine creates
a new association between the arc and a graph. That is, it causes the arc to appear in another graph's
submap.

The nvotProtocolType parameter is a union of an enumerated type with a char pointer as defined in
<nvotTypes.h> file. Special care must be taken when setting aEndpointProtocol and zEndpointProtocol.
Setting these variables to a nvotVertexProtocolType value when arcNameBinding identifies the endpoint
as a graph causes unpredictable errors. This is similar to setting a char pointer to an integer value for the
GTM interface to handle.

The icon, label and arcDetails parameters are the only optional parameters. If they are not passed, they
must be set to NULL. Pointers that are not valid might cause unpredictable errors. If NULL is passed, the

 Chapter 2. Reference Pages 221

 nvotCreateArcInGraph(3)

default Connection:Generic symbol is assumed for icon and the concatenation of aEndpointName +
zEndpointName + arcIndexId is displayed in place of label.

The status parameter must be set to one of the values defined in the <nvotTypes.h> file. Otherwise, the
routine is rejected and the error NVOT_INVALID_STATUS is set. The status value passed to this routine
is mapped into other NetView for AIX state values according to the table shown in the NetView for AIX
Programmer's Guide.

 Parameters
graphProtocol Specifies the protocol of the graph with which this arc is associated. This is

the graph of which the arc will be a member. For more information, refer to
the file /usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the graph with which the arc is associated. Both the
graphName and the graphProtocol are required to identify the parent graph.
This parameter can be any string of characters. Once specified, the same
name must be used in any reference to this graph.

arcNameBinding Specifies the class of the objects in each endpoint of the arc. The endpoint
can be either a vertex or a graph. The supported values are:

ARC_VERTEX_VERTEX_NAME_BINDING
Indicates that either of the endpoints are vertices

ARC_VERTEX_GRAPH_NAME_BINDING
Indicates that aEndpoint is a vertex and zEndpoint is a graph

ARC_GRAPH_VERTEX_NAME_BINDING
Indicates that aEndpoint is a graph and zEndpoint is a vertex

ARC_GRAPH_GRAPH_NAME_BINDING
Indicates that either of the endpoint are graphs.

If any value other than those in the preceding list is used, it is rejected by the
interface and the error code NVOT_INVALID_NAME_BINDING will be set.

Arcs are handled based on their direction. For more information about the arc
direction, see “nvotInit(3)” on page 359. Regardless of the selection made in
the initialization session, arcNameBinding always identifies the value set in
aEndpointProtocol and zEndpointProtocol variables.

aEndpointProtocol/zEndpointProtocol
Specifies the protocol of the object identified as the aEndpoint or zEndpoint,
respectively, of this arc. If the endpoint is a vertex, the endpoint protocol
(aEndpointProtocol or zEndpointProtocol) must be set with a value from the
enumerated type nvotVertexProtocolType defined in the file <nvotTypes.h>.
Otherwise, the endpoint is a graph, and the endpoint protocol must be a
pointer to a valid character string in memory.

aEndpointName/zEndpointName
Specifies the name of the object identified as the aEndpoint or zEndpoint,
respectively, of this arc. Both the endpoint name and the endpoint protocol
are required to identify the object at the aEndpoint or zEndpoint of this arc.
This parameter can be any string of characters. Once specified, the same
name must be used in any reference to this graph.

222 Programmer's Reference

 nvotCreateArcInGraph(3)

arcIndexId Distinguishes an arc from other arcs between the same endpoints. (Two
endpoints can be connected by several different arcs.) This parameter is an
integer value.

icon Specifies the symbol that represents the arc in the NetView for AIX EUI. The
symbol can be a line, a dotted line, and so forth. For more information about
selecting an icon, see the file /usr/OV/conf/C/oid_to_sym.

label Specifies a string of characters that identifies an arc in the pull-down menu
accessed by clicking the right mouse button on an arc symbol.

arcDetails Contains particular information that applications store for future retrieval. The
information stored in this variable is for the application's use only. For
example, the application might copy the data of a structure into this variable by
doing a memcpy(arcDetails->octetString, (char *) applStruct, sizeof(applStruct))
and arcDetails->octetLength = sizeof(applStruct). However, although
nvotOctetString allows for any size strings and the interface does not check
the size of arcDetails, any character exceeding 256 is truncated by the
NetView for AIX object database.

status Specifies the status of the arc. Arc status is an enumerated type defined in
the file <nvotTypes.h>. For more details, see the NetView for AIX Program-
mer's Guide.

 Return Values
OVwObjectId When the application is running in synchronous mode, (that is, when the

nvotSetSynchronousCreation routine has been called with a non-zero value),
the nvotCreateArcInGraph routine issues the create arc operation to GTM.
The routine remains in a finite loop until the NetView for AIX program returns
the OVwObjectId of the arc just created. OVwObjectId is a positive integer. If
an error occurs or the loop times out, the routine returns OVwNullObjectId.
When the application is running in asynchronous mode (that is, when the
nvotSetSynchronousCreation routine has been called with a zero value or has
never been called), the nvotCreateArcInGraph routine issues the create arc
operation to GTM and imediately returns OVwNullObjectId. In either case,
upon return, an error code is available through a call to the routine
nvotGetError. Refer to “nvotSetSynchronousCreation(3)” on page 368 for
more details on OVwObjectId.

 Error Codes

When the routine completes and returns control to its caller, an error internal variable is set. A call to the
routine nvotGetError returns the error code set at the last API call. The error variable is reset upon
entering and set before exiting this call to the API. All possible error codes set by this call and their
related message strings are:

[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol and/or name must
not be NULL.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_ARC_INVALID_INDEX] The arc index is not valid. It must be a positive integer.

 Chapter 2. Reference Pages 223

 nvotCreateArcInGraph(3)

[NVOT_ENDPOINT_GRAPH_INVALID_INDEX]
The endpoint graph index is not valid. An endpoint graph protocol
and/or name must not be NULL.

[NVOT_INVALID_STATUS] The status is not valid. It must be a number defined in the
nvotTypes.h file.

[NVOT_GRAPH_DOES_NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_A_ENDPOINT_GRAPH_DOES_NOT_EXIST]
The graph defined as the A endpoint of the arc does not exist in
the GTM database.

[NVOT_Z_ENDPOINT_GRAPH_DOES_NOT_EXIST]
The graph defined as the Z endpoint of the arc does not exist in
the GTM database.

[NVOT_INVALID_NAME_BINDING] The name binding is not valid. It must be a number defined in the
nvotTypes.h file.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

[NVOT_OVW_TIMED_OUT] NetView for AIX timeout. The timeout value passed to
nvotSetSynchronousCreation might not be enough for the com-
plete operation processing, or the connection to the NetView for
AIX database might be down. Try increasing the timeout value.

 Examples

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If ((rc ═ nvotGetError()) !═ NVOT_SUCCESS)
printf (“%s\n”, nvotGetErrorMsg (rc));

The following example creates one arc between two vertex points. Before creating the arc, you must:

1. Create a root graph (see the example in “nvotCreateRootGraph(3)” on page 249).

2. Create two vertices (V1 and V2) inside the graph (see the example in “nvotCreateVertexInGraph(3)”
on page 265).

224 Programmer's Reference

 nvotCreateArcInGraph(3)

#include <nvot.h>

OVwObjectId arcId;
nvotReturnCode rc;
nvotBooleanType synchMode = FALSE;

/\\\\\\\\\\\\\\\ Define the parent graph \\\\\\\\\\\\\\\\\\\\\/
nvotGraphProtocolType myGraphProt = "1.3.6.1.2.1.2.2.1.3.11";
char \ myGraphName = "My_Graph";

/\\\\\\\\\\\\\\\ Define vertices V1 and V2 \\\\\\\\\\\\\\\\\/
nvotProtocolType oneEndpoint.vertexProtocol = STARLAN;
char \ oneEndpointName = "My_Vertex_V1";
nvotProtocolType otherEndpoint.vertexProtocol = STARLAN;
char \ otherEndpointName = "My_Vertex_V2;

/\\\\\\\\\\\\\\\ Define arc attributes \\\\\\\\\\\\\\\\\\\\\\\\\\\\\/
char \ myLineArcIcon = "1.3.6.1.2.1.2.2.1.3.1.4";
char \ myLineArcLabel = "My_Line_Arc";
nvotOctetString \ myLineArcDetails = NULL;
nvotStatusType myLineArcStatus = STATUS_NORMAL;
int arcNumber = 1;

if (nvotSetSynchronousCreation (TRUE) == NVOT_SUCCESS)
synchMode = TRUE;

/\ Create one line arc with arcIndexId = 1 \/
if ((arcId = nvotCreateArcInGraph (myGraphProt,

 myGraphName,
 ARC_VERTEX_VERTEX_NAME_BINDING,
 oneEndpoint,
 oneEndpointName,
 otherEndpoint,
 otherEndpointName,
 arcNumber,
 myLineArcIcon,
 myLineArcLabel,
 myLineArcDetails,

myLineArcStatus) > OVwNullObjectId)

printf ("%s OVwObjectId is : %d\n", myLineArcLabel, arcId);
 else
 {
 if (synchMode)

printf ("An error occurred creating arc %s\n", myLineArcLabel);
 }

printf ("Operation result : %s\n", nvotGetErrorMsg (nvotGetError()));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Chapter 2. Reference Pages 225

 nvotCreateArcInGraph(3)

 Related Information
� See “nvotDeleteArcFromGraph(3)” on page 272.

� See “nvotChangeArcIconInGraph(3)” on page 141.

� See “nvotChangeArcLabelInGraph(3)” on page 146.

� See “nvotGetArcsInGraph(3)” on page 307.

� See “nvotSetSynchronousCreation(3)” on page 368.

� See “nvotInit(3)” on page 359.

226 Programmer's Reference

 nvotCreateBoxInGraph(3)

 nvotCreateBoxInGraph(3)

 Purpose

Creates a box in a graph

 Syntax
#include <nvot.h>

OVwObjectId nvotCreateBoxInGraph (
 nvotGraphProtocolType graphProtocolParent,
 char \ graphNameParent,
 nvotGraphProtocolType boxProtocol,
 char \ boxName,
 nvotLayoutType boxLayout,
 char \ boxBackground,
 char \ icon,
 char \ label,
 nvotOctetString \ boxDetails);

 Description

The nvotCreateBoxInGraph routine creates a box graph and associates it with a parent graph. A box
graph can be a member of more than one parent graph at the same time. Thus, if the box already exists,
this routine creates a new association between the box and a parent graph.

The parent, or containing, graph must exist; otherwise, the box graph is not created and an error code is
set.

The protocol and name parameters together uniquely identify objects in the gtmd database. These param-
eters are required for both the parent and box graphs.

The boxLayout parameter is required. However, if -1 (don't care) is passed, NONE_LAYOUT is assumed,
any other value is rejected, and the error code NVOT_INVALID_LAYOUT is set. Positioning the symbols
in the submap for the vertices and graphs members (submap) of a NONE_LAYOUT box graph requires
additional work.

Box background, icon, label and boxDetails are optional parameters. However, if they are not passed,
they must be set to NULL. Pointers that are not valid might cause unpredictable errors. If NULL is
passed, the default “Computer:Generic” symbol is assumed for icon and the boxName string is dis-
played in place of the label.

 Parameters
graphProtocolParent Specifies the protocol of the parent graph. For more information about speci-

fying a graph protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphNameParent Specifies the name of the parent graph. Both the graphNameParent and
graphProtocolParent parameters are required to uniquely identify the parent
graph.

boxProtocol Specifies the protocol of the child box graph. For more information about
specifying a graph protocol, refer to the file /usr/OV/conf/oid_to_protocol.

 Chapter 2. Reference Pages 227

 nvotCreateBoxInGraph(3)

boxName Specifies the name of the child box graph. Both the boxName and the
boxProtocol parameters are required to uniquely identify the box graph. This
parameter can be any string of characters. Once specified, the same name
must be used in any reference to this box graph.

boxLayout Specifies the layout of the child box graph. If -1 is passed, NONE_LAYOUT is
assumed. Future changes in the box layout are not supported.

boxBackground Specifies an image to be displayed in the background of the submap into
which this box graph is exploded. A background is usually an image of a
geographic region that helps to illustrate a submap. You can select a back-
ground image from among the bitmap files in the default directory
/usr/OV/backgrounds.

icon Specifies the icon to represent this box in the NetView for AIX EUI. For infor-
mation about selecting an icon, refer to the file /usr/OV/conf/C/oid_to_sym.

label Specifies the label under the box graph icon in the NetView for AIX EUI. The
label can be any string of characters.

boxDetails Contains particular information that applications store for future retrieval. The
information stored in this variable is for the application's use only. For
example, the application might copy the data of a structure into this variable by
doing a memcpy(boxDetails->octetString, (char *) applStruct,
sizeof(applStruct)) and boxDetails->octetLength = sizeof(applStruct). However,
although nvotOctetString allows for any size strings and the interface does not
check the size of boxDetails, any character exceeding 256 will be truncated by
the NetView for AIX object database.

 Return Values
OVwObjectId When the application is running in synchronous mode, (that is, when the

nvotSetSynchronousCreation routine has been called with a non-zero value),
this routine issues the create box operation to GTM and stands in a finite loop
until the NetView for AIX program sends back the OVwObjectId of the box
graph just created. OVwObjectId is a positive integer. If an error occurs or
the loop times out, this routine returns OVwNullObjectId. When the application
is running in asynchronous mode, (that is, when the
nvotSetSynchronousCreation routine has been called with a zero value or has
never been called), this routine issues the create box operation to GTM and
imediately returns OVwNullObjectId. In either case, upon return, an error code
is available through a call to the nvotGetError routine. For more information
about OVwObjectId, see “nvotSetSynchronousCreation(3)” on page 368.

 Error Codes

When the routine completes and returns control to its caller, an error internal variable is set. A call to the
routine nvotGetError returns the error code set at the last API call. The error variable is reset upon
entering and set before exiting this call to the API. All possible error codes set by this call and their
related message strings are:

[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol and/or name must
not be NULL.

228 Programmer's Reference

 nvotCreateBoxInGraph(3)

[NVOT_BOX_INVALID_INDEX] The box index is not valid. A box graph protocol and/or name
must not be NULL.

[NVOT_INVALID_LAYOUT] Invalid layout. The layout must be a number defined in the
nvotTypes.h file.

[NVOT_INVALID_STATUS] The status is not valid. It must be a number defined in the
nvotTypes.h file.

[NVOT_GRAPH_DOES_NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

[NVOT_OVW_TIMED_OUT] NetView for AIX timeout. The timeout value passed to
nvotSetSynchronousCreation might not be enough for the com-
plete operation processing, or the connection to the NetView for
AIX database might be down. Try increasing the timeout value.

[NVOT_OVW_OBJECT_ID_NOT_AVAIL]
An error occurred in creating the object ID for this element.

[NVOT_PROTOCOL_WAS_NOT_REGISTERED]
The protocol was not registered in the
/usr/OV/conf/oid_to_protocol file.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If ((rc ═ nvotGetError()) !═ NVOT_SUCCESS)
printf (“%s\n”, nvotGetErrorMsg (rc));

 Examples

The following example creates a root graph and then a box graph as member of the root graph.

#include <nvot.h>

OVwObjectId rootGraphId;
OVwObjectId boxGraphId;
nvotReturnCode rc;

nvotGraphProtocolType my_STARLAN_GraphsProt = "1.3.6.1.2.1.2.2.1.3.11";

char \ myRoot_STARLAN_GraphName = "My_Root_Graph";
char \ myRoot_STARLAN_GraphLabel = "My_Root_STARLAN_Graph";
char \ myRootGraphBackgroundMap = "south_america";

char \ myBox_STARLAN_GraphName = "My_Box_STARLAN_Graph";
char \ myBox_STARLAN_GraphLabel = "My_Box_STARLAN_Graph";
char \ myBoxBackgroundMap = "brazil";

 Chapter 2. Reference Pages 229

 nvotCreateBoxInGraph(3)

nvotLayoutType my_STARLAN_GraphsLayout = POINT_TO_POINT_RING_LAYOUT;
char \ my_STARLAN_GraphsIcon = "1.3.6.1.2.1.2.2.1.3.11.1ð";
nvotOctetString \ myRootGraphDetails = NULL;
nvotOctetString \ myChildGraphDetails = NULL;
rootGraphId = nvotCreateRootGraph (my_STARLAN_GraphsProt,

 myRoot_STARLAN_GraphName,
 my_STARLAN_GraphsLayout,
 myRootGraphBackgroundMap,
 my_STARLAN_GraphsIcon,
 myRoot_STARLAN_GraphLabel
 myRootGraphDetails);
rc = nvotGetError();
if ((rc == NVOT_SUCCESS) OR (rc == NVOT_ROOT_GRAPH_ALREADY_EXIST))

 {
 if (synchMode)

printf ("%s OVwObjectId is : %d\n", myRoot_STARLAN_GraphLabel,
 rootGraphId);
 else

printf ("Root graph created but Object Id not available.\n");

boxGraphId = nvotCreateBoxInGraph (my_STARLAN_GraphsProt,
 myRoot_STARLAN_GraphName,
 my_STARLAN_GraphsProt,
 myBox_STARLAN_GraphName,
 my_STARLAN_GraphsLayout,
 myBoxBackgroundMap,
 my_STARLAN_GraphsIcon,
 myBox_STARLAN_GraphLabel
 myChildGraphDetails);

if ((rc = nvotGetError()) == NVOT_SUCCESS)
 {
 if (synchMode)

printf ("%s OVwObjectId is : %d\n", myBox_STARLAN_GraphLabel,
 boxGraphId);
 else

printf ("Box graph created but Object Id not available.\n");
 }
 else

printf ("An error occurred creating box graph %s\n",
 myBox_STARLAN_GraphLabel);

printf ("Operation result : %s\n", nvotGetErrorMsg (nvotGetError()));
 }
 else

printf ("An error occurred creating root graph %s\n",
 myRoot_STARLAN_GraphLabel);
printf ("Operation result : %s\n", nvotGetErrorMsg (nvotGetError()));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

230 Programmer's Reference

 nvotCreateBoxInGraph(3)

 Related Information
� See “nvotCreateRootGraph(3)” on page 249.
� See “nvotCreateVertexInGraph(3)” on page 265.
� See “nvotCreateGraphInGraph(3)” on page 235.
� See “nvotDeleteBoxFromGraph(3)” on page 278.
� See “nvotChangeBoxIconInGraph(3)” on page 160.
� See “nvotChangeBoxLabelInGraph(3)” on page 163.
� See “nvotChangeBoxPositionInGraph(3)” on page 166.
� See “nvotGetBoxesInGraph(3)” on page 314.
� See “nvotSetSynchronousCreation(3)” on page 368.

 Chapter 2. Reference Pages 231

 nvotCreateGraph(3)

 nvotCreateGraph(3)

 Purpose

Creates a graph of graph type GRAPH or BOX

 Related Functions
 nvotCreateBox

 Syntax
#include <nvot.h>

OVwObjectId nvotCreateGraph (nvotGraphProtocolType graphProtocol,
 char \ graphName,
 nvotLayoutType graphLayout,
 char \ graphBackground)

OVwObjectId nvotCreateBox (nvotGraphProtocolType boxProtocol,
 char \ boxName,
 nvotLayoutType boxLayout,
 char \ boxBackground)

 Description

These routines create graphs with graphType attribute set to GRAPH or BOX. They are meant to create
graphs and boxes that will become endpoints of underlying arcs. See “nvotCreateSerialUnderlyingArc(3)”
on page 253 and “nvotCreateParallelUnderlyingArc(3)” on page 240 for more explanation. Graphs and
boxes created through these routines will be much like orphan graphs, in that they will not be correlated to
any other parent graph, and will not be displayed before they become underlying arc endpoints unless an
explicit call to nvotCreateGraphInGraph or nvotCreateBoxInGraph makes reference to these graphs
later on.

The protocol and name uniquely identify objects in the GTM database. Both parameters are mandatory.

The layout and background are also required because they cannot be changed later on.

 Parameters
graphProtocol and boxPrototol

Specifies the protocol of the graph or box. For more information on how to specify a graph protocol
refer to the /usr/OV/conf/oid_to_protocol file.

graphName and boxName
Specifies the name of the graph or box. The graphName and graphProtocol make up unique informa-
tion required to identify the graph in the GTM database.

graphLayout and boxLayout
Specifies the layout of the graph or box. If -1 is passed, NONE_LAYOUT is assumed. Note that
future changes in the graph layout are not allowed.

graphBackground and boxBackground
Specifies an image to be displayed in the background of the submap into which this graph or box is
exploded. Background usually is an image of a geographic region which helps in illustrating a

232 Programmer's Reference

 nvotCreateGraph(3)

submap. A background image can be chosen from among the bitmap files in the default directory
/usr/OV/backgrounds.

 Return Values
OVwObjectId When running the application in synchronous mode,

(nvotSetSynchronousCreation with a positive timeout value has been called),
this routine will issue the create graph operation to GTM and stand in a finite
loop until OVw sends back the OVwObjectId of the graph or box just created.
OVwObjectId is a positive integer. If an error occurs or the loop times out, this
routine returns ovwNullObjectId. When running the application in asynchro-
nous mode (nvotSetSynchronousCreation with a zero time value has been
called), this routine will issue the create graph or create box operation to GTM
and immediately return ovwNullObjectId. In either case, upon return, an error
code is available through a call to the routine nvotGetError. Refer to
“nvotSetSynchronousCreation(3)” on page 368 for more details on
OVwObjectId.

 Error Codes

When the routine completes and returns control to its caller, an error internal variable is set. A call to the
routine nvotGetError returns the error code set at the last API call. The error variable is reset upon
entering and set before exiting this call to the API. All possible error codes set by this call and their
related message strings are:

[NVOT_SUCCESS] Successful operation

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol must be a positive
integer and a graph name must not be NULL.

[NVOT_BOX_INVALID_INDEX] The box index is not valid. A box protocol must be a positive
integer and a box name must not be NULL.

[NVOT_PROTOCOL_WAS_NOT_REGISTERED]
The protocol was not registered in the /usr/OV/oid_to_protocol file.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the routine nvotGetErrorMsg as in the example
bellow:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The example below creates two graphs which are not members of any other graph and which might be
endpoints of underlying arcs as shown in the examples given in “nvotCreateSerialUnderlyingArc(3)” on
page 253 and “nvotCreateParallelUnderlyingArc(3)” on page 240.

 Chapter 2. Reference Pages 233

 nvotCreateGraph(3)

#include <nvot.h>

 OVwObjectId ovwid;

 nvotGraphProtocolType SDLCGraphProt = "1.3.6.1.2.1.2.2.1.3.17";

ovwid = nvotCreateGraph (SDLCGraphProt,
 "SDLC_Endpoint_ð",
 POINT_TO_POINT_LAYOUT,
 "brazil.gif");

fprintf(fdOutput, "CreateGraph= %s\n", nvotGetErrorMsg(nvotErrno));
fprintf(fdOutput, "SDLC_Endpoint_ð = %d\n\n",ovwid);

ovwid = nvotCreateGraph (SDLCGraphProt,
 "SDLC_Endpoint_1",
 POINT_TO_POINT_LAYOUT,
 "argentina.gif");

fprintf(fdOutput, "CreateGraph= %s\n", nvotGetErrorMsg(nvotErrno));
fprintf(fdOutput, "SDLC_Endpoint_1 = %d\n\n",ovwid);

 Libraries
 � /usr/OV/lib/libnvot.a

 Files
 � nvot.h

 Related Information
� See “nvotCreateParallelUnderlyingArc(3)” on page 240

� See “nvotCreateSerialUnderlyingArc(3)” on page 253

234 Programmer's Reference

 nvotCreateGraphInGraph(3)

 nvotCreateGraphInGraph(3)

 Purpose

Creates a graph in a graph

 Syntax
#include <nvot.h>

OVwObjectId nvotCreateGraphInGraph (
 nvotGraphProtocolType graphProtocolParent,
 char \ graphNameParent,
 nvotGraphProtocolType graphProtocol,
 char \ graphName,
 nvotLayoutType graphChildLayout,
 char \ graphChildBackground,
 char \ icon,
 char \ label,
 nvotOctetString \ graphChildDetails);

 Description

The nvotCreateGraphInGraph routine creates a graph and associates it with a parent graph. A child graph
can be a member of several parent graphs at the same time. If the child graph already exists, the
nvotCreateGraphInGraph routine creates a new association between the child graph and a parent graph
so that the child graph is displayed on another parent graph's submap.

The parent, or containing, graph must exist; otherwise, the child graph is not created and an error code is
set. The protocol and name parameters together uniquely identify objects in the GTM database. These
parameters are required for both parent and child graphs.

The graphChildLayout parameter is required. If -1 (don't care) is passed, NONE_LAYOUT is assumed.
any other value is rejected, and the error code NVOT_INVALID_LAYOUT is set. Positioning the symbols
in the submap for the vertices and graphs members (submap) of a NONE_LAYOUT graph requires addi-
tional work. Also, further changes to the graph layout attribute are not supported.

The graphChildBackground, icon, label and graphChildDetails parameters are the only optional parame-
ters. If they are not passed, they must be set to NULL. Pointers that are not valid might cause unpredict-
able errors. If NULL is passed, the default “Network:Network” symbol is assumed for icon and the
graphName string is displayed in place of the label.

 Parameters
graphProtocolParent Specifies the protocol of the parent graph. For more information about speci-

fying a graph protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphNameParent Specifies the name of the parent graph. Both the graphNameParent and
graphProtocolParent parameters are to uniquely identify the parent graph.

graphProtocol Specifies the protocol of the child graph. For more information about speci-
fying a graph protocol, refer to the file /usr/OV/conf/oid_to_protocol.

 Chapter 2. Reference Pages 235

 nvotCreateGraphInGraph(3)

graphName Specifies the name of the child graph. Both the graphName and
graphProtocol parameters are required to uniquely identify the child graph.
This parameter can be any string of characters. Once specified, the same
name must be used in any reference to this graph.

graphChildLayout Specifies the layout of the child graph. If -1 is passed, NONE_LAYOUT is
assumed. Future changes in the graph layout are not supported.

graphChildBackground Specifies an image to be displayed in the background of the submap into
which this child graph is exploded. A background is usually an image of a
geographic region that helps to illustrate a submap. You can select a back-
ground image from among the bitmap files in the default directory
/usr/OV/backgrounds.

icon Specifies the icon to represent the child graph in the NetView for AIX EUI. For
more information about selecting an icon, refer to the file
/usr/OV/conf/C/oid_to_sym.

label Specifies the label under the graph icon in the NetView for AIX EUI. A label
can be any string of characters.

graphChildDetails Contains particular information that applications store for future retrieval. The
information stored in this variable is for the application's use only. For
example, the application might copy the data of a structure into this variable by
doing a memcpy(graphChildDetails->octetString, (char *) applStruct,
sizeof(applStruct)) and graphChildDetails->octetLength = sizeof(applStruct).
However, although nvotOctetString allows for any size strings and the interface
does not check the size of graphChildDetails, any character exceeding 256 will
be truncated by the NetView for AIX object database.

 Return Values
OVwObjectId When the application is running in synchronous mode, (that is, when the

nvotSetSynchronousCreation routine has been called with a non-zero value),
the nvotCreateGraphInGraph routine issues the create graph operation to
GTM and stands in a finite loop until the NetView for AIX program returns the
OVwObjectId of the graph just created. OVwObjectId is a positive integer. If
an error occurs or the loop times out, this routine returns OVwNullObjectId.
When the application is running in asynchronous mode, (that is, when the
nvotSetSynchronousCreation routine has been called with a zero value or has
never been called), the nvotCreateGraphInGraph routine issues the create
graph operation to GTM and immediately returns OVwNullObjectId. In either
case, upon return, an error code is available through a call to the nvotGetError
routine. For more information about OVwObjectId, see
“nvotSetSynchronousCreation(3)” on page 368.

 Error Codes

When the routine completes and returns control to its caller, an error internal variable is set. A call to the
routine nvotGetError returns the error code set at the last API call. The error variable is reset upon
entering and set before exiting this call to the API. All possible error codes set by this call and their
related message strings are:

[NVOT_SUCCESS] Successful operation.

236 Programmer's Reference

 nvotCreateGraphInGraph(3)

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol and/or name must
not be NULL.

[NVOT_INVALID_LAYOUT] Invalid layout. The layout must be a number defined in the
nvotTypes.h file.

[NVOT_GRAPH_DOES_NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

[NVOT_OVW_TIMED_OUT] NetView for AIX timeout. The timeout value passed to
nvotSetSynchronousCreation might not be enough for the com-
plete operation processing, or the connection to the NetView for
AIX database might be down. Try increasing the timeout value.

[NVOT_OVW_OBJECT_ID_NOT_AVAIL]
An error occurred in creating the object ID for this element.

[NVOT_PROTOCOL_WAS_NOT_REGISTERED]
The protocol was not registered in the
/usr/OV/conf/oid_to_protocol file.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If ((rc ═ nvotGetError()) !═ NVOT_SUCCESS)
printf (“%s\n”, nvotGetErrorMsg (rc));

 Examples

The following example creates a root graph and then a child graph as member of the root graph.

#include <nvot.h>

OVwObjectId rootGraphId;
OVwObjectId childGraphId;
nvotReturnCode rc;

nvotGraphProtocolType mySDLCGraphsProt = "1.3.6.1.2.1.2.2.1.3.17";

char \ myRootSDLCGraphName = "My_Root_Graph";
char \ myRootSDLCGraphLabel = "My_Root_SDLC_Graph";
char \ myRootGraphBackgroundMap = "south_america";

char \ myChildSDLCGraphName = "My_Child_SDLC_Graph";
char \ myChildSDLCGraphLabel = "My_Child_SDLC_Graph";
char \ myChildGraphBackgroundMap = "brazil";

nvotLayoutType mySDLCGraphsLayout = POINT_TO_POINT_RING_LAYOUT;
char \ mySDLCGraphsIcon = "1.3.6.1.2.1.2.2.1.3.11.11";
nvotOctetString \ myRootGraphDetails = NULL;
nvotOctetString \ myChildGraphDetails = NULL;

 Chapter 2. Reference Pages 237

 nvotCreateGraphInGraph(3)

rootGraphId = nvotCreateRootGraph (mySDLCGraphsProt,
 myRootSDLCGraphName,
 mySDLCGraphsLayout,
 myRootGraphBackgroundMap,
 mySDLCGraphsIcon,
 myRootSDLCGraphLabel
 myRootGraphDetails);
rc = nvotGetError();
if ((rc == NVOT_SUCCESS) OR (rc == NVOT_ROOT_GRAPH_ALREADY_EXIST))

 {
 if (synchMode)

printf ("%s OVwObjectId is : %d\n", myRootSDLCGraphLabel, rootGraphId);
 else

printf ("Root graph created but Object Id not available.\n");

childGraphId = nvotCreateGraphInGraph (mySDLCGraphsProt,
 myRootSDLCGraphName,
 mySDLCGraphsProt,
 myChildSDLCGraphName,
 mySDLCGraphsLayout,
 myChildGraphBackgroundMap,
 mySDLCGraphsIcon,
 myChildSDLCGraphLabel
 myChildGraphDetails);

if ((rc = nvotGetError()) == NVOT_SUCCESS)
 {
 if (synchMode)

printf ("%s OVwObjectId is : %d\n", myChildSDLCGraphLabel, childGraphId);
 else

printf ("Child graph created but Object Id not available.\n");
 }
 else

printf ("An error occurred creating graph %s\n", myChildSDLCGraphName);
printf ("Operation result : %s\n", nvotGetErrorMsg (nvotGetError()));

 }
 else

printf ("An error occurred creating root graph %s\n", myRootSDLCGraphLabel);
printf ("Operation result : %s\n", nvotGetErrorMsg (nvotGetError()));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateRootGraph(3)” on page 249.
� See “nvotCreateVertexInGraph(3)” on page 265.
� See “nvotDeleteGraphFromGraph(3)” on page 283.
� See “nvotChangeGraphIconInGraph(3)” on page 178.
� See “nvotChangeGraphLabelInGraph(3)” on page 181.
� See “nvotChangeGraphPositionInGraph(3)” on page 184.
� See “nvotGetGraphsInGraph(3)” on page 330.

238 Programmer's Reference

 nvotCreateGraphInGraph(3)

� See “nvotSetSynchronousCreation(3)” on page 368.

 Chapter 2. Reference Pages 239

 nvotCreateParallelUnderlyingArc(3)

 nvotCreateParallelUnderlyingArc(3)

 Purpose

Creates an arc that lies under another arc

 Syntax

nvotReturnCode nvotCreateParallelUnderlyingArc (
 nvotNameBindingType arcNameBindingParent,
 nvotProtocolType aEndpointProtocolParent,
 char \ aEndpointNameParent,
 nvotProtocolType zEndpointProtocolParent,
 char \ zEndpointNameParent,
 int arcIndexIdParent,
 nvotNameBindingType arcNameBinding,
 nvotProtocolType aEndpointProtocol,
 char \ aEndpointName,
 nvotProtocolType zEndpointProtocol,
 char \ zEndpointName,
 int arcIndexId,
 char \ ulaIcon,
 char \ ulaLabel)

 Description

An arc symbol in the ovw screen can actually be made up of several underlying arcs. NetView for AIX
open topology provides the UnderlyingArc table as a means for storing underlying arcs in the database
and displaying them in the ovw display.

Underlying arcs can be connected to each other either in a serial or parallel fashion. This routine creates
an arc that lies under a parent arc and is displayed in parallel to other underlying arcs at the same level.

The first six parameters identify the parent arc. The parent arc must exist before the underlying arc can
be created. If the parent arc does not exist, NVOT_ARC_DOES_NOT_EXIST is returned.

The arcNameBinding, aEndpointProtocol, aEndpointName, zEndpointProtocol, zEndpointName and
arcIndexId parameters identify the underlying arc.

Note: There is a possibility that the underlying arc will have the same name as its parent arc, such as
when their endpoints are actually the same and their indexIds have erroneously been set to the
same value. This error should be avoided because the NVOT API does not check for this, but
gtmd does and it will reject the trap.

The arcNameBinding parameter helps in identifying the uderlying arc endpoints. The arcNameBinding
value must be compatible with the values passed in the aEndpointProtocol and zEndpointProtocol parame-
ters.

Endpoints of the class graph must exist. If they do not, the underlying arc is not created and an error
code is set. The NVOT API does not allow for automatic creation of graphs or boxes.

Usually, graphs and boxes are created as members of upper-level graphs through calls to routines
nvotCreateGraphInGraph and nvotCreateBoxInGraph. However, most of the time, the graph or box
endpoints of underlying arcs are not members of any upper-level graph. In other words, they exist as

240 Programmer's Reference

 nvotCreateParallelUnderlyingArc(3)

orphan graphs or boxes and are displayed only in the arc submap. Because the automatic creation of
graphs or boxes is not allowed, two routines are available to allow for the creation of these orphan graphs
or boxes (refer to “nvotCreateGraph(3)” on page 232).

Endpoints of class vertex are automatically created if they do not exist. This is part of the GTM recovery
strategy for lost traps. However, a vertex endpoint is not created if the other endpoint is a reference to a
nonexistent graph.

The ulaIcon and ulaLabel parameters are optional. If they are not passed, they must be set to NULL.
Pointers that are not valid can cause unpredictable errors. If the parameters are set to NULL, the default
Connection:Generic symbol is assumed for ulaIcon, and the concatenation of aEndpointName +
zEndpointName + arcIndexId is displayed in place of ulaLabel.

 Parameters
arcNameBindingParent and arcNameBinding

Specifies the class of the objects in each endpoint of the parent arc and the underlying arc, respec-
tively. The endpoint can be a vertex or a graph. The allowed values are as follows:

ARC_VERTEX_VERTEX_NAME_BINDING
Indicates either of the endpoints are vertices.

ARC_VERTEX_GRAPH_NAME_BINDING
aEndpoint is a vertex and zEndpoint is a graph.

ARC_GRAPH_VERTEX_NAME_BINDING
aEndpoint is a graph and zEndpoint is a vertex.

ARC_GRAPH_GRAPH_NAME_BINDING
Indicates either of the endpoints are graphs.

Any value other than the above is rejected by the interface and the error code
NVOT_INVALID_NAME_BINDING is set.

a/zEndpointProtocolParent and a/zEndpointProtocol
Specifies the protocol of the object identified as the endpoint, respectively, of the parent arc and the
underlying arc. If aEndpoint is to be a vertex, aEndpointProtocol must be set to a value from the
enumerated type nvotVertexProtocolType defined in the the file <nvotTypes.h>. Otherwise, aEndpoint
is a graph, and aEndpointProtocol is a pointer to a valid character string in memory.

a/zEndpointNameParent and a/zEndpointName
Specifies the name of the object identified as the endpoint of the parent arc and the underlying arc,
respectively. The endpointName and endpointProtocol are required to identify the object at a certain
endpoint of an arc. The name can be any string of characters. However, once specified, the same
name must be used in any reference to the object.

IndexIdParent and arcIndexId
Specifies indexes (integer values) that distinguish an arc from others between the same endpoints of
the parent arc and the underlying arc, respectively.

It is possible to connect the same two endpoints with several arcs; this variable is provided to give you
a means for distinguishing between arcs named by the same endpoints.

ulaIcon
Specifies the symbol to represent this underlying arc in OVw display. The symbol may be a line, a
dotted line, and so on. Refer to the /usr/OV/conf/C/oid_to_sym file for details on how to choose an
icon.

 Chapter 2. Reference Pages 241

 nvotCreateParallelUnderlyingArc(3)

ulaLabel
Specifies a string of characters that represent an arc label to be displayed in the drop down menu
shown when the right mouse button is clicked on an arc symbol. This is also true for an underlying
arc.

 Return Values
nvotReturnCode The nvotCreatParallelUnderlyingArc routine returns an nvotReturnCode that

can assume the values described in the following error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a
positive integer and a vertex name must not be NULL.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol must be a
positive integer and a graph name must not be NULL.

[NVOT_ARC_INVALID_INDEX] The arc index is not valid. An arc protocol must be a positive
integer and an arc name must not be NULL.

[NVOT_ULA_INVALID_INDEX] The ULA index is not valid. A ULA protocol must be a posi-
tive integer and a ULA name must not be NULL.

[NVOT_ENDPOINT_INVALID_INDEX] The endpoint index is not valid. An endpoint protocol must be
a positive integer and an endpoint name must not be NULL.

[NVOT_ARC_DOES_NOT_EXIST] The parent arc for which you are creating an underlying arc
does not exist in the GTM database.

[NVOT_A_ENDPOINT_GRAPH_DOES_NOT_EXIST]
The aEndPoint graph specified for the underlying arc does not
exist in the GTM database.

[NVOT_Z_ENDPOINT_GRAPH_DOES_NOT_EXIST]
The zEndPoint graph specified for the underlying arc does not
exist in the GTM database.

[NVOT_INVALID_NAME_BINDING] The name binding is not valid. It must be a number defined
in the nvotTypes.h file.

[NVOT_ERROR_ALLOCATING_MEMORY] Memory allocation error. The system might be out of
memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a con-
nection with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during
operation. Issue the nvotInit routine again.

A printable message string is accessible through a call to the routine nvotGetErrorMsg as in the following
example:

242 Programmer's Reference

 nvotCreateParallelUnderlyingArc(3)

This example illustrates how to create two arcs in parallel underlying
an arc previously created.

#include <nvot.h>

nvotReturnCode RC;
nvotProtocolType aEndpointProtocolParent.vertexProtocol = STARTLAN;
char \ aEndpointNameParent = "My_Vertex_V1";
nvotProtocolType zEndpointProtocolParent.vertexProtocol = STARTLAN;
char \ zEndpointNameParent = "My_Vertex_V2";
int arcIndexIdParent = 1;
nvotProtocolType aEndpointProtocol1.vertexProtocol = STARTLAN;
char \ aEndpointName1 = "My_Vertex_V3";
nvotProtocolType zEndpointProtocol1.vertexProtocol = STARTLAN;
char \ zEndpointName1 = "My_Vertex_V4";
int arcIndexId1 = 1;
nvotProtocolType aEndpointProtocol2.vertexProtocol = STARTLAN;
char \ aEndpointName2 = "My_Vertex_V5";
nvotProtocolType zEndpointProtocol2.vertexProtocol = STARTLAN;
char \ zEndpointName2 = "My_Vertex_V6";
int arcIndexId1 = 1;
char \ icon = "1.3.6.1.2.1.2.2.1.3.54.4";

RC = nvotCreateParallelUnderlyingArcIcon (
 ARC_VERTEX_VERTEX_NAME_BINDING,
 aEndpointProtocolParent, aEndpointNameParent,
 zEndpointProtocolParent, zEndpointNameParent,
 arcIndexIdParent,
 ARC_VERTEX_VERTEX_NAME_BINDING,
 aEndpointProtocol1, aEndpointName1,
 zEndpointProtocol1, zEndpointName1,

arcIndexId1, icon, "Ula_V1V2_1");

printf("Create First Parallel Ula = %s\n", nvotGetErrorMsg(RC));

RC = nvotCreateParallelUnderlyingArcIcon (
 ARC_VERTEX_VERTEX_NAME_BINDING,
 aEndpointProtocolParent, aEndpointNameParent,
 zEndpointProtocolParent, zEndpointNameParent,
 arcIndexIdParent,
 ARC_VERTEX_VERTEX_NAME_BINDING,
 aEndpointProtocol2, aEndpointName2,
 zEndpointProtocol2, zEndpointName2,

arcIndexId2, icon, "Ula_V1V2_2");

printf("Create Second Parallel Ula = %s\n", nvotGetErrorMsg(RC));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files
 � nvot.h

 Chapter 2. Reference Pages 243

 nvotCreateParallelUnderlyingArc(3)

 Related Information
� See “nvotCreateArcInGraph(3)” on page 221.

� See “nvotCreateSerialUnderlyingArc(3)” on page 253.

244 Programmer's Reference

 nvotCreateProvidingSap(3)

 nvotCreateProvidingSap(3)

 Purpose

Creates a SAP of SAP type PROVIDING

 Syntax
#include <nvot.h>

nvotReturnCode nvotCreateProvidingSap (
 nvotVertexProtocolType vertexProtocol,
 char \ vertexName,
 nvotVertexProtocolType sapProtocol,
 char \ sapName);

 Description

Vertices represent communication entities or interfaces across various protocol layers. The SAP object
class represents the logical relationship between two vertices inside a computer. If a communication entity
in a given protocol layer uses the services of a lower layer entity through a service point, a vertex repres-
enting an N-layer entity uses a SAP provided by a vertex representing an entity in layer N-1. Likewise, a
vertex representing an entity in layer N can provide a SAP for use by other vertices representing entities in
layer N+1. An interface or communication entity can provide its services to more than one entity in an
upper layer at the same time. However, a SAP always establishes only one association.

In terms of open topology map representation, the SAP object creation is a means to correlate vertex
symbols in box submaps.

The following rules apply to correlation of vertex symbols and representation of submaps and symbols:

� Although a vertex can be a member of a graph of type GRAPH, vertices correlated by a SAP should
be entities running inside the same computer. This computer is represented by a graph of type BOX.
It is recommended that you use SAPs to correlated vertices that are members of BOXES. Although
the interface does not check whether the vertex referenced by the SAP is a member of a GRAPH,
using a vertex that is a member of a graph of type GRAPH might produce unpredictable results.

� To avoid a rapid increase in the database, open topology merges vertices' objects' information into
one object when a SAP is created. Some of the information merged is based on the protocol used.
The SAP creation must take different protocol values in the variables vertexProtocol and sapProtocol.
Otherwise, the vertex symbol referenced by sapProtocol and sapName disappears from the display.

Saps can be used to correlate either non-IP/IP or non-IP/non-IP objects:

 � NonIP/IP correlation:

IP topology might have discovered a node running IP on top of a given interface card. Consider that a
non-IP management application is to represent an entity of its own protocol such as an interface card,
providing its services to an IP entity. But, the non-IP application does not yet know of the existence of
the IP side. The non-IP application is to provide correlation. Given that the non-IP management
application has already created a vertex V1 to represent its entity card, a SAP to correlate non-IP
vertex V1 with the interface card already discovered by the IP side would look like this:

vertexProtocol Set to the value of V1 protocol.

vertexName Set to the value of V1 name.

 Chapter 2. Reference Pages 245

 nvotCreateProvidingSap(3)

sapProtocol Set the value of the protocol defined in the interface card or, if the protocol is not
known, use OTHER_PROTOCOL as defined in the file nvotTypes
nvotVertexProtocolType. To avoid breaking the preceding rule (see the rule on
page 245), the field must not assume the same value of the vertexProtocol.

sapName Set to the value of the universal address of the interface card. For the correlation
to take effect for a given computer, this field must be set to the value set in the
field SNMP ifPhysAddr of the corresponding IP node. If the interface is a Token
Ring card, for example, this field is set to its MAC address.

 � Non-IP/non-IP correlation:

Different protocol BOX graphs B1 and B2 contain, respectively, vertices V1 and V2. A SAP correlation
of these vertices V1 and V2 indicates that they are running in the same box. This means that boxes
B1 and B2 would be the same computer. So, open topology would merge the information of B1 and
B2. This case is similar to the non-IP/IP correlation except that, instead of a non-IP box graph and an
IP node being correlated, two non-IP box graphs are correlated.

Another case is a single BOX graph that contains two vertices V1 and V2. In both cases, a SAP to
correlated vertices V1 and V2 would be:

vertexProtocol Set to the value of V1 protocol.

vertexName Set to the value of V1 name.

sapProtocol Set to the value of V2 protocol.

sapName Set to the value of V2 name.

For example, a Token Ring interface can provide its services to SNA Services and TCP/IP stacks
inside the same box. The LLC layer entity would provide two distinct SAPs, one for SNA Services and
another for TCP/IP. The example in this man page illustrates such a piece of topology.

The nvotCreateProvidingSap routine creates a SAP uniquely identified by the values of the
sapProtocol and sapName parameters. The vertex identified by vertexProtocol and vertexName uses
the service of this SAP.

If the vertex providing this SAP does not yet exist in the gtmd database, it is automatically created.
However, the automatic creation of a vertex requires future calls to routines
nvotChangeVertexIconInBox, nvotChangeVertexLabelInBox, nvotChangeVertexIconInGraph or
nvotChangeVertexLabelInGraph for accurate display by the NetView for AIX program.

It does not make sense to create a using SAP when a providing SAP does not exist. If you create a
using SAP when a providing SAP does not exist, and later issue a request to create a providing SAP
with reference to the SAP created (using the same sapProtocol and sapName values), a new SAP will
not be created. Instead, the request will cause two vertices to be associated through a common SAP.

All parameters in this routine are required.

 Parameters
vertexProtocol Specifies the protocol of the vertex providing the SAP. The vertex protocol is

an enumerated type defined in the file <nvotTypes.h>.

vertexName Specifies the name of the vertex providing the SAP. This parameter can be
any string of characters. Once specified, the same name must be used in any
reference to this vertex.

sapProtocol Specifies the protocol of the vertex in which the SAP is defined. This is the
protocol of the vertex providing this SAP. For more information, see the
example in this man page.

246 Programmer's Reference

 nvotCreateProvidingSap(3)

sapName The sapName or sapAddressName parameter identifies a SAP provided by an
N-level entity to an N+1-level entity. This parameter is a character string con-
taining an IP address, a SNA physical and logical unit address, and so on.
For more information, see the example in this man page.

 Return Values
nvotReturnCode The nvotCreateProvidingSap routine returns an nvotReturnCode that can

assume the values described in the error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_SAP_INVALID_INDEX] The SAP index is not valid. A SAP protocol must be a positive
integer and a SAP name must not be NULL.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

[NVOT_PROTOCOL_WAS_NOT_REGISTERED]
The protocol was not registered in the
/usr/OV/conf/oid_to_protocol file.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If ((rc ═ nvotGetError()) !═ NVOT_SUCCESS)
printf (“%s\n”, nvotGetErrorMsg (rc));

 Examples

The following example illustrates how to represent a SAP provided by a Token Ring interface card.

#include <nvot.h>

nvotReturnCode rc;

/\\\\\\\\\\\\ Define LAN vertex (V1) \\\\\\\\\\\\\\\\\\\\\\/
nvotVertexProtocolType myLNM_Prot = LANBRIDGE;
char \ myLNM_Name = "LAN_Vertex";

/\\\\\\\\\\\\ Define Token Ring SAP \\\\\\\\\\\\\\\\\\\\\\\/
nvotVertexProtocolType myTokenRingProt = ISO88ð25_TOKENRING;
char \ myTokenRingAddr = "1ððð5AA8D718";

if ((rc = nvotCreateProvidingSap (myLNM_Prot,
 myLNM_Name,
 myTokenRingProt,

 Chapter 2. Reference Pages 247

 nvotCreateProvidingSap(3)

myTokenRingAddr)) == NVOT_SUCCESS)

printf ("Sap created successfully");
 else

printf ("Error : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotSetSynchronousCreation(3)” on page 368.

248 Programmer's Reference

 nvotCreateRootGraph(3)

 nvotCreateRootGraph(3)

 Purpose

Creates a root graph

 Syntax
#include <nvot.h>

OVwObjectId nvotCreateRootGraph (
 nvotGraphProtocolType graphProtocol,
 char \ graphName,
 nvotLayoutType graphLayout,
 char \ graphBackground,
 char \ icon,
 char \ label,
 nvotOctetString \ graphDetails);

 Description

The nvotCreateRootGraph creates a root graph. A root graph is not a member of any other graph. This
routine does not support the changing of a graph or box into a root graph.

In the following cases, a root graph is not created, an error code is returned, and the interface returns
OVwNullObjectId.

� A non-root graph or box that matches graphProtocol and graphName exists in the GTM database. In
this case, the error code NVOT_GRAPH_ALREADY_EXIST or NVOT_BOX_ALREADY_EXIST is set.

� A root graph that matches graphProtocol and graphName exists. In this case, the error code
NVOT_ROOT_GRAPH_ALREADY_EXIST is set.

� A graph with the graphType attribute set to INVALID_GRAPH or OTHER_GRAPH already exists in
GTM database. In this case, the error code NVOT_OTHER_TYPE_GRAPH_EXISTS is set.

The graphProtocol and graphName parameters are required because together they uniquely identify
graphs in the GTM database.

The graphLayout parameter is required. However, if -1 (don't care) is passed, NONE_LAYOUT is
assumed, any other value is rejected, and the error code NVOT_INVALID_LAYOUT is set. Positioning the
symbols in the submap for the vertices and graphs members (submap) of a NONE_LAYOUT root graph
requires additional work. Also, further changes to the graph layout attribute are not supported.

The graphBackground, icon, label and graphDetails are the only optional parameters. However, if they are
not passed, they must be set to NULL. Pointers that are not valid can cause unpredictable errors. If
NULL is passed, the default “Network:Network” symbol is assumed for icon and the graphName string is
displayed in place of the label. Also, the submap background is cleared.

 Parameters
graphProtocol Specifies the protocol of the root graph. For more information, refer to the file

/usr/OV/conf/oid_to_protocol.

 Chapter 2. Reference Pages 249

 nvotCreateRootGraph(3)

graphName Specifies the name of the root graph. Both the graphName and the
graphProtocol are required to uniquely identify the root graph. This parameter
can be any string of characters. Once specified, the same name must be
used in any reference to this graph.

graphLayout Specifies the layout of the submap into which this graph can be exploded in
the NetView for AIX EUI. This parameter is an enumerated type defined in the
file <nvotTypes.h>. NONE_LAYOUT is assumed if -1 is passed. Once the
graph is created, the graph layout attribute cannot be changed.

graphBackground Specifies an image to be displayed in the background of the submap into
which this root graph is exploded. A background is usually an image of a
geographic region that helps in illustrating a submap. You can select a back-
ground image from among the bitmap files in the default directory
/usr/OV/backgrounds.

icon Specifies the icon to represent this root graph in the NetView for AIX EUI. For
information about selecting an icon, refer to the file /usr/OV/conf/C/oid_to_sym.

label Specifies the label under the root graph icon in the NetView for AIX EUI. The
label can be any string of characters.

graphDetails Contains particular information that applications store for future retrieval. The
information stored in this variable is for the application's use only. For
example, the application might copy the data of a structure into this variable by
doing a memcpy(graphDetails->octetString, (char *) applStruct,
sizeof(applStruct)) and graphDetails->octetLength = sizeof(applStruct).
However, although nvotOctetString allows for any size strings and the interface
does not check the size of graphDetails, any character exceeding 256 will be
truncated by the NetView for AIX object database.

 Return Values
OVwObjectId When the application is running in synchronous mode (that is, when the

nvotSetSynchronousCreation routine has been called with a non-zero value),
the nvotCreateRootGraph routine issues the create root graph operation to
GTM and stands in a finite loop until the NetView for AIX program returns the
OVwObjectId of the root graph just created. OVwObjectId is a positive integer.
If an error occurs or the loop times out, the routine returns OVwNullObjectId.
When the application is running in asynchronous mode (that is, when the
nvotSetSynchronousCreation routine has been called with a zero value or has
never been called), the nvotCreateRootGraph routine issues the create root
graph operation to GTM and immediately returns OVwNullObjectId. In either
case, upon return, an error code is available through a call to the routine
nvotGetError. For more information about OVwObjectId, see
“nvotSetSynchronousCreation(3)” on page 368.

 Error Codes

When the routine completes and returns control to its caller, an error internal variable is set. A call to the
routine nvotGetError returns the error code set at the last API call. The error variable is reset upon
entering and set before exiting this call to the API. All possible error codes set by this call and their
related message strings are:

[NVOT_SUCCESS] Successful operation.

250 Programmer's Reference

 nvotCreateRootGraph(3)

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol and/or name must
not be NULL.

[NVOT_INVALID_LAYOUT] Invalid layout. The layout must be a number defined in the
nvotTypes.h file.

[NVOT_INVALID_STATUS] The status is not valid. It must be a number defined in the
nvotTypes.h file.

[NVOT_GRAPH_ALREADY_EXIST] A graph already exists with the same protocol and name for which
this call is attempting to create a graph, box, or root graph.

[NVOT_BOX_ALREADY_EXIST] A box already exists with the same protocol and name for which
this call is attempting to create a graph, box, or root graph.

[NVOT_OTHER_TYPE_GRAPH_EXIST]
Another type of graph exists. This call is attempting to create a
graph, box, or root graph with a protocol and name already used
for a graph of type INVALID or OTHER.

[NVOT_ROOT_GRAPH_ALREADY_EXIST]
A root graph already exists with the same protocol and name for
which this call is attempting to create a graph, box, or root graph.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

[NVOT_OVW_TIMED_OUT] NetView for AIX timeout. The timeout value passed to
nvotSetSynchronousCreation might not be enough for the com-
plete operation processing, or the connection to the NetView for
AIX database might be down. Try increasing the timeout value.

[NVOT_OVW_OBJECT_ID_NOT_AVAIL]
An error occurred in creating the object ID for this element.

[NVOT_PROTOCOL_WAS_NOT_REGISTERED]
The protocol was not registered in the
/usr/OV/conf/oid_to_protocol file.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If ((rc ═ nvotGetError()) !═ NVOT_SUCCESS)
printf (“%s\n”, nvotGetErrorMsg (rc));

 Chapter 2. Reference Pages 251

 nvotCreateRootGraph(3)

 Examples

The following example creates a graph as root of protocol SDLC and layout
POINT_TO_POINT_RING_LAYOUT.

#include <nvot.h>

OVwObjectId rootGraphId;
nvotReturnCode rc;

nvotGraphProtocolType myRootGraphProt = "1.3.6.1.2.1.2.2.1.3.17";
char \ myRootGraphName = "My_Root_Graph";
nvotLayoutType myRootGraphLayout = POINT_TO_POINT_RING_LAYOUT;
char \ myRootGraphBackgroundMap = "brazil";
char \ myRootGraphIcon = "1.3.6.1.2.1.2.2.1.3.11.11";
char \ myRootGraphLabel = "My_Root_SDLC_Graph";
nvotOctetString \ myRootGraphDetails = NULL;
rootGraphId = nvotCreateRootGraph (myRootGraphProt,

 myRootGraphName,
 myRootGraphLayout,
 myRootGraphBackgroundMap,
 myRootGraphIcon,
 myRootGraphLabel,
 myRootGraphDetails);
if ((rc = nvotGetError()) == NVOT_SUCCESS)

 {
 if (synchMode)

printf ("%s OVwObjectId is : %d\n", myRootGraphLabel, rootGraphId);
 else

printf ("Root graph created but Object Id not available.\n");
 }
 else
 {

printf ("Root graph may not have been created.\n");
 }
printf ("Operation result : %s\n", nvotGetErrorMsg (nvotGetError()));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotChangeRootGraphLabel(3)” on page 190.
� See “nvotChangeRootGraphIcon(3)” on page 187.
� See “nvotSetSynchronousCreation(3)” on page 368.

252 Programmer's Reference

 nvotCreateSerialUnderlyingArc(3)

 nvotCreateSerialUnderlyingArc(3)

 Purpose

Creates an arc that lies under another arc

 Syntax

nvotReturnCode nvotCreateSerialUnderlyingArc (
 nvotNameBindingType arcNameBindingParent,
 nvotProtocolType aEndpointProtocolParent,
 char \ aEndpointNameParent,
 nvotProtocolType zEndpointProtocolParent,
 char \ zEndpointNameParent,
 int arcIndexIdParent,
 nvotNameBindingType arcNameBinding,
 nvotProtocolType aEndpointProtocol,
 char \ aEndpointName,
 nvotProtocolType zEndpointProtocol,
 char \ zEndpointName,
 int arcIndexId,
 char \ ulaIcon,
 char \ ulaLabel,
 nvotNameBindingType nextSerialNameBinding,
 nvotProtocolType nextSerialAEndpointProtocol,
 char \ nextSerialAEndpointName,
 nvotProtocolType nextSerialZEndpointProtocol,
 char \ nextSerialZEndpointName,
 int nextSerialArcIndexId)

 Description

An arc symbol in the OVw screen can actually be a bundle of arcs. NetView for AIX open topology pro-
vides the UnderlyingArc table as a means for storing lower level arcs in the database and representing
them on the OVw display.

Underlying arcs can be connected to each other either in a serial or parallel fashion. This routine creates
an arc that lies under a parent arc and is to be displayed as serially connected.

The first six parameters identify the parent arc. The parent arc must exist before the underlying arc can
be created. If the parent arc does not exist, NVOT_ARC_DOES_NOT_EXIST is returned.

The arcNameBinding, aEndpointProtocol, aEndpointName, zEndpointProtocol, zEndpointName and
arcIndexId parameters describe the underlying arc itself.

Note: There is a possibility that the underlying arc will have the same name as its parent arc, such as
when their endpoints are actually the same and their indexIds have erroneously been set to the
same value. This error should be avoided because the NVOT API does not check for this, but
gtmd does and it will reject the trap.

The arcNameBinding parameter helps in identifying the underlying arc endpoints. The arcNameBinding
must always be compatible with the values passed in the aEndpointProtocol and zEndpointProtocol
parameters.

 Chapter 2. Reference Pages 253

 nvotCreateSerialUnderlyingArc(3)

Endpoints of the class graph must exist; otherwise, the underlying arc is not created and an error code is
set. The NVOT API does not allow for automatic creation of graphs.

Usually, graphs and boxes are created as members of upper-level graphs through calls to routines
nvotCreateGraphInGraph and nvotCreateBoxInGraph. However, most of the time, the graph or box
endpoints of underlying arcs are not members of any upper-level graph. In other words, they exist as
orphan graphs or boxes and are displayed only in the arc submap. Because the automatic creation of
graphs or boxes is not allowed, two routines are available to allow for the creation of these orphan graphs
or boxes (refer to “nvotCreateGraph(3)” on page 232).

Endpoints of class vertex are automatically created if they do not exist. This is part of the GTM recovery
strategy for lost traps. However, a vertex endpoint is not created if the other endpoint is a reference to a
nonexistent graph.

The ulaIcon and ulaLabel parameters are optional. If they are not passed, they must be set to NULL.
Pointers that are not valid might cause unpredictable errors. If NULL is set for the parameters, the default
Connection:Generic symbol is assumed for ulaIcon, and the concatenation of aEndpointName +
zEndpointName + arcIndexId is displayed in place of ulaLabel.

The last six parameters specify the nextSerial underlying arc. The symbol for this arc is displayed next to
the underlying arc being created. If this is the last underlying arc in a series, the nextSerial parameters
must not be filled in and nextSerialNameBinding must be set to DONT_CARE_NAME_BINDING. If the
nextSerial parameter makes reference to a non-existent arc, this underlying arc is not created and
NVOT_NEXT_SERIAL_ARC_DOES_NOT_EXIST is returned. The next serial arc is not automatically
created by gtmd.

 Parameters
arcNameBindingParent, arcNameBinding, and nextSerialNameBinding

Specifies the class of the objects in each endpoint, respectively, of the parent arc, the underlying arc,
and of the next arc in the series. The endpoint can be a vertex or a graph. The allowed values are:

ARC_VERTEX_VERTEX_NAME_BINDING
Indicates one of the endpoints is a vertex.

ARC_VERTEX_GRAPH_NAME_BINDING
Indicates aEndpoint is a vertex and zEndpoint is a graph.

ARC_GRAPH_VERTEX_NAME_BINDING
Indicates aEndpoint is a graph and zEndpoint is a vertex.

ARC_GRAPH_GRAPH_NAME_BINDING
Indicates one of the endpoints is a graph.

In addition to the previously listed four values, the nextSerialNameBinding also supports the
DONT_CARE_NAME_BINDING value. Any value other than those noted is rejected by the interface
and the error code NVOT_INVALID_NAME_BINDING is set.

a/zEndpointProtocolParent, a/zEndpointProtocol, and nextSerialA/ZEndpointProtocol
Specifies the protocol of the object identified as the endpoint of the parent arc, the underlying arc, and
next arc in the series, respectively. If aEndpoint is a vertex, aEndpointProtocol must be set to a value
from the enumerated type nvotVertexProtocolType defined in the the file <nvotTypes.h>. Otherwise,
aEndpoint is a graph, and aEndpointProtocol is a pointer to a valid character string in memory.

a/zEndpointNameParent, a/zEndpointName, and nextSerialA/ZEndpointName
Specifies the name of the object identified as the endpoint of the parent arc, the underlying arc, and
the next serial arc, respectively. The endpointName, together with endpointProtocol, provides the

254 Programmer's Reference

 nvotCreateSerialUnderlyingArc(3)

information required to identify the object at a certain endpoint of an arc. It can be any string of
characters. However, once specified, the same name must be used in any reference to the object.

arcIndexIdParent, arcIndexId, and nextSerialArcIndexId
Specifies indexes (integer values) that distinguish between arcs within the same endpoints of the
parent arc, the underlying arc, and of the next arc in the series, respectively. It is possible to connect
the same two endpoints with several arcs; this parameter provides a means for determining each arc
named by the same endpoints.

Note: Avoid duplicate names. There is always a chance of the underlying arc to have exactly the
same name as its parent arc, for example if their endpoints are the same and their indexIds
are erroneously set to the same value. The NVOT API does check for this, but gtmd does,
and it will reject the trap.

ulaIcon
Specifies the symbol to represent this underlying arc in the ovw display. The symbol may be a line, a
dotted line, and so on. See the /usr/OV/conf/C/oid_to_sym file for details on how to choose an icon.

ulaLabel
Specifies a string of characters that represent an arc label to be displayed in the drop down menu
shown when the right mouse button is clicked on an arc symbol. This is also true for an underlying
arc.

 Return Values
nvotReturnCode The nvotCreatSerialUnderlyingArc routine returns an nvotReturnCode that can

assume the values described in the following error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a
positive integer and a vertex name must not be NULL.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol must be a
positive integer and a graph name must not be NULL.

[NVOT_ARC_INVALID_INDEX] The arc index is not valid. An arc protocol must be a posi-
tive integer and an arc name must not be NULL.

[NVOT_ULA_INVALID_INDEX] The ULA index is not valid. A ULA protocol must be a pos-
itive integer and a ULA name must not be NULL.

[NVOT_ENDPOINT_INVALID_INDEX] The endpoint index is not valid. An endpoint protocol must
be a positive integer and an endpoint name must not be
NULL.

[NVOT_ARC_DOES_NOT_EXIST] The parent arc for which you are creating an underlying arc
does not exist in the GTM database.

[NVOT_A_ENDPOINT_GRAPH_DOES_NOT_EXIST]
The aEndPoint graph speciified for the underlying arc does
not exist in the GTM database.

[NVOT_Z_ENDPOINT_GRAPH_DOES_NOT_EXIST]
The zEndPoint graph speciified for the underlying arc does
not exist in the GTM database.

 Chapter 2. Reference Pages 255

 nvotCreateSerialUnderlyingArc(3)

[NVOT_NEXT_SERIAL_ARC_DOES_NOT_EXIST]
The next arc in the series does not exist in the GTM data-
base.

[NVOT_INVALID_NAME_BINDING] The name binding is not valid. It must be a number defined
in the nvotTypes.h file.

[NVOT_PROTOCOL_WAS_NOT_REGISTERED]
The protocol was not registered in the
/usr/OV/oid_to_protocol file.

[NVOT_ERROR_ALLOCATING_MEMORY] Memory allocation error. The system might be out of
memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a con-
nection with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during
operation. Issue the nvotInit routine again.

 Examples

A printable message string is accessible through a call to the routine nvotGetErrorMsg, as shown in the
following example:

nvotReturnCode rc;

If ((rc = nvotGetError()) != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

This example illustrates how to create two arcs in serial underlying of an arc previously created. Notice
that the underlying arcs will be created in reverse order. This is a technique to avoid future calls to set the
next serial arcs.

#include <nvot.h>

nvotReturnCode RC;
nvotProtocolType dummyProtocol;
nvotProtocolType aEndpointProtocolParent.vertexProtocol = STARTLAN;
char \ aEndpointNameParent = "My_Vertex_V1";
nvotProtocolType zEndpointProtocolParent.vertexProtocol = STARTLAN;
char \ zEndpointNameParent = "My_Vertex_V2";
int arcIndexIdParent = 1;
nvotProtocolType aEndpointProtocol1.vertexProtocol = STARTLAN;
char \ aEndpointName1 = "My_Vertex_V3";
nvotProtocolType zEndpointProtocol1.vertexProtocol = STARTLAN;
char \ zEndpointName1 = "My_Vertex_V4";
int arcIndexId1 = 1;
nvotProtocolType aEndpointProtocol2.vertexProtocol = STARTLAN;
char \ aEndpointName2 = "My_Vertex_V5";
nvotProtocolType zEndpointProtocol2.vertexProtocol = STARTLAN;
char \ zEndpointName2 = "My_Vertex_V6";
int arcIndexId1 = 1;
char \ icon = "1.3.6.1.2.1.2.2.1.3.54.4";

RC = nvotCreateSerialUnderlyingArc (
 ARC_VERTEX_VERTEX_NAME_BINDING,
 aEndpointProtocolParent, aEndpointNameParent,
 zEndpointProtocolParent, zEndpointNameParent,
 arcIndexIdParent,

256 Programmer's Reference

 nvotCreateSerialUnderlyingArc(3)

 ARC_VERTEX_VERTEX_NAME_BINDING,
 aEndpointProtocol2, aEndpointName2,
 zEndpointProtocol2, zEndpointName2,

arcIndexId2, icon, "Ula_V1V2_2",
 DONT_CARE_NAME_BINDING,
 dummyProtocol, NULL
 dummyProtocol, NULL
 ð);

printf("Create First Serial Ula = %s\n", nvotGetErrorMsg(RC));

RC = nvotCreateSerialUnderlyingArc (
 ARC_VERTEX_VERTEX_NAME_BINDING,
 aEndpointProtocolParent, aEndpointNameParent,
 zEndpointProtocolParent, zEndpointNameParent,
 arcIndexIdParent,
 ARC_VERTEX_VERTEX_NAME_BINDING,
 aEndpointProtocol1, aEndpointName1,
 zEndpointProtocol1, zEndpointName1,

arcIndexId1, icon, "Ula_V1V2_1",
 ARC_VERTEX_VERTEX_NAME_BINDING,
 aEndpointProtocol2, aEndpointName2,
 zEndpointProtocol2, zEndpointName2,
 arcIndexId2);

printf("Create Second Serial Ula = %s\n", nvotGetErrorMsg(RC));

 Libraries
 � libnvot.a

 Files
 � nvot.h

 Related Information
� See “nvotCreateParallelUnderlyingArc(3)” on page 240.

 Chapter 2. Reference Pages 257

 nvotCreateUsingSap(3)

 nvotCreateUsingSap(3)

 Purpose

Creates a SAP of SAP type USING

 Syntax
#include <nvot.h>

nvotReturnCode nvotCreateUsingSap (
 nvotVertexProtocolType vertexProtocol,
 char \ vertexName,
 nvotVertexProtocolType sapProtocol,
 char \ sapName);

 Description

Vertices represent communication entities or interfaces across various protocol layers. The SAP object
class represents the logical relationship between two vertices inside a computer. If a communication entity
in a given protocol layer uses the services of a lower layer entity through a service point, a vertex repres-
enting an N-layer entity uses a SAP provided by a vertex representing an entity in layer N-1. Likewise, a
vertex representing an entity in layer N can provide a SAP for other vertices representing entities in layer
N+1 to use. Also, an interface or communication entity can provide its services to more than one entity in
an upper layer at the same time. However, a SAP always establishes only one association.

This routine correlates a vertex identified by vertexProtocol and vertexName parameter values, using the
services of a vertex identified by sapProtocol and sapName.

Although, in theory, it is possible to multiplex upward and downward, it is not meaningful to create more
than one using SAP for a given vertex. This means that the vertex defined by vertexProtocol and
vertexName should be using only one SAP.

Using or providing SAP is a semantical approach for the vertices relationship.

If the vertex using this SAP does not exist in the gtmd database, it is automatically created. However, the
automatic creation of vertex requires future calls to the routines nvotChangeVertexIconInBox,
nvotChangeVertexLabelInBox, nvotChangeVertexIconInGraph or nvotChangeVertexLabelInGraph for accu-
rate display by the NetView for AIX program.

All parameters in this routine are required.

 Parameters
vertexProtocol Specifies the protocol of the vertex using the SAP. Vertex protocol is an enu-

merated type defined in the file <nvotTypes.h>.

vertexName Specifies the name of the vertex using the SAP. This parameter can be any
string of characters. Once specified, the same name must be used in any
reference to this vertex.

sapProtocol Specifies the protocol of the vertex in which the SAP is defined. This is the
protocol of the vertex providing the SAP. Its value must not be equal to
vertexProtocol.

258 Programmer's Reference

 nvotCreateUsingSap(3)

sapName This parameter, or sapAddressName, is the element of correlation. It takes a
name that identifies the used SAP. If the SAP used is given by a Token Ring
card, for example, this variable is set to the MAC address.

 Return Values
nvotReturnCode The nvotCreateUsingSap routine returns an nvotReturnCode that can assume

the values described in the error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_SAP_INVALID_INDEX] The SAP index is not valid. A SAP protocol must be a positive
integer and a SAP name must not be NULL.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

[NVOT_PROTOCOL_WAS_NOT_REGISTERED]
The protocol was not registered in the
/usr/OV/conf/oid_to_protocol file.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If ((rc ═ nvotGetError()) !═ NVOT_SUCCESS)
printf (“%s\n”, nvotGetErrorMsg (rc));

 Examples

The following example established the SNA vertex V1 as using the Token Ring interface.

#include <nvot.h>

nvotReturnCode rc;

/\\\\\\\\\\\\ Define SNA Session vertex (V1) \\\\\\\\\\\\\\/
nvotVertexProtocolType mySNA_Vert_Prot = SNA_SESSION;
char \ mySNA_Vert_Name = "USIBMNT.NT67VTAM";

/\\\\\\\\\\\\ Define Token Ring SAP \\\\\\\\\\\\\\\\\\\\\\\/
nvotVertexProtocolType myTokenRingProt = ISO88ð25_TOKENRING;
char \ myTokenRingAddr = "1ððð5AA8D718";

if ((rc = nvotCreateUsingSap (mySNA_Vert_Prot,
 mySNA_Vert_Name,
 myTokenRingProt,

myTokenRingAddr)) == NVOT_SUCCESS);

 Chapter 2. Reference Pages 259

 nvotCreateUsingSap(3)

printf ("Sap created successfully");
 else

printf ("Error : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateProvidingSap(3)” on page 245.
� See “nvotSetSynchronousCreation(3)” on page 368.

260 Programmer's Reference

 nvotCreateVertexInBox(3)

 nvotCreateVertexInBox(3)

 Purpose

Creates a vertex in a box

 Syntax
#include <nvot.h>

OVwObjectId nvotCreateVertexInBox (
 nvotGraphProtocolType boxProtocol,
 char \ boxName,
 nvotVertexProtocolType vertexProtocol,
 char \ vertexName,
 char \ icon,
 char \ label,
 nvotOctetString \ vertexDetails,
 nvotStatusType status);

 Description

The nvotCreateVertexInBox routine creates a vertex and associates it with a box graph. Box means a
graph with graphType attribute value equal to BOX. A vertex can be a member of several graphs at the
same time. If the vertex already exists when nvotCreateVertexInBox is called, the routine creates a new
association between the vertex and the box graph. The box graph containing the vertex must exist and its
graphType attribute must be set to BOX. Otherwise, the vertex will not be created and an error code will
be set.

The protocol and name parameters together uniquely identify objects in the GTM database. These param-
eters are required.

The parameters icon, label and vertexDetails are optional parameters. If they are not passed, they must
be set to NULL. Pointers that are not valid might cause unpredictable errors. If NULL is passed, the
default Cards:Generic symbol is assumed for icon and the vertexName string is displayed in place of
label.

The status parameter must be set to one of the values defined in the <nvotTypes.h> file. Otherwise, the
routine is rejected and the error NVOT_INVALID_STATUS is set. The status value passed to this routine
will be mapped into other NetView for AIX state values according to the table shown in the NetView for
AIX Programmer's Guide.

 Parameters
boxProtocol Specifies the protocol of the box graph with which this vertex is associated.

This is the box graph of which the vertex will be a member. For more informa-
tion, refer to the file /usr/OV/conf/oid_to_protocol.

boxName Specifies the name of the box graph with which the vertex is associated. Both
the boxName and the boxProtocol are required to identify the parent box
graph. This parameter can be any string of characters. Once specified, the
same name must be used in any reference to this graph.

 Chapter 2. Reference Pages 261

 nvotCreateVertexInBox(3)

vertexProtocol Specifies the protocol of the vertex. The vertexProtocol parameter is an enu-
merated type defined in the file <nvotTypes.h>.

vertexName Specifies the name of the vertex. It can be any string of characters. Once
specified, the same name must be used in any reference to this vertex.

icon Specifies the icon that represents this vertex in the NetView for AIX EUI.
Refer to the file /usr/OV/conf/C/oid_to_sym. for details about selecting an
icon.

label Specifies the label under the vertex icon in the NetView for AIX EUI. The
label parameter can be any string of characters.

vertexDetails Contains particular information that applications store for future retrieval. The
information stored in this variable is for the application's use only. For
example, the application might copy the data of a structure into this variable by
doing a memcpy(vertexDetails->octetString, (char *) applStruct,
sizeof(applStruct)) and vertexDetails->octetLength = sizeof(applStruct).
However, although nvotOctetString allows for any size strings and the interface
does not check the size of vertexDetails, any character exceeding 256 is trun-
cated by the NetView for AIX object database.

status Specifies the status of the vertex. The status parameter is an enumerated
type defined in the file <nvotTypes.h>.

 Return Values
OVwObjectId When the application is running in synchronous mode, (that is, when the

nvotSetSynchronousCreation routine has been called with a non-zero value),
the nvotCreateVertexInBox routine issues the create vertex operation to GTM.
The routine remains in a finite loop until the NetView for AIX program returns
the OVwObjectId of the vertex just created. OVwObjectId is a positive integer.
If an error occurs or the loop times out, the routine returns OVwNullObjectId.
When the application is running in asynchronous mode (that is, when the
nvotSetSynchronousCreation routine has been called with a zero value or has
never been called), the nvotCreateVertexInBox routine issues the create vertex
operation to GTM and immediately returns OVwNullObjectId. In either case,
upon return, an error code is available through a call to the routine
nvotGetError. For more information about OVwObjectId, see
“nvotSetSynchronousCreation(3)” on page 368.

 Error Codes

When the routine completes and returns control to its caller, an error internal variable is set. A call to the
routine nvotGetError returns the error code set at the last API call. The error variable is reset upon
entering and set before exiting this call to the API. All possible error codes set by this call and their
related message strings are:

[NVOT_SUCCESS] Successful operation.

[NVOT_BOX_INVALID_INDEX] The box index is not valid. A box graph protocol and/or name
must not be NULL.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

262 Programmer's Reference

 nvotCreateVertexInBox(3)

[NVOT_INVALID_STATUS] The status is not valid. It must be a number defined in the
nvotTypes.h file.

[NVOT_BOX_DOES_NOT_EXIST] The box graph does not exist in the GTM database.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

[NVOT_OVW_TIMED_OUT] NetView for AIX timeout. The timeout value passed to
nvotSetSynchronousCreation might not be enough for the com-
plete operation processing, or the connection to the NetView for
AIX database might be down. Try increasing the timeout value.

[NVOT_OVW_OBJECT_ID_NOT_AVAIL]
An error occurred in creating the object ID for this element.

[NVOT_PROTOCOL_WAS_NOT_REGISTERED]
The protocol was not registered in the
/usr/OV/conf/oid_to_protocol file.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If ((rc ═ nvotGetError()) !═ NVOT_SUCCESS)
printf (“%s\n”, nvotGetErrorMsg (rc));

 Examples

The following example creates a vertex of STARLAN protocol inside a box graph. The box graph must
already exist. For information about creating a box graph, see the example in “nvotCreateBoxInGraph(3)”
on page 227.

#include <nvot.h>

OVwObjectId vertexId;
nvotReturnCode rc;
nvotBooleanType synchMode = FALSE;

nvotGraphProtocolType myBoxProt = "1.3.6.1.2.1.2.2.1.3.11";
char \ myBoxName = "My_Box_Graph";

nvotVertexProtocolType myVertexProt = STARLAN;
char \ myVertexName = "My_Vertex";
char \ myVertexIcon = "1.3.6.1.2.1.2.2.1.3.11.1";
char \ myVertexLabel = "My_Star_LAN_Vertex";
nvotOctetString \ myVertexDetails = NULL;
nvotStatusType myVertexStatus = STATUS_CRITICAL;
if (nvotSetSynchronousCreation (TRUE) == NVOT_SUCCESS)
synchMode = TRUE;

if ((vertexId = nvotCreateVertexInBox (myBoxProt,
 myBoxName,

 Chapter 2. Reference Pages 263

 nvotCreateVertexInBox(3)

 myVertexProt,
 myVertexName,
 myVertexIcon,
 myVertexLabel,
 myVertexDetails,

myVertexStatus) > OVwNullObjectId)
printf ("%s OVwObjectId is : %d\n", myVertexLabel, vertexId);

 else
 {
 if (synchMode)

printf ("An error occurred creating vertex %s\n", myVertexLabel);
 }
printf ("Operation result : %s\n", nvotGetErrorMsg (nvotGetError()));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateBoxInGraph(3)” on page 227.
� See “nvotDeleteVertexFromBox(3)” on page 297.
� See “nvotChangeVertexIconInBox(3)” on page 200.
� See “nvotChangeVertexLabelInBox(3)” on page 206.
� See “nvotGetVerticesInBox(3)” on page 353.
� See “nvotSetSynchronousCreation(3)” on page 368.

264 Programmer's Reference

 nvotCreateVertexInGraph(3)

 nvotCreateVertexInGraph(3)

 Purpose

Creates a vertex in a graph

 Syntax
#include <nvot.h>

OVwObjectId nvotCreateVertexInGraph (
 nvotGraphProtocolType graphProtocol,
 char \ graphName,
 nvotVertexProtocolType vertexProtocol,
 char \ vertexName,
 char \ icon,
 char \ label,
 nvotOctetString \ vertexDetails,
 nvotStatusType status);

 Description

The nvotCreateVertexInGraph routine creates a vertex and associates it with a graph. A vertex can be a
member of several graphs at the same time. If the vertex already exists when nvotCreateVertexInGraph is
called, the routine creates a new association between the vertex and a graph. The graph containing the
vertex must exist when the routine is called. Otherwise, the vertex will not be created and an error code
will be set.

The protocol and name parameters together uniquely identify objects in the GTM database. These param-
eters are required.

The parameters icon, label and vertexDetails are optional parameters. If they are not passed, they must
be set to NULL. Pointers that are not valid might cause unpredictable errors. If NULL is passed, the
default Cards:Generic symbol is assumed for icon and the vertexName string is displayed in place of
label.

The status parameter must be set to one of the values defined in the <nvotTypes.h> file. Otherwise, the
routine is rejected and the error [NVOT_INVALID_STATUS] is set. The status value passed to this routine
will be mapped into other NetView for AIX state values according to the table shown in the NetView for
AIX Programmer's Guide.

 Parameters
graphProtocol Specifies the protocol of the graph with which this vertex is associated. This is

the protocol of the graph of which this vertex is a member. For more informa-
tion, refer to the file /usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the graph with which this vertex is associated. Both the
graphName and the graphProtocol are required to identify the parent graph. It
can be any string of characters. Once specified, the same name must be
used in any reference to this graph.

vertexProtocol Specifies the protocol of the vertex. The vertexProtocol parameter is an enu-
merated type defined in the file <nvotTypes.h>.

 Chapter 2. Reference Pages 265

 nvotCreateVertexInGraph(3)

vertexName Specifies the name of the vertex. It can be any string of characters. Once
specified, the same name must be used in any reference to this vertex.

icon Specifies the icon that represents the vertex in the NetView for AIX EUI.
Refer to the file /usr/OV/conf/C/oid_to_sym. for details about selecting an
icon.

label Specifies the label under the vertex icon in the NetView for AIX EUI. Label
can be any string of characters.

vertexDetails Contains particular information that the application stores for future retrieval.
The information stored in this variable is for the application's use only. For
example, the application might copy the data of a structure into this variable by
doing a memcpy(vertexDetails->octetString, (char *) applStruct,
sizeof(applStruct)) and vertexDetails->octetLength = sizeof(applStruct).
However, although nvotOctetString allows for any size strings and the interface
does not check the size of vertexDetails, any character exceeding 256 will be
truncated by the NetView for AIX object database.

status Specifies the status of the vertex. The status parameter is an enumerated
type defined in the file <nvotTypes.h>.

 Return Values
OVwObjectId When the application is running in synchronous mode, (that is, when the

nvotSetSynchronousCreation routine has been called with a non-zero value),
the nvotCreateVertexInGraph routine issues the create vertex operation to
GTM. The routine stands in a finite loop until the NetView for AIX program
returns the OVwObjectId of the vertex just created. OVwObjectId is a positive
integer. If an error occurs or the loop times out, the nvotCreateVertexInGraph
routine returns OVwNullObjectId. When the application is running in asynchro-
nous mode, (that is, when the nvotSetSynchronousCreation routine has been
called with a zero value or has never been called), the routine will issue the
create vertex operation to GTM and imediately return OVwNullObjectId. In
either case, upon return, an error code is available through a call to the
nvotGetError routine. Refer to “nvotSetSynchronousCreation(3)” on page 368
for more details about OVwObjectId.

 Error Codes

When the routine completes and returns control to its caller, an error internal variable is set. A call to the
routine nvotGetError returns the error code set at the last API call. The error variable is reset upon
entering and set before exiting this call to the API. All possible error codes set by this call and their
related message strings are:

[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol and/or name must
not be NULL.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_INVALID_STATUS] The status is not valid. It must be a number defined in the
nvotTypes.h file.

[NVOT_GRAPH_DOES_NOT_EXIST] A graph does not exist in the GTM database.

266 Programmer's Reference

 nvotCreateVertexInGraph(3)

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection went down during opera-
tion. Issue the nvotInit routine again.

[NVOT_OVW_TIMED_OUT] NetView for AIX timeout. The timeout value passed to
nvotSetSynchronousCreation might not be enough for the com-
plete operation processing, or the connection to the NetView for
AIX database might be down. Try increasing the timeout value.

[NVOT_OVW_OBJECT_ID_NOT_AVAIL]
An error occurred in creating the object ID for this element.

[NVOT_PROTOCOL_WAS_NOT_REGISTERED]
The protocol was not registered in the
/usr/OV/conf/oid_to_protocol file.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If ((rc ═ nvotGetError()) !═ NVOT_SUCCESS)
printf (“%s\n”, nvotGetErrorMsg (rc));

 Examples

The following example creates a vertex of STARLAN protocol inside a graph. The graph must already
exist. For more information about creating a graph, see the example in “nvotCreateGraphInGraph(3)” on
page 235.

#include <nvot.h>

OVwObjectId vertexId;
nvotReturnCode rc;
nvotBooleanType synchMode = FALSE;

nvotGraphProtocolType my_STARLAN_GraphProt = "1.3.6.1.2.1.2.2.1.3.11";
char \ my_STARLAN_GraphName = "My_STARLAN_Graph";

nvotVertexProtocolType myVertexProt = STARLAN;
char \ myVertexName = "My_Vertex";
char \ myVertexIcon = "1.3.6.1.2.1.2.2.1.3.11.1";
char \ myVertexLabel = "My_STARLAN_Vertex";

nvotOctetString \ myVertexDetails = NULL;
nvotStatusType myVertexStatus = STATUS_NORMAL;
if (nvotSetSynchronousCreation (TRUE) == NVOT_SUCCESS)
synchMode = TRUE;

if ((vertexId = nvotCreateVertexInGraph (my_STARLAN_GraphProt,
 my_STARLAN_GraphName,
 myVertexProt,
 myVertexName,
 myVertexIcon,

 Chapter 2. Reference Pages 267

 nvotCreateVertexInGraph(3)

 myVertexLabel,
 myVertexDetails,

myVertexStatus) > OVwNullObjectId)
printf ("%s OVwObjectId is : %d\n", myVertexLabel, vertexId);

 else
 {
 if (synchMode)

printf ("An error occurred creating vertex %s\n", myVertexLabel);
 }
printf ("Operation result : %s\n", nvotGetErrorMsg (nvotGetError()));

 Libraries

/usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateRootGraph(3)” on page 249.
� See “nvotCreateGraphInGraph(3)” on page 235.
� See “nvotDeleteVertexFromGraph(3)” on page 299.
� See “nvotChangeVertexIconInGraph(3)” on page 203.
� See “nvotChangeVertexLabelInGraph(3)” on page 209.
� See “nvotChangeVertexPositionInGraph(3)” on page 215.
� See “nvotGetVerticesInGraph(3)” on page 356.
� See “nvotSetSynchronousCreation(3)” on page 368.
� See “nvotGetError(3)” on page 323.
� See “nvotGetErrorMsg(3)” on page 326.

268 Programmer's Reference

 nvotDeleteArc(3)

 nvotDeleteArc(3)

 Purpose

Deletes an arc

 Syntax
#include <nvot.h>

nvotReturnCode nvotDeleteArc (nvotNameBindingType arcNameBinding,
 nvotProtocolType aEndpointProtocol,
 char \ aEndpointName,
 nvotProtocolType zEndpointProtocol,
 char \ zEndpointName,
 int arcIndexId)

 Description

The nvotDeleteArc routine deletes an arc. An arc connects two arc endpoints: two vertices, two graphs, a
vertex to a graph, or a graph to a vertex. An arc is recognized and referenced by its aEndpoint,
zEndpoint, and arcIndexId.

The arcNameBinding parameter helps to identify the arc endpoints. See the parameters section of this
man page for a detailed description of the arcNameBinding parameter. The arcNameBinding must always
be compatible with the values passed in the aEndpointProtocol and zEndpointProtocol parameters. All
parameters are required.

The nvotProtocolType is a union of a enumerated type with a char pointer as defined in the nvotTypes.h
file. Special care must be taken when setting aEndpointProtocol and zEndpointProtocol. Setting these
variables with a nvotVertexProtocolType value if the arcNameBinding parameter identifies the endpoint as
a graph causes unpredictable errors. This is similar to setting a char pointer to an integer value.

Deleting an arc causes the following side effects:

� The simple connections with which the arc is associated are deleted.

� All underlying arcs belonging to this arc are deleted.

� All graph associations—member arcs and graph-attached arcs— are deleted.

For a detailed explanation of the side effects of deleting an arc, see the chapter that discusses NetView
for AIX open topology side effects in the NetView for AIX Programmer's Guide.

 Parameters
arcNameBinding Specifies the class of the objects in each endpoint of the arc. An endpoint can

be either a vertex or a graph. The following values are supported:

ARC_VERTEX_VERTEX_NAME_BINDING
Indicates that either endpoint is a vertex

ARC_VERTEX_GRAPH_NAME_BINDING
Indicates that aEndpoint is a vertex and zEndpoint is a graph

ARC_GRAPH_VERTEX_NAME_BINDING
Indicates that aEndpoint is a graph and zEndpoint is a vertex

 Chapter 2. Reference Pages 269

 nvotDeleteArc(3)

ARC_GRAPH_GRAPH_NAME_BINDING
Indicates that either endpoint is a graph

If any value other than the preceding values is used, it is rejected by the GTM
interface and the error code NVOT_INVALID_NAME_BIND is set.

Arcs can be handled based on their direction. For more information about the
direction of arcs, see “nvotInit(3)” on page 359. Regardless of which direction
was set in the nvotInit routine, the arcNameBinding parameter always identi-
fies what value is set in the aEndpointProtocol and zEndpointProtocol vari-
ables.

aEndpointProtocol/zEndpointProtocol
Specifies the protocol of the object identified as the aEndpoint or zEndpoint,
respectively, of this arc. If aEndpoint or zEndpoint is to be a vertex,
aEndpointProtocol or zEndpointProtocol, respectively, must be set with a value
from the enumerated type nvotVertexProtocolType, which is defined in the file
nvotTypes.h. Otherwise, aEndpoint or zEndpoint is a graph, and
aEndpointProtocol or zEndpointProtocol, respectively, is a pointer to a valid
character string in memory.

aEndpointName/zEndPointName
Specifies the name of the object identified as the aEndpoint or zEndpoint,
respectively, of this arc. Both the endpoint name and the endpoint protocol
are required to identify the object at one of the endpoints of this arc. This
parameter can be any string of characters. Once specified, the same name
must be used in any reference to this graph.

arcIndexId Distinguishes an arc from other arcs between the same endpoints. (Two
endpoints can be connected by several different arcs.) The arcIndexId is an
integer value.

 Return Values
nvotReturnCode The nvotDeleteArc routine returns an nvotReturnCode that can assume the

values described in the error codes section of this man page.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_ENDPOINT_GRAPH_INVALID_INDEX]
The endpoint graph index is not valid. An endpoint graph protocol
and/or name must not be NULL.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_ARC_INVALID_INDEX] The arc index is not valid. It must be a positive integer.

[NVOT_INVALID_NAME_BINDING] The name binding is not valid. It must be a number defined in the
nvotTypes.h file.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

270 Programmer's Reference

 nvotDeleteArc(3)

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during operation.
Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example deletes arc number 1 connecting oneEndpoint to otherEndpoint.

#include <nvot.h>

nvotReturnCode rc;

nvotProtocolType oneEndpoint.vertexProtocol = STARLAN;
char \ oneEndpointName = "My_Vertex_V1";
nvotProtocolType otherEndpoint.vertexProtocol = STARLAN;
char \ otherEndpointName = "My_Vertex_V2;
int arcNumber = 1;
if ((rc = nvotDeleteArc (ARC_VERTEX_VERTEX_NAME_BINDING,

 oneEndpoint,
 oneEndpointName,
 otherEndpoint,
 otherEndpointName,

arcNumber)) == NVOT_SUCCESS)

printf ("Arc from %s to %s of index %d deleted.\n",
oneEndpointName, otherEndpointName, arcNumber);

 else
printf ("An error occurred deleting arc number %d from %s to %s.\n",

oneEndpointName, otherEndpointName, arcNumber);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateArcInGraph(3)” on page 221.
� See “nvotDeleteArcFromGraph(3)” on page 272.
� See “nvotGetArcsInGraph(3)” on page 307.

 Chapter 2. Reference Pages 271

 nvotDeleteArcFromGraph(3)

 nvotDeleteArcFromGraph(3)

 Purpose

Deletes an arc from a graph

 Syntax
#include <nvot.h>

nvotReturnCode nvotDeleteArcFromGraph (
 nvotGraphProtocolType graphProtocol,
 char \ graphName,
 nvotNameBindingType arcNameBinding,
 nvotProtocolType aEndpointProtocol,
 char \ aEndpointName,
 nvotProtocolType zEndpointProtocol,
 char \ zEndpointName,
 int arcIndexId);

 Description

The nvotDeleteArcFromGraph routine deletes the relationship that associates the arc identified by
aEndpoint, zEndpoint and arcIndexId from the graph identified by graphProtocol and graphName. Unlike
the nvotDeleteArc routine, this routine deletes the arc only if it is not a member of any graph.

The deletion of an arc relationship causes no side effects. However, if an arc is deleted, there are several
side affects. These side affects are described in “nvotDeleteArc(3)” on page 269.

An arc connects arc endpoints: two vertices, two graphs, a vertex to a graph, or a graph to a vertex. An
arc is recognized and referenced by its aEndpoint, zEndpoint, and arcIndexId.

The arcNameBinding parameter helps to identify the arc endpoints. For a detailed description, see the
following parameters section in this man page. The arcNameBinding must always be compatible with the
values passed in the aEndpointProtocol and zEndpointProtocol parameters. All parameters are required.

The nvotProtocolType is a union of a enumerated type with a char pointer as defined in nvotTypes.h file.
Special care must be taken when setting the aEndpointProtocol and zEndpointProtocol parameters.
Setting these variables to an nvotVertexProtocolType value if arcNameBinding identifies the endpoint as a
graph causes unpredictable errors. This is similar to setting a char pointer to an integer value.

 Parameters
graphProtocol

Specifies the protocol of the graph that contains the arc. This is the graph of which this arc is a
member arc. For more information, refer to the file /usr/OV/conf/oid_to_protocol.

graphName
Specifies the name of the graph that contains the arc. Both the graphName and graphProtocol
parameters are required to identify the containing graph. This parameter is a string of characters used
to create the graph.

arcNameBinding
Specifies the class of the objects in each endpoint of the arc. An endpoint can be either a vertex or a
graph. The following values are supported:

272 Programmer's Reference

 nvotDeleteArcFromGraph(3)

ARC_VERTEX_VERTEX_NAME_BINDING
Indicates that either endpoint is a vertex.

ARC_VERTEX_GRAPH_NAME_BINDING
Indicates that aEndpoint is a vertex and zEndpoint is a graph

ARC_GRAPH_VERTEX_NAME_BINDING
Indicates that aEndpoint is a graph and zEndpoint is a vertex.

ARC_GRAPH_GRAPH_NAME_BINDING
Indicates either endpoints are graphs

If a value other than those in the preceding list is used, it is rejected by the GTM interface and the
error code NVOT_INVALID_NAME_BIND is set.

Arcs are handled based on their direction. For more information about arc direction, see “nvotInit(3)”
on page 359. Regardless of the selection made in the nvotInit routine, arcNameBinding always identi-
fies what value is set in the aEndpointProtocol and zEndpointProtocol variables.

aEndpointProtocol/zEndpointProtocol
Specifies the protocol of the object identified as the aEndpoint or aEndpointProtocol, respectively, of
this arc. If aEndpoint or zEndpoint is a vertex, aEndpointProtocol or zEndpointProtocol, respectively,
must be set to a value from the enumerated type nvotVertexProtocolType defined in the file
nvotTypes.h. Otherwise, aEndpoint or zEndpoint is a graph, and aEndpointProtocol or
zEndpointProtocol, respectively, is a pointer to a valid character string in memory.

aEndpointName
Specifies the name of the object identified as the aEndpoint of this arc. Both the aEndpointName and
aEndpointProtocol parameters are required to identify the object at the aEndpoint of this arc. This
parameter can be any string of characters. Once specified, the same name must be used in any
reference to this graph.

arcIndexId
Distinguishes an arc from other arcs between the same endpoints. (Two endpoints can be connected
by several different arcs.) The arcIndexId is an integer value.

 Return Values
nvotReturnCode The nvotDeleteArcFromGraph routine returns an nvotReturnCode that can

assume the values described in the following error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol and/or name must
not be NULL.

[NVOT_A_ENDPOINT_GRAPH_DOES_NOT_EXIST]
The graph defined as the A endpoint of the arc does not exist in
the GTM database.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_ARC_INVALID_INDEX] The arc index is not valid. It must be a positive integer.

[NVOT_INVALID_NAME_BINDING] The name binding is not valid. It must be a number defined in the
nvotTypes.h file.

 Chapter 2. Reference Pages 273

 nvotDeleteArcFromGraph(3)

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during operation.
Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example deletes the dotted arc created in the example in “nvotCreateArcInGraph(3)” on
page 221.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType myGraphProt = "1.3.6.1.2.1.2.2.1.3.11";
char \ myGraphName = "My_Graph";
nvotProtocolType oneEndpoint.vertexProtocol = STARLAN;
char \ oneEndpointName = "My_Vertex_Endpoint";
nvotProtocolType otherEndpoint.graphProtocol = "1.3.6.1.2.1.2.2.1.3.11";
char \ otherEndpointName = "My_Graph_Endpoint";
int arcNumber = 1;
char \ myDotDashArcLabel = "My_Dotted_Arc"

if (rc = nvotDeleteArcFromGraph (myGraphProt,
 myGraphName,
 ARC_VERTEX_GRAPH_NAME_BINDING,
 oneEndpoint,
 oneEndpointName,
 otherEndpoint,
 otherEndpointName,

arcNumber) == NVOT_SUCCESS)

printf ("%s deleted successfully.\n", myDotDashArcLabel);
 else

printf ("An error occurred deleting arc %s\n", myDotDashArcLabel);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

274 Programmer's Reference

 nvotDeleteArcFromGraph(3)

 Related Information
� See “nvotCreateArcInGraph(3)” on page 221.
� See “nvotGetArcsInGraph(3)” on page 307.

 Chapter 2. Reference Pages 275

 nvotDeleteBox(3)

 nvotDeleteBox(3)

 Purpose

Deletes a box

 Syntax
#include <nvot.h>

nvotReturnCode nvotDeleteBox (nvotGraphProtocolType boxProtocol,
char \ boxName);

 Description

The nvotDeleteBox routine deletes a box graph. The protocol and name parameters uniquely identify
objects in the GTM database. Both parameters are required.

Deleting a box causes side effects, including the following:

� Additional information about the box graph and box graph members is deleted.

� All associations with vertices and arcs, including members, member arcs and graph-attached arcs, are
deleted.

� All arcs and simple connections named by this graph are deleted. For a detailed explanation of the
effects of deleting a graph, refer to the chapter discussing NetView for AIX open topology side effects
in the NetView for AIX Programmer's Guide.

 Parameters
boxProtocol Specifies the protocol of the box graph. For more information about specifying

a box protocol, refer to the file /usr/OV/conf/oid_to_protocol.

boxName Specifies the name of the box graph. Both the boxName and boxProtocol
parameters are required to uniquely identify the box graph. This parameter is
a string of characters previously used to create the box graph.

 Return Values
nvotReturnCode The nvotDeleteBox routine returns an nvotReturnCode that can assume the

values described in the error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_BOX_INVALID_INDEX] The box index is not valid. A box graph protocol and/or name
must not be NULL.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during operation.
Issue the nvotInit routine again.

276 Programmer's Reference

 nvotDeleteBox(3)

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following sample deletes a box graph.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType myBox_STARLAN_GraphProt = "1.3.6.1.2.1.2.2.1.3.11";
char \ myBox_STARLAN_GraphName = "My_Box_STARLAN_Graph";

if ((rc = nvotDeleteBox (myBox_STARLAN_GraphProt,
myBox_STARLAN_GraphName)) == NVOT_SUCCESS)

printf ("%s deleted.\n", myBox_STARLAN_GraphName);
 else

printf ("An error occurred deleting box : %s\n", myBox_STARLAN_GraphName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateBoxInGraph(3)” on page 227.
� See “nvotDeleteBoxFromGraph(3)” on page 278.
� See “nvotGetBoxesInGraph(3)” on page 314.

 Chapter 2. Reference Pages 277

 nvotDeleteBoxFromGraph(3)

 nvotDeleteBoxFromGraph(3)

 Purpose

Deletes a box from a graph

 Syntax
#include <nvot.h>

nvotReturnCode nvotDeleteBoxFromGraph (
 nvotGraphProtocolType graphProtocolParent,
 char \ graphNameParent,
 nvotGraphProtocolType boxProtocol,
 char \ boxName);

 Description

The nvotDeleteBoxFromGraph routine deletes the relationship that associates a box graph identified by
boxProtocol and boxName to a parent graph identified by graphProtocolParent and graphNameParent.

This routine deletes a box graph only if it is not a member of any other graph and it contains no members,
memberArcs and attachedArcs in it.

The deletion of the box graph relationship causes no side effects. However, if a box graph is deleted,
there are several side effects. These side effects are described in “nvotDeleteGraph(3)” on page 281.

The protocol and name parameters uniquely identify objects in the GTM database. These parameters are
required for both the parent and box graphs.

 Parameters
graphProtocolParent Specifies the protocol of the parent graph. For more information about speci-

fying a graph's protocol refer to the file /usr/OV/conf/oid_to_protocol.

graphNameParent Specifies the name of the parent graph. Both the graphNameParent and
graphProtocolParent parameters are required to uniquely identify the parent
graph.

boxProtocol Specifies the protocol of the child box graph. For more information about
specifying a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

boxName Specifies the name of the child box graph. Both the boxName and the
boxProtocol parameters are required to identify the box graph.

 Return Values
nvotReturnCode The nvotDeleteBoxFromGraph routine returns an nvotReturnCode that can

assume the values described in the following error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

278 Programmer's Reference

 nvotDeleteBoxFromGraph(3)

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol and/or name must
not be NULL.

[NVOT_BOX_INVALID_INDEX] The box index is not valid. A box graph protocol and/or name
must not be NULL.

[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during operation.
Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If ((rc = nvotGetError()) != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following sample deletes a box that is a member of the root graph.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType my_STARLAN_GraphsProt = "1.3.6.1.2.1.2.2.1.3.11";

char \ myRoot_STARLAN_GraphName = "My_Root_Graph";

char \ myBox_STARLAN_GraphName = "My_Box_STARLAN_Graph";
char \ myBox_STARLAN_GraphLabel = "My_Box_STARLAN_Graph"

if ((rc = nvotDeleteBoxFromGraph (my_STARLAN_GraphsProt,
 myRoot_STARLAN_GraphName,
 my_STARLAN_GraphsProt,

myBox_STARLAN_GraphName)) == NVOT_SUCCESS)

printf ("%s deleted successfully.\n", myBox_STARLAN_GraphLabel);
 else

printf ("An error occurred deleting box %s\n", myBox_STARLAN_GraphLabel);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Chapter 2. Reference Pages 279

 nvotDeleteBoxFromGraph(3)

 Related Information
� See “nvotCreateRootGraph(3)” on page 249.
� See “nvotCreateBoxInGraph(3)” on page 227.
� See “nvotGetBoxesInGraph(3)” on page 314.

280 Programmer's Reference

 nvotDeleteGraph(3)

 nvotDeleteGraph(3)

 Purpose

Deletes a graph

 Syntax
#include <nvot.h>

nvotReturnCode nvotDeleteGraph (nvotGraphProtocolType graphProtocol,
 char \ graphName)

 Description

The nvotDeleteGraph routine deletes a graph. The protocol and name parameters together uniquely iden-
tify objects in the GTM database. Both parameters are required.

Deleting a graph causes side effects, including the following:

� Additional information about the graph and graph members is deleted.

� All associations with vertices and arcs, including members, member arcs and graph-attached arcs, are
deleted.

� All arcs and simple connections named by this graph are deleted.

For a detailed explanation of the effects of deleting a graph, refer to the chapter discussing NetView for
AIX open topology side effects in the NetView for AIX Programmer's Guide.

 Parameters
graphProtocol Specifies the protocol of the graph. For more information about specifying a

graph protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the graph. Both the graphName and the graphProtocol
are required to uniquely identify the graph in the GTM database. This param-
eter is a string of characters previously used to create the graph.

 Return Values
nvotReturnCode The nvotDeleteGraph routine returns an nvotReturnCode that can assume the

values described in the error codes section in this man page.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol and/or name must
not be NULL.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during operation.
Issue the nvotInit routine again.

 Chapter 2. Reference Pages 281

 nvotDeleteGraph(3)

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example deletes the graph created in “nvotCreateGraphInGraph(3)” on page 235.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType mySDLCGraphProt = "1.3.6.1.2.1.2.2.1.3.17";
char \ mySDLCGraphName = "My_Child_SDLC_Graph";

if ((rc = nvotDeleteGraph (mySDLCGraphProt,
mySDLCGraphName)) == NVOT_SUCCESS)

printf ("%s deleted.\n", mySDLCGraphName);
 else

printf ("An error occurred deleting graph : %s\n", mySDLCGraphName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateGraphInGraph(3)” on page 235.
� See “nvotCreateRootGraph(3)” on page 249.
� See “nvotDeleteGraphFromGraph(3)” on page 283.
� See “nvotGetGraphsInGraph(3)” on page 330.

282 Programmer's Reference

 nvotDeleteGraphFromGraph(3)

 nvotDeleteGraphFromGraph(3)

 Purpose

Deletes a graph from a graph

 Syntax
#include <nvot.h>

nvotReturnCode nvotDeleteGraphFromGraph (
 nvotGraphProtocolType graphProtocolParent,
 char \ graphNameParent,
 nvotGraphProtocolType graphProtocol,
 char \ graphName);

 Description

The nvotDeleteGraphFromGraph routine deletes the relationship that associates a child graph identified by
graphProtocol and graphName to a parent graph identified by graphProtocolParent and graphNameParent.

The child graph is deleted only if it is not a member of any other graph and it contains no members,
memberArcs and attachedArcs.

The deletion of the graph relationship causes no side effects. However, if the child graph is deleted, there
are several side effects. These side effects are described in “nvotDeleteGraph(3)” on page 281.

The protocol and name parameters uniquely identify objects in the GTM database. These parameters are
required for both the parent and child graphs.

 Parameters
graphProtocolParent Specifies the protocol of the parent graph. For more information about speci-

fying a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphNameParent Specifies the name of the parent graph. Both the graphNameParent and
graphProtocolParent parameters are required to uniquely identify the parent
graph.

graphProtocol Specifies the protocol of the child graph. For more information about speci-
fying a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the child graph. Both the graphName and
graphProtocol parameters are required to uniquely identify the child graph.

 Return Values
nvotReturnCode The nvotDeleteGraphFromGraph routine returns an nvotReturnCode that can

assume the values described in the following error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

 Chapter 2. Reference Pages 283

 nvotDeleteGraphFromGraph(3)

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol and/or name must
not be NULL.

[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during operation.
Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If ((rc = nvotGetError()) != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example deletes a graph, member of a root graph, created in the example in
“nvotCreateGraphInGraph(3)” on page 235.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType mySDLCGraphsProt = "1.3.6.1.2.1.2.2.1.3.17";
char \ myRootSDLCGraphName = "My_Root_Graph";
char \ myChildSDLCGraphName = "My_Child_SDLC_Graph";
char \ myChildSDLCGraphLabel = "My_Child_SDLC_Graph";

if ((rc = nvotDeleteGraphFromGraph (mySDLCGraphsProt,
 myRootSDLCGraphName,
 mySDLCGraphsProt,

myChildSDLCGraphName)) == NVOT_SUCCESS)

printf ("%s deleted successfully.\n", myChildSDLCGraphLabel);
 else

printf ("An error occurred deleting graph %s\n", myChildSDLCGraphLabel);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

284 Programmer's Reference

 nvotDeleteGraphFromGraph(3)

 Related Information
� See “nvotCreateRootGraph(3)” on page 249.
� See “nvotCreateGraphInGraph(3)” on page 235.
� See “nvotGetGraphsInGraph(3)” on page 330.

 Chapter 2. Reference Pages 285

 nvotDeleteProvidingSap(3)

 nvotDeleteProvidingSap(3)

 Purpose

Deletes a SAP of SAP type PROVIDING

 Syntax
#include <nvot.h>

nvotReturnCode nvotDeleteProvidingSap (nvotVertexProtocolType vertexProtocol,
 char \ vertexName,
 nvotVertexProtocolType sapProtocol,
 char \ sapName)

 Description

This nvotDeleteProvidingSap routine deletes a SAP from the list of SAPs provided by the vertex identified
by vertexProtocol and vertexName. The sapProtocol and sapName parameters, as well as the
vertexProtocol and vertexName parameters of the vertex providing the SAP, identify the SAP to be
deleted. All of these parameters are required. If one of these parameters is not provided, the error code
NVOT_VERTEX_INVALID_INDEX or NVOT_SAP_INVALID_INDEX is returned.

A SAP exists in vertex V1 to provide services to vertex V2 using it. A given SAP can be referenced by
vertex V1, which provides it, and vertex V2, which uses it, at the same time. In this case, a call to the
nvotDeleteProvidingSap routine does not delete the SAP itself but removes the reference to the SAP from
the list of SAPs provided by a vertex. A further call to the nvotDeleteUsingSap routine deletes the SAP
itself. See “nvotDeleteUsingSap(3)” on page 292.

 Parameters
vertexProtocol Specifies the protocol of the vertex providing the SAP. Vertex protocol is an

enumerated type defined in the file nvotTypes.h.

vertexName Specifies the name of the vertex. This parameter is a string of characters
used to create the vertex.

sapProtocol Specifies the protocol of the vertex in which the SAP is defined. This is the
protocol of the vertex providing this SAP. See the following example in this
man page.

sapName The sapName or sapAddressName parameter is used to identify a SAP pro-
vided by an N-level entity to an N+1-level entity. The sapName parameter is a
character string containing information including an IP address, and an SNA
physical and logical unit address. See the following example.

 Return Values
nvotReturnCode The nvotDeleteProvidingSap routine returns an nvotReturnCode that can

assume the values described in the following error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

286 Programmer's Reference

 nvotDeleteProvidingSap(3)

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_SAP_INVALID_INDEX] The SAP index is not valid. A SAP protocol must be a positive
integer and a SAP name must not be NULL.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during operation.
Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The example bellow deletes a SAP which has been created in the example given in routine
“nvotCreateProvidingSap(3)” on page 245.

#include <nvot.h>

nvotReturnCode rc;

/\\\\\\\\\\\\ Define Token Ring vertex (V1) \\\\\\\\\\\\\\\/
nvotVertexProtocolType myTokenRingProt = ISO88ð25_TOKENRING;
char \ myTokenRingName = "TR_Card";

/\\\\\\\\\\\\ Define TCP/IP vertex (V3) \\\\\\\\\\\\\\\\\\\/
nvotVertexProtocolType myTCP_IP_Prot = IP;
char \ myTCP_IP_Name = "9.179.1.237";

if ((rc = nvotDeleteProvidingSap (myTokenRingProt,
 myTokenRingName,
 myTokenRingProt,

myTCP_IP_Name)) == NVOT_SUCCESS)

printf ("Sap provided to TCP/IP has been deleted.\n");
 else

printf ("An error occurred deleting sap.\n");
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Chapter 2. Reference Pages 287

 nvotDeleteProvidingSap(3)

 Related Information
� See “nvotCreateUsingSap(3)” on page 258.
� See “nvotCreateProvidingSap(3)” on page 245.

288 Programmer's Reference

 nvotDeleteUnderlyingArc(3)

 nvotDeleteUnderlyingArc(3)

 Purpose

Deletes an underlying arc relationship to its parent arc.

 Syntax
#include <nvot.h>

nvotReturnCode nvotDeleteUnderlyingArc (
 nvotNameBindingType arcNameBindingParent,
 nvotProtocolType aEndpointProtocolParent,
 char \ aEndpointNameParent,
 int arcIndexIdParent,
 nvotNameBindingType arcNameBinding,
 nvotProtocolType zEndpointProtocol,
 char \ aEndpointName,
 nvotProtocolType zEndpointProtocol,
 char \ zEndpointName,
 int arcIndexId)

 Description

This routine deletes an underlying arc relationship to its parent arc. It does not delete the child arc itself.
See “nvotDeleteArc(3)” on page 269 for information about deleting the arc. If this routine completes suc-
cessfully, the underlying arc symbol is removed from the parent arc submap.

 Parameters
arcNameBindingParent and arcNamebinding

Specify the class of the objects in each endpoint of the parent arc and the underlying arc itself,
respectively. The endpoint could be either a vertex or a graph. The allowed values are as follows:

ARC_VERTEX_VERTEX_NAME_BINDING
Indicates either of the endpoints are vertices.

ARC_VERTEX_GRAPH_NAME_BINDING
aEndpoint is a vertex and zEndpoint is a graph.

ARC_GRAPH_VERTEX_NAME_BINDING
aEndpoint is a graph and zEndpoint is a vertex.

ARC_GRAPH_GRAPH_NAME_BINDING
Indicates either of the endpoints are graphs.

aEndpointProtocolParent, zEndpointProtocolParent, aEndpointProtocol, and zEndpointProtocol
These parameters are all of the same type. They specify the protocol of the object identified as the
endpoint of the parent arc and the underlying arc itself, respectively. For instance, if aEndpoint is to
be a vertex, aEndpointProtocol must be set to a value out of the enumerated type
nvotVertexProtocolType defined in the file <nvotTypes.h>. Otherwise, aEndpoitn is a agraph, and
aEndpointProtocol must take a pointer to a valid character string in memory.

 Chapter 2. Reference Pages 289

 nvotDeleteUnderlyingArc(3)

aEndpointNameParent, zEndpointNameParent, aEndpointName, and zEndpointName
These parameters are all of type char *. They specify the name of the object identified as the
endpoint of the parent arc and the underlying arc, respectively. The endpointName, together with the
endpointProtocol, are required to identify the object at a certain endpoint of an arc. It must be the
very same string of characters used in the creation of the underlying arc.

arcIndexIdParent and arcIndexId
Since it is possible to connect the same two endpoints with several arcs, there should be a way to
distinguish each arc named by the same endpoints. These indexes are integer values that distinguish
one arc among others between the same endpoints of the parent arc and the underlying arc, respec-
tively.

 Return Values
nvotReturnCode The nvotDeleteUnderlyingArc routine returns an nvotReturnCode that can

assume the values described in the following error codes.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol must be a positive
integer and a graph name must not be NULL.

[NVOT_ARC_INVALID_INDEX] The arc index is not valid. An arc index must be a positive
integer.

[NVOT_ULA_INVALID_INDEX] An underlying arc index is not valid.

[NVOT_INVALID_NAME_BINDING] Invalid name binding. The name must be a number defined in the
file <nvotTypes.h>.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during operation.
Issue the nvotInit routine again.

A printable message string is accessible through a call to the routine nvotGetErrorMsg, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

290 Programmer's Reference

 nvotDeleteUnderlyingArc(3)

 Examples

The following example shows one of the underlying arcs created in the example given in the routine
“nvotCreateParallelUnderlyingArc(3)” on page 240.

#include <nvot.h>

nvotReturnCode rc;

nvotProtocolType oneEndpoint.VertexProtocol = STARLAN;
char \ oneEndpointName = "My_Vertex_V1";
nvotProtocolType otherEndpoint.VertexProtocol = STARLAN;
char \ otherEndpointName = "My_Vertex_V2";
int parentArc = 1;
int oneUla = 2;

RC = nvotDeleteUnderlyingArc (ARC_VERTEX_NAME_BINDING,
 oneEndpoint, oneEndpointName,
 otherEndpoint, otherEndpointName,
 parentArc,
 ARC_VERTEX_VERTEX_NAME_BINDING,
 oneEndpoint, oneEndpointName,
 otherEndpoint, otherEndpointName,
 oneUla);

printf ("DeleteUla= %s\n", nvotGetErrorMsg (RC));
 print ("Ula_V1V2_2\n\n");

 Libraries
 � libnvot.a

 Files
 � nvot.h

 Related Information
� See “nvotCreateParallelUnderlyingArc(3)” on page 240.

� See “nvotCreateSerialUnderlyingArc(3)” on page 253.

� See “nvotDeleteArc(3)” on page 269.

 Chapter 2. Reference Pages 291

 nvotDeleteUsingSap(3)

 nvotDeleteUsingSap(3)

 Purpose

Deletes a SAP of SAP type USING

 Syntax
#include <nvot.h>

nvotReturnCode nvotDeleteUsingSap (nvotVertexProtocolType vertexProtocol,
 char \ vertexName,
 nvotVertexProtocolType sapProtocol,
 char \ sapName)

 Description

The nvotDeleteUsingSap routine deletes a SAP from the list of SAPs used by the vertex identified by
vertexProtocol and vertexName. The sapProtocol and sapName parameters, as well as the vertexProtocol
and vertex Name parameters of the vertex using the SAP, identify the SAP to be deleted. All these
parameters are required. If one of these parameters is not provided, the error code
[NVOT_VERTEX_INVALID_INDEX] or [NVOT_SAP_INVALID_INDEX] is returned.

A using SAP exists for vertex V1 because there is a second vertex, V2, providing it. A given SAP can be
referenced by vertex V2, which provides it, and vertex V1, which uses it, at the same time. In this case, a
call to the nvotDeleteUsingSap routine does not delete the SAP itself but removes the reference to the
SAP from the list of SAPs used by a vertex. A further call to the nvotDeleteProvidingSap routine deletes
the SAP itself. See “nvotDeleteProvidingSap(3)” on page 286 for more information.

 Parameters
vertexProtocol Specifies the protocol of the vertex using the SAP. Vertex protocol is an enu-

merated type defined in the file nvotTypes.h.

vertexName Specifies the name of the vertex. This parameter is a string of characters
used to create the vertex.

sapProtocol Specifies the protocol of the vertex in which the SAP is defined. This is the
protocol of the vertex providing the SAP. See the following example.

sapName The sapName or sapAddressName parameter is used to identify a SAP pro-
vided by an N-level entity to an N+1-level entity. The sapName parameter is a
character string containing information including an IP address, and a SNA
physical and logical unit address. See the following example.

 Return Values
nvotReturnCode The nvotDeleteUsingSap routine returns an nvotReturnCode that can assume

the values described in the following error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

292 Programmer's Reference

 nvotDeleteUsingSap(3)

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_SAP_INVALID_INDEX] The SAP index is not valid. A SAP protocol must be a positive
integer and a SAP name must not be NULL.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during operation.
Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example deletes the SAP that is created by the code in the example in
“nvotCreateUsingSap(3)” on page 258.

#include <nvot.h>

nvotReturnCode rc;

/\\\\\\\\\\\\ Define Token Ring vertex (V1) \\\\\\\\\\\\\\\/
nvotVertexProtocolType myTokenRingProt = ISO88ð25_TOKENRING;
char \ myTokenRingName = "TR_Card";

/\\\\\\\\\\\\ Define TCP/IP vertex (V3) \\\\\\\\\\\\\\\\\\\/
nvotVertexProtocolType myTCP_IP_Prot = IP;
char \ myTCP_IP_Name = "9.179.1.237";

if ((rc = nvotDeleteUsingSap (myTCP_IP_Prot,
 myTCP_IP_Name,
 myTokenRingProt,

myTCP_IP_Name)) == NVOT_SUCCESS)

printf ("LLC Sap in use by TCP/IP has been deleted.\n");
 else

printf ("An error occurred deleting sap.\n");
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Chapter 2. Reference Pages 293

 nvotDeleteUsingSap(3)

 Related Information
� See “nvotCreateUsingSap(3)” on page 258.
� See “nvotCreateProvidingSap(3)” on page 245.
� See “nvotDeleteProvidingSap(3)” on page 286.

294 Programmer's Reference

 nvotDeleteVertex(3)

 nvotDeleteVertex(3)

 Purpose

Deletes a vertex

 Syntax
#include <nvot.h>

nvotReturnCode nvotDeleteVertex (nvotVertexProtocolType vertexProtocol,
 char \ vertexName)

 Description

The nvotDeleteVertex routine deletes from the GTM database a vertex identified by the vertexProtocol and
vertexName parameters. These parameters are required.

When you use the nvotDeleteVertex routine to delete a vertex, the following actions also occur:

� All arcs that have this vertex as endpoint are deleted.

� All SAPs provided or used by the vertex are deleted.

� The vertex's membership in any graphs with which it is associated is discontinued.

The deletion of arcs or SAPs, or the discontinuation of a vertex's membership in graphs can cause further
deletions. For example, when these arcs are deleted, underlying arcs, graph-attached arcs, and simple
connections associated with these arcs can also be deleted. For a complete explanation of the effects of
deleting a vertex, see the chapter that discusses NetView for AIX open topology side effects in the
NetView for AIX Programmer's Guide.

 Parameters
vertexProtocol Specifies the protocol of the vertex to be deleted. Vertex protocol is an enu-

merated type defined in the file nvotTypes.h.

vertexName Specifies the name of the vertex to be deleted. This parameter can be any
string of characters that, in conjunction with vertexProtocol, identifies a vertex
in the GTM database.

 Return Values
nvotReturnCode The nvotDeleteVertex routine returns an nvotReturnCode that can assume the

values described in the error codes section of this man page.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

 Chapter 2. Reference Pages 295

 nvotDeleteVertex(3)

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during operation.
Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example deletes the vertex created in the example in “nvotCreateVertexInGraph(3)” on
page 265.

#include <nvot.h>

nvotReturnCode rc;

nvotVertexProtocolType myVertexProt = STARLAN;
char \ myVertexName = "My_Vertex";

if ((rc = nvotDeleteVertex (myVertexProt,
myVertexName)) == NVOT_SUCCESS)

printf ("Vertex %s deleted.\n", myVertexName);
 else

printf ("An error occurred deleting vertex : %s\n", myVertexName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateVertexInGraph(3)” on page 265.
� See “nvotCreateVertexInBox(3)” on page 261.
� See “nvotDeleteVertexFromGraph(3)” on page 299.
� See “nvotDeleteVertexFromBox(3)” on page 297.
� See “nvotGetVerticesInGraph(3)” on page 356.
� See “nvotGetVerticesInBox(3)” on page 353.

296 Programmer's Reference

 nvotDeleteVertexFromBox(3)

 nvotDeleteVertexFromBox(3)

 Purpose

Deletes a vertex from a box

 Syntax
#include <nvot.h>

nvotReturnCode nvotDeleteVertexFromBox (
 nvotGraphProtocolType boxProtocol,
 char \ boxName,
 nvotVertexProtocolType vertexProtocol,
 char \ vertexName);

 Description

The nvotDeleteVertexFromBox routine deletes the relationship that associates a vertex identified by
vertexProtocol and vertexName to a box graph identified by boxProtocol and boxName. Unlike the
nvotDeleteVertex routine, this routine deletes a vertex only if it is not a member of any other graph.

The deletion of a graph's vertex relationship causes no side effects. However, if a vertex is deleted, there
are several side effects. These are described in “nvotDeleteVertex(3)” on page 295.

All parameters are required.

 Parameters
boxProtocol Specifies the protocol of the box graph that contains the vertex. This is the

box graph of which this vertex is a member. For more information, refer to the
file /usr/OV/conf/oid_to_protocol.

boxName Specifies the name of the box graph that contains the vertex. Both the
boxName and boxProtocol parameters are required to identify the containing
box graph. This parameter is a string of characters used to create the box.

vertexProtocol Specifies the protocol of the vertex associated with the box graph. Vertex pro-
tocol is an enumerated type defined in the file nvotTypes.h.

vertexName Specifies the name of the vertex associated with the box graph. This param-
eter is a string of characters used to create the vertex.

 Return Values
nvotReturnCode The nvotDeleteVertexFromBox routine returns an nvotReturnCode that can

assume the values described in the following error codes section in this man
page.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_BOX_INVALID_INDEX] The box index is not valid. A box graph protocol and/or name
must not be NULL.

 Chapter 2. Reference Pages 297

 nvotDeleteVertexFromBox(3)

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during operation.
Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example deletes the vertex created in “nvotCreateVertexInBox(3)” on page 261.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType myBoxProt = "1.3.6.1.2.1.2.2.1.3.11";
char \ myBoxName = "My_Box_Graph";
nvotVertexProtocolType myVertexProt = STARLAN;
char \ myVertexName = "My_Vertex";
char \ myVertexLabel = "My_Star_LAN_Vertex";

if (rc = nvotDeleteVertexFromBox (myBoxProt,
 myBoxName,
 myVertexProt,

myVertexName) == NVOT_SUCCESS)

printf ("%s deleted successfully.\n", myVertexLabel);
 else

printf ("An error occurred deleting vertex %s\n", myVertexLabel);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateVertexInBox(3)” on page 261.
� See “nvotChangeVertexIconInBox(3)” on page 200.
� See “nvotChangeVertexLabelInBox(3)” on page 206.
� See “nvotGetVerticesInBox(3)” on page 353.

298 Programmer's Reference

 nvotDeleteVertexFromGraph(3)

 nvotDeleteVertexFromGraph(3)

 Purpose

Deletes a vertex from a graph

 Syntax
#include <nvot.h>

nvotReturnCode nvotDeleteVertexFromGraph (
 nvotGraphProtocolType graphProtocol,
 char \ graphName,
 nvotVertexProtocolType vertexProtocol,
 char \ vertexName);

 Description

The nvotDeleteVertexFromGraph routine deletes the relationship that associates a vertex identified by
vertexProtocol and vertexName to a graph identified by graphProtocol and graphName. Unlike the
nvotDeleteVertex routine, this routine deletes a vertex only if it is not a member of any other graph.

The deletion of a graph's vertex relationship causes no side effects. However, if a vertex is deleted, there
are several side effects. These are described in “nvotDeleteVertex(3)” on page 295.

All parameters are required.

 Parameters
graphProtocol Specifies the protocol of the graph that contains the vertex. This is the graph

of which the vertex is a member. For more information, refer to the file
</usr/OV/conf/oid_to_protocol>.

graphName Specifies the name of the graph that contains the vertex. Both the
graphName and graphProtocol parameters are required to identify the con-
taining graph. This parameter is a string of characters used to create the
graph.

vertexProtocol Specifies the protocol of the vertex associated with the graph. Vertex protocol
is an enumerated type defined in the file nvotTypes.h.

vertexName Specifies the name of the vertex associated with the graph. This parameter is
a string of characters used to create the vertex.

 Return Values
nvotReturnCode The nvotDeleteVertexFromGraph routine returns an nvotReturnCode that can

assume the values described in the following error codes section in this man
page.

 Error Codes
[NVOT_SUCCESS] Successful operation.

 Chapter 2. Reference Pages 299

 nvotDeleteVertexFromGraph(3)

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol and/or name must
not be NULL.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during operation.
Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example deletes the vertex created in “nvotCreateVertexInGraph(3)” on page 265.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType my_STARLAN_GraphProt = "1.3.6.1.2.1.2.2.1.3.11";
char \ my_STARLAN_GraphName = "My_STARLAN_Graph";

nvotVertexProtocolType myVertexProt = STARLAN;
char \ myVertexName = "My_Vertex";
char \ myVertexLabel = "My_STARLAN_Vertex";

if (rc = nvotDeleteVertexFromGraph (my_STARLAN_GraphProt,
 my_STARLAN_GraphName,
 myVertexProt,

myVertexName) == NVOT_SUCCESS)

printf ("%s deleted successfully.\n", myVertexLabel);
 else

printf ("An error occurred deleting vertex %s\n", myVertexLabel);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

300 Programmer's Reference

 nvotDeleteVertexFromGraph(3)

 Related Information
� See “nvotCreateVertexInGraph(3)” on page 265.
� See “nvotChangeVertexIconInBox(3)” on page 200.
� See “nvotChangeVertexLabelInGraph(3)” on page 209.
� See “nvotChangeVertexPositionInGraph(3)” on page 215.
� See “nvotGetVerticesInGraph(3)” on page 356.

 Chapter 2. Reference Pages 301

 nvotDone(3)

 nvotDone(3)

 Purpose

Closes connections and terminates interface activity

 Syntax
#include <nvot.h>
nvotReturnCode nvotDone ()

 Description

The nvotDone routine closes the connection to gtmd. It also closes the connection to the NetView for AIX
program if nvotSetSynchronousCreation (TRUE) has been called.

If the interface has not been initialized or the connections have not been closed, the nvotDone routine
does not take any action and the error code NVOT_NOT_INITIALIZED is returned.

 Return Values

If successful, nvotDone returns [NVOT_SUCCESS]. If unsuccessful, nvotDone returns one of the fol-
lowing error codes.

 Error Codes

Upon return, an error internal variable is set. A call to the routine nvotGetError returns the error code set
at the last API call. The error variable is reset upon entering and set before exiting this call to the API. All
possible error codes set by this call and their related message strings are:

[NVOT_SUCCESS] Successful operation.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

A printable message string is accessible through a call to the routine nvotGetErrorMsg, as shown in the
following example:

nvotReturnCode rc;

If ((rc ═ nvotGetError()) !═ NVOT_SUCCESS)
printf (“%s\n”, nvotGetErrorMsg (rc));

302 Programmer's Reference

 nvotDone(3)

 Examples

The following example closes a connection previously established to gtmd and checks the result.

#include <nvot.h>

nvotReturnCode rc;

if ((rc ═ nvotDone ()) ══ NVOT_SUCCESS)
printf (“OK : %s\n”, nvotGetErrorMsg (rc));

 else
printf (“WHOOPS! : %s\n”, nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotInit(3)” on page 359.
� See “nvotGetError(3)” on page 323.
� See “nvotGetErrorMsg(3)” on page 326.

 Chapter 2. Reference Pages 303

 nvotFree(3)

 nvotFree(3)

 Purpose

Releases memory allocated by routines in the GTM API

 Related Functions
 � nvotFreeVertex

 � nvotFreeVertexList

 � nvotFreeGraph

 � nvotFreeGraphList

 � nvotFreeBox

 � nvotFreeBoxList

 � nvotFreeArc

 � nvotFreeArcList

 � nvotFreeSap

 � nvotFreeSapList

 � nvotFreeSimpleConnection

 � nvotFreeSimpleConnectionList

 � nvotFreeUnderlyingConnection

 � nvotFreeUnderlyingConnectionList

 � nvotFreeUnderlyingArc

 � nvotFreeUnderlyingArcList

 � nvotFreeMembers

 � nvotFreeMembersList

 � nvotFreeMemberArcs

 � nvotFreeMemberArcsList

 � nvotFreeAttachedArcs

 � nvotFreeAttachedArcsList

 � nvotFreeAdditionalMembers

 � nvotFreeAdditionalMembersList

 � nvotFreeAdditionalGraph

 � nvotFreeAdditionalGraphList

304 Programmer's Reference

 nvotFree(3)

 Syntax
#include <nvot.h>

nvotReturnCode nvotFreeVertex (nvotVertex \ vertex)
nvotReturnCode nvotFreeVertexList (nvotVertexList \ vertexList)

nvotReturnCode nvotFreeGraph (nvotGraph \ graph)
nvotReturnCode nvotFreeGraphList (nvotGraphList \ graphList)

nvotReturnCode nvotFreeBox (nvotBox \ box)
nvotReturnCode nvotFreeBoxList (nvotBoxList \ boxList)

nvotReturnCode nvotFreeArc (nvotArc \ arc)
nvotReturnCode nvotFreeArcList (nvotArcList \ arcList)

nvotReturnCode nvotFreeSap (nvotSap \ sap)
nvotReturnCode nvotFreeSapList (nvotSapList \ sapList)

nvotReturnCode nvotFreeSimpleConnection (nvotSimpleConnection \ simpleConnection)
nvotReturnCode nvotFreeSimpleConnectionList (nvotSimpleConnectionList \ simpleConnectionList)

nvotReturnCode nvotFreeUnderlyingConnection (nvotUnderlyingConnection \ underlyingConnection)
nvotReturnCode nvotFreeUnderlyingConnectionList (nvotUnderlyingConnectionList \ underlyingConnectionList)

nvotReturnCode nvotFreeUnderlyingArc (nvotUnderlyingArc \ underlyingArc)
nvotReturnCode nvotFreeUnderlyingArcList (nvotUnderlyingArcList \ underlyingArcList)

nvotReturnCode nvotFreeMembers (nvotMembers \ members)
nvotReturnCode nvotFreeMembersList (nvotMembersList \ membersList)

nvotReturnCode nvotFreeMemberArcs (nvotMemberArcs \ memberArcs)
nvotReturnCode nvotFreeMemberArcsList (nvotMemberArcsList \ memberArcsList)

nvotReturnCode nvotFreeAttachedArcs (nvotAttachedArcs \ attachedArcs)
nvotReturnCode nvotFreeAttachedArcsList (nvotAttachedArcsList \ attachedArcsList)

nvotReturnCode nvotFreeAdditionalMembers (nvotAdditionalMembers \ additionalMembers)
nvotReturnCode nvotFreeAdditionalMembersList (nvotAdditionalMembersList \ additionalMembersList)

nvotReturnCode nvotFreeAdditionalGraph (nvotAdditionalGraph \ additionalGraph)
nvotReturnCode nvotFreeAdditionalGraphList (nvotAdditionalGraphList \ additionalGraphList)

 Description

The get routines return structures or lists of structures to the application. These structures and lists are
memory that have been allocated by the interface.

The free routines are available for the application to release the memory allocated by the get routines.

 Parameters

For the definitions of the structures and lists, see Chapter 6, “Using NetView for AIX GTM Data
Structures” on page 1061.

 Return Values
nvotReturnCode The routine returns NVOT_SUCCESS.

 Chapter 2. Reference Pages 305

 nvotFree(3)

 Error Codes
[NVOT_SUCCESS] The operation was successful.

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

306 Programmer's Reference

 nvotGetArcsInGraph(3)

 nvotGetArcsInGraph(3)

 Purpose

Gets a list of all arcs contained in a graph

 Syntax
#include <nvot.h>

nvotArcList \ nvotGetArcsInGraph (
 nvotGraphProtocolType graphProtocol,
 char \ graphName)

 Description

The nvotGetArcsInGraph routine issues a get operation of all arcs contained in the graph identified by
graphProtocol and graphName.

The protocol and name parameters uniquely identify objects in the GTM database. The graphProtocol and
graphName parameters are required. If one of these parameters is not provided, the routine does not
search for an arc list and the error code NVOT_GRAPH_INVALID_INDEX is set.

If the containing graph does not exist, the routine does not search for arcs and the error code
NVOT_GRAPH_DOES_NOT_EXIST is set.

If the get operation fails, the routine returns NULL and the error variable is set. See the following error
codes and return values sections.

If the get operation completes successfully but no arc exists within the graph, the routine returns NULL
and the error variable is set to NVOT_SUCCESS.

If the get operation completes successfully and arcs exist in the graph, the routine returns a list of all arcs
contained in the identified graph.

Notice that the interface allocates structured data in memory and returns a pointer to it. The user must
call one of the free memory routines to have all data de-allocated.

 Parameters
graphProtocol Specifies the protocol of the graph this routine looks at. This is the graph for

whose arcs the routine searches. For more information, refer to the file
/usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the graph this routine looks at. Both the graphName
and graphProtocol parameters are required to uniquely identify the containing
graph. This parameter can be any string of characters. Once specified, the
same name must be used in any reference to this graph.

 Chapter 2. Reference Pages 307

 nvotGetArcsInGraph(3)

 Return Values
nvotArcList Upon completion of the get operation, the nvotGetArcsInGraph routine returns

a list of all arcs that are members of the identified graph.

As defined in the file nvotTypes.h, nvotArcList is an array list of nvotArc struc-
tures. The nvotArcList return value is a structure made up of a pointer to the
first nvotArc element and an integer variable count indicating the number of
elements in the list.

Each nvotArc element is a structure carrying information about an arc. For
more information, please see “Basic Structures” on page 1061.

The variable operation returned in each nvotArc element has no meaning in
this routine.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol and/or name must
not be NULL.

[NVOT_GRAPH_DOES_NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during operation.
Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If ((rc = nvotGetError()) != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

308 Programmer's Reference

 nvotGetArcsInGraph(3)

 Examples

The following example checks all arcs contained in the graph created in the example shown in
“nvotCreateArcInGraph(3)” on page 221.

#include <nvot.h>

nvotReturnCode rc;
nvotArcList \ myArcs = NULL;

nvotGraphProtocolType myGraphProt = "1.3.6.1.2.1.2.2.1.3.11";
char \ myGraphName = "My_Graph";

if ((myArcs = nvotGetArcsInGraph (myGraphProt,
myGraphName) != NULL) {

/\ OK, it seems we have gotten a few arcs. Print their names. \/
printf ("Graph %s contains %d arcs.\n", myGraphName, myArcs->count);
for (i = 1; i = myArcs->count; i++)
printf ("Arc %d = %s<->%s, #%d.\n", i, myArcs->arc[i-1].arcAttr.aEndpointName,

 myArcs->arc[i-1].arcAttr.zEndpointName,
 myArcs->arc[i-1].arcAttr.arcIndexId);

/\ We don't need them any longer. Let's release all memory. \/
 nvotFreeArcList (myArcs);

} else {
/\ No, we've gotten no arcs. What happened?... \/
if ((rc = nvotGetError()) EQ NVOT_SUCCESS)
printf ("Graph %s contains no arcs.\n", myGraphName);

 else {
printf ("Error occurred getting arcs from graph %s\n", myGraphName);
printf ("Error message : %s.\n", nvotGetErrorMsg (rc));

 }
 }

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See nvotFreeArc in “nvotFree(3)” on page 304.
� See “nvotFree(3)” on page 304.
� See “nvotGetError(3)” on page 323.
� See “nvotGetErrorMsg(3)” on page 326.

 Chapter 2. Reference Pages 309

 nvotGetArcObjectId(3)

 nvotGetArcObjectId(3)

 Purpose

Gets an arc ObjectId from the OVW database

 Syntax
#include <nvot.h>

OVwObjectId nvotGetArcObjectId (
 nvotNameBindingType arcNameBinding,
 nvotProtocolType aEndpointProtocol,
 char \ aEndpointName,
 nvotProtocolType zEndpointProtocol,
 char \ zEndpointName,
 int arcIndexId)

 Description

Objects in the OVW database are given object IDs. When an object is created in its database, gtmd
sends a notification to ovwdb, which creates an ObjectId in its own database. These actions are not
synchronous and the time elapsed between GTM creation and OVW creation might vary, depending on
the activity of GTM and OVW. This is a consideration for applications that directly connect to the OVW
database with the intention of adding new variables to that database.

This routine returns the OVwObjectId of the arc identified by aEndpointProtocol/Name,
zEndpointProtocol/Name and arcIndexId.

An arc might exist to connect two vertices, two graphs or a vertex to a graph and vice versa. These are
called arc endpoints. An arc is recognized and referenced by its aEndpoint, zEndpoint and arcIndexId.
Thus, aEndpointProtocol, aEndpointName, zEndpointProtocol, zEndpointName and arcIndexId are manda-
tory parameters, otherwise the ObjectId is not searched for and error code NVOT_ARC_INVALID_INDEX
is set.

The arcNameBinding parameter helps in identifying the arc endpoints. The arcNameBinding must always
be compatible with the values passed in the aEndpointProtocol and zEndpointProtocol parameters.

If the get operation fails, the routine returns ovwNullObjectId and the error internal variable is set.

If the get operation completes successfully but the arc has not been created in the OVW database,
ovwNullObjectId is returned; however the error internal variable is set to NVOT_SUCCESS.

If the get operation completes successfully and the arc exists in the OVW database, the routine returns its
OVwObjectId.

 Parameters
arcNameBinding

Specifies the class of the objects in each endpoint of the arc. The endpoint can be a vertex or a
graph. The allowed values are:

ARC_VERTEX_VERTEX_NAME_BINDING
Indicates either of the endpoints are vertices.

310 Programmer's Reference

 nvotGetArcObjectId(3)

ARC_VERTEX_GRAPH_NAME_BINDING
aEndpoint is a vertex and zEndpoint is a graph.

ARC_GRAPH_VERTEX_NAME_BINDING
aEndpoint is a graph and zEndpoint is a vertex.

ARC_GRAPH_GRAPH_NAME_BINDING
Indicates either of the endpoints are graphs.

Any value other than those listed is rejected by the interface and the error code
NVOT_INVALID_NAME_BINDING is returned.

aEndpointProtocol
Specifies the protocol of the object identified as the aEndpoint of this arc. If aEndpoint is to be a
vertex, aEndpointProtocol must be set with a value from the enumerated type nvotVertexProtocolType
defined in the file nvotTypes.h. Otherwise, aEndpoint is a graph, and aEndpointProtocol is a pointer to
a valid character string in memory.

aEndpointName
Specifies the name of the object identified as the aEndpoint of this arc. The aEndpointName together
with aEndpointProtocol provide the information required to identify the object at the aEndpoint of this
arc.

zEndpointProtocol
Specifies the protocol of the zEndpoint of the arc. It works the same as the aEndpointProtocol.

zEndpointName
Specifies the name of the zEndpoint of the arc. It works the same as the aEndpointName. Refer to the
explanation above.

arcIndexId
Specifies an integer value which distinguishes one arc from others between the same endpoints.

It is possible to connect the same two endpoints with several arcs. This parameter provides a way to
distinguish each arc named by the same endpoints.

 Return Values
OVwObjectId OVwObjectId is an unsigned integer type. If the get operation finds the object,

a positive value is returned. However, if ovwNullObjectId is returned, the error
internal variable should be checked because an error might have occurred.

An ovwNullObjectId value can be tested with the macro OVwIsIdNull as
defined in the OV/ovw_types.h file.

 Error Codes

Upon return, an error internal variable is set. A call to the routine nvotGetError returns the error code set
at the last API call. The error internal variable is reset upon entering and set before exiting this call to the
API. The following error codes are set by this call:

[NVOT_SUCCESS] Successful operation.

[NVOT_ARC_INVALID_INDEX] The arc index is not valid. An arc protocol must be a positive
integer and an arc name must not be NULL.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a
positive integer and a vertex name must not be NULL.

 Chapter 2. Reference Pages 311

 nvotGetArcObjectId(3)

[NVOT_ENDPOINT_GRAPH_INVALID_INDEX]
The zEndPoint graph index is not valid. A graph protocol
must be a positive integer and a graph name must not be
NULL.

[NVOT_INVALID_NAME_BINDING] The name binding is not valid. It must be a number defined
in the nvotTypes.h file.

[NVOT_ERROR_ALLOCATING_MEMORY] Memory allocation error. The system might be out of
memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a con-
nection with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the routine nvotGetErrorMsg as in the following
example:

nvotReturnCode rc;

If ((rc = nvotGetError()) != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The example below gets the OVwObjectId of the arc created in the example given in the routine
“nvotCreateArcInGraph(3)” on page 221

#include <nvot.h>

nvotReturnCode rc;
OVwObjectId arcOid = ovwNullObjectId;

nvotProtocolType oneEndpoint.vertexProtocol = STARLAN;
char \ oneEndpointName = "My_Vertex_V1";
nvotProtocolType otherEndpoint.vertexProtocol = STARLAN;
char \ otherEndpointName = "My_Vertex_V2;
int arcNumber = 1;

arcOid = nvotGetArcObjectId (ARC_VERTEX_VERTEX_NAME_BINDING,
 oneEndpoint,
 oneEndpointName,
 otherEndpoint,
 otherEndpointName,
 arcNumber);

if (OVwIsIdNull (arcOid))
/\ We may have had a problem. \/
if (nvotGetError () != NVOT_SUCCESS)
printf ("Error message = %s.\n", nvotGetErrorMsg (nvotGetError()));

 else
 /\ OK!...\/

printf ("Arc %s_%s ObjectId = %d.\n", oneEndpointName, otherEndpointName,
 arcOid);

312 Programmer's Reference

 nvotGetArcObjectId(3)

 Libraries
 � libnvot.a

 Files
 � nvot.h

 Related Information
� See “nvotCreateArcInGraph(3)” on page 221.

� See “nvotGetError(3)” on page 323.

� See “nvotGetErrorMsg(3)” on page 326.

 Chapter 2. Reference Pages 313

 nvotGetBoxesInGraph(3)

 nvotGetBoxesInGraph(3)

 Purpose

Gets a list of all boxes contained in a graph

 Syntax
#include <nvot.h>

nvotBoxList \ nvotGetBoxesInGraph (
 nvotGraphProtocolType graphProtocol,
 char \ graphName)

 Description

The nvotGetBoxesInGraph routine issues a get operation of all boxes contained in the graph identified by
graphProtocol and graphName.

The protocol and name parameters uniquely identify objects in the GTM database. The graphProtocol and
graphName parameters are required. If one of these parameters is not provided, the routine does not
search for a box list and the error code NVOT_GRAPH_INVALID_INDEX is set.

If the containing graph does not exist, the routine does not search for the boxes and the error code
NVOT_GRAPH_DOES_NOT_EXIST is set.

If the get operation fails, the routine returns NULL and the error variable is set. See the following error
codes and return values sections.

If the get operation completes successfully but no box exists within the parent graph, the routine returns
NULL and the error variable is set to NVOT_SUCCESS.

If the get operation completes successfully and boxes exist within the parent graph, the routine returns a
list of all boxes contained in the identified graph.

The interface allocates structured data in memory and returns a pointer to it. The user must call one of
the free memory routines to have all data de-allocated.

 Parameters
graphProtocol Specifies the protocol of the graph this routine looks at. This is the parent

graph for whose boxes the routine searches. For more information, refer to
the file /usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the graph this routine looks at. Both the graphName
and graphProtocol parameters are required to uniquely identify the containing
graph. This parameter can be any string of characters. Once specified, the
same name must be used in any reference to this graph.

314 Programmer's Reference

 nvotGetBoxesInGraph(3)

 Return Values
nvotBoxList Upon completion of the get operation, this routine returns a list of all boxes

that are members of the identified graph.

As defined in the file nvotTypes.h, nvotBoxList is an array list of nvotBox struc-
tures. The nvotBoxList return value is a structure made up of a pointer to the
first nvotBox element and an integer variable count indicating the number of
elements in the list.

Each nvotBox element is a structure carrying information about a box graph.
For more information, please see “Basic Structures” on page 1061.

The variable operation returned in each nvotBox element has no meaning in
this routine.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol and/or name must
not be NULL.

[NVOT_GRAPH_DOES_NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during operation.
Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If ((rc = nvotGetError()) != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Chapter 2. Reference Pages 315

 nvotGetBoxesInGraph(3)

 Examples

The following example checks all boxes contained in the graph created in the example in
“nvotCreateBoxInGraph(3)” on page 227.

#include <nvot.h>

nvotReturnCode rc;
nvotBoxList \ myBoxes = NULL;

nvotGraphProtocolType myGraphProt = "1.3.6.1.2.1.2.2.1.3.11";
char \ myGraphName = "My_Root_Graph";

if ((myBoxes = nvotGetBoxesInGraph (myGraphProt,
myGraphName) != NULL) {

/\ OK, it seems we have gotten a few boxes. Print their names. \/
printf ("Graph %s contains %d boxes.\n", myGraphName, myBoxes->count);
for (i = 1; i = myBoxes->count; i++)
printf ("Box %d = %s.\n", i, myBoxes->box[i-1]..boxAttr.graphName);

/\ We don't need them any longer. Let's release all memory. \/
 nvotFreeBoxList (myBoxes);
} else {
/\ No, we've gotten no boxes. What happened?... \/
if ((rc = nvotGetError()) EQ NVOT_SUCCESS)
printf ("Graph %s contains no boxes.\n", myGraphName);

 else {
printf ("Error occurred getting boxes from graph %s\n", myGraphName);
printf ("Error message : %s.\n", nvotGetErrorMsg (rc));

 }
 }

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotFree(3)” on page 304.

� See “nvotFree(3)” on page 304.

� See “nvotGetError(3)” on page 323.

� See “nvotGetErrorMsg(3)” on page 326.

316 Programmer's Reference

 nvotGetBoxObjectId(3)

 nvotGetBoxObjectId(3)

 Purpose

Gets a box graph Object ID from the OVW database

 Syntax
#include <nvot.h>

OVwObjectId nvotGetBoxObjectId (
 nvotGraphProtocolType boxProtocol,
 char \ boxName)

 Description

Objects in the OVW database are given object IDs. As soon as they are created in the GTM database,
gtmd sends a notification to ovwdb, which then creates an ObjectId in its own database. These actions
are not synchronous and the time elapsed between GTMd creation and OVwDb creation might vary,
depending on activity. This is a consideration for applications that directly connect to the OVW database
with the intention of adding new variables to that database.

This routine returns the OVwObjectId of the box graph identified by boxProtocol and boxName.

 Protocol and Name are required parameters. If they are not specified, the ObjectId is not searched for
and the error code NVOT_BOX_INVALID_INDEX is set.

If the get operation fails, the routine returns ovwNullObjectId and the error internal variable is set.

If the get operation completes successfully but the box graph has not been created in the OVW database,
ovwNullObjectId is returned; however, the error code NVOT_SUCCESS is set.

If the get operation completes successfully and the box graph exists in the OVW database, the routine
returns its OVwObjectId.

 Parameters
boxProtocol

Specifies the protocol of the box graph. For more information on how to specify a graph protocol,
refer to the file /usr/OV/conf.oid_to_protocol.

boxName
Specifies the name of the box graph. The boxName and the boxProtocol make up unique information
required to identify the box graph in the GTM database.

 Return Values
OVwObjectId OVwObjectId is an unsigned integer type. If the get operation finds the object, a posi-

tive value is returned. However, if ovwNullObjectId is returned, the error internal vari-
able should be checked because an error might have occurred.

A ovwNullObjectId value can be tested with the macro OVwIsIdNull as defined in the
OV/ovw_types.h file.

 Chapter 2. Reference Pages 317

 nvotGetBoxObjectId(3)

 Error Codes

When the routine completes and returns control to its caller, an error internal variable is set. A call to the
routine nvotGetError returns the error code set at the last API call. The error internal variable is reset
upon entering and set before exiting this call to the API. The following error codes are set by this call:

[NVOT_SUCCESS] Successful operation.

[NVOT_BOX_INVALID_INDEX] The box index is not valid. A box protocol must be a positive
integer and a box name must not be NULL.

[NVOT_ERROR_ALLOCATING_MEMORY] Memory allocation error. The system might be out of
memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a con-
nection with gtmd.

[NVOT_OVW_TIMED_OUT] NetView for AIX timeout. The timeout value passed to
nvotSetSynchronousCreation might not be enough for the
complete operation processing, or the connection to the
NetView for AIX database might be down. Try increasing the
timeout value.

 Examples

A printable message string is accessible through a call to the routine nvotGetErrorMsg as in the following
example:

nvotReturnCode rc;

If ((rc = nvotGetError()) != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

The following example gets the OVwObjectId of the box graph created in the example given in the routine
“nvotCreateBoxInGraph(3)” on page 227

#include <nvot.h>

nvotReturnCode rc;
OVwObjectId boxOid = ovwNullObjectId;

nvotGraphProtocolType boxProt = "1.3.6.1.2.1.2.2.1.3.11";
char \ boxName = "My_Box_STARLAN_Graph";

boxOid = nvotGetBoxObjectId (boxProt, boxName);

if (OVwIsIdNull (boxOid))
/\ We may have had a problem. \/
if (nvotGetError () != NVOT_SUCCESS)
printf ("Error message = %s.\n", nvotGetErrorMsg (nvotGetError()));

 else
 /\ OK!...\/

printf ("Box graph %s ObjectId = %d.\n", boxName, boxOid);

 Libraries
 � libnvot.a

318 Programmer's Reference

 nvotGetBoxObjectId(3)

 Files
 � nvot.h

 Related Information
� See “nvotCreateBoxInGraph(3)” on page 227.

� See “nvotGetError(3)” on page 323.

� See “nvotGetErrorMsg(3)” on page 326.

 Chapter 2. Reference Pages 319

 nvotGetBoxesWhichVertexIsMemberOf(3)

 nvotGetBoxesWhichVertexIsMemberOf(3)

 Purpose

Gets a list of all boxes of which a vertex is member

 Syntax
#include <nvot.h>

nvotBoxList \ nvotGetBoxesWhichVertexIsMemberOf (
 nvotVertexProtocolType vertexProtocol,

char \ vertexName)

 Description

A vertex symbol can be displayed in the submap of several box graphs. In other words, a vertex object
can be a member of several box graph objects in the GTM database.

This routine returns a list of all boxes of which the vertex identified by vertexProtocol and vertexName is a
member.

The protocol and name parameters uniquely identify objects in the GTM database. Therefore
vertexProtocol and vertexName parameters are mandatory. If these parameters are not specified, a box
list is not searched for and the error code NVOT_VERTEX_INVALID_INDEX is set.

If the get operation fails, the routine returns NULL and the error internal variable is set.

If the get operation completes successfully but the vertex is not a member of any box, NULL is also
returned; however the error internal variable is set to NVOT_SUCCESS.

If the get operation completes successfully and the vertex is a member of any box, the routine returns a
list of all boxes with which the vertex is associated.

Notice that the interface allocates structured data in memory and returns a pointer to it. The user must call
the nvotFreeBoxList routine in order to have all data deallocated.

 Parameters
vertexProtocol

Specifies the protocol of the vertex. Vertex protocol is an enumerated type defined in the file
nvotTypes.h.

vertexName
Specifies the name of the vertex. The name can be any string of characters. However, once speci-
fied, the same name must be used in any reference to this vertex.

 Return Values
nvotBoxList Upon completion of the get operation, routine nvotGetBoxesWhichVertexIsMemberOf

returns a list of all boxes that are members of the identified graph.

As defined in the file nvotTypes.h, nvotBoxList is an array list of nvotBox structures.
The nvotBoxList value is a structure made up of a pointer to the first nvotBox element
and an integer variable count indicating the number of elements in the list.

320 Programmer's Reference

 nvotGetBoxesWhichVertexIsMemberOf(3)

Each nvotBox element is a structure carrying the actual information about a box
graph. See the nvotTypes.h file for additional information.

Note: The variable operation returned in each nvotBox element has no meaning in
this routine.

 Error Codes

Upon return, an error internal variable is set. A call to the routine nvotGetError returns the error code set
at the last API call. The error internal variable is reset upon entering and set before exiting this call to the
API. The following error codes are set by this call:

[NVOT_SUCCESS] Successful operation.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a
positive integer and a vertex name must not be NULL.

[NVOT_ERROR_ALLOCATING_MEMORY] Memory allocation error. The system might be out of
memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a con-
nection with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the routine nvotGetErrorMsg as in the following
example:

nvotReturnCode rc;

If ((rc = nvotGetError()) != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example issues an operation to gtmd to get all parent boxes of the vertex created in the
example given in the routine “nvotCreateBoxInGraph(3)” on page 227 and prints each graphName string.

#include <nvot.h>

int i;
nvotReturnCode rc;
nvotBoxList \ parentBoxes = NULL;
nvotBox \ boxObj;

nvotVertexProtocolType myVertexProt = STARLAN;
char \ myVertexName = "My_Vertex";

if ((parentBoxes = nvotGetBoxesWhichVertexIsMemberOf (
 myVertexProt,

myVertexName) != NULL) {

/\ OK, it seems we have gotten a few boxes. Print their names. \/
printf ("Vertex %s is member of %d boxes.\n", myVertexName,

 parentBoxes.count);
for (i = 1; i < parentBoxes->count; i++) {
boxObj = &parentBoxes->graph[i]; /\ Get pointer to the next box. \/
printf ("Graph %d = %s.\n", i, boxObj->graphAttr.graphName);

 Chapter 2. Reference Pages 321

 nvotGetBoxesWhichVertexIsMemberOf(3)

 }
 }
 else {

/\ No, we've gotten no graphs. What happened?... \/
if ((rc = nvotGetError()) EQ NVOT_SUCCESS)
printf ("Vertex %s is not member of any box.\n", myVertexName);

 else {
printf ("Error occurred getting parent boxes of vertex %s.\n",

 myVertexName);
printf ("Error message : %s.\n", nvotGetErrorMsg (rc));

 }
 }
/\ We don't need them any longer. Let's release all memory. \/

 nvotFreeBoxList (parentBoxes);

 Libraries
 � libnvot.a

 Files
 � nvot.h

 Related Information
� See “nvotGetError(3)” on page 323.

� See “nvotGetErrorMsg(3)” on page 326.

322 Programmer's Reference

 nvotGetError(3)

 nvotGetError(3)

 Purpose

Returns the error code set by the last function call

 Syntax
#include <nvot.h>
nvotReturnCode nvotGetError ()

 Description

The interface has an internal error variable that is set for every function call. The variable is reset to
[NVOT_SUCCESS] before a function call and set to the error code that the function call returns when the
call is processed.

The nvotGetError routine returns the error code set at the last function call.

 Return Values

If the last function call was successful, nvotGetError returns [NVOT_SUCCESS]. If the last function call
was unsuccessful, nvotGetError returns the error code that the call returned.

 Error Codes

Upon return, an error internal variable is set. A call to the routine nvotGetError returns the error code set
at the last API call. The error variable is reset upon entering and set before exiting this call to the API. All
possible error codes set by the nvot* calls and their related message strings are:

[NVOT_SUCCESS] Successful operation.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_GRAPH_DOES_NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_BOX_DOES_NOT_EXIST] The box graph does not exist in the GTM database.

[NVOT_INVALID_VERTEX_PROTOCOL]
Invalid vertex protocol. The vertex protocol must be a positive
integer.

[NVOT_INVALID_LAYOUT] Invalid layout. The layout must be a number defined in the
nvotTypes.h file.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol and/or name must
not be NULL.

[NVOT_BOX_INVALID_INDEX] The box index is not valid. A box graph protocol and/or name
must not be NULL.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_INVALID_VERTEX_TYPE] The vertex type is not valid. A vertex type must be a number
defined in the nvotTypes.h file.

 Chapter 2. Reference Pages 323

 nvotGetError(3)

[NVOT_INVALID_ARC_TYPE] The arc type is not valid. An arc type must be a number defined
in the nvotTypes.h file.

[NVOT_A_ENDPOINT_GRAPH_DOES_NOT_EXIST]
The graph defined as the A endpoint of the arc does not exist in
the GTM database.

[NVOT_Z_ENDPOINT_GRAPH_DOES_NOT_EXIST]
The graph defined as the Z endpoint of the arc does not exist in
the GTM database.

[NVOT_INVALID_NAME_BINDING] The name binding is not valid. It must be a number defined in the
nvotTypes.h file.

[NVOT_SAP_INVALID_INDEX] The SAP index is not valid. A SAP protocol must be a positive
integer and a SAP name must not be NULL.

[NVOT_INVALID_STATUS] The status is not valid. It must be a number defined in the
nvotTypes.h file.

[NVOT_ARC_INVALID_INDEX] The arc index is not valid. It must be a positive integer.

[NVOT_ROOT_GRAPH_DOES_NOT_EXIST]
The root graph does not exist. A root graph must be created
before issuing this call.

[NVOT_GRAPH_ALREADY_EXIST] A graph already exists with the same protocol and name for which
this call is attempting to create a graph, box, or root graph.

[NVOT_BOX_ALREADY_EXIST] A box already exists with the same protocol and name for which
this call is attempting to create a graph, box, or root graph.

[NVOT_ROOT_GRAPH_ALREADY_EXIST]
A root graph already exists with the same protocol and name for
which this call is attempting to create a graph, box, or root graph.

[NVOT_OTHER_TYPE_GRAPH_EXIST]
Another type of graph exists. This call is attempting to create a
graph, box, or root graph with a protocol and name already used
for a graph of type INVALID or OTHER.

[NVOT_GTMD_CONNECTION_ERROR]
There is a GTM connection error. The connection cannot be
opened. Issue the nvotInit routine again.

[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during operation.
Issue the nvotInit routine again.

[NVOT_OVW_CONNECTION_ERROR]
There is an connection error with the NetView for AIX program.
The connection to the object database cannot be opened.

[NVOT_OVW_TIMED_OUT] NetView for AIX timeout. The timeout value passed to
nvotSetSynchronousCreation might not be enough for the com-
plete operation processing, or the connection to the NetView for
AIX database might be down. Try increasing the timeout value.

[NVOT_ENDPOINT_GRAPH_INVALID_INDEX]
The endpoint graph index is not valid. An endpoint graph protocol
and/or name must not be NULL.

324 Programmer's Reference

 nvotGetError(3)

[NVOT_ALREADY_INITIALIZED] Already initialized. The routine attempted to re-establish the con-
nection with tmdd but the connection is still open.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_VERTEX_IS_NOT_MEMBER] The routine is attempting to create or change an arc but the
endpoint vertex is not a member of the parent graph.

[NVOT_GRAPH_IS_NOT_MEMBER] The routine is attempting to create or change an arc but the
endpoint graph is not a member of the parent graph.

[NVOT_GRAPHS_LAYOUT_IS_NOT_STAR]
The routine is attempting to center a child graph or box in a layout
that is not STAR_LAYOUT.

[NVOT_PROTOCOL_WAS_NOT_REGISTERED]
The protocol was not registered in the
/usr/OV/conf/oid_to_protocol file.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If ((rc ═ nvotGetError()) !═ NVOT_SUCCESS)
printf (“%s\n”, nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotGetErrorMsg(3)” on page 326.

 Chapter 2. Reference Pages 325

 nvotGetErrorMsg(3)

 nvotGetErrorMsg(3)

 Purpose

Returns a message string related to a nvotReturnCode

 Syntax
#include <nvot.h>
char \ nvotGetErrorMsg (nvotReturnCode returnCode)

 Description

This routine returns a message string related to the nvotReturnCode passed to the returnCode parameter.

 Parameters
returnCode

A nvotReturnCode type variable returned by a function call or by the nvotGetError routine.

 Return Values
char * The message string associated with the returnCode value passed.

 Error Codes

None.

For a complete list of error codes and their associated messages, see the error codes section in
“nvotGetError(3)” on page 323.

nvotReturnCode rc;

If ((rc ═ nvotGetError()) !═ NVOT_SUCCESS)
printf (“%s\n”, nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotGetError(3)” on page 323.

326 Programmer's Reference

 nvotGetGraphObjectId(3)

 nvotGetGraphObjectId(3)

 Purpose

Gets a graph Object ID from the OVW database

 Syntax
#include <nvot.h>

OVwObjectId nvotGetGraphObjectId (
 nvotGraphProtocolType graphProtocol,
 char \ graphName)

 Description

Objects in the OVW database are given object IDs. As soon as objects are created in the GTM database,
gtmd sends a notification to ovwdb, which creates an ObjectId in its own database. These actions are not
synchronous, and the elapsed time between gtmd creation and OVwDb creation might vary, depending on
activity. This is a consideration for applications that directly connect to the OVW database with the inten-
tion of adding new variables to that database.

This routine returns the OVwObjectId of the graph identified by graphProtocol and graphName.

 Protocol and name are mandatory parameters. If these parameters are not specified, the ObjectId is not
searched for and the error code NVOT_GRAPH_INVALID_INDEX is set.

If the get operation fails, the routine returns ovwNullObjectId and the error internal variable is set.

If the get operation completes successfully but the graph has not been created in OVwDb,
ovwNullObjectId is returned; however the error internal variable is set to NVOT_SUCCESS.

If the get operation completes successfully and the graph exists in the OVW database, the routine returns
its OVwObjectId.

 Parameters
graphProtocol

Specifies the protocol of the graph. For more information on how to specify a graph protocol refer to
the file /usr/OV/conf.oid_to_protocol.

graphName
Specifies the name of the graph. The graphName, together with graphProtocol, makes up unique
information required to identify the graph in the GTM database.

 Return Values
OVwObjectId OVwObjectId is an unsigned integer type. If the get operation finds the object,

a positive value is returned. If ovwNullObjectId is returned, the error internal
variable should be checked because an error might have occurred. Refer to
the Description of this API for more information.

An ovwNullObjectId value can be tested with the macro OVwIsIdNull as
defined in OV/ovw_types.h file.

 Chapter 2. Reference Pages 327

 nvotGetGraphObjectId(3)

 Error Codes

When the routine completes and returns control to its caller, an error internal variable is set. A call to the
routine nvotGetError returns the error code set at the last API call. The error internal variable is reset
upon entering and set before exiting this call to the API. The following error codes are set by this call:

[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol must be a
positive integer and a graph name must not be NULL.

[NVOT_ERROR_ALLOCATING_MEMORY] Memory allocation error. The system might be out of
memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a con-
nection with gtmd.

[NVOT_OVW_TIMED_OUT] NetView for AIX timeout. The timeout value passed to
nvotSetSynchronousCreation might not be enough for the
complete operation processing, or the connection to the
NetView for AIX database might be down. Try increasing the
timeout value.

A printable message string is accessible through a call to the routine nvotGetErrorMsg as in the following
example:

nvotReturnCode rc;

If ((rc = nvotGetError()) != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example gets the OVwObjectId of the graph created in the example given in the routine
“nvotCreateGraphInGraph(3)” on page 235

#include <nvot.h>

nvotReturnCode rc;
OVwObjectId graphOid = ovwNullObjectId;

nvotGraphProtocolType graphProt = "1.3.6.1.2.1.2.2.1.3.17";
char \ graphName = "My_Child_SDLC_Graph";

graphOid = nvotGetGraphObjectId (graphProt, graphName);

if (OVwIsIdNull (graphOid))
/\ We may have had a problem. \/
if (nvotGetError () != NVOT_SUCCESS)
printf ("Error message = %s.\n", nvotGetErrorMsg (nvotGetError()));

 else
 /\ OK!...\/

printf ("Graph %s ObjectId = %d.\n", graphName, graphOid);

 Libraries
 � libnvot.a

328 Programmer's Reference

 nvotGetGraphObjectId(3)

 Files
 � nvot.h

 Related Information
� See “nvotCreateGraphInGraph(3)” on page 235.

� See “nvotGetError(3)” on page 323.

� See “nvotGetErrorMsg(3)” on page 326.

 Chapter 2. Reference Pages 329

 nvotGetGraphsInGraph(3)

 nvotGetGraphsInGraph(3)

 Purpose

Gets a list of all graphs contained in a parent graph

 Syntax
#include <nvot.h>

nvotGraphList \ nvotGetGraphsInGraph (
 nvotGraphProtocolType graphProtocol,
 char \ graphName)

 Description

The nvotGetGraphsInGraph routine issues a get operation of all graphs contained in the parent graph
identified by graphProtocol and graphName.

The protocol and name parameters uniquely identify objects in the GTM database. The graphProtocol and
graphName parameters are required. If one of these parameters is not provided, the routine does not
search for a graph list and the error code NVOT_GRAPH_INVALID_INDEX is set.

If the containing graph does not exist, the routine does not search for the graphs and the error code
NVOT_GRAPH_DOES_NOT_EXIST is set.

If the get operation fails, the routine returns NULL and the error variable is set. See the following error
codes and return values sections.

If the get operation completes successfully but no graph exists within the parent graph, the routine returns
NULL and the error variable is set to NVOT_SUCCESS.

If the get operation completes successfully and graphs exist within the parent graph, the routine returns a
list of all graphs contained in the identified graph.

The interface allocates structured data in memory and returns a pointer to it. The user must call one of
the memory free routines to have all data de-allocated.

 Parameters
graphProtocol Specifies the protocol of the graph this routine looks at. This is the parent

graph for whose child graphs this routine searches. For more information,
refer to the file /usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the graph this routine looks at. Both the graphName
and graphProtocol parameters are required to identify the containing graph.
This parameter can be any string of characters. Once specified, the same
name must be used in any reference to this graph.

 Return Values
nvotGraphList Upon completion of the get operation, the nvotGetGraphsInGraph routine

returns a list of all graphs members of the identified graph.

As defined in the file nvotTypes.h, nvotGraphList is an array list of nvotGraph

330 Programmer's Reference

 nvotGetGraphsInGraph(3)

structures. The nvotGraphList return value is a structure made up of a pointer
to the first nvotGraph element and an integer variable count indicating the
number of elements in the list.

Each nvotGraph element is a structure carrying the actual information about a
graph. For more information, refer to the information about basic structures in
the NetView for AIX Programmer's Guide and the file nvotTypes.h.

The variable operation returned in each nvotGraph element has no meaning in
this routine.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol and/or name must
not be NULL.

[NVOT_GRAPH_DOES_NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during operation.
Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as in the following
example:

nvotReturnCode rc;

If ((rc = nvotGetError()) != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example checks all graphs contained in the graph created in the example in
“nvotCreateGraphInGraph(3)” on page 235.

#include <nvot.h>

nvotReturnCode rc;
nvotGraphList \ myGraphs = NULL;

nvotGraphProtocolType myGraphProt = "1.3.6.1.2.1.2.2.1.3.17";
char \ myGraphName = "My_Root_Graph";

if ((myGraphs = nvotGetGraphsInGraph (myGraphProt,
myGraphName) != NULL) {

/\ OK, it seems we have gotten a few graphs. Print their names. \/
printf ("Graph %s contains %d arcs.\n", myGraphName, myGraphs->count);
for (i = 1; i = myGraphs->count; i++)
printf ("Graph %d = %s.\n", i, myGraphs->graph[i-1].graphAttr.graphName);

/\ We don't need them any longer. Let's release all memory. \/
 nvotFreeGraphList (myGraphs);

 Chapter 2. Reference Pages 331

 nvotGetGraphsInGraph(3)

} else {
/\ No, we've gotten no graphs. What happened?... \/
if ((rc = nvotGetError()) EQ NVOT_SUCCESS)
printf ("Graph %s contains no graphs.\n", myGraphName);

 else {
printf ("Error occurred getting graphs from graph %s\n", myGraphName);
printf ("Error message : %s.\n", nvotGetErrorMsg (rc));

 }
 }

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotFree(3)” on page 304.

� See “nvotFree(3)” on page 304.

� See “nvotGetError(3)” on page 323.

� See “nvotGetErrorMsg(3)” on page 326.

332 Programmer's Reference

 nvotGetGraphsWhichArcIsMemberOf(3)

 nvotGetGraphsWhichArcIsMemberOf(3)

 Purpose

Gets a list of all graphs of which an arc is a member

 Syntax
#include <nvot.h>

nvotGraphList \ nvotGetGraphsWhichArcIsMemberOf (
 nvotNameBindingType nameBinding,
 nvotProtocolType aEndpointProtocol,
 char \ aEndpointName,
 nvotProtocolType zEndpointProtocol,
 char \ zEndpointName,
 int arcIndexId)

 Description

An arc symbol can be displayed in the submap of several graphs. In other words, an arc object can be a
member of several graph objects in the GTM database.

This routine returns a list of all graphs of which the arc identified by aEndpoint, zEndpoint, and arcIndexId
is a member.

An arc might exist to connect two vertices, two graphs, or a vertex to a graph and vice versa. These are
called arc endpoints. An arc is recognized and referenced by its aEndpoint, zEndpoint, and arcIndexId.

The nameBinding parameter helps in identifying the arc endpoints. The nameBinding must always be
compatible with the values passed in the aEndpointProtocol and zEndpointProtocol parameters. Only
ARC_VERTEX_VERTEX_NAME_BINDING, ARC_VERTEX_GRAPH_NAME_BINDING,
ARC_GRAPH_VERTEX_NAME_BINDING, and ARC_GRAPH_GRAPH_NAME_BINDING are accepted for
nameBinding. Should any other value be passed, the routine returns NULL and the error internal variable
is set to NVOT_INVALID_NAME_BINDING.

The nvotProtocolType is a combination of an enumerated type and a char pointer as defined in
nvotTypes.h file. Special care must be taken when specifying aEndpointProtocol and zEndpointProtocol;
assigning these variables a nvotVertexProtocolType value when arcNameBinding identifies the endpoint as
a graph causes an error. This error is equivalent to asking the GTM interface to take an integer value for
a char pointer and leads to unpredictable errors.

All parameters in this routine are mandatory. If they are not specified, a graph list is not searched for and
the error code NVOT_ARC_INVALID_INDEX is set.

If the get operation fails, the routine returns NULL and the error internal variable is set.

If the get operation completes successfully but the arc is not a member of any graph, NULL is also
returned; however, the error internal variable is set to NVOT_SUCCESS.

If the get operation completes successfully and the arc is a member of any graph, the routine returns a list
of all graphs with which the arc is associated.

 Chapter 2. Reference Pages 333

 nvotGetGraphsWhichArcIsMemberOf(3)

Notice that the interface allocates structured data in memory and returns a pointer to it. The user must
call the nvotFreeGraphList routine in order to have all data de-allocated.

 Parameters
nameBinding

Specifies the class of the objects in each endpoint of the arc. The endpoint can be a vertex or a
graph. The allowed values are:

ARC_VERTEX_VERTEX_NAME_BINDING
Indicates either of the endpoints are vertices.

ARC_VERTEX_GRAPH_NAME_BINDING
aEndpoint is a vertex and zEndpoint is a graph.

ARC_GRAPH_VERTEX_NAME_BINDING
aEndpoint is a graph and zEndpoint is a vertex.

ARC_GRAPH_GRAPH_NAME_BINDING
Indicates either of the endpoints are graphs.

Any value other than those listed is rejected by the interface and the error code
NVOT_INVALID_NAME_BINDING is set.

Regardless of the choice made in the initialization session, nameBinding is an identification of what
value is set in the aEndpointProtocol and zEndpointProtocol variables.

aEndpointProtocol
Specifies the protocol of the object identified as the aEndpoint of the arc. If aEndpoint is to be a
vertex, aEndpointProtocol must be set with a value from the enumerated type nvotVertexProtocolType
defined in the file nvotTypes.h. Otherwise, aEndpoint is a graph, and aEndpointProtocol is a pointer to
a valid character string in memory.

aEndpointName
Specifies the name of the object identified as the aEndpoint of the arc. The aEndpointName, together
with aEndpointProtocol, is the information required to identify the object at the aEndpoint of this arc. It
can be any string of characters. However, once specified, the same name must be used in any refer-
ence to this graph.

zEndpointProtocol
Specifies the protocol of the zEndpoint of the arc. If zEndpoint is to be a vertex, zEndpointProtocol
must be set with a value from the enumerated type nvotVertexProtocolType defined in the file
nvotTypes.h. Otherwise, zEndpoint is a graph, and zEndpointProtocol is a pointer to a valid character
string in memory.

zEndpointName
Specifies the name of the zEndpoint of the arc. The zEndpointName, together with zEndpointProtocol,
is the information required to identify the object at the zEndpoint of the arc. It can be any string of
characters. However, once specified, the same name must be used in any reference to this graph.

arcIndexId
Specifies an integer value which distinguishes one arc from others between the same endpoints. It is
possible to connect the same two endpoints with several arcs; this parameter provides a way to distin-
guish each arc named by the same endpoints.

334 Programmer's Reference

 nvotGetGraphsWhichArcIsMemberOf(3)

 Return Values
nvotGraphList Upon completion of the get operation, nvotGetGraphsWhichArcIsMemberOf returns a

list of all graphs of which the arc is a member.

As defined in the file nvotTypes.h, nvotGraphList is an array list of nvotGraph struc-
tures. nvotGraphList is a structure made up of a pointer to the first nvotGraph
element and an integer variable count indicating the number of elements in the list.

Each nvotGraph element is a structure carrying the actual information about a graph.

Note: The variable operation returned in each nvotGraph element has no meaning
in this routine.

 Error Codes

Upon return, an error internal variable is set. A call to the routine nvotGetError returns the error code set
at the last API call. The error internal variable is reset upon entering and set before exiting this call to the
API. All possible error codes set by this call and their related message strings are:

[NVOT_SUCCESS] Successful operation.

[NVOT_ARC_INVALID_INDEX] The arc index is not valid. An arc protocol must be a positive
integer and an arc name must not be NULL.

[NVOT_ERROR_ALLOCATING_MEMORY] Memory allocation error. The system might be out of
memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a con-
nection with gtmd.

[NVOT_GTMD_INVALID_RESPONSE] GTM invalid response. A query to a graph or member table
returned an unexpected response from GTMd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the routine nvotGetErrorMsg as in the following
example:

nvotReturnCode rc;

If ((rc = nvotGetError()) != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Chapter 2. Reference Pages 335

 nvotGetGraphsWhichArcIsMemberOf(3)

 Examples

The example below gets all the parent graphs of the arc created in the example given in the routine
“nvotCreateArcInGraph(3)” on page 221.

#include <nvot.h>

int i;
nvotReturnCode rc;
nvotGraphList parentGraphs = NULL;
nvotGraph \ graphObj;

nvotProtocolType oneEndpoint.vertexProtocol = STARLAN;
char \ oneEndpointName = "My_Vertex_V1";
nvotProtocolType otherEndpoint.vertexProtocol = STARLAN;
char \ otherEndpointName = "My_Vertex_V2;
int arcNumber = 1;

if ((parentGraphs = nvotGetGraphsWhichArcIsMemberOf (
 ARC_VERTEX_VERTEX_NAME_BINDING,
 oneEndpoint,
 oneEndpointName,
 otherEndpoint,
 otherEndpointName,
 arcNumber);

/\ OK, it seems we have gotten a few graphs. Print their names. \/
printf ("Arc %s_%s is member of %d graphs.\n", oneEndpointName,

 otherEndpointName,
 parentGraphs.count);

for (i = 1; i < parentGraphs->count; i++) {
graphObj = &parentGraphs->graph[i]; /\ Get pointer to the next graph. \/
printf ("Graph %d = %s.\n", i, graphObj->graphAttr.graphName);

 }
 }
 else {

/\ No, we've gotten no graphs. What happened?... \/
if ((rc = nvotGetError()) EQ NVOT_SUCCESS)
printf ("Arc %s_%s is not member of any graph.\n", oneEndpointName,

 otherEndpointName);
 else {

printf ("Error occurred getting parent graphs of arc %s_%s.\n",
 oneEndpointName,
 otherEndpointName);

printf ("Error message : %s.\n", nvotGetErrorMsg (rc));
 }
 }
/\ We don't need'em any longer. Let's release all memory. \/

 nvotFreeGraphList (parentGraphs);

 Libraries
 � libnvot.a

336 Programmer's Reference

 nvotGetGraphsWhichArcIsMemberOf(3)

 Files
 � nvot.h

 Related Information
� See “nvotSetSynchronousCreation(3)” on page 368.

� See “nvotGetError(3)” on page 323.

� See “nvotGetErrorMsg(3)” on page 326.

 Chapter 2. Reference Pages 337

 nvotGetGraphsWhichBoxIsMemberOf(3)

 nvotGetGraphsWhichBoxIsMemberOf(3)

 Purpose

Gets a list of all graphs of which a box is a member

 Syntax
#include <nvot.h>

nvotGraphList \ nvotGetGraphsWhichBoxIsMemberOf (
 nvotGraphProtocolType boxProtocol,
 char \ boxName)

 Description

A box symbol can be displayed in the submap of several other graphs. In other words, a box graph object
can be a member of several other graph objects in the GTM database.

This routine returns a list of all graphs of which the box identified by boxProtocol and boxName is a
member.

The protocol and name parameters uniquely identify objects in the GTM database. Therefore, the
boxProtocol and boxName parameters are mandatory. If these parameters are not specified, a graph list
is not searched for and the error code NVOT_BOX_INVALID_INDEX is set.

If the get operation fails, the routine returns NULL and the error internal variable is set.

If the get operation completes successfully but the box is not a member of any other graph, NULL is also
returned; however, the error internal variable is set to NVOT_SUCCESS.

If the get operation completes successfully and the box is a member of other graphs, the routine returns a
list of all graphs with which the box is associated.

Notice that the interface allocates structured data in memory and returns a pointer to it. The user must
call the nvotFreeGraphList routine in order to have all data deallocated.

 Parameters
boxProtocol

Specifies the protocol of the box this routine searches. In other words, the box whose parent graphs
are searched for. For more information refer to the file /usr/OV/conf/oid_to_protocol.

boxName
Specifies the name of the box this routine searches. The boxName, together with boxProtocol, pro-
vides the information required to identify the box graph. The boxName can be any string of charac-
ters; however, once specified, the same name must be used in any reference to this box graph.

338 Programmer's Reference

 nvotGetGraphsWhichBoxIsMemberOf(3)

 Return Values
nvotGraphList Upon completion of the get operation, this routine returns a list of all graphs of which

the box is a member.

As defined in the file nvotTypes.h, nvotGraphList isan array list of nvotGraph struc-
tures. The nvotGraphList is a structure made up of a pointer to the first nvotGraph
element and an integer variable count indicating the number of elements in the list.

Each nvotGraph element is a structure carrying the actual information about a graph.

Note: The variable operation returned in each nvotGraph element has no meaning
in this routine.

 Error Codes

Upon return, an error internal variable is set. A call to the routine nvotGetError returns the error code set
at the last API call. The error internal variable is reset upon entering and set before exiting this call to the
API. All possible error codes set by this call and their related message strings are:

[NVOT_SUCCESS] Successful operation.

[NVOT_BOX_INVALID_INDEX] The box index is not valid. A box protocol must be a positive
integer and a box name must not be NULL.

[NVOT_ERROR_ALLOCATING_MEMORY] Memory allocation error. The system might be out of
memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a con-
nection with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the routine nvotGetErrorMsg as in the following
example:

nvotReturnCode rc;

If ((rc = nvotGetError()) != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Chapter 2. Reference Pages 339

 nvotGetGraphsWhichBoxIsMemberOf(3)

 Examples

The following example gets from GTMd all parent graphs of the box created in the example given in the
routine “nvotCreateBoxInGraph(3)” on page 227.

#include <nvot.h>

int i;
nvotReturnCode rc;
nvotGraphList parentGraphs = NULL;
nvotGraph \ graphObj;

nvotGraphProtocolType STARLAN_BoxProt = "1.3.6.1.2.1.2.2.1.3.11";
char \ STARLAN_BoxName = "My_Box_STARLAN_Graph";

if ((parentGraphs = nvotGetGraphsWhichBoxIsMemberOf (
 STARLAN_BoxProt

STARLAN_BoxName) != NULL) {

/\ OK, it seems we have gotten a few graphs. Print their names. \/
printf ("Box %s is member of %d graphs.\n", STARLAN_BoxName,

 parentGraphs.count);
for (i = 1; i < parentGraphs->count; i++) {
graphObj = &parentGraphs->graph[i]; /\ Get pointer to the next graph. \/
printf ("Graph %d = %s.\n", i, graphObj->graphAttr.graphName);

 }
 }
 else {

/\ No, we've gotten no graphs. What happened?... \/
if ((rc = nvotGetError()) EQ NVOT_SUCCESS)
printf ("Box %s is not member of any graph.\n", STARLAN_BoxName);

 else {
printf ("Error occurred getting parent graphs of box %s.\n",

 STARLAN_BoxName);
printf ("Error message : %s.\n", nvotGetErrorMsg (rc));

 }
 }
/\ We don't need'em any longer. Let's release all memory. \/

 nvotFreeGraphList (parentGraphs);

 Libraries
 � libnvot.a

 Files
 � nvot.h

 Related Information
� See “nvotGetError(3)” on page 323.

� See “nvotGetErrorMsg(3)” on page 326.

340 Programmer's Reference

 nvotGetGraphsWhichGraphIsMemberOf(3)

 nvotGetGraphsWhichGraphIsMemberOf(3)

 Purpose

Gets a list of all graphs of which a child graph is a member

 Syntax
#include <nvot.h>

nvotGraphList \ nvotGetGraphsWhichGraphIsMemberOf (
 nvotGraphProtocolType graphChildProtocol,
 char \ graphChildName)

 Description

A graph symbol can be displayed in the submap of several other graphs. In other words, a graph object
can be a member of several other graph objects in the GTM database.

This routine returns a list of all graphs of which the child graph identified by graphChildProtocol and
graphChildName is a member.

The protocol and name parameters uniquely identify objects in the GTM database. Therefore, the
graphChildProtocol and graphChildName parameters are mandatory. If the parmeters are not specified, a
graph list is not searched for and the error code NVOT_GRAPH_INVALID_INDEX is set.

If the get operation fails, the routine returns NULL and the error internal variable is set.

If the get operation completes successfully but the child graph is not a member of any other graph, NULL
is also returned; however, the error internal variable is set to NVOT_SUCCESS.

If the get operation completes successfully and the child graph is a member of other graphs, the routine
returns a list of all graphs with which the child graph is associated.

Note that the interface allocates structured data in memory and returns a pointer to it. The user must call
the nvotFreeGraphList routine in order to have all data deallocated.

 Parameters
graphChildProtocol

Specifies the protocol of the child graph this routine searches (in other words, the graph whose parent
graphs are searched for). For more information, refer to the file /usr/OV/conf/oid_to_protocol.

graphChildName
Specifies the name of the child graph this routine searches. The graphChildName, together with
graphChildProtocol, provides the information required to identify the child graph. It name can be any
string of characters. However, once specified, the same name must be used in any reference to this
graph.

 Chapter 2. Reference Pages 341

 nvotGetGraphsWhichGraphIsMemberOf(3)

 Return Values
nvotGraphList Upon completion of the get operation, nvotGetGraphsWhichGraphIsMemberOf

returns a list of all graphs of which the child graph is a member.

As defined in the file nvotTypes.h, nvotGraphList is an array list of
nvotGraph structures. The nvotGraphList is a structure made up of a
pointer to the first nvotGraph element and an integer variable count indicating
the number of elements in the list.

Each nvotGraph element is a structure carrying the actual information about a
graph. See the nvotTypes.h file for additional information.

Note: The variable operation returned in each nvotGraph element has no
meaning in this routine.

 Error Codes

Upon return, an error internal variable is set. A call to the routine nvotGetError returns the error code set
at the last API call. The error internal variable is reset upon entering and set before exiting this call to the
API. All possible error codes set by this call and their related message strings are:

[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol must be a
positive integer and a graph name must not be NULL.

[NVOT_ERROR_ALLOCATING_MEMORY] Memory allocation error. The system might be out of
memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a con-
nection with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the routine nvotGetErrorMsg as in the following
example:

nvotReturnCode rc;

If ((rc = nvotGetError()) != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

342 Programmer's Reference

 nvotGetGraphsWhichGraphIsMemberOf(3)

 Examples

The example below fetches from GTMd all parent graphs of the graph created in the example given in the
routine “nvotCreateGraphInGraph(3)” on page 235.

#include <nvot.h>

int i;
nvotReturnCode rc;
nvotGraphList parentGraphs = NULL;
nvotGraph \ graphObj;

nvotGraphProtocolType mySDLCGraphsProt = "1.3.6.1.2.1.2.2.1.3.17";
char \ myChildSDLCGraphName = "My_Child_SDLC_Graph";

if ((parentGraphs = nvotGetGraphsWhichGraphIsMemberOf (
 mySDLCGraphsProt,

myChildSDLCGraphName) != NULL) {

/\ OK, it seems we have gotten a few graphs. Print their names. \/
printf ("Graph %s is member of %d graphs.\n", myChildSDLCGraphName,

 parentGraphs.count);
for (i = 1; i < parentGraphs->count; i++) {
graphObj = &parentGraphs->graph[i]; /\ Get pointer to the next graph. \/
printf ("Graph %d = %s.\n", i, graphObj->graphAttr.graphName);

 }
 }
 else {

/\ No, we've gotten no graphs. What happened?... \/
if ((rc = nvotGetError()) EQ NVOT_SUCCESS)
printf ("myChildSDLCGraphName %s is not member of any graph.\n",

 myChildSDLCGraphName);
 else {

printf ("Error occurred getting parent graphs of graph %s.\n",
 myChildSDLCGraphName);

printf ("Error message : %s.\n", nvotGetErrorMsg (rc));
 }
 }
/\ We don't need'em any longer. Let's release all memory. \/

 nvotFreeGraphList (parentGraphs);

 Libraries
 � libnvot.a

 Files
 � nvot.h

 Related Information
� See “nvotGetError(3)” on page 323.

� See “nvotGetErrorMsg(3)” on page 326.

 Chapter 2. Reference Pages 343

 nvotGetGraphsWhichVertexIsMemberOf(3)

 nvotGetGraphsWhichVertexIsMemberOf(3)

 Purpose

Gets a list of all graphs of which a vertex is member

 Syntax
#include <nvot.h>

nvotGraphList \ nvotGetGraphsWhichVertexIsMemberOf (
 nvotVertexProtocolType vertexProtocol,

char \ vertexName)

 Description

A vertex symbol can be displayed in the submap of several graphs. In other words, a vertex object can
be a member of several graph objects in the GTM database.

This routine returns a list of all graphs of which the vertex identified by vertexProtocol and vertexName is
a member.

The protocol and name parameters uniquely identify objects in the GTM database. Therefore, the
vertexProtocol and vertexName parameters are mandatory. If these parameters are not specified, a graph
list is not searched for and the error code NVOT_VERTEX_INVALID_INDEX is set.

If the get operation fails, the routine returns NULL and the error internal variable is set.

If the get operation completes successfully but the vertex is not a member of any graph, NULL is also
returned; however, the error variable is set to NVOT_SUCCESS.

If the get operation completes successfully and the vertex is a member of any graph, the routine returns a
list of all graphs with which the vertex is associated.

Note that the interface allocates structured data in memory and returns a pointer to it. The user must call
the nvotFreeGraphList routine in order to have all data deallocated.

 Parameters
vertexProtocol

Specifies the protocol of the vertex. Vertex protocol is an enumerated type defined in the file
nvotTypes.h.

vertexName
Specifies the name of the vertex. It can be any string of characters. However, once specified, the
same name must be used in any reference to this vertex.

 Return Values
nvotGraphList Upon completion of the get operation, the nvotGetGraphsWhichVertexIsMemberOf

routine returns a list of all graphs of which the vertex is a member.

As defined in the file nvotTypes.h, nvotGraphList is an array list of nvotGraph struc-
tures. The nvotGraphList is a structure made up of a pointer to the first nvotGraph
element and an integer variable count indicating the number of elements in the list.

344 Programmer's Reference

 nvotGetGraphsWhichVertexIsMemberOf(3)

Each nvotGraph element is a structure carrying the actual information about a graph.
See the nvotTypes.h file for more information.

Note: The operation returned in each nvotGraph element has no meaning in this
routine.

 Error Codes

Upon return, an error internal variable is set. A call to the routine nvotGetError returns the error code set
at the last API call. The error internal variable is reset upon entering and set before exiting this call to the
API. The following error codes are set by this call:

[NVOT_SUCCESS] Successful operation.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a
positive integer and a vertex name must not be NULL.

[NVOT_ERROR_ALLOCATING_MEMORY] Memory allocation error. The system might be out of
memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a con-
nection with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during opera-
tion. Issue the nvotInit routine again.

A printable message string is accessible through a call to the routine nvotGetErrorMsg as in the following
example:

nvotReturnCode rc;

If ((rc = nvotGetError()) != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The example below issues an operation to GTMd to GET all parent graphs of the vertex created in the
example given in the routine “nvotCreateVertexInGraph(3)” on page 265 and prints out each graphName
string.

#include <nvot.h>

int i;
nvotReturnCode rc;
nvotGraphList \ parentGraphs = NULL;
nvotGraph \ graphObj;

nvotVertexProtocolType myVertexProt = STARLAN;
char \ myVertexName = "My_Vertex";

if ((parentGraphs = nvotGetGraphsWhichVertexIsMemberOf (
 myVertexProt,

myVertexName) != NULL) {

/\ OK, it seems we have gotten a few graphs. Print their names. \/
printf ("Vertex %s is member of %d graphs.\n", myVertexName,

 parentGraphs.count);
for (i = 1; i < parentGraphs->count; i++) {
graphObj = &parentGraphs->graph[i]; /\ Get pointer to the next graph. \/

 Chapter 2. Reference Pages 345

 nvotGetGraphsWhichVertexIsMemberOf(3)

printf ("Graph %d = %s.\n", i, graphObj->graphAttr.graphName);
 }
 }
 else {

/\ No, we've gotten no graphs. What happened?... \/
if ((rc = nvotGetError()) EQ NVOT_SUCCESS)
printf ("Vertex %s is not member of any graph.\n", myVertexName);

 else {
printf ("Error occurred getting parent graphs of vertex %s.\n",

 myVertexName);
printf ("Error message : %s.\n", nvotGetErrorMsg (rc));

 }
 }
/\ We don't need'em any longer. Let's release all memory. \/

 nvotFreeGraphList (parentGraphs);

 Libraries
 � libnvot.a

 Files
 � nvot.h

 Related Information
� See “nvotGetError(3)” on page 323.

� See “nvotGetErrorMsg(3)” on page 326. :

346 Programmer's Reference

 nvotGetSapsOnVertex(3)

 nvotGetSapsOnVertex(3)

 Purpose

Gets a list of all SAPs associated with a vertex

 Syntax
#include <nvot.h>

nvotSapList \ nvotGetSapsOnVertex (
 nvotVertexProtocolType vertexProtocol,

char \ vertexName)

 Description

The nvotGetSapsOnVertex routine issues a get operation of all SAPs, used and provided, by the vertex
identified by vertexProtocol and vertexName.

The protocol and name parameters uniquely identify objects in the GTM database. The vertexProtocol
and vertexName parameters are required. If one of these parameters is not provided, the routine does not
search for a SAP list and the error code NVOT_VERTEX_INVALID_INDEX is set.

If the get operation fails, the routine returns NULL and the error variable is set. See the following error
codes and return values sections.

If the get operation completes successfully but no SAP is associated with the vertex, the routine returns
NULL and the error variable is set to NVOT_SUCCESS.

If the get operation completes successfully and SAPs are found, the routine returns a list of all SAPs
associated with the identified vertex.

The interface allocates structured data in memory and returns a pointer to it. The user must call one of
the memory free routines to have all data de-allocated.

 Parameters
vertexProtocol Specifies the protocol of the vertex this routine looks at. This is the vertex for

whose SAPs the routine searches. The vertexProtocol parameter is defined in
the file nvotTypes.h.

vertexName Specifies the name of the vertex this routine looks at. Both the vertexName
and vertexProtocol are required to identify the vertex using and providing
SAPs. This parameter is a string of characters originally used to create the
vertex and the SAPs associated with it.

 Return Values
nvotSapList Upon completion of the get operation, this routine returns a list of all SAPs

used and provided by the identified vertex.

As defined in the file nvotTypes.h, nvotSapList is an array list of nvotSap
structures. The nvotSapList return value is a structure made up of a pointer to
the first nvotSap element and an integer variable count indicating the number
of elements in the list.

 Chapter 2. Reference Pages 347

 nvotGetSapsOnVertex(3)

Each nvotSap element is a structure carrying information about a SAP. For
more information, please see “Basic Structures” on page 1061.

The variable operation returned in each nvotSap element has no meaning in
this routine.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during operation.
Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If ((rc = nvotGetError()) != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example checks all SAPs used and provided by the vertex created in
“nvotCreateVertexInGraph(3)” on page 265.

#include <nvot.h>

nvotReturnCode rc;
nvotSapList \ mySaps = NULL;
int using = ð;
int providing = ð;

nvotVertexProtocolType myVertexProt = STARLAN;
char \ myVertexName = "My_Vertex";
if ((mySaps = nvotGetSapsOnVertex (myVertexProt,

myVertexName) != NULL) {

/\ OK, it seems we have gotten a few saps. Count using and providing.\/
for (i = 1; i = mySaps->count; i++) {
if (mySaps->sap->[i-1]..sapAttr.sapServiceType == USING)

 using++;
 else
 providing++;

/\ Print their names. \/
printf ("Vertex %s uses %d and provides %d saps.\n", myVertexName,

 using, providing);
for (i = 1; i = mySaps->count; i++)
printf ("Sap %d = %s.\n", i, mySaps->sap[i-1].sapAttr.sapAddress);

348 Programmer's Reference

 nvotGetSapsOnVertex(3)

/\ We don't need them any longer. Let's release all memory. \/
 nvotFreeSapList (mySaps);
} else {
/\ No, we've gotten no saps. What happened?... \/
if ((rc = nvotGetError()) EQ NVOT_SUCCESS)
printf ("Vertex %s uses/provides no saps.\n", myVertexName);

 else {
printf ("Error occurred getting saps from vertex %s\n", myVertexName);
printf ("Error message : %s.\n", nvotGetErrorMsg (rc));

 }
 }

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotFree(3)” on page 304.

� See “nvotGetError(3)” on page 323.

� See “nvotGetErrorMsg(3)” on page 326.

 Chapter 2. Reference Pages 349

 nvotGetVertexObjectId(3)

 nvotGetVertexObjectId(3)

 Purpose

Gets a vertex ObjectId from the OVW database

 Syntax
#include <nvot.h>

OVwObjectId nvotGetVertexObjectId (
 nvotVertexProtocolType vertexProtocol,

char \ vertexName)

 Description

Objects in the OVW database are given objectIds. As soon as the objects are created in the GTM data-
base, gtmd sends a notification to ovwdb, which creates an ObjectId in its own database. These actions
are not synchronous. The elapsed time between GTMd creation and OVwDb creation can vary,
depending on activity. This is a consideration for applications that directly connect to the OVW database
with the intention of adding new variables to that database.

This routine returns the OVwObjectId of the vertex identified by vertexProtocol and vertexName.

Protocol and name are mandatory parameters. If the parameters are not specified, the ObjectId is not
searched for and the error code NVOT_VERTEX_INVALID_INDEX is set.

If the get operation fails, the routine returns ovwNullObjectId and the error internal variable is set.

If the get operation completes successfully but the vertex has not been created in the OVW database,
ovwNullObjectId is returned; however, the error internal variable is set to NVOT_SUCCESS.

If the get operation completes successfully and the vertex exists in the OVW database, the routine returns
its OVwObjectId.

 Parameters
vertexProtocol

Specifies the protocol of the vertex. Vertex protocol is an enumerated type defined in the file
nvotTypes.h.

vertexName
Specifies the name of the vertex. It can be any string of characters. However, once specified, the
same name must be used in any reference to this vertex.

 Return Values
OVwObjectId OVwObjectId is an unsigned integer type. If the get operation finds the object, a posi-

tive value is returned. If ovwNullObjectId is returned, check the error internal variable
because an error might have occurred.

A ovwNullObjectId value can be tested with the macro OVwIsIdNull as defined in the
OV/ovw_types.h file.

350 Programmer's Reference

 nvotGetVertexObjectId(3)

 Error Codes

When the routine completes and returns control to its caller, an error internal variable is set. A call to the
routine nvotGetError returns the error code set at the last API call. The error internal variable is reset
upon entering and set before exiting this call to the API. The following error codes set by this call:

[NVOT_SUCCESS] Successful operation.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_OVW_TIMED_OUT] NetView for AIX timeout. The timeout value passed to
nvotSetSynchronousCreation might not be enough for the com-
plete operation processing, or the connection to the NetView for
AIX database might be down. Increase the timeout value.

A printable message string is accessible through a call to the routine nvotGetErrorMsg as in the following
example:

nvotReturnCode rc;

If ((rc = nvotGetError()) != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example gets the OVwObjectId of the vertex created in the example given in the routine
“nvotCreateVertexInGraph(3)” on page 265

#include <nvot.h>

nvotReturnCode rc;
OVwObjectId vertexOid = ovwNullObjectId;

nvotVertexProtocolType myVertexProt = STARLAN;
char \ myVertexName = "My_Vertex";

vertexOid = nvotGetVertexObjectId (myVertexProt, myVertexName);

if (OVwIsIdNull (vertexOid))
/\ We may have had a problem. \/
if (nvotGetError () != NVOT_SUCCESS)
printf ("Error message = %s.\n", nvotGetErrorMsg (nvotGetError()));

 else
 /\ OK!...\/

printf ("Vertex %s ObjectId = %d.\n", myVertexName, vertexOid);

 Libraries
 � libnvot.a

 Chapter 2. Reference Pages 351

 nvotGetVertexObjectId(3)

 Files
 � nvot.h

 Related Information
� See “nvotCreateVertexInGraph(3)” on page 265.

� See “nvotGetError(3)” on page 323.

� See “nvotGetErrorMsg(3)” on page 326.

352 Programmer's Reference

 nvotGetVerticesInBox(3)

 nvotGetVerticesInBox(3)

 Purpose

Gets a list of all vertices contained in a box graph

 Syntax
#include <nvot.h>

nvotVertexList \ nvotGetVerticesInBox (
 nvotGraphProtocolType boxProtocol,
 char \ boxName)

 Description

The nvotGetVerticesInBox routine issues a get operation of all vertices contained in the box graph identi-
fied by boxProtocol and boxName.

The protocol and name parameters uniquely identify objects in the GTM database. The boxProtocol and
boxName parameters are required. If one of these parameters is not provided, a vertex list is not
searched for and the error code NVOT_BOX_INVALID_INDEX is set.

If the containing box graph does not exist, the nvotGetVerticesInBox routine does not search for the
vertices and the error code NVOT_BOX_DOES_NOT_EXIST is set.

If the get operation fails, the routine returns NULL and the error variable is set. See the following error
codes and return values sections.

If the get operation completes successfully but no vertex exists within the box graph, the routine returns
NULL but the error variable is set to NVOT_SUCCESS.

If the get operation completes successfully and vertices exist in the box, the routine returns a list of all
vertices contained in the identified box.

The interface allocates structured data in memory and returns a pointer to it. The user must call one of
the memory free routines to have all data de-allocated.

 Parameters
boxProtocol Specifies the protocol of the box graph this routine looks at. This is the box

for whose vertices the routine searches. For more information, refer to the file
/usr/OV/conf/oid_to_protocol.

boxName Specifies the name of the box graph this routine looks at. Both the boxName
and boxProtocol parameters are required to uniquely identify the containing
box graph. This parameter can be any string of characters. Once specified,
the same name must be used in any reference to this box.

 Chapter 2. Reference Pages 353

 nvotGetVerticesInBox(3)

 Return Values
nvotVertexList Upon completion of the get operation, the nvotGetVerticesInBox routine

returns a list of all vertices members of the identified box graph.

As defined in the file nvotTypes.h, the nvotVertexList return value is an array
list of nvotVertex structures. The nvotVertexList return value is a structure
made up of a pointer to the first nvotVertex element and an integer variable
count indicating the number of elements in the list.

Each nvotVertex element is a structure carrying information about a vertex.
For more information, please see “Basic Structures” on page 1061.

The variable operation returned in each nvotVertex element has no meaning in
this routine.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_BOX_INVALID_INDEX] The box index is not valid. A box graph protocol and/or name
must not be NULL.

[NVOT_BOX_DOES_NOT_EXIST] The box graph does not exist in the GTM database.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during operation.
Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If ((rc = nvotGetError()) != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example checks all vertices contained in the box created in the example in
“nvotCreateVertexInBox(3)” on page 261.

#include <nvot.h>

nvotReturnCode rc;
nvotVertexList \ myVertices = NULL;

nvotGraphProtocolType myBoxProt = "1.3.6.1.2.1.2.2.1.3.11";
char \ myBoxName = "My_Box_Graph";

if ((myVertices = nvotGetVerticesInBox (myBoxProt,
myBoxName) != NULL) {

/\ OK, it seems we have gotten a few vertices. Print their names. \/
printf ("Box %s contains %d vertices.\n", myBoxName, myVertices->count);
for (i = 1; i = myVertices->count; i++)

354 Programmer's Reference

 nvotGetVerticesInBox(3)

printf ("Vertex %d=%s.\n", i, myVertices->vertex[i-1].vertexAttr.vertexName);

/\ We don't need them any longer. Let's release all memory. \/
 nvotFreeVertexList (myVertices);

} else {
/\ No, we've gotten no vertices. What happened?... \/
if ((rc = nvotGetError()) EQ NVOT_SUCCESS)
printf ("Box %s contains no vertices.\n", myBoxName);

 else {
printf ("Error occurred getting vertices from box %s\n", myBoxName);
printf ("Error message : %s.\n", nvotGetErrorMsg (rc));

 }
 }

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotFree(3)” on page 304.

� See “nvotGetError(3)” on page 323.

� See “nvotGetErrorMsg(3)” on page 326.

 Chapter 2. Reference Pages 355

 nvotGetVerticesInGraph(3)

 nvotGetVerticesInGraph(3)

 Purpose

Gets a list of all vertices contained in a graph

 Syntax
#include <nvot.h>

nvotVertexList \ nvotGetVerticesInGraph (
 nvotGraphProtocolType graphProtocol,
 char \ graphName)

 Description

The nvotGetVerticesInGraph routine issues a get operation of all vertices contained in the graph identified
by graphProtocol and graphName.

The protocol and name parameters uniquely identify objects in the GTM database. The graphProtocol and
graphName parameters are required. If one of these parameters is not provided, a vertex list is not
searched for and the error code NVOT_GRAPH_INVALID_INDEX is set.

If the containing graph does not exist, the routine does not search for the vertices and the error code
NVOT_GRAPH_DOES_NOT_EXIST is set.

If the get operation fails, the routine returns NULL and the error variable is set. For more information, see
the following error codes and return values sections.

If the get operation completes successfully but no vertex exists within the graph, the routine returns NULL
but the error variable is set to NVOT_SUCCESS.

If the get operation completes successfully and vertices exist in the graph, the routine returns a list of all
vertices contained in the identified graph.

The interface allocates structured data in memory and returns a pointer to it. The user must call one of
the free memory routines to have all data de-allocated.

 Parameters
graphProtocol Specifies the protocol of the graph this routine looks at. This is the graph for

whose vertices this routine searches. For more information, refer to the file
/usr/OV/conf/oid_to_protocol.

graphName Specifies the name of the graph this routine looks at. Both the graphName
and graphProtocol parameters are required to identify the containing graph.
This parameter can be any string of characters. Once specified, the same
name must be used in any reference to this graph.

356 Programmer's Reference

 nvotGetVerticesInGraph(3)

 Return Values
nvotVertexList Upon completion of the get operation, this routine returns a list of all vertices

that are members of the identified graph.

As defined in the file nvotTypes.h, nvotVertexList is an array list of nvotVertex
structures. The nvotVertexList return value is a structure made up of a pointer
to the first nvotVertex element and an integer variable count indicating the
number of elements in the list.

In its turn, each nvotVertex element is a structure carrying the actual informa-
tion about a vertex. For more information, see Chapter 6, “Using NetView for
AIX GTM Data Structures” on page 1061.

The variable operation returned in each nvotVertex element has no meaning in
this routine.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol and/or name must
not be NULL.

[NVOT_GRAPH_DOES_NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during operation.
Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If ((rc = nvotGetError()) != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example checks all vertices contained in the graph created in the example in
“nvotCreateVertexInGraph(3)” on page 265.

#include <nvot.h>

nvotReturnCode rc;
nvotVertexList \ myVertices = NULL;

nvotGraphProtocolType myGraphProt = "1.3.6.1.2.1.2.2.1.3.11";
char \ myGraphName = "My_STARLAN_Graph";

if ((myVertices = nvotGetVerticesInGraph (myGraphProt,
myGraphName) != NULL) {

/\ OK, it seems we have gotten a few vertices. Print their names. \/
printf ("Graph %s contains %d vertices.\n", myGraphName, myVertices->count);

 Chapter 2. Reference Pages 357

 nvotGetVerticesInGraph(3)

for (i = 1; i = myVertices->count; i++)
printf ("Vertex %d=%s.\n", i, myVertices->vertex[i-1].vertexAttr.vertexName);

/\ We don't need them any longer. Let's release all memory. \/
 nvotFreeVertexList (myVertices);

} else {
/\ No, we've gotten no vertices. What happened?... \/
if ((rc = nvotGetError()) EQ NVOT_SUCCESS)
printf ("Graph %s contains no vertices.\n", myGraphName);

 else {
printf ("Error occurred getting vertices from graph %s\n", myGraphName);
printf ("Error message : %s.\n", nvotGetErrorMsg (rc));

 }
 }

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotFree(3)” on page 304.

� See “nvotGetError(3)” on page 323.

� See “nvotGetErrorMsg(3)” on page 326.

358 Programmer's Reference

 nvotInit(3)

 nvotInit(3)

 Purpose

Initializes the NetView for AIX Open Topology interface

 Syntax
#include <nvot.h>
nvotReturnCode nvotInit (
 char \ hostname,
 nvotBooleanType arcDirection)
 nvotBooleanType checkOn)

 Description

The main purpose of this routine is to open a connection between an application and gtmd, either locally
or remotely. The application using the NetView for AIX Open Topology platform can be running in one
machine while gtmd is be running on another machine.

Hostname is the name of the network node where the gtmd is running. Hostname serves remote con-
nections only. When an application and gtmd are to be running in the same machine, the hostname
parameter should be set to NULL. Communication between the application and gtmd is based on socket
connection. Although it is possible to connect a locally running application through an Internet type
socket, it is less efficient than through a Unix type socket.

The nvotInit routine also determines how an interface handles arc objects and affects gtmd's ability to
recover from lost traps.

An arc object is referred to by two endpoints - aEndpoint and zEndpoint. When an object is created in
gtmd, it is given a name that must be used in any further references to it. However, the name of an arc
object is derived from the names of two other objects, vertices and/or graphs. For example, an arc
created as aEndpoint, zEndpoint, arcIndexId can be referred to as zEndpoint, aEndpoint, arcIndexId .
The arcDirection parameter tells the gtmd interface to initialize itself to handle arcs in one of the following
ways:

� A value of TRUE notifies the interface that the names aEndpoint, zEndpoint, 1 and zEndpoint,
aEndpoint, 1 refer to the same arc. In this case, additional processing is required for the interface to
handle the arcs.

� A value of FALSE notifies the interface to handle such arcs as two distinct arcs.

In some situations, the gtmd can automatically recover from lost traps. For example, if a request is sent to
create a vertex inside a graph, the containing graph must exist so that gtmd can associate the vertex it
creates with the graph. If gtmd finds that the containing, or parent, graph does not exist, it determines that
a previous trap sent to create that graph has been lost in the network. Then, it creates a default graph
and associates the vertex with it. A default graph has its graphType attribute set to GRAPH and its
layoutAlgorithm set to NONE_LAYOUT. These attributes are not allowed to be changed in the future.

The nvotInit routine's parameter variable checkOn specifies whether or not a function call causes the
interface to query gtmd to determine whether a graph related to that call exists. If set to TRUE, any
function call involving a parent graph causes the interface to query gtmd for the existence of that graph. If
set to FALSE, the interface does not issue any queries about graphs.

 Chapter 2. Reference Pages 359

 nvotInit(3)

The nvotInit routine can be used multiple times to re-establish a connection with gtmd. If the interface
ever returns the message NVOT_GTMD_CONNECTION_ERROR and NVOT_SOCKET_ERROR, the
nvotInit routine can be called and the connection to gtmd re-established without the application being
restarted. But the nvotInit routine can be used only once in a session to set the arcDirection option. That
is, in subsequent calls to nvotInit, the value of arcDirection must be the same as that in the first call.

 Parameters
hostname A string of characters containing the hostname of the network node that is

running the gtmd with which this application will connect.

arcDirection A boolean type parameter that determines how the interface should handle the
direction of the arc object. If initialized with TRUE, the interface treats two arc
names with the same endpoints in different order as the same arc, and deter-
mines the direction from one of the arc names. If initialized with FALSE, the
interface treats two arc names with the same endpoints in different order as
two different arcs, and determines the direction of the arcs as it receives them.

checkOn A boolean type parameter that specifies whether or not an interface will query
the gtmd for the existence of graphs related to function calls when it receives
a function call. When set to TRUE, the interface queries gtmd for the exist-
ence of the graphs involved in the function call. This prevents the interface
from automatically creating a graph when one already exists. When set to
FALSE, the interface does not query gtmd for the existence of graphs.

 Return Values

If successful, nvotInit returns [NVOT_SUCCESS]. If unsuccessful, nvotInit returns one of the following
error codes.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_ALREADY_INITIALIZED] Already initialized. The routine attempted to re-establish the con-
nection with gtmd but the connection is still open.

[NVOT_GTMD_CONNECTION_ERROR]
There is a GTM connection error. The connection cannot be
opened. Issue the nvotInit routine again.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during operation.
Issue the nvotInit routine again.

A printable message string is accessible through a call to the routine nvotGetErrorMsg, as shown in the
following example:

nvotReturnCode rc;

If ((rc ═ nvotGetError()) !═ NVOT═SUCCESS)
printf (“%s\n”, nvotGetErrorMsg (rc));

360 Programmer's Reference

 nvotInit(3)

 Examples

The following example creates a connection to gtmd and checks the result. The gtmd daemon should be
running on the same host as the application.

The interface does not change the direction of the arcs. The existence of graphs is verified before objects
are created.

#include <nvot.h>

nvotReturnCode rc;
char \ gtmHost = NULL;
nvotBooleanType arcDirection = FALSE;
nvotBooleanType graphQueryOn = TRUE;
if ((rc = nvotInit (gtmHost, arcDirection, graphQueryOn)) == NVOT_SUCCESS)
printf ("OK : %s\n", nvotGetErrorMsg (nvotGetError()));

 else
printf ("WHOOPS! : %s\n", nvotGetErrorMsg (nvotGetError()));

 Libraries

When compiling a program that uses the nvotInit routine, you need to link to the following library:

 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotDone(3)” on page 302.

� See “nvotGetError(3)” on page 323.

� See “nvotGetErrorMsg(3)” on page 326.

 Chapter 2. Reference Pages 361

 nvotSetCenterBoxForGraph(3)

 nvotSetCenterBoxForGraph(3)

 Purpose

Specifies what box symbol is to be the center of a star graph map

 Syntax
#include <nvot.h>

nvotReturnCode nvotSetCenterBoxForGraph (
 nvotGraphProtocolType graphProtocolParent,

char \ graphNameParent,
 nvotGraphProtocolType centerBoxProtocol,

char \ centerBoxName)

 Description

The nvotSetCenterBoxForGraph routine sets up the symbol associated with the box graph identified by
centerBoxProtocol and centerBoxName to be in the center of a STAR_LAYOUT graph identified by
graphProtocolParent and graphNameParent.

The parent graph must have been created with layout algorithm set to STAR_LAYOUT.

The protocol and name parameters uniquely identify objects in the GTM database. The
graphProtocolParent, graphNameParent, centerBoxProtocol, and centerBoxName parameters are requierd.
If one of these paraemters is not provided, the error code NVOT_GRAPH_INVALID_INDEX or
NVOT_BOX_INVALID_INDEX is returned.

If the parent graph does not exist or it exists but its graphType is not set to GRAPH, the operation is
rejected and the error code NVOT_GRAPH_DOES_NOT_EXIST is returned.

If the box graph does not exist or it exists but its graphType is not set to BOX, the operation is rejected
and the error code NVOT_BOX_DOES_NOT_EXIST is returned.

 Parameters
graphProtocolParent Specifies the protocol of the containing graph. For more information about

specifying a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphNameParent Specifies the name of the containing graph. Both the graphNameParent and
graphProtocolParent parameters are required to uniquely identify the parent
graph in the GTM database. This parameter is a string of characters used to
create the parent graph.

centerBoxProtocol Specifies the protocol of the box graph whose symbol is to be in the center of
the star map. For more information about specifying a box graph's protocol,
refer to the file /usr/OV/conf/oid_to_protocol.

centerBoxName Specifies the name of the center box graph. Both the centerBoxName and
centerBoxProtocol parameters are required to identify the center box graph.
This parameter is a string of characters used to create the box graph.

362 Programmer's Reference

 nvotSetCenterBoxForGraph(3)

 Return Values
nvotReturnCode The nvotSetCenterBoxForGraph routine returns an nvotReturnCode that can

assume the values described in the following error codes section.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol and/or name must
not be NULL.

[NVOT_GRAPH_DOES_NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_BOX_INVALID_INDEX] The box index is not valid. A box graph protocol and/or name
must not be NULL.

[NVOT_BOX_DOES_NOT_EXIST] The box graph does not exist in the GTM database.

[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during operation.
Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Chapter 2. Reference Pages 363

 nvotSetCenterBoxForGraph(3)

 Examples

The following example assumes that you have created a graph with layout=STAR_LAYOUT and con-
taining several boxes. This example will cause the view to be redrawn so that my_STARLAN_BoxName
would appear in the center.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType my_STARLAN_GraphsProt = "1.3.6.1.2.1.2.2.1.3.11";

char \ myRoot_STARLAN_GraphName = "My_Root_Graph";
char \ my_STARLAN_BoxName = "My_Box_STARLAN_Graph";

if ((rc = nvotSetCenterBoxForGraph (my_STARLAN_GraphsProt,
 myRoot_STARLAN_GraphName,
 my_STARLAN_GraphsProt,

my_STARLAN_BoxName)) == NVOT_SUCCESS)

printf ("%s is the center of graph %s.\n", my_STARLAN_BoxName,
 myRoot_STARLAN_GraphName);
 else

printf ("An error occurred changing %s symbol position.\n",
 my_STARLAN_BoxName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotCreateRootGraph(3)” on page 249.

� See “nvotCreateBoxInGraph(3)” on page 227.

� See “nvotChangeBoxPositionInGraph(3)” on page 166.

364 Programmer's Reference

 nvotSetCenterGraphForGraph(3)

 nvotSetCenterGraphForGraph(3)

 Purpose

Specifies what graph symbol is to be the center of a star graph map

 Syntax
#include <nvot.h>

nvotReturnCode nvotSetCenterGraphForGraph (
 nvotGraphProtocolType graphProtocolParent,

char \ graphNameParent,
 nvotGraphProtocolType centerGraphProtocol,

char \ centerGraphName)

 Description

The nvotSetCenterGraphForGraph routine sets up the symbol associated with the graph identified by
centerGraphProtocol and centerGraphName to be in the center of a STAR_LAYOUT graph identified by
graphProtocolParent and graphNameParent.

The parent graph must have been created with layout algorithm set to STAR_LAYOUT.

The protocol and name parameters uniquely identify objects in the GTM database. The
graphProtocolParent, graphNameParent, centerGraphProtocol, and centerGraphName parameters are
required. If one of these parameters is not provided, the error code NVOT_GRAPH_INVALID_INDEX is
returned.

If the parent graph or the center graph does not exist or they exist but their graphType attributes are not
set to GRAPH, the operation is rejected and the error code NVOT_GRAPH_DOES_NOT_EXIST is
returned.

 Parameters
graphProtocolParent Specifies the protocol of the containing graph. For more information about

specifying a graph's protocol, refer to the file /usr/OV/conf/oid_to_protocol.

graphNameParent Specifies the name of the containing graph. Both the graphNameParent and
graphProtocolParent parameters are required to uniquely identify the parent
graph in the GTM database. This parameter is a string of characters used to
create the parent graph.

centerGraphProtocol Specifies the protocol of the graph whose symbol is to be in the center of the
star map. For more information about specifying a graph's protocol, refer to
the file /usr/OV/conf/oid_to_protocol.

centerGraphName Specifies the name of the center graph. Both the centerGraphName and
centerGraphProtocol parameters are required to uniquely identify the center
graph. This parameter is a string of characters used to create the graph.

 Return Values
nvotReturnCode The nvotSetCenterGraphForGraph routine returns an nvotReturnCode that can

assume the values described in the following error codes section.

 Chapter 2. Reference Pages 365

 nvotSetCenterGraphForGraph(3)

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol and/or name must
not be NULL.

[NVOT_GRAPH_DOES_NOT_EXIST] A graph does not exist in the GTM database.

[NVOT_GTMD_INVALID_RESPONSE] The GTM response is not valid. A query to a graph or member
table returned an unexpected response from gtmd.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during operation.
Issue the nvotInit routine again.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

 Examples

The following example assumes that you have created a graph with layout=STAR_LAYOUT and con-
taining several graphs. This example will cause the view to be redrawn so that myGraphName would
appear in the center.

#include <nvot.h>

nvotReturnCode rc;

nvotGraphProtocolType mySDLCGraphsProt = "1.3.6.1.2.1.2.2.1.3.17";

char \ myRootSDLCGraphName = "My_Root_Graph";
char \ myGraphName = "My_Graph";

if ((rc = nvotSetCenterGraphForGraph (mySDLCGraphsProt,
 myRootSDLCGraphName,
 mySDLCGraphsProt,

myGraphName)) == NVOT_SUCCESS)

printf ("%s is the center of graph %s.\n", myGraphName,
 myRootSDLCGraphName);
 else

printf ("An error occurred changing %s symbol position.\n", myGraphName);
printf ("Operation result : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

366 Programmer's Reference

 nvotSetCenterGraphForGraph(3)

 Files

nvot.h

 Related Information
� See “nvotCreateRootGraph(3)” on page 249.

� See “nvotCreateGraphInGraph(3)” on page 235.

� See “nvotChangeGraphPositionInGraph(3)” on page 184.

 Chapter 2. Reference Pages 367

 nvotSetSynchronousCreation(3)

 nvotSetSynchronousCreation(3)

 Purpose

Initializes the interface to return OVwObjectIds

 Syntax
#include <nvot.h>
nvotReturnCode nvotSetSynchronousCreation (unsigned synchronous)

 Description

Objects stored in the gtmd database are also stored in the NetView for AIX object database. Objects in
the object database are identified by an OVwObjectId. Although the interface is not meant to handle
objects in the object database, the application can request that the interface creation functions return
OVwObjectIds.

The nvotSetSynchronousCreation routine specifies whether the interface returns OVwObjectIds upon
return from the creation function calls. The synchronous parameter is a timeout value, that specifies the
number of seconds for the interface to wait for the OVwObjectId. If synchronous is set to a positive
value, a connection is opened with the NetView for AIX object database, and the creation function calls
return OVwObjectIds. If synchronous is set to 0 (zero) or nvotSetSynchronousCreation is not called at
all, no connection is opened with the object database, and the creation function calls do not return
OVwObjectIds. The interface create functions run faster in this case.

 Parameters
synchronous

An unsigned number, which determines the number of seconds the interface should wait for
OVwObjectIds to be returned on creation routines. If this parameter is set to zero OVwObjectIds will
not be returned.

 Return Values

If successful, nvotSetSynchronousCreation returns [NVOT_SUCCESS]. If unsuccessful,
nvotSetSynchronousCreation returns one of the following error codes.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_OVW_CONNECTION_ERROR]
There is an connection error with the NetView for AIX program.
The connection to the NetView for AIX object database cannot be
opened.

A printable message string is accessible through a call to the nvotGetErrorMsg routine, as shown in the
following example:

nvotReturnCode rc;

If ((rc ═ nvotGetError()) !═ NVOT_SUCCESS)
printf (“%s\n”, nvotGetErrorMsg (rc));

368 Programmer's Reference

 nvotSetSynchronousCreation(3)

 Examples

The following example creates a connection to the NetView for AIX object database. After this call, every
create function should return the OVwObjectId of the created object.

#include <nvot.h>

nvotReturnCode rc;
int timeout = 2ð;

if ((rc = nvotSetSynchronousCreation (timeout)) == NVOT_SUCCESS)
printf ("OK : %s\n", nvotGetErrorMsg (rc));

 else
printf ("WHOOPS! : %s\n", nvotGetErrorMsg (rc));

 Libraries
 � /usr/OV/lib/libnvot.a

 Files

nvot.h

 Related Information
� See “nvotInit(3)” on page 359.

 Chapter 2. Reference Pages 369

 nvotVertexHandler(3)

 nvotVertexHandler(3)

 Purpose

Provides open access to all tables, variables, and operations defined in the NetView for AIX Generic
Topology MIB.

 Related Functions
 nvotGraphHandler
 nvotArcHandler
 nvotSapHandler
 nvotSimpleConnectionHandler
 nvotUnderlyingConnectionHandler
 nvotUnderlyingArcHandler
 nvotMemberHandler
 nvotMemberArcHandler
 nvotAttachedArcHandler
 nvotAdditionalMemberHandler
 nvotAdditionalGraphHandler

 Syntax
#include <nvot.h>

nvotReturnCode nvotVertexHandler (nvotVertex \ vertex)

nvotReturnCode nvotGraphHandler (nvotGraph \ graph)

nvotReturnCode nvotArcHandler (nvotArc \ arc)

nvotReturnCode nvotSapHandler (nvotSap \ sap)

nvotReturnCode nvotSimpleConnectionHandler
(nvotSimpleConnection \ simpleConnection)

nvotReturnCode nvotUnderlyingConnectionHandler
(nvotUnderlyingConnection \ underlyingConnection)

nvotReturnCode nvotUnderlyingArcHandler (nvotUnderlyingArc \ underlyingArc)

nvotReturnCode nvotMemberHandler (nvotMember \ member)

nvotReturnCode nvotMemberArcHandler (nvotMemberArc \ memberArc)

nvotReturnCode nvotAttachedArcHandler (nvotAttachedArc \ attachedArc)

nvotReturnCode nvotAdditionalMemberHandler
(nvotAdditionalMember \ additionalMember)

nvotReturnCode nvotAdditionalGraphHandler
(nvotAdditionalGraph \ additionalGraph)

370 Programmer's Reference

 nvotVertexHandler(3)

 Description

Basic routines have been made available for those programmers with more familiarity with NetView for AIX
Generic Topology MIB, its manageable resources, tables, attributes and operations.

While the convenience routines are intended to ease NetView for AIX Topology Application programming,
through the encapsulation of sets of lower-level functions into higher level calls to the GTM interface, the
Handler routines allow for complete open access to all tables, variables and operations defined in NetView
for AIX Generic Topology MIB through the free combination of lower-level functions.

Unlike the convenience routines these basic lower-level routines leave to the programmer the burden of
certain checks and controls. For example, even if the application programmer wants to avoid automatic
creation of graphs when creating objects in graph submaps, it is his task to make sure the parent graph
exists. When deleting a graph, he must make sure it contains no objects inside. Even when displaying an
object in OVW, the programmer must make sure that the object is a member of a graph which in turn
belongs to a hierarchy of a root graph.

For example, suppose you want to create a graph G2 to be displayed in the submap of root graph G1 that
does not exist yet. Using the Convenience routines the task could be accomplished through the following
steps:

� Call nvotCreateGraphInGraph (G1, G2)

� If the creation above returns NVOT_GRAPH_DOES_NOT_EXIST, create graph G1 and call again
nvotCreateGraphInGraph (G1, G2).

Now, suppose you want to create 10 vertices inside graph G2 above. Because convenience routine
nvotCreateVertexInGraph is actually issuing a get graph for every vertex creation and we know that graph
G2 already exists, it might be advantageous to performance to accomplish the task using these basic
routines instead. Pseudocode for this would be as follows:

� Issue a get to graph G2 (e.g., nvotGetGraphsInGraph (G1) or nvotGetGraphObjectId (G2))

� If graph (G2) exists

� For (n = 1; n = 10; n++)

� If (nvotVertexHandler (CREATE_OPERATION, Vn) NE NVOT_SUCCESS)

 � Break

However, when handling a smaller number of objects into different submaps, it is preferable to use the
convenience routines and let the GTM interface take care of all the necessary checks.

The convenience routines and the basic routines can be mixed within a program.

Aside from those restrictions implied by the NetView for AIX Generic Topology MIB itself, all tables, vari-
ables and operations are available through the Basic Routines. However, it is recommended that the pro-
grammer be familiar with the results yielded by each action.

Each one of these basic routines is targeted to one individual table, or object, defined in NetView for AIX
Generic Topology MIB. In other words, each basic routine handles one specific table. Each routine takes
as parameter a pointer to a structure into which are mapped all table variables or attributes of a corre-
sponding object.

In addition to the object attributes two other variables are present in all structures - a nvotOperationType
and a nvotAttributeBitmapType variable.

 Chapter 2. Reference Pages 371

 nvotVertexHandler(3)

nvotOperationType is set to the operation to be executed upon the table. The following operations can be
performed:

� New: Create a new object or relationship

� Delete: Delete an object or relationship

� Variable Value Change: Change one or more variables

� Operational State Change: Change one or more status variables

nvotAttributeBitmapType is a bitmask indicating which attributes the application wants to operate upon. If a
bit is set, the corresponding variable must be assigned a valid value, especially those variables of type
(char *). Be aware that certain variables cannot be validated, such as char pointer type (which must be set
to a valid string if its corresponding validAttributes bit is on).

In addition, a nvotNamebindingType is present in all structures except nvotVertex, nvotGraph, nvotBox,
nvotSap, nvotMember, and nvotAdditionalGraph. nvotNamebindingType supplies more specific informa-
tion regarding the object index such as if an arc is identified by its endpoints. Since the endpoints of an
arc may be vertices, graphs or a vertex and a graph nvotNamebindingType variable specifies each
endpoint. Note that the nvotNamebindingType variable must be assigned a value that matches the index
variables to which it is related. Similarly, in the case of an arc structure, if nameBinding is assigned a
value of ARC_GRAPH_VERTEX_NAME_BINDING, this incates that the aEndpoint index fields must be
set with a graph index and the zEndpoint index fields must be set with a vertex index. This is true for all
structures using a nvotNamebindingType variable.

As soon as a basic structure is filled out appropriately, a call to the related basic routine accomplishes the
operation in the NetView for AIX topology database and possibly in a topology map in the OVw display.

Upon completion a return code is available.

Note that no dependency checks are applied upon the operations. For example, suppose a call is made
to the nvotMemberHandler routine with the purpose of associating vertex V1 to graph G1. The
nvotMembers structure might be set as follows:(as illustration purpose only) :

struct {
 operation = CREATE_OPERATION;

validAttributes = MEMBERPROTOCOL_ATTR BITOR MEMBERNAME_ATTR BITOR
 MEMBERNAMEBINDING_ATTR BITOR
 MEMBERCOMPONENTPROTOCOL_ATTR BITOR
 MEMBERCOMPONENTNAME_ATTR;
 struct {
 memberProtocol = "1.3.6.1.2.1.2.2.1.3.11";
 memberName = "G1_Name;
 nameBinding = VERTEX_NAME_BINDING;

memberComponentProtocol = STARLAN;
 memberComponentName = "V1_Name";
 memberLabel = NULL;
 memberIcon = NULL;
 } nvotMembersAttrType;
} nvotMembers;

This operation will not verify whether graph G1 or vertex V1 exists. NetView for AIX attempts to perform
the operation. If either of the objects does not exist they will be automatically created with default values
by the GTM recovery process.

The operation above could also be accomplished through the convenience routines by calling
nvotCreateVertexInGraph or nvotCreateVertexInBox .

372 Programmer's Reference

 nvotVertexHandler(3)

 Parameters

Each basic routine takes a pointer to a basic structure which is associated to a NetView for AIX Generic
Topology MIB table.

vertex
A pointer to a nvotVertex type structure defined for the handling of the Vertex table.

graph
A pointer to a nvotGraph type structure defined for the handling of the Graph table. nvotGraph is also
used for the handling of box since this one is a graph with graphType attibute set to BOX.

arc
A pointer to a nvotArc type structure defined for the handling of the Arc table.

sap
A pointer to a nvotSap type structure defined for the handling of the Sap table.

simpleConnection
A pointer to a nvotSimpleConnection type structure defined for the handling of the SimpleConnection
table.

underlyingConnetion
A pointer to a nvotUnderlyingConnection type structure defined for the handling of the
UnderlyingConnection table.

underlyingArc
A pointer to a nvotUnderlyingArc type structure defined for the handling of the UnderlyingArc table.

member
A pointer to a nvotMember type structure defined for the handling of the Member table.

memberArc
A pointer to a nvotMemberArc type structure defined for the handling of the MemberArc table.

attachedArc
A pointer to a nvotAttachedArc type structure defined for the handling of the AttachedArc table.

additionalMember
A pointer to a nvotAdditionalMember type structure defined for the handling of the Member additional
information table.

additionalGraph
A pointer to a nvotAdditionalGraph type structure defined for the handling of the Graph additional infor-
mation table.

 Return Values
nvotReturnCode Basic routines will return an nvotReturnCode that can assume the values

described in the item Error Codes bellow.

 Error Codes
[NVOT_SUCCESS] Successful operation.

[NVOT_INVALID_OPERATION] The basic routines do not support a GET operation.

[NVOT_INVALID_NAME_BINDING] The name binding is not valid. It must be a number defined in the
nvotTypes.h file.

 Chapter 2. Reference Pages 373

 nvotVertexHandler(3)

[NVOT_NULL_BASIC_STRUCT_POINTER]
The basic routine has been called with a NULL pointer to a basic
structure.

[NVOT_VERTEX_INVALID_INDEX] The vertex index is not valid. A vertex protocol must be a positive
integer and a vertex name must not be NULL.

[NVOT_GRAPH_INVALID_INDEX] The graph index is not valid. A graph protocol or name must not
be NULL.

[NVOT_ENDPOINT_INVALID_INDEX] The graph endpoint index is not valid.

[NVOT_ENDPOINT_GRAPH_INVALID_INDEX]
The endpoint graph index is not valid. An endpoint graph protocol
or name must not be NULL.

[NVOT_SAP_INVALID_INDEX] The SAP index is not valid. A SAP protocol must be a positive
integer and a SAP name must not be NULL.

[NVOT_INVALID_INDEX_VALUE] Could not determine which index is valid.

[NVOT_INVALID_STATUS] The status is not valid. It must be a number defined in the
nvotTypes.h file.

[NVOT_ERROR_ALLOCATING_MEMORY]
Memory allocation error. The system might be out of memory.

[NVOT_SESSION_TO_GTM_NOT_ESTABLISH]
The routine attempted to establish connection with gtmd but the
connection has not been opened yet.

[NVOT_NOT_INITIALIZED] Not initialized. Issue the nvotInit routine to establish a connection
with gtmd.

[NVOT_SOCKET_ERROR] There is a socket error. The connection failed during operation.
Issue the nvotInit routine again.

A printable message string is accesseable through a call to the routine nvotGetErrorMsg as in the example
bellow:

nvotReturnCode rc;

if (rc != NVOT_SUCCESS)
printf ("%s\n", nvotGetErrorMsg (rc));

374 Programmer's Reference

 nvotVertexHandler(3)

 Examples

See the /usr/OV/prg_samples/nvot directory for an example of how to construct a complete topology using
the Basic routines. It is in the file nvotBasicSerialUnderlyingArc.c.

The following code fragment shows an example from this sample program. This code defines a graph
structure to be used with the nvotGraphHandler basic routine.

/\\\/
/\ Creating components \/
/\\\/

/\\\/
/\ Root graph \/
/\\\/

/\\\\\\\\\\\\\\\\\\\\\\\\\
 \\ GRAPH OPERATION - Filling nvotGraph Structure
 \\\\\\\\\\\\\\\\\\\\\\\\\/

operation = CREATE_OPERATION ;
graph.operation = operation ;
graph.validAttributes = ð ;
graph.graphAttr.graphType = GRAPH ; /\ 3 \/
graph.validAttributes |= GRAPHTYPE_ATTR ;

graph.graphAttr.graphProtocol = strdup("1.3.6.1.2.1.2.2.1.3.2") ;
graph.validAttributes |= GRAPHPROTOCOL_ATTR ;

graph.graphAttr.graphName = strdup("Serial_Underlying_Arc_Basic_Root") ;
graph.validAttributes |= GRAPHNAME_ATTR ;

graph.graphAttr.layoutAlgorithm = POINT_TO_POINT_LAYOUT ; /\ 3 \/
graph.validAttributes |= LAYOUTALGORITHM_ATTR ;

graph.graphAttr.isRoot = TRUE ;
graph.validAttributes |= ISROOT_ATTR ;

rc = nvotGraphHandler(NetView for AIX Grapher);

 nvotFreeGraph (&graph);

 Libraries

libnvot.a

 Files
 � nvot.h

 Chapter 2. Reference Pages 375

 nvSnmpBlockingGetTable(3)

 nvSnmpBlockingGetTable(3)

 Purpose

Retrieves an entire table from the MIB or an element from the returned table

 Related Functions
 nvSnmpGetTableElement
 nvSnmpGetTable
 nvSnmpXGetTable

 Syntax
include <OV/OVsnmp.h>

OVsnmpPdu \nvSnmpBlockingGetTable(OVsnmpSession \session,

ObjectID \oid, int oidLen, int \rows, int \columns);

int nvSnmpGetTable(OVsnmpSession \session,

ObjectID \oid, int oidLen, int \rows, int \columns);

int nvSnmpXGetTable(OvsnmpSession \session,

ObjectID \oid, int oidLen, int \rows, int \columns);

OVsnmpVarBind \nvSnmpGetTableElement (OVsnmpPdu \pduPtr,

int totalRows, int row, int column);

 Description

The nvSnmpBlockingGetTable, nvSnmpGetTable, and nvSnmpXGetTable calls retrieve an entire table
from the MIB. These convenience calls prevent you from having to write the code to retrieve entire tables.
The convenience function, nvSnmpGetTableElement, enables the user to retrieve an element from the
returned table.

The nvSnmpBlockingGetTable call retrieves an entire table in a blocking manner. The user passes to the
call a session that has been established with the OVsnmpOpen call, the object ID of the table to be
retrieved (the oid immediately before the first instance in the table), the length of the object ID, and a
pointer to two integers in which the number of rows and columns in the requested table are returned. For
example, if you want to retrieve the interface table, pass the oid associated with ifEntry, for example,
1.3.6.1.2.1.2.2.1. Sample code is provided in the file /usr/OV/prg_samples/nvsnmp_app/getTable.c.

You should use the OVsnmpApi.h header file with the nvSnmpBlockingGetTable call. This header file
provides the definition for the ObjectID type.

The nvSnmpGetTable call has the same parameters as the blocking version. However, this call is made
in a non-blocking manner. When using this call, you must establish a select statement to manage the
transmissions.

Note: The nvSnmpGetTableElement call does not provide any check on the tuple (row, column) passed
as parameter. You must check the accuracy of these parameters.

The nvSnmpXGetTable also has the same parameters as nvSnmpBlockingGetTable and
nvSnmpGetTable. However, if you use nvSnmpXGetTable, you must use the OVsnmpXOpen to manage
the transmissions.

376 Programmer's Reference

 nvSnmpBlockingGetTable(3)

 Parameters
 session Specifies a pointer to a session that was previously established by the application

 oid Specifies a pointer to the table object identifier

 oidLen Specifies the length of the table oid

 rows Specifies the address of an integer that will return the number of rows in the
retrieved table

 columns Specifies the address of an integer that receives the number of columns in a
retrieved table

 pduPtr Specifies a pointer to a received PDU

 totalRows Specifies the total number of rows in the table

 row Specifies the row from which a value should be retrieved from the table

 column Specifies the line from which a value should be retrieved from a table

 Return Values

If successful, nvSnmpBlockingGetTable returns a pointer to an OVsnmpPdu structure. If unsuccessful, it
returns NULL. If successful, nvSnmpGetTable and nvSnmpXGetTable return a request ID. If unsuc-
cessful, they return −1 (negative one). If successful, nvSnmpGetTableElement returns an
OVsnmpVarBind pointer. If nvSnmpGetTableElement is unsuccessful and the PDU sent is not corrupted,
the call returns NULL.

 Error Codes

The nvSnmpBlockingGetTable call returns the error code value OVsnmpErrno. The following list
describes the possible errors:

[SNMP_ERR_NO_RESPONSE] No response received before a time-out occurred.

[SNMP_ERR_BAD_SESSION] The session parameter does not point to an OVsnmpSession data struc-
ture that was created by OVsnmpOpen.

[SNMP_ERR_PDU_BUILD] An internal error occurred while ASN.1 encoding the PDU. One of the
variables might not have a valid type. This can happen if the
OVsnmpVarBind data structure is modified after a call to
OVsnmpAddTypedVarBind.

[SNMP_ERR_BAD_PDU_TYPE]
The OVsnmpPdu data structure was not a get request, get next request,
or a set request. This may happen if the OVsnmpPdu data structure is
modified after a call to OVsnmpCreatePdu.

[SNMP_SYSERR_SENDTO] The sendto system call failed. The external variable errno contains the
sendto specific error.

[SNMP_SYSERR_SELECT] The select system call failed. The external variable errno contains the
select specific error.

[SNMP_SYSERR_MALLOC] The malloc system call failed. The external variable errno contains the
malloc specific error.

 Chapter 2. Reference Pages 377

 nvSnmpBlockingGetTable(3)

 Examples

See the /usr/OV/prg_samples/nvsnmp_app/getTable.c file.

 Implementation Specifics

See “OVsnmpSend(3)” on page 514 for specific information about using select to wait for the response to
arrive.

 Libraries

When compiling a program that uses nvSnmpBlockingGetTable or one of its related calls, you need to link
to the following libraries:

 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libnvsnmp.a
 � /usr/OV/lib/libovc.a
 � /usr/OV/lib/libovcmapi.a
 � /usr/OV/lib/libntl.a

The library nvsnmp replaces the original ovsnmp library. You must link to the nvsnmp library to use the
extended APIs and you must not simultaneously use the original ovsnmp library. Other OVsnmp APIs
are replicated in nvsnmp, even though they are not related to filtering facilities.

 Files

/usr/OV/include/OV/OVsnmp.h

378 Programmer's Reference

 nvSnmpErrString(3)

 nvSnmpErrString(3)

 Purpose

Returns SNMP specific error strings

 Syntax

#include <OV/OVsnmp.h>

char \ nvSnmpErrString(int nvsnmpSubsys,
 int nvsnmpErrno);

 Description

The nvSnmpErrString call returns a textual string that provides information about the error specified in the
nvsnmpErrno parameter. Use this routine with nvSnmpTrapOpenFilter to enable your application to iden-
tify errors caused by malfunctions of the communications infrastructure.

 Return Values

The nvSnmpErrString call returns a pointer to a static character string. This string is read only. If the
error number is out of range,the nvSnmpErrString call returns the string Unknown Error.

 Libraries

When compiling a program that uses the nvSnmpErrString call, link to the following libraries:

 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libnvsnmp.a
 � /usr/OV/lib/libovc.a
 � /usr/OV/lib/libovcmapi.a
 � /usr/OV/lib/libntl.a

The library nvsnmp replaces the original ovsnmp library. You must link to nvsnmp to use the extended
APIs and must not simultaneously use the original ovsnmp library. Other OVsnmp APIs are replicated in
nvsnmp, even though they are not related to filtering facilities.

 Files

/usr/OV/include/OV/OVsnmp.h

 Related Information
� See “nvSnmpTrapOpenFilter(3)” on page 380.

 Chapter 2. Reference Pages 379

 nvSnmpTrapOpenFilter(3)

 nvSnmpTrapOpenFilter(3)

 Purpose

Opens a session with event management services (EMS) to receive SNMP filtered traps

 Related Functions
 nvSnmpXTrapOpenFilter

 Syntax
#include <OV/OVsnmp.h>
#include <OV/OVsnmpXfns.h>
/\ This second include statement applies only to nvSnmpXTrapOpenFilter \/

OVsnmpSession \nvSnmpTrapOpenFilter(void (\callback)(),

void \data, char \filter);

OVsnmpSession \nvSnmpXTrapOpenFilter(XtAppContext context, void (\callback)(),

void \data, char \filter);

 Dependencies

These functions APIs depend on the EMS (ovesmd) daemon. If the EMS daemon is not running,
nvSnmpTrapOpenFilter fails.

 Description

The nvSnmpTrapOpenFilter and nvSnmpXTrapOpenFilter APIs enable registration to receive filtered traps.
The usage of these APIs is similar to that of OVsnmpTrapOpen and OVsnmpXTrapOpen. The application
opens a session to receive traps, passing a callback routine to be called when the trap arrives, and
optional data. To use the filter facilities, the application must pass a NULL-terminated string representing
a filter. If you do not want any filtering, the application must pass a NULL filter parameter. The other
parameters are the same as those used on OVsnmp APIs.

Filters are defined with the syntax defined under Keyword Syntax on page 381. Filters can be created
from the Filter Editor and accessed with the nvFilter routines. Filters are represented by NULL-terminated
strings with a defined syntax. Keywords are provided to determine the type of filtering, and to allow filters
to be combined and compared to received events.

In using filtering facilities, an application may follow one of two approaches:

� Open as many sessions as the number of filters to be registered to receive traps. In this case, the
application must handle multiple sessions to gather events.

� Open only one session that combines all filters. In this case, the application must build the filter string
with the composition of all filters that need to be registered. To do this, the application must create a
string ORing the rules to be registered, following the syntax defined under Keyword Syntax on
page 381.

380 Programmer's Reference

 nvSnmpTrapOpenFilter(3)

The callback has the following prototype:

void callback(int type,
 OVsnmpSession \session,
 OVsnmpPdu \response,
 void \userData);

 Parameters
 OVsnmpSession * session Specifies a pointer to the session to be opened to receive traps.

 void (*callback)() Specifies the function that will be called to process a trap if the
OVsnmpRead function is used to receive the trap. If the calling
process wants to use callback procedures, this parameter must point
to a valid function.

 void * data Specifies a pointer to application-specific data that will be passed to
the callback function. No action is performed on this data.

 char * filter Specifies a pointer to a string that defines a filter.

 XtAppContext context Specifies the X application context.

Keyword Syntax

! NOT (logical negation)

&& AND (logical and)

|| OR (logical or)

The following list describes the keywords in the syntax used to define filters.

 CLASS=value
SNMP enterprise match on enterprise ID. Value is given in dot notation, for example, 1.2.3.4.55

 IP_ADDR=value
SNMP agent-addr match on IP address. Value is given in dot notation, for example, 192.155.13.57.
Registration for an IP_ADDR permits receipt of agent-generated traps, as well as internal events
related to that IP_ADDR.

 LOGGED_TIME <= time_string
Time that was logged before the time in time_string, where time_string has the form
dd:mm:yy:hh:mm:ss (24 hour clock, GMT)

 LOGGED_TIME >= time_string
Time that was logged after the time in time_string, where time_string has the form dd:mm:yy:hh:mm:ss
(24 hour clock, GMT)

 PRESENT = SNMP_TRAP
Presence of SNMP Trap

 SNMP_TRAP=value
Match on SNMP Generic Trap Type, where the Generic Type is an integer

 SNMP_SPECIFIC=value
Match on SNMP Specific Trap Type, where the Specific Type is an integer

 Chapter 2. Reference Pages 381

 nvSnmpTrapOpenFilter(3)

 TIME_PERIOD=time_constant
Relative time period (integer seconds) for frequency filters

 THRESHOLD <= frequency
Number of event occurrences is less than or equal to frequency (integer) during TIME_PERIOD

 THRESHOLD >= frequency
Number of event occurrences is greater than or equal to frequency (integer) during TIME_PERIOD

Note: When included in an expression for nvSnmpTrapOpenFilter, the keywords THRESHOLD and
TIME_PERIOD must be ANDed (never ORed) and grouped within parentheses as in the following
example:

filter = PRESENT=SNMP_TRAP && (THRESHOLD <= 5 && TIME_PERIOD = 3ð)

Specifying more than 250 filter objects will result in an error.

 Return Values

If successful, the nvSnmpTrapOpenFilter and nvSnmpXTrapOpenFilter calls return a pointer to a new
OVsnmpSession structure. Memory allocated for the OVsnmpSession must be freed by OVsnmpClose. If
unsuccessful, these calls return NULL.

If nvSnmpTrapOpenFilter and nvSnmpXTrapOpenFilter are unsuccessful, the external variables contain
the following specific error values:

OVsnmpErrno The SNMP specific error value

nvSnmpErrno The specific errors of the nvSnmpTrapOpen call

nvSnmpSubsys The subsystem where the error occurred

If the error code indicates a system call failure, the external variable errno will contain the corresponding
system error values.

 Error Codes

The nvSnmpTrapOpenFilter and nvSnmpXTrapOpenFilter calls return the error code value OVsnmpErrno,
nvSnmpErrno, or nvSnmpSubsys. The following list describes the possible errors:

[SNMP_SYSERR_SOCKET] A call to socket failed

[SNMP_SYSERR_MALLOC] A call to malloc failed

[SNMP_SYSERR_BIND] A call to bind

[NVSNMP_ERROR_OPEN] An error opening a session

[NVSNMP_ERROR_CLOSE] An error closing a session

[NVSNMP_ERROR_RECEIVE_PEEK] An error peeking a message

[NVSNMP_ERROR_RECEIVE_PEEK_CNTL]
An error peeking a message

[NVSNMP_ERROR_RECEIVE_READ] An error reading a message

[NVSNMP_ERROR_RECEIVE_READ_CNTL]
An error reading a message

382 Programmer's Reference

 nvSnmpTrapOpenFilter(3)

[NVSNMP_ERROR_RECEIVE_CREATE] Sieve creation failed; an error in receive confirmation

[NVSNMP_ERROR_RECEIVE_DELETE] Sieve deletion failed; an error in receive confirmation

[NVSNMP_ERROR_RECEIVE_EVENT] An error if the message received is not an event

[NVSNMP_ERROR_RECEIVE_TRAP] An error if the message received is not a trap

[NVSNMP_ERROR_EVENT_IND] An error decoding event indication

[NVSNMP_ERROR_CREATE_CNF] An error receiving create sieve confirmation

[NVSNMP_ERROR_DELETE_CNF] An error receiving delete sieve confirmation

[NVSNMP_ERROR_CREATE_SIEVE] An error creating sieve on EMS

[NVSNMP_ERROR_DELETE_SIEVE] An error deleting sieve on EMS

[NVSNMP_ERROR_DEFINE_FILTER] An error in the filter defined as parameter

[NVSNMP_ERROR_EVENT_REGISTER] An error registering for event reception

[NVSNMP_ERROR_EVENT_DEREGISTER]
An error deregistering for event reception

[NVSNMP_ERROR_TRAP_INFO] An error in SNMP trap information; SNMP trap message
received is empty

[NVSNMP_ERROR_CREATE_TIMEOUT] Sieve creation failed; confirmation time-out

[NVSNMP_ERROR_DELETE_TIMEOUT] Sieve deletion failed; confirmation time-out

 Examples

See examples in /usr/OV/prg_samples/ovsnmp_app.

 Libraries

When compiling a program that uses nvSnmpTrapOpenFilter or nvSnmpXTrapOpenFilter, link to the fol-
lowing libraries:

 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libnvsnmp.a
 � /usr/OV/lib/libovc.a
 � /usr/OV/lib/libovcmapi.a
 � /usr/OV/lib/libntl.a

The library nvsnmp replaces the original ovsnmp library. You must link to nvsnmp to use the extended
APIs and must not simultaneously use the original ovsnmp library. Other OVsnmp APIs are replicated in
nvsnmp, even though they are not related to filtering facilities.

 Files

/usr/OV/include/OV/OVsnmp.h

 Related Information
� See “OVsnmpTrapOpen(3)” on page 517

 Chapter 2. Reference Pages 383

 nvs_Audit(3)

 nvs_Audit(3)

 Purpose

Defines format for audit entries to be entered in the security logfile

 Syntax
#include <sec_api.h>
#include <sec_errs.h>
/\The second include statement applies only if you want to parse error codes \/

int nvs_Audit (int auditType, int InputCount, char \InputArray[])

 Description

Use this function to define the format of entries to be added to the security logfile for audit purposes. The
entry is defined in the form of an array.

 Parameters
auditType The type of audit information being collected (ATYPE_CONFIG).

InputCount The number of elements in the array.

InputArray[] An array of pointers. Each pointer points to the data to be put in the
audit log.

 Error Codes

If routine nvs_Audit is successful, it returns the string SEC_SUCCESS. Otherwise, it returns one of the
following error codes:

[SEC_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[SEC_NOT_INITIALIZED] The client did not initialize a security context with the security server.

384 Programmer's Reference

 nvs_Audit(3)

 Examples

The following example defines a 3-element array for an entry in the security logfile when a user unsuc-
cessfully tries to modify the file name, file size, or port number of the trapd application.

char \InputArray[3]; //ptr for each entry
...
// get storage for each buffer
...
char \objectð=“Trace filename ”; // field attempted to modify
char \valueð=“/tmp/trapd.filex”; //new value for the field
char \object1=“File size”; //field attempted to modify
char \value1=“1ððððð”; //new falue for that field
char \object2=“Port number”; //field attempted to modify
char \value2=“888 888”; //new value for that field
sprintf(p[ð], “%s %s, objectð, valueð); //contruct 1st entry
sprintf(p[1], “%s %s, object1, value1); //contruct 2nd entry
sprintf(p[2], “%s %s, object2, value2); //contruct 3rd entry

int nvs_Audit (ATYPE_CONFIG, 3, InputArray) ;

 Libraries

When compiling a program that uses nvs_Audit, link to the following libraries:

 � /usr/OV/lib/libnvsec.a
 � /usr/OV/lib/libnvgss.a

 Files

When compiling a program that uses nvs_Audit, you need to include the following files:

 � sec_api.h
 � sec_errs.h

 Related Information
� See “nvs_deleteSecContext(3)” on page 386.

� See “nvs_getClientPerms(3)” on page 388.

� See “nvs_isClientAuthorized(3)” on page 391.

 Chapter 2. Reference Pages 385

 nvs_deleteSecContext(3)

 nvs_deleteSecContext(3)

 Purpose

Closes a NetView for AIX client's security context with the NetView for AIX security server

 Syntax
#include <sec_api.h>
#include <sec_errs.h>
/\ This second include statement applies only if you want to parse error codes \/

int nvs_deleteSecContext

 Description

This function is the means by which a NetView for AIX client closes its security context with the NetView
for AIX security server. The gss_context handles are also released. This API must be called in your
applications's exit handling routine. If security is off, a call to nvs_deleteSecContext returns a successful
result.

 Error Codes

If the nvs_deleteSecContext API function is successful, a result value of SEC_SUCCESS is set. Other-
wise, one of the following error values is set:

[SEC_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[SEC_NOT_INITIALIZED] The client did not initialize a security context with the security server.

[SEC_DELETE_CONTEXT_FAILURE]
The security context could not be deleted.

 Examples

A typical call to this API at exit follows:

 main(){

 atexit(exitHandler) //register exitHandler

}

static void exitHandler(){
nvs_deleteSecContext(); //close security context
other exit processing
}

386 Programmer's Reference

 nvs_deleteSecContext(3)

 Libraries

When compiling a program that uses nvs_deleteSecContext, link to the following libraries:

 � /usr/OV/lib/libnvsec.a
 � /usr/OV/lib/libnvgss.a

 Files

When compiling a program that uses nvs_deleteSecContext, you need to include the following files:

 � sec_api.h
 � sec_errs.h

 Related Information
� See “nvs_Audit(3)” on page 384.
� See “nvs_getClientPerms(3)” on page 388.
� See “nvs_isClientAuthorized(3)” on page 391.

 Chapter 2. Reference Pages 387

 nvs_getClientPerms(3)

 nvs_getClientPerms(3)

 Purpose

Obtains a bitmask representation of the permissions a user has for different NetView for AIX functions

 Syntax
#include <sec_api.h>
#include <sec_errs.h>
/\ This second include statement applies only if you want to parse error codes \/

void nvs_getClientPerms(char \ tgtid, char \ perms, int \ status)

 Description

This function is the means by which a NetView for AIX client can obtain the specific permissions a user
has to NetView for AIX functions and objects. Instead of returning a SUCCESS or FAILURE code as in
nvs_isClientAuthorized, an internal representation (bitmask) of the permissions associated with the target
function is returned. By analyzing these bits, the caller can learn which permissions are granted and
which are denied to the requesting user.

Bits 0-6 of the bitmask have predefined meanings as follows:

The semantics of bits 7-31 are defined by the application, and clients should contain code to handle them
properly.

The user must have logged in to the NetView for AIX security server previously, using the authentication
application.

Access control is effective only when global security is turned on. If security is off, all requests return an
ALL_GRANTED result. All access control queries made through this API are automatically logged in the
security audit files, although no indication of success or failure of the user's request is logged.

Table 15. Bitmask Permissions for nvs_getClientPerms API

Bit Constant Value Meaning

0 sec_acl_perm_read 0x00000001 read

1 sec_acl_perm_write 0x00000002 write

2 sec_acl_perm_execute 0x00000004 execute

3 sec_acl_perm_control 0x00000008 control

4 sec_acl_perm_insert 0x00000010 insert

5 sec_acl_perm_delete 0x00000020 delete

6 sec_acl_perm_test 0x00000040 test

388 Programmer's Reference

 nvs_getClientPerms(3)

 Parameters
 tgtid Specifies the qualified name of the function or object for which permission information is

being requested. For example, the function SNMP MIB Browser->Tools->MIB
Browser->SNMP could be represented by the string SNMP MIB Browser.Tools.MIB
Browser.SNMP This representation should match the one used in the domain profiles for
the same entity.

 perms Acts as a placeholder for the result of the query. Upon return, if the operation is suc-
cessful (status variable set to SEC_SUCCESS), this argument will have the bitmask cor-
responding to the settings for permissions associated with tgtid, where 1 corresponds to
granted permissions, and 0 corresponds to denied permissions.

If the operation is not successful, the value of this argument is not defined.

 status Specifies a placeholder for the overall status of the call. Upon return, if the operation is
successful, it contains the string SEC_SUCCESS. Otherwise, it contains one of the error
codes listed below.

 Error Codes
[SEC_CONNECTION_LOST]

The connection to the NetView for AIX program was lost.

[SEC_USER_NOT_LOGGED_ON]
The user who is requesting to use the function or object has not logged on
through the NetView for AIX security server.

[SEC_USER_LOGINNAME_INVALID]
The NetView for AIX user ID specified is not authorized to perform the
requested function.

[SEC_USER_GROUPNAME_INVALID]
The NetView for AIX group to which the specified NetView for AIX user ID
belongs is not authorized to perform the requested function.

[SEC_USER_CLIENTNAME_INVALID]
The client machine name associated with the NetView for AIX user ID making
the request is not a valid client for this security server.

[SEC_AUTHORIZATION_TARGETID_INVALID]
The target function or object for which authorization is being requested is
invalid.

[SEC_AUTHORIZATION_TARGETPERM_INVALID]
The requested permission is not defined for the target string. This may indi-
cate that the SRF and the security server are out of sync.

 Chapter 2. Reference Pages 389

 nvs_getClientPerms(3)

 Examples

A typical call to this function follows:

int st, permission ;

nvs_getClientPerms(“Edit->Add->Object,” &permission, &st)
if(st != SEC_SUCCESS
{
 Handle exception

Interrupt flow of control (break, exit, return, ...)
}
if(! (permission & sec_acl_perm_execute)) /\ check for “x” perm \/
[Handle permission denial case

Interrupt flow of control (break,exit,return, ...)
Log “ACCESS FAILURE” by means of nvs_Audit API call

]

 Libraries

When compiling a program that uses nvs_getClientPerms, link to the following shared libraries:

 � /usr/OV/lib/libnvsec.a
 � /usr/OV/lib/libnvgss.a

 Files

When compiling a program that uses nvs_getClientPerms, you need to include the following files:

 � sec_api.h
 � sec_errs.h

 Related Information
� See “nvs_Audit(3)” on page 384.

� See “nvs_deleteSecContext(3)” on page 386.

� See “nvs_isClientAuthorized(3)” on page 391.

390 Programmer's Reference

 nvs_isClientAuthorized(3)

 nvs_isClientAuthorized(3)

 Purpose

Queries a user's access to NetView for AIX functions to determine if a user can perform an action

 Syntax
#include <sec_api.h>
#include <sec_errs.h>
/\ This second include statement applies only if you want to parse error codes \/

void nvs_isClientAuthorized(char \ tgtid, char \ perms, int \ authorized, int \ status)

 Description

This function returns information about a user's ability to access NetView for AIX functions and objects. If
your application handles sensitive functions or objects, call this API to determine whether permission to
use those functions or objects should be granted or denied to the user running the application. The user
must have logged in to the NetView for AIX security server previously, using the authentication application.

Access control is effective only when NetView for AIX security is turned on. If security is off, all requests
return a successful result. Use “nvs_isSecOn(3)” on page 395 to determine if NetView for AIX security is
active.

Note: The nvs_isClientAuthorized function must be called to check a user's execute authority for an
application at the beginning of the main() function. For example, for an application called myapp, use myapp
as the tgtid and x (for execute) as the perm.

 Parameters
 tgtid Specifies the qualified name of the function or object for which access is being

requested. For example, the function View -> Automatic Layout -> For This Submap
- > On For This Submap can be represented by the string View.Automatic Layout.For
This Submap.On For This Submap. This representation should match the one used in
the domain profiles for the same entity.

 perms Specifies a string of characters representing the desired level of permission to access
the target. For example, r (for read) can be used to represent the level of permission
needed to include a specific item in a menu, and x (for execute) can be used to repre-
sent the level of permission needed to enable the menu item. The letter w can be a
generic indicator for the level of permission needed to update some target file or apply
a change.

 authorized Specifies a placeholder for the result of the query. Upon return, if the operation is
successful (status variable contains SEC_SUCCESS), this argument has one of the
two following values:

[SEC_AUTHORIZATION_SUCCESS] Permission was granted.
[SEC_AUTHORIZATION_FAILURE] Permission was denied.

If the operation is not successful, the value of this argument is not defined.

 Chapter 2. Reference Pages 391

 nvs_isClientAuthorized(3)

 status Specifies a placeholder for the overall status of the call. Upon return, if the operation
is successful, this variable contains the string SEC_SUCCESS. Otherwise, it contains
an error code.

 Error Codes
[SEC_CONNECTION_LOST]

The connection to the NetView for AIX program was lost.

[SEC_USER_NOT_LOGGED_ON]
The user who is requesting to use the function or object has not logged on
through the NetView for AIX security server.

[SEC_USER_LOGINNAME_INVALID]
The NetView for AIX user ID is not authorized to perform the requested func-
tion.

[SEC_USER_GROUPNAME_INVALID]
The NetView for AIX group to which the specified NetView for AIX user ID
belongs is not authorized to perform the requested function.

[SEC_USER_CLIENTNAME_INVALID]
The client machine name associated with the NetView for AIX user ID making
the request is not a valid client for this security server.

[SEC_AUTHORIZATION_TARGETID_INVALID]
The target function or object for which authorization is being requested is
invalid.

[SEC_AUTHORIZATION_TARGETPERM_INVALID]
The requested permission is not defined for the target string. This may indi-
cate that the SRF and the security server are out of sync.

 Examples

A typical call to this function follows:

 #include <sec_api.h>
 #include <sec_errs.h>

main(){
int status, authorized;

/\\\
\ Establishes User's security context.
\ If denied, must exit.
\\\/
nvs_isClientAuthorized ("nmpolling", "x", &authorized, &status);
if ((status != SEC_SUCCESS) || (! authorized))
 {

fprintf(stderr, "><nvs_isClientAuthorized(): permission denied for
\"%s\".\n", "nmpolling");

fprintf(stderr, ">< %s authorized=%d, status=%d.\n",
nvs_SecErrMsg(status), authorized, status);

 nvs_deleteSecContext ();
 exit(1);

392 Programmer's Reference

 nvs_isClientAuthorized(3)

 }
}

 Libraries

When compiling a program that uses nvs_isClientAuthorized, link to the following shared libraries:

 � /usr/OV/lib/libnvsec.a
 � /usr/OV/lib/libnvgss.a

 Files

When compiling a program that uses nvs_isClientAuthorized, you need to include the following files:

 � sec_api.h
 � sec_errs.h

 Related Information
� See “nvs_Audit(3)” on page 384.
� See “nvs_deleteSecContext(3)” on page 386.
� See “nvs_getClientPerms(3)” on page 388.

 Chapter 2. Reference Pages 393

 nvs_SecErrMsg(3)

 nvs_SecErrMsg(3)

 Purpose

Returns status message from security API calls

 Syntax
#include <sec_api.h>
#include <sec_errs.h>
/\ This second include statement applies only if you want to parse error codes \/

char \ nvs_SecErrMsg (int status)

 Description

This function returns a message about the status of an API call based on the status value returned on the
call. This routine can be used with nvs_getClientPerms and nvs_isClientAuthorized calls to return a text
string indicating the success or failure of these calls.

 Parameters
 status The status of the call, in a human-readable format.

 Libraries

When compiling a program that uses nvs_SecErrMsg, link to the following shared libraries:

 � /usr/OV/lib/libnvsec.a
 � /usr/OV/lib/libnvgss.a

 Files

When compiling a program that uses nvs_SecErrMsg, you need to include the following files:

 � sec_api.h
 � sec_errs.h

 Related Information
� See “nvs_Audit(3)” on page 384.
� See “nvs_deleteSecContext(3)” on page 386.
� See “nvs_getClientPerms(3)” on page 388.

394 Programmer's Reference

 nvs_isSecOn(3)

 nvs_isSecOn(3)

 Purpose

Determines whether NetView for AIX security is active.

 Syntax
#include <sec_api.h>
#include <sec_errs.h>
/\ This second include statement applies only if you want to parse error codes \/

int nvs_isSecOn ();

 Description

This function checks to see if NetView for AIX security is active. This function should be called after a call
to nvs_isClientAuthorized to check a user's execute (x) authorization for a function.

 Return Values

If security is active, nvs_isSecOn returns NVSEC_ON. If security is not active, nvs_isSecOn returns
NVSEC_OFF.

 Libraries

When compiling a program that uses nvs_isSecOn, link to the following shared libraries:

 � /usr/OV/lib/libnvsec.a
 � /usr/OV/lib/libnvgss.a

 Files

When compiling a program that uses nvs_isSecOn, you need to include the following files:

 � sec_api.h
 � sec_errs.h

 Related Information
� See “nvs_Audit(3)” on page 384.
� See “nvs_deleteSecContext(3)” on page 386.
� See “nvs_getClientPerms(3)” on page 388.

 Chapter 2. Reference Pages 395

 om_copy(3)

 om_copy(3)

 Purpose

Duplicates a private object

 Syntax
 #include <xom.h>

OM_return_code om_copy(OM_private_object original,
 OM_workspace workspace,

OM_private_object \copy);

 Description

The om_copy routine creates a new private OM object, the copy, that is an exact, but independent, copy
of an existing private object, the original. The function is recursive in that copying the original also copies
its subobjects.

 Parameters
original Specifies the private OM object to be copied. This OM object remains accessible.

workspace Specifies the workspace in which the copy is to be created. The original's class
must be in a package associated with this workspace.

copy Specifies the result. It is present if, and only if, the function result is success.

 Return Values

If successful, om_copy returns [OM_SUCCESS]. If unsuccessful, om_copy returns one of the following
error codes.

 Error Codes
[OM_FUNCTION_DECLINED] The function does not apply to the object to which it is addressed.

[OM_FUNCTION_INTERRUPTED] The function was stopped by an external force, such as a key-
stroke, that was designated for this purpose in a user interface.

[OM_MEMORY_INSUFFICIENT] The service cannot allocate the main memory it needs to complete
the function.

[OM_NETWORK_ERROR] The service could not successfully use the network upon which its
implementation depends.

[OM_NO_SUCH_CLASS] A purported class identifier is undefined.

[OM_NO_SUCH_OBJECT] A purported object is nonexistent or the purported handle is not
valid.

[OM_NO_SUCH_WORKSPACE] A purported workspace is undefined.

[OM_NOT_PRIVATE] An object is public, not private.

[OM_PERMANENT_ERROR] The service encountered a permanent difficulty, other than those
denoted by other return codes.

396 Programmer's Reference

 om_copy(3)

[OM_POINTER_INVALID] A pointer that is not valid was supplied as a function argument or
as the receptacle for a function result.

[OM_SYSTEM_ERROR] The service could not successfully use the operating system upon
which its implementation depends.

[OM_TEMPORARY_ERROR] The service encountered a temporary difficulty, other than those
denoted by other return codes.

[OM_TOO_MANY_VALUES] An implementation limit prevents the addition to an object of
another attribute value. This limit is undefined.

 Files

When compiling a program that uses om_copy, you need to include the following files:

 � xom.h
 � xmp.h
� lnv.h (only if you are using any OVe calls)
� omp_dmi.h (only if you are using the dmi package)

 � xmp_snmp.h
 � xmp_cmis.h
� ove_xmp.h (only if you are using any OVe calls)

 � ov_types.h

 Libraries

When compiling a program that uses om_copy, you need to link to the following library:

 /usr/OV/lib/libxmp.a

 Chapter 2. Reference Pages 397

 om_copy_value(3)

 om_copy_value(3)

 Purpose

Copies a string value from one private object to another

 Syntax
 #include <xom.h>

OM_return_code om_copy_value(OM_private_object source,
 OM_type source_type,
 OM_value_position source_value_position,
 OM_private_object destination,
 OM_type destination_type,

OM_value_position destination_value_position);

 Description

This function copies a string value from one private OM object, the source, to another private OM object,
the destination. This function can be used to add a new value to the destination or to replace an existing
value. The syntax of the source value must be one of the string types. The copy's syntax is that of the
original.

 Parameters
source Specifies the source OM object, which remains accessible. This must be

a private OM object.

source_type Specifies the type of the attribute that has a value to be copied.

source_value_position Specifies the position within the above attribute of the value to be copied.
When an OM Class Definition specifies 0 (zero)-or-more or 1-or-more in
the Value Number field, this parameter specifies which of the values is to
be used. Each of the values for an attribute is represented by an OM
Descriptor numbered from 0 to n-1. A value of zero is used when only
one value is allowed for this attribute type, or to specify the first OM
descriptor of this type when multiples are allowed.

destination Specifies the destination OM object, which remains accessible. This
must be a private OM object.

destination_type Specifies the type of the attribute to which the value should be copied.

destination_value_position Specifies the position within the above attribute of the value to be added
or replaced. If the value position exceeds the number of values present
in the destination attribute, the argument is taken to be equal to that
number. This allows the new value to be added after all existing values.
If the value position is less than the number of values currently in the
destination, this parameter identifies which value is to be replaced.

 Return Values

If successful, om_copy_value returns [OM_SUCCESS]. If unsuccessful, om_copy_value returns one of
the following error codes.

398 Programmer's Reference

 om_copy_value(3)

 Error Codes
[OM_FUNCTION_DECLINED] The function does not apply to the object to which it is addressed.

[OM_FUNCTION_INTERRUPTED] The function was stopped by an external force, such as a key-
stroke, that was designated for this purpose in a user interface.

[OM_MEMORY_INSUFFICIENT] The service cannot allocate the main memory it needs to complete
the function.

[OM_NETWORK_ERROR] The service could not successfully use the network upon which its
implementation depends.

[OM_NO_SUCH_OBJECT] A purported object is nonexistent or the purported handle is not
valid.

[OM_NO_SUCH_TYPE] A purported type identifier is undefined.

[OM_NOT_PRESENT] An attribute value is absent, not present.

[OM_NOT_PRIVATE] An object is public, not private.

[OM_PERMANENT_ERROR] The service encountered a permanent difficulty, other than those
denoted by other return codes.

[OM_POINTER_INVALID] A pointer that is not valid was supplied as a function argument or
as the receptacle for a function result.

[OM_SYSTEM_ERROR] The service could not successfully use the operating system upon
which its implementation depends.

[OM_TEMPORARY_ERROR] The service encountered a temporary difficulty, other than those
denoted by other return codes.

[OM_WRONG_VALUE_LENGTH] An attribute has, or would have, a value that violates the value
length constraints in force.

[OM_WRONG_VALUE_SYNTAX] An attribute has, or would have, a value whose syntax is not per-
mitted.

[OM_WRONG_VALUE_TYPE] An object has, or would have, an attribute whose type is not per-
mitted.

 Files

When compiling a program that uses om_copy_value, you need to include the following files:

 � xom.h
 � xmp.h
� lnv.h (only if you are using any OVe calls)
� omp_dmi.h (only if you are using the dmi package)

 � xmp_snmp.h
 � xmp_cmis.h
� ove_xmp.h (only if you are using any OVe calls)

 � ov_types.h

 Libraries

When compiling a program that uses om_copy_value, you need to link to the following library:

 /usr/OV/lib/libxmp.a

 Chapter 2. Reference Pages 399

 om_create(3)

 om_create(3)

 Purpose

Creates a new private object

 Syntax
 #include <xom.h>

OM_return_code om_create(OM_object_identifier class,
 OM_boolean initialize,
 OM_workspace workspace,
 OM_private_object \object);

 Description

This function creates a new private object that is an instance of a particular OM class.

 Parameters
class Specifies the OM class of the OM object to be created. The specified OM class must be con-

crete.

initialize Specifies whether the created object is to be initialized as specified in the definition of its OM
class. If this argument is true, the OM object will contain all attributes that have initial values
defined in the OM Class Definition for this class and all of its super classes. If this argument is
false, the OM object will contain only the Class attribute.

workspace
Specifies the workspace in which the OM object is to be created. The specified class must be
in a package associated with this workspace.

object Specifies the newly created OM object. This result is present if, and only if, the function result
is success.

 Return Values

If successful, om_create returns [OM_SUCCESS]. If unsuccessful, om_create returns one of the following
error codes.

 Error Codes
[OM_FUNCTION_DECLINED] The function does not apply to the object to which it is addressed.

[OM_FUNCTION_INTERRUPTED] The function was stopped by an external force, such as a key-
stroke, that was designated for this purpose in a user interface.

[OM_MEMORY_INSUFFICIENT] The service cannot allocate the main memory it needs to complete
the function.

[OM_NETWORK_ERROR] The service could not successfully use the network upon which its
implementation depends.

[OM_NO_SUCH_CLASS] A purported class identifier is undefined.

[OM_NO_SUCH_WORKSPACE] A purported workspace identifier is undefined.

400 Programmer's Reference

 om_create(3)

[OM_NOT_CONCRETE] A class is abstract, not concrete.

[OM_PERMANENT_ERROR] The service encountered a permanent difficulty, other than those
denoted by other return codes.

[OM_POINTER_INVALID] A pointer that is not valid was supplied as a function argument or
as the receptacle for a function result.

[OM_SYSTEM_ERROR] The service could not successfully use the operating system upon
which its implementation depends.

[OM_TEMPORARY_ERROR] The service encountered a temporary difficulty, other than those
denoted by other return codes.

 Files

When compiling a program that uses om_create, you need to include the following files:

 � xom.h
 � xmp.h
� lnv.h (only if you are using any OVe calls)
� omp_dmi.h (only if you are using the dmi package)

 � xmp_snmp.h
 � xmp_cmis.h
� ove_xmp.h (only if you are using any OVe calls)

 � ov_types.h

 Libraries

When compiling a program that uses om_create, you need to link to the following library:

 /usr/OV/lib/libxmp.a

 Related Information
� See “om_delete(3)” on page 404.

 Chapter 2. Reference Pages 401

 om_decode(3)

 om_decode(3)

 Purpose

Creates a unencoded version of an encoded private object

 Syntax
 #include <xom.h>

OM_return_code om_decode(OM_private_object encoding,
OM_private_object \original);

 Description

This function creates a new, private OM object. This object, called the original, is an exact but inde-
pendent copy of the OM object encoded by an existing private OM object, called the encoding.

 Parameters
encoding Specifies the encoding, which remains accessible. It shall be an instance of OM class

Encoding.

original Specifies the original, which is created in the encoding's workspace. This result is present if,
and only if, the function result is success.

 Return Values

If successful, om_decode returns [OM_SUCCESS]. If unsuccessful, om_decode returns one of the fol-
lowing error codes.

 Error Codes
[OM_ENCODING_INVALID] The octets that constitute the value of an encoding's Object

Encoding attribute are not valid.

[OM_FUNCTION_INTERRUPTED] The function was stopped by an external force, such as a key-
stroke, that was designated for this purpose in a user interface.

[OM_MEMORY_INSUFFICIENT] The service cannot allocate the main memory it needs to complete
the function.

[OM_NETWORK_ERROR] The service could not successfully use the network upon which its
implementation depends.

[OM_NO_SUCH_CLASS] A purported class identifier is undefined.

[OM_NO_SUCH_OBJECT] A purported object is nonexistent or the purported handle is not
valid.

[OM_NO_SUCH_RULES] A purported rules identifier is undefined.

[OM_NOT_AN_ENCODING] An object is not an instance of the Encoding class.

[OM_NOT_PRIVATE] An object is public, not private.

[OM_PERMANENT_ERROR] The service encountered a permanent difficulty, other than those
denoted by other return codes.

402 Programmer's Reference

 om_decode(3)

[OM_POINTER_INVALID] A pointer that is not valid was supplied as a function argument or
as the receptacle for a function result.

[OM_SYSTEM_ERROR] The service could not successfully use the operating system upon
which its implementation depends.

[OM_TEMPORARY_ERROR] The service encountered a temporary difficulty, other than those
denoted by other return codes.

[OM_TOO_MANY_VALUES] An implementation limit prevents the addition to an object of
another attribute value. This limit is undefined.

[OM_WRONG_VALUE_LENGTH] An attribute has, or would have, a value that violates the value
length constraints in force.

[OM_WRONG_VALUE_MAKEUP] An attribute has, or would have, a value that violates a constraint of
the value's syntax.

[OM_WRONG_VALUE_NUMBER] An attribute has, or would have, a value that violates the value
number constraints in force.

[OM_WRONG_VALUE_SYNTAX] An attribute has, or would have, a value whose syntax is not per-
mitted.

[OM_WRONG_VALUE_TYPE] An object has, or would have, an attribute whose type is not per-
mitted.

 Files

When compiling a program that uses om_decode, you need to include the following files:

 � xom.h
 � xmp.h
� lnv.h (only if you are using any OVe calls)
� omp_dmi.h (only if you are using the dmi package)

 � xmp_snmp.h
 � xmp_cmis.h
� ove_xmp.h (only if you are using any OVe calls)

 � ov_types.h

 Libraries

When compiling a program that uses om_decode, you need to link to the following library:

 /usr/OV/lib/libxmp.a

 Related Information
� See “om_encode(3)” on page 406.

 Chapter 2. Reference Pages 403

 om_delete(3)

 om_delete(3)

 Purpose

Deletes a private or service-generated object

 Syntax
 #include <xom.h>

OM_return_code om_delete(OM_object subject);

 Description

This function deletes a service-generated public OM object or a private OM object. It is not intended for
use on client-generated public OM objects.

If applied to a service-generated public OM object, the function deletes the OM object and releases any
resources associated with the OM object, including the space occupied by descriptors and attribute values.
The function is applied recursively to any public subobjects. There is no effect on private subobjects. You
should not use om_delete directly on public subobjects, which are subobjects existing within the public OM
object copy returned from a call to om_get with no exclusions. You should apply the function only to the
top-level OM object, which is the object pointed to by copy. Otherwise you might get unspecified results.

If applied to a private object, the function makes the OM object inaccessible. Existing OM object handles
for the OM object are determined not valid. The function is applied recursively to any private subobjects.

 Parameters
subject Specifies the OM object that is to be deleted.

 Return Values

If successful, om_delete returns [OM_SUCCESS]. If unsuccessful, om_delete returns one of the following
error codes.

 Error Codes
[OM_MEMORY_INSUFFICIENT]

The service cannot allocate the main memory it needs to complete the
function.

[OM_NETWORK_ERROR] The service could not successfully use the network upon which its imple-
mentation depends.

[OM_NO_SUCH_OBJECT] A purported object is nonexistent or the purported handle is not valid.

[OM_NO_SUCH_SYNTAX] A purported syntax identifier is undefined.

[OM_NO_SUCH_TYPE] A purported type identifier is undefined.

[OM_NOT_THE_SERVICES] An object is client-generated, rather than service-generated or private.

[OM_PERMANENT_ERROR] The service encountered a permanent difficulty, other than those denoted
by other return codes.

404 Programmer's Reference

 om_delete(3)

[OM_POINTER_INVALID] A pointer that is not valid was supplied as a function argument or as the
receptacle for a function result.

[OM_SYSTEM_ERROR] The service could not successfully use the operating system upon which
its implementation depends.

[OM_TEMPORARY_ERROR] The service encountered a temporary difficulty, other than those denoted
by other return codes.

 Files

When compiling a program that uses om_delete, you need to include the following files:

 � xom.h
 � xmp.h
� lnv.h (only if you are using any OVe calls)
� omp_dmi.h (only if you are using the dmi package)

 � xmp_snmp.h
 � xmp_cmis.h
� ove_xmp.h (only if you are using any OVe calls)

 � ov_types.h

 Libraries

When compiling a program that uses om_delete, you need to link to the following library:

 /usr/OV/lib/libxmp.a

 Related Information
� See “om_create(3)” on page 400.

� See “om_get(3)” on page 408.

 Chapter 2. Reference Pages 405

 om_encode(3)

 om_encode(3)

 Purpose

Encodes an OM object

 Syntax
 #include <xom.h>

OM_return_code om_encode(OM_private_object original,
 OM_object_identifier rules,

OM_private_object \encoding);

 Description

This function creates a new, private OM object, called the encoding, that exactly and independently
encodes an existing private OM object, called the original. You can identify the set of rules that this
function follows to produce the encoding.

The definition of a package identifies zero or more of its concrete classes to which this function applies.

 Parameters
original Specifies the original OM object to be encoded. This OM object remains acces-

sible.

rules Specifies the set of rules that the function follows to produce the encoding. The
defined values of this argument are those of the Rules attribute specific to the
Encoding class. The identifier which should be used for this parameter is OM_BER
as defined in the xom.h include file.

encoding Specifies the resulting encoded OM object, an instance of class Encoding, which is
created in the original's workspace. This result is present if, and only if, the function
result is success.

 Return Values

If successful, om_encode returns [OM_SUCCESS]. If unsuccessful, om_encode returns one of the fol-
lowing error codes.

 Error Codes
[OM_FUNCTION_DECLINED] The function does not apply to the object to which it is addressed.

[OM_FUNCTION_INTERRUPTED] The function was stopped by an external force, such as a key-
stroke, that was designated for this purpose in a user interface.

[OM_MEMORY_INSUFFICIENT] The service cannot allocate the main memory it needs to complete
the function.

[OM_NETWORK_ERROR] The service could not successfully use the network upon which its
implementation depends.

[OM_NO_SUCH_OBJECT] A purported object is nonexistent or the purported handle is not
valid.

406 Programmer's Reference

 om_encode(3)

[OM_NO_SUCH_RULES] A purported rules identifier is undefined.

[OM_NOT_PRIVATE] An object is public, not private.

[OM_PERMANENT_ERROR] The service encountered a permanent difficulty, other than those
denoted by other return codes.

[OM_POINTER_INVALID] A pointer that is not valid was supplied as a function argument or
as the receptacle for a function result.

[OM_SYSTEM_ERROR] The service could not successfully use the operating system upon
which its implementation depends.

[OM_TEMPORARY_ERROR] The service encountered a temporary difficulty, other than those
denoted by other return codes.

 Files

When compiling a program that uses om_encode, you need to include the following files:

 � xom.h
 � xmp.h
� lnv.h (only if you are using any OVe calls)
� omp_dmi.h (only if you are using the dmi package)

 � xmp_snmp.h
 � xmp_cmis.h
� ove_xmp.h (only if you are using any OVe calls)

 � ov_types.h

 Libraries

When compiling a program that uses om_encode, you need to link to the following library:

 /usr/OV/lib/libxmp.a

 Related Information
� See “om_decode(3)” on page 402.

 Chapter 2. Reference Pages 407

 om_get(3)

 om_get(3)

 Purpose

Creates a public copy of all or particular parts of a private object

 Syntax
 #include <xom.h>

OM_return_code om_get(OM_private_object original,
 OM_exclusions exclusions,
 OM_type_list included_types,
 OM_boolean local_strings,
 OM_value_position initial_value,
 OM_value_position limiting_value,
 OM_public_object \copy,

OM_value_position \total_number);

 Description

This function creates a new public OM object that is an exact, but independent, copy of an existing private
OM object. This provides the ability to retrieve attribute values from a private OM object or to determine
the structure of the private OM object. Certain exclusions might be requested, which reduces the copy to
a portion of the original.

One exclusion is always requested implicitly. For each attribute value in the original that is a string whose
length exceeds an implementation-defined number, the copy includes a descriptor that omits the elements,
but not the length, of the string. The elements component of the string component of the value compo-
nent of the descriptor is elements-unspecified, and the Long-String bit of the syntax component is set to
true.

You can access long values by using the om_read function.

 Parameters
original Specifies the OM object to be copied. This OM object remains accessible.

exclusions
Specifies zero or more exclusions, each of which reduces the copy to a prescribed portion of
the original. The exclusions apply to the attributes of the OM object but not to those of its
subobjects. This allows the user to only retrieve the portions of the private OM object which
are of interest.

Each value except no-exclusions is chosen from the following list. When multiple exclusions
are specified, each is applied in the order in which it appears in the list with lower-numbered
exclusions having precedence over higher-numbered exclusions. If, after the application of an
exclusion, that portion of the OM object would not be returned, no further exclusions need be
applied to that portion.

The following list describes the possible types of exclusions:

(1) exclude-all-but-these-types The copy includes descriptors that encompass only attri-
butes of specified types. This type of exclusion enables
your to define the attributes of the private OM object
that are of interest.

408 Programmer's Reference

 om_get(3)

(2) exclude-multiples The copy includes a single descriptor for each attribute
having two-or-more values, rather than one descriptor
for each value. Each such descriptor contains no attri-
bute value and the No-Value bit of the syntax compo-
nent is set.

If the attribute has values of two-or-more syntaxes, the
descriptor identifies one of those syntaxes but does not
specify which one.

This exclusion determines the presence of multivalued
attributes without simultaneously getting their values.

(3) exclude-all-but-these-values The copy includes descriptors that encompass only
values at specified positions within an attribute.

When used in conjunction with the
exclude-all-but-these-types exclusion, this exclusion
determines the values of a specified attribute, as well as
the syntaxes of those values using one or more attri-
butes, but not all attributes, at a time. This functionality
enables processing of subsets of a multivalued attribute
instead of processing all values of an attribute at a time.

(4) exclude-values The copy includes a single descriptor for each attribute
value, but the descriptor does not contain the value, and
the No-Value bit of the syntax component is set.

This exclusion determines an object's composition, that
is, the type and syntax of each of its attribute values.

(5) exclude-subobjects The copy includes, for each value whose syntax is
object, a descriptor containing an object handle for the
original private subobject, rather than a public copy of it.
This handle makes that subobject accessible for use in
subsequent function calls.

This exclusion examines an object one level at a time.

(6) exclude-descriptors No descriptors are returned and the copy result is not
present. The total_number result reflects the number of
descriptors that would have been returned by applying
the other inclusion and exclusion specifications.

This exclusion provides an attribute analysis capability.
For example, the total number of values in a multivalued
attribute can be determined by specifying an inclusion of
the specific attribute type and the following exclusions:
exclude-all-but-these-types, exclude-subobjects, and
exclude-descriptors.

The exclude-all-but-these-values exclusion affects the
choice of descriptors and the exclude-values exclusion
affects the composition of descriptors.

included_types
Is present if, and only if, the exclude-all-but-these-types exclusion is requested. This is an
array listing the types to be included, and must end with the NULL terminator
OM_NO_MORE_TYPES.

 Chapter 2. Reference Pages 409

 om_get(3)

local_strings
If true, indicates that all string(*) values included in the copy are to be translated into the
implementation-defined local character set representation, which can cause some information
to be lost. This feature is not supported in the current implementation.

initial_value
Is present if, and only if, the exclude-all-but-these-values exclusion is requested. This field
specifies that the position within each attribute of the first value is included in the copy. If this
field is all-values or exceeds the number of values present in an attribute, the argument is
equal to that number.

limiting_value
Specifies the position within each attribute one beyond that of the last value to be included in
the copy. It is present if, and only if, the exclude-all-but-these-values exclusion is requested. If
this argument is not greater than initial_value, no values are included and no descriptors are
returned. If this field is all-values or exceeds the number of values present in an attribute, the
argument is equal to that number.

copy Specifies the copy. This result is present if, and only if, the function result is success and the
exclude-descriptors exclusion is not specified. The space occupied by the public OM object
and every attribute value that is a string is service-provided. If you alter any portion of that
space, the effect on the service's subsequent behavior is unspecified. The space occupied by
this OM object should be freed when no longer needed with om_delete.

total_number
Specifies the number of attribute descriptors returned in the public OM object, but not in any of
its subobjects, based on the inclusion and exclusion arguments specified. This result is
present if, and only if, the function result is success. If the exclude-descriptors exclusion is
specified, no copy result is returned and the total_number result reflects the actual number of
attribute descriptors that would have been returned, based on the remaining inclusion and
exclusion values. The total includes only the attribute descriptors in the copy result, including
the first descriptor which specifies the class of the public OM object. It excludes the special
descriptor signalling the end of the public OM object.

 Return Values

If successful, om_get returns [OM_SUCCESS]. If unsuccessful, om_get returns one of the following error
codes.

 Error Codes
[OM_FUNCTION_INTERRUPTED] The function was stopped by an external force, such as a key-

stroke, that was designated for this purpose in a user interface.

[OM_MEMORY_INSUFFICIENT] The service cannot allocate the main memory it needs to complete
the function.

[OM_NETWORK_ERROR] The service could not successfully use the network upon which its
implementation depends.

[OM_NO_SUCH_EXCLUSION] A purported exclusion identifier is undefined.

[OM_NO_SUCH_OBJECT] A purported object is nonexistent or the purported handle is not
valid.

[OM_NO_SUCH_TYPE] A purported type identifier is undefined.

[OM_NOT_PRIVATE] An object is public, not private.

410 Programmer's Reference

 om_get(3)

[OM_PERMANENT_ERROR] The service encountered a permanent difficulty, other than those
denoted by other return codes.

[OM_POINTER_INVALID] A pointer that is not valid was supplied as a function argument or
as the receptacle for a function result.

[OM_SYSTEM_ERROR] The service could not successfully use the operating system upon
which its implementation depends.

[OM_TEMPORARY_ERROR] The service encountered a temporary difficulty, other than those
denoted by other return codes.

[OM_WRONG_VALUE_SYNTAX] An attribute has, or would have, a value whose syntax is not per-
mitted.

[OM_WRONG_VALUE_TYPE] An object has, or would have, an attribute whose type is not per-
mitted.

 Files

When compiling a program that uses om_get, you need to include the following files:

 � xom.h
 � xmp.h
� lnv.h (only if you are using any OVe calls)
� omp_dmi.h (only if you are using the dmi package)

 � xmp_snmp.h
 � xmp_cmis.h
� ove_xmp.h (only if you are using any OVe calls)

 � ov_types.h

 Libraries

When compiling a program that uses om_get, you need to link to the following library:

 /usr/OV/lib/libxmp.a

 Related Information
� See “om_delete(3)” on page 404.

� See “om_put(3)” on page 414.

 Chapter 2. Reference Pages 411

 om_instance(3)

 om_instance(3)

 Purpose

Checks the class of an object

 Syntax
 #include <xom.h>

OM_return_code om_instance(OM_object subject,
 OM_object_identifier class,

OM_boolean \instance);

 Description

This function determines whether a service-generated public or private OM object, the subject, is an
instance of a particular class or any of its subclasses.

You can determine an object's class, C, by inspecting the object, using programming-language con-
structions if the object is public or the om_get function if it is private. The om_instance function shows
that an object is an instance of the specified class, even if C is a subclass of that class.

 Parameters
subject Specifies the OM object which is to checked. This OM object remains accessible.

class Specifies the class in question.

instance Specifies a boolean that identifies whether the subject is an instance of the specified
class or any of its subclasses. This result is present if, and only if, the function result
is success.

 Return Values

If successful, om_instance returns [OM_SUCCESS]. If unsuccessful, om_instance returns one of the fol-
lowing error codes.

 Error Codes
[OM_FUNCTION_INTERRUPTED] The function was stopped by an external force, such as a key-

stroke, that was designated for this purpose in a user interface.

[OM_MEMORY_INSUFFICIENT] The service cannot allocate the main memory it needs to complete
the function.

[OM_NETWORK_ERROR] The service could not successfully use the network upon which its
implementation depends.

[OM_NO_SUCH_CLASS] A purported class identifier is undefined.

[OM_NO_SUCH_OBJECT] A purported object is nonexistent or the purported handle is not
valid.

[OM_NO_SUCH_SYNTAX] A purported syntax identifier is undefined.

412 Programmer's Reference

 om_instance(3)

[OM_NOT_THE_SERVICES] An object is client-generated, rather than service-generated or
private.

[OM_PERMANENT_ERROR] The service encountered a permanent difficulty, other than those
denoted by other return codes.

[OM_POINTER_INVALID] A pointer that is not valid was supplied as a function argument or
as the receptacle for a function result.

[OM_SYSTEM_ERROR] The service could not successfully use the operating system upon
which its implementation depends.

[OM_TEMPORARY_ERROR] The service encountered a temporary difficulty, other than those
denoted by other return codes.

 Files

When compiling a program that uses om_instance, you need to include the following files:

 � xom.h
 � xmp.h
� lnv.h (only if you are using any OVe calls)
� omp_dmi.h (only if you are using the dmi package)

 � xmp_snmp.h
 � xmp_cmis.h
� ove_xmp.h (only if you are using any OVe calls)

 � ov_types.h

 Libraries

When compiling a program that uses om_instance, you need to link to the following library:

 /usr/OV/lib/libxmp.a

 Related Information
� See “om_get(3)” on page 408.

 Chapter 2. Reference Pages 413

 om_put(3)

 om_put(3)

 Purpose

Adds or replaces attributes in a private object

 Syntax
 #include <xom.h>

OM_return_code om_put(OM_private_object destination,
 OM_modification modification,
 OM_object source,
 OM_type_list included_types,
 OM_value_position initial_value,

OM_value_position limiting_value);

 Description

This function copies attributes from an OM object into a private OM object. These attributes can be addi-
tions to the attributes in the destination OM object, or they might replace existing attributes in the destina-
tion OM object. You can specify that the source's values are to replace all values or particular values in
the destination or to be inserted at a particular position within each attribute.

This function does not insert the source OM object into the destination; it copies attributes from the source
to the destination. The class of the source OM object does not have to match the class of the destination
OM object. Subject to the modifications and included_types, this function traverses the source object and
copies all attributes that are valid for the destination object into the destination OM object. Attributes that
exist in the source OM object but do not exist in the destination OM object's class are ignored.

 Parameters
destination

Specifies the OM object to be modified. This OM object remains accessible and its class is
unaffected.

modification
Specifies the nature of the requested modification. The modification field determines how this
function uses the attribute values in the source to modify the object. In all cases, for each
attribute present in the source, copies of its values are placed in the object's destination attri-
bute of the same type. The data value is chosen from among the following values:

(1) insert-at-beginning The source values are inserted before any existing destination
values These destination values are retained.

(2) insert-at-certain-point The source values are inserted before the value at a specified
position in the destination attribute. If this value is used, the
inital_value field is used to indicate the specified position.

(3) insert-at-end The source values are inserted after any existing destination
values.

(4) replace-all The source values are placed in the destination attribute. The
existing destination values, if any, are discarded.

414 Programmer's Reference

 om_put(3)

(5) replace-certain-values The source values are substituted for the values at specified posi-
tions in the destination attribute, the latter are discarded. If this
value is used, the inital_value field is used to indicate the starting
position and limiting_value is used to indicate the ending position
of the attribute values to be replaced.

source Specifies the source OM object, which remains accessible. The source's class is ignored.
However, the attributes being copied from the source must be compatible with the destination's
class definition.

included_types
If present, specifies the types of the attributes to be included in the destination (provided that
they appear in the source); otherwise, all attributes are to be included. This is an array of
types and must end with the NULL terminator OM_NO_MORE_TYPES.

initial_value
Is present if, and only if, the modification argument is insert-at-certain-point or
replace-certain-values, the position within each destination attribute at which source values are
to be inserted, or of the first value to be replaced, respectively. If it is all-values or exceeds the
number of values present in a destination attribute, the argument is equal to that number. The
values of an attribute are numbered from 0 to n−1.

limiting_value
Is present if, and only if, the modification argument is replace-certain-values, the position within
each destination attribute, one beyond that of the last value to be replaced. If this argument is
present, it must be greater than the initial_value argument. If it is all-values or exceeds the
number of values present in a destination attribute, the argument is equal to that number.

 Return Values

If successful, om_put returns [OM_SUCCESS]. If unsuccessful, om_put returns one of the following error
codes.

 Error Codes
[OM_FUNCTION_DECLINED] The function does not apply to the object to which it is addressed.

[OM_FUNCTION_INTERRUPTED] The function was stopped by an external force, such as a key-
stroke, that was designated for this purpose in a user interface.

[OM_MEMORY_INSUFFICIENT] The service cannot allocate the main memory that it needs to com-
plete the function.

[OM_NETWORK_ERROR] The service could not successfully use the network upon which its
implementation depends.

[OM_NO_SUCH_CLASS] A purported class identifier is undefined.

[OM_NO_SUCH_MODIFICATION] A purported modification identifier is undefined.

[OM_NO_SUCH_OBJECT] A purported object is nonexistent or the purported handle is not
valid.

[OM_NO_SUCH_SYNTAX] A purported syntax identifier is undefined.

[OM_NO_SUCH_TYPE] A purported type identifier is undefined.

[OM_NOT_CONCRETE] A class is abstract, not concrete.

[OM_NOT_PRESENT] An attribute value is absent, not present.

 Chapter 2. Reference Pages 415

 om_put(3)

[OM_NOT_PRIVATE] An object is public, not private.

[OM_PERMANENT_ERROR] The service encountered a permanent difficulty, other than those
denoted by other return codes.

[OM_POINTER_INVALID] A pointer that is not valid was supplied as a function argument or
as the receptacle for a function result.

[OM_SYSTEM_ERROR] The service could not successfully use the operating system upon
which its implementation depends.

[OM_TEMPORARY_ERROR] The service encountered a temporary difficulty, other than those
denoted by other return codes.

[OM_TOO_MANY_VALUES] An implementation limit prevents the addition to an object of
another attribute value. This limit is undefined.

[OM_VALUES_NOT_ADJACENT] The descriptors for the values of a particular attribute are not adja-
cent.

[OM_WRONG_VALUE_LENGTH] An attribute has, or would have, a value that violates the value
length constraints in force.

[OM_WRONG_VALUE_MAKEUP] An attribute has, or would have, a value that violates a constraint of
the value's syntax.

[OM_WRONG_VALUE_NUMBER] An attribute has, or would have, a value that violates the value
number constraints in force.

[OM_WRONG_VALUE_POSITION] A value position identified in the argument of a function is not valid.

[OM_WRONG_VALUE_SYNTAX] An attribute has, or would have, a value whose syntax is not per-
mitted.

[OM_WRONG_VALUE_TYPE] An object has, or would have, an attribute whose type is not per-
mitted.

 Files

When compiling a program that uses om_put, you need to include the following files:

 � xom.h
 � xmp.h
� lnv.h (only if you are using any OVe calls)
� omp_dmi.h (only if you are using the dmi package)

 � xmp_snmp.h
 � xmp_cmis.h
� ove_xmp.h (only if you are using any OVe calls)

 � ov_types.h

 Libraries

When compiling a program that uses om_put, you need to link to the following library:

 /usr/OV/lib/libxmp.a

 Related Information
� See “om_delete(3)” on page 404.

� See “om_get(3)” on page 408.

416 Programmer's Reference

 om_read(3)

 om_read(3)

 Purpose

Reads a string segment in a private object

 Syntax
 #include <xom.h>

OM_return_code om_read(OM_private_object subject,
 OM_type type,
 OM_value_position value_position,
 OM_boolean local_string,
 OM_string_length \string_offset,

OM_string \elements);

 Description

This function reads a segment of an attribute value in a private OM object, the subject. The segment that
is returned is a segment of the string value that would have been returned if the complete value had been
read in a single call.

Note that this function enables the client to read an arbitrarily long value without requiring that the service
place a copy of the entire value in memory.

 Parameters
subject Specifies the OM object to be read. This OM object remains accessible.

type Specifies the type of the attribute, one of whose values is to be read.

value_position Specifies the position within the above attribute of the value to be read. When
the attribute allows multiple values (multiple OM descriptors with the same attri-
bute type), this value indicates which value to return. The values are numbered
from 0 to n−1.

local_string If true, indicates that the value is to be translated into the implementation-defined
local character set representation. This feature is not supported.

string_offset On input, this value contains the offset, in octets, of the start of the string segment
to be read. If it exceeds the total length of the string, the argument is taken to be
equal to the string length. Upon successful return from this call, this value will
contain the offset, in octets, of the start of the next string segment to be read, or
zero if the value's final segment was read.

elements On input, this value contains a String structure that contains the number of octets
to be read. The pointer value in the String structure should be set to point to a
user-supplied buffer where the string can be stored. Upon successful return from
this call, this value will contain the offset, in octets, of the start of the next string
segment to be read, or zero if the value's final segment was read.

 Return Values

If successful, om_read returns [OM_SUCCESS]. If unsuccessful, om_read returns one of the following
error codes.

 Chapter 2. Reference Pages 417

 om_read(3)

 Error Codes
[OM_FUNCTION_INTERRUPTED] The function was stopped by an external force, such as a key-

stroke, that was designated for this purpose in a user interface.

[OM_MEMORY_INSUFFICIENT] The service cannot allocate the main memory that it needs to com-
plete the function.

[OM_NETWORK_ERROR] The service could not successfully use the network upon which its
implementation depends.

[OM_NO_SUCH_OBJECT] A purported object is nonexistent or the purported handle is not
valid.

[OM_NO_SUCH_TYPE] A purported type identifier is undefined.

[OM_NOT_PRESENT] An attribute value is absent, not present.

[OM_NOT_PRIVATE] An object is public, not private.

[OM_PERMANENT_ERROR] The service encountered a permanent difficulty, other than those
denoted by other return codes.

[OM_POINTER_INVALID] A pointer that is not valid was supplied as a function argument or
as the receptacle for a function result.

[OM_SYSTEM_ERROR] The service could not successfully use the operating system upon
which its implementation depends.

[OM_TEMPORARY_ERROR] The service encountered a temporary difficulty, other than those
denoted by other return codes.

[OM_WRONG_VALUE_SYNTAX] An attribute has, or would have, a value whose syntax is not per-
mitted.

 Files

When compiling a program that uses om_read, you need to include the following files:

 � xom.h
 � xmp.h
� lnv.h (only if you are using any OVe calls)
� omp_dmi.h (only if you are using the dmi package)

 � xmp_snmp.h
 � xmp_cmis.h
� ove_xmp.h (only if you are using any OVe calls)

 � ov_types.h

 Libraries

When compiling a program that uses om_read, you need to link to the following library:

 /usr/OV/lib/libxmp.a

 Related Information
� See “om_write(3)” on page 421.

418 Programmer's Reference

 om_remove(3)

 om_remove(3)

 Purpose

Removes attribute values from a private object

 Syntax
 #include <xom.h>

OM_return_code om_remove(OM_private_object subject,
 OM_type type,
 OM_value_position initial_value,

OM_value_position limiting_value);

 Description

This function removes and discards particular values of an attribute of a private OM object, the subject. If
no values remain, the attribute is also removed. If the value is a subobject, the value is first removed and
then the om_delete function is applied to it, deleting the object.

 Parameters
subject Specifies the OM object, which remains accessible. The subject's class is unaf-

fected.

type Specifies the type of the attribute, which has some values to be removed. The type
should not be Class.

initial_value Specifies the position within the above attribute of the first value to be removed. If it
is all-values or exceeds the number of values present in the attribute, the argument
is equal to that number. In a multivalued attribute (multiple OM descriptors with the
same attribute type), this value indicated which descriptor to start with. The values
are numbered from zero to n−1.

limiting_value Specifies the position within the attribute one beyond that of the last value to be
removed. If this argument is not greater than the initial_value argument, no values
are removed. If it is all-values or exceeds the number of values present in an attri-
bute, the argument is equal to that number.

 Return Values

If successful, om_remove returns [OM_SUCCESS]. If unsuccessful, om_remove returns one of the fol-
lowing error codes.

 Error Codes
[OM_FUNCTION_DECLINED] The function does not apply to the object to which it is addressed.

[OM_FUNCTION_INTERRUPTED] The function was stopped by an external force, such as a key-
stroke, that was designated for this purpose in a user interface.

[OM_MEMORY_INSUFFICIENT] The service cannot allocate the main memory that it needs to com-
plete the function.

 Chapter 2. Reference Pages 419

 om_remove(3)

[OM_NETWORK_ERROR] The service could not successfully use the network upon which its
implementation depends.

[OM_NO_SUCH_OBJECT] A purported object is nonexistent or the purported handle is not
valid.

[OM_NO_SUCH_TYPE] A purported type identifier is undefined.

[OM_NOT_PRIVATE] An object is public, not private.

[OM_PERMANENT_ERROR] The service encountered a permanent difficulty, other than those
denoted by other return codes.

[OM_POINTER_INVALID] A pointer that is not valid was supplied as a function argument or
as the receptacle for a function result.

[OM_SYSTEM_ERROR] The service could not successfully use the operating system upon
which its implementation depends.

[OM_TEMPORARY_ERROR] The service encountered a temporary difficulty, other than those
denoted by other return codes.

 Files

When compiling a program that uses om_remove, you need to include the following files:

 � xom.h
 � xmp.h
� lnv.h (only if you are using any OVe calls)
� omp_dmi.h (only if you are using the dmi package)

 � xmp_snmp.h
 � xmp_cmis.h
� ove_xmp.h (only if you are using any OVe calls)

 � ov_types.h

 Libraries

When compiling a program that uses om_remove, you need to link to the following library:

 /usr/OV/lib/libxmp.a

 Related Information
� See “om_delete(3)” on page 404.

� See “om_put(3)” on page 414.

420 Programmer's Reference

 om_write(3)

 om_write(3)

 Purpose

Writes a segment of a string into a private object

 Syntax
 #include <xom.h>

OM_return_code om_write(OM_private_object subject,
 OM_type type,
 OM_value_position value_position,
 OM_syntax syntax,
 OM_string_length \string_offset,

OM_string elements);

 Description

This function writes a segment of an attribute value in a private OM object, the subject. The segment that
is supplied is a segment of the string value that would have been supplied if the complete value had been
written in a single call. The written segment is made the value's last; the function discards values whose
offset equals or exceeds the string_offset argument.

This function enables you to write an arbitrarily long value without having to place a copy of the entire
value in memory.

 Parameters
subject Specifies the OM object to be written. This OM object remains accessible.

type Specifies the type of the attribute, one of whose values is to be written.

value_position Specifies the position within the above attribute of the value to be written. The
value position shall neither be negative nor exceed the number of values present.
If it equals the number of values present, the segment is inserted into the attribute
as a new value. In a multivalued attribute (multiple OM descriptors are allowed
with the same attribute type), this parameter identifies the descriptor to modify.
The descriptors are numbered from zero to n−1.

syntax Specifies the syntax the value is to have if the value being written was not already
present in the subject. It must be a permissible syntax for the attribute of which
this is a value. If the value being written was already present in the subject, that
value's syntax is preserved and this argument is ignored.

string_offset On input, this value contains the offset, in octets, of the start of the string segment
to write. If it exceeds the current length of the string value being written, the
argument is taken to be equal to that current length. Upon successful return from
this call, this value will contain the offset, in octets, of the start of the next string
segment to be written. This values enables the value of a long string to be
written sequentially.

elements Specifies the string segment to be written. A copy of this segment will occupy a
position within the string value being written, starting at the offset given by the
string_offset argument. Any values located at or beyond this offset are discarded.

 Chapter 2. Reference Pages 421

 om_write(3)

 Return Values

If successful, om_write returns [OM_SUCCESS]. If unsuccessful, om_write returns one of the following
error codes.

 Error Codes
[OM_FUNCTION_DECLINED] The function does not apply to the object to which it is addressed.

[OM_FUNCTION_INTERRUPTED] The function was stopped by an external force, such as a key-
stroke, that was designated for this purpose in a user interface.

[OM_MEMORY_INSUFFICIENT] The service cannot allocate the main memory that it needs to com-
plete the function.

[OM_NETWORK_ERROR] The service could not successfully use the network upon which its
implementation depends.

[OM_NO_SUCH_OBJECT] A purported object is nonexistent or the purported handle is not
valid.

[OM_NO_SUCH_SYNTAX] A purported syntax identifier is undefined.

[OM_NO_SUCH_TYPE] A purported type identifier is undefined.

[OM_NOT_PRESENT] An attribute value is absent, not present.

[OM_NOT_PRIVATE] An object is public, not private.

[OM_PERMANENT_ERROR] The service encountered a permanent difficulty, other than those
denoted by other return codes.

[OM_POINTER_INVALID] A pointer that is not valid was supplied as a function argument or
as the receptacle for a function result.

[OM_SYSTEM_ERROR] The service could not successfully use the operating system upon
which its implementation depends.

[OM_TEMPORARY_ERROR] The service encountered a temporary difficulty, other than those
denoted by other return codes.

[OM_WRONG_VALUE_LENGTH] An attribute has, or would have, a value that conflicts with the value
length rules in effect.

[OM_WRONG_VALUE_MAKEUP] An attribute has, or would have, a value that conflicts with a rule of
the value's syntax.

[OM_WRONG_VALUE_POSITION] A value position identified in the argument of a function is not valid.

[OM_WRONG_VALUE_SYNTAX] An attribute has, or would have, a value whose syntax is not per-
mitted.

422 Programmer's Reference

 om_write(3)

 Files

When compiling a program that uses om_write, you need to include the following files:

 � xom.h
 � xmp.h
� lnv.h (only if you are using any OVe calls)
� omp_dmi.h (only if you are using the dmi package)

 � xmp_snmp.h
 � xmp_cmis.h
� ove_xmp.h (only if you are using any OVe calls)

 � ov_types.h

 Libraries

When compiling a program that uses om_write, you need to link to the following library:

 /usr/OV/lib/libxmp.a

 Related Information
� See “om_read(3)” on page 417.

 Chapter 2. Reference Pages 423

 OVDefaultServerName(3)

 OVDefaultServerName(3)

 Purpose

Determines the name of the default server to which a client should connect

 Syntax
 #include <nvDefServ.h>

char \ OVDefaultServerName ()

 Description

This function determines the name of the server that a client application should connect to in a
client/server environment. The application returns the hostname of the machine to which the client will be
connecting.

The default server name is stored in a file called /usr/OV/databases/servername. This file exists only on
clients. If the file exists on the target machine, OVDefaultServerName returns the contents of the file. If
the file does not exist, the machine is a server, and OVDefaultServerName returns the current hostname.

 Return Values

If successful, OVDefaultServerName returns a server name.

 Files

When compiling a program that uses OVDefaultServerName, you need to include the following file:

 � nvDefServ.h

 Libraries

When compiling a program that uses OVDefaultServerName, link to the following library:

 /usr/OV/lib/libOVW.a

 Related Information
� See “NVisClient(3)” on page 136.

424 Programmer's Reference

 OVeDeregister(3)

 OVeDeregister(3)

 Purpose

Deregisters the caller from receiving events from the listed network nodes

 Syntax
#include <xom.h>
#include <xmp.h>
#include <xmp_cmis.h>
#include <ove_xmp.h>

int OVeDeregister (OM_private_object session,
 OM_workspace workspace,
 OVeConvDeRegNode \sieve_list,
 OVeConvConfirm \\confirm_list,
 OM_return_code \om_error);

 Description

When an application or agent deregisters for events, it longer receives a set of events for which it was
previously registered. The caller identifies the sieve objects and locations returned in the confirmation
response to the OVeRegister call, and calls OVeDeregister. This list should include the local event sieve,
as well as any remote sieve objects, unless the caller is deleting only a subset of remote sieves created.

Deregistering is a confirmed CMIS action; confirmation of the deletion or an error is received from EMS.
OVeDeregister returns the invoke IDs of the requests so they can be matched with the event sieve confir-
mations returned from EMS. The confirmation responses must be received with mp_receive.

The scoping and filtering of object instances is not supported. The OVeDeregister routine accepts a list of
nodes, by hostname or address, and corresponding event sieve object instances and deletes them. Use
of pattern-matching characters is not supported.

 Parameters
 session

Specifies an OM_private_object (returned from mp_bind) that identifies the binding established with
the Communications Infrastructure.

 workspace
Specifies the XOM workspace used in building the delete requests.

 sieve_list
Specifies a pointer to a linked list of destination addresses, object classes, and instances returned by
the OVeRegister confirmations that define the event sieve objects to be deleted. The destination
address can be either a host name or address. The object class/instance is provided in the
OM_object structure that was previously returned by mp_receive.

 confirm_list
Specifies a pointer to a linked list of OVeConvConfirm structures. The structures contain information
for each delete request that OVeDeregister made: the destination node address, the invoke ID
returned from the mp_delete_req, and the status returned from the mp_delete_req. The caller needs
to receive, through mp_receive, a confirmation of each delete request that was made in order to
ensure that each event sieve was successfully deleted.

 Chapter 2. Reference Pages 425

 OVeDeregister(3)

 om_error
Specifies a pointer to an OM_return_code returns if XOM errors occurred in sending the delete
requests. This pointer is valid only if the return value indicates an XOM error has occurred.

 Return Values

If successful, OVeDeregister returns 0 (zero). If unsuccessful, it returns one of the negative integers listed
in the ove_xmp.h header file.

 Files

When compiling a program that uses OVeDeregister, you need to include the following files:

 � xom.h
 � xmp.h
� lnv.h (only if you are using any OVe calls)
� omp_dmi.h (only if you are using the dmi package)

 � xmp_snmp.h
 � xmp_cmis.h
� ove_xmp.h (only if you are using any OVe calls)

 � ov_types.h

 Libraries

When compiling a program that uses OVeDeregister, you need to link to the following library:

 /usr/OV/lib/libxmp.a

 Related Information
� See “OVeRegister(3)” on page 431.

� See “mp_receive(3)” on page 76.

� See “mp_delete_req(3)” on page 55.

426 Programmer's Reference

 OVeFilterAttr(3)

 OVeFilterAttr(3)

 Purpose

Builds event filter structures

 Syntax
#include <xom.h>
#include <xmp.h>
#include <xmp_cmis.h>
#include <OV/ove_xmp.h>

int OVeFilterAttr (OM_workspace workspace,
 char \filter_string,
 OM_private_object \out_filter_attribute,
 char \\err_ptr,
 OM_return_code \om_error);

 Description

OVeFilterAttr generates an event filter attribute that may subsequently be used in a call to OVeRegister.
OVeFilterAttr accepts a string defining a filter, and parse it into the appropriate structure.

 Parameters
 workspace

Specifies the XOM workspace in which the returned XOM object will be created.

 filter_string
Specifies a pointer to a NULL-terminated string that defines the filter using key words and values. The
string is interpreted left-to-right, unless otherwise indicated by parentheses. The syntax for the string
is described under Filter String Syntax on page 427.

 out_filter_attribute
Specifies a pointer returning an OM_private_object structure defining the event filter attribute that can
be subsequently passed to the OVeRegister convenience routine. The object is an instance of the
OM class Attribute.

 err_ptr
Specifies a pointer to the input string, indicating where the string parser detected errors. This pointer
is valid only if an error occurred and can point to the whole string depending on the context of the
error.

 om_error
Specifies pointer to an OM_return_code returned if any XOM errors occurred in processing the event
filter.

Filter String Syntax: The filter_string is a NULL-terminated string parsed by OVeFilterAttr to create the
appropriate XOM object for a filter. Keywords are provided to determine the type of filtering, with compar-
ison values attached using the standard comparison operator <=, >=, or =. Keywords must be separated
from preceding tokens by white space, except when they are preceded by a left parenthesis. In this case,
the left parenthesis must be separated by white space. Nested parentheses are supported, and should be
used for logical groupings. Otherwise, precedence is as read from left to right.

 Chapter 2. Reference Pages 427

 OVeFilterAttr(3)

Keyword Syntax

! NOT (logical negation)

&& AND (logical and)

|| OR (logical or)

The following list describes the keyword in the syntax used to define filters.

 CLASS=value
Object class match on class ID. Value is given in dot notation, for example, 1.2.3.4.55

 CLASS=value
SNMP enterprise match on enterprise ID. Value is given in dot notation, for example, 1.2.3.4.55

 IP_ADDR=value
Object instance match on IP address. Value is given in dot notation, for example, 192.155.13.57

 IP_ADDR=value
SNMP agent-addr match on IP address. Value is given in dot notation, for example, 192.155.13.57
Registration for an IP_ADDR permits receipt of agent-generated traps as well as internal events
related to that IP_ADDR.

Note: IP_ADDR permits an application to register to receive NetView for AIX internal events related
to IP_ADDR as well as traps originating from IP_ADDR.

 FDN=value
Object instance match on Fully Distinguished Name See the following syntax for FDN.

 EVENT_TYPE=value
Match on Event type id. Value is given in dot notation, for example, 1.2.3.4.55.

 PRESENT=EVENT_TIME
Presence of Event Time

 EVENT_TIME <= time_string
Event time before value in time_string, where time_string is of the form dd:mm:yy:hh:mm:ss (24-hour
clock, GMT)

 EVENT_TIME >= time_string
Event time after value in time_string, where time_string is of the form dd:mm:yy:hh:mm:ss (24-hour
clock, GMT)

 LOGGED_TIME <= time_string
Logged time before value in time_string, where time_string is of the form dd:mm:yy:hh:mm:ss (24-hour
clock, GMT)

 LOGGED_TIME >= time_string
Logged time after value in time_string, where time_string is of the form dd:mm:yy:hh:mm:ss (24-hour
clock, GMT)

 PRESENT = SNMP_TRAP
Presence of SNMP Trap

 SNMP_TRAP=value
Match on SNMP Generic Trap Type, where the Generic Type is an integer

 SNMP_SPECIFIC=value
Match on SNMP Specific Trap Type, where the Specific Type is an integer

428 Programmer's Reference

 OVeFilterAttr(3)

 TIME_PERIOD=time_constant
Relative time period (integer seconds) for frequency filters

 THRESHOLD <= frequency
Number of event occurrences is less than or equal to frequency (integer) during TIME_PERIOD

 THRESHOLD >= frequency
Number of event occurrences is greater than or equal to frequency (integer) during TIME_PERIOD

Note: When included in an expression for OVeFilterAttr, the keywords THRESHOLD and TIME_PERIOD
must be ANDed, never ORed, and grouped within parentheses as shown in the following example:

filter = PRESENT=SNMP_TRAP && (THRESHOLD <= 5 && TIME_PERIOD = 3ð)

Specifying more than 250 filter objects will result in an error in the OVeRegister call to register the
filter.

FDN Syntax: For object instance filtering, OVeFilterAttr supports specification of an FDN (Fully Distin-
guished Name) with the most common value set. The filter string value for an FDN has the following
syntax:

FDN :: =/RDN [/RDN] ...

RDN :: ═attribute ═ value [; attribute ═ value] ...

attribute :: ═ object_instance_attribute_id in dot notation

value ::═ INT integer | STRING “string“ | ADDRESS CMOT_system_id |
TIME dd:mm:yy:hh:mm:ss | OID object_id

An ADDRESS must be an IP Address specified as a CMOT System ID with an attribute ID of
1.3.6.1.2.1.9.3.

 Examples

FDN = /1.2.3.4.5.6 = INT 69 /1.3.5=STRING “abcd”

FDN ═ /1.3.6.1.2.1.9.3 ═ ADDRESS 1.2.3.4

PRESENT ═ EVENT_TIME || IP_ADDR ═ 192.6.6.6

(EVENT_TIME <═ ð9:1ð:9ð:ð8:ðð:ðð) && (EVENT_TIME>═ ð9:1ð:9ð:17:ðð:ðð)

(EVENT_TYPE ═ 1.3.6.1.4.1.11.2.2.6.9) || (CLASS ═ 1.3.6.1.4.1.11.2.ð.ð)

SNMP_TRAP ═ 4 && (TIME_PERIOD ═ 6ð && THRESHOLD > = 1ð)

 Return Values

If successful, OVeFilterAttr returns 0 (zero). If unsuccessful, it returns a negative integer listed in the
ove_xmp.h header file.

 Chapter 2. Reference Pages 429

 OVeFilterAttr(3)

 Files

When compiling a program that uses OVeFilterAttr, you need to include the following files:

 � xom.h
 � xmp.h
� lnv.h (only if you are using any OVe calls)
� omp_dmi.h (only if you are using the dmi package)

 � xmp_snmp.h
 � xmp_cmis.h
� ove_xmp.h (only if you are using any OVe calls)

 � ov_types.h

 Libraries

When compiling a program that uses OVeFilterAttr, you need to link to the following library:

 /usr/OV/lib/libxmp.a

 Related Information
� See “OVeRegister(3)” on page 431.

� See “mp_get_req(3)” on page 69.

430 Programmer's Reference

 OVeRegister(3)

 OVeRegister(3)

 Purpose

Registers the caller with EMS to receive filtered events from the listed network nodes

 Syntax

#include <xom.h>
#include <xmp.h>
#include <xmp_cmis.h>
#include <ove_xmp.h>

int OVeRegister (OM_private_object session,
 OM_workspace workspace,
 OVeConvRegNode \node_list,
 OM_private_object filter_attribute,
 OVeConvConfirm \\confirm_list),
 OM_return_code \om_error);

 Description

Registering for events means an application or agent registers with EMS to receive one or more events as
they are generated. Calling OVeRegister means that the caller will receive all events generated at the
specified list of nodes, limited only by the filter included with the call. The filter can be previously built with
the OVeFilterAttr convenience routine.

OVeRegister accepts a list of network nodes specified by the IP address or the host name. Use of
pattern-matching characters is not supported. Because the events will always be received at the local
node, OVeRegister generates an mp_create_req to create a local event sieve with the caller as the desti-
nation address. If the events are to be captured on remote nodes, OVeRegister additionally generates
mp_create_req commands for the remote nodes, creating sieves at each remote node. Only CMIP events
are forwarded from remote nodes, even if the filter includes SNMP traps. All the event sieves use the
filter definition, if any, included with the call.

Event sieve creation is a confirmed CMIS process, that is, EMS responds with sieve identification informa-
tion or an error for each sieve created. OVeRegister returns the invoke IDs of the requests so that they
can be matched with the event sieve confirmations returned from EMS. The confirmation notices must be
received using the mp_receive function.

 Parameters
 session

Specifies an OM_private_object (returned from mp_bind) that identifies the binding established with
the Communications Infrastructure.

 workspace
Specifies the XOM workspace used in building the create requests.

 node_list
Specifies a pointer to a linked list of destination node addresses where the event sieve should be
created. If this list is empty, the sieve is created only on the local node. The local node may be

 Chapter 2. Reference Pages 431

 OVeRegister(3)

included in the list, but is not necessary; OVeRegister automatically builds an event sieve at the local
node.

 filter_attribute
Specifies a pointer to a structure returned by OVeFilterAttr that describes the filter to be applied with
the sieve. If this parameter is NULL, no filter is specified, and all events will be forwarded.

 confirm_list
Specifies a pointer to a linked list of OVeConvConfirm structures. The structures contain information
for each create request that OVeRegister made: the destination node address, the invoke ID returned
from the mp_create_req, and the status returned from mp_create_req. The caller needs to receive,
through mp_receive, a confirmation of each create request that was made in order to ensure that each
event sieve was created. Each successful confirmation will also contain the instance of the event
sieve that was created. This instance is used by OVeDeregister to delete the event sieve when
deregistering for events.

 Return Values

If successful, OVeRegister returns 0 (zero). If unsuccessful, it returns one of the negative integers listed
in the ove_xmp.h header file.

 Files

When compiling a program that uses OVeRegister, you need to include the following files:

 � xom.h
 � xmp.h
� lnv.h (only if you are using any OVe calls)
� omp_dmi.h (only if you are using the dmi package)

 � xmp_snmp.h
 � xmp_cmis.h
� ove_xmp.h (only if you are using any OVe calls)

 � ov_types.h

 Libraries

When compiling a program that uses OVeRegister, you need to link to the following library:

 /usr/OV/lib/libxmp.a

 Related Information
� See “OVeDeregister(3)” on page 425.

� See “OVeFilterAttr(3)” on page 427.

� See “mp_create_req(3)” on page 49.

� See “mp_receive(3)” on page 76.

432 Programmer's Reference

 OVmib_get_objid_name(3)

 OVmib_get_objid_name(3)

 Purpose

Converts a dotted-decimal MIB variable object identifier to its textual name

 Syntax
#include <OV/OVsnmp.h>
const char \OVmib_get_objid_name(ObjectID \oid, u_int oid_length);

 Description

OVmib_get_objid_name converts a dotted-decimal MIB object ID into its more meaningful textual name. If
the textual name cannot be found, a character string version of the dotted-decimal object ID is returned.
The following list shows example object IDs and the text strings that would be returned for them:

.1.3.6 .iso.org.dod

.0 .0

 Return Values

OVmib_get_objid_name returns a pointer to the textual name of the specified MIB object ID.

 Examples

An example program that shows how to use OVmib_get_objid_name is provided in the
/usr/OV/prg_samples/nvsnmp_app/name_to_oid.c file.

 Libraries

When compiling a program that uses OVmib_get_objid_name, you need to link to the following library:

 � /usr/OV/lib/libmib.a

 Chapter 2. Reference Pages 433

 OVmib_read_objid(3)

 OVmib_read_objid(3)

 Purpose

Converts a MIB variable name to its object identifier format

 Syntax
#include <OV/OVsnmp.h>
int OVmib_read_objid(const char \name, ObjectID \oid, u_int \oid_length);

 Description

OVmib_read_objid converts a textual MIB variable name into its equivalent dotted-decimal object ID
format. While performing a MIB tree lookup, this routine uses the following names for the default prefix for
the textual name:

.iso.org.dod.internet.mgmt.mib-2 Checked first

.iso.org.dod.internet.private.enterprises Checked next if the name was not found in the first
directory

OVmib_read_objid does not use a prefix if the name starts with a period (.).

This conversion provides sufficient mappings for the following sample MIB names:

system.sysContact .1.3.6.1.2.1.1.4
ibm.ibmProd.netview6000 .1.3.6.1.4.1.2.6.3
.iso.org.dod .1.3.6
iso.org.dod Returns an error because there is no leading period

and this variable does not exist relative to either of
the preceding directories

 Return Values

If successful, OVmib_read_objid returns 0 (zero). If unsuccessful, it returns -1, which means that the
specified MIB variable name could not be found in the MIB tree.

 Examples

An example program that shows how to use OVmib_read_objid is provided in the
/usr/OV/prg_samples/nvsnmp_app/name_to_oid.c file.

 Libraries

When compiling a program that uses OVmib_read_objid, you need to link to the following library:

 � /usr/OV/lib/libmib.a

434 Programmer's Reference

 OVsnmpAddVarBind(3)

 OVsnmpAddVarBind(3)

 Purpose

Allocates space for and initializes an OVsnmpVarBind data structure for getting and setting variables

 Related Functions
 OVsnmpAddNullVarBind
 OVsnmpAddTypedVarBind

 Syntax
#include <OV/OVsnmp.h>

OVsnmpVarBind \OVsnmpAddNullVarBind(OVsnmpPdu \pdu, ObjectID \oid, int oid_len);

OVsnmpVarBind \OVsnmpAddTypedVarBind(OVsnmpPdu \pdu, ObjectID \oid, int oid_len,

u_char type, OVsnmpVal \val, int val_len)

 Description

OVsnmpAddNullVarBind creates a new OVsnmpVarBind data structure and adds it to the OVsnmpPdu
data structure pointed to by the pdu parameter. The oid (object identifier) and oid length fields in the new
OVsnmpVarBind data structure are initialized. The ASN type is set to ASN_NULL, and the other fields are
set to 0 (zero) or NULL as appropriate.

OVsnmpAddTypedVarBind also creates a new OVsnmpVarBind data structure and adds it to the
OVsnmpPdu data structure pointed to by the pdu parameter. The oid (object identifier) and oid length
fields in the new OVsnmpVarBind data structure are initialized and space is allocated for the value of the
variable. The type, value, and value length for the variable are then assigned. This is useful when a
management station is setting variables in an agent, and, in setting up these variables, has determined the
type of variable being sent.

The memory allocated for the new OVsnmpVarBind data structure and the value of the variable are
dynamic. They will be freed by a call to OVsnmpFreePdu, or, if the FREE_PDU bit is set in the
session_flags variable of the sending session, by the OVsnmpSend or OVsnmpBlockingSend functions.

 Parameters
 pdu

Specifies a pointer to an OVsnmpPdu data structure returned by a call to OVsnmpCreatePdu. The
new OVsnmpVarBind structure will be added to this PDU.

 oid
Specifies a pointer to the object identifier value that will be assigned to this variable. This is generally
the name of an array of type ObjectID.

 oid_len
Specifies the number of elements in the oid. Note that this is not the number of bytes in the ObjectID
variable. The maximum value for this parameter is MAX_SUBID_LEN.

 type
Specifies the ASN.1 type that will be assigned to the variable. Valid types are provided in the
<OVsnmpAsn1.h> header file.

 Chapter 2. Reference Pages 435

 OVsnmpAddVarBind(3)

 val
Specifies a pointer to the value that will be assigned to the variable. Space will be allocated by
OVsnmpAddTypedVarBind to hold the value of the variable.

 val_len
Specifies the number of elements in the variable. For example, an ObjectID variable with the value
.1.3.6.1.2.1 would have a length of 6 and an integer value would have a length of 1.

 Return Values

If successful, OVsnmpAddVarBind returns a pointer to the new OVsnmpVarBind structure that was added
to the OVsnmpPdu structure. If unsuccessful, it returns NULL.

Note: If successful, OVsnmpBlockingSend returns a pointer to an OVsnmpPdu structure that contains the
response to the outbound PDU. If unsuccessful, it returns NULL.

 Error Codes

OVsnmpAddVarBind returns the error code value OVsnmpErrno. If one of the SNMP_SYSERR_* values
is found, the global variable errno contains the error code returned by the failed system call.

The following list describes the possible errors:

[SNMP_SYSERR_MALLOC] The malloc system call failed. The global variable errno contains the
malloc specific error.

[SNMP_ERR_BAD_LENGTH] oid_len is <= zero or > MAX_SUBID_LEN.

[SNMP_ERR_BAD_TYPE] The ASN.1 type of the variable was not valid.

[SNMP_ERR_BAD_VALUE] The val and val_len parameters are incompatible. This can happen if the
type of the value is INTEGER and val_len is not equal to one.

 Libraries

When compiling a program that uses OVsnmpAddVarBind or one of its related functions, you need to link
to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� See “OVsnmpIntro(5)” on page 501.

� See “OVsnmpOpen(3)” on page 507.

� See “OVsnmpCreatePdu(3)” on page 490.

� See “OVsnmpDoRetry(3)” on page 492.

� See “OVsnmpSend(3)” on page 514.

� See “OVsnmpFreePdu(3)” on page 497.

436 Programmer's Reference

 OVsnmpBlockingSend(3)

 OVsnmpBlockingSend(3)

 Purpose

Sends an SNMP PDU and waits for the response

 Syntax

#include <OV/OVsnmp.h>

OVsnmpPdu \OVsnmpBlockingSend(OVsnmpSession \session, OVsnmpPdu \pdu)

 Description

OVsnmpBlockingSend performs the required ASN.1 encoding on the specified PDU and sends the serial-
ized PDU to the destination that was specified for the given session at the time the session was created.
The calling process then blocks, with possible retransmissions of the pdu, until a response is received or a
time-out occurs.

Time-outs can occur for a number of reasons, such as the destination host not providing SNMP services,
congested networks, or the destination host is down. Time-outs do not indicate that an error in processing
has occurred.

The time-out interval is specified using a combination of the retries and interval values that were set at
session creation time. The PDU will be retransmitted according to the following rules:

 Case 1: retries > 0 and interval > 0
The PDU will be retransmitted retries times with a wait of interval in tenths-of-seconds between the
retransmissions. There is an exponential increase on the interval imposed by the library.

 Case 2: retries = 0 and interval > 0
The PDU will not be retransmitted. The calling process will block until the response is received or for
interval tenths-of-seconds.

 Case 3: retries = 0 and interval = 0
The PDU will not be retransmitted. The calling process will block for
DEFAULT_BLOCKING_TIMEOUT seconds or until a response is received.

If no response is received before the maximum number of retries is reached, a NULL pointer is returned to
the calling process and the global variable OVsnmpErrno will be set to SNMP_ERR_NO_RESPONSE.

While the calling process is blocked it is possible for a response or trap to arrive for a session that is
operating in non-blocking manner. When this happens, the inbound PDU will be delivered to the callback
function registered in the non-blocking session.

If the OVsnmpBlockingSend call succeeds, the PDU specified in the pdu parameter is freed by a call to
OVsnmpFreePdu. If the calling process needs to override this behavior, the FREE_PDU bit can be turned
off in the session_flags variable in the session parameter. If this is done, the calling process must free the
PDU with a call to OVsnmpFreePdu. If this is not done, the calling process will unnecessarily consume
memory. The FREE_PDU bit is on by default.

Note: OVsnmpBlockingSend should not be used with sessions that were created using the
OVsnmpXOpen call. OVsnmpXSend should be used instead.

 Chapter 2. Reference Pages 437

 OVsnmpBlockingSend(3)

 Parameters
 session

Specifies a pointer to a valid OVsnmpSession structure returned by a call to OVsnmpOpen. The
OVsnmpSession structure is used to determine the destination, retry information and community name
to be used in transmitting the SNMP PDU specified in the pdu parameter.

 pdu
Specifies a pointer to a valid OVsnmpPdu structure returned by a call to OVsnmpCreatePdu. The pdu
structure contains the PDU type and a pointer to the OVsnmpVarBind list.

 Return Values

If successful, OVsnmpBlockingSend returns a pointer to an OVsnmpPdu structure that contains the
response to the outbound PDU. If unsuccessful, it returns NULL.

 Error Codes

OVsnmpBlocking returns the error code value OVsnmpErrno. If one of the SNMP_SYSERR_* values is
found, the global variable errno contains the error code returned by the failed system call.

The following list describes the possible errors:

[SNMP_ERR_NO_RESPONSE] No response received before a time-out occurred.

[SNMP_ERR_BAD_SESSION] The session parameter does not point to an OVsnmpSession data struc-
ture that was created by OVsnmpOpen.

[SNMP_ERR_PDU_BUILD] An internal error occurred while ASN.1 was encoding the PDU. There
might be a type that is not valid in one of the variables. This can happen
if the OVsnmpVarBind data structure is modified after a call to
OVsnmpAddTypedVarBind.

[SNMP_ERR_BAD_PDU_TYPE]
The OVsnmpPdu data structure was not a get request, get next request,
or a set request. This can happen if the OVsnmpPdu data structure is
modified after a call to OVsnmpCreatePdu.

[SNMP_SYSERR_SENDTO] The sendto system call failed. The external variable errno contains the
sendto specific error.

[SNMP_SYSERR_SELECT] The select system call failed. The external variable errno contains the
select specific error.

[SNMP_SYSERR_MALLOC] The malloc system call failed. The external variable errno contains the
malloc specific error.

Note: If OVsnmpBlockingSend is successful or an SNMP_ERR_NO_RESPONSE error occurs, and the
FREE_PDU bit in the session_flags is turned on (default case), the request pdu parameter is freed by
OVsnmpBlockingSend. The memory associated with the pdu parameter should not be referenced again.
However, if OVsnmpBlockingSend returns another error, it does not free the memory for the pdu param-
eter. If the FREE_PDU bit in the session_flags has been explicitly turned off by the calling process, the
memory associated with the pdu parameter is never freed by OVsnmpBlockingSend. The calling process
must free the pdu with a call to OVsnmpFreePdu. If this is not done, the calling process will consume
unneccessary amounts of memory.

438 Programmer's Reference

 OVsnmpBlockingSend(3)

 Libraries

When compiling a program that uses OVsnmpBlockingSend, you need to link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� See “OVsnmpIntro(5)” on page 501.

� See “OVsnmpOpen(3)” on page 507.

� See “OVsnmpClose(3)” on page 440.

� See “OVsnmpCreatePdu(3)” on page 490.

� See “OVsnmpAddVarBind(3)” on page 435.

� See “OVsnmpSend(3)” on page 514.

 Chapter 2. Reference Pages 439

 OVsnmpClose(3)

 OVsnmpClose(3)

 Purpose

Ends an SNMP session and frees resources allocated by the session

 Related Functions
 OVsnmpXClose

 Syntax

#include <OV/OVsnmp.h>

int OVsnmpClose(OVsnmpSession \session)
int OVsnmpXClose(OVsnmpSession \session)

 Description

The OVsnmpClose function frees all memory used by the specified session, including pending requests,
and closes the socket descriptor associated with this session. The specified session should not be refer-
enced again.

The two functions OVsnmpClose and OVsnmpXClose perform the same basic functions; they both free all
resources owned by session. However, OVsnmpClose must be used when session was created by a call
to OVsnmpOpen. OVsnmpXClose must be used when session was created by OVsnmpXOpen. The
OVsnmpXClose function is intended to be used with X11.

 Parameters
 session

Specifies a pointer to an OVsnmpSession structure that was allocated by a call to OVsnmpOpen or
OVsnmpXOpen,

 Return Values

If successful, OVsnmpClose and OVsmnpXClose return 0 (zero). If unsuccessful, they return −1 (negative
one).

 Error Codes

OVsnmpOpenClose and OVsnmpXClose return the error code value OVsnmpErrno. If one of the
SNMP_SYSERR_* values is found, the global variable errno contains the error code returned by the failed
system call.

The following list describes the possible errors:

[SNMP_ERR_BAD_SESSION]
Session was not created by OVsnmpOpen or OVsnmpXOpen.

440 Programmer's Reference

 OVsnmpClose(3)

 Libraries

When compiling a program that uses OVsnmpClose or OVsnmpXClose, you need to link to the following
libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� See “OVsnmpIntro(5)” on page 501.

� See “OVsnmpOpen(3)” on page 507.

� See “OVsnmpSend(3)” on page 514.

 Chapter 2. Reference Pages 441

 OVsnmpConfAllocEntry(3)

 OVsnmpConfAllocEntry(3)

 Purpose

Allocates dynamic storage for an OVsnmpConfEntry structure.

 Syntax
#include <OV/OVsnmpConf.h>

OVsnmpConfEntry \ OVsnmpConfAllocEntry(void);

 Description

Allocates dynamic storage for an OVsnmpConfEntry structure.

 Parameters

None.

 Return Values

When successful, this function returns a non-null pointer to an OVsnmpConfEntry structure. If a failure
occurs, a null pointer is returned, and OVsnmpErrno is set.

The memory pointed to by the return pointer is dynamically allocated and should be freed by the caller.

 Error Codes
[SNMP_SYSERR_MALLOC] Storage cannot be allocated.

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� “OVsnmpConfFreeEntry(3)” on page 457

442 Programmer's Reference

 OVsnmpConfAllocWcList(3)

 OVsnmpConfAllocWcList(3)

 Purpose

Allocates dynamic storage for an OVsnmpConfWcList structure.

 Syntax
#include <OV/OVsnmpConf.h>

OVsnmpConfWcList \ OVsnmpConfAllocWcList (void);

 Description

This function allocates dynamic storage for an OVsnmpConfWcList structure. The memory which is
returned is dynamically allocated and should be freed by the caller.

 Parameters

None.

 Return Values

When successful, this function returns a non-null pointer to an OVsnmpWcList structure. If a failure
occurs, a null pointer is returned, and OVsnmpErrno is set.

 Error Codes
[SNMP_SYSERR_MALLOC] Storage cannot be allocated.

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� “OVsnmpConfFreeWcList(3)” on page 459

 Chapter 2. Reference Pages 443

 OVsnmpConfClose(3)

 OVsnmpConfClose(3)

 Purpose

Closes an SNMP Configuration Database.

 Syntax
#include <OV/OVsnmpConf.h>

void OVsnmpConfClose (void);

 Description

This function closes an SNMP Configuration Database. It frees all internal storage associated with an
open database.

 Parameters

None.

 Return Values

None.

 Error Codes

None.

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� “OVsnmpConfOpen(3)” on page 460

444 Programmer's Reference

 OVsnmpConfCopyEntry(3)

 OVsnmpConfCopyEntry(3)

 Purpose

Allocates a new OVsnmpConfEntry and copies the contents of the old OVsnmpConfEntry to the new one.

 Syntax
#include <OV/OVsnmpConf.h>

OVsnmpConfEntry \ OVsnmpConfCopyEntry (OVsnmpConfEntry \ce);

 Description

This function allocates dynamic storage for a new OVsnmpConfEntry structure. The contents of the
OVsnmpConfEntry structure pointed to by the parameter ce are copied to the new OVsnmpConfEntry. All
character strings are duplicated in the new structure.

The memory pointed to by the return pointer is dynamically allocated and should be freed by the caller.
The OVsnmpConfFreeEntry(3) function should be used.

 Parameters
ce A pointer to the OVsnmpConfEntry structure whose contents are to be copied.

 Return Values

If successful, a non-null pointer to an OVsnmpConfEntry structure is returned. Otherwise, a null pointer is
returned.

 Error Codes
[SNMP_SYSERR_MALLOC] Storage cannot be allocated.

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� “OVsnmpConfFreeEntry(3)” on page 457

 � ovsnmp.conf(4)

 Chapter 2. Reference Pages 445

 OVsnmpConfCreateEntry(3)

 OVsnmpConfCreateEntry(3)

 Purpose

Creates a configuration record in the SNMP Configuration Database.

 Syntax
#include <OV/OVsnmpConf.h>

int OVsnmpConfCreateEntry (OVsnmpConfEntry \ce);

 Description

This function creates a configuration record in the SNMP Configuration Database. The configuration data
is obtained from the input OVsnmpConfEntry structure. It uses the name field of this structure to deter-
mine if a conflicting record already exists. If there is a conflict, no record is created, and an error is
returned. It also checks that the fields of the OVsnmpConfEntry structure contain consistent and valid
data.

Note that if the database is modified all cached configuration information is deleted.

 Parameters
ce A pointer to an OVsnmpConfEntry structure, whose contents are to be stored in the SNMP Configura-

tion Database.

For more information on the OVsnmpConfEntry data structure, see “OVsnmpIntro(5)” on page 501 or
NetView for AIX Programmer's Guide.

 Return Values

This function returns 0 if successful, and -1 if failure.

 Error Codes
[SNMP_SYSERR_MALLOC] Internal memory allocation failed.

[SNMP_ERR_DB_NOT_OPEN] The database has not been opened.

[SNMP_ERR_DB_WRITE_ERROR] The database cannot be written.

[SNMP_ERR_DB_OVERWRITE_ERROR]
A conflicting record already exists in the SNMP Configuration
Database.

[SNMP_ERR_DB_CORRUPTED_CACHE]
Cached information cannot be deleted after the SNMP Configura-
tion Database has been updated.

[SNMP_ERR_INVALIDHOST] Either the "name" field or the "proxy" field in the
OVsnmpConfEntry structure cannot be resolved to a valid IP
address.

446 Programmer's Reference

 OVsnmpConfCreateEntry(3)

[SNMP_ERR_DB_INVALID_REMOTE_PORT]
An invalid remote port is specified in the OVsnmpConfEntry struc-
ture.

[SNMP_ERR_DB_INVALID_POLL_INTERVAL]
An invalid poll interval is specified in the OVsnmpConfEntry struc-
ture.

[SNMP_ERR_DB_INVALID_TIMEOUT]
An invalid timeout period is specified in the OVsnmpConfEntry
structure.

[SNMP_ERR_DB_INVALID_RETRY] An invalid number of retries is specified in the OVsnmpConfEntry
structure.

[SNMP_ERR_DB_COLONS_IN_STRING]
Any of the character strings in the OVsnmpConfEntry structure
contain a ":". This restriction is required for backward compatibility
with the Version 2 ovsnmp.conf file.

[SNMP_ERR_DB_COMMUNITY_TOO_LONG]
The community name or the setCommunity name in the
OVsnmpConfEntry structure exceed MAX_COMMUNITY_LEN
(255) characters.

[SNMP_ERR_DB_INVALID_NAME] The name field of the OVsnmpConfEntry structure contains char-
acters that may be construed as wildcard characters, or is null.

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� “OVsnmpConfStoreDefault(3)” on page 486
� “OVsnmpConfStoreEntry(3)” on page 488

 � ovsnmp.conf(4)

 Chapter 2. Reference Pages 447

 OVsnmpConfDbName(3)

 OVsnmpConfDbName(3)

 Purpose

Determines the name of the SNMP Configuration Database.

 Syntax
#include <OV/OVsnmpConf.h>

const char \ OVsnmpConfDbName(void)

 Description

This function returns a pointer to the name of the SNMP Configuration Database. If the database is cur-
rently open, the name of the open database is returned. Otherwise, the environment variable,
OVSNMP_CONF_FILE is read. If this variable is set, the return value points to a string which is the
concatenation of the pathname specified in OVSNMP_CONF_FILE together with the suffix "_db". If
OVSNMP_CONF_FILE is not set, the default database name, /usr/OV/conf/ovsnmp.conf_db, is returned.

 Parameters

None.

 Return Values

This routine returns a pointer to a character string containing the name of the SNMP Configuration Data-
base. This pointer points to static storage, and should NOT be freed.

 Error Codes

None.

 Dependencies

The environment variable OVSNMP_CONF_FILE is maintained for backward compatibility with Version 2.
The pathname of the database is obtained from this variable (when it is set) by appending the suffix "_db"
to the variable pathname.

448 Programmer's Reference

 OVsnmpConfDeleteCache(3)

 OVsnmpConfDeleteCache(3)

 Purpose

Removes all cached SNMP configuration data from an open database.

 Syntax
#include <OV/OVsnmpConf.h>

int OVsnmpConfDeleteCache(void);

 Description

This function removes all cached SNMP configuration data from the persistent cache. The cached data
will normally accumulate and persist across processes. The level and type of caching can be set by the
OVsnmpConfStoreCntl(3) function. See ovsnmp.conf(4) for more details.

 Parameters

None.

 Return Values

0 if successful, or the database is not open; -1 on failure.

 Error Codes
[SNMP_ERR_DB_CORRUPTED_CACHE]

The deletion cannot be done and the database is open.

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� “OVsnmpConfStoreCntl(3)” on page 484

 � ovsnmp.conf(4)

 Chapter 2. Reference Pages 449

 OVsnmpConfDeleteEntry(3)

 OVsnmpConfDeleteEntry(3)

 Purpose

Deletes a record from the SNMP Configuration Database.

 Syntax
#include <OV/OVsnmpConf.h>

int OVsnmpConfDeleteEntry (char \key);

 Description

This function deletes the configuration record for the target indicated by key from the SNMP Configuration
Database. First a deletion is attempted using the literal key argument to the function. Next, the key is
resolved to a fully qualified IP domain name, and the deletion is attempted with this new "key".

If the deletion was successful, the persistent cache of configuration data is removed. Also note that if no
record corresponds to the key, the delete operation returns successfully, and the cache is removed.

 Parameters
key

A pointer to a character string containing the name of the target whose configuration information is to
be deleted.

 Return Values

0 if successful, -1 if failure.

 Error Codes
[SNMP_ERR_DB_NOT_OPEN] The SNMP Configuration Database has not been opened.

[SNMP_ERR_DB_WRITE_ERROR] The caller is unable to write to the SNMP Configuration Database.

[SNMP_ERR_DB_CORRUPTED_CACHE]
The persistent cache of SNMP Configuration Data cannot be
removed.

 Dependencies

OVsnmpConfOpen(3) must be called prior to this call.

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

450 Programmer's Reference

 OVsnmpConfDeleteEntry(3)

 Related Information
� “OVsnmpConfOpen(3)” on page 460

 � ovsnmp.conf(4)

 Chapter 2. Reference Pages 451

 OVsnmpConfExportFile(3)

 OVsnmpConfExportFile(3)

 Purpose

Dumps the contents of the SNMP Configuration Database to a file.

 Syntax
#include <OV/OVsnmpConf.h>

int OVsnmpConfExportFile (const char \filename,
exportFlags_t flags);

 Description

This function dumps the contents of the SNMP Configuration Database to a file. Unless the
SNMP_CONF_EXPORT_VERBOSE flag is specified, the file is in a form compatible with the Version 2
ovsnmp.conf(4) file and can be used by applications bound with the Version 2 SNMP library.

 Parameters
filename

A pointer to a character string indicating the file into which the contents of the SNMP Configuration
Database are to be dumped.

flags
A set of options which may be OR-ed together in order to limit the amount and kind of configuration
data that is to be dumped.

The flags options are:

SNMP_CONF_EXPORT_ALL Dump all configuration records.

SNMP_CONF_EXPORT_WCLIST Dump only wildcarded configurations records.

SNMP_CONF_EXPORT_32ONLY Dump only configurations records that are compatible with Version
2 configuration parameters.

SNMP_CONF_EXPORT_VERBOSE Dump configuration records in a more readable format. This
format CANNOT be used for subsequent input to the
OVsnmpConfImportFile(3) function nor can it be used by applica-
tions bound with the Version 2 SNMP library.

SNMP_CONF_EXPORT_SHADOW Dump configuration records according to the compatibility mode
specified in the database control record. See
“OVsnmpConfReadCntl(3)” on page 470 for details about this
control record.

 Return Values

0 if successul; -1 if failure.

452 Programmer's Reference

 OVsnmpConfExportFile(3)

 Error Codes
[SNMP_ERR_DB_NOT_OPEN] The SNMP Configuration Database is not open.

[SNMP_ERR_DB_READ_ERROR] The SNMP Configuration Database cannot be read.

[SNMP_ERR_DB_NO_WRITE_PERM] The file to which the SNMP Configuration Database will be
dumped is unwriteable.

 Warning

If the resulting file is to be used by applications which are bound with the Version 2 SNMP library, or the
file is to be used as subsequent input to the OVsnmpConfImportFile(3) function, do NOT use the
SNMP_CONF_EXPORT_VERBOSE flag.

 Dependencies

OVsnmpConfOpen(3) must be called before using this function.

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� “OVsnmpConfReadCntl(3)” on page 470
� “OVsnmpConfImportFile(3)” on page 463

 � ovsnmp.conf(4)

 Chapter 2. Reference Pages 453

 OVsnmpConfFileName(3)

 OVsnmpConfFileName(3)

 Purpose

Determines the pathname of the Version 2 backward-compatibility SNMP configuration file associated with
the SNMP Configuration Database.

 Syntax
#include <OV/OVsnmpConf.h>

const char \ OVsnmpConfFileName (void);

 Description

This function is used to determine the pathname of the Version 2 backward-compatibility SNMP configura-
tion file. This file is associated with the SNMP Configuration Database. When database shadowing is
enabled, the contents of the database are stored in this file in a format that is readable by applications
which are bound with the Version 2 SNMP Library.

The default pathname is /usr/OV/conf/ovsnmp.conf. This can be overridden by the environment variable
OVSNMP_CONF_FILE.

A discussion of database shadowing can be found in ovsnmp.conf(4).

 Parameters

none

 Return Values

This routine returns a pointer to a static character string which contains the pathname of the Version 2
backward-compatibility SNMP configuration file. This storage should NOT be freed by the caller.

 Error Codes

None.

 Dependencies

The environment variable OVSNMP_CONF_FILE is maintained for backward compatibility with Version 2.
The pathname of the database is obtained from this variable (when it is set) by appending the suffix "_db"
to the variable pathname.

454 Programmer's Reference

 OVsnmpConfFileName(3)

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� “OVsnmpConfReadCntl(3)” on page 470
� “OVsnmpConfStoreCntl(3)” on page 484
� “OVsnmpConfDbName(3)” on page 448

 � ovsnmp.conf(4)

 Chapter 2. Reference Pages 455

 OVsnmpConfFreeDest(3)

 OVsnmpConfFreeDest(3)

 Purpose

Frees an OVsnmpConfDest structure and its contents.

 Syntax
#include <OV/OVsnmpConf.h>

void OVsnmpConfFreeDest (OVsnmpConfDest \dd);

 Description

This function frees an OVsnmpConfDest structure (and its contents) that had been allocated by the SNMP
library. Only the contents of non-null structure pointers is freed.

 Parameters
dd A pointer to the OVsnmpConfDest structure that is to be freed. See “OVsnmpIntro(5)” on page 501

for the definition of this structure.

 Return Values

None.

 Error Codes

None.

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� “OVsnmpConfResolveDest(3)” on page 482

456 Programmer's Reference

 OVsnmpConfFreeEntry(3)

 OVsnmpConfFreeEntry(3)

 Purpose

Frees an OVsnmpConfEntry structure and its contents.

 Syntax
#include <OV/OVsnmpConf.h>

void OVsnmpConfFreeEntry (OVsnmpConfEntry \ce);

 Description

This function frees an OVsnmpConfEntry structure (and its contents) which have been allocated by one of
the following routines:

 � OVsnmpConfReadEntry(3),
 � OVsnmpConfReadNextEntry(3),
 � OVsnmpConfCopyEntry(3),
 � OVsnmpConfParseEntry(3),
 � OVsnmpConfAllocEntry(3),
 � OVsnmpConfReadDefault(3)

 Parameters
ce A pointer to the OVsnmpConfEnty structure that is to be freed. See “OVsnmpIntro(5)” on page 501

for the definition of this structure.

 Return Values

None.

 Error Codes

None.

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Chapter 2. Reference Pages 457

 OVsnmpConfFreeEntry(3)

 Related Information
� “OVsnmpConfReadEntry(3)” on page 474
� “OVsnmpConfReadNextEntry(3)” on page 478
� “OVsnmpConfCopyEntry(3)” on page 445
� “OVsnmpConfParseEntry(3)” on page 465
� “OVsnmpConfAllocEntry(3)” on page 442
� “OVsnmpConfReadDefault(3)” on page 472

 � ovsnmp.conf(4)

458 Programmer's Reference

 OVsnmpConfFreeWcList(3)

 OVsnmpConfFreeWcList(3)

 Purpose

Frees an OVsnmpConfWcList structure and its contents.

 Syntax
#include <OV/OVsnmpConf.h>

void OVsnmpConfFreeWcList (OVsnmpConfWcList \wc);

 Description

This function frees an OVsnmpConfWcList structure (and its contents) which was allocated by
OVsnmpConfReadWcList(3) or OVsnmpConfAllocWcList(3).

This routine frees only the contents of non-null structure pointers.

 Parameters
wc A pointer to the OVsnmpConfWcList structure that is to be freed. See “OVsnmpIntro(5)” on page 501

for the definition of this structure.

 Return Values

None.

 Error Codes

None.

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� “OVsnmpConfReadWcList(3)” on page 480
� “OVsnmpConfAllocWcList(3)” on page 443

 � ovsnmp.conf(4)

 Chapter 2. Reference Pages 459

 OVsnmpConfOpen(3)

 OVsnmpConfOpen(3)

 Purpose

Opens a SNMP Configuration database for subsequent use.

 Syntax
#include <OV/OVsnmpConf.h>

int OVsnmpConfOpen (openFlags_t flags);

 Description

This function opens a SNMP Configuration database. All subsequent calls to functions which access the
database require that the database be opened.

The default database which will be opened is /usr/OV/conf/ovsnmp.conf_db. For backward compatibility
with Version 2, this location can be changed using the environment variable OVSNMP_CONF_FILE. The
pathname of the database is derived from this variable by appending the suffix "_db" to the variable, that
is, ${OVSNMP_CONF_FILE}_db will be the name of the database that is opened.

OVSNMP_CONF_FILE is also the name of the Version 2 compatible shadow file when shadowing is
enabled.

 Parameters
flags

A set of options which may be OR-ed together as appropriate to control the behavior of the open
function.

The following flag values are available:

SNMP_CONF_OPEN_RDONLY Open the database for reading only.

SNMP_CONF_OPEN_RDWR Open the database for reading and writing.

SNMP_CONF_OPEN_TRUNC Open the database and delete all stored configuration data.

SNMP_CONF_OPEN_CREATE Create the database if necessary.

SNMP_CONF_OPEN_NO_3_2 Do not maintain the Version 2 compatible file if the database is
modified. This flag overrides whatever is specified in the data-
base control record concerning Version 2 compatibility. See
“OVsnmpConfReadCntl(3)” on page 470 for details.

 Return Values

0 if successul; -1 if failure.

 Error Codes
[SNMP_SYSERR_MALLOC] internal memory allocation failure.

[SNMP_ERR_DB_NO_WRITE_PERM] The database access permissions do not allow opening the data-
base for writing.

460 Programmer's Reference

 OVsnmpConfOpen(3)

[SNMP_ERR_DB_CANNOT_CREATE] The directory permissions for the directory containing the data-
base do not permit the creation of the database.

[SNMP_ERR_DB_DOES_NOT_EXIST]
The database cannot be opened because it does not exist.

[SNMP_SYSERR] A system error occurred.

[SNMP_ERR_DB_READ_ERROR] The database cannot be read, either due to lack of permission or
corruption.

When an attempt to create a temporary database fails, the following additional error codes may be
returned:

[SNMP_ERR_DB_NO_READ_PERM] No permission to read the Version 2 compatible configuration file
from which the database will be created.

[SNMP_ERR_DB_INVALID_TIMEOUT]
The Version 2 compatible file contains an entry with an invalid
timeout value.

[SNMP_ERR_DB_INVALID_RETRY] The Version 2 compatible file contains an entry with an invalid
retry value.

[SNMP_ERR_DB_INVALID_POLL_INTERVAL]
The Version 2 compatible file contains an entry with an invalid poll
interval value.

[SNMP_ERR_DB_INVALID_REMOTE_PORT]
The Version 2 compatible file contains an entry with an invalid
remote port value.

[SNMP_ERR_DB_INVALID_NAME] The Version 2 compatible file contains an entry with an invalid
target name.

[SNMP_ERR_DB_COMMUNITY_TOO_LONG]
The Version 2 compatible file contains an entry with a community
string with greater than MAX_COMMUNITY_LEN (255) charac-
ters.

[SNMP_ERR_DB_INVALID_WILDCARD]
The Version 2 compatible file contains an entry with an invalid
wildcard specification.

[SNMP_ERR_DB_OVERWRITE_ERROR]
The Version 2 compatible file contains conflicting entries.

[SNMP_ERR_DB_WRITE_ERROR] The database cannot be written.

[SNMP_ERR_INVALIDHOST] The Version 2 compatible file contains an entry with an invalid
destination, that is, the destination cannot be resolved to an IP
address.

 Warning

Caution should be used when storing files in the location pointed to by OVSNMP_CONF_FILE, or in the
default location of the Version 2 compatible shadow file, /usr/OV/conf/ovsnmp.conf. When shadowing is
enabled, these files can be modified.

 Chapter 2. Reference Pages 461

 OVsnmpConfOpen(3)

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� “OVsnmpConfReadCntl(3)” on page 470
� “OVsnmpConfClose(3)” on page 444
� “OVsnmpConfImportFile(3)” on page 463

 � ovsnmp.conf(4)

462 Programmer's Reference

 OVsnmpConfImportFile(3)

 OVsnmpConfImportFile(3)

 Purpose

Replaces the contents of the SNMP Configuration Database with configuration information obtained from a
Version 2 compatible configuration file.

 Syntax
#include <OV/OVsnmpConf.h>

int OVsnmpConfImportFile(const char \filename,
importFlags_t flag);

 Description

This function replaces the contents of the SNMP Configuration Database with configuration information
obtained from a Version 2 compatibile configuration file. The form of this file is described in
ovsnmp.conf(4) The wildcard features and semantics provided by this file in Version 2 are retained.

 Parameters
filename

A pointer to a character string which contains the pathname of the file from which the database infor-
mation will be imported.

flag
One of a set of options which may be used to influence the behavior or the import function.

The flags options are:

SNMP_CONF_IMPORT_ALL Import all configuration entries from the file into the database.

SNMP_CONF_IMPORT_WCLIST Import only wildcard configuration entries from the file into the
database.

SNMP_CONF_IMPORT_CHECK Only check that the imported file contains valid entries.

 Return Values

0 if success; -1 if failure.

 Error Codes
[SNMP_ERR_DB_NOT_OPEN] The SNMP Configuration Database has not previously been

opened.

[SNMP_ERR_DB_NO_READ_PERM] The caller does not have read permission for the import file.

[SNMP_SYSERR_MALLOC] Internal memory allocation failed.

[SNMP_ERR_DB_INVALID_TIMEOUT]
A configuration entry in the import file contains an invalid timeout
value.

[SNMP_ERR_DB_INVALID_RETRY] A configuration entry in the import file contains an invalid retry
value.

 Chapter 2. Reference Pages 463

 OVsnmpConfImportFile(3)

[SNMP_ERR_DB_INVALID_POLL_INTERVAL]
A configuration entry in the import file contains an invalid poll
interval.

[SNMP_ERR_DB_INVALID_REMOTE_PORT]
A configuration entry in the import file contains an invalid remote
port value.

[SNMP_ERR_DB_INVALID_NAME] A configuration entry in the import file contains an invalid target
name.

[SNMP_ERR_DB_COMMUNITY_TOO_LONG]
A configuration entry in the import file contains a community string
with greater than MAX_COMMUNITY_LEN (255) characters.

[SNMP_ERR_DB_INVALID_WILDCARD]
A configuration entry in the import file contains an invalid wildcard
specification.

[SNMP_ERR_DB_OVERWRITE_ERROR]
The import file contains conflicting configuration entries.

[SNMP_ERR_DB_WRITE_ERROR] The SNMP Configuration Database cannot be written.

[SNMP_ERR_INVALIDHOST] A configuration entry in the import file contains an invalid destina-
tion.

[SNMP_ERR_DB_CORRUPTED_CACHE]
The cached SNMP Configuration Database data cannot be
removed.

[SNMP_ERR_DB_READ_ERROR] The cached SNMP Configuration Database cannot be read.

 Warning

This function causes the cache of SNMP configuration data to be deleted.

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� “OVsnmpConfExportFile(3)” on page 452
� “OVsnmpConfParseEntry(3)” on page 465

 � ovsnmp.conf(4)

464 Programmer's Reference

 OVsnmpConfParseEntry(3)

 OVsnmpConfParseEntry(3)

 Purpose

Parses a line in Version 2 ovsnmp.conf file form and produces an OVsnmpConfEntry structure.

 Syntax
#include <OV/OVsnmpConf.h>

OVsnmpConfEntry \ OVsnmpConfParseEntry (char \line);

 Description

This function parses a line in Version 2 ovsnmp.conf file form and produces an OVsnmpConfEntry struc-
ture. See ovsnmp.conf(4) for details on the format of these lines. This format has been extended to
include two additional colon-separated fields, the remote port field and the setCommunity name, respec-
tively.

The returned pointer points to dynamically allocated storage. This storage should be eventually freed
using OVsnmpConfFreeEntry(3).

 Parameters
line

A pointer to a character string which contains a Version 2 ovsnmp.conf file, colon-separated configura-
tion string. This string may contain two appended fields, the remote port field and the setCommunity
name, respectively.

 Return Values

This routine returns a pointer to an OVsnmpConfEntry structure with all fields initialized according to the
values supplied in the input line. See “OVsnmpIntro(5)” on page 501 for the definition of this structure.

 Error Codes
[SNMP_SYSERR_MALLOC] internal memory allocation failure.

[SNMP_ERR_DB_INVALID_TIMEOUT]
line contains an entry with an invalid timeout value.

[SNMP_ERR_DB_INVALID_RETRY] line contains an entry with an invalid retry value.

[SNMP_ERR_DB_INVALID_POLL_INTERVAL]
line contains an entry with an invalid poll interval value.

[SNMP_ERR_DB_INVALID_REMOTE_PORT]
line contains an entry with an invalid remote port value.

[SNMP_ERR_DB_INVALID_NAME] line contains an entry with an invalid target name.

[SNMP_ERR_DB_COMMUNITY_TOO_LONG]
line contains an entry with a community string with greater than
MAX_COMMUNITY_LEN (255) characters.

 Chapter 2. Reference Pages 465

 OVsnmpConfParseEntry(3)

[SNMP_ERR_DB_INVALID_WILDCARD]
line contains an entry with an invalid wildcard specification.

[SNMP_ERR_INVALIDHOST] line contains an entry with an invalid destination, that is, the the
destination cannot be resolved to an IP address.

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� “OVsnmpConfImportFile(3)” on page 463

 � ovsnmp.conf(4)

466 Programmer's Reference

 OVsnmpConfPrintCntl(3)

 OVsnmpConfPrintCntl(3)

 Purpose

Prints the database control information to stdout.

 Syntax
#include <OV/OVsnmpConf.h>

void OVsnmpConfPrintCntl (OVsnmpConfCntl \cc);

 Description

This function prints the database control information to stdout. This information can be obtained using the
function OVsnmpConfReadCntl(3).

 Parameters
cc A pointer to an OVsnmpConfCntl structure that contains the database control information. See

“OVsnmpIntro(5)” on page 501 for the definition of this structure.

 Return Values

None.

 Error Codes

None.

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� “OVsnmpConfReadCntl(3)” on page 470

 � ovsnmp.conf(4)

 Chapter 2. Reference Pages 467

 OVsnmpConfPrintDest(3)

 OVsnmpConfPrintDest(3)

 Purpose

Prints the resolved SNMP configuration parameters for the target destination to stdout.

 Syntax
#include <OV/OVsnmpConf.h>

void OVsnmpConfPrintDest (OVsnmpConfDest \dd);

 Description

This function prints the resolved SNMP configuration parameters for the target destination to stdout. This
information can be obtained using the function OVsnmpConfResolveDest(3).

 Parameters
dd A pointer to an OVsnmpConfDest structure that contains the resolved SNMP configuration parameters

for the target destination. See “OVsnmpIntro(5)” on page 501 for the definition of this structure.

 Return Values

None.

 Error Codes

None.

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� “OVsnmpConfResolveDest(3)” on page 482

 � ovsnmp.conf(4)

468 Programmer's Reference

 OVsnmpConfPrintEntry(3)

 OVsnmpConfPrintEntry(3)

 Purpose

Prints the SNMP configuration parameters for a target, wildcard, or global default to stdout.

 Syntax
#include <OV/OVsnmpConf.h>

void OVsnmpConfPrintEntry (OVsnmpConfEntry \ce);

 Description

This function prints the SNMP configuration parameters for a particular target, a wildcard, or the global
default to stdout. This information can be obtained using the functions OVsnmpConfReadEntry(3),
OVsnmpConfReadWcList(3), or OVsnmpConfReadDefault(3) as appropriate.

 Parameters
ce A pointer to an OVsnmpConfEntry structure that contains the target wildcard, or global default SNMP

configuration parameters. See “OVsnmpIntro(5)” on page 501 for the definition of this structure.

 Return Values

None.

 Error Codes

None.

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� “OVsnmpConfReadEntry(3)” on page 474
� “OVsnmpConfReadWcList(3)” on page 480
� “OVsnmpConfReadDefault(3)” on page 472

 � ovsnmp.conf(4)

 Chapter 2. Reference Pages 469

 OVsnmpConfReadCntl(3)

 OVsnmpConfReadCntl(3)

 Purpose

Reads the control parameters of the SNMP Configuration Database.

 Syntax
#include <OV/OVsnmpConf.h>

OVsnmpConfCntl \ OVsnmpConfReadCntl (void);

 Description

This function returns the control parameters of the SNMP Configuration Database. These configurable
control parameters are described in ovsnmp.conf(4) and xnmsnmpconf(1). The memory to which the
return pointer refers is dynamically allocated. It should be freed by the caller.

 Parameters

None.

 Return Values

This routine returns pointer to a dynamically allocated OVsnmpConfCntl structure which contains the
SNMP Configuration Database control parameters. See “OVsnmpIntro(5)” on page 501 for the definition
of this structure.

A null pointer is returned if a failure occurs.

 Error Codes
[SNMP_SYSERR_MALLOC] Storage cannot be allocated.

[SNMP_ERR_DB_NOT_OPEN] The SNMP Configuration Database is not open.

[SNMP_ERR_DB_READ_ERROR] The SNMP Configuration Database cannot be read.

 Dependencies

The database must be opened with OVsnmpConfOpen(3) before this function is used.

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

470 Programmer's Reference

 OVsnmpConfReadCntl(3)

 Related Information
� “OVsnmpConfStoreCntl(3)” on page 484
� “OVsnmpConfPrintCntl(3)” on page 467

 � ovsnmp.conf(4)

 Chapter 2. Reference Pages 471

 OVsnmpConfReadDefault(3)

 OVsnmpConfReadDefault(3)

 Purpose

Reads the global default parameters in the SNMP Configuration Database.

 Syntax
#include <OV/OVsnmpConf.h>

OVsnmpConfEntry \ OVsnmpConfReadDefault (void);

 Description

This function returns the global default parameters in the SNMP Configuration Database. If no global
default has been explicitly stored in the database, the hard-coded system default parameters are returned.
These parameters are described in ovsnmp.conf(4).

 Parameters

None.

 Return Values

This routine returns a pointer to a dynamically allocated OVsnmpConfEntry structure which contains the
SNMP Configuration Database default parameters. See “OVsnmpIntro(5)” on page 501 for the definition
of this structure.

A null pointer is returned if a failure occurs.

 Error Codes
[SNMP_SYSERR_MALLOC] Memory cannot be allocated.

[SNMP_ERR_DB_NOT_OPEN] The SNMP Configuration Database is not open.

[SNMP_ERR_DB_READ_ERROR] The SNMP Configuration Database cannot be read. The memory
to which the return pointer refers is dynamically allocated. It
should be freed by the caller using the OVsnmpFreeEntry(3) func-
tion.

 Dependencies

The database must be opened with OVsnmpConfOpen(3) before this function is used.

472 Programmer's Reference

 OVsnmpConfReadDefault(3)

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� “OVsnmpConfStoreDefault(3)” on page 486
� “OVsnmpConfFreeEntry(3)” on page 457

 � ovsnmp.conf(4)

 Chapter 2. Reference Pages 473

 OVsnmpConfReadEntry(3)

 OVsnmpConfReadEntry(3)

 Purpose

Reads the parameters for the target node from the SNMP Configuration Database.

 Syntax
#include <OV/OVsnmpConf.h>

OVsnmpConfEntry \ OVsnmpConfReadEntry (char \ key);

 Description

This function returns SNMP Configuration parameters for the target node specified by the key argument.
It does NOT resolve defaulted parameters. These parameters are described in ovsnmp.conf(4).

The memory to which the return pointer refers is dynamically allocated. It should be freed by the caller
using the OVsnmpFreeEntry(3) function.

 Parameters
key

A pointer to a character string that contains the name by which the target node parameters are looked
up. If the configuration parameters were stored with an IP address string target name, they must be
looked up using this string. If they were stored using a domain name, they may be accessed by the
fully qualified domain name, or a suitable alias. Proxied nodes must be accessed by the target name
that was used when the parameters were stored in the database.

 Return Values

This routine returns a pointer to a dynamically allocated OVsnmpConfEntry structure which contains the
SNMP Configuration Database parameters. See “OVsnmpIntro(5)” on page 501 for the definition of this
structure. A null pointer is returned if there is no entry that corresponds to key, or if a failure occurs.

 Error Codes
[SNMP_ERR_NOERROR] There is no entry that corresponds to the key.

[SNMP_SYSERR_MALLOC] Memory cannot be allocated.

[SNMP_ERR_DB_NOT_OPEN] The SNMP Configuration Database is not open.

[SNMP_ERR_DB_READ_ERROR] The SNMP Configuration Database cannot be read.

 Dependencies

The database must be opened with OVsnmpConfOpen(3) before this function is used.

474 Programmer's Reference

 OVsnmpConfReadEntry(3)

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� “OVsnmpConfStoreEntry(3)” on page 488
� “OVsnmpConfFreeEntry(3)” on page 457

 � ovsnmp.conf(4)

 Chapter 2. Reference Pages 475

 OVsnmpConfReadNextDest(3)

 OVsnmpConfReadNextDest(3)

 Purpose

Reads the next configuration entry from the SNMP Configuration Database cache.

 Syntax
#include <OV/OVsnmpConf.h>

OVsnmpConfDest \ OVsnmpConfReadNextDest (int flag);

 Description

This function returns the next SNMP configuration entry from the SNMP Configuration Database cache.
The first time the function is called, it will return the first entry in the database cache, regardless of the
value of the flag argument.

The parameters in the returned entry are fully resolved, that is, the wildcard entries, global default, and
hard-coded system defaults have been applied to defaulted parameters. These parameters are described
in ovsnmp.conf(4).

The memory to which the return pointer refers is dynamically allocated. It should be freed by the caller
using the OVsnmpFreeDest(3) function.

 Parameters
flag

This parameter can be either of two values:

� SNMP_CONF_READ_FIRST, which resets the "next pointer" to the first entry and reads this entry.

� SNMP_CONF_READ_NEXT, which reads the next extry from the database.

 Return Values

This routine returns a pointer to a dynamically allocated OVsnmpConfDest structure which contains the
SNMP Configuration Database parameters. See “OVsnmpIntro(5)” on page 501 for the definition of this
structure.

A null pointer is returned if a failure occurs, or if there are no more entries to be read.

 Error Codes
[SNMP_ERR_NOERROR] There are no more entries to be read.

[SNMP_SYSERR_MALLOC] Memory cannot be allocated.

[SNMP_ERR_DB_NOT_OPEN] The SNMP Configuration Database is not open.

[SNMP_ERR_DB_READ_ERROR] The SNMP Configuration Database cannot be read.

 Dependencies

The database must be opened with OVsnmpConfOpen(3) before this function is used.

476 Programmer's Reference

 OVsnmpConfReadNextDest(3)

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� “OVsnmpConfResolveDest(3)” on page 482
� “OVsnmpConfFreeDest(3)” on page 456

 � ovsnmp.conf(4)

 Chapter 2. Reference Pages 477

 OVsnmpConfReadNextEntry(3)

 OVsnmpConfReadNextEntry(3)

 Purpose

Reads the next configuration entry from the SNMP Configuration Database.

 Syntax
#include <OV/OVsnmpConf.h>

OVsnmpConfEntry \ OVsnmpConfReadNextEntry (int flag);

 Description

This function returns the next SNMP configuration entry from the SNMP Configuration Database. The first
time the function is called, it will return the first entry in the database (regardless of the value of the flag
argument.) It does NOT resolve defaulted parameters. These parameters are described in
ovsnmp.conf(4).

The memory to which the return pointer refers is dynamically allocated. It should be freed by the caller
using the OVsnmpFreeEntry(3) function.

 Parameters
flag

This parameter can be either of two values:

� SNMP_CONF_READ_FIRST, which resets the "next pointer" to the first entry and reads this entry.

� SNMP_CONF_READ_NEXT, which read the next extry from the database.

 Return Values

This routine returns a pointer to a dynamically allocated OVsnmpConfEntry structure which contains the
SNMP Configuration Database parameters. See “OVsnmpIntro(5)” on page 501 for the definition of this
structure. A null pointer is returned if a failure occurs, or if there are no more entries to be read.

 Error Codes
[SNMP_ERR_NOERROR] There are no more entries to be read.

[SNMP_SYSERR_MALLOC] Memory cannot be allocated.

[SNMP_ERR_DB_NOT_OPEN] The SNMP Configuration Database is not open.

[SNMP_ERR_DB_READ_ERROR] The SNMP Configuration Database cannot be read.

 Dependencies

The database must be opened with OVsnmpConfOpen(3) before this function is used.

478 Programmer's Reference

 OVsnmpConfReadNextEntry(3)

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� “OVsnmpConfStoreEntry(3)” on page 488
� “OVsnmpConfFreeEntry(3)” on page 457

 � ovsnmp.conf(4)

 Chapter 2. Reference Pages 479

 OVsnmpConfReadWcList(3)

 OVsnmpConfReadWcList(3)

 Purpose

Reads the wildcard entries from the SNMP Configuration Database as a singly linked list.

 Syntax
#include <OV/OVsnmpConf.h>

OVsnmpConfWcList \ OVsnmpConfReadWcList (void);

 Description

This function returns the SNMP Configuration Database wildcards as a singly linked list. This sequence is
returned in the order in which the wildcards would be applied when resolving the parameters for a partic-
ular target. This list and these parameters are described in ovsnmp.conf(4).

The list to which the return pointer refers is dynamically allocated. It should be freed by the caller using
the OVsnmpFreeWcList(3) function.

 Parameters

None.

 Return Values

This routine returns pointer to a dynamically allocated singly linked list of OVsnmpConfWcList structures
which constitute the logical wildcard list contained in the SNMP Configuration Database. See
“OVsnmpIntro(5)” on page 501 for the definition of these structures.

A null pointer is returned if there are no wildcards or if a failure occurs.

 Error Codes
[SNMP_ERROR_NO_ERROR] There are no wildcards in the database.

[SNMP_SYSERR_MALLOC] Memory cannot be allocated.

[SNMP_ERR_DB_NOT_OPEN] The SNMP Configuration Database is not open.

[SNMP_ERR_DB_READ_ERROR] The SNMP Configuration Database cannot be read.

 Dependencies

The database must be opened with OVsnmpConfOpen(3) before this function is used.

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

480 Programmer's Reference

 OVsnmpConfReadWcList(3)

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� “OVsnmpConfStoreEntry(3)” on page 488
� “OVsnmpConfFreeWcList(3)” on page 459

 � ovsnmp.conf(4)

 Chapter 2. Reference Pages 481

 OVsnmpConfResolveDest(3)

 OVsnmpConfResolveDest(3)

 Purpose

Returns the resolved SNMP configuration parameters for a target node.

 Syntax
#include <OV/OVsnmpConf.h>

OVsnmpConfDest \ OVsnmpConfResolveDest (char \key,
" "resolveFlags_t flags);

 Description

This function returns the resolved SNMP configuration parameters for a target node. It consults the SNMP
Configuration Database for specifically configured parameters for the target. It then applies the database
wildcards to any defaulted fields. If there are still defaulted fields, the global default is applied, followed by
the hard-coded system defaults.

The return pointer refers to dynamically allocated memory which must be freed by the caller using
OVsnmpConfFreeDest(3).

 Parameters
key

A pointer to a character string containing the identifier for the target node whose parameters are
requested. For non-proxied IP targets this may be the fully qualified domain name, an alias known to
the system name server, or a dotted IP address string. For proxied nodes, this string must be the
target name that is configured for that node.

flags
This parameter can take on either of two values:

� SNMP_CONF_FORCE_RESOLVE, which causes the function to use whatever information is
available to resolve the SNMP configuration parameters. If no other resolution can be made, it will
return the hard-coded system defaults. It will return an error only if there is a problem allocating
dynamic storage.

� SNMP_CONF_RESOLVE, which will cause an error to be returned in case of SNMP Configuration
Database access or reading errors, or any other errors encountered.

 Return Values

This routine returns a pointer to a dynamically allocated OVsnmpConfDest structure when successful. A
null pointer is returned in case of failure.

 Error Codes
[SNMP_ERR_INVALIDHOST] The target indicated by key has no valid destination (that is, it has

no valid IP address, or if it is proxied, the proxy has no valid IP
address.), or is null.

[SNMP_ERR_DB_READ_ERROR] The database cannot be read.

482 Programmer's Reference

 OVsnmpConfResolveDest(3)

[SNMP_ERR_GETHOSTBYNAME] A name server lookup failed.

[SNMP_ERR_DB_NOT_OPEN] The SNMP Configuration Database is not open.

[SNMP_SYSERR_MALLOC] Dynamic storage cannot be allocated.

 Dependencies

The SNMP Configuration Database must be opened with OVsnmpConfOpen(3) before this function is
used.

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� “OVsnmpConfOpen(3)” on page 460
� “OVsnmpConfFreeDest(3)” on page 456

 � ovsnmp.conf(4)

 Chapter 2. Reference Pages 483

 OVsnmpConfStoreCntl(3)

 OVsnmpConfStoreCntl(3)

 Purpose

Stores the control parameters for the SNMP Configuration Database.

 Syntax
#include <OV/OVsnmpConf.h>

int OVsnmpConfStoreCntl (OVsnmpConfCntl \cc);

 Description

This function stores the control parameters for the SNMP Configuration Database. These parameters are
stored in non-volatile storage and determine the behavior of the database for all processes that access it.

For more information on the OVsnmpConfEntry data structure, see “OVsnmpIntro(5)” on page 501 or
NetView for AIX Programmer's Guide.

 Return Values

0 if successful; -1 if failure.

 Error Codes
[SNMP_ERR_DB_NOT_OPEN] The database has not been opened.

[SNMP_SYSERR_DB_MALLOC] An inter memory allocation fails.

[SNMP_ERR_DB_WRITE_ERROR] The database cannot be written.

[SNMP_ERR_DB_CORRUPTED_CACHE]
Cached information cannot be deleted after the SNMP Configura-
tion Database has been updated.

[SNMP_ERR_DB_INVALID_REMOTE_PORT]
An invalid remote port is specified in the OVsnmpConfEntry struc-
ture.

[SNMP_ERR_DB_INVALID_POLL_INTERVAL]
An invalid poll interval is specified in the OVsnmpConfEntry struc-
ture.

[SNMP_ERR_DB_INVALID_TIMEOUT]
An invalid timeout period is specified in the OVsnmpConfEntry
structure.

[SNMP_ERR_DB_INVALID_RETRY] An invalid number of retries is specified in the OVsnmpConfEntry
structure.

[SNMP_ERR_DB_COLONS_IN_STRING]
One of the character strings in the OVsnmpConfEntry structure
contains a colon (":"). This restriction is required for backward
compatibility with the Version 2 ovsnmp.conf file.

484 Programmer's Reference

 OVsnmpConfStoreCntl(3)

[SNMP_ERR_DB_COMMUNITY_TOO_LONG]
The community name or the setCommunity name in the
OVsnmpConfEntry structure exceed MAX_COMMUNITY_LEN
(255) characters.

[SNMP_ERR_DB_INVALID_WILDCARD]
The name field of the OVsnmpConfEntry structure is not "*.*.*.*" or
is null.

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� “OVsnmpConfStoreEntry(3)” on page 488

 � ovsnmp.conf(4)

 Chapter 2. Reference Pages 485

 OVsnmpConfStoreDefault(3)

 OVsnmpConfStoreDefault(3)

 Purpose

Stores the global default SNMP configuration parameters in the SNMP Configuration Database.

 Syntax
#include <OV/OVsnmpConf.h>

int OVsnmpConfStoreDefault (OVsnmpConfEntry \ce);

 Description

This function stores the global default SNMP configuration parameters in the SNMP Configuration Data-
base. The global default parameters are applied during a OVsnmpConfResolveDest(3) operation after
wildcards have been applied.

 Parameters
e A pointer to an OVsnmpConfEntry structure which contains the global default parameters.

The OVsnmpConfEntry is described in “OVsnmpIntro(5)” on page 501.

 Return Values

0 if successful; -1 if failure.

 Error Codes
[SNMP_ERR_DB_NOT_OPEN] The database has not been opened.

[SNMP_SYSERR_DB_MALLOC] An inter memory allocation fails.

[SNMP_ERR_DB_WRITE_ERROR] The database cannot be written.

[SNMP_ERR_DB_CORRUPTED_CACHE]
Cached information cannot be deleted after the SNMP Configura-
tion Database has been updated.

[SNMP_ERR_DB_INVALID_REMOTE_PORT]
An invalid remote port is specified in the OVsnmpConfEntry struc-
ture.

[SNMP_ERR_DB_INVALID_POLL_INTERVAL]
An invalid poll interval is specified in the OVsnmpConfEntry struc-
ture.

[SNMP_ERR_DB_INVALID_TIMEOUT]
An invalid timeout period is specified in the OVsnmpConfEntry
structure.

[SNMP_ERR_DB_INVALID_RETRY] An invalid number of retries is specified in the OVsnmpConfEntry
structure.

486 Programmer's Reference

 OVsnmpConfStoreDefault(3)

[SNMP_ERR_DB_COLONS_IN_STRING]
One of the character strings in the OVsnmpConfEntry structure
contain a colon (":"). This restriction is required for backward
compatibility with the Version 2 ovsnmp.conf file.

[SNMP_ERR_DB_COMMUNITY_TOO_LONG]
The community name or the setCommunity name in the
OVsnmpConfEntry structure exceed MAX_COMMUNITY_LEN
(255) characters.

[SNMP_ERR_DB_INVALID_WILDCARD]
The name field of the OVsnmpConfEntry structure is not "*.*.*.*" or
is null.

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� “OVsnmpConfStoreEntry(3)” on page 488

 � ovsnmp.conf

 Chapter 2. Reference Pages 487

 OVsnmpConfStoreEntry(3)

 OVsnmpConfStoreEntry(3)

 Purpose

Stores the SNMP configuration parameters for a target in the SNMP Configuration Database.

 Syntax
#include <OV/OVsnmpConf.h>

int OVsnmpConfStoreEntry (OVsnmpConfEntry \ce);

 Description

This function stores the SNMP configuration parameters for a target in the SNMP Configuration Database.
These parameters are applied during an OVsnmpConfResolveDest(3) operation after wildcards have been
applied.

For more information on the OVsnmpConfEntry data structure, see “OVsnmpIntro(5)” on page 501 or
NetView for AIX Programmer's Guide.

 Parameters
ce A pointer to an OVsnmpConfEntry structure which contains the parameters for the target.

 Return Values

0 if successful; -1 if failure.

 Error Codes
[SNMP_ERR_DB_NOT_OPEN] The database has not been opened.

[SNMP_SYSERR_MALLOC] An internal memory allocation fails.

[SNMP_ERR_DB_WRITE_ERROR] The database cannot be written.

[SNMP_ERR_DB_CORRUPTED_CACHE]
Cached information cannot be deleted after the SNMP Configura-
tion Database has been updated.

[SNMP_ERR_INVALIDHOST] if, when proxying, the name does not resolve to an IP address, or
if the proxy does not resolve to an IP address.

[SNMP_ERR_DB_INVALID_REMOTE_PORT]
An invalid remote port is specified in the OVsnmpConfEntry struc-
ture.

[SNMP_ERR_DB_INVALID_POLL_INTERVAL]
An invalid poll interval is specified in the OVsnmpConfEntry struc-
ture.

[SNMP_ERR_DB_INVALID_TIMEOUT]
An invalid timeout period is specified in the OVsnmpConfEntry
structure.

488 Programmer's Reference

 OVsnmpConfStoreEntry(3)

[SNMP_ERR_DB_INVALID_RETRY] An invalid number of retries is specified in the OVsnmpConfEntry
structure.

[SNMP_ERR_DB_COLONS_IN_STRING]
One of the character strings in the OVsnmpConfEntry structure
contain a colon (":"). This restriction is required for backward
compatibility with the Version 2 ovsnmp.conf file.

[SNMP_ERR_DB_COMMUNITY_TOO_LONG]
The community name or the setCommunity name in the
OVsnmpConfEntry structure exceed MAX_COMMUNITY_LEN
(255) characters.

 Dependencies

The SNMP Configuration Database must be opened with OVsnmpConfOpen(3) before this function is
used.

 Libraries

When compiling a program that uses this routine, link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� “OVsnmpConfOpen(3)” on page 460

 � ovsnmp.conf(4)

 Chapter 2. Reference Pages 489

 OVsnmpCreatePdu(3)

 OVsnmpCreatePdu(3)

 Purpose

Allocates a OVsnmpPdu data structure of the specified message type

 Syntax

#include <OV/OVsnmp.h>
OVsnmpPdu \OVsnmpCreatePdu(int type)

 Description

The OVsnmpCreatePdu routine creates a new OVsnmpPdu data structure and initializes it for sending
PDUs of the specified type. The memory associated with the new OVsnmpPdu is dynamically allocated.
You should free it with a call to OVsnmpFreePdu, unless it is freed by OVsnmpSend or
OVsnmpBlockingSend with FREE_PDU set.

SNMP PDUs are represented using a combination of the OVsnmpPdu data structure and the
OVsnmpVarBind data structure. You should first create an OVsnmpPdu structure of a specific type using
the OVsnmpCreatePdu call and add variables to the OVsnmpPdu structure with calls to either the
OVsnmpAddNullVarBind or the OVsnmpAddTypedVarBind routine.

 Parameters
 type

Specifies the SNMP message type to associate with the new OVsnmpPdu data structure. The value
of type must be one of the following:

 � GET_REQ_MSG

 � GETNEXT_REQ_MSG

 � SET_REQ_MSG

 � TRAP_REQ_MSG

 Return Values

If successful, OVsnmpCreatePdu returns a pointer to a dynamically allocated OVsnmpPdu data structure.
If unsuccessful, it returns NULL.

 Error Codes

OVsnmpCreatePdu returns the error code value OVsnmpErrno. If one of the SNMP_SYSERR_* values is
found, the global variable errno contains the error code returned by the failed system call.

The following list describes the possible errors:

[SNMP_ERR_BAD_PDU_TYPE]
The type parameter was not a valid SNMP PDU type.

[SNMP_SYSERR_MALLOC] The malloc system call failed. The global variable errno contains the
malloc specific error.

490 Programmer's Reference

 OVsnmpCreatePdu(3)

 Libraries

When compiling a program that uses OVsnmpCreatePdu, you need to link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� See “OVsnmpIntro(5)” on page 501.

� See “OVsnmpOpen(3)” on page 507.

� See “OVsnmpFixPdu(3)” on page 495.

� See OVsnmpAddNullVarBind in “OVsnmpAddVarBind(3)” on page 435.

� See OVsnmpAddTypedVarBind in “OVsnmpAddVarBind(3)” on page 435.

� See “OVsnmpFreePdu(3)” on page 497.

 Chapter 2. Reference Pages 491

 OVsnmpDoRetry(3)

 OVsnmpDoRetry(3)

 Purpose

Retransmits pending SNMP requests

 Syntax
#include <OV/OVsnmp.h>
#include <sys/time.h>

void OVsnmpDoRetry()

 Description

OVsnmpDoRetry is intended to be used with OVsnmpGetRetryInfo and select when you are using the
ovsnmp or the nvsnmp library in a non-blocking manner. The calling process uses OVsnmpDoRetry to
retransmit pending SNMP requests. For coding examples on the non-blocking model, see the
nonblocking_send function in the /usr/OV/prg_samples/ovsnmp_app/snmpdemo.c file that is shipped with
the ovsnmp and the nvsnmp library.

OVsnmpDoRetry searches all active sessions for the calling process and, for each session, determines
whether there are any pending requests that are due to be retransmitted. If there are, OVsnmpDoRetry
sends the request to the specified destination and increments the number of times the request has been
sent.

If the number of transmissions for a request is equal to the retries parameter coded on the OVsnmpOpen
routine, the function specified by the callback parameter supplied to OVsnmpOpen is called with the
command parameter set to SNMP_ERR_NO_RESPONSE.

 Return Values

OVsnmpDoRetry returns NULL.

 Error Codes

There are no errors returned by the OVsnmpDoRetry routine.

 Libraries

When you are compiling a program that uses OVsnmpDoRetry, you need to link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

492 Programmer's Reference

 OVsnmpDoRetry(3)

 Related Information
� See “OVsnmpIntro(5)” on page 501.

� See “OVsnmpGetRetryInfo(3)” on page 499.

� See “OVsnmpSend(3)” on page 514.

� See “OVsnmpRead(3)” on page 510.

� See “OVsnmpOpen(3)” on page 507.

 Chapter 2. Reference Pages 493

 OVsnmpErrString(3)

 OVsnmpErrString(3)

 Purpose

Returns SNMP specific error strings

 Syntax

#include <OV/OVsnmp.h>

char \OVsnmpErrString (int error)

 Description

OVsnmpErrString returns a textual string that provides information about the error specified in the error
parameter. If the error number is out of range, the string Unknown Error is returned.

 Return Values

OVsnmpErrString returns a pointer to a static character string. This string is read only.

 Libraries

When compiling a program that uses OVsnmpErrString, you need to link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� See “OVsnmpIntro(5)” on page 501.

� See “OVsnmpOpen(3)” on page 507.

� See “OVsnmpClose(3)” on page 440.

494 Programmer's Reference

 OVsnmpFixPdu(3)

 OVsnmpFixPdu(3)

 Purpose

Deletes a variable with an error from an SNMP PDU

 Syntax
#include <OV/OVsnmp.h>

OVsnmpPdu \OVsnmpFixPdu(struct OVsnmpPdu \pdu, int type)

 Description

OVsnmpFixPdu deletes a variable with an error from a response PDU and creates a new OVsnmpPdu
structure. The OVsnmpPdu data structure that is returned will be of the type specified in the type param-
eter and will contain all of the variables in the response except the one that was in error. The error
variable is determined by examining the error_index and error_status variables in the response PDU.

OVsnmpFixPdu should be called when a response is received and the error_status variable is not equal to
SNMP_ERR_NOERROR.

OVsnmpFixPdu routine does not distinguish the type of error that is indicated by error_status, but only
determines that one is indicated. If the calling process wants to examine the type of error that occurred, it
must do so before calling OVsnmpFixPdu because the error status and error index are cleared.

On successful return from OVsnmpFixPdu, the input PDU will always be freed. The memory it referenced
should not be used again.

 Parameters
 pdu

Specifies a pointer to an OVsnmpPdu data structure that contains the response.

 type
Specifies the type of the new PDU command. This type must be one of the following values:

 � GET_REQ_MSG

 � GETNEXT_REQ_MSG

 � SET_REQ_MSG

 � TRAP_REQ_MSG

 Return Values

If successful, OVsnmpFixPdu returns a pointer to a new OVsnmpPdu structure that can be used in a call
to OVsnmpSend. If unsuccessful, it returns NULL.

Note: If successful, the memory associated with the input PDU is freed, so this memory must be
dynamic. For a further discussion of dynamic memory, see memory rules on page 497.

 Chapter 2. Reference Pages 495

 OVsnmpFixPdu(3)

 Error Codes

Upon failure, OVsnmpFixPdu returns the error code value OVsnmpErrno. If one of the SNMP_SYSERR_*
values is found, the global variable errno contains the error code returned by the failed system call.

The following list describes the possible errors:

[SNMP_ERR_BAD_PDU_TYPE]
The PDU type for new PDU is not valid.

[SNMP_ERR_BAD_PDU] The input PDU was not a response.

[SNMP_SYSERR_MALLOC] Could not malloc space.

[SNMP_ERR_NO_VARS] There are no non-error variables left in the input PDU.

[SNMP_ERR_NO_ERRS] There is no error in the input PDU.

 Libraries

When compiling a program that uses OVsnmpFixPdu, you need to link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� See “OVsnmpIntro(5)” on page 501.

� See “OVsnmpCreatePdu(3)” on page 490.

� See OVsnmpAddNullVarBind in man page “OVsnmpAddVarBind(3)” on page 435.

� See “OVsnmpSend(3)” on page 514.

� See “OVsnmpBlockingSend(3)” on page 437.

� See “OVsnmpRecv(3)” on page 512.

� See “OVsnmpRead(3)” on page 510.

496 Programmer's Reference

 OVsnmpFreePdu(3)

 OVsnmpFreePdu(3)

 Purpose

Frees all memory associated with the specified PDU

 Syntax
#include <OV/OVsnmp.h>

void OVsnmpFreePdu(OVsnmpPdu \pdu)

 Description

The OVsnmpFreePdu routine frees all memory associated with the specified PDU and the variables it
contains. This memory must be dynamic; it must have been obtained by calls to one of the following
routines or by direct calls to malloc:

 OVsnmpCreatePdu
 OVsnmpAddVarNullBind
 OVsnmpAddVarTypedBind
 OVsnmpFixPdu
 OVsnmpRecv
 OVsnmpRead

Many NetView for AIX SNMP API routines will free OVsnmpPdu data structures when sending data.
However, if the FREE_PDU bit is not set in the session_flags variable of the session on which the PDU
was sent, the OVsnmpPdu data structure will NOT be freed. In this case it is the caller's responsibility to
free the OVsnmpPdu structure with a call to OVsnmpFreePdu.

Note: All memory associated with the PDU must be dynamic. This includes the OVsnmpPdu data struc-
ture as well as all SNMP variables referenced by the variables pointer in the OVsnmpPdu structure.

 Parameters
 pdu

Specifies a pointer to a dynamically allocated OVsnmpPdu structure. This structure can also contain
pointers to dynamically allocated OVsnmpVarBind data structures.

 Return Values

OVsnmpFreePdu does not return a value.

 Libraries

When compiling a program that uses OVsnmpFreePdu, you need to link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Chapter 2. Reference Pages 497

 OVsnmpFreePdu(3)

 Related Information
� See “OVsnmpIntro(5)” on page 501.

� See “OVsnmpCreatePdu(3)” on page 490.

� See “OVsnmpAddVarBind(3)” on page 435.

� See “OVsnmpRecv(3)” on page 512.

� See “OVsnmpRead(3)” on page 510.

� See “OVsnmpFixPdu(3)” on page 495.

498 Programmer's Reference

 OVsnmpGetRetryInfo(3)

 OVsnmpGetRetryInfo(3)

 Purpose

Gets retransmission information about pending SNMP requests

 Syntax
#include <OV/OVsnmp.h>
#include <sys/time.h>

int OVsnmpGetRetryInfo(fd_set \rfdsetp, struct timeval \tvp)

 Description

The OVsnmpGetRetryInfo routine is intended to be used with select and OVsnmpDoRetry when you are
using the ovsnmp or nvsnmp library in a nonblocking manner. The calling process uses
OVsnmpGetRetryInfo to get retransmission information about pending SNMP requests.

OVsnmpGetRetryInfo fills in the timeval structure pointed to by the tvp parameter with the time the next
pending SNMP request should be retransmitted. The fd_set data structure pointed to by the rfdsetp
parameter is also assigned values that correspond to all SNMP-related file descriptors, so that the data
can be used as the readfds parameter to select.

You can look at the example programs in the /usr/OV/prog_samples/ovsnmp_app/snmpdemo.c and
/usr/OV/prog_samples/nvsnmp_app/filtertrap.c files for actual code that uses the OVsnmpGetRetryInfo call
in the context of a non-blocking get operation.

 Parameters
 rfdsetp

Specifies that for each file descriptor with an pending SNMP request on it, the appropriate bit in the
fd_set structure will be set to 1. The rfdsetp parameter is set such that it can be used as the readfds
parameter to select for all active SNMP sessions.

Note: If you do not use the information in the fd_set data structure pointed to by the rfdsetp param-
eter, you might not receive arrival notification of an SNMP response during a subsequent call to select.

 tvp
Specifies that if there are pending SNMP requests, as indicated by the return value from
OVsnmpGetRetryInfo, the structure pointed to by tvp indicates the time the next retry should be done.
This value should be used as the time-out parameter to select.

Note: If you do not use the information in the timeval data structure pointed to by the tvp parameter
in a subsequent call to select, you might miss the retransmission time that you want for a pending
SNMP request.

 Return Values

OVsnmpGetRetryInfo returns the number of SNMP related file descriptors that have pending requests on
them. This value can be used as the nfds parameter to select for all SNMP related file descriptors.

If the return value is greater than 0 (zero), the value pointed to by tvp will contain the interval until the next
retry. If the return value is 0 (zero), the data structure pointed to by tvp will contain the value

 Chapter 2. Reference Pages 499

 OVsnmpGetRetryInfo(3)

MAX_ALARM as defined in the <sys/param.h> header file, which, if used as the time-out parameter to
select, will cause the select call to block indefinitely.

 Error Codes

There are no errors returned by OVsnmpGetRetryInfo.

 Libraries

When compiling a program that uses OVsnmpGetRetryInfo, you need to link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� See “OVsnmpIntro(5)” on page 501.

� See “OVsnmpOpen(3)” on page 507.

� See “OVsnmpClose(3)” on page 440.

� See “OVsnmpDoRetry(3)” on page 492.

� See “OVsnmpSend(3)” on page 514.

� See “OVsnmpRead(3)” on page 510.

500 Programmer's Reference

 OVsnmpIntro(5)

 OVsnmpIntro(5)

 Purpose

Provides an introduction to the ovsnmp library

 Description

The NetView for AIX SNMP Application Programming Interface (API) library is provided for applications
that perform network management functions using the SNMP. The API sends and receives SNMP Pro-
tocol Data Units (PDUs) and performs ASN.1 encoding and decoding of the PDUs, location transparency,
and minimal authentication.

Overview of Services

Each of the following sections provides more general information about the API. You should read the man
pages listed under Related Information on page 506 with this introduction before developing an applica-
tion.

The ovsnmp library is provided for the user who already has experience with the SNMP and application
development using the SNMP.

Sending and Receiving SNMP PDUs

There are two ways to send and receive data. These ways provide access to the blocking and
non-blocking behavior of the ovsnmp library.

Use OVsnmpSend to send SNMP PDUs in a nonblocking manner. You must register a callback function
in the OVsnmpSession data structure that will be called when the response PDU is read or when a
time-out occurs.

Use OVsnmpBlockingSend to send SNMP PDUs in a blocking manner (when you want to wait for the
response before doing other processing). No callback function is needed when using
OVsnmpBlockingSend.

Use OVsnmpRecv to receive a PDU on a single session. This call will block if there is no data available;
therefore, use select or another function to verify that data is available. The received data is returned to
the calling process. No callback function is used.

Use OVsnmpRead to receive data on several sessions at one time. Each active session with data avail-
able will result in a call to the specified callback function to make the data available to the user.

Retransmitting Lost PDUs

SNMP is implemented on UDP, which does not guarantee reliable packet delivery. Therefore, it is pos-
sible for PDUs to get lost on the network. The ovsnmp library enables you to retransmit lost PDUs.

Note: The library does not retransmit lost PDUs asynchronously. Use the OVsnmpGetRetryInfo and
OVsnmpDoRetry routines to retransmit PDUs. To retransmit PDUs asynchronously, use the X11 exten-
sions that are provided with the library.

The interval between retransmissions and the number of retransmissions are indicated by the appropriate
parameters to OVsnmpOpen.

 Chapter 2. Reference Pages 501

 OVsnmpIntro(5)

Location Transparency

The ovsnmp library provides functions that determine the location of an object manager when given the
host name of the machine on which the object manager resides. This function can be used for proxy
support. To access this function, register all proxy agents through the Options..SNMP Configuration
pull-down menu when running NetView for AIX graphical user interface. Information about proxies is
stored in the ovsnmp.conf file. See ovsnmp.conf(4).

You can specify a destination by setting the host name of the destination in the peer_hostname field in the
session data structure.

Key Data Structures

This section discusses the primary data structures used in the ovsnmp library. These data structures are
contained in the OVsnmpApi.h file.

OVsnmpSession Data Structure

The OVsnmpSession data structure is the primary data structure used by the ovsnmp library. Many of the
functions in the library use the OVsnmpSession data structure as a parameter. You must allocate an
OVsnmpSession structure with a call to OVsnmpOpen before using the other library calls.

The OVsnmpSession structure includes the following fields:

u_char *community Pointer to the community name of the peer with which you are communicating.
If no community is specified, the default community, public is used. The
memory associated with this field is dynamic. If community is not NULL on a
call to OVsnmpClose, the memory pointed to by community will be freed. If the
community name is NULL or has 0 (zero) length, or if there is no information
about community name in the ovsnmp.conf file, the default community, public , is
used.

u_int community_len The length of the community variable as returned by strlen.

int sock_fd The file descriptor used in sends and receives for this session.

u_short session_flags A bitmask for controlling the behavior of the session. The following flag is used:

RECV_TRAPS The session will receive traps. This flag is usually set by
a call to OVsnmpRecvTraps, but it is permitted for an
application to receive traps on a private port.

void (*callback)() Pointer to a function to be called when a PDU arrives for a session and the
ovsnmp library is being used in a nonblocking manner. The function is called in
response to OVsnmpRead.

Note: If this variable is NULL, the library must not be used in a nonblocking
manner. If the variable is NULL and a response PDU arrives, the next call to the
library will result in an error.

void *callback_data Pointer to application-specific data that is passed to the callback function upon
receipt of a PDU.

u_char *setCommunity Pointer to the community name for set requests on the peer with which you are
communicating.

u_int setCommunity_len The length of the setCommunity variable as returned by strlen.

502 Programmer's Reference

 OVsnmpIntro(5)

OVsnmpPdu Data Structure

The OVsnmpPdu data structure contains specific information needed to send an SNMP PDU. You should
allocate and free these data structures with calls to OVsnmpCreatePdu and OVsnmpFreePdu respectively.

TheOVsnmpPdu structure includes the following fields:

ipaddr address The IP address of the destination or responding host. When you are
sending data using the default behavior, this field is ignored. When you
are receiving data, the IP address will contain the address of the host that
sent the PDU.

The destination IP address is updated by the library. The application does
not need to set this value. The IP address is ignored in a call to a send
function.

int command The SNMP-specific command for the PDU. This value must be one of the
following: GET_REQ_MSG, GETNEXT_REQ_MSG, SET_REQ_MSG,
TRP_REQ_MSG, GET_RSP_MSG.

int request_id The request ID used when sending the PDU. This value is assigned by
the OVsnmpSend calls. You should not modify this value.

int error_status The error status for the PDU. When a PDU is received, this variable will
indicate whether or not an error occurred.

int error_index An index into the variable list. This value indicates the variable in the list
that caused the error.

OVsnmpVarBind *variables This is a pointer to a linked list of variables contained in this PDU. All
memory referenced by this pointer is dynamic and will be freed by
OVsnmpSend, OVsnmpFreePdu, OVsnmpFixPdu, or
OVsnmpBlockingSend.

The following variables in the OVsnmpPdu structure are specific to traps.

ObjectID *enterprise Pointer to the system object identifier used when sending and receiving
traps. This variable references dynamic data. It will be freed by
OVsnmpSend or OVsnmpFreePdu.

u_int enterprise_length The length of enterprise as returned by strlen.

u_long agent_addr The IP address of the agent that sent the trap.

int generic_type SNMP-specific trap type information.

int specific_type Enterprise-specific trap type.

u_long time The system uptime for the agent that sent the trap.

OVsnmpVarBind Data Structure

The OVsnmpVarBind structure holds information about specific SNMP variables that a management
station queries or sets and that an agent (object manager) returns. The structure itself and all data refer-
enced by pointers in the OVsnmpVarBind structure are dynamically allocated by the ovsmnp library and
can be freed by calls to OVsnmpSend, OVsnmpFreePdu, OVsnmpFixPdu, or OVsnmpBlockingSend.

The OVsnmpVarBind structure includes the following fields:

struct SNMPVarBind *next_variable
The next data structure in the NULL-terminated list of variables.

 Chapter 2. Reference Pages 503

 OVsnmpIntro(5)

ObjectID *oid Pointer to the object identifier for this variable. This is dynamic memory.

u_int oid_length The number of elements or sub-identifiers in the object ID for this variable.

u_char type The ASN.1 type of the variable.

OVsnmpVal val The variable value.

u_int val_len The number of elements in the value of the variable. This might not be the
number of bytes in the value.

OVsnmpVal Data Structure

This is a union that contains pointers to the actual value of the variable. This union includes the following
fields:

long *integer If the type is integer, this variable contains a pointer to the value.

u_char *string If the type is string, this variable contains a pointer to the value.

ObjectID *objid If the type is objid, this variable contains a pointer to the value.

Configuration Data Structures

This section discusses the data structures used in the SNMP configuration routines, which are used to
work with the ovsnmp configuration database. These data structures are contained in the OVsnmpConf.h
file.

OVsnmpConfEntry Data Structure

The OVsnmpConfEntry data structure includes the following fields:

char *name Pointer to the name of the target node. It can be a hostname, alias, IP address,
or a proxy name.

char *community The community name for SNMP requests.

char *setCommunity The community name for SNMP set requests. If this parameter is not set, the
value of community will be used.

char *proxy The name of the proxy to use. If this parameter is set to
SNMP_CONF_DONT_PROXY_STRING, no proxy will be assigned for target
nodes whose names match the wildcard name, unless a proxy has been specif-
ically configured for that target.

int timeout The length of time, in tenths of seconds, to wait before retrying a request. This
value must be greater than 0.

int retry The number of times to try a request before giving up. This value must be
greater than or equal to 0.

int pollInterval The IP status polling interval, in seconds.

unsigned short remotePort
The SNMP port number on the target node.

OVsnmpConfDest Data Structure

The OVsnmpConfDest data structure includes the following fields:

short isProxied 1 if the target node is being proxied, otherwise 0.

504 Programmer's Reference

 OVsnmpIntro(5)

unsigned long ipAddr The IP address of the target node if it is not proxied; otherwise, the IP address
of the proxy.

time_t ipAddrAge The time at which the IP address was determined.

OVsnmpConfWcList Data Structure

The OVsnmpConfWcList data structure includes the following fields:

struct SNMPconfwclist *next A pointer to the next element in the list.

OVsnmpConfEntry *confEntry A pointer to an OVsnmpConfEntry data structure whose namefield
contains a wildcard.

OVsnmpConfCntl Data Structure

The OVsnmpConfCntl data structure includes the following fields:

int ipAddrAge The age limit, in seconds, for cached IP addresses.

cacheFlags_t cacheFlags
The caching features to use. This parameter can take on the following values:

� SNMP_CONF_CACHE_NONE, enable no caching.

� SNMP_CONF_CACHE_NOADDR, enable caching of SNMP configuration
parameters is enabled but not caching of IP addresses.

� SNMP_CONF_CACHE_ALL, enable caching of both IP addresses and
SNMP configuration parameters.

If caching is enabled, parameters are cached when OVsnmpConfResolveDest is
first called for a target node. The parameters are returned on subsequent
OVsnmpConfResolveDest calls.

compat3_2_t compatFlags
The level of shadowing to be performed. This parameter can take on the fol-
lowing values:

� SNMP_CONF_SHADOW_NONE, do no database shadowing.

� SNMP_CONF_SHADOW_32ONLY, shadow only those entries that are used
by V2-bound applications.

� SNMP_CONF_SHADOW_ALL, shadow all entries.

For information on shadowing, see ovsnmp.conf.

Callback functions in nonblocking mode

The callback function that is registered in the OVsnmpSession data structure will be invoked as shown:

(void) callback (type, session, pdu, data)

The parameters to the callback function are described in the following list:

type The type of command that caused the callback

session The session on which the PDU was received

pdu: The actual PDU that was received

data: Application-specific data

 Chapter 2. Reference Pages 505

 OVsnmpIntro(5)

Memory Management

All sending functions that have FREE_PDU set will free the PDU that was sent unless an error occurs.
The calling process should not reference this data again.

 Examples

Examples of SNMP calls are provided in the /usr/OV/prg_samples/ovsnmp_app directory.

 Libraries

When compiling a program that uses the NetView for AIX SNMP API, you need to link to the following
libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Implementation Specifics

The ovsnmp library is based on version 1.1 of the CMU library.

 Related Information
� See “OVsnmpAddVarBind(3)” on page 435.

� See “OVsnmpDoRetry(3)” on page 492.

� See “OVsnmpOpen(3)” on page 507.

� See “OVsnmpBlockingSend(3)” on page 437.

� See “OVsnmpFixPdu(3)” on page 495.

� See “OVsnmpErrString(3)” on page 494.

� See “OVsnmpTrapOpen(3)” on page 517.

� See “OVsnmpRead(3)” on page 510.

� See “OVsnmpClose(3)” on page 440.

� See “OVsnmpFreePdu(3)” on page 497.

� See “OVsnmpRecv(3)” on page 512.

� See “OVsnmpCreatePdu(3)” on page 490.

� See “OVsnmpGetRetryInfo(3)” on page 499.

� See “OVsnmpSend(3)” on page 514.

506 Programmer's Reference

 OVsnmpOpen(3)

 OVsnmpOpen(3)

 Purpose

Establishes an active SNMP session for communication with an SNMP agent

 Related Functions
 OVsnmpXOpen

 Syntax
#include <OV/OVsnmp.h>

OVsnmpSession \OVsnmpOpen (char \community, char \peername, int retries,

int interval, u_short local_port, u_short remote_port,
void (\callback)(), void \callback_data);

OVsnmpSession \OVsnmpXOpen (XtAppContext app_context, char \community,

char \peername, int retries, int interval, short local_port,
short remote_port, void (\callback)(), void \callback_data);

 Description

The OVsnmpOpen and OVsnmpXOpen routines create an OVsnmpSession data structure that includes a
UDP socket bound to the specified local port. The calling process must create an OVsnmpSession data
structure prior to sending and receiving SNMP PDUs. The input parameters to OVsnmpOpen or
OVsnmpXOpen will be used to control the behavior of the session. In many cases, the user might not
want to specify values for all the parameters. Defaults are provided for the retries, interval, local_port and
remote_port parameters.

The OVsnmpOpen and OVsnmpXOpen routines provide the same basic function; they both create an
OVsnmpSession data structure and initialize it for use. However, the OVsnmpOpen function should be
used when the calling process will manage retransmissions and receive data. The calling process is
responsible for invoking OVsnmpGetRetryInfo to determine when the next retransmission of a pending
request should be done. The calling process should use select to wait for a response to arrive. If the
select call times out, the calling process should invoke OVsnmpDoRetry to retransmit the request. If data
arrives before the select call times out, the calling process should invoke OVsnmpRead or OVsnmpRecv
to receive the response.

You should use the OVsnmpXOpen call with X11. The calling process should use OVsnmpXOpen only if
it is using XtMainLoop or an equivalent function to manage file I/O multiplexing. If the calling process is
using X11 in an event driven manner, the OVsnmpSession data structure created should be used with the
OVsnmpXSend function to send requests. See “OVsnmpSend(3)” on page 514 for details. In this case
the calling process will manage retransmissions and receive the response. When the response arrives or
a time-out occurs, the function specified by callback will be invoked by the ovsnmp library to process the
response. The X11 interface to the ovsnmp library is simple, because it performs retransmissions for you.
However, it is dependent on the X11 fileset. For more information about retransmissions, see Retransmit-
ting Lost PDUs on page 501.

 Chapter 2. Reference Pages 507

 OVsnmpOpen(3)

 Parameters
 community

Specifies a pointer to the community name that will be used in sending requests. If the community is
NULL or of zero length, the community name will be determined by examining the ovsnmp.conf config-
uration file (see ovsnmp.conf(4)). If community is NULL or of zero length and there is no configuration
information given in the ovsnmp.conf file, the default public will be used.

 peername
Specifies a pointer to the destination for all requests sent on the session. This is specified using
either an IP address or a host name (see hosts). It is an error if peername is NULL or of zero length.

This is the desired destination for all requests. If the specified destination is being proxied, requests
might be sent to a different destination. See ovsnmp.conf(4) for more information.

 retries
Specifies the number of times a pending request will be retransmitted before a time-out occurs. The
default, SNMP_USE_DEFAULT_RETRIES , will cause the retry count to be retrieved from the
ovsnmp.conf file. If no default retry value is listed in the ovsnmp.conf file and
SNMP_USE_DEFAULT_RETRIES is used, pending requests will be retransmitted three times.

 interval
Specifies the interval, in tenths of a second, between retransmissions. This value is exponentially
increased between retransmissions. The default, SNMP_USE_DEFAULT_INTERVAL , will cause the
retry count to be retrieved from the ovsnmp.conf file. If no default interval value is listed in the
ovsnmp.conf file and SNMP_USE_DEFAULT_INTERVAL is used, the ovsnmp library will wait 5/10 of
a second before doing the first retransmission.

 local_port
Specifies the port to which the OVsnmpSession socket should be bound. The default,
SNMP_USE_DEFAULT_LOCAL_PORT , will cause a port to be selected for you. If the caller supplies
a port that is currently in use, an error occurs. If you need to know the port that was selected, use the
getsockname call. For the calling process to receive traps on the OVsnmpSession socket rather than
using the OVsnmpTrapOpen call, it will need to know its local port.

 remote_port
Specifies the port on the machine specified by peername to which requests will be sent. The default,
SNMP_USE_DEFAULT_REMOTE_PORT , will cause the port to be selected from the snmp/UDP entry
in the services database. If there is no entry in the services database, 161 will be used as the remote
port.

 callback
Specifies a pointer to a function that will be invoked in response to an OVsnmpRead event when a
PDU is received and you are using the ovsnmp library in a nonblocking manner. If this variable is
NULL, the library must not be used in a nonblocking manner. If the callback variable is NULL and a
response PDU arrives, the next call to the library will result in an error.

 callback_data
Specifies a pointer to application specific data that will be passed to the callback function.

508 Programmer's Reference

 OVsnmpOpen(3)

 Return Values

If successful, OVsnmpOpen returns a pointer to a new OVsnmpSession structure. Any memory allocated
for the OVsnmpSession structure must be freed by calling the OVsnmpClose routine.

If unsuccessful, OVsnmpOpen returns NULL.

 Error Codes

OVsnmpOpen returns the error code value OVsnmpErrno. If one of the SNMP_SYSERR_* values is
found, the global variable errno contains the error code returned by the failed system call.

The following list describes the possible errors:

[SNMP_SYSERR_SOCKET] The socket system call failed. The global variable errno contains the
socket call specific error.

[SNMP_SYSERR_MALLOC] The malloc call failed. The global variable errno contains the malloc call
specific error.

[SNMP_SYSERR_BIND] The bind call failed. The global variable errno contains the bind call spe-
cific error.

[SNMP_SYSERR_CONNECT] The connect call failed. The global variable errno contains the connect
call specific error.

[SNMP_ERR_INVALID_HOST] The peername parameter is either a NULL pointer or of zero length. The
global variable errno is not set.

[SNMP_ERR_GETHOSTBYNAME]
The destination specified by the peername parameter is not an IP
address or is not in the host's database. The global variable errno is not
set.

 Libraries

When compiling a program that uses OVsnmpOpen and OVsnmpXOpen, you need to link to the following
libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� See “OVsnmpClose(3)” on page 440.

� See OVsnmpXClose in man page “OVsnmpClose(3)” on page 440.

� See “OVsnmpSend(3)” on page 514.

� See OVsnmpXSend in man page “OVsnmpSend(3)” on page 514.

� See “OVsnmpIntro(5)” on page 501.

 Chapter 2. Reference Pages 509

 OVsnmpRead(3)

 OVsnmpRead(3)

 Purpose

Receives SNMP messages on all active sessions

 Syntax

#include <OV/OVsnmp.h>

void OVsnmpRead(struct fd_set \rfdsetp)

 Description

The OVsnmpRead routine is intended to be used with select-to-receive SNMP messages for all active
sessions belonging to the calling process. Before calling the OVsnmpRead routine, you should first call
select-to-wait for input to arrive on a session. The sock_fd variable in the OVsnmpSession data structure
specifies the socket on which the response will be received. If there is no data available, OVsnmpRead
will not take any action and will return.

The OVsnmpRead routine works on all calling process-sessions. If data is available on any session, it will
be received.

If there is data available, the socket specified in the session is read to receive a PDU. The message is
validated and decoded. The function specified by the callback variable to the OVsnmpOpen call is then
invoked to process the inbound message. The specified callback function has the following prototype:

(void) callback (type, session_ptr, pdu, callback_data);

The callback-function parameters are described in the following list:

 type
The type of PDU that caused the response. The type will be GET_REQ_MSG,
GETNEXT_REQ_MSG, or SET_REQ_MSG.

Note: If a time-out occurs, the type parameter will be set to SNMP_ERR_NO_RESPONSE.

Additionally, the following exceptions are indicated by this parameter:

� [SNMP_ERR_NO_RESPONSE] indicates a timeout occurred. No response was received
within the session timeout interval and retry count.

� [SNMP_SYSERR_LOSTCONN] indicates that the trapd process has stopped so the SNMP
API can no longer receive traps on this session. This exception exists only for sessions
created by OVsnmpTrapOpen. The calling process should close the trap session and no
longer reference the session sock_fd in subsequent calls to select.

 session_ptr
A pointer to the session that generated the request. This session should have been created by a call
to OVsnmpOpen or OVsnmpTrapOpen.

 pdu
A pointer to the OVsnmpPdu structure that contains the response information.

510 Programmer's Reference

 OVsnmpRead(3)

 callback_data
A pointer to application-specific data registered for the session by OVsnmpOpen or OVsnmpXOpen.
This is application-specific data unique to the session. This data is registered on a call to
OVsnmpOpen.

The ovsnmp library will not free the response PDU that is delivered to the calling process. It is the
responsibility of the calling process to free the PDU with a call to OVsnmpFreePdu when done processing
the data.

 Parameters
 rfdsetp

A pointer to a structure that indicates which sessions have input available on the socket. This variable
should have been initialized by a call to select before calling OVsnmpRead.

 Libraries

When compiling a program that uses OVsnmpRecv, you need to link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� See “OVsnmpIntro(5)” on page 501.

� See “OVsnmpSend(3)” on page 514.

� See “OVsnmpDoRetry(3)” on page 492.

� See “OVsnmpRecv(3)” on page 512.

� See “OVsnmpGetRetryInfo(3)” on page 499.

� See “OVsnmpOpen(3)” on page 507.

 Chapter 2. Reference Pages 511

 OVsnmpRecv(3)

 OVsnmpRecv(3)

 Purpose

Receives an SNMP PDU for a specific session

 Syntax
#include <OV/OVsnmp.h>

OVsnmpPdu \OVsnmpRecv(OVsnmpSession \session)

 Description

An SNMP PDU is received on the socket specified in the sock_fd variable in the session pointed to by the
session parameter. The PDU is then parsed to insure its validity. The type and source address of the
PDU are returned in the OVsnmpPdu structure with PDU-specific errors.

Error status is indicated by the value of the error_status variable in the OVsnmpPdu structure that is
returned to the calling process. If the value of the error_status variable is SNMP_ERR_NOERROR, the
returned PDU does not contain any errors. Otherwise, the variable in the returned PDU that has an error
associated with it is identified by the error_index variable in the returned PDU.

If an error occurs, the value of the error_status variable can be passed to the OVsnmpErrString function,
which will return a textual description of the error.

The calling process should have first determined that data is available on the socket by a call to select or
by another method.

Note: If there is no data available on the socket, OVsnmpRecv will block until data arrives.

The OVsnmpPdu structure that is returned is created from dynamic memory. It should be freed by a call
to OVsnmpFreePdu or OVsnmpFixPdu.

 Parameters
 session

Pointer to a valid OVsnmpSession structure returned by a call to OVsnmpOpen. This structure con-
tains the socket descriptor and other information needed to receive an SNMP PDU.

 Return Values

If successful, OVsnmpRecv returns a pointer to the PDU that was received. If unsuccessful, it returns
NULL.

 Error Codes

OVsnmpRecv returns the error code value OVsnmpErrno. If one of the SNMP_SYSERR_* values is
found, the global variable errno contains the error code returned by the failed system call. If an error
occurs, the inbound message can be discarded. The following list describes the possible errors.

[SNMP_SYSERR_RECVFROM] A call to recvfrom failed.

[SNMP_SYSERR_MALLOC] A call to malloc failed.

512 Programmer's Reference

 OVsnmpRecv(3)

[SNMP_ERR_BAD_SESSION] The session parameter is not valid.

[SNMP_ERR_PARSE_ERR] Could not parse message. Message is dropped.

[SNMP_SYSERR_LOSTCONN] The trapd process has stopped and the SNMP API can no longer
receive traps on this session. This error exists only for sessions
created by OVsnmpTrapOpen. The calling process should close
the trap session sock_fd in subsequent calls to select.

 Libraries

When compiling a program that uses OVsnmpRead, you need to link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� See “OVsnmpIntro(5)” on page 501.

� See “OVsnmpOpen(3)” on page 507.

� See “OVsnmpRead(3)” on page 510.

� See “OVsnmpSend(3)” on page 514.

� See “OVsnmpFixPdu(3)” on page 495.

 Chapter 2. Reference Pages 513

 OVsnmpSend(3)

 OVsnmpSend(3)

 Purpose

Sends an SNMP PDU in nonblocking mode

 Related Functions
 OVsnmpXSend

 Syntax
#include <OV/OVsnmp.h>

int OVsnmpSend(OVsnmpSession \session, OVsnmpPdu \pdu);

int OVsnmpXSend(OVsnmpSession \session, OVsnmpPdu \pdu);

 Description

The OVsnmpSend and OVsnmpXSend routines perform ASN.1 encoding on the PDU and send the PDU
to the host specified for the session. The destination host is provided as a parameter to the
OVsnmpOpen or OVsnmpXOpen calls.

Both the OVsnmpSend and OVsnmpXSend routines operate in a nonblocking manner. The specified PDU
is encoded and sent without waiting for a response. You should use OVsnmpBlockingSend if you want to
use the ovsnmp or nvsnmp library in a blocking manner.

The OVsnmpSend and the OVsnmpXSend routines perform the same basic services. The difference in
the two functions is in the way retransmissions and receive processes are handled.

The OVsnmpSend function is intended for to be used with OVsnmpGetRetryInfo, OVsnmpDoRetry,
OVsnmpRead, and select. This enables the calling process to monitor its file descriptors and manage
retransmissions of pending requests.

Once the PDU passed to OVsnmpSend has been transmitted, the calling process should invoke
OVsnmpGetRetryInfo to determine when pending requests should be retransmitted. The caller should
then use select or another method to wait for the response to arrive. If the select call times out, the caller
should invoke OVsnmpDoRetry to retransmit the request. If the request arrives before the time-out, the
caller should invoke OVsnmpRead to receive the data and pass it to the specified callback function. For
an example of this coding model, see the files in the /usr/OV/prg_samples/ovsnmp_app directory.

Note: If OVsnmpSend is successful or an SNMP_ERR_NO_RESPONSE error occurs, and the
FREE_PDU bit in the session_flags is turned on (default case), the request pdu parameter is freed by
OVsnmpSend. The memory associated with the pdu parameter should not be referenced again.
However, if OVsnmpSend returns another error, it does not free the memory for the pdu parameter. If the
FREE_PDU bit in the session_flags has been explicitly turned off by the calling process, the memory
associated with the pdu parameter is never freed by OVsnmpSend. The calling process must free the pdu
with a call to OVsnmpFreePdu. If this is not done, the calling process will consume unneccessary
amounts of memory.

Use the OVsnmpXSend routine when the calling process is using XToolkit and X is managing the calling
processes' file descriptors. The calling processes should use the OVsnmpXSend routine only if they are
using XtMainLoop or an equivalent function to manage file I/O multiplexing. Use the OVsnmpXSend

514 Programmer's Reference

 OVsnmpSend(3)

routine with the OVsnmpXOpen and OVsnmpXClose routines. For more information, see the X documen-
tation.

To use the OVsnmpXSend routine, the calling process will register an application context with the
OVsnmpXOpen routine. The xt application context is returned by a call to XtCreateApplicationContext.

Once the calling process has completed these tasks, the retransmissions and the receipt of the response
is handled by the ovsnmp library. The callback function that was registered with the OVsnmpXOpen call
will be invoked by the ovsnmp library when a response arrives or when the request times out. The
callback occurs in response to an OVsnmpRead event.

 Parameters
 session

A pointer to an OVsnmpSession structure returned by a call to OVsnmpOpen or OVsnmpXOpen. The
OVsnmpSession structure determines the destination, retry information, callback function pointer, and
optionally, a community name, authenticator function pointer, and user data to be used in transmitting
the SNMP PDU specified in the pdu parameter.

 pdu
A pointer to an OVsnmpPdu structure returned by a call to OVsnmpCreatePdu. The pdu structure
contains the PDU type and a pointer to the OVsnmpVarBind list of the variables that are being sent.
Variables are added to an OVsnmpPdu structure with either the OVsnmpAddNullVarBind call or the
OVsnmpAddTypedVarBind call. Generally, the OVsnmpAddNullVarBind function will be used to add
variables that the caller wants to retrieve and the OVsnmpAddTypedVarBind function will be used to
add variables the caller wants to set.

 Return Values

If successful, OVsnmpSend returns the request ID for the PDU. If unsuccessful, it returns −1 (negative
one).

 Error Codes

OVsnmpSend returns the error code value of OVsnmpErrno. If one of the SNMP_SYSERR_* values are
returned in OVsnmpErrno, the external variable errno contains the error value returned by the failed
system call.

[SNMP_ERR_BAD_SESSION] The session parameter is not valid.

[SNMP_ERR_PDU_BUILD] Could not build the ASN.1 encoded PDU.

[SNMP_ERR_GETHOSTBYNAME] A call to gethostbyname failed.

[SNMP_SYSERR_SENDTO] A call to sendto failed.

[SNMP_SYSERR_MALLOC] A call to malloc failed.

 Libraries

When compiling a program that uses OVsnmpSend, you need to link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Chapter 2. Reference Pages 515

 OVsnmpSend(3)

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� See “OVsnmpIntro(5)” on page 501.

� See “OVsnmpOpen(3)” on page 507.

� See “OVsnmpClose(3)” on page 440.

� See “OVsnmpDoRetry(3)” on page 492.

� See “OVsnmpGetRetryInfo(3)” on page 499.

� See “OVsnmpRead(3)” on page 510.

� See “OVsnmpRecv(3)” on page 512.

� See “OVsnmpCreatePdu(3)” on page 490.

� See “OVsnmpAddVarBind(3)” on page 435.

516 Programmer's Reference

 OVsnmpTrapOpen(3)

 OVsnmpTrapOpen(3)

 Purpose

Connects to the trapd daemon and sets up to receive unfiltered traps

 Related Functions
 OVsnmpXTrapOpen

 Syntax
#include <OV/OVsnmp.h>

OVsnmpSession \OVsnmpTrapOpen (void (\callback)(), void \callback_data);

#include <OV/OVsnmp.h>
#include <OV/OVsnmpXfns..h>

OVsnmpSession \OVsnmpXTrapOpen (XtAppContext context, void (\callback)(),
 void \callback_data);

 Dependencies

OVsnmpTrapOpen is dependent on the trapd process. If the trapd process is not running,
OVsnmpTrapOpen will fail.

 Description

OVsnmpTrapOpen and OVsnmpXTrapOpen create an active SNMP session that is used explicitly for
receiving traps. You cannot send any data and can only receive traps on this session. The new session
communicates with the trapd process and receives all traps that are sent to the trapd process. No
scoping or filtering is provided by OVsnmpTrapOpen. If you want filtering services, refer to
“OVsnmpTrapOpen(3).” The new session can be used with OVsnmpRead or OVsnmpRecv to receive
traps.

If the callback parameter is non-NULL and OVsnmpRead is used to receive a trap, the function specified
by the callback parameter will be invoked to process the inbound trap. It is an error to use OVsnmpRead
with a NULL callback function.

If the calling process will not use callback functions, the OVsnmpRecv must be used to receive traps.
OVsnmpRecv returns a pointer to the trap PDU that was received. It does not use the callback function.

Use the OVsnmpXTrapOpen call with X11. The calling process should use OVsnmpXTrapOpen only if it
is using XtMainLoop, or an equivalent function, to manage file I/O multiplexing. OVsnmpXTrapOpen will
install the newly created file descriptor as an input device that X11 will use to detect data. When a trap
arrives on the new file descriptor, the callback function supplied in the callback parameter will be invoked
by the ovsnmp library. The calling process does not perform additional processing.

 Chapter 2. Reference Pages 517

 OVsnmpTrapOpen(3)

 Parameters
 callback

A pointer to the routine that will be invoked to process inbound traps if the OVsnmpRead function is
used to receive the trap. In order for the calling process to use callback procedures, this parameter
must point to a valid function.

 callback_data
A pointer to application specific data that will be passed to the callback function when it is invoked.
The ovsnmp library does not perform any action on this data.

Keyword Syntax

! NOT (logical negation)

&& AND (logical 'and')

|| OR (logical 'or')

The following list describes the keywords in the syntax used to define filters:

 CLASS=value
SNMP enterprise match on enterprise ID. Value is given in dot notation (1.2.3.4.55, for example).

 IP_ADDR=value
SNMP agent-addr match on IP address. Value is given in dot notation (192.155.13.57, for example).
Registration for an IP_ADDR permits receipt of agent-generated traps, as well as internal events
related to that IP_ADDR.

 LOGGED_TIME <= time_string
Time that was logged before the time in time_string, where time_string has the form
dd:mm:yy:hh:mm:ss (24 hour clock, GMT)

 LOGGED_TIME >= time_string
Time that was logged after the time in time_string, where time_string has the form dd:mm:yy:hh:mm:ss
(24 hour clock, GMT)

 PRESENT = SNMP_TRAP
Presence of SNMP Trap

 SNMP_TRAP=value
Match on SNMP Generic Trap Type, where the Generic Type is an integer

 SNMP_SPECIFIC=value
Match on SNMP Specific Trap Type, where the Specific Type is an integer

 TIME_PERIOD=time_constant
Relative time period (integer seconds) for frequency filters

 THRESHOLD <= frequency
Number of event occurrences is less than or equal to frequency (integer) during TIME_PERIOD

 THRESHOLD >= frequency
Number of event occurrences is greater than or equal to frequency (integer) during TIME_PERIOD

518 Programmer's Reference

 OVsnmpTrapOpen(3)

Note: When included in an expression for nvSnmpTrapOpenFilter, the keywords THRESHOLD and
TIME_PERIOD must be ANDed (never ORed) and grouped within parentheses as in the following
example:

filter = PRESENT=SNMP_TRAP && (THRESHOLD <= 5 && TIME_PERIOD = 3ð)

 Return Values

If successful, OVsnmpTrapOpen returns a pointer to a new OVsnmpSession structure. Memory allocated
for the OVsnmpSession structure must be freed by OVsnmpClose.

If unsuccessful, OVsnmpTrapOpen returns NULL.

Note: The trapd process might stop after OVsnmpTrapOpen or OVsnmpXTrapOpen returns successfully.
Therefore, the callback function provided by the calling process should handle the
SNMP_SYSERR_LOSTCONN exception condition indicated in the type parameter of the callback function.

 Error Codes

OVsnmpTrapOpen returns the error code value of OVsnmpErrno. If one of the SNMP_SYSERR_* values
is found, the global variable errno contains the error code returned by the failed system call.

The following list describes the possible errors:

[SNMP_SYSERR_SOCKET] A call to socket failed.

[SNMP_SYSERR_MALLOC] A call to malloc failed.

[SNMP_SYSERR_BIND] A call to bind failed.

 Libraries

When compiling a program that uses OVsnmpTrapOpen, you need to link to the following libraries:

 � /usr/OV/lib/libovsnmp.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

Note: If your program also uses nvSnmp calls, replace /usr/OV/lib/libovsnmp.a with
/usr/OV/lib/libnvsnmp.a.

 Related Information
� See “OVsnmpOpen(3)” on page 507.

� See “OVsnmpClose(3)” on page 440.

 � See trapd(8)

 Chapter 2. Reference Pages 519

 OVsPMD_API(3)

 OVsPMD_API(3)

 Purpose

Describes routines for well-behaved daemon processes in the NetView for AIX program

 Related Functions
 OVsInit
 OVsInitComplete
 OVsReceive
 OVsDone

 Syntax
#include <OV/OVsPMD.h>
int OVsInit(int \sp);
int OVsInitComplete(OVsCodeType code, char \message);
int OVsReceive(OVsPMDCommand \command);
int OVsDone(char \message);

 Description

The described routines are used by object managers (agents) that must run as background processes in
the NetView for AIX program in order to be managed by the ovspmd daemon, the process management
daemon. An object manager that uses these routines as described is considered well-behaved and
should be configured OVs_WELL_BEHAVED in its LRF. See lrf.

The ovspmd daemon starts and stops all object managers that run as daemons. A well-behaved object
manager uses the OVsPMD API to communicate with the ovspmd daemon so that the ovspmd daemon
can manage it.

The OVsPMD API is not available on clients in a client/server environment.

A well-behaved object manager interacts with the ovspmd daemon as follows:

1. The object manager must not go into the background on its own. The ovspmd daemon starts each
object manager in the background, as its child. If the object manager process forks and the parent
exits, the ovspmd daemon no longer has access to the process ID of its child process, and can no
longer manage it.

2. When initializing, the object manager must call OVsInit, which returns, in the location pointed to by sp,
a file descriptor for interprocess communication with the ovspmd daemon. If this call fails, communi-
cation with the ovspmd daemon will be impossible.

3. After initializing, (whether successfully or not), the object manager must call OVsInitComplete to notify
the ovspmd daemon. The code parameter is OVS_RSP_SUCCESS, if initialization succeeded, or
OVS_RSP_FAILURE if it failed.

The ovspmd daemon will wait for the object manager to make the OVsInitComplete call before starting
other object managers that depend on it. The code and message parameters are sent to the ovstart
command. In the case of OVS_RSP_SUCCESS, the message is sent out by the ovstart command in
verbose mode only.

If initialization failed, the ovspmd daemon expects the object manager to call OVsInitComplete with
code set to OVS_RSP_FAILURE, and exit immediately. It should not call the OVsDone routine. The

520 Programmer's Reference

 OVsPMD_API(3)

message parameter is sent to the user by the ovstart command. This message should tell the user
why initialization failed, and might also provide a solution. The ovspmd daemon will not start any
other object managers that depend on an object manager that has failed to initialize.

After the object manager has called the OVsInitComplete routine with the code parameter set to
OVS_RSP_SUCCESS, the message can be updated by subsequent calls to the OVsInitComplete
routine with the code parameter set to OVS_RSP_SUCCESS and the message parameter set to the
new message. The ovstatus routine will send the latest message that the ovspmd daemon has
received. The object manager may continue to make calls to the OVsInitComplete routine until it calls
the OVsDone routine.

4. It is assumed that the object manager is organized as a loop around a select call, waiting for input
from applications or from the managed object. The object manager should use select for reading on
the file descriptor returned by the OVsInit routine.

5. When select indicates that the file descriptor is readable, the object manager must call OVsReceive to
receive a command from ovspmd in command. The object manager must take appropriate action,
based on the value of command.code received. The implemented command code is
OVS_CMD_EXIT; the correct response to this command code is to immediately clean up, call
OVsDone, and exit.

6. When the object manager exits, it must inform the ovspmd daemon. If the object manager exits in
response to OVS_CMD_EXIT, the OVsDone call notifies the ovspmd daemon that the object manager
is exiting and that it should not be sent to SIGTERM or SIGKILL. If the object manager exits
spontaneously, without having received OVS_CMD_EXIT, it should call OVsDone and use the
message parameter to notify ovspmd why it exited. The ovspmd daemon will log the exit of the object
manager, including the message it sent.

 Return Values

If successful, OVsInit returns 0 (zero) and OVsInitComplete, OVsReceive, and OVsDone return greater
than 0 (zero).

If unsuccessful, these routines return −1 (negative one). If a system call on which they depend failed,
errno will be set to indicate the problem. Failure of any of these routines indicates that the daemon has
lost contact with ovspmd. A well-behaved daemon should exit if any of these routines fail.

 Libraries

When compiling a program that uses the OVsPMD_API, you need to link to the following libraries:

 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovaddobj.
 � See ovdelobj.
 � See ovspmd.
 � See ovstart.
 � See ovstatus.
 � See ovstop.
� See “OVuTL(3)” on page 522.

 � See lrf.

 Chapter 2. Reference Pages 521

 OVuTL(3)

 OVuTL(3)

 Purpose

Facilitates NetView for AIX logging and tracing

 Related Functions
 OVuTLInit
 OVuLog
 OVuTrace

 Syntax
#include <OV/OVuTL.h>

int OVuTLInit(int argc,
 char \argv[]);

int OVuLog(unsigned int class, char \msgcat, int setnum, int msgnum, char \fmt);

int OVuTrace(unsigned int kind, char \msgcat, int setnum, int msgnum, char \fmt);

 Description

OVuLog and OVuTrace enable programs to issue logging and tracing messages through the nettl tracing
and logging facility used by the NetView for AIX server. This facility is controlled using the nettl command
and its output is viewed using the netfmt command.

Logging: Logging is typically run at all times.

The user who sees an error message at the time the error occurs may be neither authorized nor know-
ledgeable enough to fix the problem. Therefore, both failures and normal transactions are logged, so that
the administrator can access the history of subsystem operation.

Log messages should be interpretable by the administrator or user.

Tracing: Tracing is typically run only when a problem has occurred, and it is necessary to reconstruct in
detail the sequence of events that caused the problem.

Tracing messages may not be intended to be interpreted by an unaided administrator or user. There are
three general contexts in which tracing is used:

� Tracing is frequently used as an aid to code development by both the developers of the code that
actually performs the tracing, such as procedure entry/exit tracing and developers of applications that
interact with tracing, such as API tracing.

� Tracing is used by users and administrators for troubleshooting system or network problems. For
example, protocol tracing can be used for this purpose.

� Tracing is used by the field and support personnel, in conjunction with the lab personnel and the cus-
tomer, for diagnosing customer problems. All supported kinds of tracing can be used for this purpose.

Functions: OVuTLInit initializes the software and hostname fields in the logging and tracing output.
See the output examples under Examples on page 525. It should be called in main before OVuLog or

522 Programmer's Reference

 OVuTL(3)

OVuTrace is called. Otherwise, the software field will not be set, making it difficult for the reader of the
tracing or logging output to determine which program issued the trace or log message.

OVuLog logs a message using the nettl facility. See nettl for more information. The same message is
also sent as a logging-trace message, if tracing is enabled for the OVEXTERNAL subsystem and the
LOGGING_TRACE_BIT Trace Kind.

OVuTrace sends a trace message using the nettl facility.

 Parameters
 argc Specifies the argument count. This should be the same argc passed as a parameter to

main.

 argv Specifies the argument vector. This should be the same argv passed as a parameter to
main. Argv is not modified and is used only to set the software field in the log or trace
output.

 class Specifies the log Class (OVuLog). The permitted values of class are specified in the
header files OV/OVuTL.h and subsys_id.h as follows:

DISASTER DISASTER log messages refer to failures that compromise the entire
subsystem, and make further normal operation impossible.

DISASTER class messages are logged to the console as well as to
the log file, if console logging is enabled. Note that the message
logged to the console contains only a timestamp, the log class, and
the software and hostname fields. This information can be used to
find the rest of the message in the log file.

ERROR ERROR log messages refer to failures affecting only the particular
transaction.

WARNING WARNING log messages refer to events that are probably failures in
cases where the subsystem will attempt to complete the operation
anyway. Warnings should generally be issued only when they
suggest some action the administrator could take to reduce the likeli-
hood of a future Error or Disaster.

INFORMATIVE INFORMATIVE log messages report significant but normal events.
The information provided should be sufficient for the administrator to
reconstruct a history of transactions that have taken place.

 kind Trace Kind (OVuTrace). The permitted values of kind are specified in the header files
OV/OVuTL.h and subsys_id.h as follows:

HDR_IN_BIT Inbound header tracing

HDR_OUT_BIT Outbound header tracing

PDU_IN_BIT Inbound Protocol Data Unit tracing

PDU_OUT_BIT Outbound Protocol Data Unit tracing

These trace kinds are used for network protocol tracing.

PROCEDURE_TRACE_BIT
Procedure entry/exit trace

This trace kind is used to trace function entry and exit. On
entry, all input parameter values should be traced. On exit,

 Chapter 2. Reference Pages 523

 OVuTL(3)

the return value and the values of output parameters should
be traced.

STATE_TRACE_BIT State machine tracing

If the code is organized as a state machine, this trace kind
can be used to trace state transitions.

ERROR_TRACE_BIT Error tracing

Use of this trace kind should be limited to errors that are
NOT logged. For example, system errors from which the
code automatically recovers should be traced rather than
logged.

LOGGING_TRACE_BIT Log call tracing

Logging tracing is used to record the fact that a log message
was issued. It is used by the troubleshooter to synchronize
log messages with tracing output, because tracing output
goes to a different file than logging output. OVuLog auto-
matically generates a logging trace, in addition to the log
message, if logging tracing is enabled for the subsystem.

LOOP_BACK_BIT Loopback

PTOP_BIT Point to point

LOOP_BACK_BIT and PTOP_BIT are reserved for use by
kernel networking and should not be used by NetView for
AIX applications.

SUBSYSTEM_BITS Subsystem specific trace kinds

Subsystems can define their own trace kinds. There is one
defined specifically for NetView for AIX in the OV/OVuTL.h
header file.

API_TRACE_BIT API tracing is used by developers to determine whether
parameters to the NetView for AIX APIs have been for-
matted correctly. This should be used exactly as procedure
entry/exit tracing is used, except that only exported routines
are traced and these routines are traced only on entry.

 msgcat A pointer to the name of the message catalog file containing the format string, as used
by catopen.

The message catalog is opened by netfmt, not by the code calling the OVuTL routines,
when formatting the messages. Only the format string is searched for in the message
catalog. It is the responsibility of the calling program to localize other arguments.

 setnum Number of the message, set within the message catalog containing the format string,
which is used by catgets.

 msgnum Index of the format string in the message set, which is used by catgets.

 fmt A pointer to the default format string in printf syntax. This format string is used as in
catgets if the message catalog cannot be accessed.

524 Programmer's Reference

 OVuTL(3)

In addition to the % conversion specifiers understood by printf, %m will be replaced by
the string that is returned by strerror, which is called with the current value of errno as in
syslog.

 arg Zero or more arguments are formatted according to the format string, as in printf.

 Return Values

If successful, OVuTLInit returns 1. If it is unable to set the host name or software fields, OVuTLInit returns
0 (zero).

If successful, OVuLog and OVuTrace return 1.

If logging is not enabled for the OVEXTERNAL subsystem or for the specified Log Class, OVuLog returns
−1 (negative one). If tracing is not enabled for the OVEXTERNAL subsystem or for the specified trace
kind, OVuTrace returns −1 (negative one). In these cases, every effort is made to minimize processing.
See nettl.

If a syntax error is detected in fmt, an internal buffer overflow occurs, or an error occurs in passing the
message to the nettl subsystem, OVuLog and OVuTrace return 0 (zero).

 Error Codes

The OVEXTERNAL subformatter, part of netfmt, detects buffer overflow conditions and certain printf
format errors, and outputs an error message instead of, or in addition to, the text of the failed log or trace
message.

 Examples
 � Logging

In the following example, 71 is the index of the format in message set number 1 of the toasterM
message catalog. Note the explicit return code processing.

int r;

r ═ OVuLog(INFORMATIVE, “toasterM”, 1, 71,
“ Object Instance : %d\n\
Brownness control adjusted to %4.1f%%\n”,
instance, value);
if (r > ð)
{

/\ logging succeeded \/
}
else if (r < ð)
{
 /\

\\ nettl not running, or
\\ logging for OVEXTERNAL INFORMATIVE messages not enabled

 \/
}
else if (r ══ ð)
{

/\ OVuLog failed: error processing \/
}

 Chapter 2. Reference Pages 525

 OVuTL(3)

� Logging of INFORMATIVE messages in the OVEXTERNAL subsystem is enabled with the following
command:

/usr/OV/bin/nettl -entity OVEXTERNAL -log i w e d

The output is read using a command similar to the following command:

/usr/OV/bin/netfmt -t 1 -f /usr/OV/log/nettl.LOGðð

The output is shown in Table 16:

The previous OVuLog call generates a logging trace message, if logging tracing is enabled for the
OVEXTERNAL subsystem.

Tracing: The following is a procedure entry trace using OVuTrace, and the output it generates. Note
the streamlined return code processing. In most cases, the calling program will not need to handle
success differently from not enabled.

if (!OVuTrace(PROCEDURE_TRACE_BIT, msgcat, 1, 114,
“ Entering function : AdjustBrownness()\n\
 File : %s\n\
 Line : %d\n\
 Parameter values :\n\
 instance ═ %d\n\
 value ═ %1ð.4e\n”,
__FILE__, __LINE__, instance, value))
{

/\ OVuTrace returned ð: error processing \/
}

Procedure tracing in the OVEXTERNAL subsystem is enabled with the command:

/etc/nettl -entity OVEXTERNAL -traceon proc -file
/usr/OV/log/nettl

Table 16. Output of logging INFORMATIVE messages in the OVEXTERNAL subsystem

Timestamp : Tue Apr 02 1991 12:32:58.818232

Process ID : 940 Subsystem : OVEXTERNAL

User ID (UID) : 214 Log Class : INFORMATIVE

Device ID : −1 Path ID : −1

Connection ID : −1 Log Instance : 0

Software : /usr/OV/bin/toasterM

Hostname : breadbrain.toastmaster.com

Object Instance : 47

Brownness control adjusted to 85.0%.

526 Programmer's Reference

 OVuTL(3)

The output is read using a command similar to the following command:

/etc/netfmt -t 1 -f
/usr/OV/log/nettl.TRCð

The output is shown in Table 17:

 Libraries

When compiling a program that uses OVuTL, you need to link to the following libraries:

 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See netfmt.
 � See nettl.

Table 17. Output of Tracing in OVEXTERNAL Subsystem

Timestamp : Tue Apr 02 1991 12:32:58.815152

Process ID : 940 Subsystem : OVEXTERNAL

User ID (UID) : 214 Trace Kind : Proc. entry/exit

Device ID : −1 Path ID : −1

Connection ID : −1

Software : /usr/OV/bin/toasterM

Node : breadbrain.toastmaster.com

Entering function : AdjustBrowness()

File : actions.c

Line : 456

Parameter values :

 instance = 47

 value = 8.5000e-02

 Chapter 2. Reference Pages 527

 OVwAckMapClose(3)

 OVwAckMapClose(3)

 Purpose

Acknowledges a map close event

 Syntax

#include <OV/ovw.h>

int OVwAckMapClose(OVwMapInfo \map, time_t close_time);

 Description

OVwAckMapClose must be called in response to the ovwMapClose event. It informs the NetView for AIX
program that the application has received the ovwMapClose event and has completed any changes
needed before the NetView for AIX program closes the map.

Note: Failure to call OVwAckMapClose in response to the ovwMapClose event will cause the graphical
interface to wait for several seconds, as specified by the closeTimeout X resource for ovw, before closing
the map.

 Parameters
 map

Specifies a pointer to a MapInfo structure for an open map. The map parameter can be obtained
using OVwGetMapInfo, saved from the ovwMapOpen event using OVwCopyMapInfo, or can be the
same map parameter returned by the OVwMapCloseCB callback.

 close_time
Specifies the proposed closing time for the map. If the proposed closing time passed to the
OVwMapCloseCB callback routine is acceptable, the close-time parameter can be set to the proposed
closing time or a default value of 0 (zero). Alternately, the close-time parameter can be set to an
earlier time needed by the application, so it can correctly synchronize with the map when it is reo-
pened. The final last closing time parameter for the map will be set to the earliest closing time param-
eter specified by any application.

 Return Values

If successful, OVwAckMapClose returns 0 (zero). If unsuccessful, it returns −1 (negative one).

 Error Codes

OVwAckMapClose sets the error code value that OVwError returns. The following list describes the pos-
sible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MAP_NOT_OPEN] The argument map does not specify an open map.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

528 Programmer's Reference

 OVwAckMapClose(3)

 Examples

The following is a sample callback routine for an ovwMapClose event:

void
mapCloseProc(void \user_data, OVwEventType type,

OVwMapInfo \map, time_t closing_time)
{

time_t new_close_time ═ (time_t) ð;

 /\

\ If necessary, compute an earlier new_close_time
\ based on what needs to be done next time the map
\ is opened.

 \/
 OVwAckMapClose(map, new_close_time);
}

 Implementation Specifics

OVwAckMapClose supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwAckMapClose, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwGetMapInfo(3)” on page 719.
� See “OVwInit(3)” on page 741.
� See “OVwMapCloseCB(3)” on page 759.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 529

 OVwAckUserSubmapCreate(3)

 OVwAckUserSubmapCreate(3)

 Purpose

Acknowledges a user, submap-create event

 Syntax
#include <OV/ovw.h>

int OVwAckUserSubmapCreate(OVwMapInfo \map, OVwSubmapId submapId,
 OVwSymbolId symbolId);

 Description

OVwAckUserSubmapCreate must be called in response to an ovwUserSubmapCreate event (see
“OVwUserSubmapCreateCB(3)” on page 831). This routine acknowledges the ovwUserSubmapCreate
event and indicates whether the application has created a submap in response to the user's attempt to
open a symbol, through the graphical interface, that does not have a child submap.

If it is appropriate for the application to create a submap for the symbol the user is trying to open, it can
call OVwCreateSubmap to create a new submap and pass the submap ID of the new submap as the
submap_id parameter of the OVwAckUserSubmapCreate call. The graphical interface will then display the
specified submap to the user. If the application does not create a submap for the symbol,
ovwNullSubmapId can be returned. In this case, the graphical interface will prompt the user to create a
submap for the object associated with the symbol.

 Parameters
 map

Specifies a pointer to a MapInfo structure for an open map. The map parameter can be obtained
using OVwGetMapInfo or saved from the ovwMapOpen event using OVwCopyMapInfo.

 submapId
Specifies the submap ID of the submap created by the application to display or ovwNullSubmapId.

 symbolId
Specifies the symbol ID of the symbol the user is trying to open. This is available from the
OVwSymbolInfo structure passed by the OVwUserSubmapCreateCB callback.

 Return Values

If successful, OVwAckUserSubmapCreate returns 0 (zero). If unsuccessful, it returns −1 (negative one).

 Error Codes

OVwAckUserSubmapCreate sets the error code value that OVwError returns. The following list describes
the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MAP_NOT_OPEN] The argument map does not specify an open map.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

530 Programmer's Reference

 OVwAckUserSubmapCreate(3)

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_SUBMAP_NOT_FOUND] The submap specified by submapId does not exist on the open
map.

[OVw_SYMBOL_NOT_FOUND] The symbol specified by symbolId does not exist on the open map.

 Examples

The following example illustrates the use of OVwAckUserSubmapCreate in an OVwUserSubmapCreateCB
callback:

void userSubmapCreateCB(void \userData, OVwEventType type,
OVwMapInfo \map, OVwSymbolInfo \symbol,

 OVwSubmapInfo \submap)
{

OVwSubmapId submap_id ═ ovwNullSubmapId;

 /\

\ Check whether it is appropriate for the application
\ to create a submap. If so, create submap and set

 \ submap_id.
 \/

OVwAckUserSubmapCreate(map, submap_id, symbol→symbol_id);
}

 Implementation Specifics

OVwAckUserSubmapCreate supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwAckUserSubmapCreate, you need to link to the following
libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwAddCallback(3)” on page 539.
� See “OVwCreateSubmap(3)” on page 619.
� See “OVwInit(3)” on page 741.
� See “OVwUserSubmapCreateCB(3)” on page 831.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 531

 OVwAddActionCallback(3)

 OVwAddActionCallback(3)

 Purpose

Registers a callback for a registered action

 Related Functions
 OvwRemoveActionCallback

 Syntax
#include <OV/ovw.h>

void (\OVwActionCallbackProc) (void \userData, char \actionId,

char \menuItemID, OVwObjectIdList \selections,
int argc, char \\argv, OVwMapInfo \map, OVwSubmapId submap);

int OVwAddActionCallback(char \actionId,

OVwActionCallbackProc callbackProc, void \userData);

int OVwRemoveActionCallback(char \actionId);

 Description

OVwAddActionCallback associates an application procedure with an action registered in the application
registration file. The procedure will be started when the specified action is triggered by using a menu item
or an executable symbol.

OVwRemoveActionCallback removes previously registered callbacks for the specified action.

 Parameters
 actionId

Specifies a pointer to an action name as declared in the application's registration file. If actionId is
NULL, the callback is invoked for any action notification that does not have a corresponding registered
callback. This enables you to receive all action callbacks by one procedure.

 argc
Specifies the count of the number of arguments contained in the CallbackArgs statement of the action
registration.

 argv
Specifies an argument vector containing any arguments specified in the CallbackArgs statement of the
action registration. The first argument is argv[0]

 callbackProc
Specifies a procedure to be called when a user activates the specified menu item.

 map
Specifies a pointer to a MapInfo structure for the open map. The map parameter can be obtained
using OVwGetMapInfo or saved from the ovwMapOpen event using OVwCopyMapInfo.

532 Programmer's Reference

 OVwAddActionCallback(3)

 menuItemID
If the action was triggered by the selection of a menu item, this parameter will be a pointer to the label
of that menu item. If the action is started by an executable symbol, the menuItemID parameter will be
NULL.

 selections
Specifies a pointer to a list of the objects that were in the selection list when the action was triggered.
When the action was triggered from an object menu, the selections parameter contains the name of
the object from whose menu the action was invoked.

 submap
Specifies the ID for the submap where the action was triggered.

userData
Specifies a pointer to the application-specific data required for the callback procedure.

 Return Values

If successful, OVwAddActionCallback and OVwRemoveActionCallback return 0 (zero). If unsuccessful,
they return −1 (negative one).

 Error Codes

OVwAddActionCallback and OVwRemoveActionCallback set the error code value that OVwError returns.
The following list describes the possible errors:

[OVw_ACTION_NOT_FOUND] The action specified by actionId is not registered by the application.

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been started with OVwInit.

[OVw_ACTION_NOT_APPLICABLE]
The Command statement of the action to which you are trying to add
an action callback is different from the Command statement that
started the application.

 Implementation Specifics

OVwAddActionCallback supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwAddActionCallback and OVwRemoveActionCallback, you need
to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Chapter 2. Reference Pages 533

 OVwAddActionCallback(3)

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

534 Programmer's Reference

 OVwAddAlertCallback(3)

 OVwAddAlertCallback(3)

 Purpose

Registers handlers of NetView for AIX alerts

 Related Functions
 OVwRemoveAlertCallback

 Syntax

#include <OV/ovw.h>

void (\OVwAlertCallbackProc) (void \userData,

unsigned long alertClass, time_t alertTime,
char \alertApp, char \alertMsg);

int OVwAddAlertCallback(unsigned long classMask,

OVwAlertCallbackProc callback, void \userData);

int OVwRemoveAlertCallback(unsigned long classMask);

Note: These routines should be used only in an application solely designed for dispatching NetView for
AIX alert messages that other applications have generated through OVwAlertMsg.

 Description

OVwAddAlertCallback adds an application callback procedure for handling classes of NetView for AIX alert
messages. The procedure is started when an application calls OVwAlertMsg with an alertClass that corre-
sponds with the registered classMask.

OVwRemoveAlertCallback removes previously registered callbacks for the specified classMask.

Note: Use OVwAddAlertCallback and OVwRemoveAlertCallback only if your application's sole purpose is
to dispatch NetView for AIX alert messages.

An application that has registered alert callbacks cannot use OVwAlertMsg.

 Parameters
 alertApp Specifies a pointer to the name of the application that called OVwAlertMsg.

 alertClass Specifies the class of the alert message issued by alertApp.

 alertMsg Specifies a pointer to the text of the alert message issued by alertApp.

 alertTime Specifies the time slot when alertApp issued the alert message.

 callback Specifies a pointer to a procedure that starts in response to a NetView for AIX alert.

 classMask Specifies a logical OR of the classes of alerts for which the callback should be
invoked. If classMask is 0 (zero), the callback is invoked for all alert classes.

 userData Specifies a pointer to application-specific data registered for the callback procedure.

 Chapter 2. Reference Pages 535

 OVwAddAlertCallback(3)

 Return Values

If successful, OVwAddAlertCallback and OVwRemoveAlertCallback return 0 (zero). If unsuccessful, they
return −1 (negative one).

 Error Codes

OVwAddAlertCallback and OVwRemoveAlertCallback set the error code value that OVwError returns. The
following list describes the possible errors:

[OVw_CONNECTION_LOST]
The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY]
A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED]
The EUI API has not been initialized with OVwInit.

536 Programmer's Reference

 OVwAddAlertCallback(3)

 Examples

The following example is an application that displays NetView for AIX alert messages:

#include <OV/ovw.h>
#include <stdio.h>

void
alertProc (void \userData,

unsigned long alertClass,
 time_t alertTime,
 char \alertApp,
 char \alertMsg)
{

printf(“%s: ”, alertApp);
switch (alertClass) {

 case ovwAlertInfo:
 printf(“INFORMATION: ”);
 break;
 case ovwAlertWarning:
 printf(“WARNING: ”);
 break;
 case ovwAlertError:
 printf(“ERROR: ”);
 break;
 case ovwAlertDisaster:
 printf(“DISASTER: ”);
 break;
 default:
 break;
 }
 printf(“%s\n”, alertMsg);
}
main(int argc, char \\argv)
{

if (OVwInit() < ð) {
fprintf(stderr, “%s\n”, OVwErrorMsg(OVwError ()));

 exit(1);
 }

OVwAddCallback(ovwEndSession, NULL, (OVwCallbackProc)exit, NULL);
OVwAddAlertCallback(ð, alertProc, NULL);

 OVwMainLoop();

}

 Implementation Specifics

OVwAddAlertCallback supports single-byte and multi-byte character code sets.

 Chapter 2. Reference Pages 537

 OVwAddAlertCallback(3)

 Libraries

When compiling a program that uses OVwAddAlertCallback or OVwRemoveAlertCallback, you need to link
to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwAlertMsg(3)” on page 558.
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

538 Programmer's Reference

 OVwAddCallback(3)

 OVwAddCallback(3)

 Purpose

Registers procedures to process NetView for AIX events

 Related Functions
 OVwRemoveCallback

 Syntax

#include <OV/ovw.h>

void (\OVwCallbackProc) (char \userData, OVwEventType event, ...);

int OVwAddCallback(OVwEventType event, OVwFieldBindList \capabilitySet,

OVwCallbackProc proc, void \userData);

int OVwRemoveCallback(OVwEventType event, OVwFieldBindList \capabilitySet);

 Description

OVwAddCallback adds an application callback procedure for handling the NetView for AIX events of an
object with the specified capabilities.

OVwRemoveCallback removes a previously added callback procedure for a specified NetView for AIX
event and set of capabilities.

Calls to OVwAddCallback for differing sets of capabilities are cumulative; multiple procedures can be reg-
istered for each NetView for AIX event with each event processing objects with different capabilities. Only
one callback can be registered for a particular capabilitySet.

 Parameters
 event

Specifies the NetView for AIX event that the registered procedure should process.

 capabilitySet
Specifies a pointer to a list of capability-field bindings that classify the objects for which this callback
should be invoked. If a NULL value is supplied, the callback is enabled for all classes of objects that
do not already have specific callbacks registered for them. If an event is not related to object manipu-
lation, such as ovwEndSession or ovwMapOpen, this parameter is ignored.

 callbackProc
Specifies a pointer to the procedure that should be invoked, for the specified event, for the specified
objectType. The parameters of the callback procedure vary, based on the NetView for AIX event.

 userData
Specifies a pointer to application-specific data to be passed to the callback procedure.

 Chapter 2. Reference Pages 539

 OVwAddCallback(3)

 Return Values

If successful, OVwAddCallback and OVwRemoveCallback return code (zero). If unsuccessful, they return
−1 (negative one).

 Error Codes

OVwAddCallback and OVwRemoveCallback set the error code-value that OVwError returns. The following
list describes the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

 Implementation Specifics

OVwAddCallback supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwAddCallback or OVwRemoveCallback, you need to link to the
following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

540 Programmer's Reference

 OVwAddHelpCallback(3)

 OVwAddHelpCallback(3)

 Purpose

Registers a handler for application help requests

 Related Functions
 OVwRemoveHelpCallback

 Syntax

#include <OV/ovw.h>

void (\OVwHelpCallbackProc) (void \userData, unsigned long helpType,

time_t requestTime, char \appName, char \appHelpDir,
 char \helpRequest);

int OVwAddHelpCallback (unsigned long typeMask,

OVwHelpCallbackProc callback, void \userData);

int OVwRemoveHelpCallback(unsigned long typeMask);

Note: These routines should be used only in an application solely designed to respond to help requests
that other applications have issued from OVwShowHelp to the NetView for AIX help system.

 Description

OVwAddHelpCallback adds an application callback procedure for handling NetView for AIX help requests.
The procedure is started when some application calls OVwShowHelp with a helpType that corresponds
with the registered typeMask.

OVwRemoveHelpCallback removes previously registered callbacks for the specified typeMask.

Note: Use OVwAddHelpCallback and OVwRemoveHelpCallback only if your application's sole purpose is
to implement the NetView for AIX help system.

An application that has registered help callbacks cannot use OVwShowHelp.

 Parameters
 appHelpDir

Specifies a pointer to the directory that the application has registered, through its application registra-
tion file, as its help directory.

 appName
Specifies a pointer to the name of the application that called OVwShowHelp.

 callback
Specifies a pointer to a procedure to call in response to an application help request.

 helpRequest
Specifies a pointer to a string specifying the request issued by the application with OVwShowHelp.

 Chapter 2. Reference Pages 541

 OVwAddHelpCallback(3)

 helpType
Specifies the type of request issued by the application with OVwShowHelp.

 requestTime
Specifies the time when the application issued the help request.

 typeMask
Specifies a logical OR of the types of help requests for which the callback should be added. If
typeMask is zero, the callback is added for all help types.

 userData
Specifies a pointer to application-specific data to be passed to the callback procedure.

 Return Values

If successful, OVwAddHelpCallback and OVwRemoveHelpCallback return code (zero). If unsuccessful,
they return −1 (negative one).

 Error Codes

OVwAddHelpCallback and OVwRemoveHelpCallback set the error-code value that OVwError returns. The
following list describes the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

 Implementation Specifics

OVwAddHelpCallback supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwAddHelpCallback or OVwRemoveHelpCallback, you need to link
to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwShowHelp(3)” on page 825.
� See “OVwApiIntro(5)” on page 560.

542 Programmer's Reference

 OVwAddInput(3)

 OVwAddInput(3)

 Purpose

Adds an event source

 Related Functions
 OVwRemoveInput

 Syntax

#include <OV/ovw.h>

void (\OVwInputCallbackProc) (int file_descriptor, void \userData);

OVwInputId OVwAddInput(int file_descriptor, int conditionMask,

OVwInputCallbackProc proc, void \userData);

int OVwRemoveInput(OVwInputId id);

 Description

OVwAddInput adds an application file descriptor to the NetView for AIX event processing mechanism as
another source of events. When the specified condition occurs on the fileDescriptor, as detected by
select(2), proc is called and is passed the parameter userData.

OVwRemoveInput removes an input event, created by a previous call to OVwAddInput, from the NetView
for AIX event processing mechanism.

 Parameters
 fileDescriptor

Specifies the source file descriptor to be added to the NetView for AIX event processing loop.

 conditionMask
Specifies a mask built from the following flags defined in the OV/ovw.h header file:

ovwReadMask There is input on the file descriptor.

 proc
Specifies an application procedure to be started when the condition occurs on the fileDescriptor.

 userData
Specifies a pointer to application-specific data registered when the input is added and passed when
the callback is called.

 id
Specifies the input ID returned from an earlier call to OVwAddInput.

 Chapter 2. Reference Pages 543

 OVwAddInput(3)

 Return Values

If successful, OVwAddInput and OVwRemoveInput return an OVwInputId. If unsuccessful, they return 0
(zero).

 Error Codes

OVwAddInput and OVwRemoveInput set the error-code value that OVwError returns. The following list
describes the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

 Implementation Specifics

OVwAddInput supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwAddInput or OVwRemoveInput, you need to link to the following
libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

544 Programmer's Reference

 OVwAddMenuItem(3)

 OVwAddMenuItem(3)

 Purpose

Adds a menu item to a menu

 Related Functions
 OVwRemoveMenuItem

 Syntax

#include <OV/ovw.h>
#include <OV/ovw_reg.h>

int OVwAddMenuItem(char \menuId, char \\menuItemId);

int OVwRemoveMenuItem(char \menuId, char \\menuItemId);

 Description

OVwAddMenuItem associates a menu item with a registered menu or the graphical interface menu bar in
the current registration context. See OVwSetRegContext in the man page for “OVwGetRegContext(3)” on
page 729 for information about changing the registration context.

OVwRemoveMenuItem removes a menu item that is associated with a registered menu in the current
registration context.

Before calling either of these functions, the application must have successfully called
OVwLockRegUpdates to acquire permission to modify the registration context. Changes to the menu
structure will become permanent only after calling OVwSaveRegUpdates.

Use these functions if your application needs to dynamically create menu registration. If your application
menu structure is static, use the application registration files to create the application menu structure.

Note: When you add a menu item to the menu bar, the menu attached to that menu item (through
OVwAddMenuItemFunction) should have an ID that matches the menu item label. If it does not have a
matching ID, inconsistent results can occur because the menu ID might not exist in subsequent NetView
for AIX sessions.

 Parameters
 menuId

Specifies a pointer to a name for a menu as declared in the application registration file. If menuId is
NULL, it refers to the graphical interface menu bar.

 menuItemId
Specifies a pointer to a pointer to a menu item identifier returned from an OVwMenuItemRegistration
call or from OVwFindMenuItem. The value of menuItemId can be modified after a successful call.

 Return Values

If successful, OVwAddMenuItem and OVwRemoveMenuItem return 0 (zero). If unsuccessful, they return
−1 (negative one).

 Chapter 2. Reference Pages 545

 OVwAddMenuItem(3)

 Error Codes

OVwAddMenuItem and OVwRemoveMenuItem set the error-code value that OVwError returns. The fol-
lowing list describes the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MENU_NOT_FOUND] The argument menuId does not specify a valid menu.

[OVw_MENUITEM_NOT_FOUND] The argument menuItemId does not specify a valid menu item.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_PERMISSION_DENIED] Either you have not called OVwLockRegUpdates prior to calling this
function or you are adding a menu item to the menu bar that does not
contain menu functions.

 Implementation Specifics

OVwAddMenuItem supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwAddMenuItem or OVwRemoveMenuItem, link to the following
libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwLockRegUpdates(3)” on page 755.
� See “OVwCreateMenuItem(3)” on page 613.
� See “OVwSaveRegUpdates(3)” on page 797.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

546 Programmer's Reference

 OVwAddMenuItemFunction(3)

 OVwAddMenuItemFunction(3)

 Purpose

Adds a menu item function to a menu item

 Related Functions
 OVwRemoveMenuItemFunction

 Syntax

#include <OV/ovw.h>
#include <OV/ovw_reg.h>

int OVwAddMenuItemFunction(char \menuItemId, int function,
 char \fnArg);

int OVwRemoveMenuItemFunction(char \menuItemId, int function,
 char \fnArg);

 Description

OVwAddMenuItemFunction binds the specified function and argument to the specified menu item in the
current registration context. See OVwSetRegContext in the man page for “OVwGetRegContext(3)” on
page 729 for information about changing the registration context.

OVwRemoveMenuItemFunction removes the specified function and argument from the specified menu
item in the current registration context.

Before calling either of these functions, the application must have successfully called
OVwLockRegUpdates to acquire permission to modify the registration context. Changes to the menu
structure will become permanent only after calling OVwSaveRegUpdates.

Use these functions if your application needs to dynamically create menu registration. If your application
menu structure is static, use the application registration files to create the application menu structure.

Note: When adding a menu function to a menu item that is, or will be, attached to the graphical interface
menu bar (see “OVwAddMenuItem(3)” on page 545), the menu should have an ID that matches the menu
item label. If it does not have a matching ID, inconsistent results can occur because the menu ID might
not exist in subsequent NetView for AIX sessions.

 Parameters
 menuItemId

Specifies a pointer to a menu item identifier returned from an OVwMenuItemRegistration call or from
OVwFindMenuItem.

 fnArg
Specifies a pointer to the function argument whose meaning is determined by the function parameter.

 Chapter 2. Reference Pages 547

 OVwAddMenuItemFunction(3)

 function
Specifies the type of function you are binding to the menu item. These function types are defined in
the OV/ovw.h header file as follows:

ovwMenu The function argument fnArg is a menu identifier. For example, if fnArg is IP Com-
mands, this would be equivalent to specifying f.menu IP Commands for the menu item
in the application registration file.

ovwInternal The function argument fnArg is an internal function name. For example, if fnArg is
exit, this would be equivalent to specifying f.exit for the menu item in the application
registration file.

ovwAction The function argument fnArg is an action identifier. For example, if fnArg is Get, this
would be equivalent to specifying f.action Get for the menu item in the application reg-
istration file.

ovwShell The function argument fnArg is a shell command. For example, if fnArg is xterm -e
/etc/ping ${OVwSelection1}, this would be equivalent to specifying ! xterm -e /etc/ping
${OVwSelection1} for the menu item in the application registration file.

 Return Values

If successful, OVwAddMenuItemFunction and OVwRemoveMenuItemFunction return 0 (zero). If unsuc-
cessful, they return −1 (negative one).

 Error Codes

OVwAddMenuItemFunction and OVwRemoveMenuItemFunction set the error-code value that OVwError
returns. The following list describes the possible errors:

[OVw_ACTION_NOT_FOUND] The argument fnArg does not specify a valid action.

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MENUITEM_NOT_FOUND] The argument menuItemId does not specify a valid menu item.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_PERMISSION_DENIED] Either you have not called OVwLockRegUpdates prior to calling this
function or MenuItemId references a menu item that contains an
incompatible function.

[OVw_MENU_NOT_FOUND] The argument fnArg does not specify a valid menu.

[OVw_NAME_NOT_FOUND] The argument fnArg does not specify a valid internal function name.

548 Programmer's Reference

 OVwAddMenuItemFunction(3)

 Implementation Specifics

OVwAddMenuItemFunction supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwAddMenuItemFunction or OVwRemoveMenuItemFunction, link
to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwAddMenuItem(3)” on page 545.
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwLockRegUpdates(3)” on page 755.
� See “OVwCreateMenu(3)” on page 611.
� See “OVwSaveRegUpdates(3)” on page 797.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

 Chapter 2. Reference Pages 549

 OVwAddObjMenuItem(3)

 OVwAddObjMenuItem(3)

 Purpose

Adds a menu item to an object menu

 Related Functions
 OVwRemoveObjMenuItem

 Syntax

#include <OV/ovw.h>
#include <OV/ovw_reg.h>

int OVwAddObjMenuItem(char \objMenuId, char \\objMenuItemId);

int OVwRemoveObjMenuItem(char \objMenuId, char \\objMenuItemId);

 Description

OVwAddObjMenuItem ties a menu item to an object menu's registered menu or to the graphical interface
object menu in the current registration context. See OVwSetRegContext in the man page for
“OVwGetRegContext(3)” on page 729 for information about changing the registration context.

OVwRemoveObjMenuItem removes a menu item that is tied to an object menu's registered menu in the
current registration context.

Before calling either of these functions, the application must have successfully called
OVwLockRegUpdates to acquire permission to modify the registration context. Changes to the menu
structure will become permanent only after calling OVwSaveRegUpdates.

Use these functions if your application needs to dynamically create menu registration for the object menu.
If your application menu structure is static, use the application registration files to create the application
menu structure.

Note: When you add a menu item to the object menu, the menu attached to that menu item (through
OVwAddMenuItemFunction) should have an ID that matches the menu item label. If it does not have a
matching ID, inconsistent results can occur because the menu ID might not exist in subsequent NetView
for AIX sessions.

 Parameters
 menuId

Specifies a pointer to a name for a menu as declared in the application registration file. If menuId is
NULL, it refers to the graphical interface object menu.

 menuItemId
Specifies a pointer to a pointer to a menu item identifier returned from an OVwMenuItemRegistration
call or from OVwFindObjMenuItem. The value of menuItemId can be modified after a successful call.

550 Programmer's Reference

 OVwAddObjMenuItem(3)

 Return Values

If successful, OVwAddObjMenuItem and OVwRemoveObjMenuItem return a value 0f 0 (zero). If unsuc-
cessful, a value of −1 (negative one) is returned.

 Error Codes

OVwAddObjMenuItem and OVwRemoveObjMenuItem set the error-code value that OVwError returns.
The following list describes the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MENU_NOT_FOUND] The argument menuId does not specify a valid menu.

[OVw_MENUITEM_NOT_FOUND] The argument menuItemId does not specify a valid menu item.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_PERMISSION_DENIED] Either OVwLockRegUpdates has not been called prior to calling this
function, or the menu item you are adding to the menu bar does not
contain menu functions.

 Implementation Specifics

OVwAddObjMenuItem supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwAddObjMenuItem or OVwRemoveObjMenuItem, link to the fol-
lowing libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwLockRegUpdates(3)” on page 755.
� See “OVwCreateMenuItem(3)” on page 613.
� See “OVwSaveRegUpdates(3)” on page 797.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

 Chapter 2. Reference Pages 551

 OVwAddObjMenuItemFunction(3)

 OVwAddObjMenuItemFunction(3)

 Purpose

Adds a menu item function to an object menu's menu item

 Related Functions
 OVwRemoveObjMenuItemFunction

 Syntax

#include <OV/ovw.h>
#include <OV/ovw_reg.h>

int OVwAddObjMenuItemFunction(char \objMenuItemId, int function,
 char \fnArg);

int OVwRemoveObjMenuItemFunction(char \objMenuItemId, int function,
 char \fnArg);

 Description

The OVwAddObjMenuItemFunction routine binds the specified function and argument to the specified
object menu's menu item in the current registration context. See OVwSetRegContext in the man page for
“OVwGetRegContext(3)” on page 729 for information about changing the registration context.

OVwRemoveObjMenuItemFunction removes the specified function and argument from the specified object
menu's menu item in the current registration context.

Before calling either of these functions, the application must have successfully called
OVwLockRegUpdates to acquire permission to modify the registration context. Changes to the menu
structure become permanent only after calling OVwSaveRegUpdates.

Use these functions if your application needs to dynamically create menu registration for an object menu.
If your application menu structure is static, use the application registration files to create the application
menu structure.

Note: When adding a menu function to a menu item that is, or will be, attached to the graphical interface
object menu (see “OVwAddObjMenuItem(3)” on page 550), the menu should have an ID that matches the
menu item label. If it does not have a matching ID, inconsistent results can occur because the menu ID
might not exist in subsequent NetView for AIX sessions.

 Parameters
 objMenuItemId

Specifies a pointer to a menu item identifier returned from an OVwMenuItemRegistration call or from
OVwFindObjMenuItem.

 fnArg
Specifies a pointer to the function argument whose meaning is determined by the function parameter.

 function
Specifies the type of function you are binding to the menu item. These function types are defined in
the OV/ovw.h header file as follows:

552 Programmer's Reference

 OVwAddObjMenuItemFunction(3)

ovwMenu The function argument fnArg is a menu identifier. For example, if fnArg is IP com-
mands, this is equivalent to specifying f.menu IP commands for the menu item in the
application registration file.

ovwInternal The function argument fnArg is an internal function name. For example, if fnArg is
exit, this is equivalent to specifying f.exit for the menu item in the application regis-
tration file.

ovwAction The function argument fnArg is an action identifier. For example, if fnArg is Get, this is
equivalent to specifying f.action Get for the menu item in the application registration
file.

ovwShell The function argument fnArg is a shell command. For example, if fnArg is xterm -e
/etc/ping ${OVwSelection1}, this is equivalent to specifying ! xterm -e /etc/ping
${OVwSelection1} for the menu item in the application registration file.

 Return Values

If successful, OVwAddObjMenuItemFunction and OVwRemoveObjMenuItemFunction return a value of 0
(zero). If unsuccessful, a value of −1 (negative one) is returned.

 Error Codes

OVwAddObjMenuItemFunction and OVwObjRemoveMenuItemFunction set the error-code value that
OVwError returns. The following list describes the possible errors:

[OVw_ACTION_NOT_FOUND] The argument fnArg does not specify a valid action.

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MENUITEM_NOT_FOUND] The argument menuItemId does not specify a valid menu item.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_PERMISSION_DENIED] Either OVwLockRegUpdates was not called prior to calling this func-
tion, or MenuItemId references a menu item that contains an incom-
patible function.

[OVw_MENU_NOT_FOUND] The argument fnArg does not specify a valid menu.

[OVw_NAME_NOT_FOUND] The argument fnArg does not specify a valid internal function name.

 Chapter 2. Reference Pages 553

 OVwAddObjMenuItemFunction(3)

 Implementation Specifics

OVwAddObjMenuItemFunction supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwAddObjMenuItemFunction or
OVwRemoveObjMenuItemFunction, link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwAddMenuItem(3)” on page 545.
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwLockRegUpdates(3)” on page 755.
� See “OVwCreateMenu(3)” on page 611.
� See “OVwSaveRegUpdates(3)” on page 797.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

554 Programmer's Reference

 OVwAddToolPalItem(3)

 OVwAddToolPalItem(3)

 Purpose

Adds a new item to the Tools window

 Related Functions
 OVwRemoveToolPalItem

 Syntax

#include <OV/ovw.h>
#include <OV/ovw_reg.h>

int OVwAddToolPalItem(OVwToolPalRegInfo \itemInfo);

int OVwRemoveToolPalItem(char \toolItemId);

 Description

OVwAddToolPalItem adds a specified item to the Tools window.

OVwRemoveToolPalItem removes the specified item from the Tool Palette.

Before calling either of these functions, the application must have successfully called
OVwLockRegUpdates to acquire permission to modify the registration context. Changes to the Tool
Palette structure will become permanent only after calling OVwSaveRegUpdates.

Use these functions if your application needs to dynamically create Tools window registration. If your
application Tools Window structure is static, use the application registration files to create the application
Tools window structure.

 Parameters
 toolItemId

Specifies a pointer to the name of the Tools window item as defined in the application registration file
for the current registration context or by the field label of the OVwToolPalRegInfo structure in a pre-
vious call to OVwAddToolPalItem.

 itemInfo
Specifies a pointer to an OVwToolPalRegInfo structure. The OVwToolPalRegInfo structure contains
the elements of the Tools window item registration information. In <OV/ovw_reg.h>, it is defined as
shown in the following example:

 Chapter 2. Reference Pages 555

 OVwAddToolPalItem(3)

typedef struct {
 int precedence;
 char \label;
 int iconType;
 char \iconColor;
 char \iconFile;
 char \dragBitmap;
 char \labelColor;
 int selMechanism;
 char \actionId;
 } OVwToolPalRegInfo;

The members of this structure are:

precedence
The precedence value for the tool item. Precedence values range from a low value
ovwMinToolItemPrecedence (defined as 0 in <OV/ovw_reg.h>) to a high value of
ovwMaxToolItemPrecedence (defined as 100 in <OV/ovw_reg.h>). If no specific preced-
ence is needed for the menu item, set this field to ovwDefaultToolItemPrecedence (defined
as 50 in <OV/ovw_reg.h>).

label A pointer to the tool item label string.

iconType The type of image used for of the tool item in the Tools window. The value is one of the
following constants defined in <OV/ovw_reg.h>):

 ovwIcSolid "solid"
 ovwIcGif "gif"
 ovwIcBitmap "bitmap"

iconColor
A pointer to the color name to be applied to the icon in the Tools window.

iconFile The name of the file that contains the icon image of the tool item to the displayed in the
Tools window.

dragBitmap
The name of the file that contains the icon bitmap of the tool item that is displayed in drag
operations.

labelColor
A pointer to the color name to be applied to the label string.

selMechanism
Specifies the options for the selection mechanism to be applied to the tool item. The value
is a mask that is the logical OR of the following constants from <OV/ovw_reg.h>:

ovwSingleClick
Specifies that the user can select the item through a single-click operation.

ovwDoubleClick
Specifies that the user can select the item through a double-click operation.

ovwDragDrop
Specifies that the user can select the item through a drag and drop operation.

actionId Specifies a pointer to the name of the action as defined in the application registration file
for the current registration context.

 Return Values

If successful, OVwAddToolPalItem and OVwRemoveToolPalItem return a value of 0 (zero). If unsuc-
cessful, a value of −1 (negative one) is returned.

556 Programmer's Reference

 OVwAddToolPalItem(3)

 Error Codes

OVwAddToolPalItem and OVwRemoveToolPalItem set the error-code value that OVwError returns. The
following list describes the possible errors:

[OVw_ACTION_NOT_FOUND] The specified actionId is not registered in the current registration
context.

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_PERMISSION_DENIED] You have not called OVwLockRegUpdates prior to calling this func-
tion.

[OVw_TOOLITEM_EXISTS] The specified tool item is already registered in the current registration
context.

[OVw_TOOLITEM_INFO_NULL] The argument itemInfo is a null pointer.

[OVw_TOOLITEM_NOT_FOUND] The argument toolItemId is not registered in the current registration
context.

[OVw_TOOLITEM_PRECEDENCE_ERROR]
The specified precedence is not within the valid range of precedence
values.

[OVw_TOOLITEM_MECHANISM_ERROR]
The specified selection mechanism is not within the valid range of
selection mechanism values.

 Implementation Specifics

OVwAddToolPalItem supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwAddToolPalItem or OVwRemoveToolPalItem, you need to link to
the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwLockRegUpdates(3)” on page 755.
� See “OVwSaveRegUpdates(3)” on page 797.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

 Chapter 2. Reference Pages 557

 OVwAlertMsg(3)

 OVwAlertMsg(3)

 Purpose

Issues an NetView for AIX alert message

 Syntax

#include <OV/ovw.h>

int OVwAlertMsg(unsigned long alertClass, char \message);

 Description

OVwAlertMsg provides a way for applications to present messages to the user. It sends a message and
severity classification to an application responsible for receiving NetView for AIX alerts and presenting
them to the user.

The number of events that OVwAlertMsg can send within a short period of time is limited. If it sends the
maximum number of events, it will not be able to emit further events. To prevent OVwAlertMsg from
reaching the limit, allow a short amount of time to elapse between calls to OVwAlertMsg.

When applications use OVwAlertMsg to generate NetView for AIX alert messages, OVwAddAlertCallback
and OVwRemoveAlertCallback should be used in an application solely designed for dispatching these alert
messages.

 Parameters
 alertClass

Specifies a message classification. The following permitted values of alertClass are specified in the
header file OV/OVw.h:

ovwAlertDisaster Refers to a failure that compromises the application and makes further normal
operation impossible.

ovwAlertError Refers to a failure affecting only a particular operation.

ovwAlertWarning Refers to an event that might be a failure; a case where the application will
attempt to complete the operation anyway. A warning message should gener-
ally be issued only when it suggests some action the administrator can take to
reduce the likelihood of a future problem.

ovwAlertInfo Reports significant but normal events. The information provided should be
just sufficient for the administrator to reconstruct a history of operations that
have taken place.

 message
Specifies a pointer to the text of the alert message.

 Return Values

If successful, OVwAlertMsg returns 0 (zero). If unsuccessful, it returns −1 (negative one).

558 Programmer's Reference

 OVwAlertMsg(3)

 Error Codes

OVwAlertMsg sets the error code value that OVwError returns. The following list describes the possible
errors:

[OVw_APP_NOT_FOUND] There is no ovw application running that is dispatching alert mes-
sages.

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

 Implementation Specifics

OVwAlertMsg supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwAlertMsg, link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.
� See “OVwAddAlertCallback(3)” on page 535.

 Chapter 2. Reference Pages 559

 OVwApiIntro(5)

 OVwApiIntro(5)

 Purpose

Provides an overview of the EUI API

 Syntax

#include <OV/ovw.h>
#include <OV/ovw_reg.h>

cc < or CC or ld > ... -lovw -lov -lntl

 Description

The EUI API contains a registration facility and a set of library routines that enable applications to inte-
grate with the NetView for AIX program, the NetView for AIX network, and the systems management user
interface. The ovw command provides the graphical interface for integrating network and systems man-
agement applications through a common user interface and shared graphical map of the management
environment.

Different types of applications will use different parts of the EUI API. Loosely integrated applications that
are merely started through a menu item will only need to use the application registration facility described
in the following information under Registration Files on page 562. Most applications will use
error-handling, process-management, event-processing, and general routines. Specialized map applica-
tions that dynamically update the map will additionally use object, symbol-type, and map routines, as well
as map editing.

Concepts: The following concepts are important for understanding the EUI API. See the NetView for
AIX Programmer's Guide for a more detailed introduction to these concepts.

Action Specifies a registered operation performed by an application. An action can be associ-
ated with a menu item or an executable symbol. When an action is invoked by a user,
the action and a list of selected objects on which to perform the action are passed to
the application.

Application Specifies a registered program that is started by the ovw command. Some applications
perform actions associated with menu items. Other applications dynamically update the
graphical map to reflect the current state of the management environment.

Field Specifies a global object attribute. Field values for objects are stored in the OVW
object database.

A capability field, such as isRouter and isIP, is a special kind of field that indicates an
important attribute for classifying objects. A field can be designated as a capability field
upon creation. An object, which can have values for multiple capability fields, can
serve multiple functions. Capability fields are used for the following functions:

� Menu greying. For example, a selection rule can be defined so that a menu item is
enabled only when certain kinds of objects are selected.

� Determining what field information is presented for an object for editing operations,
such as add, connect, describe

� Filtering EUI API events.

560 Programmer's Reference

 OVwApiIntro(5)

A name field, such as Selection Name or IP Host name, is a special kind of field that
uniquely identifies an object. A field can be designated as a name field upon creation.
A name field has a value that is unique for each object in the database.

A selection name is a name field that is the only required textual name for an object.
This is the principal name by which an object is known through the user interface. A
user can set the selection name for an object to any one of its multiple names.

Map Specifies a named collection of objects and submaps. The containment relationship of
the objects on the map is displayed through a hierarchy of submaps. Different maps
can represent different administrative or management domains or different presenta-
tions of the same management environment.

Object Specifies that a graphical interface object is a construction that represents a particular
entity or resource in the management environment, such as a network, a host, or a
process. An object is a semantic element that exists across maps. The same object
can be represented by multiple symbols on multiple maps. Objects and their field
values (attributes) are stored in the OVW object database. Objects are used to present
information about management resources through the user interface. An object has
global attributes (object ID and field values) that exist across maps and certain charac-
teristics (child submap, status) that are specific to a particular map on which the object
can exist. For the most part, an object exists on a map when it has an associated
symbol on the map.

A parent object is an object that has an associated child submap on a particular map.
It is also called a compound object.

Symbol Specifies a graphical representation of an object. A symbol represents a particular
object as it appears on a submap of a particular map. An object can be represented by
multiple symbols. Multiple symbols for the same object can exist on the same submap,
on different submaps of the same map, and across maps. Symbols are presentation
elements for displaying objects and have characteristics including variety, behavior,
label, status, status source, and symbol type. The following list describes different
types of symbols:

Executable symbol Invokes an application action when double -clicking on the
symbol

Explodable symbol Opens into the child submap of the parent object represented
by the symbol when double-clicking on the symbol.

Icon symbol Is depicted with a bitmap graphic

Connection symbol Is depicted as a line connecting two other symbols

Component symbol Is a symbol on the child submap of a compound object

Symbol type Specifies a characteristic of a symbol that specifies its visual appearance. Symbol type
values are registered through a symbol type registration file. A symbol type has two
components: symbol class symbol subclass. A symbol type value is described with a
string in the form <class>:<subclass> (for example, Computer:Workstation). For icon
symbols, the symbol class determines the outside shape for depicting the symbol and
the subclass determines the inside bitmap. Symbol types also have default capability
field values associated with them that are used to initialize capability field values on the
object of the symbol with the given symbol type.

Submap Specifies a collection of related symbols displayed together in a single window. A
submap shows a particular view of the management environment. The following list
describes different types of submaps:

 Chapter 2. Reference Pages 561

 OVwApiIntro(5)

Child submap Has an associated parent object on a particular map. A child
submap provides a detailed view of the contents of the parent
object.

Orphan submap Does not have an associated parent object.

Shared submap Can be updated by any application.

Exclusive submap Can be updated only by the application that created the submap.

Metaconnection submap
Is a special submap automatically generated by the graphical
interface to show multiple connections between two symbols.

Registration Files: Registration files are used to define static configuration information. This informa-
tion is read when the ovw command is run with an installation option or when the graphical interface is
started. Registration is accomplished by creating a file with the appropriate format and placing it in a
special directory. There are three kinds of registration files:

Application Application registration files are found in the /usr/OV/registration/$LANG directory. An
application entry specifies the actions that an application can perform, a command line to
invoke the application, flags indicating how the application process should be started and
managed, menu and menu item definitions, descriptions of automatically-generated editing
dialog boxes for querying and displaying object fields, and other application information.
The application registration files are read when the graphical interface is started.

Field Field registration files are found in the /usr/OV/lib/fields/$LANG directory. A field entry
specifies the field name, the field data type (boolean, string, enumerated type, integer),
and flags describing how the field is to be used (for example, list or capability). When a
change is made to the field registration directory, issue the following command to create
the registered fields in the OVW object database:

ovw -fields

Symbol Type Symbol type registration files are found in the /usr/OV/lib/symbols/$LANG directory. The
following list describes symbol type entries in registration files:

Symbol class entry
Specifies the class name and, for an icon or connection, the variety of the symbol
class. For icons, a symbol class entry also provides a graphical specification for the
outside shape.

Symbol type entry
Specifies the symbol subclass name, the symbol class to which the symbol type
belongs, the bitmaps (for icons) or line style (for connections) to use display, a set of
default capability field values for initializing objects represented by symbols with the
symbol type, and other symbol type information.

The symbol type registration files are read whenever the graphical interface is started.
You can speed up the startup time for the graphical interface by running the following
command when new symbol types are registered by issuing the following command:

ovw -config

This command compiles all the bitmap files for icon symbol types.

Running the following command verifies the syntax of all the registration files:

ovw -verify

See “OVwRegIntro(5)” on page 769 for the details of registering applications, fields, and symbol types.

562 Programmer's Reference

 OVwApiIntro(5)

Error Handling: The return code of a function indicates whether the call succeeded or an error was
encountered, as shown in Table 18 on page 563.

The error codes for the EUI API are listed in the <OV/ovw_errs.h> header file.

The following routines are error handling routines:

OVwError Returns the last EUI API error

OVwErrorMsg Returns the text for an OVwError error code

Process Management: An application must call either OVwInit or OVwDbInit prior to using the EUI API.
OVwInit establishes communication with the NetView for AIX program from which the application was
started. OVwDbInit establishes communication with the ovwdb daemon process for access to the OVW
object database. OVwInit automatically calls OVwDbInit. A program should call OVwDbInit directly only if
it needs to use the NetView for AIX object database routines, those routines beginning with OVwDb, but
does not need to use the rest of the EUI API or to be started from the NetView for AIX program.

The following routines are process management routines:

OVwInit Initializes a connection to the NetView for AIX program

OVwDbInit Initializes a connection between the ovwdb daemon process

OVwDone Terminates the connection to the NetView for AIX program

Event Processing: An application can register to receive various asynchronous events from the
NetView for AIX program. This is done by registering a callback function to be called when the event
occurs.

The function OVwAddCallback can be used to register for various EUI API events, such as when the
graphical interface exits or when a new map is opened. OVwAddCallback is called with an event type, a
function conforming to the callback type for the indicated event type, and an optional filter based on capa-
bility field values. See “OVwMapOpenCB(3)” on page 761 for an example of registering for an EUI API
event. The EUI API events and the corresponding callbacks are defined in the header file <OV/ovw.h>
and described in “OVwEventIntro(5)” on page 691.

Applications can also register to receive notification when an action registered by the application through
an application registration file is invoked by an user. An action is invoked when the user selects a menu
item or double-clicks on an executable symbol. The routine OVwAddActionCallback is used to register
callback functions to be called when an action is requested.

The following routines are used to register callbacks for EUI API events and actions:

OVwAddCallback Add a callback for an EUI API event

OVwRemoveCallback Remove a callback for an EUI API event

Table 18. Return Codes

Type of Return Code Code for Success Code for Failure

Integer value 0 (zero) −1

Pointer Valid pointer NULL

ID values Valid ID NULL ID

Note: The macro OVwIsIdNull should be used to check for a NULL ID value.

 Chapter 2. Reference Pages 563

 OVwApiIntro(5)

OVwAddActionCallback Add a callback for an action request

OVwRemoveActionCallback Remove a callback for an action request

In order for events to be received from the NetView for AIX program, an application must register for the
events and enter an event processing loop after finishing initialization. An application can use one of the
following approaches:

� An application that needs to process X events can call OVwXtMainLoop or OVwXtAppMainLoop.
These calls will enable an application to get both NetView for AIX events and X events. Use
XtAddInput to include the NetView for AIX input source and then call XtMainLoop or XtAppMainLoop.
Use OVwXtAddInput or OVwXtAppAddInput to include additional input sources in the event processing
loop.

� An application that does not need to process X events can call OVwMainLoop to receive NetView for
AIX events. Use OVwAddInput to include additional input sources in the event processing loop.

� An application that needs to perform select(2) processing can use OVwFileDescriptor and
OVwProcessEvent to get NetView for AIX events. Most applications do not need to use these
low-level routines.

The following routines are event processing routines:

OVwMainLoop Continuously processes NetView for AIX events

OVwAddInput Adds a callback for input on a file descriptor for use with OVwMainLoop

OVwRemoveInput Removes a callback for input on a file descriptor for use with
OVwMainLoop

OVwPeekOVwEvent Determines whether a particular NetView for AIX event is pending

OVwPeekInputEvent Determines whether a particular input event is pending

OVwXtMainLoop Continuously processes X and NetView for AIX events

OVwXtAppMainLoop Continuously processes X and NetView for AIX events

OVwXtAddInput Adds a callback for input on a file descriptor for use with
OVwXtMainLoop or OVwXtAppMainLoop

OVwXtAppAddInput Removes a callback for input on a file descriptor for use with
OVwXtMainLoop or OVwXtAppMainLoop

OVwPending Determines whether any NetView for AIX event is pending

OVwProcessEvent Processes the next NetView for AIX event

OVwFileDescriptor Gets the NetView for AIX input file descriptor

General Routines :

The following routines are general routines:

OVwGetAppName Gets the name of the calling application

OVwGetSelections Gets the current object selection list

OVwHighlightObject Highlights an object on the open map

OVwHighlightObjects Highlights objects on the open map

OVwShowHelp Displays an application help screen

OVwAlertMsg Generates an alert message

564 Programmer's Reference

 OVwApiIntro(5)

Object Routines: The routines that access the OVW object database all begin with the prefix OVwDb
and are defined in the <OV/ovw_obj.h> header file. These routines provide access to global object infor-
mation; they are not map-specific.

When testing or comparing object IDs and field IDs, use the macros OVwIsIdNull and OVwIsIdEqual.

A field can be created either through a field registration file or the OVwCreateField routine. The
OVwCreateField routine is not needed for fields registered through a field registration file.

The following routines are field routines:

OVwDbCreateField Creates a new field

OVwDbDeleteField Deletes a field

OVwDbGetFieldInfo Gets field information

OVwDbFreeFieldInfo Frees field information

OVwDbListFields Gets a list of fields

OVwDbFreeFieldList Frees a list of fields

OVwDbFieldNameToFieldId Converts field name to field ID

OVwDbFieldIdToFieldName Converts field ID to field name

OVwDbGetEnumConstants Gets name constants for an enumerated type

OVwDbFreeEnumConstants Frees name constants for an enumerated type

OVwDbSetEnumConstants Sets name constants for an enumerated type

OVwDbAppendEnumConstants Appends name constants for an enumerated type

OVwDbGetEnumValue Converts a name constant to an enumerated type value

OVwDbGetEnumName Converts an enumerated type value to a name constant

An object can be created directly through one of the object creation routines. An object can also be
created indirectly through the symbol creation routines, which do automatic object creation.

The following routines are object routines:

OVwDbCreateObject Creates a graphical interface object

OVwDbCreateObjectBySelectionName Creates a graphical interface object with a selection name

OVwDbCreateObjectByHostname Creates a graphical interface object with an IP hostname

OVwDbDeleteObject Deletes a graphical interface object

The following routines are object routines that access fields:

OVwDbGetFieldValue Gets a particular field value for an object

OVwDbFreeFieldValue Frees a field value

OVwDbGetFieldValues Gets a list of all field values for an object

OVwDbFreeFieldBindList Frees a field value list

OVwDbGetCapabilityFieldValues Gets a list of capability field values for an object

OVwDbGetNameFieldValues Gets a list of name field values for an object

OVwDbSetFieldValue Sets the value of a field for an object

 Chapter 2. Reference Pages 565

 OVwApiIntro(5)

OVwDbSetSelectionName Sets the selection name of an object

OVwDbSetHostname Sets the IP hostname of an object

OVwDbUnsetFieldValue Removes the value of a field for an object

OVwDbUnsetFieldValues Removes the values for a list of fields for an object

OVwDbGetUniqObjectName Gets a unique value for a name field

OVwDbNameToObjectId Converts a name field value to object ID

OVwDbListObjectsByFieldValue Locates all objects with a field value

OVwDbListObjectsByFieldValues Locates all objects with field values

OVwDbFreeObjectIdList Frees an object ID list

OVwDbGetFieldValuesByObjects Gets the value of a field for each object

OVwDbFreeObjectFieldList Frees an object field list

OVwDbSelectionNameToObjectId Converts selection name to object ID

OVwDbObjectIdToSelectionName Converts object ID to selection name

OVwDbHostnameToObjectId Converts IP hostname to object ID

OVwDbObjectIdToHostname Converts object ID to IP hostname

Symbol Type Routines: The following routines are symbol type routines:

OVwListSymbolTypes Gets a list of all registered symbol types

OVwListSymbolTypeCaps Gets the default capabilities for a symbol type

The symbol type routines enable you to programmatically determine which symbol type to use for dis-
playing an object, based on the default capabilities that are associated with that symbol type.

Map Routines: Users create maps and control their opening and closing through the graphical inter-
face. Through application configuration and use of the manage and unmanage operations, users control
what information about the management environment will be displayed by map applications on a map.
Users can also edit the map to supplement or modify information presented by applications.

A map contains submaps, which, in turn, contain symbols. An object appears on a map by being repres-
ented by a symbol on that map. However, in certain cases, an object can exist on a map without being
represented by a symbol on the map.

When testing or comparing submap IDs and symbol IDs, use the macros OVwIsIdNull and OVwIsIdEqual.

There are a number of EUI API events that an application can receive to monitor changes in the map.
See “OVwEventIntro(5)” on page 691 for a complete list.

The following map routines operate only on an open map:

OVwGetMapInfo Gets map information

OVwCopyMapInfo Copies map information

OVwFreeMapInfo Frees map information

OVwBeginMapSync Begins the map synchronization phase

OVwEndMapSync Ends the map synchronization phase

OVwAckMapClose Acknowledges a map close event

566 Programmer's Reference

 OVwApiIntro(5)

OVwGetAppConfigValues Gets application configuration values for a map

OVwSetAppConfigValues Sets application configuration values for a map

The following routines are submap routines:

OVwCreateSubmap Creates a submap

OVwDeleteSubmap Deletes a submap

OVwGetSubmapInfo Gets submap information

OVwFreeSubmapInfo Frees submap information

OVwListSubmaps Gets a list of submaps

OVwFreeSubmapList Frees a list of submaps

OVwDisplaySubmap Displays a submap

OVwSetSubmapName Sets the name of a submap

OVwSetBackgroundGraphic Sets the background graphic for a submap

OVwClearBackgroundGraphic Clears the background graphic for a submap

The following routines are the symbol routines:

OVwCreateSymbol Creates a symbol

OVwCreateSymbols Creates multiple symbols

OVwCreateSymbolByName Creates a symbol with an object name

OVwCreateSymbolBySelectionName Creates a symbol with a selection name

OVwCreateSymbolByHostname Creates a symbol with an IP hostname

OVwCreateComponentSymbol Creates a component symbol

OVwCreateComponentSymbolByName
Creates a component symbol with an object name

OVwCreateConnSymbol Creates a connection symbol

OVwCreateConnSymbolByName Creates a connection symbol with an object name

OVwDeleteSymbol Deletes a symbol

OVwDeleteSymbols Deletes multiple symbols

OVwGetSymbolInfo Gets symbol information

OVwFreeSymbolInfo Frees symbol information

OVwGetConnSymbol Gets a connection symbol

OVwGetSymbolsByObject Gets a list of symbols representing an object

OVwListSymbols Gets a list of symbols on a submap

OVwFreeSymbolList Frees a symbol list

OVwSetStatusOnSymbol Sets the status of a symbol

OVwSetStatusOnSymbols Sets the status of multiple symbols

OVwSetSymbolStatusSource Sets the status source of a symbol

OVwSetSymbolLabel Sets the label of a symbol

OVwSetSymbolApp Expresses application interest in a symbol

 Chapter 2. Reference Pages 567

 OVwApiIntro(5)

OVwClearSymbolApp Clears application interest in a symbol

OVwSetSymbolType Changes the symbol type of a symbol

OVwSetSymbolPosition Moves a symbol

OVwSetSymbolBehavior Makes a symbol explodable or executable

The OVwObjectInfo structure, defined in the <OV/ovw.h> header file, describes an object as it exists on a
particular map.

The following routines are map-specific object routines:

OVwGetObjectInfo Gets map-specific object information

OVwFreeObjectInfo Frees map-specific object information

OVwListObjectsOnMap Gets a list of objects on the open map

OVwFreeObjectList Frees an object list

OVwSetStatusOnObject Sets the status of an object

OVwSetStatusOnObjects Sets the status of multiple objects

Map Editing: Some user-editing operations, such as managing or unmanaging an object or moving a
symbol, cause a notification event to be sent to applications that have registered for the event. See
“OVwEventIntro(5)” on page 691 for a list of these events.

Other user-editing operations allow application validation of the operation to ensure its semantic correct-
ness. This is accomplished by the following interaction:

1. The NetView for AIX program generates a query event, such as ovwQueryAddSymbol.

2. An application responds by calling a verification routine, such as OVwVerifyAdd.

3. The NetView for AIX program generates a final confirm event, such as ovwConfirmAddSymbol, to
notify the application of the operation results. See “OVwVerifyAdd(3)” on page 833 for more details
about this interaction.

See the NetView for AIX Programmer's Guide for more information on the query-verify-confirm sequence.

The following routines are map editing verification routines:

OVwVerifyAdd Verifies user add of an object

OVwVerifyConnect Verifies user connect of two symbols

OVwVerifyDescribeChange Verifies user change of object description information

OVwVerifyDeleteSymbol Verifies user delete of symbols

OVwVerifyAppConfigChange Verifies user change of application configuration values

568 Programmer's Reference

 OVwApiIntro(5)

Header Files:

<OV/ovw.h> This header file is the main header file for the EUI API. It defines most of the
EUI API structures and routines. If includes the following header files:

 � <OV/ovw_types.h>
 � <OV/ovw_obj.h>
 � <OV/ovw_errs.h>
 � <OV/ovw_string.h>

Because it includes other header files, the <OV/ovw.h> header file is the only
header file that you need to include to use the EUI API, unless you are using
programmatic application registration.

<OV/ovw_errs.h> This header file defines the error codes returned by OVwError.

<OV/ovw_fields.h> This header file defines string constants for predefined fields registered in the
field registration file /usr/OV/lib/fields/c/ovw_fields.

<OV/ovw_obj.h> This header file defines structures and routines for accessing the OVW object
database.

<OV/ovw_reg.h> This header file defines routines for performing programmatic application regis-
tration. Because file registration can be used to do application registration, few
applications will need to use these routines.

<OV/ovw_string.h> This header file defines string constants useful for developers. It includes the
<OV/ovw_fields.h> and <OV/sym_types.h> header files.

<OV/ovw_types.h> This header file defines some basic types for the EUI API, such as
OVwBoolean and OVwStatusType. It also defines the macros OVwIsIdEqual
and OVwIsIdNull for testing and comparing IDs.

<OV/sym_types.h> This header file defines string constants for predefined symbol types registered
in certain symbol type registration files in the /usr/OV/lib/symbols/c directory.

 Files
<OV/ovw.h> Header file for the EUI API

<OV/ovw_errs.h> Header file for the EUI API errors

<OV/ovw_fields.h> Header file for predefined fields

<OV/ovw_obj.h> Header file for object database routines

<OV/ovw_reg.h> Header file for application registration

<OV/ovw_string.h> Header file defining string constants

<OV/ovw_types.h> Header file for certain EUI API types

<OV/sym_types.h> Header file for predefined symbol types

/usr/OV/bitmaps/* Symbol type bitmap directories

/usr/OV/databases/mapdb/* Map database directories

/usr/OV/databases/ovwdb/* Object database directories

/usr/OV/fields/* Field registration directories

 Chapter 2. Reference Pages 569

 OVwApiIntro(5)

/usr/OV/help/* Online help directories

/usr/OV/registration/* Application registration directories

/usr/OV/symbols/* Symbol type registration directories

 Libraries

When compiling a program that uses the EUI API, link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
 � See ovwdb(8).
� See “OVwAckMapClose(3)” on page 528.
� See “OVwAckUserSubmapCreate(3)” on page 530.
� See “OVwCreateAction(3)” on page 603.
� See “OVwAddActionCallback(3)” on page 532.
� See “OVwAddAlertCallback(3)” on page 535.
� See “OVwAddCallback(3)” on page 539.
� See “OVwAddHelpCallback(3)” on page 541.
� See “OVwAddInput(3)” on page 543.
� See “OVwAddMenuItem(3)” on page 545.
� See “OVwAddMenuItemFunction(3)” on page 547.
� See “OVwAddObjMenuItem(3)” on page 550.
� See “OVwAddToolPalItem(3)” on page 555.
� See “OVwAlertMsg(3)” on page 558.
� See “OVwCreateApp(3)” on page 607.
� See “OVwBeginMapSync(3)” on page 573.
� See “OVwConfirmCapabilityChangeCB(3)” on page 580.
� See “OVwConfirmCreateObjectsCB(3)” on page 582.
� See “OVwConfirmCreateSubmapsCB(3)” on page 584.
� See “OVwConfirmCreateSymbolsCB(3)” on page 586.
� See “OVwConfirmDeleteObjectsCB(3)” on page 588.
� See “OVwConfirmDeleteSubmapsCB(3)” on page 590.
� See “OVwConfirmHideSymbolsCB(3)” on page 594.
� See “OVwConfirmManageObjectsCB(3)” on page 596.
� See “OVwConfirmMoveSymbolCB(3)” on page 599.
� See “OVwConfirmObjectStatusCB(3)” on page 601.
� See “OVwCreateSubmap(3)” on page 619.
� See “OVwCreateSymbol(3)” on page 623.
� See “OVwDbAppendEnumConstants(3)” on page 633.
� See “OVwDbCreateField(3)” on page 635.
� See “OVwDbCreateObject(3)” on page 638.
� See “OVwDbDeleteObject(3)” on page 641.
� See “OVwDbFieldNameToFieldId(3)” on page 643.
� See “OVwDbGetFieldInfo(3)” on page 648.
� See “OVwDbGetFieldValue(3)” on page 650.
� See “OVwDbGetFieldValues(3)” on page 654.
� See “OVwDbGetFieldValuesByObjects(3)” on page 656.
� See “OVwDbGetUniqObjectName(3)” on page 658.

570 Programmer's Reference

 OVwApiIntro(5)

� See “OVwDbHostnameToObjectId(3)” on page 660.
� See “OVwDbInit(3)” on page 662.
� See “OVwDbListFields(3)” on page 664.
� See “OVwDbListObjectsByFieldValue(3)” on page 667.
� See “OVwDbNameToObjectId(3)” on page 670.
� See “OVwDbSelectionNameToObjectId(3)” on page 672.
� See “OVwDbSetEnumConstants(3)” on page 674.
� See “OVwDbSetFieldValue(3)” on page 676.
� See “OVwDbSetSelectionName(3)” on page 679.
� See “OVwDbUnsetFieldValue(3)” on page 681.
� See “OVwDisplaySubmap(3)” on page 683.
� See “OVwDone(3)” on page 685.
� See “OVwEndSessionCB(3)” on page 686.
� See “OVwError(3)” on page 688.
� See “OVwErrorMsg(3)” on page 689.
� See “OVwFileDescriptor(3)” on page 694.
� See “OVwFindMenuItem(3)” on page 696.
� See “OVwGetAppConfigValues(3)” on page 698.
� See “OVwGetAppName(3)” on page 701.
� See “OVwGetConnSymbol(3)” on page 702.
� See “OVwGetFirstAction(3)” on page 706.
� See “OVwGetFirstMenuItem(3)” on page 708.
� See “OVwGetFirstMenuItemFunction(3)” on page 710.
� See “OVwGetFirstRegContext(3)” on page 717.
� See “OVwGetMapInfo(3)” on page 719.
� See “OVwGetMenuItemPath(3)” on page 721.
� See OVwSetMenuPathSeparator in “OVwGetMenuPathSeparator(3)” on page 723.
� See “OVwGetObjectInfo(3)” on page 725.
� See “OVwGetRegContext(3)” on page 729.
� See “OVwGetSelections(3)” on page 731.
� See “OVwGetSubmapInfo(3)” on page 733.
� See “OVwGetSymbolInfo(3)” on page 735.
� See “OVwGetSymbolsByObject(3)” on page 737.
� See “OVwHighlightObject(3)” on page 739.
� See “OVwInit(3)” on page 741.
� See “OVwIsIdNull(3)” on page 743.
� See “OVwListObjectsOnMap(3)” on page 745.
� See “OVwListSubmaps(3)” on page 747.
� See “OVwListSymbols(3)” on page 750.
� See “OVwListSymbolTypes(3)” on page 753.
� See “OVwLockRegUpdates(3)” on page 755.
� See “OVwMainLoop(3)” on page 757.
� See “OVwMapCloseCB(3)” on page 759.
� See “OVwMapOpenCB(3)” on page 761.
� See “OVwCreateMenuItem(3)” on page 613.
� See “OVwCreateMenu(3)” on page 611.
� See “OVwPeekOVwEvent(3)” on page 763.
� See “OVwPending(3)” on page 765.
� See “OVwProcessEvent(3)” on page 767.
� See “OVwRenameRegContext(3)” on page 795.
� See “OVwSelectListChangeCB(3)” on page 799.
� See “OVwSetBackgroundGraphic(3)” on page 801.
� See “OVwSetStatusOnObject(3)” on page 803.
� See “OVwSetSubmapName(3)” on page 806.

 Chapter 2. Reference Pages 571

 OVwApiIntro(5)

� See “OVwSetSymbolApp(3)” on page 808.
� See “OVwSetSymbolBehavior(3)” on page 810.
� See “OVwSetSymbolLabel(3)” on page 813.
� See “OVwSetSymbolPosition(3)” on page 815.
� See “OVwSetSymbolStatusSource(3)” on page 820.
� See “OVwSetSymbolType(3)” on page 822.
� See “OVwShowHelp(3)” on page 825.
� See “OVwSubmapCloseCB(3)” on page 827.
� See “OVwSubmapOpenCB(3)” on page 829.
� See “OVwUserSubmapCreateCB(3)” on page 831.
� See “OVwVerifyAdd(3)” on page 833.
� See “OVwVerifyAppConfigChange(3)” on page 839.
� See “OVwVerifyConnect(3)” on page 842.
� See “OVwVerifyDeleteSymbol(3)” on page 846.
� See “OVwVerifyDescribeChange(3)” on page 849.
� See “OVwXtAddInput(3)” on page 852.
� See “OVwXtMainLoop(3)” on page 855.
� See “OVwEventIntro(5)” on page 691.
� See “OVwRegIntro(5)” on page 769.
� See NetView for AIX Application Interface Style Guide.
� See NetView for AIX Programmer's Guide.
� See NetView for AIX User's Guide for Beginners.

572 Programmer's Reference

 OVwBeginMapSync(3)

 OVwBeginMapSync(3)

 Purpose

Begins map synchronization phase

 Related Functions
 OVwEndMapSync

 Syntax

#include <OV/ovw.h>

int OVwBeginMapSync(OVwMapInfo \map);

int OVwEndMapSync(OVwMapInfo \map);

 Description

OVwBeginMapSync marks the beginning of a synchronization phase that typically occurs when a map is
opened. When a map is opened, a map application will normally update it to reflect status and topology
changes that have occurred since the last time the map was closed. Calling OVwBeginMapSync will
result in an indication on the status line below the graphical interface windows that map synchronization is
in progress. During this period, map information might not yet be up-to-date.

OVwEndMapSync marks the end of the map synchronization phase. OVwEndMapSync should be called
once for every call to OVwBeginMapSync to clear the indication that map synchronization is in progress.

OVwBeginMapSync and OVwEndMapSync can be used by multiple applications. The map synchroniza-
tion indication is cleared when the last application calls OVwEndMapSync.

Note: If fewer calls are made to OVwEndMapSync than to OVwBeginMapSync, the map synchronization
indication will not be cleared.

 Parameters
 map

Specifies a pointer to a MapInfo structure for an open map. The map parameter can be obtained
using OVwGetMapInfo or saved from the ovwMapOpen event using OVwCopyMapInfo.

 Return Values

If successful, OVwBeginMapSync and OVwEndMapSync return 0 (zero). If unsuccessful, they return −1
(negative one).

 Error Codes

OVwBeginMapSync and OVwEndMapSync set the error code value that OVwError returns. The following
list describes the possible errors:

[OVw_CONNECTION_LOST] The connection to ovw was lost.

[OVw_MAP_NOT_OPEN] The argument map does not specify an open map.

 Chapter 2. Reference Pages 573

 OVwBeginMapSync(3)

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

 Examples

The following example is a callback routine for an ovwMapOpen event:

void
mapOpenProc(void \user_data, OVwEventType type, OVwMapInfo \map,
 OVwFieldBindList \config_params)
{
 OVwBeginMapSync(map);

/\ update status of objects and symbols on the map \/

if (map→permissions ══ ovwMapReadWrite) {
 /\

\ Update map for topology changes occurring
\ since map→last_closed_time.

 \/
 }

 OVwEndMapSync(map);
}

 Implementation Specifics

OVwBeginMapSync supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwBeginMapSync or OVwEndMapSync, link to the following
libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwGetMapInfo(3)” on page 719.
� See “OVwInit(3)” on page 741.
� See “OVwMapOpenCB(3)” on page 761.
� See “OVwApiIntro(5)” on page 560.

574 Programmer's Reference

 OVwCheckAction(3)

 OVwCheckAction(3)

 Purpose

Enables applications to check the validity of the NetView for AIX application actions

 Related Functions
 OVwDoAction

 Syntax

#include <OV/ovw.h>

OVwBoolean OVwCheckAction(char \appName, char \actionId,
 OVwObjectIdList \selections,

OVwMapInfo \map, OVwSubmapId submap);

int OVwDoAction(char \appName, char \actionId,
 OVwObjectIdList \selections,

OVwMapInfo \map, OVwSubmapId submap);

 Description

OVwCheckAction enables an application to determine whether another application's action is applicable to
the specified selection list.

OVwDoAction invokes an application action on the specified selection list.

These APIs permit applications to trigger NetView for AIX applications in the same manner in which they
are triggered from the graphical interface menu bar or from executable symbols.

 Parameters
 appName

Specifies a pointer to the name of the NetView for AIX application which defines the specified action.
If appName is NULL, it is assumed that the specified actionId is registered with the application making
the call.

 actionId
Specifies a pointer to the name of an action registered for the specified application.

 selections
Specifies a pointer to a list of target object IDs for the application action.

 map
Specifies a pointer to a MapInfo structure for the map on which the target objects are located. This
information is supplied directly to the triggered application's action callback. A NULL map is permitted
if it is not critical to the functions of the application's action. The map parameter can be obtained
using OVwGetMapInfo or saved from the ovwMapOpen event using OVwCopyMapInfo.

 submap
Specifies the ID of the submap where the target objects are located. This information is supplied
directly to the triggered application's action callback. A NULL submap ID is permitted if it is not critical
to the functions of the application's action.

 Chapter 2. Reference Pages 575

 OVwCheckAction(3)

 Return Values

If the application action is valid for the specified selections, map, and submap, OVwCheckAction returns 0.
If the application action is not valid or available, it returns -1.

If successful, OVwDoAction returns 0 (zero). If unsuccessful, it returns −1 (negative one).

 Error Codes

OVwCheckAction and OVwDoAction set the error code value that OVwError returns. The following list
describes the possible errors:

[OVw_ACTION_NOT_APPLICABLE] This error code is returned if any of the following conditions are
true.

� The objects specified by selections do not meet the selection
list requirements of the action specified by actionId. See the
registration file definition of the action to find its selection list
requirements.

� There is no command specifying the action.

� The command does not match the application's command.

[OVw_ACTION_NOT_FOUND] The action specified by actionId is not registered by the applica-
tion appName.

[OVw_APP_NOT_FOUND] The application appName is not a registered application.

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MAP_NOT_OPEN] The argument map does not specify an open map.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_SUBMAP_NOT_FOUND] The submap specified by submap does not exist on the open
map.

 Examples

The following example illustrates how the calls might be used to invoke another NetView for AIX applica-
tion on a list of objects.

/\ If OK \/
if (OVwCheckAction(“Node Configuration Application”,

“Configure”, selections, mapInfo, submapId) < ð) {
fprintf(stderr, “Failure: %s\n”, OVwErrorMsg(OVwError()));

 return –1;
}
/\ Do It \/
else if (OVwDoAction(“Node Configuration Application”,

“Configure”, selections, mapInfo, submapId) < ð) {
fprintf(stderr, “Failure: %s\n”, OVwErrorMsg(OVwError()));

 return –1;
}

576 Programmer's Reference

 OVwCheckAction(3)

 Implementation Specifics

OVwCheckAction supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwCheckAction or OVwDoAction, link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

 Chapter 2. Reference Pages 577

 OVwConfirmAcknowledgeObjectsCB(3)

 OVwConfirmAcknowledgeObjectsCB(3)

 Purpose

Functions as a callback for an acknowledge or unacknowledge object event

 Related Functions
 OVwConfirmUnacknowledgeObjectsCB

 Syntax

#include <OV/ovw.h>

void (\OVwConfirmAcknowledgeObjectsCB) (void \userData, OVwEvntType type,

OVwMapInfo \map, OVwObjectList \objectList);

void (\OVwConfirmUnacknowledgeObjectsCB) (void \userData, OVwEventType type,

OVwMapInfo \map, OVwObjectList \objectList);

 Description

OVwConfirmAcknowledgeObjectsCB and OVwConfirmUnacknowledgeObjectsCB are invoked in applica-
tions that have registered them whenever an acknowledge or unacknowledge operation is selected by the
user. See “OVwApiIntro(5)” on page 560 for an overview of the EUI API including the role of the asyn-
chronous NetView for AIX events.

An application that needs to be notified when an object is acknowledged or unacknowledged should reg-
ister these callbacks by using the OVwAddCallback function call, using ovwConfirmAcknowledgeObjects
and ovwConfirmUnacknowledgeObjects as the event types.

The scope of the acknowledge and the unacknowledge operation is the open map. If the user selects an
object on a map and then acknowledges that object, all symbols for that object on that map are acknowl-
edged. But the operation does not cross maps, so symbols for that object in other maps will remain
unacknowledged. The same is true for the unacknowledge operation.

The NetView for AIX program will send an ovwConfirmAcknowledgeObjects or
ovwConfirmUnacknowledgeObjects event each time the user acknowledges or unacknowledges an object.

 Parameters
 map

Specifies a pointer to the MapInfo structure for the open map. The map parameter can be obtained
using OVwGetMapInfo or saved from the ovwMapOpen event using OVwCopyMapInfo.

 objectList
Specifies a pointer to a list of objects that have been acknowledged or unacknowledged.

 type
Specifies the type of NetView for AIX event that caused this callback to be invoked, namely
ovwConfirmAcknowledgeObjects or ovwConfirmUnacknowledgeObjects. This is useful if one callback
handles multiple events.

578 Programmer's Reference

 OVwConfirmAcknowledgeObjectsCB(3)

 userData
Specifies a pointer to the user data registered for the callback.

 Examples

The following example illustrates how to register to receive notifications from managed operations:

void
acknowledgeObjectsProc(char \userData, OVwEventType type,

OVwMapInfo \map, OVwObjectList \objectList)
{
/\ process notification here \/

}

OVwAddCallback(ovwConfirmAcknowledgeObjects, NULL,

(OVwCallbackProc) manageObjectsProc, NULL);

 Implementation Specifics

OVwConfirmAcknowledgeObjectsCB and OVwConfirmUnacknowledgeObjectsCB support single-byte and
multibyte character code sets.

 Libraries

When compiling a program that uses OVwConfirmAcknowledgeObjectsCB or
OVwConfirmUnacknowledgeObjectsCB, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwAddCallback(3)” on page 539.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 579

 OVwConfirmCapabilityChangeCB(3)

 OVwConfirmCapabilityChangeCB(3)

 Purpose

Functions as a callback for an object capability-change event

 Syntax

#include <OV/ovw.h>

void (\OVwConfirmCapabilityChangeCB) (void \userData,

OVwEventType type, OVwMapInfo \map, OVwObjectList \objectList);

 Description

OVwConfirmCapabilityChangeCB handles events sent to applications that have registered to receive them
when new capability fields have been set for an object. These fields are set for an object when the
symbol type is set for a symbol representing the object. See “OVwApiIntro(5)” on page 560 for an over-
view of the EUI API including the role of the asynchronous NetView for AIX events.

To receive an event indicating that new capability fields have been set for an object, use OVwAddCallback
to register a callback function of type OVwConfirmCapabilityChangeCB to be called when an
ovwConfirmCapabilityChange event is generated.

In a symbol type registration file, it is possible to define default capability-field values for a symbol type.
These capability-field values can be automatically set for an object when a symbol of the object has the
given symbol type. Default capabilities for an object can be set based on symbol type in the following
ways:

� Calling OVwCreateSymbol or one of its related functions with the ovwMergeDefaultCapabilities flag set
� Calling OVwSetSymbolType with the ovwMergeDefaultCapabilities flag set
� Changing the symbol type of a symbol by using the graphical interface

In these cases, the existing field values of an object are not changed. A default field value is set for an
object only if the object currently has no value set for that field.

The capability-change event enables an application to verify that a capability field value, set for an object
based on the symbol type, is valid for a particular object. The field_values field of OVwObjectInfo struc-
tures returned for each object by this event contains a complete list of the capability fields set for the
object, including an indication of which new field values have been set (the modified flag of the
OVwFieldValue structure).

Note: The ovwConfirmCapabilityChange event provides notification of capability field changes based on
only setting the symbol type; it is not a general event for all capability-field changes. Capability field
values can also change through the Add Object editing operation (see “OVwVerifyAdd(3)” on page 833),
the Describe Object editing operation (see “OVwVerifyDescribeChange(3)” on page 849), and direct
updates (see “OVwDbSetFieldValue(3)” on page 676). If capability-field values are changed by another
application using OVwDbSetFieldValue, no notification event is generated.

580 Programmer's Reference

 OVwConfirmCapabilityChangeCB(3)

 Parameters
map

Specifies a pointer to a MapInfo structure for the open map on which the event occurred. The map
parameter can be obtained using OVwGetMapInfo or saved from the ovwMapOpen event using
OVwCopyMapInfo.

objectList
Specifies a pointer to a list of objects with new capability fields set.

 type
Specifies the type of event that caused this callback to be invoked, namely
ovwConfirmCapabilityChange. This parameter is useful if one callback handles multiple events.

 userData
Specifies a pointer to the user data registered for the callback.

 Implementation Specifics

OVwConfirmCapabilityChangeCB supports single-byte and multibyte character code sets.

 Libraries

When compiling a program that uses OVwConfirmCapabilityChangeCB, you need to link to the following
libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwAddCallback(3)” on page 539.
� See “OVwCreateSymbol(3)” on page 623.
� See “OVwDbSetFieldValue(3)” on page 676.
� See “OVwSetSymbolType(3)” on page 822.
� See “OVwVerifyAdd(3)” on page 833.
� See “OVwVerifyDescribeChange(3)” on page 849.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

 Chapter 2. Reference Pages 581

 OVwConfirmCreateObjectsCB(3)

 OVwConfirmCreateObjectsCB(3)

 Purpose

Functions as a callback for a create-object event

 Syntax

#include <OV/ovw.h>

void (\OVwConfirmCreateObjectsCB) (void \userData,

OVwEventType type, OVwMapInfo \map, OVwObjectList \objectList);

 Description

OVwConfirmCreateObjectsCB handles events sent to applications that have registered to receive them
when an object is created on the open map. An object is created on a map when the first map symbol
representing the object is created or when a submap that has a parent object, which is not yet repres-
ented by a symbol on the map, is created. See “OVwApiIntro(5)” on page 560 for an overview of the EUI
API including the role of the asynchronous NetView for AIX events.

An application that needs to be notified when an object is created on the open map must register for this
callback, using the OVwAddCallback function call and using ovwConfirmCreateObjects as the event type.

 Parameters
map

Specifies a pointer to the MapInfo structure for the open map. The map parameter can be obtained
using OVwGetMapInfo or saved from the ovwMapOpen event using OVwCopyMapInfo.

objectList
Specifies a pointer to the list of created objects.

type
Specifies the event which invoked the callback, namely ovwConfirmCreateObjects. This field is useful
if one callback handles multiple events.

userData
Specifies a pointer to the user data registered for the callback

 Implementation Specifics

OVwConfirmCreateObjectCB supports single-byte and multibyte character code sets.

 Libraries

When compiling a program that uses OVwConfirmCreateObjectsCB, you need to link to the following
libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

582 Programmer's Reference

 OVwConfirmCreateObjectsCB(3)

 Related Information
 � See ovw(1).
� See “OVwAddCallback(3)” on page 539.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 583

 OVwConfirmCreateSubmapsCB(3)

 OVwConfirmCreateSubmapsCB(3)

 Purpose

Functions as a callback for a create-submap event

 Syntax

#include <OV/ovw.h>

void (\OVwConfirmCreateSubmapsCB) (void \userData, OVwEventType type,

OVwMapInfo \map, OVwSubmapList \submapList);

 Description

OVwConfirmCreateSubmapsCB manages events sent to applications that have registered to receive them
when a submap is created on the open map. The NetView for AIX program will generate the
ovwConfirmCreateSubmaps event when the user or an application creates a submap. See
“OVwApiIntro(5)” on page 560 for an overview of the EUI API including the role of the asynchronous
NetView for AIX events.

For an application to be notified when a submap is created on the open map, the application should reg-
ister for this callback by using the OVwAddCallback function call and ovwConfirmCreateSubmaps as the
event type.

 Parameters
 map

Specifies a pointer to the MapInfo structure for the open map. The map parameter can be obtained
using OVwGetMapInfo or saved from the ovwMapOpen event using OVwCopyMapInfo.

 submapList
Specifies a pointer to the list of created submaps.

 type
Specifies the event that invoked the callback, namely ovwConfirmCreateSubmaps. This field is useful
if one callback handles multiple events.

 userData
Specifies a pointer to the user data registered for the callback.

 Implementation Specifics

OVwConfirmCreateSubmapsCB supports single-byte and multibyte character code sets.

 Libraries

When compiling a program that uses OVwConfirmCreateSubmapsCB, you need to link to the following
libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

584 Programmer's Reference

 OVwConfirmCreateSubmapsCB(3)

 Related Information
 � See ovw(1).
� See “OVwAddCallback(3)” on page 539.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 585

 OVwConfirmCreateSymbolsCB(3)

 OVwConfirmCreateSymbolsCB(3)

 Purpose

Functions as a callback for a create symbol event

 Syntax

#include <OV/ovw.h>

void (\OVwConfirmCreateSymbolsCB) (void \userData, OVwEventType type, OVwMapInfo \map,
 OVwSymbolList \symbolList);

 Description

OVwConfirmCreateSymbolsCB handles events sent to applications that have registered to receive them
when a symbol is created on the open map. The NetView for AIX program will generate the
ovwConfirmCreateSymbols event when the user or an application creates a symbol. See “OVwApiIntro(5)”
on page 560 for an overview of the EUI API including the role of the asynchronous NetView for AIX
events.

For an application to be notified when a symbol is created on the open map, the application should reg-
ister for this callback by using the OVwAddCallback function call and ovwConfirmCreateSymbols as the
event type.

 Parameters
 map

Specifies a pointer to the MapInfo structure for the open map

 symbolList
Specifies a pointer to the list of created symbols.

 type
Specifies the event that invoked the callback, namely ovwConfirmCreateSymbols. This field is useful if
one callback handles multiple events.

 userData
Specifies a pointer to the user data registered for the callback.

 Implementation Specifics

OVwConfirmCreateSymbolsCB supports single-byte and multibyte character code sets.

 Libraries

When compiling a program that uses OVwConfirmCreateSymbolsCB, you need to link to the following
libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

586 Programmer's Reference

 OVwConfirmCreateSymbolsCB(3)

 Related Information
 � See ovw(1).
� See “OVwAddCallback(3)” on page 539.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 587

 OVwConfirmDeleteObjectsCB(3)

 OVwConfirmDeleteObjectsCB(3)

 Purpose

Functions as a callback for a delete-object event

 Syntax

#include <OV/ovw.h>

void (\OVwConfirmDeleteObjectsCB) (void \userData, OVwEventType type,

OVwMapInfo \map, OVwObjectList \objectList);

 Description

OVwConfirmDeleteObjectsCB manages events sent to applications that have registered to receive them
when an object is deleted from the map. An object is deleted from the map when the last symbol of the
object is deleted. See “OVwApiIntro(5)” on page 560 for an overview of the EUI API, including the role of
the asynchronous NetView for AIX events.

For an application to be notified when a delete operation is selected by the user or another application, the
application should register for this callback, using the OVwAddCallback function call and
ovwConfirmDeleteObjects as the callback type.

This delete event is generated as a result of the user or another application deleting symbols or submaps
from the map.

If the last symbol for a given object is deleted, the graphical interface deletes that object and sends an
ovwConfirmDeleteObjects event. For an ovwConfirmDeleteObjects event, there is no
ovwQueryDeleteObject event. This is because applications do not have the opportunity to reject an
object-delete operation. When an object is deleted from a map, the graphical interface sends an
ovwConfirmDeleteObject event to applications that are registered to receive it. The
OVwConfirmDeleteObjectsCB routine must then check the op_scope field of the OVwObjectInfo structure
to determine the scope of the operation. That field can have one of two values: ovwOpenMapScope or
ovwAllMapsScope. In the case of ovwOpenMapScope, the callback routine needs to update its current
structures to reflect this delete. For ovwAllMapsScope, however, it must delete that object from its data-
base.

The application must ensure that the object is removed from the object database. If the op_scope field is
ovwAllMapsScope, the application must unset all the fields of the object that it set and then delete the
object from the object database. See “OVwDbDeleteObject(3)” on page 641 for more details.

How the OVwConfirmDeleteObjectsCB manages this event depends on the implementation of the applica-
tion. If there is a central database serving multiple instances of the application (not necessarily simultane-
ously), the ovwAllMapsScope scope is an indicator that the object no longer resides on any map so it
should be removed from that central database. The ovwOpenMapScope means that the object is still on
another map and there is the possibility that another instance of this application will still need that object to
reside in the database.

588 Programmer's Reference

 OVwConfirmDeleteObjectsCB(3)

 Parameters
 map

Specifies a pointer to the MapInfo structure for the open map. The map parameter can be obtained
using OVwGetMapInfo or saved from the ovwMapOpen event using OVwCopyMapInfo.

 objectList
Specifies a pointer to a list of the objects deleted.

 type
Specifies the type of event that caused the callback to be invoked, namely ovwConfirmDeleteObjects.
This field is useful if one callback handles multiple events. This field is useful if one callback handles
multiple event types.

 userData
Specifies a pointer to the user data registered for the callback.

 Implementation Specifics

OVwConfirmDeleteObjectsCB supports single-byte and multibyte character code sets.

 Libraries

When compiling a program that uses OVwConfirmDeleteObjectsCB, you need to link to the following
libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwAddCallback(3)” on page 539.
� See OVwConfirmDeleteSymbolsCB in “OVwVerifyDeleteSymbol(3)” on page 846.
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

 Chapter 2. Reference Pages 589

 OVwConfirmDeleteSubmapsCB(3)

 OVwConfirmDeleteSubmapsCB(3)

 Purpose

Functions as a callback for a delete submap event

 Syntax

#include <OV/ovw.h>

void (\OVwConfirmDeleteSubmapsCB) (void \userData, OVwEventType type,

OVwMapInfo \map, OVwSubmapList \submapList);

 Description

OVwConfirmDeleteSubmapsCB handles events sent to applications that have registered to receive them
when an submap is deleted from the map. An submap is deleted from the map when the last symbol of
the submap is deleted. See “OVwApiIntro(5)” on page 560 for an overview of the EUI API including the
role of the asynchronous NetView for AIX events.

For an application to be notified when a submap is deleted from the open map, the application should
register for this callback, using the OVwAddCallback function call, to use ovwConfirmDeleteSubmaps as
the event type.

The NetView for AIX program sends this event when the user or an application deletes a submap.

 Parameters
 map

Specifies a pointer to the MapInfo structure for the open map. The map parameter can be obtained
using OVwGetMapInfo or saved from the ovwMapOpen event using OVwCopyMapInfo.

 submapList
Specifies a pointer to the list of deleted submaps.

 type
Specifies the event type that invoked the callback, namely ovwConfirmDeleteSubmaps. This field is
useful if one callback manages multiple events.

 userData
Specifies a pointer to the user data registered for the callback.

 Implementation Specifics

OVwConfirmDeleteSubmapsCB supports single-byte and multibyte character code sets.

 Libraries

When compiling a program that uses OVwConfirmDeleteSubmapsCB, you need to link to the following
libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

590 Programmer's Reference

 OVwConfirmDeleteSubmapsCB(3)

 Related Information
 � See ovw(1).
� See “OVwAddCallback(3)” on page 539.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 591

 OVwConfirmExplodeObjectCB(3)

 OVwConfirmExplodeObjectCB(3)

 Purpose

Functions as a callback for an explode object event

 Syntax

#include <OV/ovw.h>

void (\OVwConfirmExplodeObjectCB) (void \userData, OVwEventType type,
OVwMapInfo \map, OVwObjectInfo \object);

 Description

OVwConfirmExplodeObjectCB is invoked in applications that have registered it whenever the user
explodes an object. See “OVwApiIntro(5)” on page 560 for an overview of the EUI API including the role
of the asynchronous NetView for AIX events.

An application that needs to be notified when an object is exploded should register this callback by using
the OVwAddCallback function call, using ovwConfirmExplodeObject as the event type.

An object is exploded by the user when one of its symbols is either dragged or double clicked to show the
child submap associated with that object. The event is sent to the applications even if the object does not
have a child submap or when the child submap is already opened or displayed.

The event will not be sent to the applications if the user is acting on a executable symbol or if the symbol
is in a map snapshot.

 Parameters
map

Specifies a pointer to the MapInfo structure for the open map. The map parameter can be obtained
using OVwGetMapInfo or saved from the ovwMapOpen event using OVwCopyMapInfo.

object
Specifies a pointer to the structure representing the object being exploded.

type
Specifies the type of NetView for AIX event that caused this callback to be invoked, namely
ovwConfirmExplodeObject. This is useful if one callback handles multiple events.

userData
Specifies a pointer to the user data registered for the callback.

592 Programmer's Reference

 OVwConfirmExplodeObjectCB(3)

 Examples

The following example illustrates how to register to receive notifications from managed operations:

 void
explodeObjectProc(char \userData, OVwEventType type,

OVwMapInfo \map, OVwObjectInfo \object)
 {

/\ process notification here \/
 }

 OVwAddCallback(ovwConfirmExplodeObject, NULL,
(OVwCallbackProc) explodeObjectProc, NULL);

 Implementation Specifics

OVwConfirmExplodeObjectCB support single-byte and multibyte character code sets.

 Libraries

When compiling a program that uses OVwConfirmExplodeObjectCB link to the following libraries:

 /usr/OV/lib/libovw.a

 /usr/OV/lib/libov.a

 /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwAddCallback(3)” on page 539.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 593

 OVwConfirmHideSymbolsCB(3)

 OVwConfirmHideSymbolsCB(3)

 Purpose

Functions as a callback for a hide symbol event

 Related Functions
 OVwConfirmUnhideSymbolsCB

 Syntax
#include <OV/ovw.h>

void (\OVwConfirmHideSymbolsCB) (void \userData\, OVwEventType type,

OVwMapInfo \map, OVwSymbolList \symbolList);

void (\OVwConfirmUnhideSymbolsCB) (void \userData, OVwEventType type,

OVwMapInfo \map, OVwSymbolList \symbolList);

 Description

When a symbol is hidden or unhidden, OVwConfirmHideSymbolsCB and OVwConfirmUnhideSymbolsCB
manage events sent to applications that have been registered to receive them. See “OVwApiIntro(5)” on
page 560 for an overview of the EUI API including the role of the asynchronous NetView for AIX events.

For an application to be notified when an object is hidden or unhidden, the application must be registered
for these callbacks through the OVwAddCallback function call, using ovwConfirmHideSymbols and
ovwConfirmUnhideSymbols as the event types.

 Parameters
 map

Specifies a pointer to the MapInfo structure for the open map. The map parameter can be obtained
using OVwGetMapInfo or saved from the ovwMapOpen event using OVwCopyMapInfo.

 symbolIdList
Specifies a pointer to a list of symbol IDs that have been hidden or unhidden.

 type
Specifies the type of NetView for AIX event that caused this callback to be invoked, namely
ovwConfirmHideSymbols or ovwConfirmUnhideSymbols. This is useful if one callback handles mul-
tiple events.

 userData
Specifies a pointer to the user data registered for the callback.

594 Programmer's Reference

 OVwConfirmHideSymbolsCB(3)

 Examples
� The following is an example of registering to receive notifications of hide operations.

void
hideSymbolsProc(char \userData, OVwEventType type,
 OVwSymbolIdList \symbolIdList)
{

/\ process notification here \/
}

OVwAddCallback(ovwConfirmHideSymbols, NULL,

(OVwCallbackProc) hideSymbolsProc, NULL);

 Implementation Specifics

OVwConfirmHideSymbolsCB supports single-byte and multibyte character code sets.

 Libraries

When compiling a program that uses OVwConfirmHideSymbolsCB or OVwConfirmUnhideSymbolsCB, you
need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwAddCallback(3)” on page 539.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 595

 OVwConfirmManageObjectsCB(3)

 OVwConfirmManageObjectsCB(3)

 Purpose

Functions as a callback for a manage object event

 Related Functions
 OVwConfirmUnmanageObjectsCB

 Syntax

#include <OV/ovw.h>

void (\OVwConfirmManageObjectsCB) (void \userData, OVwEventType type,

OVwMapInfo \map, OVwObjectList \objectList);

void (\OVwConfirmUnmanageObjectsCB) (void \userData, OVwEventType type,

OVwMapInfo \map, OVwObjectList \objectList);

 Description

OVwConfirmManageObjectsCB and OVwConfirmUnmanageObjectsCB are invoked in applications that
have registered them whenever a manage or unmanage operation is selected by the user. See
“OVwApiIntro(5)” on page 560 for an overview of the EUI API including the role of the asynchronous
NetView for AIX events.

An application that needs to be notified when an object is managed or unmanaged should register these
callbacks by using the OVwAddCallback function call, using ovwConfirmManageObjects and
ovwConfirmUnmanageObjects as the event types.

The scope of the manage and the unmanage operation is the open map. If the user selects an object on
a map and then manages that object, all symbols for that object on that map are managed. But the
operation does not cross maps, so symbols for that object in other maps will remain unmanaged. The
same is true for the unmanage operation.

The NetView for AIX program will send an ovwConfirmManageObjects or ovwConfirmUnmanageObjects
event each time the user manages or unmanages an object. For example, when the user performs an
unmanage operation, the op_scope field of the OVwObjectInfo structure is set to either
ovwOpenMapScope or ovwAllMapsScope, to indicate the scope of the results of the operation. If the user
unmanages an object in the open map and that object is still managed in another map, the op_scope field
is set to ovwOpenMapScope. In this case, the unmanage operation applies to only the open map.

In another example, if the user unmanages an object in the open map and the object is now unmanaged
in all maps, the op_scope field is set to ovwAllMapsScope. In this case, the unmanage operation applies
to all maps. Although the manage and unmanage operations apply only to the open map, if the operation
causes an object to be managed or unmanaged in the last map, the scope of the operation is said to be
across all maps.

These events are typically used to configure the discovery process. The discovery process is the part of
the application that discovers and monitors network objects. Your application may not have discovery and
monitoring capability, in which case these events are not needed. When no maps have a particular object
managed, then the discovery process does not need to query that object. But, if at least one map has

596 Programmer's Reference

 OVwConfirmManageObjectsCB(3)

that object managed, the discovery process is required to query that object so that status events, as well
as others, can be generated.

The manage and unmanage operations are recursive user interface operations. If a compound object is
managed or unmanaged, the NetView for AIX program will traverse all submaps below that object and
manage or unmanage any objects found in those submaps that do not have a symbol in the submap that
contains the selected compound object. Each object that is managed or unmanaged will be added to the
objectList.

 Parameters
 map

Specifies a pointer to the MapInfo structure for the open map. The map parameter can be obtained
using OVwGetMapInfo or saved from the ovwMapOpen event using OVwCopyMapInfo.

 objectList
Specifies a pointer to a list of objects that have been managed or unmanaged.

 type
Specifies the type of NetView for AIX event that caused this callback to be invoked, namely
ovwConfirmManageObjects or ovwConfirmUnmanageObjects. This is useful if one callback handles
multiple events.

 userData
Specifies a pointer to the user data registered for the callback.

 Examples

The following example illustrates how to register to receive notifications from managed operations:

void
manageObjectsProc(char \userData, OVwEventType type,

OVwMapInfo \map, OVwObjectList \objectList)
{
/\ process notification here \/

}

OVwAddCallback(ovwConfirmManageObjects, NULL,

(OVwCallbackProc) manageObjectsProc, NULL);

 Implementation Specifics

OVwConfirmManageObjectsCB and OVwConfirmUnmanageObjectsCB support single-byte and multibyte
character code sets.

 Libraries

When compiling a program that uses OVwConfirmManageObjectsCB or
OVwConfirmUnmanageObjectsCB, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Chapter 2. Reference Pages 597

 OVwConfirmManageObjectsCB(3)

 Related Information
 � See ovw(1).
� See “OVwAddCallback(3)” on page 539.
� See “OVwApiIntro(5)” on page 560.

598 Programmer's Reference

 OVwConfirmMoveSymbolCB(3)

 OVwConfirmMoveSymbolCB(3)

 Purpose

Functions as a callback for a move-symbol event

 Syntax

#include <OV/ovw.h>

void (\OVwConfirmMoveSymbolCB) (void \userData, OVwEventType type,

OVwMapInfo \map, OVwSymbolInfo \symbol);

 Description

When a move operation is selected by the user, OVwConfirmMoveSymbolCB manages events sent to
applications that have registered to receive them. See “OVwApiIntro(5)” on page 560 for an overview of
the EUI API including the role of the asynchronous NetView for AIX events.

For an application to be notified when a symbol is moved, the application should register this callback,
using the OVwAddCallback function call with ovwConfirmMove as the callback type.

When the user moves a symbol on a submap, the NetView for AIX program will send an ovwConfirmMove
event to the applications. The applications can use the new position as valid semantic data or strictly
presentation data. The OVwSymbolInfo structure contains symbol position information.

The ovwConfirmMoveSymbol event is also generated when an application makes an
OVwSetSymbolPosition call. In that case, the position information might not indicate the requested move,
depending on whether the submap is displayed and automatic layout is enabled. See
“OVwSetSymbolPosition(3)” on page 815 for more details.

The ovwConfirmMoveSymbol event is not sent to applications when the user moves a symbol from one
submap to another; the NetView for AIX program will treat the cut-and-paste operations like symbol
delete-and-add operations.

 Parameters
map

Specifies a pointer to the MapInfo structure for the open map. The map parameter can be obtained
using OVwGetMapInfo or saved from the ovwMapOpen event using OVwCopyMapInfo.

symbol
Specifies a pointer to the structure representing the symbol being moved.

type
Specifies the type of NetView for AIX event that caused this callback to be invoked, namely
ovwConfirmMoveSymbol. This is useful if one callback handles multiple events.

userData
Specifies a pointer to the user data registered for the callback.

 Implementation Specifics

OVwConfirmMoveSymbolCB supports single-byte and multibyte character code sets.

 Chapter 2. Reference Pages 599

 OVwConfirmMoveSymbolCB(3)

 Libraries

When compiling a program that uses OVwConfirmMoveSymbolCB, you need to link to the following
libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwAddCallback(3)” on page 539.
� See “OVwSetSymbolPosition(3)” on page 815.
� See “OVwApiIntro(5)” on page 560.

600 Programmer's Reference

 OVwConfirmObjectStatusCB(3)

 OVwConfirmObjectStatusCB(3)

 Purpose

Functions as a callback for a change objects status event

 Related Functions
 OVwConfirmSymbolStatusCB
 OVwConfirmCompoundStatusCB

 Syntax

#include <OV/ovw.h>

void (\OVwConfirmObjectStatusCB) (void \userData, OVwEventType type,

OVwMapInfo \map, OVwObjectList \objectList);

void (\OVwConfirmSymbolStatusCB) (void \userData, OVwEventType type,

OVwMapInfo \map, OVwSymbolList \symbolList);

void (\OVwConfirmCompoundStatusCB) (void \userData, OVwEventType type,

OVwMapInfo \map, OVwObjectList \objectList);

 Description

To receive an event indicating one of these status changes, use OVwAddCallback to register a callback
function using ovwConfirmObjectStatusChange, ovwConfirmSymbolStatusChange or
ovwConfirmCompoundStatusChange as the event type.

The ovwConfirmObjectStatusChange event is generated when an application makes a call to
OVwSetStatusOnObject that changes the status of an object or when the user initiates a manage,
unmanage, acknowledge, or unacknowledge operation.

The ovwConfirmCompoundStatusChange event is generated when the compound-status of an object is
changed. The compound-status is the status propagated to the object from symbols in its child submap
according to the selected propagation rules. The compound status of the parent object changes as a
result of one of the symbols in its child submap changing status. When the symbol in the child submap
changes status, the compound status of the parent object is recomputed and displayed as appropriate.

The ovwConfirmSymbolStatusChange event is generated when the status of a symbol is changed. This
can result from a change in the object status of its associated object, a change in the compound status of
its associated object, or a direct change in the symbol's status through OVwSetStatusOnSymbol.

 Parameters
 map

Specifies a pointer to the MapInfo structure for the open map. The map parameter can be obtained
using OVwGetMapInfo or saved from the ovwMapOpen event using OVwCopyMapInfo.

 objectList
Specifies a pointer to the list of objects that changed status.

 Chapter 2. Reference Pages 601

 OVwConfirmObjectStatusCB(3)

 symbolList
Specifies a pointer to the list of symbols that changed status.

 type
Specifies the type of NetView for AIX event that caused this callback to be invoked, namely
ovwConfirmObjectStatus, ovwConfirmSymbolStatus, or ovwConfirmCompoundStatus. This is useful if
one callback manages multiple, event types.

 userData
Specifies a pointer to the user data registered for the callback

 Implementation Specifics

OVwConfirmObjectStatusCB and its related functions support single-byte and multibyte character code
sets.

 Libraries

When compiling a program that uses OVwConfirmObjectStatusCB or one of its related functions, you need
to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwAddCallback(3)” on page 539.
� See “OVwSetStatusOnObject(3)” on page 803.
� See OVwSetStatusOnSymbols in “OVwSetStatusOnObject(3)” on page 803.
� See “OVwSetSymbolStatusSource(3)” on page 820.
� See “OVwApiIntro(5)” on page 560.

602 Programmer's Reference

 OVwCreateAction(3)

 OVwCreateAction(3)

 Purpose

Manipulates application action registration

 Related Functions
 OVwDeleteAction
 OVwGetAction
 OVwSetAction
 OVwFreeActionRegInfo

 Syntax

#include <OV/ovw.h>
#include <OV/ovw_reg.h>

int OVwCreateAction(char \actionId, OVwActionRegInfo \actionInfo);

int OVwDeleteAction(char \actionId);

int OVwSetAction(char \actionId, OVwActionRegInfo \actionInfo);

OVwActionRegInfo \OVwGetAction(char \actionId);

void OVwFreeActionRegInfo(OVwActionRegInfo \actionInfo);

 Description

OVwCreateAction creates the specified action in the current registration context.

OVwDeleteAction deletes the specified action in the current registration context.

OVwGetAction retrieves registration information for the specified action in the current registration context.

OVwSetAction modifies registration information for the specified action in the current registration context.

OVwFreeActionRegInfo frees the memory allocated for an OVwActionRegInfo structure. It should be used
to free the OVwActionRegInfo structure returned by OVwGetAction when it is no longer needed.

Before calling OVwCreateAction, OVwDeleteAction, or OVwSetAction, the application must have success-
fully called OVwLockRegUpdates to acquire permission to modify the registration context. Changes to the
action registration become permanent only after calling OVwSaveRegUpdates.

Use these functions if your application needs to create action registration dynamically. If your application's
action registration is static, use the application registration files to define application actions and their
menu structure.

 Parameters
 actionId

Specifies a pointer to the name of the action as defined in the application registration file for the
current registration context.

 Chapter 2. Reference Pages 603

 OVwCreateAction(3)

 actionInfo
Specifies a pointer to an OVwActionRegInfo structure. The OVwActionRegInfo structure contains the
elements of the action registration information. In <OV/ovw_reg.h>:, it is defined as shown in the
following example:

typedef struct {
 char \selection_rule;
 int min_selected;
 int max_selected;
 char \command;

unsigned long process_flags;
 OVwFieldBindList \name_fields;
 char \callback_args;
} OVwActionRegInfo;

The members of this structure are:

selection_rule Specifies the action selection rule as contained in the SelectionRule statement
within action declaration of the application registration file for the current regis-
tration context. For no SelectionRule, set this field to NULL.

min_selected Specifies the value for the MinSelected statement within the action declaration.
For no MinSelected statement, set this field to ovwDefaultActionMinSelected,
which is defined in <OV/ovw_reg.h>.

max_selected Specifies the value for the MaxSelected statement within the action declaration.
For no MaxSelected statement, set this field to ovwDefaultActionMaxSelected,
which is defined in <OV/ovw_reg.h>.

command Specifies the command string for the Command statement within the action dec-
laration. For no command statement, set this field to NULL.

process_flags Specifies the options for the action command statement within the action decla-
ration of the application registration file for the current registration context. The
value is a mask that is the logical OR of the following constants from
<OV/ovw_reg.h>

ovwProcInitial Starts the application when the NetView for AIX program
starts.

ovwProcShared Specifies that one instance of the application can handle
multiple action requests.

ovwProcRestart Restarts the application automatically when the applica-
tion dies or exits. This constant should be used for appli-
cations which manage maps and which should run for the
duration of an NetView for AIX session.

name_fields Specifies an OVwFieldBindList containing the field IDs for those fields which
should be used in the NameField statement within the action declaration. The
field values (the field_val field) of the OVwFieldBinding members are ignored
and should be set to NULL. For no NameField statement, set this field to
NULL.

callback_args Specifies the string which should be used for the CallbackArgs statement within
the action declaration. For no CallbackArgs statement, set this field to NULL.

604 Programmer's Reference

 OVwCreateAction(3)

 Return Values

If successful, OVwCreateAction, OVwDeleteAction, and OVwSetAction return 0 (zero). If unsuccessful,
they return −1 (negative one).

If successful, OVwGetAction returns a pointer to an OVwActionRegInfo structure. If unsuccessful, it
returns NULL.

 Error Codes

OVwCreateAction, OVwDeleteAction, OVwGetAction, and OVwSetAction set the error code value that
OVwError returns. The following list describes the possible errors:

[OVw_ACTION_EXISTS] The specified actionId is already registered in the current
registration context.

[OVw_ACTION_MINSELECTED_ERROR] The specified min_selected value is not valid.

[OVw_ACTION_MAXSELECTED_ERROR] The specified max_selected value is either not valid or con-
flicts with the min_selected setting.

[OVw_ACTION_NOT_FOUND] The specified actionId is not registered in the current regis-
tration context.

[OVw_ACTION_SELECTION_RULE_ERROR]
There is a syntax error or a semantic error in the specified
selection_rule.

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY] There is not enough memory to store the callback registra-
tion information.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been started with OVwInit.

[OVw_PERMISSION_DENIED] OwLockRegUpdates was not called prior to calling this
function.

 Implementation Specifics

OVwActionRegistration supports single-byte and multibyte character code sets.

 Libraries

When compiling a program that uses OVwActionRegistration functions, you need to link to the following
libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Chapter 2. Reference Pages 605

 OVwCreateAction(3)

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwLockRegUpdates(3)” on page 755.
� See “OVwSaveRegUpdates(3)” on page 797.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

606 Programmer's Reference

 OVwCreateApp(3)

 OVwCreateApp(3)

 Purpose

Manipulates NetView for AIX application registration information

 Related Functions
 OVwDeleteApp
 OVwGetApp
 OVwSetApp
 OVwFreeAppRegInfo

 Syntax

#include <OV/ovw.h>
#include <OV/ovw_reg.h>

int OVwCreateApp(char \appName, OVwAppRegInfo \appInfo);

int OVwDeleteApp(char \appName);

int OVwSetApp(OVwAppRegInfo \appInfo);

OVwAppRegInfo \OVwGetApp();

void OVwFreeAppRegInfo(OVwAppRegInfo \appInfo);

 Description

OVwCreateApp creates the specified ovw application by creating registration information for it.

OVwDeleteApp deletes the specified ovw application registration.

OVwGetApp retrieves registration information for the application that is the current registration context.

OVwSetApp modifies registration information for the application that is the current registration context.

OVwFreeAppRegInfo frees the memory allocated for an OVwAppRegInfo structure. It should be used to
free the OVwAppRegInfo structure returned by OVwGetApp when it is no longer needed.

Before calling OVwCreateApp, OVwDeleteApp, or OVwSetApp, the application must have successfully
called OVwLockRegUpdates to acquire permission to modify the registration context. Changes to the
application registration become permanent only after calling OVwSaveRegUpdates.

Use these functions if your application needs to create or modify application registration dynamically. If
your application registration is static, use the application registration files for defining registration informa-
tion.

 Chapter 2. Reference Pages 607

 OVwCreateApp(3)

 Parameters
appName

Specifies a pointer to the name of an NetView for AIX application.

appInfo
Specifies a pointer to an OVwAppRegInfo structure. The OVwAppRegInfo structure contains certain
global elements of the application registration information. It is defined in <OV/ovw_reg.h> as follows:

typedef struct {
 char \parent_name;
 char \reg_file;
 char \command;

unsigned long process_flags;
 char \\description;
 char \\copyright;
 char \version;
 char \help_directory;
 OVwFieldBindList \name_fields;
} OVwAppRegInfo;

The members of this structure are:

parent_name The name of the parent application for the application. If the application
has no parent, set this field to NULL.

reg_file The name of the application registration file. If you wish to save the regis-
tration information, you must specify a value for this field. If the specified
file name is a relative path, it is assumed to be relative to the NetView for
AIX application registration directory.

command The command string for the application Command statement within the
application block of the registration file. If you do not want a Command
statement. set this field to NULL.

process_flags The options for the application Command statement in the application regis-
tration file for the current registration context. The value is a mask that is a
logical OR of the following constants from <OV/ovw_reg.h>:

ovwProcInitial Starts the application when the NetView for AIX
program starts.

ovwProcShared Specifies that one instance of the application can
handle multiple action requests.

ovwProcRestart Restarts the application automatically if it ever termi-
nates or exits. This should be used for applications
that manage maps and that should run for the duration
of an NetView for AIX session.

description A NULL-terminated array of strings which are those listed in the application
Description statement in the application registration file. If you do not want
a Description statement, set this field to NULL.

copyright A NULL-terminated array of strings which are those listed in the application
Copyright statement in the application registration file. If you do not want a
Copyright statement, set this field to NULL.

608 Programmer's Reference

 OVwCreateApp(3)

help_directory The string specified for the application HelpDirectory statement in the appli-
cation registration file. If you do not want a HelpDirectory statement, set
this field to NULL.

version The string specified for the application Version statement in the application
registration file. If you do not want a Version statement, set this field to
NULL.

name_fields An OVwFieldBindList containing the field IDs for those fields which should
be used in the NameField block of the application registration file. The field
values (the field_val field) of the OVwFieldBinding members are ignored,
and should be set to NULL. If you do not want a NameField statement, set
this field to NULL.

 Return Values

If successful, OVwCreateApp, OVwDeleteApp, and OVwSetApp return 0 (zero). If unsuccessful, they
return −1 (negative one).

If successful, OVwGetApp returns a pointer to an OVwAppRegInfo structure. If unsuccessful, it returns
NULL.

 Error Codes

OVwCreateApp, OVwDeleteApp, OVwGetApp, and OVwSetApp set the error code value that OVwError
returns. The following list describes the possible errors:

[OVw_APP_EXISTS] The specified appName is already a registered application.

[OVw_APP_NOT_FOUND] The specified appName is not a registered application.

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY] There is not enough memory to store the callback registration infor-
mation.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_PERMISSION_DENIED] You have not called OVwLockRegUpdates prior to calling this func-
tion.

 Implementation Specifics

OVwAppRegistration supports single-byte and multibyte character code sets.

 Libraries

When compiling a program that uses OVwAppRegistration functions, you need to link to the following
libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Chapter 2. Reference Pages 609

 OVwCreateApp(3)

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwLockRegUpdates(3)” on page 755.
� See “OVwSaveRegUpdates(3)” on page 797.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

610 Programmer's Reference

 OVwCreateMenu(3)

 OVwCreateMenu(3)

 Purpose

Creates and deletes menu registration

 Related Functions
 OVwDeleteMenu

 Syntax
#include <OV/ovw.h>
#include <OV/ovw_reg.h>

int OVwCreateMenu(char \menuId);

int OVwDeleteMenu(char \menuId);

 Description

OVwCreateMenu creates a menu or object menu in the current registration context. Once a menu is
created, menu items can be added to it with OVwAddMenuItem.

OVwDeleteMenu deletes the specified menu from the current registration context. The specified menu
must not contain any menu items and must not be referenced by other menu items.

Before calling these functions, the application must have successfully called OVwLockRegUpdates to
acquire permission to modify the registration context. Changes to the menu item registration only become
permanent after calling OVwSaveRegUpdates.

Use these functions if your application needs to create menu registration dynamically. If your application
menu registration is static, use the application registration files to define the application menu structure.

 Parameters
 menuId

Specifies a pointer to the identifier of the menu as it appears or will appear in the application registra-
tion file of the current registration context.

 Return Values

If successful, OVwCreateMenu and OVwDeleteMenu return 0 (zero). If unsuccessful, they return −1 (neg-
ative one).

 Error Codes

OVwCreateMenu and OVwDeleteMenu set the error code value that OVwError returns. The following list
describes the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MENU_EXISTS] The specified menuId is already registered in the current reg-
istration context.

 Chapter 2. Reference Pages 611

 OVwCreateMenu(3)

[OVw_MENU_IN_USE] The specified menu menuId is still referenced by other menu
items and cannot be deleted.

[OVw_MENU_NOT_EMPTY] The menu still contains menu items and cannot be deleted.

[OVw_MENU_NOT_FOUND] The specified menuId is not registered in the current registra-
tion context.

[OVw_OUT_OF_MEMORY] There is not enough memory to store the callback registration
information.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_PERMISSION_DENIED] You have not called OVwLockRegUpdates prior to calling this
function.

 Implementation Specifics

OVwMenuItemRegistration and its related functions support single-byte and multibyte character code sets.

 Libraries

When compiling a program that uses an OVwMenuItemRegistration function, you need to link to the fol-
lowing libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwLockRegUpdates(3)” on page 755.
� See “OVwSaveRegUpdates(3)” on page 797.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

612 Programmer's Reference

 OVwCreateMenuItem(3)

 OVwCreateMenuItem(3)

 Purpose

Manipulates menu item registration information

 Related Functions
 OVwDeleteMenuItem
 OVwGetMenuItem
 OVwSetMenuItem
 OVwFreeMenuItemRegInfo

 Syntax
#include <OV/ovw.h>
#include <OV/ovw_reg.h>

char \OVwCreateMenuItem(OVwMenuItemRegInfo \menuItemInfo);

int OVwDeleteMenuItem(char \menuItemId);

int OVwSetMenuItem(char \menuItemId, OVwMenuItemRegInfo \menuItemInfo);

OVwMenuItemRegInfo \OVwGetMenuItem(char \menuItemId);

void OVwFreeMenuItemRegInfo(OVwMenuItemRegInfo \menuItemInfo);

 Description

OVwCreateMenuItem creates a menu item in the current registration context. (For creating an object
menu item, see “OVwCreateObjMenuItem(3)” on page 616).

OVwDeleteMenuItem deletes the specified menu item from the current registration context. The specified
menu item must not be included in any menu and must not contain any menu item functions.

OVwGetMenuItem retrieves registration information for the specified menu item in the current registration
context.

OVwSetMenuItem modifies registration information for the specified menu item in the current registration
context.

OVwFreeMenuItemRegInfo frees the memory allocated for an OVwMenuItemRegInfo structure. It should
be used to free the OVwMenuItemRegInfo structure returned by OVwGetMenuItem when it is no longer
needed.

Before calling OVwCreateMenuItem, OVwDeleteMenuItem, or OVwSetMenuItem, the application must
have successfully called OVwLockRegUpdates to acquire permission to modify the registration context.
Changes to the menu item registration become permanent only after calling OVwSaveRegUpdates.

Use these functions if your application needs to create menu registration dynamically. If your application
menu registration is static, use the application registration files to define the application menu structure.

 Chapter 2. Reference Pages 613

 OVwCreateMenuItem(3)

 Parameters
 menuItemId

Specifies a pointer to a menu item identifier returned from OVwCreateMenuItem or from
OVwFindMenuItem.

 menuItemInfo
Specifies a pointer to an OVwMenuItemRegInfo structure. The OVwMenuItemRegInfo structure con-
tains the elements of the registration information for an application menu item. It is defined as follows
in the <OV/ovw_reg.h> header file:

typedef struct {
 char \label;
 char \mnemonic;
 char \accelerator;
 int precedence;
} OVwMenuItemRegInfo;

The members of this structure are:

label A pointer to the menu item label string.

mnemonic A pointer to a string specifying the mnemonic for the menu item. The first character
in the string is used as the mnemonic. If no mnemonic is specified for the menu item,
this field is NULL.

accelerator A pointer to a string specifying the accelerator key sequence for the menu item. If no
accelerator is specified for the menu item, this field is NULL.

precedence The precedence value for the menu item. Precedence values may be within the
range from and including ovwMinMenuItemPrecedence (defined as 0 in
<OV/ovw_reg.h>) and ovwMaxMenuItemPrecedence (defined as 100 in
<OV/ovw_reg.h>). If no specific precedence is needed for the menu item, this field
should be set to ovwDefaultMenuItemPrecedence (defined as 50 in <OV/ovw_reg.h>).

 Return Values

If successful, OVwCreateMenuItem, OVwDeleteMenuItem, and OVwSetMenuItem return 0 (zero). If
unsuccessful, they return −1 (negative one). Because the return value for OVwCreateMenuItem is dynam-
ically allocated, you must free the string when it is no longer needed.

If successful, OVwGetMenuItem returns a pointer to an OVwMenuItemRegInfo structure. If unsuccessful,
it returns NULL.

 Error Codes

OVwCreateMenuItem and its related functions set the error code value that OVwError returns. The fol-
lowing list describes the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MENUITEM_EXISTS] The specified menuItemId is already registered in the current
registration context.

[OVw_MENUITEM_IN_USE] The specified menu item, menuId, is still included in a menu
and cannot be deleted.

[OVw_MENUITEM_NOT_EMPTY] The menu item still contains menu item functions and cannot
be deleted.

614 Programmer's Reference

 OVwCreateMenuItem(3)

[OVw_MENUITEM_NOT_FOUND] The specified menuItemId is not registered in the current reg-
istration context.

[OVw_OUT_OF_MEMORY] There is not enough memory to store the callback registration
information.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_PERMISSION_DENIED] You have not called OVwLockRegUpdates prior to calling this
function.

[OVw_MENUITEM_PRECEDENCE_ERROR]
The specified precedence is not within the valid range of pre-
cedence values.

 Implementation Specifics

OVwMenuItem and its related functions support single-byte and multibyte character code sets.

 Libraries

When compiling a program that uses an OVwMenuItem function, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwLockRegUpdates(3)” on page 755.
� See “OVwSaveRegUpdates(3)” on page 797.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

 Chapter 2. Reference Pages 615

 OVwCreateObjMenuItem(3)

 OVwCreateObjMenuItem(3)

 Purpose

Manipulates object menu item registration information

 Related Functions
 OVwDeleteObjMenuItem
 OVwGetObjMenuItem
 OVwSetObjMenuItem

 Syntax
#include <OV/ovw.h>
#include <OV/ovw_reg.h>

char \OVwCreateObjMenuItem(OVwMenuItemRegInfo \menuItemInfo);

int OVwSetObjMenuItem(char \objMenuItemId, OVwMenuItemRegInfo \objMenuItemInfo);

OVwMenuItemRegInfo \OVwGetObjMenuItem(char \objMenuItemId);

 Description

OVwCreateObjMenuItem creates a menu item in the current registration context to be incorporated in the
Object Menu structure.

OVwDeleteObjMenuItem deletes registration information for the specified Object Menu item in the current
registration context.

OVwGetObjMenuItem retrieves registration information for the specified Object Menu item in the current
registration context.

OVwSetObjMenuItem modifies registration information for the specified Object Menu item in the current
registration context.

Before calling OVwCreateObjMenuItem, OVwGetObjMenuItem, or OVwSetObjMenuItem, the application
must have successfully called OVwLockRegUpdates to acquire permission to modify the registration
context. Changes to the menu item registration become permanent only after calling
OVwSaveRegUpdates.

Use these functions if your application needs to create Object Menu items dynamically. If your application
menu registration is static, use the application registration files to define the application menu structure.

616 Programmer's Reference

 OVwCreateObjMenuItem(3)

 Parameters
 menuItemInfo

Specifies a pointer to an OVwMenuItemRegInfo structure. The OVwMenuItemRegInfo structure con-
tains the elements of the registration information for an application menu item. The structure is
defined as follows in the <OV/ovw_reg.h> header file:

typedef struct {
 char \label;
 char \mnemonic;
 char \accelerator;
 int precedence;
 } OVwMenuItemRegInfo;

The members of this structure are:

label A pointer to the menu item label string.

mnemonic A pointer to a string specifying the mnemonic for the menu item. The first character
in the string is used as the mnemonic. If no mnemonic is specified for the menu item,
this field is NULL.

accelerator A pointer to a string specifying the accelerator key sequence for the menu item. If no
accelerator is specified for the menu item, this field is NULL.

precedence The precedence value for the menu item. Precedence values can be within the range
from and including ovwMinMenuItemPrecedence (defined as 0 in <OV/ovw_reg.h>)
and ovwMaxMenuItemPrecedence (defined as 100 in <OV/ovw_reg.h>). If no specific
precedence is needed for the menu item, set this field to
ovwDefaultMenuItemPrecedence (defined as 50 in <OV/ovw_reg.h>).

 Return Values

If successful, OVwCreateMenuItem returns a pointer to an OVwMenuItemRegInfo structure. If unsuc-
cessful, it returns NULL.

 Error Codes

OVwCreateObjMenuItem sets the error code value that OVwError returns. The following list describes the
possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MENUITEM_EXISTS] The specified menuItemId is already registered in the current
registration context.

[OVw_OUT_OF_MEMORY] There is not enough memory to store the callback registration
information.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_PERMISSION_DENIED] You have not called OVwLockRegUpdates prior to calling this
function.

[OVw_MENUITEM_PRECEDENCE_ERROR]
The specified precedence is not within the valid range of pre-
cedence values.

 Chapter 2. Reference Pages 617

 OVwCreateObjMenuItem(3)

 Implementation Specifics

OVwCreateObjMenuItem supports single-byte and multibyte character code sets.

 Libraries

When compiling a program that uses an OVwCreateObjMenuItem function, you need to link to the fol-
lowing libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwLockRegUpdates(3)” on page 755.
� See “OVwSaveRegUpdates(3)” on page 797.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

618 Programmer's Reference

 OVwCreateSubmap(3)

 OVwCreateSubmap(3)

 Purpose

Creates a submap

 Related Functions
 OVwDeleteSubmap

 Syntax

#include <OV/ovw.h>

OVwSubmapId OVwCreateSubmap(OVwMapInfo \map, OVwObjectId parentObject,

int submapPolicy, int submapType, char \submapName,
int layout, unsigned int flags);

int OVwDeleteSubmap(OVwMapInfo \map, OVwSubmapId submapId);

 Description

OVwCreateSubmap creates a new submap on the open map. If the argument parentObject is a valid
object ID, the submap is created as the child submap of the specified object. If the argument
parentObject is ovwNullObjectId, the submap is created as an orphan submap and has no parent object.

All submaps have two planes on which symbols can appear, a user plane and an application plane.
Symbols created by an application is placed on the application plane. A symbol added by a user can be
placed on either the user plane or the application plane, depending on whether it is accepted by an appli-
cation (see “OVwVerifyAdd(3)” on page 833). A user can create and delete submaps.

A submap is created with a policy that specifies who has permission to modify it. A submap can be either
exclusive or shared. If a submap is exclusive, the only application that can update the submap is its
creator; the creator has exclusive control over the application plane of the submap. If a submap is shared,
any application can update the submap. Updating a submap includes creating and deleting symbols,
setting symbol and submap attributes, and deleting the submap.

Applications may restrict the operations the user is able to perform over a submap. This is done by cre-
ating the submap with read-only permission so that the user cannot update the submap. If the submap is
shared, other applications can still update the submap, even if it is read-only. A read-only submap
behaves much like any submap in a read-only map.

It is recommended that applications create shared submaps as much as possible, rather than exclusive
submaps, to enable greater cooperation among applications. Submaps created by a user through the
graphical interface are always shared. In a shared submap, it is possible for an application to mark the
subset of symbols in which it is interested. This is done by creating a symbol or using OVwSetSymbolApp
to express interest in a symbol created by another application. For more information about creating a
symbol, see “OVwCreateSymbol(3)” on page 623.

Creating a submap does not cause the submap to be displayed. Because the user can display submaps
through the graphical interface, most applications do not need to issue a call to display a submap. A
submap that is created as a result of an interactive user request, for example, a menu operation, can be
displayed by an application. Submaps can be displayed with the routine OVwDisplaySubmap.

 Chapter 2. Reference Pages 619

 OVwCreateSubmap(3)

OVwDeleteSubmap deletes a submap from the open map. The only application that can delete an exclu-
sive submap is the one that created it. Any application can delete a shared submap.

Deleting a submap deletes all symbols on the submap but does not delete the parent object. Deletion is a
recursive operation. If the last symbol of an object is deleted, the object associated with the symbol is
deleted from the map. If the deleted object has a child submap, the child submap and all its symbols are
deleted, and so on. The following list provides the events that can be used to determine what was
deleted, and their related callbacks:

ovwConfirmDeleteSymbols
OVwConfirmDeleteSymbolsCB

ovwConfirmDeleteSubmaps
OVwConfirmDeleteSubmapsCB

ovwConfirmDeleteObjects OVwConfirmDeleteObjectsCB

 Parameters
flags Specifies submap creation flags. This is the logical OR of the following flags, which

are defined in <OV/ovw.h>

ovwNoSubmapFlags This value can be specified if no submap flags are
needed.

ovwDisableAutoLayout The submap is created with automatic layout initially dis-
abled.

ovwReadOnlySubmap The submap is created with read-only permission to the
user.

layout Specifies the automatic layout algorithm used for symbol placement in the submap.
The following permitted values are defined in the <OV/ovw.h> header file:

ovwNoLayout No layout algorithm is used.

ovwPointToPointLayout A layout of interconnected symbols.

ovwRowColumnLayout A row/column layout.

ovwBusLayout A bus layout with a bus backbone symbol.

ovwStarLayout A star layout, allowing a star center to be specified.

ovwRingLayout A ring layout with a ring backbone symbol.

ovwTreeLayout A tree layout.

ovwMultipleConnLayout A layout for a list of connections.

map Specifies a pointer to a MapInfo structure for an open map. The map parameter
can be obtained using OVwGetMapInfo or saved from the ovwMapOpen event using
OVwCopyMapInfo.

parentObject Specifies the object ID of the parent object of the submap being created. This argu-
ment may be ovwNullObjectId. If the object does not yet exist on the open map, it
will be created.

submapId Specifies the submap ID of the submap to delete.

submapName Specifies a pointer to the name of the submap to be created.

620 Programmer's Reference

 OVwCreateSubmap(3)

submapPolicy Specifies the policy of the submap. The following permitted values are defined in
the <OV/ovw.h> header file:

ovwSharedSubmap Any application can update the submap.

ovwExclusiveSubmap Only the creating application can update the submap.

submapType Specifies an application-specific submap type. This value can be used by the cre-
ating application to tag different types of submaps. If used for this purpose, a
non-zero value should be specified; otherwise, ovwNoSubmapType may be speci-
fied.

 Return Values

If successful, OVwCreateSubmap returns a valid submap ID. If unsuccessful, it returns ovwNullSubmapId.
The macros OVwIsIdNull and OVwIsIdEqual should be used for testing and comparing submap IDs.

If successful, OVwDeleteSubmap returns 0 (zero). If unsuccessful, it returns −1 (negative one).

 Error Codes

OVwCreateSubmap and OVwDeleteSubmap sets the error code value that OVwError returns. The fol-
lowing list describes the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was
lost.

[OVw_MAP_NOT_OPEN] The argument map does not specify an open map.

[OVw_MAP_READ_ONLY] The map is open read-only.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

OVwCreateSubmap returns the following additional errors:

[OVw_OBJECT_NOT_FOUND] The argument parentObject is not the object ID of an
existing object.

[OVw_SUBMAP_EXISTS] The object identified by parentObject already has a child
submap on the open map.

[OVw_SUBMAP_INVALID_LAYOUT] The argument layout has a value that is not valid.

[OVw_SUBMAP_INVALID_POLICY] The argument submapPolicy has a value that is not
valid.

OVwDeleteSubmap returns the following additional errors:

[OVw_SUBMAP_NOT_FOUND] The argument submapId is not the submap ID of a
submap that exists on the map.

[OVw_SUBMAP_PERMISSION_DENIED] The submap cannot be deleted, because it was created
as an exclusive submap by another application or it is
the root submap.

 Implementation Specifics

OVwCreateSubmap supports single-byte and multibyte character code sets.

 Chapter 2. Reference Pages 621

 OVwCreateSubmap(3)

 Libraries

When compiling a program that uses an OVwCreateSubmap function, you need to link to the following
libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1)
� See “OVwConfirmDeleteObjectsCB(3)” on page 588
� See “OVwConfirmDeleteSubmapsCB(3)” on page 590
� See “OVwCreateSymbol(3)” on page 623
� See “OVwDisplaySubmap(3)” on page 683
� See “OVwError(3)” on page 688
� See “OVwGetMapInfo(3)” on page 719
� See “OVwInit(3)” on page 741
� See “OVwIsIdNull(3)” on page 743
� See “OVwSetSymbolApp(3)” on page 808
� See “OVwVerifyAdd(3)” on page 833
� See “OVwVerifyDeleteSymbol(3)” on page 846
� See “OVwApiIntro(5)” on page 560

622 Programmer's Reference

 OVwCreateSymbol(3)

 OVwCreateSymbol(3)

 Purpose

Creates symbols

 Related Functions
 OVwCreateSymbols
 OVwCreateSymbolByName
 OVwCreateSymbolBySelectionName
 OVwCreateSymbolByHostname
 OVwCreateComponentSymbol
 OVwCreateComponentSymbolByName
 OVwCreateConnSymbol
 OVwCreateConnSymbolByName
 OVwDeleteSymbol
 OVwDeleteSymbols

 Syntax
#include <OV/ovw.h>

OVwSymbolId OVwCreateSymbol(OVwMapInfo \map,

OVwSubmapId submapId, OVwObjectId objectId,
OVwSymbolType symbolType, char \label,
OVwStatusType status, int statusSource,
OVwSymbolPosition \symbolPosition, unsigned int flags);

int OVwCreateSymbols(OVwMapInfo \map, OVwSymbolCreateList \symbolList);

OVwSymbolId OVwCreateSymbolByName(OVwMapInfo \map,

OVwSubmapId submapId, OVwFieldBinding \name,
OVwSymbolType symbolType, char \label,
OVwStatusType status, int statusSource,
OVwSymbolPosition \symbolPosition, unsigned int flags);

OVwSymbolId OVwCreateSymbolBySelectionName(OVwMapInfo \map,

OVwSubmapId submapId, char \selectionName,
OVwSymbolType symbolType, char \label,
OVwStatusType status, int statusSource,
OVwSymbolPosition \symbolPosition, unsigned int flags);

OVwSymbolId OVwCreateSymbolByHostname(OVwMapInfo \map,

OVwSubmapId submapId, char \hostname,
OVwSymbolType symbolType, char \label,
OVwStatusType status, int statusSource,
OVwSymbolPosition \symbolPosition, unsigned int flags);

OVwSymbolId OVwCreateComponentSymbol(OVwMapInfo \map,

OVwObjectId parentId, OVwObjectId objectId,
OVwSymbolType symbolType, char \label,
OVwStatusType status, int statusSource,

 Chapter 2. Reference Pages 623

 OVwCreateSymbol(3)

OVwSymbolPosition \symbolPosition, unsigned int flags);

OVwSymbolId OVwCreateComponentSymbolByName(OVwMapInfo \map,

OVwObjectId parentId, OVwFieldBinding \name,
OVwSymbolType symbolType, char \label,
OVwStatusType status, int statusSource,
OVwSymbolPosition \symbolPosition, unsigned int flags);

OVwSymbolId OVwCreateConnSymbol(OVwMapInfo \map,
 OVwObjectId objectId,

OVwSymbolId endpoint1, OVwSymbolId endpoint2,
OVwSymbolType symbolType, char \label, OVwStatusType status,
int statusSource, unsigned int flags);

OVwSymbolId OVwCreateConnSymbolByName(OVwMapInfo \map,
 OVwFieldBinding \name,

OVwSymbolId endpoint1, OVwSymbolId endpoint2,
OVwSymbolType symbolType, char \label, OVwStatusType status,
int statusSource, unsigned int flags);

int OVwDeleteSymbol(OVwMapInfo \map, OVwSymbolId symbolId);

int OVwDeleteSymbols(OVwMapInfo \map, OVwSymbolIdList \symbolIdList);

 Description

OVwCreateSymbol and its related functions create and delete symbols on a submap of the open map.
OVwCreateSymbols is the base function upon which all the other functions are built. The various conven-
ience routines, such as OVwCreateSymbolByHostname, are provided to simplify the calling sequence and
arguments in different situations.

There are two varieties of symbols: icon symbols (ovwIconSymbol) and connection symbols
(ovwConnSymbol). The following routines can be used to create icon symbols:

 � OVwCreateSymbols
 � OVwCreateSymbol
 � OVwCreateSymbolByName
 � OVwCreateSymbolBySelectionName
 � OVwCreateSymbolByHostname
 � OVwCreateComponentSymbol
 � OVwCreateComponentSymbolByName

OVwCreateConnSymbol and OVwCreateConnSymbolByName can be used to create connection symbols.

OVwCreateSymbol creates a symbol representing the object identified by objectId and adds it to the
submap identified by submapId on the open map.

An application can create a symbol on any submap with the policy, ovwSharedSubmap. Only the applica-
tion that created the submap can create a symbol on a submap with the policy, ovwExclusiveSubmap (see
“OVwCreateSubmap(3)” on page 619.)

A symbol created on a submap by an application is placed on the application plane of the submap. The
list of applications interested in a particular symbol is initialized with the application creating the symbol
(the apps field of the OVwSymbolInfo structure).

624 Programmer's Reference

 OVwCreateSymbol(3)

There is a special root submap that is available to all applications for creating symbols that represent the
parent object of the top level submap of a significant hierarchy of submaps. The intention of this submap
is to provide a common place for multiple applications to anchor their submap hierarchies. You should
create symbols on the root submap sparingly; only symbols representing very high-level compound objects
should be added to the root submap. The submap ID for the root submap is available as the
root_submap_id field of the OVwMapInfo structure for the open map. See “OVwMapOpenCB(3)” on
page 761 for more information.

The optional symbolPosition parameter enables the specification of symbol-placement information. This
parameter will normally be NULL. If symbolPosition is NULL, the symbol will be placed in the submap
according to the automatic layout algorithm specified for the submap. If there is need for greater control
over symbol placement in a submap, the symbolPosition parameter can be used. See
“OVwSetSymbolPosition(3)” on page 815 for details on symbol placement. The effect of setting the posi-
tion of a symbol when creating it is the same as setting the position of a symbol using
OVwSetSymbolPosition.

OVwCreateSymbols creates multiple symbols with a single call. This is more efficient than making indi-
vidual calls to create each symbol. OVwCreateSymbols creates both icon symbols and connection
symbols. Icon symbols and the connection symbol that connects them can even be created in the same
call, provided that the connection symbol appears later in the symbol list and uses the index fields of the
OVwSymbolCreateInfo structure for referring to a symbol created earlier within the same call.

If the operation fails for any of the elements in the list, OVwCreateSymbols returns an error code Even if
an error occurs, the operation will still be performed for all those elements on which it can. Upon return,
the error field of the OVwSymbolCreateInfo structure will indicate which list elements failed. Also upon
return, the symbol_id field of the OVwSymbolCreateInfo structure will contain the symbol ID of all those
symbols that were successfully created.

OVwCreateSymbolByName creates a symbol representing the object having the name field value indi-
cated by name and adds it to the submap of the open map identified by submapId. If an object with the
specified name does not exist, it will be automatically created using OVwDbCreateObject. If name is
NULL, an object will be automatically created with a system-generated name.

OVwCreateSymbolBySelectionName creates a symbol representing the object identified by the specified
selection name. If an object with the specified selection name does not exist, it will be automatically
created using OVwDbCreateObjectBySelectionName.

OVwCreateSymbolByHostname creates a symbol representing the object identified by the specified IP
host name. If an object with the specified host name does not exist, it will be automatically created using
OVwDbCreateObjectByHostname.

OVwCreateComponentSymbol creates a symbol representing the object identified by objectId on the child
submap of a compound object identified by parentId. If the child submap of the object parentId does not
exist, it is automatically created using OVwCreateSubmap with the submap policy, ovwSharedSubmap.

OVwCreateComponentSymbolByName creates a symbol representing the object, which is identified by
name on the child submap of a compound object, which is identified by parentId. If the child submap of
the object parentId does not exist, it is automatically created using OVwCreateSubmap with the submap
policy, ovwSharedSubmap. If an object with the specified name does not exist, it will be automatically
created using OVwDbCreateObject.

OVwCreateConnSymbol creates a connection symbol, representing an object identified by objectId
between two icon symbols that are identified by endpoint1 and endpoint2 on the submap that is identified
by submapId. If the layout of the submap on which the symbol is being created (ovwBusLayout, or

 Chapter 2. Reference Pages 625

 OVwCreateSymbol(3)

ovwRingLayout) has a backbone, one of the end points can be specified as ovwSubmapBackbone to indi-
cate that the icon symbol should be connected to the ring or bus cable.

When the first connection is created between two symbols, a simple connection is created. Creating any
additional connections between the two symbols results in the automatic creation of a metaconnection
submap that contains the multiple simple connections between the symbols. This special submap, which
is the child submap of a metaconnection object represented by a metaconnection symbol, has the submap
policy, ovwMetaConnSubmap.

If the two end points have more than one connection between them, the symbol ID returned by
OVwCreateConnSymbol identifies the connection symbol created in the metaconnection submap.

Because the metaconnection submap is intended to represent only connections between the two symbols
in the parent submap, connections cannot be created directly in the metaconnection submap. A con-
nection can only be added to the submap indirectly by creating a connection between the two symbols
whose connections it represents. This prevents the recursion of metaconnection submaps. An application
can create child submaps for objects represented by connection symbols in the metaconnection submap.
See “OVwCreateSubmap(3)” on page 619.

OVwCreateConnSymbolByName creates a connection symbol representing an object identified by name
between two icon symbols that are identified by endpoint1 and endpoint2 on a submap of the open map.
If an object with the specified name does not exist, it will be automatically created using
OVwDbCreateObject.

Symbol creation routines can result in the generation of the following events:

 ovwConfirmCreateSymbols (OVwConfirmCreateSymbolsCB)
 ovwConfirmCreateObjects (OVwConfirmCreateObjectsCB)
 ovwConfirmCreateSubmaps (OVwConfirmCreateSubmapsCB)

OVwDeleteSymbol deletes the symbol identified by symbolId from the open map. Both icon and con-
nection symbols are deleted using this routine. A symbol cannot be deleted from the application plane of
an exclusive submap created by another application.

Deletion is a recursive operation. If the last symbol of an object is deleted, the object represented by the
symbol is deleted from the map. If the deleted object has a child submap, the child submap and all its
symbols are deleted, and so on. The following list provides the events that can be used to determine
which symbols were deleted and their related callbacks:

ovwConfirmDeleteSymbols
OVwConfirmDeleteSymbolsCB

ovwConfirmDeleteSubmaps
OVwConfirmDeleteSubmapsCB

ovwConfirmDeleteObjects OVwConfirmDeleteObjectsCB

When the last symbol of an object is deleted from the open map, the object is automatically deleted from
the open map. When an object has been deleted from the last map on which it appears, an
ovwConfirmDeleteObjects event is generated with the op_scope field of the OVwObjectInfo structure set to
ovwAllMapsScope. This notification that an object no longer exists on any maps is a signal to applications
to call OVwDbUnsetFieldValue, for every field that the application maintains for the object, and to call
OVwDbDeleteObject. If no other applications have fields set for the object, the object will be deleted from
the OVW object database.

OVwDeleteSymbols deletes multiple symbols from the open map. This is more efficient than making indi-
vidual calls to delete each symbol. OVwDeleteSymbols returns a single error if the call fails for any of the

626 Programmer's Reference

 OVwCreateSymbol(3)

elements in the list. Even if an error occurs, the operation will be performed for those elements on which
it can. Individual error information for each element is not returned. If individual error information is
needed, use OVwDeleteSymbol. A confirmation of which symbols were deleted is available through the
ovwConfirmDeleteSymbols event.

 Parameters
endpoint1 Specifies the symbol ID of an icon symbol that is a connection end point.

endpoint2 Specifies the symbol ID of an icon symbol that is a connection end point. The
special value ovwSubmapBackbone can be used if the layout of the submap,
ovwBusLayout or ovwRingLayout, includes a backbone.

flags Specifies symbol creation flags. This is the logical OR of the following flags
defined in the <OV/ovw.h> header file:

ovwNoSymbolFlags This value can be specified if no flags are needed.

ovwMergeDefaultCapabilities
The default capability field values for the symbol
type symbolType (as defined in a symbol type reg-
istration file) will be set on the symbol's object for
those fields that do not already have values set.

ovwDoNotDisplayLabel The symbol label will not be displayed. This flag
should normally be set for connection symbols.

ovwDeleteDescendants When this symbol is deleted, all other symbols that
represent this same object on submaps
descending from this symbol's submap will also be
deleted. This flag is useful for applications that
build a submap hierarchy with symbols repres-
enting the same object appearing on several
submaps. This flag facilitates deletion of the
object, since all symbols representing an object
must be deleted before the object can be deleted.

hostname Specifies a pointer to the official IP host name of the object represented by the
symbol.

label Specifies a pointer to the symbol label. This parameter will normally be NULL
when a connection symbol is created.

map Specifies a pointer to a MapInfo structure for an open map. The map param-
eter can be obtained using OVwGetMapInfo or saved from the ovwMapOpen
event using OVwCopyMapInfo.

name Specifies a pointer to the name of the object that the symbol represents.

objectId Specifies the object ID of the object that the symbol represents.

parentId Specifies the object ID of the parent object of a submap on which to create a
symbol.

selectionName Specifies a pointer to the selection name of the object that the symbol repres-
ents.

status Specifies the initial status of the symbol. The permitted values are defined in
the <OV/ovw_types.h> header file:

 Chapter 2. Reference Pages 627

 OVwCreateSymbol(3)

ovwUnknownStatus The status is unknown.

ovwNormalStatus The status is up or normal.

ovwMarginalStatus The status is marginal (some problem exists).

ovwCriticalStatus The status is down or critical.

ovwUnmanagedStatus The object should be created on the map as
unmanaged. This value will be ignored unless this
is the first symbol for the object on the map.
Unmanaged objects are not monitored and do not
show status.

The status argument is used only if statusSource is ovwSymbolStatusSource,
except in the following situations:

� If status is ovwUnmanagedStatus and this is the first symbol for the object,
the object becomes unmanaged.

� If statusSource is ovwObjectStatusSource and this is the first symbol for
the object, status is used to initialize the object status.

statusSource Specifies the status source for the symbol. The permitted values are defined
in the <OV/ovw.h> header file:

ovwObjectStatusSource The symbol gets its status from the status of the
object.

ovwCompoundStatusSource
The symbol gets its status through propagation
from the child submap of the object.

ovwSymbolStatusSource The symbol has its status set explicitly.

submapId Specifies the submap ID of the submap on which to create the symbol.

symbolId Specifies the symbol ID of the symbol to delete.

symbolIdList Specifies a pointer to the list of symbol IDs for the symbols to delete.

symbolList Specifies a pointer to the list of symbols to create.

symbolPosition Specifies a pointer to optional symbol position information structure. This
parameter will normally be NULL, which uses the automatic layout algorithm
for the submap. See “OVwSetSymbolPosition(3)” on page 815 for more infor-
mation on the use of this parameter.

symbolType Specifies the symbol type to use for displaying the symbol. Symbol type
values are defined in the symbol type registration files. Some predefined
symbol types are also listed in the header file <OV/sym_types.h>. For con-
nection symbols, a value of NULL can be used to indicate the default con-
nection symbol type. A NULL value is not allowed for icon symbols. Symbol
types of the Connection symbol class can be used for connection symbols.

628 Programmer's Reference

 OVwCreateSymbol(3)

 Return Values

If successful, the following functions return a valid symbol ID:

 � OVwCreateSymbol
 � OVwCreateSymbolByName
 � OVwCreateSymbolBySelectionName
 � OVwCreateSymbolByHostname
 � OVwCreateComponentSymbol
 � OVwCreateComponentSymbolByName
 � OVwCreateConnSymbol
 � OVwCreateConnSymbolByName

If unsuccessful, they return ovwNullSymbolId. The macros OVwIsIdNull and OVwIsIdEqual should be
used for testing and comparing symbol IDs.

If successful, OVwCreateSymbols, OVwDeleteSymbol, and OVwDeleteSymbols return 0 (zero). If unsuc-
cessful, they return −1 (negative one).

 Error Codes

OVwCreateSymbol and its related functions set the error code that OVwError returns.

The following list describes the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was
lost.

[OVw_DB_CONNECTION_LOST] The connection to ovwdb was lost.

[OVw_MAP_NOT_OPEN] The argument map does not specify an open map.

[OVw_MAP_READ_ONLY] The map is opened with read-only permission.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_SUBMAP_PERMISSION_DENIED] The submap on which the call is being made is an
exclusive submap that was created by another applica-
tion.

The following additional errors may result from create symbol routines:

[OVw_FIELD_NOT_FOUND] The field, specified by field_id in the OVwFieldBinding,
does not exist.

[OVw_FIELD_NOT_NAME] The field, specified by field_id in the OVwFieldBinding,
does not represent a name field (ovwNameField).

[OVw_FIELD_TYPE_MISMATCH] The field type, of the field identified by field_id in the
OVwFieldBinding structure, has a type different from the
OVwFieldValue structure.

[OVw_FIELD_VALUE_NULL] The field_val field of the OVwFieldBinding structure is
NULL.

[OVw_OBJECT_NOT_FOUND] The object, specified by objectId, does not exist.

[OVw_OBJECT_NULL_NAME] The selectionName or hostname argument is NULL.

 Chapter 2. Reference Pages 629

 OVwCreateSymbol(3)

[OVw_PARENT_OBJECT_NOT_FOUND] The parent object specified by parentId does not exist.

[OVw_SUBMAP_NOT_FOUND] The submap, specified by submapId, does not exist on
the open map.

[OVw_SYMBOL_INVALID_FLAGS] The argument flags, or the flags field of the
OVwSymbolCreateInfo structure for
OVwCreateSymbols, has a value that is not valid.

[OVw_SYMBOL_INVALID_OBJECT_NAME_STYLE]
The object_name_style field of the
OVwSymbolCreateInfo structure (for
OVwCreateSymbols) has a value that is not valid.

[OVw_SYMBOL_INVALID_STATUS] The argument status, or the status field of the
OVwSymbolCreateInfo structure for
OVwCreateSymbols, has a value that is not valid
.

[OVw_SYMBOL_INVALID_STATUS_SOURCE] The argument statusSource, or the status_source field
of the OVwSymbolCreateInfo structure for
OVwCreateSymbols, has a value that is not valid.

[OVw_SYMBOL_INVALID_SUBMAP_NAME_STYLE]
The submap_name_style field of the
OVwSymbolCreateInfo structure, for
OVwCreateSymbols, has a value that is not valid.

[OVw_SYMBOL_INVALID_VARIETY] The symbol_variety field of the OVwSymbolCreateInfo
structure, for OVwCreateSymbols, has a value that is
not valid.

[OVw_SYMBOL_TYPE_NOT_FOUND] The argument symbolType does not specify a registered
symbol type.

[OVw_SYMBOL_TYPE_WRONG_VARIETY] The argument symbolType or the symbol_type field of
the OVwSymbolCreateInfo structure, for
OVwCreateSymbols, has a symbol type variety (icon or
connection) that does not match the variety of the
symbol specified by symbolId. The variety of a symbol
type is determined by the variety of its symbol class as
defined in the symbol type registration file.

The following errors can result from calls to create icon symbols:

[OVw_ICON_SYMBOL_BAD_COORDS] The x or y coordinate specified in the position argument
has a value that is less than zero or greater than the
width or height of the grid coordinate system.

[OVw_ICON_SYMBOL_BAD_GRID] The width or height specified in the position argument
for setting the scale for the x and y coordinates has a
value less than or equal to zero.

[OVw_ICON_SYMBOL_PRED_NOT_FOUND] The symbol specified in the position argument as the
predecessor of the symbol symbolId does not exist on
the same submap as the symbol symbolId.

[OVw_SUBMAP_INVALID_SYMBOL_PLACEMENT]
The placement field of the position argument has a
value that is not valid for the layout of the submap on
which the symbol symbolId exists.

630 Programmer's Reference

 OVwCreateSymbol(3)

The following errors can result from calls to create connection symbols:

[OVw_CONN_SYMBOL_BOTH_ENDS_NULL] Both connection end points have the value
ovwNullSymbolId.

[OVw_CONN_SYMBOL_BOTH_ENDS_SAME] Both connection end points are the same.

[OVw_CONN_SYMBOL_END_NOT_FOUND] One of the connection end-point symbols does not exist
on the open map.

[OVw_CONN_SYMBOL_END_WRONG_VARIETY]
The variety of a connection end-point symbol is valid.
Only icon symbols are allowed as connection end
points.

[OVw_CONN_SYMBOL_ENDS_DIFFERENT_SUBMAPS]
The two connection end points are on different
submaps. Both connection end points must be on the
same submap.

[OVw_CONN_SYMBOL_INVALID_END_NAME_STYLE]
One of the end-point name style fields of the
OVwSymbolCreateInfo structure, for
OVwCreateSymbols, has a value that is not valid.

[OVw_CONN_SYMBOL_META_CONN_SUBMAP]
An attempt was made to create a connection directly on
a metaconnection submap.

[OVw_CONN_SYMBOL_NO_SUBMAP_BACKBONE]
A value of ovwSubmapBackbone is specified as a con-
nection end point for a submap that does not have a
backbone.

The OVwDeleteSymbol and OVwDeleteSymbols routines return the following additional error:

[OVw_SYMBOL_NOT_FOUND] The symbol specified by symbolId does not exist on the
open map.

 Implementation Specifics

OVwCreateSymbol and its related functions support single-byte and multibyte character code sets.

 Libraries

When compiling a program that uses an OVwCreateSymbol function, you need to link to the following
libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Chapter 2. Reference Pages 631

 OVwCreateSymbol(3)

 Related Information
 � See ovw(1).
 � See ovwdb(8).
� See “OVwConfirmCreateSymbolsCB(3)” on page 586.
� See “OVwConfirmCreateObjectsCB(3)” on page 582.
� See “OVwConfirmCreateSubmapsCB(3)” on page 584.
� See “OVwConfirmDeleteSubmapsCB(3)” on page 590.
� See “OVwConfirmDeleteObjectsCB(3)” on page 588.
� See “OVwCreateSubmap(3)” on page 619.
� See “OVwDbCreateObject(3)” on page 638.
� See “OVwDbDeleteObject(3)” on page 641.
� See “OVwDbUnsetFieldValue(3)” on page 681.
� See “OVwError(3)” on page 688.
� See “OVwGetMapInfo(3)” on page 719.
� See “OVwInit(3)” on page 741.
� See “OVwIsIdNull(3)” on page 743.
� See “OVwMapOpenCB(3)” on page 761.
� See “OVwSetSymbolPosition(3)” on page 815.
� See “OVwVerifyAdd(3)” on page 833.
� See “OVwVerifyDeleteSymbol(3)” on page 846.
� See “OVwApiIntro(5)” on page 560.

632 Programmer's Reference

 OVwDbAppendEnumConstants(3)

 OVwDbAppendEnumConstants(3)

 Purpose

Appends constants to an existing enumeration

 Syntax
#include <OV/ovw_obj.h>

int OVwDbAppendEnumConstants(OVwFieldId fieldId,
 OVwEnumConstants \enumConstants);

 Description

OVwDbAppendEnumConstants provides the ability to add enumerated constants to an already defined set.
The new constants listed in enumConstants are appended, in the order received, to the end of the enu-
meration currently set for the field. If no enumeration has been set for the field, this function performs like
OVwDbSetEnumConstants.

See “OVwDbSetEnumConstants(3)” on page 674 for more information on setting enumerated constants.

 Parameters
 enumConstants Specifies a pointer to an OVwEnumConstants structure.

 fieldId Uniquely identifies an object attribute field. This ID must represent a field in
the OVW object database that was created with a data type of ovwEnumField.

 Return Values

If successful, OVwDbAppendEnumConstants returns 0 (zero). If unsuccessful, it returns −1 (negative
one).

 Error Codes

OVwDbAppendEnumConstants sets the error code that OVwError returns. The following list describes the
possible errors:

[OVw_DB_CONNECTION_LOST] The connection to ovwdb was lost.

[OVw_DB_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_DB_OPEN_FAILED] An attempted connection to the OVW object database failed.
When a program receives this error, it should discontinue proc-
essing until the database communication problem has been
resolved.

[OVw_FIELD_NOT_FOUND] The fieldId does not identify a field in the OVW object database.

[OVw_FIELD_TYPE_MISMATCH] The type of the field identified by fieldId is not ovwEnumField.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

 Chapter 2. Reference Pages 633

 OVwDbAppendEnumConstants(3)

 Implementation Specifics

OVwDbAppendEnumConstants supports single-byte and multibyte character code sets.

 Libraries

When compiling a program that uses OVwDbAppendEnumConstants, you need to link to the following
libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovwdb(8).
� See “OVwDbCreateField(3)” on page 635.
� See OVwDbGetFieldEnumByValue in “OVwDbGetFieldValue(3)” on page 650.
� See OVwDbGetFieldEnumByName in “OVwDbGetFieldValue(3)” on page 650.
� See “OVwDbInit(3)” on page 662.
� See “OVwDbSetEnumConstants(3)” on page 674.
� See OVwDbSetFieldEnumByName in “OVwDbSetFieldValue(3)” on page 676.
� See OVwDbSetFieldEnumByValue in “OVwDbSetFieldValue(3)” on page 676.
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

634 Programmer's Reference

 OVwDbCreateField(3)

 OVwDbCreateField(3)

 Purpose

Creates a field in the object database

 Related Functions
 OVwDbDeleteField

 Syntax

#include <OV/ovw_obj.h>

OVwFieldId OVwDbCreateField(char \fieldName, int fieldType,

unsigned int fieldFlags);

int OVwDbDeleteField(OVwFieldId fieldid);

 Description

OVwDbCreateField creates a new field in the OVW object database. The OVwFieldId returned from this
call is a unique handle used to identify the field.

OVwDbDeleteField removes the field from the OVW object database. Removing a field from the database
has potential global impact. The field definition is removed and is no longer valid for setting or retrieving
data. In addition, any value for this field associated with objects is removed from the object database.
Some predefined fields may not be removed from the database.

 Parameters
 fieldFlags

Specifies a bitmap representing what field flags are to be set for the newly created field. The following
permitted values are defined in <OV/ovw_obj.h>:

ovwListField Enables a field to take on a list of values rather than a single value. This
flag may be set for the ovwStringField and the ovwIntegerField data types.

ovwNameField Enables the field value to be set to become a unique handle for the object.
This flag can only be set with the ovwStringField data type. A name-field
value must be unique for all values set using this field.

ovwCapabilityField Specifies that the field is considered by the NetView for AIX program to be
an object capability. This flag can only be set for the ovwBooleanField
and the ovwIntegerField data types.

ovwLocateField Indicates to the NetView for AIX program that this field may be used to
locate objects for the user interface. By setting this flag, the field name
will appear in the Locate by Attribute dialog box. This flag can be used
with fields of any data type.

ovwGeneralField Provides the ability to have nonapplication-specific fields that do not
appear in any application-specific dialog box appear in the special Attri-
butes for Object dialog box associated with every object. This flag can be
used with fields of any data type.

 Chapter 2. Reference Pages 635

 OVwDbCreateField(3)

 fieldId
Specifies the field ID of the field to be deleted.

 fieldName
Specifies a pointer to a NULL-terminated character string representing a textual name that will
uniquely identify the newly created field. The fieldName parameter must be unique over all field
names in the OVW object database. A one-to-one correspondence exists between field ID to the
provided field name.

 fieldType
Specifies the data type associated with the new field. Valid field types are ovwIntField,
ovwBooleanField, ovwEnumField, and ovwStringField. The value set for this parameter dictates the
type of data that may be set for an object for this field.

 Return Values

If successful, OVwDbCreateField returns a value field ID. If unsuccessful, it returns ovwNullFieldId. The
macros OVwIsIdNull and OVwIsIdEqual should be used for testing and comparing field IDs.

If successful, OVwDbDeleteField returns 1. If unsuccessful, it returns 0 (zero) or −1 (negative one). If
OVwDbDeleteField is successful, fieldName no longer represents a valid field definition.

 Error Codes

OVwDbCreateField and OVwDbDeleteField set the error code value that OVwError returns. The following
list describes the possible errors:

[OVw_DB_CONNECTION_LOST]
The connection to ovwdb was lost.

[OVw_DB_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_DB_OPEN_FAILED] An attempted connection to the OVW object database failed. When a
program receives this error, it should discontinue processing until the
database communication problem has been resolved.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

OVwDbCreateField returns the following errors:

[OVw_FIELD_EXISTS] A field with the provided name exists in the database.

[OVw_FIELD_INVALID_TYPE] The value defining the type to be set for the new field is not one of the
valid types.

[OVw_FIELD_INVALID_FLAG] The value defining the flags to be set for the new field does not repre-
sent valid flags.

OVwDbDeleteField returns the following errors:

[OVw_FIELD_NOT_FOUND] The provided field ID does not represent any field in the database.

 Implementation Specifics

OVwDbCreateField supports single-byte and multibyte character code sets.

636 Programmer's Reference

 OVwDbCreateField(3)

 Libraries

When compiling a program that uses OVwDbCreateField or OVwDbDeleteField, you need to link to the
following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovwdb(8).
� See “OVwDbFieldNameToFieldId(3)” on page 643.
� See “OVwDbGetFieldInfo(3)” on page 648.
� See “OVwDbGetFieldValue(3)” on page 650.
� See “OVwDbInit(3)” on page 662.
� See “OVwDbListFields(3)” on page 664.
� See “OVwDbSetFieldValue(3)” on page 676.
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See OVwIsIdEqual in “OVwIsIdNull(3)” on page 743.
� See “OVwIsIdNull(3)” on page 743.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 637

 OVwDbCreateObject(3)

 OVwDbCreateObject(3)

 Purpose

Creates an object in the OVW object database

 Related Functions
 OVwDbCreateObjectBySelectionName
 OVwDbCreateObjectByHostname

 Syntax
#include <OV/ovw_obj.h>

OVwObjectId OVwDbCreateObject(OVwFieldBinding \name);

OVwObjectId OVwDbCreateObjectBySelectionName(char \selectionName);

OVwObjectId OVwDbCreateObjectByHostname(char \hostname);

OVwRetCodeList \OVwDbCreateObjectWithFields(OVwObjectsFieldBindList \objectsFieldBindList);

void OVwDbFreeRetCodeList(OVwRetCodeList \retCodeList);

 Description

OVwDbCreateObject creates a new object in the OVW Object database and assigns a value to a single
field for the object. If the field specified in the OVwFieldBinding is not the selection name field for the
object, a selection name is automatically created and set for the object. An error results if the selection
name is provided but is not unique. If NULL is provided as input, OVwDbCreateObject creates an object,
and sets the selection name to a system-generated name.

OVwDbCreateObjectBySelectionName creates a new object in the OVW Object database. An error
occurs if an object already exists with the selection name. If NULL is provided as input,
OVwDbCreateObject creates an object and sets the selection name to a system-generated name.

OVwDbCreateObjectByHostname creates a new object in the OVW Object database. The selection name
of the object is set automatically. An error results if the provided host name is NULL or not unique for all
objects in the database.

OVwDbCreateObjectWithFields creates objects and sets fields on those objects as specified by the
objectsFieldBindList parameter. This routine creates multiple objects and sets fields for those objects, the
same as if the OVwDbCreateObject and OVwDbSetFieldValues routines were used several times. Using
OVwDbCreateObjectsWithFields to create and set fields for mutliple objects is much faster than creating
each object and setting its fields separately with OVwDbCreateObject and OVwDbSetFieldValues.

The first field of the OVwFieldBindList of the OVwObjectsFieldBindList parameter is a name field. This
field is used to create the object, just as if OVwDbCreateObject had been used. The rest of the fields in
OVwFieldBindList are then set as if OVwDbSetFieldValues had been used.

OVwDbFreeRetCodeList frees memory allocated for an OVwRetCodeList structure. A pointer to an
OVwRetCodeList structure is returned by a successful call to OVwDbCreateObjectsWithFields. This

638 Programmer's Reference

 OVwDbCreateObject(3)

pointer should be used as the retCodeList parameter for OVwDbFreeRetCodeList to free the structure
when it is no longer needed.

 Parameters
hostname Specifies a pointer to the host name, which is to be set for the newly created object.

name Specifies a pointer to an OVwFieldBinding structure, which contains the field to be set for
the new object.

objectsFieldBindList
Specifies a list of OVwFieldBindLists. The first OVwFieldBinding of each
OVwFieldBindList is used to create an object, therefore the first field should be a name
field. The remaining OVwFieldBindings of each OVwFieldBindList describe field values
that are set on the objects created with the name fields described by the first
OVwFieldBinding in the OVwFieldBindLists.

retCodeList Specifies a pointer to an OVwRetCodeList structure. This structure is returned by a suc-
cessful call to OVwDbCreateObjectsWithFields.

selectionName Specifies a pointer to the selection name of the object. The selectionName must be
unique for all objects.

 Return Values

If successful, OVwDbCreateObject, OVwDbCreateObjectBySelectionName, and
OVwDbCreateObjectByHostName return the valid object ID of the newly created object. If unsuccessful,
they return ovwNullObjectId. The macros OVwIsIdNull and OVwIsIdEqual should be used for testing and
comparing submap IDs.

If successful, OVwDbCreateObjectsWithFields returns a pointer to an OVwRetCodeList structure. This
structure contains a list of OVwRetCodeInfo structures which contain return codes for each object creation
attempted by OVwDbCreateObjectsWithFields. Free the pointer to the OVwRetCodeList by calling
OVwFreeRetCodeInfo. If unsuccessful, OVwDbCreateObjectsWithFields returns NULL.

 Error Codes

OVwDbCreate, OVwDbCreateObjectBySelectionName, and OVwDbCreateObjectByHostname set the error
code value that OVwError returns. The following list describes the possible errors:

[OVw_DB_CONNECTION_LOST] The connection to ovwdb was lost.

[OVw_DB_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_DB_OPEN_FAILED] An attempted connection to the OVW object database failed.
When a program receives this error, it should discontinue proc-
essing until the database communication problem has been
resolved.

[OVw_FIELD_NAME_NOT_UNIQUE] The name provided is not unique over all values set for this field.
This error will only be seen for fields that have the ovwNameField
flag set.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

 Chapter 2. Reference Pages 639

 OVwDbCreateObject(3)

OVwDbCreateObject returns the following errors:

[OVw_FIELD_NOT_FOUND] The name specifies a field that does not exist in the OVW object data-
base.

[OVw_FIELD_TYPE_MISMATCH]
The field type of the field does not match the field type specified in the
OVwFieldValue structure.

OVwDbCreateObjectByHostname returns the following error:

[OVw_FIELD_VALUE_NULL] The name provided to the function is NULL.

 Implementation Specifics

OVwDbCreateObject supports single-byte and multibyte character code sets.

 Libraries

When compiling a program that uses OVwDbCreateObject or one of its related functions, you need to link
to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovwdb(8).
� See “OVwDbGetUniqObjectName(3)” on page 658.
� See “OVwDbInit(3)” on page 662.
� See “OVwDbSetFieldValue(3)” on page 676.
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwIsIdNull(3)” on page 743.
� See “OVwApiIntro(5)” on page 560.

640 Programmer's Reference

 OVwDbDeleteObject(3)

 OVwDbDeleteObject(3)

 Purpose

Deletes an object from the OVW object database

 Syntax

#include <OV/ovw_obj.h>

int OVwDbDeleteObject(OVwObjectId objId);

 Description

OVwDbDeleteObject deletes an object from the OVW object database, unless another application is using
the object. Before calling OVwDbDeleteObject, an application should call OVwDbUnsetFieldValue for all
the fields for which it sets values. No application is considered to be using the object if the only fields set
for the object are the Selection Name, capability fields, or general fields (fields with the ovwCapabilityField
or the ovwGeneralField flag set). If these are the only remaining fields set for the object, the object is
deleted. Otherwise, the object is not deleted, because other applications have fields set for the object.
Thus, if multiple applications are sharing an object, the object will only be deleted when the last application
unsets its fields from the object and calls delete.

Also, before deleting an object, all symbols representing that object must be deleted from all submaps of
all maps.

 Parameters
objId Specifies the object ID of the object to delete.

 Return Values

If successful, OVwDbDeleteObject returns 0 (zero). If unsuccessful, it returns −1 (negative one).

 Error Codes

OVwDbDeleteObject sets the error code value that OVwError returns. The following list describes the
possible errors:

[OVw_DB_CONNECTION_LOST]
The connection to ovwdb was lost.

[OVw_DB_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_DB_OPEN_FAILED] An attempted connection to the OVW object database failed. When a
program receives this error, it should discontinue processing until the
database communication problem has been resolved.

[OVw_UNABLE_TO_DELETE_OBJECT]
The object could not be deleted, because fields without the
ovwCapabilityField or the ovwGeneralField field flags remain set for the
object indicating another application still has interest in the object. An
application receiving this error should continue processing. The last
application to delete the object will be successful.

 Chapter 2. Reference Pages 641

 OVwDbDeleteObject(3)

 Examples

The following example illustrates how an application uses OVwDbDeleteObject once the application is fin-
ished with the object:

for (each field the application is responsible for) {
 /\

\ Unset all the field values the application is responsible for
 \/
 OVwDbUnsetFieldValue(object_id,field_id);
}

/\
 \ Once all the field values have been unset, attempt to delete
 \ the object.
 \/
OVwDbDeleteObject(object_id);

 Implementation Specifics

OVwDbDeleteObject supports single-byte and multibyte character code sets.

 Libraries

When compiling a program that uses OVwDbDeleteObject, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovwdb(8).
� See “OVwDbCreateField(3)” on page 635.
� See “OVwDbCreateObject(3)” on page 638.
� See “OVwDbInit(3)” on page 662.
� See “OVwDbSetFieldValue(3)” on page 676.
� See “OVwDbUnsetFieldValue(3)” on page 681.
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

642 Programmer's Reference

 OVwDbFieldNameToFieldId(3)

 OVwDbFieldNameToFieldId(3)

 Purpose

Converts a field name to a field ID

 Related Functions
 OVwDbFieldIdToFieldName

 Syntax
#include <OV/ovw_obj.h>

OVwFieldId OVwDbFieldNameToFieldId(char \fieldName);

char \OVwDbFieldIdToFieldName(OVwFieldId fieldId);

 Description

Each field in the OVW object database can be uniquely identified by field ID or a character string repres-
enting the field name. There is a one-to-one relationship between a field name and a field ID. These
routines enable the conversion between field name and field ID. See “OVwDbCreateField(3)” on
page 635 for more information on field names and field IDs.

OVwDbFieldNameToFieldId returns the field ID of the field that has the field name fieldName.

OVwDbFieldIdToFieldName returns the name of the field that has field ID fieldId.

 Parameters
fieldId Specifies a field ID.

fieldName Specifies a pointer to a NULL-terminated string uniquely identifying a field in the
OVW object database.

 Return Values

If successful, OVwDbFieldNameToFieldId returns the field ID that uniquely identifies the field with the
name fieldName. If unsuccessful, it returns ovwNullFieldId. The macros OVwIsIdNull and OVwIsIdEqual
should be used for testing and comparing field IDs.

If successful, OVwDbFieldIdToFieldName returns a string specifying the name of the field that is uniquely
identified by fieldId. If unsuccessful, it returns NULL. Because the return value for
OVwDbFieldIdToFieldName is dynamically allocated, you must free the string when it is no longer needed.

 Error Codes

OVwDbFieldNameToFieldId and OVwDbFieldIdToFieldName set the error code value that OVwError
returns. The following list describes the possible errors:

[OVw_DB_CONNECTION_LOST]
The connection to ovwdb was lost.

 Chapter 2. Reference Pages 643

 OVwDbFieldNameToFieldId(3)

[OVw_DB_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_DB_OPEN_FAILED] An attempted connection to the OVW object database failed. When a
program receives this error, it should discontinue processing until the
database communication problem has been resolved.

[OVw_FIELD_NOT_FOUND] Depending on the function being called, either the provided field name or
the provided field ID does not represent a field in the OVW object data-
base.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

 Implementation Specifics

OVwDbFieldNameToFieldId and OVwDbFieldIdToFieldName support single-byte and multibyte character
code sets.

 Libraries

When compiling a program that uses OVwDbFieldNameToFieldId or OVwDbFieldIdToFieldName, you
need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovwdb(8).
� See “OVwDbCreateField(3)” on page 635.
� See “OVwDbGetFieldInfo(3)” on page 648.
� See “OVwDbInit(3)” on page 662.
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwIsIdNull(3)” on page 743.
� See “OVwApiIntro(5)” on page 560.

644 Programmer's Reference

 OVwDbGetEnumConstants(3)

 OVwDbGetEnumConstants(3)

 Purpose

Accesses enumerated type values

 Related Functions
 OVwDbFreeEnumConstants

 OVwDbGetEnumValue

 OVwDbGetEnumName

 Syntax
#include <OV/ovw_obj.h>

OVwEnumConstants \OVwDbGetEnumConstants(OVwFieldId fieldId);

void OVwDbFreeEnumConstants(OVwEnumConstants \enumConstants);

int OVwDbGetEnumValue(OVwFieldId fieldId, char \name);

char \OVwDbGetEnumName(OVwFieldId fieldId, int value);

 Description

OVwDbGetEnumConstants returns a list of constants in the enumerated data type.

OVwDbFreeEnumConstants frees the memory allocated for an OVwEnumConstants structure.

OVwDbGetEnumValue translates an enumerated constant into an index value.

OVwDbGetEnumName translates an index into an enumerated constant.

 Parameters
enumConstants

Specifies a pointer to a structure of type OVwEnumConstants.

fieldId
Specifies the field ID of the enumerated type. This ID must represent a field in the NetView for AIX
object database that was created with the data type ovwEnumField.

name
Specifies a pointer to a text value defined as an enumeration constant for the field.

value
Specifies the index number of an enumeration constant for the field.

 Chapter 2. Reference Pages 645

 OVwDbGetEnumConstants(3)

 Return Values

If successful, OVwDbGetEnumConstants returns a pointer to an OVwEnumConstants structure. The count
field in the OVwEnumConstants structure represents the number of entries that have been defined in the
enumerated type. A count of 0 (zero) indicates that no values have been set for that enumerated type. If
unsuccessful, OVwDbGetEnumConstants returns NULL.

If successful, OVwDbGetEnumValue returns the index value for name in the enumerated data type. If
unsuccessful, it returns −1 (negative one).

If successful, OVwDbGetEnumName returns the text value (name) that has the index value for the field. If
unsuccessful, it returns NULL. Because the return value for OVwDbGetEnumName is dynamically allo-
cated, you must free the string when it is no longer needed.

 Error Codes

OVwDbGetEnumConstants and its related functions set the error code value that OVwError returns. The
following list describes the possible errors:

[OVw_DB_CONNECTION_LOST] The connection to ovwdb was lost.

[OVw_DB_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_DB_OPEN_FAILED] An attempted connection to the NetView for AIX object database
failed. When a program receives this error, it should discontinue
processing until the database communication problem has been
resolved.

[OVw_FIELD_NOT_FOUND] The argument fieldId does not identify a field in the NetView for AIX
object database.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

OVwDbGetEnumValue and OVwDbGetEnumName return the following error:

[OVw_FIELD_TYPE_MISMATCH] The type of the field identified by fieldID is not ovwEnumField.

OVwDbGetEnumValue returns the following error:

[OVw_INDEX_OUT_OF_RANGE] The argument name could not be found in the range of the enu-
merated type identified by fieldId.

OVwDbGetEnumName returns the following error:

[OVw_NAME_NOT_FOUND] The argument value could not be found in the range of the enumer-
ated type identified by fieldId.

 Libraries

When compiling a program that uses OVwDbGetEnumConstants or one of its related functions, you need
to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

646 Programmer's Reference

 OVwDbGetEnumConstants(3)

 Related Information
 � See ovwdb(8).
� See “OVwDbCreateField(3)” on page 635.
� See OVwDbGetFieldEnumByValue in “OVwDbGetFieldValue(3)” on page 650.
� See OVwDbGetFieldEnumByName in “OVwDbGetFieldValue(3)” on page 650.
� See “OVwDbInit(3)” on page 662.
� See “OVwDbSetEnumConstants(3)” on page 674.
� See OVwDbSetFieldEnumByName in “OVwDbSetFieldValue(3)” on page 676.
� See OVwDbSetFieldEnumByValue in “OVwDbSetFieldValue(3)” on page 676.
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 647

 OVwDbGetFieldInfo(3)

 OVwDbGetFieldInfo(3)

 Purpose

Returns information about a database field

 Related Functions
 OVwDbFreeFieldInfo

 Syntax
#include <OV/ovw_obj.h>

OVwFieldInfo \OVwDbGetFieldInfo(OVwFieldId fieldId);

void OVwDbFreeFieldInfo(OVwFieldInfo \fieldBuff);

 Description

OVwDbGetFieldInfo returns information about the field identified by fieldId. Returned information includes
the field name, field data type, and field flag information. For more information on how this information is
set for a field, see “OVwDbCreateField(3)” on page 635.

OVwDbFreeFieldInfo frees the memory allocated for an OVwFieldInfo structure.

 Parameters
fieldBuff Specifies a pointer to the OVwFieldInfo structure that is to be freed

fieldId Specifies the ID of the field

 Return Values

If successful, OVwDbGetFieldInfo returns a pointer to the OVwFieldInfo structure that contains the relevant
field information. If unsuccessful, OVwDbGetFieldInfo returns NULL.

 Error Codes

OVwDbGetFieldInfo sets the error code value that OVwError returns. The following list describes the pos-
sible errors:

[OVw_DB_CONNECTION_LOST] The connection to ovwdb was lost.

[OVw_DB_NOT_INITIALIZED] The OVw API has not been initialized with OVwInit.

[OVw_DB_OPEN_FAILED] An attempted connection to the OVW object database failed.
When a program receives this error, it should discontinue proc-
essing until the database communication problem has been
resolved.

[OVw_FIELD_NOT_FOUND] The fieldId does not represent a field in the OVW object database.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

648 Programmer's Reference

 OVwDbGetFieldInfo(3)

 Implementation Specifics

OVwDbGetFieldInfo supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwDbGetFieldInfo or OVwDbFreeFieldInfo, you need to link to the
following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovwdb(8).
� See “OVwDbCreateField(3)” on page 635.
� See OVwDbFieldIdToFieldName in “OVwDbFieldNameToFieldId(3)” on page 643.
� See “OVwDbFieldNameToFieldId(3)” on page 643.
� See “OVwDbInit(3)” on page 662.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 649

 OVwDbGetFieldValue(3)

 OVwDbGetFieldValue(3)

 Purpose

Gets field values for an object

 Related Functions
 OVwDbGetFieldEnumByValue
 OVwDbGetFieldEnumByName
 OVwDbGetFieldBooleanValue
 OVwDbGetFieldIntegerValue
 OVwDbGetFieldStringValue
 OVwDbFreeFieldValue

 Syntax
#include <OV/ovw_obj.h>

OVwFieldValue \OVwDbGetFieldValue(OVwObjectId objectId,
 OVwFieldId fieldId);

int OVwDbGetFieldEnumByValue(OVwObjectId objectId,
 OVwFieldId fieldId);

char \OVwDbGetFieldEnumByName(OVwObjectId objectId,
 OVwFieldId fieldId);

OVwBoolean OVwDbGetFieldBooleanValue(OVwObjectId objectId,
 OVwFieldId fieldId);

int32 OVwDbGetFieldIntegerValue(OVwObjectId objectId,
 OVwFieldId fieldId);

char \OVwDbGetFieldStringValue(OVwObjectId objectId,
 OVwFieldId fieldId);

void OVwDbFreeFieldValue(OVwFieldValue \fieldValue);

 Description

OVwDbGetFieldValue returns a pointer to an OVwFieldValue structure for the field identified by fieldId for
the object identified by objectId.

For a given object OVwDbGetFieldEnumByValue returns the value set for a field of type ovwEnumField.
The value returned is an index into the enumerated type, which is associated with the field identified by
fieldId for an object identified by objectId.

For a given object OVwDbGetFieldEnumByName returns the value set for a field of type ovwEnumField.
The value returned represents the actual value name stored in the enumerated type, which is associated
with the field defined by fieldId for the object identified by objectId.

OVwDbGetFieldBooleanValue returns the boolean value set for a field of type ovwBooleanField identified
by fieldId for the object identified by objectId.

650 Programmer's Reference

 OVwDbGetFieldValue(3)

OVwDbGetFieldIntegerValue returns the integer value set for a field of type ovwIntField identified by fieldId
for the object identified by objectId. OVwDbGetFieldIntegerValue cannot be used to return values
assigned to fields with the ovwListField flag set.

OVwDbGetFieldStringValue returns the string value set for a field of type ovwStringField identified by
fieldId for the object identified by objectId. Because the return value for OVwDbGetFieldStringValue is
dynamically allocated, you must free the string when it is no longer needed. OVwDbGetFieldStringValue
cannot be used to return values assigned to fields with the ovwListField flag set.

OVwDbFreeFieldValue frees the memory allocated for an OVwFieldValue structure.

 Parameters
fieldId Specifies the ID of the field

fieldValue Specifies a pointer to the OVwFieldValue structure to be freed

objectId Specifies the ID of the object with the field value

 Return Values

If successful, OVwDbGetFieldValue returns a pointer to an OVwFieldValue structure. If unsuccessful,
OVwDbGetFieldValue returns NULL.

If successful, OVwDbGetFieldEnumByValue returns the enumerated index, which is set as a field value of
the object identified by objectId. If unsuccessful, OVwDbGetFieldEnumByValue returns −1 (negative one).

If successful, OVwDbGetFieldEnumByName returns a pointer to the name which is set as a field value for
the object identified by objectId. If unsuccessful, OVwDbGetFieldEnumByName returns NULL. Because
the return value for OVwDbGetFieldEnumByName is dynamically allocated, you must free the string when
it is no longer needed.

If successful, OVwDbGetFieldBooleanValue returns an OVwBoolean value. If unsuccessful,
OVwDbGetFieldBooleanValue returns −1; in this case, OVwError is set to a value other than
[OVw_SUCCESS].

If successful, OVwDbGetFieldIntegerValue returns the integer value that was assigned to the field. If
unsuccessful, OVwDbGetFieldIntegerValue returns −1 (negative one). In this case, OVwError is set to a
value other than [OVw_SUCCESS].

If successful, OVwDbGetFieldStringValue returns the string value. If unsuccessful, it returns NULL.
Because the return value for OVwDbGetFieldStringValue is dynamically allocated, you must free the string
when it is no longer needed.

 Error Codes

OVwDbGetFieldValue and its related functions set the error code value that OVwError returns. The fol-
lowing list describes the possible errors:

[OVw_DB_CONNECTION_LOST] The connection to ovwdb was lost.

[OVw_DB_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

 Chapter 2. Reference Pages 651

 OVwDbGetFieldValue(3)

[OVw_DB_OPEN_FAILED] An attempted connection to the OVW object database failed.
When a program receives this error, it should discontinue proc-
essing until the database communication problem has been
resolved.

[OVw_OBJECT_NOT_FOUND] The object identified by objectId does not exist.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

The following routines:

 � OVwDbGetFieldValue
 � OVwDbGetFieldEnumByValue
 � OVwDbGetFieldEnumByName
 � OVwDbGetFieldBooleanValue
 � OVwDbGetFieldIntegerValue
 � OVwDbGetStringValue
 � OVwDbGetValuesByObjects

return the following error:

[OVw_FIELD_NOT_FOUND] The field identified by fieldId does not exist.

The following routines:

 � OVwDbGetFieldEnumByValue
 � OVwDbGetFieldEnumByName
 � OVwDbGetFieldBooleanValue
 � OVwDbGetFieldIntegerValue
 � OVwDbGetStringValue

return the following errors:

[OVw_FIELD_TYPE_MISMATCH] A field identified by fieldId does exist in the database, but has a
type inconsistent with the call being used.

[OVw_FIELD_LIST_FLAG_SET] An attempt was made to get the value of a list field.

The following routines:

 � OVwDbGetFieldValue
 � OVwDbGetFieldEnumByValue
 � OVwDbGetFieldEnumByName
 � OVwDbGetFieldBooleanValue
 � OVwDbGetFieldIntegerValue
 � OVwDbGetStringValue

return the following error:

[OVw_FIELD_VALUE_NULL] The field does not have a value for this object.

 Implementation Specifics

OVwDbGetFieldValue and its related functions support single-byte and multi-byte character code sets.

652 Programmer's Reference

 OVwDbGetFieldValue(3)

 Libraries

When compiling a program that uses an OVwDbGetFieldValue function, you need to link to the following
libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovwdb(8).
� See “OVwDbGetFieldValues(3)” on page 654.
� See “OVwDbGetFieldValuesByObjects(3)” on page 656.
� See “OVwDbInit(3)” on page 662.
� See OVwDbSetFieldBooleanValue in “OVwDbSetFieldValue(3)” on page 676.
� See OVwDbSetFieldStringValue in “OVwDbSetFieldValue(3)” on page 676.
� See “OVwDbSetFieldValue(3)” on page 676.
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 653

 OVwDbGetFieldValues(3)

 OVwDbGetFieldValues(3)

 Purpose

Gets list of field values for an object

 Related Functions
 OVwDbGetCapabilityFieldValues
 OVwDbGetNameFieldValues
 OVwDbFreeFieldBindList

 Syntax
#include <OV/ovw_obj.h>

OVwFieldBindList \OVwDbGetFieldValues(OVwObjectId objectId);

OVwFieldBindList \OVwDbGetCapabilityFieldValues(OVwObjectId objectId);

OVwFieldBindList \OVwDbGetNameFieldValues(OVwObjectId objectId);

void OVwDbFreeFieldBindList(OVwFieldBindList \fieldList);

 Description

OVwDbGetFieldValues returns a list of all the field values for the object identified by objectId. An object
always has at least one field.

OVwDbGetCapabilityFieldValues returns a list of all field values for capability fields (fields with the
ovwCapabilityField flag set) for the object identified by objectId.

OVwDbGetNameFieldValues returns a list of all field values for name fields (fields with the ovwNameField
flag set) for the object identified by objectId. An object always has at least one name field.

OVwDbFreeFieldBindList frees the memory allocated for an OVwFieldBindList structure.

 Parameters
fieldList Specifies a pointer to an OVwFieldBindList structure.

objectId Specifies the object ID of an object.

 Return Values

If successful, OVwDbGetFieldValues returns a pointer to an OVwFieldBindList. If unsuccessful, it returns
NULL.

If successful, OVwDbGetCapabilityFieldValues returns a pointer to an OVwFieldBindList structure. A value
of 0 (zero) in the count field of the OVwFieldBindList structure indicates there are no capability fields set
for the object. If unsuccessful, OVwDbGetCapabilityFields returns NULL.

If successful, OVwDbGetNameFieldValues returns a pointer to an OVwFieldBindList structure. If unsuc-
cessful, it returns NULL.

654 Programmer's Reference

 OVwDbGetFieldValues(3)

 Error Codes

OVwDbGetFieldValues and its related functions set the error code value that OVwError returns. The fol-
lowing list describes the possible errors:

[OVw_DB_CONNECTION_LOST] The connection to ovwdb was lost.

[OVw_DB_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_DB_OPEN_FAILED] An attempted connection to the OVW object database failed.
When a program receives this error, it should discontinue proc-
essing until the database communication problem has been
resolved.

[OVw_OBJECT_NOT_FOUND] The object identified by objectId does not exist.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

 Implementation Specifics

OVwDbGetFieldValues and its related functions support single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses an OVwDbGetFieldValues function, you need to link to the following
libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovwdb(8).
� See “OVwDbGetFieldValuesByObjects(3)” on page 656.
� See “OVwDbInit(3)” on page 662.
� See OVwDbSetFieldBooleanValue in “OVwDbSetFieldValue(3)” on page 676.
� See OVwDbSetFieldStringValue in “OVwDbSetFieldValue(3)” on page 676.
� See “OVwDbSetFieldValue(3)” on page 676.
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 655

 OVwDbGetFieldValuesByObjects(3)

 OVwDbGetFieldValuesByObjects(3)

 Purpose

Gets values for a field for multiple objects

 Related Functions
 OVwDbFreeObjectFieldList

 Syntax
#include <OV/ovw_obj.h>

OVwObjectFieldList \OVwDbGetFieldValuesByObjects(OVwObjectIdList \objectIdList,
 OVwFieldId fieldId);

void OVwDbFreeObjectFieldList(OVwObjectFieldList \objectFieldList);

 Description

OVwDbGetFieldValuesByObjects is used to get the value that is set for a field for a list of objects.
OVwObjectFieldList will point to a list of field values, one for each object represented in objectIdList. If for
any given object ID the field has no value, the OVwFieldValue pointer for the object ID in the
OVwObjectFieldList will be set to NULL.

OVwDbFreeObjectFieldList frees the memory allocated for an OVwObjectFieldList structure.

 Parameters
fieldId Specifies the ID of the field

objectFieldList Specifies a pointer to an OVwObjectFieldList structure to be freed

objectIdList Specifies a pointer to an OVwObjectIdList structure that contains a list of object IDs

 Return Values

If successful, OVwDbGetFieldValuesByObjects returns a pointer to an OVwObjectFieldList structure. If
unsuccessful, it returns NULL.

 Error Codes

OVwDbGetFieldValuesByObjects and OVwDbFreeObjectFieldList set the error code value that OVwError
returns. The following list describes the possible errors:

[OVw_DB_CONNECTION_LOST] The connection to ovwdb was lost.

[OVw_DB_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_DB_OPEN_FAILED] An attempted connection to the OVW object database failed.
When a program receives this error, it should discontinue proc-
essing until the database communication problem has been
resolved.

656 Programmer's Reference

 OVwDbGetFieldValuesByObjects(3)

[OVw_FIELD_NOT_FOUND] The field identified by fieldId does not exist.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

 Implementation Specifics

OVwDbGetFieldValuesByObjects supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwDbGetFieldValuesByObjects or OVwDbFreeObjectFieldList, you
need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovwdb(8).
� See “OVwDbGetFieldValue(3)” on page 650.
� See “OVwDbInit(3)” on page 662.
� See OVwDbSetFieldBooleanValue in “OVwDbSetFieldValue(3)” on page 676.
� See OVwDbSetFieldStringValue in “OVwDbSetFieldValue(3)” on page 676.
� See “OVwDbSetFieldValue(3)” on page 676.
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 657

 OVwDbGetUniqObjectName(3)

 OVwDbGetUniqObjectName(3)

 Purpose

Gets a unique name for an object

 Syntax
#include <OV/ovw_obj.h>

char \OVwDbGetUniqObjectName(OVwFieldId namefieldId,
 char \nameValue);

 Description

The value set for a name field (a field with the ovwNameField flag set), must be unique within the OVW
database. That is, each object must have a unique value for that field ID. OVwDbGetUniqObjectName
returns a name value that is unique for all values set for the field identified by namefieldId.

The optional parameter nameValue can be used to determine whether a particular name is unique.
among all values defined for the field specified by namefieldId. If the name value is found to be unique, it
will be returned by the function unchanged. Otherwise, the name will be modified to ensure that it is
unique. This parameter provides the ability to produce unique-name values seeded with a common name.
If a NULL character string is provided through the nameValue parameter, a NetView for AIX internal name
will be generated.

 Parameters
 namefieldId

Specifies the field ID for which a unique name is to be produced. The namefieldId parameter must
identify a field that was created with the ovwNameField flag set.

 nameValue
Specifies a pointer to a textual name value to be determined unique or not unique. The nameValue
parameter can be NULL.

 Return Values

If successful, OVwDbGetUniqObjectName returns a pointer to a character string representing a unique
name. If unsuccessful, it returns NULL. Because the return value is dynamically allocated, you must free
the string when it is no longer needed.

 Error Codes

OVwDbGetUniqObjectName sets the error code value that OVwError returns. The following list describes
the possible errors:

[OVw_DB_CONNECTION_LOST]
The connection to ovwdb was lost.

[OVw_DB_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_DB_OPEN_FAILED] An attempted connection to the OVW object database failed. When a
program receives this error, it should discontinue processing until the
database communication problem has been resolved.

658 Programmer's Reference

 OVwDbGetUniqObjectName(3)

[OVw_FIELD_NOT_FOUND] The field identified by namefieldId does not exist.

[OVw_FIELD_NOT_NAME] The namefieldId parameter does not represent a field that has the
ovwNameField flag set.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

 Implementation Specifics

OVwDbGetUniqObjectName supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwDbGetUniqObjectName, you need to link to the following
libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovwdb(8).
� See “OVwDbCreateField(3)” on page 635.
� See “OVwDbInit(3)” on page 662.
� See “OVwDbNameToObjectId(3)” on page 670.
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 659

 OVwDbHostnameToObjectId(3)

 OVwDbHostnameToObjectId(3)

 Purpose

Converts an IP host name to an object ID

 Related Functions
 OVwDbObjectIdToHostname

 Syntax

#include <OV/ovw_obj.h>

OVwObjectId OVwDbHostnameToObjectId(char \hostname);

char \OVwDbObjectIdToHostname(OVwObjectId objectId);

 Description

The OVW object database defines the field IP Hostname. This field is created as a name field,
ovwNameFieldSet, and is intended to provide database support for IP host names. These routines
provide a convenient way to convert an IP host name to an object ID or to convert an object ID to an IP
host name. Because IP Hostname is a name field, each host name set using this field uniquely identifies
an object in the OVW database.

OVwDbHostnameToObjectId returns the object ID for the object whose IP host name is hostname.

OVwDbObjectIdToHostname returns the IP host name for the object identified by objectId.

 Parameters
hostname Specifies a pointer to the IP host name of an object

objectId Specifies the object ID of an object

 Return Values

If successful, OVwDbHostnameToObjectId returns the OVwObjectId that uniquely identifies the object that
has hostname set for its IP Hostname field. If unsuccessful, it returns ovwNullObjectId. The macros
OVwIsIdNull and OVwIsIdEqual should be used for testing and comparing object IDs.

If successful, OVwDbObjectIdToHostname returns a pointer to the IP host name for the object identified by
objectId. If unsuccessful, it returns NULL. Because the return value for OVwDbObjectIdToHostname is
dynamically allocated, you must free the string when it is no longer needed.

 Error Codes

OVwDbHostnameToObjectId and OVwDbObjectIdToHostname set the error code value that OVwError
returns. The following list describes the possible errors:

[OVw_DB_CONNECTION_LOST]
The connection to ovwdb was lost.

660 Programmer's Reference

 OVwDbHostnameToObjectId(3)

[OVw_DB_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_DB_OPEN_FAILED] An attempted connection to the OVW object database failed. When a
program receives this error, it should discontinue processing until the
database communication problem has been resolved.

[OVw_OBJECT_NOT_FOUND] No object was found that matched either objectId or hostname.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

OVwDbHostnameToObjectId returns the following error:

[OVw_FIELD_VALUE_NULL] The host name provided is a NULL character pointer.

 Implementation Specifics

OVwDbHostNameToObjectId and OVwObjectIdToHostName support single-byte and multi-byte character
code sets.

 Libraries

When compiling a program that uses OVwDbHostnameToObjectId or OVwDbObjectIdToHostname, you
need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovwdb(8).
� See “OVwDbCreateObject(3)” on page 638.
� See “OVwDbInit(3)” on page 662.
� See “OVwDbSetFieldValue(3)” on page 676.
� See “OVwDbNameToObjectId(3)” on page 670.
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwIsIdNull(3)” on page 743.
� See OVwIsIdEqual in “OVwIsIdNull(3)” on page 743.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 661

 OVwDbInit(3)

 OVwDbInit(3)

 Purpose

Initializes the OVwDb API

 Syntax

#include <OV/ovw.h>

int OVwDbInit();

 Description

OVwDbInit initializes internal OVwDb API data structures and the communications channel between a
NetView for AIX application and the NetView for AIX database daemon, ovwdb. It must be called before
any other OVwDb API call. It is called automatically by OVwInit because certain functions of the OVw
APIs require some OVwDb API calls. Your application should call OVwDbInit if it is going to use only the
OVwDb routines without the rest of the OVwAPI. An application using OVwDbInit does not need to be
started by the NetView for AIX program.

 Return Values

If successful, OVwDbInit returns 0 (zero). If unsuccessful, it returns −1 (negative one).

 Error Codes

OVwDbInit sets the error code value that OVwError returns. The following list describes the possible
errors:

[OVw_DB_ALREADY_INITIALIZED] The API has been initialized with a prior call to OVwDbInit.

[OVw_DB_CONNECT_ERROR] A failure occurred when attempting to connect to ovwdb.

[OVw_CONNECTION_LOST] The connection to ovwdb was lost.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

 Implementation Specifics

OVwDbInit supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwDbInit, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

662 Programmer's Reference

 OVwDbInit(3)

 Related Information
 � See ovw(1).
 � See ovwdb(8).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 663

 OVwDbListFields(3)

 OVwDbListFields(3)

 Purpose

Lists OVW object database fields

 Related Functions
 OVwDbFreeFieldList

 Syntax

#include <OV/ovw_obj.h>

OVwFieldList \OVwDbListFields(unsigned int fieldFilter);

void OVwDbFreeFieldList(OVwFieldList \fieldListBuff);

 Description

OVwDbListFields returns a pointer to a list of fields. A field filter can be specified to determine which
fields will be returned. For more information on creating fields with specific flags see
“OVwDbCreateField(3)” on page 635.

OVwDbFreeFieldList frees the memory allocated for an OVwFieldList structure.

 Parameters
 fieldFilter Specifies a filter that indicates which fields are to be included in the return infor-

mation

ovwAllFields Returns all fields. Combining the ovwAllFields filter value
with any other filter value will result in the negation of the
ovwAllFields flag.

ovwListField Returns all fields with the ovwListField flag set.

ovwNameField Returns all fields with the ovwNameField flag set.

ovwLocateField Returns all fields with the ovwLocateField flag set.

ovwCapabilityField Returns all fields with the ovwCapabilityField flag set.

ovwGeneralField Returns all fields with the ovwGeneralField flag set. Any
of the above values can be used independently or by
using the logical OR operator. The filter value can be
combined to increase the scope of the search.

 fieldListBuff Specifies a pointer to the OVwFieldList structure to be freed

 Return Values

If successful, OVwDbListFields returns a pointer to an OVwFieldList structure. If unsuccessful, it returns
NULL. The number of structures in the OVwFieldList may be 0 (zero), indicating no fields were found for
the specified filter.

664 Programmer's Reference

 OVwDbListFields(3)

 Error Codes

OVwDbListFields sets the error code value that OVwError returns. The following list describes the pos-
sible errors:

[OVw_DB_CONNECTION_LOST] The connection to ovwdb was lost.

[OVw_DB_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_DB_OPEN_FAILED] An attempted connection to the OVW object database failed.
When a program receives this error, it should discontinue proc-
essing until the database communication problem has been
resolved.

[OVw_FIELD_INVALID_FILTER] A combination of search filters that is not valid was provided.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

 Examples

You can combine the ovwLocateField and the ovwCapabilityField into one search filter by entering the
following call:

 OVwFieldList \fieldlist;

if((fieldlist=OVwDbListFields(ovwLocateField | ovwCapabilityField)==NULL) {
 printf(“Error: %d.\n”,OVwError());
 }

This call will cause an OVwFieldList to contain all the fields in the database that have the ovwLocateField
flag set, the ovwCapabilityField flag set, or both flags set.

You can build an OVwFieldList containing every field in the OVW object database by entering the following
call:

 OVwFieldList \fieldList;

 if((fieldlist═OVwDbListFields(ovwAllFields)══NULL) {
 printf(“Error: %d.\n”,OVwError());
 }

 Implementation Specifics

OVwDbListFields and OVwDbFreeFieldList support single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwDbListFields or OVwDbFreeFieldList, you need to link to the
following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Chapter 2. Reference Pages 665

 OVwDbListFields(3)

 Related Information
 � See ovwdb(8).
� See “OVwDbCreateField(3)” on page 635.
� See “OVwDbGetFieldInfo(3)” on page 648.
� See “OVwDbInit(3)” on page 662.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

666 Programmer's Reference

 OVwDbListObjectsByFieldValue(3)

 OVwDbListObjectsByFieldValue(3)

 Purpose

Lists objects by field value

 Related Functions
 OVwDbListObjectsByFieldValues
 OVwDbFreeObjectIdList

 Syntax
#include <OV/ovw_obj.h>

OVwObjectIdList \OVwDbListObjectsByFieldValue(OVwFieldBinding \fieldBinding);

OVwObjectIdList \OVwDbListObjectsByFieldValues(OVwFieldBindList \fieldList);

void OVwDbFreeObjectIdList(OVwObjectIdList \objIdList);

 Description

An object in the OVW object database is composed of a series of fields containing values. It can be
useful to obtain a list of object IDs that have a specific value defined for a particular field. These functions
provide the ability to search the entire OVW object database to locate objects based on field values. If the
input to these functions is provided as a NULL pointer, the OVwObjectIdList returned will contain a list of
every object ID in the OVW object database.

OVwDbListObjectsByFieldValue and OVwDbListObjectsByFieldValues cannot be used with fields that have
the ovwListField flag set.

OVwDbListObjectsByFieldValue returns a list of objects from the OVW object database that have a single,
specific value set for a field. The field ID and the value to be matched are in the structure pointed to by
fieldBinding.

OVwDbListObjectsByFieldValues returns all the objects in the OVW object database that have all the field
values specified by the argument fieldList. A logical AND of the fields in the list is used. That is, for an
object to match, it must have all the requested fields set to their specified values.

OVwDbFreeObjectIdList frees memory allocated for an OVwObjectIdList structure.

 Parameters
 fieldBinding Specifies a pointer to an OVwFieldBinding structure that contains the field ID and

the field value to be used in locating objects

 fieldList Specifies a pointer to an OVwFieldBindList structure that contains a list of field IDs
and their corresponding values

 objIdList Specifies the OVwObjectIdList to be freed

 Chapter 2. Reference Pages 667

 OVwDbListObjectsByFieldValue(3)

 Return Values

If successful, OVwDbListObjectsByFieldValue returns a pointer to an OVwObjectIdList structure containing
a list of object IDs for objects that have the field value indicated by fieldBinding. If no match was found,
the OVwObjectIdList will contain no object IDs. If unsuccessful, OVwDbListObjectsByFieldValue returns
NULL.

If successful, OVwDbListObjectsByFieldValues returns an OVwObjectIdList structure listing object IDs for
all objects that match all the field values in fieldList. If no match was found, the OVwObjectIdList will
contain no object IDs. If unsuccessful, OVwDbListObjectsByFieldValues returns NULL.

 Error Codes

OVwDbListObjectsByFieldValue and OVwDbListObjectsByFieldValues set the error code value that
OVwError returns. The following list describes the possible errors:

[OVw_DB_CONNECTION_LOST]
The connection to the NetView for AIX program was lost.

[OVw_FIELD_NOT_FOUND] The provided field ID does not represent any field in the database.

[OVw_FIELD_TYPE_MISMATCH]
The field type provided in an OVwFieldBinding structure does not match
the field type stored in the database for the field ID.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED]
The EUI API has not been initialized with OVwInit.

[OVw_FIELD_INVALID_FLAG] A field in the OVwFieldBinding has the ovwListField flag set.
OVwDbListObjectsByFieldValue and its related functions do not support
searches on fields that have this flag set.

 Implementation Specifics

OVwDbListObjectsByFieldValue and its related functions support single-byte and multi-byte character code
sets.

 Libraries

When compiling a program that uses OVwDbListObjectsByFieldValue or one of its related functions, you
need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

668 Programmer's Reference

 OVwDbListObjectsByFieldValue(3)

 Related Information
 � See ovwdb(8).
� See “OVwDbCreateField(3)” on page 635.
� See “OVwDbCreateObject(3)” on page 638.
� See “OVwDbInit(3)” on page 662.
� See “OVwDbSetFieldValue(3)” on page 676.
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 669

 OVwDbNameToObjectId(3)

 OVwDbNameToObjectId(3)

 Purpose

Converts a name field to an object ID

 Syntax

#include <OV/ovw_obj.h>

OVwObjectId OVwDbNameToObjectId(OVwFieldId fieldId, char \nameValue);

 Description

Setting a value for a name field creates a handle that can be used to uniquely identify any object in the
OVW Object database. There is a one-to-one correspondence between the name-field value and the
object ID.

OVwDbNameToObjectId enables you to translate a name-field value to an object ID.

 Parameters
fieldId Specifies the ID of the name field containing the name value to be located. The

fieldId must represent a field that was created with the ovwNameField field flag set.
See “OVwDbCreateField(3)” on page 635.

nameValue Specifies a pointer to the name to be located in the database.

 Return Values

If successful, OVwDbNameToObjectId returns the ID of the object that contains a field value matching the
nameValue parameter. If unsuccessful, it returns ovwNullObjectId. The macros OVwIsIdNull and
OVwIsIdEqual should be used to examine the return value.

 Error Codes

OVwDbNameToObjectId sets the error code value that OVwError returns. The following list describes the
possible errors:

[OVw_DB_CONNECTION_LOST] The connection to ovwdb was lost.

[OVw_DB_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_DB_OPEN_FAILED] An attempted connection to the OVW object database failed.
When a program receives this error, it should discontinue proc-
essing until the database communication problem has been
resolved.

[OVw_FIELD_NOT_FOUND] The fieldId parameter does not represent a field in the database.

[OVw_FIELD_NOT_NAME] The fieldId parameter does not represent a field that has the
ovwNameField flag set.

[OVw_FIELD_VALUE_NULL] The nameValue parameter is a NULL pointer.

670 Programmer's Reference

 OVwDbNameToObjectId(3)

[OVw_OBJECT_NOT_FOUND] There exists no object that has nameValue set for the field identi-
fied by fieldId.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

 Implementation Specifics

OVwDbNameToObjectId supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwDbNameToObjectId, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovwdb(8).
� See “OVwDbCreateField(3)” on page 635.
� See “OVwDbInit(3)” on page 662.
� See “OVwDbSetFieldValue(3)” on page 676.
� See “OVwInit(3)” on page 741.
� See “OVwIsIdNull(3)” on page 743.
� See OVwIsIdEqual in “OVwIsIdNull(3)” on page 743.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 671

 OVwDbSelectionNameToObjectId(3)

 OVwDbSelectionNameToObjectId(3)

 Purpose

Converts an object ID to a selection name

 Related Functions
 OVwDbObjectIdToSelectionName

 Syntax

#include <OV/ovw_obj.h>

OVwObjectId OVwDbSelectionNameToObjectId(char \selectionName);

char \OVwDbObjectIdToSelectionName(OVwObjectId objectId);

 Description

Every object in the OVW database can be identified by a unique name. This name is called the selection
name. The selection name for an object is defined at the time the object is created. See
“OVwDbCreateObject(3)” on page 638 for more information regarding the creation of objects.
OVwDbSelectionNameToObjectId and OVwDbObjectIdToSelectionName provide a convenient method of
converting a selection name to an object ID and an object ID to a selection name.

OVwDbSelectionNameToObjectId returns the OVwObjectId of the object that has as a selection name
matching the value provided by selectionName.

OVwDbObjectIdToSelectionName returns the selection name for the object identified by objectId.

 Parameters
 selectionName

Specifies a pointer to the selection name of an object.

 objectId
Specifies the ID of an object.

 Return Values

If successful, OVwDbSelectionNameToObjectId returns the OVwObjectId that uniquely identifies the object
that has a selection name matching selectionName. If unsuccessful, it returns ovwNullObjectId. The
macros OVwIsIdNull and OVwIsIdEqual should be used for testing and comparing object IDs.

If successful, OVwDbObjectIdToSelectionName returns the selection name defined for the object identified
by objectId. If unsuccessful, it returns NULL. Because the return value for
OVwDbObjectIdToSelectionName is dynamically allocated, you must free the string when it is no longer
needed.

672 Programmer's Reference

 OVwDbSelectionNameToObjectId(3)

 Error Codes

OVwDbSelectionNameToObjectId and OVwDbObjectIdToSelectionName set the error code value that
OVwError returns. The following list describes the possible errors:

[OVw_DB_CONNECTION_LOST]
The connection to ovwdb was lost.

[OVw_DB_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_DB_OPEN_FAILED] An attempted connection to the OVW object database failed. When a
program receives this error, it should discontinue processing until the
database communication problem has been resolved.

[OVw_OBJECT_NOT_FOUND] No object that matched objectId, selectionName, or hostName was
found.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

OVwDbSelectionNameToObjectId returns the following error:

[OVw_FIELD_VALUE_NULL] The name value provided is a NULL character pointer.

 Implementation Specifics

OVwDbSelectionNameToObjectId and OVwDbObjectIdToSelectionName support single-byte and
multi-byte character code sets.

 Libraries

When compiling a program that uses OVwDbSelectionNameToObjectId or
OVwDbObjectIdToSelectionName, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovwdb(8).
� See “OVwDbCreateObject(3)” on page 638.
� See “OVwDbInit(3)” on page 662.
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwIsIdNull(3)” on page 743.
� See OVwIsIdEqual in “OVwIsIdNull(3)” on page 743.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 673

 OVwDbSetEnumConstants(3)

 OVwDbSetEnumConstants(3)

 Purpose

Sets values for an enumerated data type

 Syntax
#include <OV/ovw_obj.h>

int OVwDbSetEnumConstants(OVwFieldId fieldId, OVwEnumConstants \enumConstants);

 Description

The range of possible values that can be set for a field that was created with the ovwEnumField field flag
must be defined prior to setting any values. See “OVwDbCreateField(3)” on page 635 for more informa-
tion on creating fields. The range of values is defined using an OVwEnumConstants structure.

The OVwDbSetEnumConstants routine assigns an index value to each character string listed in
enumConstants. The first entry in any enumeration stored in the OVW object database must be the key
word Unset. If enumConstants does not include this key word as the first value, it will be automatically
added. Enumerated values are maintained in the database in the order in which they are listed in
enumConstants.

 Parameters
enumConstants Specifies a pointer to an OVwEnumConstants structure.

fieldId Identifies an object attribute field. This ID must represent a field in the OVW object
database that was created with the a data type of ovwEnumField.

 Return Values

If successful, OVwDbSetEnumConstants returns 0 (zero). If unsuccessful, it returns −1 (negative one).

 Error Codes

OVwDbSetEnumConstants sets the error code value that OVwError returns. The following list describes
the possible errors:

[OVw_DB_CONNECTION_LOST] The connection to ovwdb was lost.

[OVw_DB_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_DB_OPEN_FAILED] An attempted connection to the OVW object database failed.
When a program receives this error, it should discontinue proc-
essing until the database communication problem has been
resolved.

[OVw_FIELD_NOT_FOUND] The fieldId parameter does not identify a field in the OVW object
database.

[OVw_FIELD_TYPE_MISMATCH] The type of the field identified by fieldId is not ovwEnumField.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

674 Programmer's Reference

 OVwDbSetEnumConstants(3)

 Implementation Specifics

OVwDbSetEnumConstants supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwDbSetEnumConstants, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovwdb(8).
� See “OVwDbAppendEnumConstants(3)” on page 633.
� See “OVwDbCreateField(3)” on page 635.
� See OVwDbGetFieldEnumByValue in “OVwDbGetFieldValue(3)” on page 650.
� See OVwDbGetFieldEnumByName in “OVwDbGetFieldValue(3)” on page 650.
� See “OVwDbInit(3)” on page 662.
� See OVwDbSetFieldEnumByName in “OVwDbSetFieldValue(3)” on page 676.
� OVwDbSetFieldEnumByValue in “OVwDbSetFieldValue(3)” on page 676.
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 675

 OVwDbSetFieldValue(3)

 OVwDbSetFieldValue(3)

 Purpose

Sets a field value for an object

 Related Functions
 OVwDBSetFieldValues
 OVwDbSetFieldBooleanValue
 OVwDbSetFieldEnumByValue
 OVwDbSetFieldEnumByName
 OVwDbSetFieldIntegerValue
 OVwDbSetFieldStringValue

 Syntax
#include <OV/ovw_obj.h>

int OVwDbSetFieldValues(OVwObjectId objectId,
 OVwFieldBindList \fieldBindList);

int OVwDbSetFieldValue(OVwObjectId objectId,

OVwFieldId fieldId, OVwFieldValue \fieldValue);

int OVwDbSetFieldBooleanValue(OVwObjectId objectId,

OVwFieldId fieldId, OVwBoolean booleanValue);

int OVwDbSetFieldEnumByName(OVwObjectId objectId,

OVwFieldId fieldId, char \name);

int OVwDbSetFieldEnumByValue(OVwObjectId objectId,

OVwFieldId fieldId, int value);

int OVwDbSetFieldIntegerValue(OVwObjectId objectId,

OVwFieldId fieldId, int32 integerValue);

int OVwDbSetFieldStringValue(OVwObjectId objectId,

OVwFieldId fieldId, char \stringValue);

 Description

OVwDbSetFieldValue sets the value of the field identified by the fieldId parameter for the object identified
by objectId. The OVwDbSetFieldValue routine can set a value for any field type.

OVwDbSetFieldValues sets the values for multiple fields identified in the fieldBindList parameter for the
object identified by objectId. The OVwDbSetFieldValues routine can set values for any combination of
field types. Using OVwDbSetFieldValues to set multiple fields for an object is much faster than setting
fields one at a time with OVwDbSetFieldValue, because the values are batched together and sent as one
request.

OVwDbSetFieldBooleanValue sets a value for a field of type ovwBooleanField.

OVwDbSetFieldEnumByName and OVwDbSetFieldEnumByValue will set a value for a field of type
ovwEnumField. The field value can be set with an index into the enumerated type or an actual value

676 Programmer's Reference

 OVwDbSetFieldValue(3)

stored in the enumerated type. An error will result if the value parameter is not in the range defined for
the enumerated type or if the name parameter does not exist in the type. See
“OVwDbSetEnumConstants(3)” on page 674 for more information on enumerated data.

OVwDbSetFieldIntegerValue sets the value for a field of type ovwIntegerField.
OVwDbSetFieldIntegerValue cannot be used to set values for fields that have the ovwListField flag set.

OVwDbSetFieldStringValue sets a value for a field of type ovwStringField. OVwDbSetFieldStringValue
cannot be used to set values for fields that have the ovwListField flag set.

 Parameters
 booleanValue Specifies the value to set for the boolean field

 fieldId Specifies the ID of the field to set

 fieldBindList Specifies a list of OVwFieldBindings which identify the OVwFieldIds and
OVwFieldValues to set.

 fieldValue Specifies a pointer to an OVwFieldValue structure containing a field value to set

 integerValue Specifies the value to be set for the integer field

 name Specifies a pointer to the text string value to be set for the enumerated field

 objectId Specifies the object ID of the object for which the field value is to be set

 stringValue Specifies a pointer to the value to be set for the string field

 value Specifies the index number of the value to be set for the enumerated field

 Return Values

If successful, OVwDbSetFieldValue and its related functions return a value of 0 (zero). If unsuccessful,
they return −1 (negative one).

 Error Codes

OVwDbSetFieldValue and its related functions set the error code value that OVwError returns. The fol-
lowing list describes the possible errors:

[OVw_DB_CONNECTION_LOST] The connection to ovwdb was lost.

[OVw_DB_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_DB_OPEN_FAILED] An attempted connection to the OVW object database failed. When
a program receives this error, it should discontinue processing until
the database communication problem has been resolved.

[OVw_DB_UPDATE_FAILURE] An attempt to update the a field in the OVW object database failed.

[OVw_FIELD_NOT_FOUND] The fieldId parameter does not represent a field in the OVW object
database.

[OVw_FIELD_TYPE_MISMATCH] The type of the field identified by fieldId is not consistent with the
calling procedure.

[OVw_OBJECT_NOT_FOUND] The objectId parameter does not represent an object in the OVW
object database.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

 Chapter 2. Reference Pages 677

 OVwDbSetFieldValue(3)

OVwDbSetFieldEnumByValue and OVwDbSetFieldEnumByName return the following error:

[OVw_INDEX_OUT_OF_RANGE] The input provided for the value or name are not part of the enumer-
ation identified by fieldId.

 Implementation Specifics

OVwDbSetFieldValue and its related functions support single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses an OVwDbSetFieldValue function, you need to link to the following
libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovwdb(8).
� See OVwDbGetFieldEnumByName in “OVwDbGetFieldValue(3)” on page 650.
� See OVwDbGetFieldEnumByValue in “OVwDbGetFieldValue(3)” on page 650.
� See “OVwDbGetFieldInfo(3)” on page 648.
� See “OVwDbInit(3)” on page 662.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

678 Programmer's Reference

 OVwDbSetSelectionName(3)

 OVwDbSetSelectionName(3)

 Purpose

Sets the selection name

 Related Functions
 OVwDbSetHostname

 Syntax
#include <OV/ovw_obj.h>

int OVwDbSetSelectionName(OVwObjectId objectId, char \sname);

int OVwDbSetHostname(OVwObjectId objectId, char \hname);

 Description

The selection name and the IP host name fields are defined by the NetView for AIX program in the object
database. They are defined with the ovwNameField field flag set, so that they can be used to locate
objects in the database. See “OVwDbNameToObjectId(3)” on page 670. These functions provide a con-
venient way to change values assigned to these fields for a given object.

OVwDbSetSelectionName resets the value of the selection name field for the particular object to the string
pointed to by the sname parameter.

OVwDbSetHostname resets the value of the IP host name field for the particular object to the string
pointed to by the hname parameter.

 Parameters
 hname

Specifies a pointer to the name to be set for the IP host name field of the object that is identified by
objectId

 objectId
Specifies the ID of an object in the OVW object database

 sname
Specifies a pointer to the name to be set for the selection name field of the object that is identified by
objectId

 Return Values

If successful, OVwDbSetSelectionName and OVwDbSetHostname return 0 (zero). If unsuccessful, they
return −1 (negative one).

 Chapter 2. Reference Pages 679

 OVwDbSetSelectionName(3)

 Error Codes

OVwDbSetSelectionName and OVwDbSetHostname set the error code value that OVwError returns. The
following list describes the possible errors:

[OVw_DB_CONNECTION_LOST] The connection to ovwdb was lost.

[OVw_DB_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_DB_OPEN_FAILED] An attempted connection to the OVW object database failed.
When a program receives this error, it should discontinue proc-
essing until the database communication problem has been
resolved.

[OVw_FIELD_NAME_NOT_UNIQUE] The provided name was not unique for all values set for the field.

[OVw_FIELD_VALUE_NULL] The provided name is a NULL character pointer.

[OVw_OBJECT_NOT_FOUND] The objectId parameter does not represent an object in the OVW
object database.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

 Implementation Specifics

OVwDbSetSelectionName and OVwDbSetHostname support single-byte and multi-byte character code
sets.

 Libraries

When compiling a program that uses OVwDbSetSelectionName or OVwDbSetHostname, you need to link
to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovwdb(8).
� See “OVwDbGetUniqObjectName(3)” on page 658.
� See “OVwDbHostnameToObjectId(3)” on page 660.
� See “OVwDbInit(3)” on page 662.
� See “OVwDbNameToObjectId(3)” on page 670.
� See “OVwDbSelectionNameToObjectId(3)” on page 672.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

680 Programmer's Reference

 OVwDbUnsetFieldValue(3)

 OVwDbUnsetFieldValue(3)

 Purpose

Unsets field values for an object

 Related Functions
 OVwDbUnsetFieldValues

 Syntax
#include <OV/ovw_obj.h>

int OVwDbUnsetFieldValue(OVwObjectId objectId, OVwFieldId fieldId);

int OVwDbUnsetFieldValues(OVwObjectId objectId,
 OVwFieldIdList \fieldIdList);

 Description

These functions provide the ability to remove fields from objects. The effects of these calls are such that
upon completion, a call to OVwDbGetFieldValue with the parameters objectId and fieldId (or any field ID
listed in fieldIdList) will result the error OVw_FIELD_VALUE_NULL. These calls do not affect the field
definition. See “OVwDbCreateField(3)” on page 635 for more information on field definitions.

OVwDbUnsetFieldValue provides the ability to remove a field value for an object.

OVwDbUnsetFieldValues provides the ability to remove a list of field values for an object.

 Parameters
fieldId

Specifies the ID of the field that contains the value to be removed

fieldIdList
Specifies a pointer to a list of IDs of fields that contain values to be removed

objectId
Specifies the ID of the object that contains the field values to be removed

 Return Values

If successful, OVwDbUnsetFieldValue and OVwDbUnsetFieldValues return 1. If unsuccessful, they returns
0 (zero).

OVwDbUnsetFieldValues will fail only if objectId does not exist. If a field ID in fieldIdList does not exist, or
represents a protected field, no error is returned and the function continues processing the next field ID in
fieldIdList. (See the following descriptions of [OVw_FIELD_NOT_FOUND] and
[OVw_FIELD_PROTECTED_VALUE].)

 Chapter 2. Reference Pages 681

 OVwDbUnsetFieldValue(3)

 Error Codes

OVwDbUnsetFieldValue and OVwDbUnsetFieldValues set the error code value that OVwError returns.
The following list describes the possible errors:

[OVw_DB_CONNECTION_LOST] The connection to ovwdb was lost.

[OVw_DB_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_DB_OPEN_FAILED] An attempted connection to the OVW object database failed.
When a program receives this error, it should discontinue proc-
essing until the database communication problem has been
resolved.

[OVw_OBJECT_NOT_FOUND] The objectId parameter does not represent an object in the OVW
object database.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

OVwUnsetFieldValue returns the following errors:

[OVw_FIELD_NOT_FOUND] The fieldId parameter does not represent an field in the OVW
object database.

[OVw_FIELD_PROTECTED_VALUE] An attempt was made to unset a protected field value. The field
values that cannot be removed with this call include the Selection
Name field, the OVW Maps Exists field, and the OVW Maps
Managed field.

 Implementation Specifics

OVwDbUnsetFieldValue supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwDbUnsetFieldValue or OVwDbUnsetFieldValues, you need to
link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovwdb(8).
� See “OVwDbInit(3)” on page 662.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

682 Programmer's Reference

 OVwDisplaySubmap(3)

 OVwDisplaySubmap(3)

 Purpose

Displays a submap

 Syntax

#include <OV/ovw.h>

int OVwDisplaySubmap(OVwMapInfo \map, OVwSubmapId submapId);

 Description

OVwDisplaySubmap displays a submap in a submap window. If the submap is already displayed, the
submap window is raised to the top of the screen.

Most map applications do not use OVwDisplaySubmap because users generally use the graphical user
interface to display submaps. Only applications that create submaps as a result of interactive user
requests, such as a menu operation, would need to display submaps.

 Parameters
 map

Specifies a pointer to the MapInfo structure for an open map. The map parameter can be obtained
using OVwGetMapInfo or saved from the ovwMapOpen event using OVwCopyMapInfo.

 submapId
Specifies the ID of the submap to be displayed.

 Return Values

If successful, OVwDisplaySubmap returns 0 (zero). If unsuccessful, it returns −1 (negative one).

 Error Codes

OVwDisplaySubmap sets the error code value that OVwError returns. The following list describes the
possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MAP_NOT_OPEN] The argument map does not specify an open map.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_SUBMAP_NOT_FOUND] The submap specified by submapId does not exist on the open
map.

 Implementation Specifics

OVwDisplaySubmap supports single-byte and multi-byte character code sets.

 Chapter 2. Reference Pages 683

 OVwDisplaySubmap(3)

 Libraries

When compiling a program that uses OVwDisplaySubmap, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwCreateSubmap(3)” on page 619.
� See “OVwError(3)” on page 688.
� See “OVwGetMapInfo(3)” on page 719.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

684 Programmer's Reference

 OVwDone(3)

 OVwDone(3)

 Purpose

Terminates an application’s connection to the NetView for AIX program

 Syntax
#include <OV/ovw.h>

int OVwDone();

 Description

OVwDone terminates the communications between an application and the NetView for AIX program. After
calling OVwDone, the application may not make any NetView for AIX calls, except to OVwError and
OVwErrorMsg. OVwDone should be called immediately before an NetView for AIX application exits.

 Return Values

The OVwDone routine does not return a value; that is, it returns void.

 Error Codes

OVwDone sets the error code value that OVwError returns. The following list describes the possible
errors:

[OVw_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

 Implementation Specifics

OVwDone supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwDone, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwInit(3)” on page 741.
� See “OVwError(3)” on page 688.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 685

 OVwEndSessionCB(3)

 OVwEndSessionCB(3)

 Purpose

Functions as a callback for an end-of-session event

 Syntax
#include <OV/ovw.h>

void (\OVwEndSessionCB) (void \userData, OVwEventType type,
 OVwBoolean normalEnd);

 Description

To receive an event indicating that the NetView for AIX session is exiting, use OVwAddCallback(3) to
register a callback function of type OVwEndSessionCB to be called when an ovwEndSession event is
generated.

Note: It is recommended that every application register to receive the ovwEndSession event so that all
applications can terminate correctly when the NetView for AIX program exits.

 Parameters
 normalEnd Indicates whether the end of the NetView for AIX session was normal. If TRUE, the

session was terminated by a user request. If FALSE, the session was terminated
abnormally by some signal that the NetView for AIX program received.

 Examples

The following code fragment shows an example of registering a callback routine for receiving an end
session event:

 void
EndSessionProc(void \userData, OVwEventType type,

 OVwBoolean normalEnd)
 {

/\ Perform application cleanup necessary before
 \\ exit.
 \/

if (!normalEnd) {
/\ Do any processing necessary for an
\\ abrupt shutdown.

 \/
 }

 OVwDone();
 exit(!normalEnd);
 }

 OVwAddCallback(ovwEndSession, NULL,

(OVwCallbackProc) EndSessionProc, NULL);

686 Programmer's Reference

 OVwEndSessionCB(3)

 Implementation Specifics

OVwEndSessionCB supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwEndSessionCB, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwAddCallback(3)” on page 539.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 687

 OVwError(3)

 OVwError(3)

 Purpose

Returns the error code set by the last EUI API call

 Syntax
#include <OV/ovw.h>

int OVwError();

 Description

OVwError returns the error value set by the previous EUI API call. It can be tested immediately after a
failed NetView for AIX call to determine the exact reason for the failure.

 Examples

The following code fragment illustrates the way OVwError can be used with OVwErrorMsg:

if (OVwInit() < ð) {
fprintf(stderr, “foo: %s\n”, OVwErrorMsg(OVwError()));

 exit(1);
 }

 Implementation Specifics

OVwError supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwError, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwErrorMsg(3)” on page 689.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

688 Programmer's Reference

 OVwErrorMsg(3)

 OVwErrorMsg(3)

 Purpose

Returns a textual description of an EUI API error code

 Syntax
#include <OV/ovw.h>

char \OVwErrorMsg(int error);

 Description

OVwErrorMsg maps an EUI API error code to a string that contains text describing the meaning of the
specified error code.

 Parameters
 error

An EUI API error code, usually the value of OVwError.

 Return Values

OVwErrorMsg returns a pointer to a text string. The character array pointed to should not be modified by
the program, and might be overwritten by a subsequent call to the function. Because the return value is a
pointer to a static buffer, it must be copied in order to be saved.

 Examples

The following code fragment illustrates the way that OVwErrorMsg can be used with OVwError:

if (OVwInit() < ð) {
fprintf(stderr, “foo: %s\n”, OVwErrorMsg(OVwError()));

 exit(1);
 }

 Implementation Specifics

OVwErrorMsg supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwErrorMsg, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Chapter 2. Reference Pages 689

 OVwErrorMsg(3)

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwApiIntro(5)” on page 560.

690 Programmer's Reference

 OVwEventIntro(5)

 OVwEventIntro(5)

 Purpose

Provides an introduction to NetView for AIX events

 Description

An application can register to receive various asynchronous events from the NetView for AIX program.
This is done by registering a callback function to be called when the event occurs.

The OVwAddCallback routine can be used to register for various interesting EUI API events, such as
when the NetView for AIX program exits or when a new map is opened. OVwAddCallback is called with
an event type, a callback function conforming to the callback type for the indicated event type, and an
optional filter based on capability field values. See “OVwMapOpenCB(3)” on page 761 for an example of
registering for an EUI API event. The EUI API events and the corresponding callbacks are defined in the
header file <OV/ovw.h>. Below is a summary of these events. In addition to the man pages listed below,
see “OVwApiIntro(5)” on page 560 for a complete overview of the EUI API.

Table 19 (Page 1 of 2). EUI API Events and Their Callbacks

Event Description See Also

ovwEndSession NetView for AIX
session termination

OVwEndSessionCB

ovwSelectListChange Map selection list
changed

OVwSelectListChangeCB

ovwMapOpen Map open OVwMapOpenCB

ovwMapClose Map close OVwMapCloseCB, OVwAckMapClose

ovwQueryAppConfigChange Application config-
uration change
query

OVwVerifyAppConfigChange

ovwConfirmAppConfigChange Application config-
uration changed

OVwVerifyAppConfigChange

ovwQueryDescribeChange Description change
query

OVwVerifyDescribeChange

ovwConfirmDescribeChange Description
changed

OVwVerifyDescribeChange

ovwQueryAddSymbol Query to add
symbol to map

OVwVerifyAdd

ovwConfirmAddSymbol Symbol added to
map

OVwVerifyAdd

ovwQueryConnectSymbols Query to connect
objects

OVwVerifyConnect

ovwConfirmConnectSymbols Objects connected OVwVerifyConnect

ovwQueryDeleteSymbols Query to delete
symbols

OVwVerifyDeleteSymbol

ovwConfirmDeleteSymbols Symbols deleted
from map

OVwVerifyDeleteSymbol

 Chapter 2. Reference Pages 691

 OVwEventIntro(5)

Table 19 (Page 2 of 2). EUI API Events and Their Callbacks

Event Description See Also

ovwConfirmDeleteObjects Objects deleted
from map

OVwConfirmDeleteObjectsCB

ovwConfirmDeleteSubmaps Submaps deleted
from map

OVwConfirmDeleteSubmapsCB

ovwConfirmCreateSymbols Symbols created
on map

OVwConfirmCreateSymbolsCB

ovwConfirmCreateObjects Objects created on
map

OVwConfirmCreateObjectsCB

ovwConfirmCreateSubmaps Submaps created
on map

OVwConfirmCreateSubmapsCB

ovwConfirmMoveSymbol Symbol moved OVwConfirmMoveSymbolCB

ovwConfirmManageObjects Objects managed OVwConfirmManageObjectsCB

ovwConfirmUnmanageObjects Objects unman-
aged

OVwConfirmManageObjectsCB

ovwConfirmHideSymbols Symbols hidden OVwConfirmHideSymbolsCB

ovwConfirmUnhideSymbols Symbols unhidden OVwConfirmHideSymbolsCB

ovwConfirmSymbolStatusChange Symbol status
change

OVwConfirmObjectStatusCB

ovwConfirmObjectStatusChange Object status
change

OVwConfirmObjectStatusCB

ovwConfirmCompoundStatusChange Compound object
status change

OVwConfirmObjectStatusCB

ovwConfirmCapabilityChange Object capability
field change

OVwConfirmCapabilityChangeCB

ovwConfirmAcknowledgeObjects Object acknowl-
edged

OVwConfirmAcknowledgeObjectsCB

ovwConfirmUnacknowledgeObjects Object unacknowl-
edged

OVwConfirmAcknowledgeObjectsCB

ovwConfirmExplodeObject Object exploded to
display child
submap

OVwConfirmExplodeObjectCB

ovwUserSubmapCreate Submap creation
notification

OVwUserSubmapCreateCB,
OVwAckUserSubmapCreate

ovwSubmapOpen Submap open OVwSubmapOpenCB

ovwSubmapClose Submap close OVwSubmapCloseCB

 Libraries

When compiling a program that uses any of the callbacks corresponding to NetView for AIX events, you
need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

692 Programmer's Reference

 OVwEventIntro(5)

 Related Information
� See “OVwAddCallback(3)” on page 539.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 693

 OVwFileDescriptor(3)

 OVwFileDescriptor(3)

 Purpose

Accesses the NetView for AIX program communications channel

 Syntax
#include <OV/ovw.h>

int OVwFileDescriptor()

 Description

OVwFileDescriptor is a macro that returns the file descriptor associated with the socket connecting the
application to the NetView for AIX program. Among other things, it could be used by an application’s own
select(2) to determine if there is input from the the NetView for AIX program session to process.

 Return Values

If successful, OVwFileDescriptor returns a non-negative integer. If unsuccessful, it returns −1 (negative
one).

 Examples

The following fragment from OVwXtAddInput illustrates how to use OVwFileDescriptor.

Note: There can be outstanding NetView for AIX events to process even if there is a lack of available
input on the file descriptor. Any application-specific select(2) processing should use OVwPending and
OVwProcessEvent as they are used in the following example.

void __OVwXtInputCB(XtPointer closure, int \fd, XtInputId \id)
 {

/\ Flush any pending ovw events \/
while (OVwPending()) {

if (OVwProcessEvent() < ð) {
 XtRemoveInput(\id);
 OVwDone();
 return;
 }
 }
 }

 XtInputId OVwXtAddInput()
 {
 XtInputId id;
 int fd;

fd ═ OVwFileDescriptor();
if (fd >═ ð)

id ═ XtAddInput (fd, (XtPointer)XtInputReadMask, __OVwXTInputCB, NULL);
 return id;
 }

694 Programmer's Reference

 OVwFileDescriptor(3)

 Implementation Specifics

OVwFileDescriptor supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwFileDescriptor, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwInit(3)” on page 741.
� See “OVwPending(3)” on page 765.
� See “OVwProcessEvent(3)” on page 767.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 695

 OVwFindMenuItem(3)

 OVwFindMenuItem(3)

 Purpose

Finds a menu item

 Related Functions
 OVwFindObjMenuItem

 Syntax
#include <OV/ovw.h>
#include <OV/ovw_reg.h>

char \OVwFindMenuItem(char \menuItemPath);

char \OVwFindObjMenuItem(char \menuItemPath);

 Description

OVwFindMenuItem returns a pointer to the ID of the menu item in the current registration context that is
located at the specified path in the graphical interface menu bar.

OVwFindObjMenuItem returns a pointer to the ID of the menu item in the current registration context that
is located at the specified path in the graphical interface menu bar.

 Parameters
menuItemPath

Specifies a pointer to a string that specifies a location in the menu bar. This location consists of the
labels on the graphical interface of the cascades and buttons for the menu item, separated by the
current menu path separator. See OVwSetMenuPathSeparator in “OVwGetMenuPathSeparator(3)” on
page 723. The default menu path separator is →.

 Return Values

If successful, OVwFindMenuItem and OVwFindObjMenuItem return a non-NULL character pointer. If
unsuccessful, it returns a character pointer. Because the return value for these functions is dynamically
allocated, you must free the string when it is no longer needed.

 Error Codes

OVwFindMenuItem and OVwFindObjMenuItem set the error code value that OVwError returns. The fol-
lowing list describes the possible errors:

[OVw_CONNECTION_LOST]
The connection to the NetView for AIX program was lost.

[OVw_MENUITEM_NOT_FOUND]
The current registration context does not have a menu item registered for the
specified menu path.

696 Programmer's Reference

 OVwFindMenuItem(3)

[OVw_OUT_OF_MEMORY]
A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED]
The EUI API has not been initialized with OVwInit.

 Examples

You can use the following code fragment to locate the ID of a menu item:

char \id ═ OVwFindMenuItem(“Administer→Telnet (aixterm)...”);
if (id ══ NULL) {

fprintf(stderr, “error: %s\n”, OVwErrorMsg(OVwError()));
 return -1;
 }

 Implementation Specifics

OVwFindMenuItem and OVwFindObjMenuItem support single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwFindMenuItem, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwCreateMenuItem(3)” on page 613.
� See OVwSetMenuPathSeparator in “OVwGetMenuPathSeparator(3)” on page 723.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

 Chapter 2. Reference Pages 697

 OVwGetAppConfigValues(3)

 OVwGetAppConfigValues(3)

 Purpose

Returns application configuration parameters

 Related Functions
 OVwSetAppConfigValues

 Syntax
#include <OV/ovw.h>

OVwFieldBindList \OVwGetAppConfigValues(OVwMapInfo \map,
 char \appName);

int OVwSetAppConfigValues(OVwMapInfo \map,
 OVwFieldBindList \configParams);

 Description

OVwGetAppConfigValues returns a pointer to a list of fields that have the current values of the map
application-configuration parameters for each map for the specified application. The application configura-
tion parameters for each map are specified in the application registration file.

OVwSetAppConfigValues takes a pointer to a list of fields and their values and sets the values accordingly
in the database. The fields specified in this call must be configuration fields as defined in the application
registration file for the application making that call. To set the values of object fields use
OVwSetFieldValues.

OVwSetAppConfigValues is useful when a particular configuration parameter can be set either from the
command line or the Configuration dialog box. In this case, the application can place the values retrieved
from the command line directly into the database. See “OVwApiIntro(5)” on page 560 for an overview of
the EUI API, including the role of the Configuration dialog box.

 Parameters
appName Specifies a pointer to the name of the application for which the configuration param-

eters are needed. If NULL, OVwGetConfigValues returns the configuration parame-
ters for the application making the call.

configParams Specifies a pointer to a list of configuration parameters whose values are to be set
in the database for the application making the call.

map Specifies a pointer to a MapInfo structure for an open map. The map parameter
can be obtained using OVwGetMapInfo or saved from the ovwMapOpen event using
OVwCopyMapInfo.

698 Programmer's Reference

 OVwGetAppConfigValues(3)

 Return Values

If successful, OVwGetAppConfigValues returns a pointer to an OVwFieldBindList structure. If unsuc-
cessful, it returns a NULL pointer.

If successful, OVwSetAppConfigValues returns 0 (zero). If unsuccessful, it returns −1 (negative one).

 Error Codes

OVwGetAppConfigValues and OVwSetAppConfigValues set the error code value that OVwError returns.
The following list describes the possible errors:

[OVw_APP_NOT_FOUND] The application appName is not a registered application.

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MAP_NOT_OPEN] The argument map does not specify an open map.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED]
The EUI API has not been initialized with OVwInit.

 Examples

The following example illustrates how to check the application’s configuration field values:

 OVwFieldBindList \fieldListPtr;
 OVwMapInfo \map ═ OVwGetMapInfo();

 /\

\\ Check the values of the fields and set up accordingly.
 \/

fieldListPtr ═ OVwGetAppConfigValues (map, NULL);
if (fieldListPtr ══ NULL) {

/\ bail out \/
} else {

/\ walk list and get the field values \/

/\ now free the list \/

 OVwDbFreeFieldBindList (fieldListPtr);

 }
 OVwFreeMapInfo(map);

 Implementation Specifics

OVwGetAppConfigValues and OVwSetAppConfigValues support single-byte and multi-byte character code
sets.

 Chapter 2. Reference Pages 699

 OVwGetAppConfigValues(3)

 Libraries

When compiling a program that uses OVwGetAppConfigValues or OVwSetAppConfigValues, you need to
link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwGetMapInfo(3)” on page 719.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

700 Programmer's Reference

 OVwGetAppName(3)

 OVwGetAppName(3)

 Purpose

Returns the name of the running application

 Syntax
#include <OV/ovw.h>

char \OVwGetAppName();

 Description

OVwGetAppName returns the name of the currently running application as it was registered with the
NetView for AIX program. This name is used in other NetView for AIX calls to uniquely identify the appli-
cation.

 Return Values

If successful, OVwGetAppName returns a pointer to a dynamically allocated string containing the name of
the application. If unsuccessful, OVwGetAppName returns NULL.

Because the return value is dynamically allocated, you must free the string when it is no longer needed.

 Error Codes

OVwGetAppName set the error code value that OVwError returns. The following list describes the pos-
sible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

 Implementation Specifics

OVwGetAppName supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwGetAppName, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 701

 OVwGetConnSymbol(3)

 OVwGetConnSymbol(3)

 Purpose

Returns a connection symbol

 Syntax
#include <OV/ovw.h>

OVwSymbolInfo \OVwGetConnSymbol(OVwMapInfo \map,

OVwSymbolId endpoint1, OVwSymbolId endpoint2);

 Description

OVwGetConnSymbol returns a pointer to symbol info for the connection symbol that connects the two
symbols endpoint1 and endpoint2, if such a symbol exists.

The SymbolInfo structure returned by OVwGetConnSymbol may be for a metaconnection symbol that
represents multiple connections between the two symbols. This is indicated by the is_meta_conn field of
the OVwSymbolInfo structure. OVwListSymbols can be used to get the connections represented by a
meta-connection symbol.

OVwFreeSymbolInfo should be used to free the OVwSymbolInfo structure returned by
OVwGetConnSymbol. See “OVwGetSymbolInfo(3)” on page 735 for more information about
OVwFreeSymbolInfo.

 Parameters
endpoint1 Specifies the symbol ID of an icon symbol that is a connection end point.

endpoint2 Specifies the symbol ID of an icon symbol that is a connection end point. The
special value ovwSubmapBackbone can be used if the layout of the submap
(ovwBusLayout or ovwRingLayout) has a backbone.

map Specifies a pointer to a map structure for an open map. The map parameter can be
obtained using OVwGetMapInfo or saved from the ovwMapOpen event using
OVwCopyMapInfo.

 Return Values

If successful, OVwGetConnSymbol returns a pointer to an OVwSymbolInfo structure. If unsuccessful, it
returns NULL.

 Error Codes

OVwGetConnSymbol sets the error code value that OVwError returns. The following list describes the
possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was
lost.

[OVw_CONN_SYMBOL_BOTH_ENDS_NULL] Both connection end points have the value
ovwNullSymbolId.

702 Programmer's Reference

 OVwGetConnSymbol(3)

[OVw_CONN_SYMBOL_BOTH_ENDS_SAME] Both connection end points are the same.

[OVw_CONN_SYMBOL_END_NOT_FOUND] One of the connection end point symbols does not exist
on the open map.

[OVw_CONN_SYMBOL_END_WRONG_VARIETY]
The variety of a connection end point symbol is valid.
Only icon symbols are allowed as connection end
points.

[OVw_CONN_SYMBOL_ENDS_DIFFERENT_SUBMAPS]
The two connection end points are on different
submaps.

[OVw_CONN_SYMBOL_NO_SUBMAP_BACKBONE]
A value of ovwSubmapBackbone is specified as a con-
nection end point for a submap that does not have a
backbone.

[OVw_MAP_NOT_OPEN] The argument map does not specify an open map.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_SYMBOL_NOT_FOUND] The two symbols endpoint1 and endpoint2 are not con-
nected by any connection symbol.

 Chapter 2. Reference Pages 703

 OVwGetConnSymbol(3)

 Examples

The following code fragment shows how to get a connection symbol:

 int i;
 OVwSymbolInfo \syminfo;
 OVwSymbolList \symlist;

OVwMapInfo \map ═ OVwGetMapInfo();

syminfo ═ OVwGetConnSymbol(map, end1_id, end2_id);
if (!syminfo) {

 printf(“No connection!\n“);
 }

else if (!syminfo->conn_is_meta_conn) {
 printf(“Single connection.\n“);

/\ symbol represents the object syminfo->object \/
 }
 else {
 printf(“Meta-connection.\n“);

/\ get symbols on meta-connection submap \/
symlist ═ OVwListSymbols(map,

syminfo->object.child_submap_id, ovwAllPlanes, NULL);
if (symlist) {

for (i ═ ð; i < symlist->count; i++) {
if (symlist->symbols[i].symbol_variety ══

 ovwConnSymbol) {
 printf(“Connection found.\n”);

/\ symlist->symbols[i].object is object \/
 }
 }
 OVwFreeSymbolList(symlist);
 }
 }

 if (syminfo)
 OVwFreeSymbolInfo(syminfo);
 OVwFreeMapInfo(map);

 Implementation Specifics

OVwGetConnSymbol supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwGetConnSymbol, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

704 Programmer's Reference

 OVwGetConnSymbol(3)

 Related Information
 � See ovw(1).
� See “OVwCreateSymbol(3)” on page 623.
� See “OVwError(3)” on page 688.
� See “OVwGetMapInfo(3)” on page 719.
� See “OVwGetSymbolInfo(3)” on page 735.
� See “OVwInit(3)” on page 741.
� See “OVwListSymbols(3)” on page 750.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 705

 OVwGetFirstAction(3)

 OVwGetFirstAction(3)

 Purpose

Gets registered application actions

 Related Functions
 OVwGetNextAction

 Syntax
#include <OV/ovw.h>
#include <OV/ovw_reg.h>

char \OVwGetFirstAction();

char \OVwGetNextAction();

 Description

OVwGetFirstAction and OVwGetNextAction are used to get the names of all registration actions for the
current registration context. The registration context is the application for which subsequent registration
calls, such as OVwGetApp, are effective. For more information about the registration context, see
“OVwGetRegContext(3)” on page 729.

OVwGetFirstAction returns a pointer to the name of the first action registered in the current registration
context. It should be called before OVwGetNextAction to restart the name traversal.

OVwGetNextAction returns a pointer to the name of the next action registered in the current registration
context. It should be called repeatedly until it returns NULL, indicating that all action names have been
returned.

 Return Values

If successful, OVwGetFirstAction and OVwGetNextAction return a non-NULL pointer. If unsuccessful, they
return NULL. Because the return value for OVwGetFirstAction and OVwGetNextAction is dynamically allo-
cated, you must free the string when it is no longer needed.

 Error Codes

OVwGetFirstAction and OVwGetNextAction set the error code value that OVwError returns. The following
list describes the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_SUCCESS] All action names have been obtained.

706 Programmer's Reference

 OVwGetFirstAction(3)

 Examples

You can get all actions registered for the current registration context, retrieving and processing the details
of the registered action by entering the following code:

 char \action;
 OVwActionRegInfo \info;

for (action ═ OVwGetFirstAction(); action; action ═ OVwGetNextAction()) {
info ═ OVwGetAction(action);
if (!info) {

fprintf(stderr, “Error: %s\n”, OVwErrorMsg(OVwError()));
 return;
 }

/\ process action information \/
printf(“Action: %s\n”, action);
printf(“SelectionRule: %s\n“, info->selection_rule);

 OVwFreeActionRegInfo(info);
 }

 Implementation Specifics

OVwGetFirstAction and OVwGetNextAction support single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwGetFirstAction or OVwGetNextAction, you need to link to the
following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwCreateAction(3)” on page 603.
� See OVwGetAction in “OVwCreateAction(3)” on page 603.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

 Chapter 2. Reference Pages 707

 OVwGetFirstMenuItem(3)

 OVwGetFirstMenuItem(3)

 Purpose

Gets registered menu items

 Related Functions
 OVwGetNextMenuItem

 Syntax
#include <OV/ovw.h>
#include <OV/ovw_reg.h>

char \OVwGetFirstMenuItem(char \menuitem, int function, char \fnArg);

char \OVwGetNextMenuItem();

 Description

OVwGetFirstMenuItem and OVwGetNextMenuItem are used to get the IDs (names) of menu items, except
for object menu items, registered in the current registration context.

OVwGetFirstMenuItem returns the ID of the first menu item registered in the current registration context.
The registration context is the application for which subsequent registration calls, such as OVwGetApp,
are effective. For more information about the registration context, see “OVwGetRegContext(3)” on
page 729.

OVwGetFirstMenuItem should be called before OVwGetNextMenuItem to restart the traversal. The func-
tion and fnArg parameters allow traversal of subsets of menu items. Menu-item subsets include those
with a particular function type, such as all menu items with actions bound to them, and those with a spe-
cific function, such as all menu items with action Foo bound to them.

OVwGetNextMenuItem returns the next menu item ID registered in the current registration context. It
should be called repeatedly until it returns NULL, indicating that all menu item IDs have been iterated.

 Parameters
 fnArg Specifies a pointer to the function argument whose meaning is determined by the

function parameter. If fnArg is NULL, all menu items with the specified function
have been obtained.

 function Specifies the type of function bound to the menu item. If function is 0 (zero), all
menu items are returned. Otherwise, only those menu items with the specified type
of function and function argument are returned. The function types are defined in
the <OV/ovw.h> header file as follows. For each of the following function types, the
parameters menuitem, function, and fnArg are passed on the call, and the return
value is set by the call.

ovwMenu The fnArg function argument is a menu identifier. For example, if
fnArg is “IP Commands”, this would be equivalent to specifying
f.menu “IP Commands” for the menu item in the application regis-
tration file.

708 Programmer's Reference

 OVwGetFirstMenuItem(3)

ovwInternal The fnArg function argument is an internal function name. For
example, if fnArg is “exit”, this would be equivalent to specifying
f.exit for the menu item in the application registration file.

ovwAction The fnArg function argument is an action identifier. For example, if
fnArg is “Get”, this would be equivalent to specifying f.action “Get”
for the menu item in the application registration file.

ovwShell The fnArg function argument is a shell command. For example, if
fnArg is “xterm -e /etc/ping ${OVwSelection1}”, this would be equiv-
alent to specifying “! “xterm -e /etc/ping ${OVwSelection1}” for the
menu item in the application registration file.

 Return Values

If successful, OVwGetFirstMenuItem and OVwGetNextMenuItem return a non-NULL pointer. If unsuc-
cessful, they return NULL. Because the return value for OVwGetFirstMenuItem and
OVwGetNextMenuItem is dynamically allocated, you must free the string when it is no longer needed.

 Error Codes

OVwGetFirstMenuItem and OVwGetNextMenuItem set the error code value that OVwError returns. The
following list describes the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_SUCCESS] All menu item IDs have been obtained.

 Implementation Specifics

OVwGetFirstMenuItem and OVwGetNextMenuItem support single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwGetFirstMenuItem or OVwGetNextMenuItem, you need to link to
the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwCreateMenuItem(3)” on page 613.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

 Chapter 2. Reference Pages 709

 OVwGetFirstMenuItemFunction(3)

 OVwGetFirstMenuItemFunction(3)

 Purpose

Gets functions bound to a menu item

 Related Functions
 OVwGetNextMenuItemFunction

 Syntax
#include <OV/ovw.h>
#include <OV/ovw_reg.h>

int OVwGetFirstMenuItemFunction(char \menuItemId,

int \function, char \\fnArg);

int OVwGetNextMenuItemFunction(int \function,
 char \\fnArg);

 Description

OVwGetFirstMenuItemFunction and OVwGetNextMenuItemFunction are used to get all the functions
bound to a registered menu item in the current registration context. These routines do not get the func-
tions bound to a registered object menu item. A menu item function consists of an integer-function type
and a character-string function argument.

OVwGetFirstMenuItemFunction returns the type and argument for the first function bound to the specified
menu item in the current registration context. It should be called before OVwGetNextMenuItemFunction to
restart the function traversal.

OVwGetNextMenuItemFunction returns the next function bound to the specified menu item in the current
registration context. It should be called repeatedly until it returns NULL, indicating that all application
names have been iterated.

 Parameters
fnArg If non-NULL, the contents of the pointer are set to a string that is the function argu-

ment whose meaning is determined by the function parameter.

function If non-NULL, the contents of the pointer are set to the integer value that specifies
the type of function bound to the menu item. The function types are defined in the
OV/ovw.h header file as follows:

ovwMenu The fnArg function argument is a menu identifier. For example, if
fnArg is “IP Commands”, this would be equivalent to specifying
f.menu IP Commands for the menu item in the application registra-
tion file.

ovwInternal The fnArg function argument is an internal function name. For
example, if fnArg is “exit”, this would be equivalent to specifying
f.exit for the menu item in the application registration file.

710 Programmer's Reference

 OVwGetFirstMenuItemFunction(3)

ovwAction The fnArg function argument is an action identifier. For example, if
fnArg is “Get”, this would be equivalent to specifying f.action “Get”
for the menu item in the application registration file.

ovwShell The fnArg function argument is a shell command. For example, if
fnArg is “xterm -e /etc/ping ${OVwSelection1}”, this would be equiv-
alent to specifying ! “xterm -e /etc/ping ${OVwSelection1}” for the
menu item in the application registration file.

menuItemId A pointer to a menu item identifier returned from an OVwMenuItemRegistration call
or from OVwFindMenuItem.

 Return Values

If successful, OVwGetFirstMenuItemFunction and OVwGetNextMenuItemFunction return a non-NULL
pointer. If unsuccessful, they return NULL.

 Error Codes

OVwGetFirstMenuItemFunction and OVwGetNextMenuItemFunction set the error code value that
OVwError returns. The following list describes the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MENUITEM_NOT_FOUND] The specified menuItemId does not refer to a menu item in the
current registration context.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_SUCCESS] All menu item functions have been obtained.

 Implementation Specifics

OVwGetFirstMenuItemFunction and OVwGetNextMenuItemFunction support single-byte and multi-byte
character code sets.

 Libraries

When compiling a program that uses OVwGetFirstMenuItemFunction or OVwGetNextMenuItemFunction,
you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwCreateMenuItem(3)” on page 613.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

 Chapter 2. Reference Pages 711

 OVwGetFirstObjMenuItem(3)

 OVwGetFirstObjMenuItem(3)

 Purpose

Gets registered object menu items

 Related Functions
 OVwGetNextObjectMenuItem

 Syntax
#include <OV/ovw.h>
#include <OV/ovw_reg.h>

char \OVwGetFirstObjMenuItem(char \menuid, int function, char \fnArg);

char \OVwGetNextObjMenuItem();

 Description

OVwGetFirstObjMenuItem and OVwGetNextObjMenuItem are used to get the IDs (names) of object menu
items registered in the current registration context.

OVwGetFirstObjMenuItem returns the ID of the first object menu item registered in the current registration
context. The registration context is the application for which subsequent registration calls, such as
OVwGetApp, are effective. For more information about the registration context, see
“OVwGetRegContext(3)” on page 729.

OVwGetFirstObjMenuItem should be called before OVwGetNextObjMenuItem to restart the traversal. The
function and fnArg parameters allow traversal of subsets of object menu items. Menu-item subsets
include those with a particular function type, such as all menu items with actions bound to them, and those
with a specific function, such as all menu items with action Foo bound to them.

OVwGetNextObjMenuItem returns the next menu item ID registered in the current registration context. It
should be called repeatedly until it returns NULL, indicating that all menu item IDs have been iterated.

 Parameters
 menuId Specifies a pointer to a menu identifier if you are interested in object menu items

from a specified menu. If menuId is NULL, the first object menu item for the appli-
cation is returned.

 fnArg Specifies a pointer to the function argument whose meaning is determined by the
function parameter. If fnArg is NULL, all menu items with the specified function
have been obtained.

 function Specifies the type of function bound to the menu item. If function is 0 (zero), all
menu items are returned. Otherwise, only those menu items with the specified type
of function and function argument are returned. The function types are defined in
the <OV/ovw.h> header file as follows. For each of the following function types, the
parameters menuitem, function, and fnArg are passed on the call, and the return
value is set by the call.

712 Programmer's Reference

 OVwGetFirstObjMenuItem(3)

ovwMenu The fnArg function argument is a menu identifier. For example, if
fnArg is “IP Commands”, this would be equivalent to specifying
f.menu “IP Commands” for the menu item in the application regis-
tration file.

ovwInternal The fnArg function argument is an internal function name. For
example, if fnArg is “exit”, this would be equivalent to specifying
f.exit for the menu item in the application registration file.

ovwAction The fnArg function argument is an action identifier. For example, if
fnArg is “Get”, this would be equivalent to specifying f.action “Get”
for the menu item in the application registration file.

ovwShell The fnArg function argument is a shell command. For example, if
fnArg is “xterm -e /etc/ping ${OVwSelection1}”, this would be equiv-
alent to specifying “! “xterm -e /etc/ping ${OVwSelection1}” for the
menu item in the application registration file.

 Return Values

If successful, OVwGetFirstObjMenuItem and OVwGetNextObjMenuItem return a non-NULL pointer. If
unsuccessful, they return NULL. Because the return value for OVwGetFirstObjMenuItem and
OVwGetNextObjMenuItem is dynamically allocated, you must free the string when it is no longer needed.

 Error Codes

OVwGetFirstObjMenuItem and OVwGetNextObjMenuItem set the error code value that OVwError returns.
The following list describes the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_SUCCESS] All menu item IDs have been obtained.

 Implementation Specifics

OVwGetFirstObjMenuItem and OVwGetNextObjMenuItem support single-byte and multi-byte character
code sets.

 Libraries

When compiling a program that uses OVwGetFirstObjMenuItem or OVwGetNextObjMenuItem, you need to
link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Chapter 2. Reference Pages 713

 OVwGetFirstObjMenuItem(3)

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwCreateMenuItem(3)” on page 613.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

714 Programmer's Reference

 OVwGetFirstObjMenuItemFunction(3)

 OVwGetFirstObjMenuItemFunction(3)

 Purpose

Gets functions bound to an object menu item

 Related Functions
 OVwGetNextObjMenuItemFunction

 Syntax
#include <OV/ovw.h>
#include <OV/ovw_reg.h>

int OVwGetFirstObjMenuItemFunction(char \menuItemId,

int \function, char \\fnArg);

int OVwGetNextObjMenuItemFunction(int \function,
 char \\fnArg);

 Description

OVwGetFirstObjMenuItemFunction and OVwGetNextObjMenuItemFunction are used to get all the func-
tions bound to a registered object menu item in the current registration context. A menu item function
consists of an integer-function type and a character-string function argument.

OVwGetFirstObjMenuItemFunction returns the type and argument for the first function bound to the speci-
fied object menu item in the current registration context. It should be called before
OVwGetNextObjMenuItemFunction to restart the function traversal.

OVwGetNextObjMenuItemFunction returns the next function bound to the specified object menu item in
the current registration context. It should be called repeatedly until it returns NULL, indicating that all
application names have been iterated.

 Parameters
fnArg If non-NULL, the contents of the pointer are set to a string that is the function argu-

ment whose meaning is determined by the function parameter.

function If non-NULL, the contents of the pointer are set to the integer value that specifies
the type of function bound to the menu item. The function types are defined in the
OV/ovw.h header file as follows:

ovwMenu The fnArg function argument is a menu identifier. For example, if
fnArg is “IP Commands”, this would be equivalent to specifying
f.menu IP Commands for the menu item in the application registra-
tion file.

ovwInternal The fnArg function argument is an internal function name. For
example, if fnArg is “exit”, this would be equivalent to specifying
f.exit for the menu item in the application registration file.

ovwAction The fnArg function argument is an action identifier. For example, if
fnArg is “Get”, this would be equivalent to specifying f.action “Get”
for the menu item in the application registration file.

 Chapter 2. Reference Pages 715

 OVwGetFirstObjMenuItemFunction(3)

ovwShell The fnArg function argument is a shell command. For example, if
fnArg is “xterm -e /etc/ping ${OVwSelection1}”, this would be equiv-
alent to specifying ! “xterm -e /etc/ping ${OVwSelection1}” for the
menu item in the application registration file.

menuItemId A pointer to a menu item identifier returned from an OVwMenuItemRegistration call
or from OVwFindObjMenuItem.

 Return Values

If successful, OVwGetFirstObjMenuItemFunction and OVwGetNextObjMenuItemFunction return a
non-NULL pointer. If unsuccessful, they return NULL.

 Error Codes

OVwGetFirstObjMenuItemFunction and OVwGetNextObjMenuItemFunction set the error code value that
OVwError returns. The following list describes the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MENUITEM_NOT_FOUND] The specified menuItemId does not refer to an object menu item in
the current registration context.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_SUCCESS] All menu item functions have been obtained.

 Implementation Specifics

OVwGetFirstObjMenuItemFunction and OVwGetNextObjMenuItemFunction support single-byte and
multi-byte character code sets.

 Libraries

When compiling a program that uses OVwGetFirstObjMenuItemFunction or
OVwGetNextObjMenuItemFunction, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwCreateMenuItem(3)” on page 613.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

716 Programmer's Reference

 OVwGetFirstRegContext(3)

 OVwGetFirstRegContext(3)

 Purpose

Gets registered applications

 Related Functions
 OVwGetNextRegContext

 Syntax
#include <OV/ovw.h>
#include <OV/ovw_reg.h>

char \OVwGetFirstRegContext(char \parentAppName);

char \OVwGetNextRegContext();

 Description

OVwGetFirstRegContext and OVwGetNextRegContext are used to get all NetView for AIX registration
contexts, that is, the name of each application that is registered with the NetView for AIX program.

OVwGetFirstRegContext returns the name of the first application in the NetView for AIX program's list of
registered applications. It should be called before OVwGetNextRegContext to restart the name traversal.

OVwGetNextRegContext returns the next registration context name in the NetView for AIX program's list of
registered applications. It should be called repeatedly until it returns NULL, indicating that all application
names have been returned.

 Parameters
parentAppName

Specifies a pointer to the name of an application that is the parent for child applications. If a
parentAppName is supplied, only that application’s children are returned. If parentAppName is NULL,
all applications are returned.

 Return Values

If successful, OVwGetFirstRegContext and OVwGetNextRegContext return a non-NULL pointer. If unsuc-
cessful, they return NULL. Because the return value for OVwGetFirstRegContext and
OVwGetNextRegContext is dynamically allocated, you must free the string when it is no longer needed.

 Error Codes

OVwGetFirstRegContext and OVwGetNextRegContext set an error code value that OVwError returns.
The following list describes the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

 Chapter 2. Reference Pages 717

 OVwGetFirstRegContext(3)

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_SUCCESS] The iteration of application names is complete.

 Examples

The following code fragment illustrates how to get all application names and print some registration infor-
mation for each application:

OVwAppRegInfo \appInfo;
char \context;
char \savedContext ═ OVwGetRegContext();

for (context ═ OVwGetFirstRegContext(NULL); context;

context ═ OVwGetNextRegContext()) {
 OVwSetRegContext(context);

appInfo ═ OVwGetApp();
if (!appInfo) {

fprintf(stderr, “Error: %s\n”, OVwErrorMsg(OVwError()));
 exit(1);
 }

/\ process application info \/
printf(“Application: %s\n”, context);
printf(“Version: %s\n”, appInfo–>version);
printf(“Command: %s\n”, appInfo–>command);

 OVwFreeAppRegInfo(appInfo);
}
OVwSetRegContext(savedContext);

 Implementation Specifics

OVwGetFirstRegContext supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwGetFirstRegContext or OVwGetNextRegContext, you need to
link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwGetRegContext(3)” on page 729.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.
� See OVwGetApp in “OVwCreateApp(3)” on page 607.

718 Programmer's Reference

 OVwGetMapInfo(3)

 OVwGetMapInfo(3)

 Purpose

Returns map information

 Related Functions
 OVwCopyMapInfo
 OVwFreeMapInfo

 Syntax
#include <OV/ovw.h>

OVwMapInfo \OVwGetMapInfo();

OVwMapInfo \OVwCopyMapInfo(OVwMapInfo \map);

void OVwFreeMapInfo(OVwMapInfo \map);

 Description

OVwGetMapInfo returns information about the open map. OVwGetMapInfo should be called by a map
application when it starts to get information about the open map. because an ovwMapOpen event is not
generated for the first map opened at startup. A map application will be notified when a new map is
opened by registering for an ovwMapOpen event. See “OVwMapOpenCB(3)” on page 761.

OVwCopyMapInfo allocates memory for an OVwMapInfo structure and returns a pointer to a copy of the
specified map structure. This can be used in the callback for the ovwMapOpen event to save the map
parameter for use in subsequent calls that deal with the open map.

OVwFreeMapInfo frees the memory allocated for an OVwMapInfo structure. It should be used to free the
OVwMapInfo structure returned by OVwGetMapInfo when it is no longer needed.

 Parameters
map Specifies a pointer to an OVwMapInfo structure to free or copy

 Return Values

If successful, OVwGetMapInfo and OVwCopyMapInfo return a pointer to an OVwMapInfo structure. If
unsuccessful, they return NULL.

 Error Codes

OVwGetMapInfo and OVwFreeMapInfo set the error code value that OVwError returns. The following list
describes the possible errors:

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

 Chapter 2. Reference Pages 719

 OVwGetMapInfo(3)

OVwGetMapInfo might return the following additional errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MAP_NOT_OPEN] There is no open map.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

 Implementation Specifics

OVwGetMapInfo and its related functions support single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwGetMapInfo or one of its related functions, you need to link to
the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwMapOpenCB(3)” on page 761.
� See “OVwApiIntro(5)” on page 560.

720 Programmer's Reference

 OVwGetMenuItemPath(3)

 OVwGetMenuItemPath(3)

 Purpose

Retrieves location information for menu items

 Related Functions
 OVwGetMenuItemMenu

 Syntax
#include <OV/ovw.h>
#include <OV/ovw_reg.h>

 char \OVwGetMenuItemPath(char \menuItemId);

 char \OVwGetMenuItemMenu(char \menuItemId);

 Description

OVwGetMenuItemPath returns the path that specifies the location of the menu item in the graphical inter-
face menu bar structure. The string consists of the labels of the cascades and buttons for the menu item,
separated by the current menu path separator. The default menu path separator is →. This function is
the converse of OVwFindMenuItem.

OVwGetMenuItemMenu returns the ID of the menu to which the item is attached. A menu item is uniquely
identified by this menu ID and its label, so a menu item can be attached to a maximum of one menu.

 Parameters
menuItemId Specifies a pointer to menu item identifier returned from an

OVwMenuItemRegistration call or from OVwFindMenuItem

 Return Values

If successful, OVwGetMenuItemPath and OVwGetMenuItemMenu return a non-NULL pointer. If unsuc-
cessful, they return a NULL pointer. Because the return value for OVwGetMenuItemPath and
OVwGetMenuItemMenu is dynamically allocated, you must free the string when it is no longer needed.

 Error Codes

OVwGetMenuItemPath and OVwGetMenuItemMenu set the error code value that OVwError returns. The
following list describes the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MENUITEM_NOT_FOUND] The argument menuItemId does not specify a menu item registered
in the current registration context.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

 Chapter 2. Reference Pages 721

 OVwGetMenuItemPath(3)

 Implementation Specifics

OVwGetMenuItemPath and OVwGetMenuItemMenu support single-byte and multi-byte character code
sets.

 Libraries

When compiling a program that uses OVwGetMenuItemPath or OVwGetMenuItemMenu, you need to link
to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwFindMenuItem(3)” on page 696.
� See “OVwCreateMenuItem(3)” on page 613.
� See “OVwGetObjectMenuItemPath(3)” on page 727.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

722 Programmer's Reference

 OVwGetMenuPathSeparator(3)

 OVwGetMenuPathSeparator(3)

 Purpose

Gets menu path separator string

 Related Functions
 OVwSetMenuPathSeparator

 Syntax
#include <OV/ovw.h>
#include <OV/ovw_reg.h>

char \OVwGetMenuPathSeparator();

int OVwSetMenuPathSeparator(char \separator);

 Description

OVwSetMenuPathSeparator sets to the specified value the character string used to separate menu labels
in a string that represents the path of a menu item on the menu bar. The default menu separator string is
→.

OVwGetMenuPathSeparator returns the current string used to separate menu labels in a menu path string.

These routines affect how parameters to other registration routines behave by changing the way menu
path names are expressed. See “OVwFindMenuItem(3)” on page 696 and OVwGetMenuItemMenu in
“OVwGetMenuItemPath(3)” on page 721. These changes affect the way menu path names are expressed
for the NetView for AIX program, but not for other applications.

 Parameters
separator Specifies a pointer to a character string to be used as the menu path separator.

The separator should be set to a string that does not appear in menu labels. It
should be limited to nonalphabetic, printable characters.

 Return Values

If successful, OVwGetMenuPathSeparator returns a non-NULL character pointer. If unsuccessful, it
returns a NULL character pointer. Because the return value is dynamically allocated, you must free the
string when it is no longer needed.

If successful, OVwSetMenuPathSeparator returns 0 (zero). If unsuccessful, it returns −1 (negative one).

 Chapter 2. Reference Pages 723

 OVwGetMenuPathSeparator(3)

 Error Codes

OVwGetMenuPathSeparator and OVwSetMenuPathSeparator set the error code value that OVwError
returns. The following list describes the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

 Examples

 OVwSetMenuPathSeparator(“==”);

char \id ═ OVwFindMenuItem(“Administer.══Telnet (aixterm)”);

if (id ══ NULL) {
fprintf(stderr, “error: %s\n”, OVwErrorMsg(OVwError()));

 return -1;
 }

 Implementation Specifics

OVwGetMenuPathSeparator and OVwSetMenuPathSeparator support single-byte and multi-byte character
code sets.

 Libraries

When compiling a program that uses OVwGetMenuPathSeparator or OVwSetMenuPathSeparator, you
need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

724 Programmer's Reference

 OVwGetObjectInfo(3)

 OVwGetObjectInfo(3)

 Purpose

Returns map-specific object information

 Related Functions
 OVwFreeObjectInfo

 Syntax
#include <OV/ovw.h>

OVwObjectInfo \OVwGetObjectInfo(OVwMapInfo \map, OVwObjectId objectId);

void OVwFreeObjectInfo(OVwObjectInfo \object);

 Description

OVwGetObjectInfo returns information about an object on the open map. The information returned in the
OVwObjectInfo structure is map-specific, except for object_id and field_values (the latter is set only in
certain cases).

If OVwGetObjectInfo returns NULL and OVwError returns the error code [OVw_OBJECT_NOT_ON_MAP],
the object does not exist on the open map. The object might still exist in the OVW object database. Use
OVwDbObjectIdToSelectionName to determine whether the object identified by objectId exists in the OVW
object database.

If the child_submap_id field of the OVwObjectInfo structure is ovwNullSubmapId, the object has no child
submap on the open map; otherwise, child_submap_id specifies the submap ID of the child submap of the
object on the open map.

OVwFreeObjectInfo frees memory allocated for an OVwObjectInfo structure. It should be used to free the
OVwObjectInfo structure returned by OVwGetObjectInfo.

 Parameters
map Specifies a pointer to the MapInfo structure for an open map. The map parameter

can be obtained using OVwGetMapInfo or saved from the ovwMapOpen event using
OVwCopyMapInfo.

object Specifies a pointer to the OVwObjectInfo structure to free.

objectId Specifies the object ID of the object.

 Return Values

If successful, OVwGetObjectInfo returns a pointer to an OVwObjectInfo structure. If unsuccessful, it
returns NULL.

 Chapter 2. Reference Pages 725

 OVwGetObjectInfo(3)

 Error Codes

OVwGetObjectInfo sets the error code value that OVwError returns. The following list describes the pos-
sible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MAP_NOT_OPEN] The argument map does not specify an open map.

[OVw_OBJECT_NOT_ON_MAP] The object does not exist on the open map.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

 Implementation Specifics

OVwGetObjectInfo supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwGetObjectInfo or OVwFreeObjectInfo, you need to link to the
following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwDbCreateObject(3)” on page 638.
� See “OVwDbSelectionNameToObjectId(3)” on page 672.
� See “OVwError(3)” on page 688.
� See “OVwGetMapInfo(3)” on page 719.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

726 Programmer's Reference

 OVwGetObjectMenuItemPath(3)

 OVwGetObjectMenuItemPath(3)

 Purpose

Retrieves location information for object menu items

 Related Functions
 OVwGetObjectMenuItemMenu

 Syntax
#include <OV/ovw.h>
#include <OV/ovw_reg.h>

 char \OVwGetObjMenuItemPath(char \objMenuItemId);

 char \OVwGetObjMenuItemMenu(char \objMenuItemId);

 Description

OVwGetObjMenuItemPath returns the path that specifies the location of the object menu item in the object
menu structure. The string consists of the labels of the cascades and the buttons for the menu item. The
default menu path separator is →. This function is the converse of OVwFindObjMenuItem.

OVwGetObjMenuItemMenu returns the ID of the menu to which the item is attached. A menu item is
uniquely identified by this menu ID and its label, so a menu item can be attached to a maximum of one
menu.

 Parameters
objMenuItemId Specifies a pointer ton object menu item identifier returned from

OVwFindObjMenuItem

 Return Values

If successful, OVwGetObjMenuItemPath and OVwGetObjMenuItemMenu return a non-NULL pointer. If
unsuccessful, they return a NULL pointer. Because the return value for OVwGetObjMenuItemPath and
OVwGetObjMenuItemMenu is dynamically allocated, you must free the string when it is no longer needed.

 Error Codes

OVwGetObjMenuItemPath and OVwGetObjMenuItemMenu set the error code value that OVwError returns.
The following list describes the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MENUITEM_NOT_FOUND] The argument menuItemId does not specify a menu item registered
in the current registration context.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

 Chapter 2. Reference Pages 727

 OVwGetObjectMenuItemPath(3)

 Implementation Specifics

OVwGetObjMenuItemPath and OVwGetObjMenuItemMenu support single-byte and multi-byte character
code sets.

 Libraries

When compiling a program that uses OVwGetObjMenuItemPath or OVwGetObjMenuItemMenu, you need
to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwFindMenuItem(3)” on page 696.
� See “OVwCreateMenuItem(3)” on page 613.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

728 Programmer's Reference

 OVwGetRegContext(3)

 OVwGetRegContext(3)

 Purpose

Retrieves the application registration context

 Related Functions
 OVwSetRegContext

 Syntax
#include <OV/ovw.h>
#include <OV/ovw_reg.h>

char \OVwGetRegContext();

int OVwSetRegContext(char \appName);

 Description

OVwGetRegContext returns the name of the current registration context, which, if the application has pre-
viously called OVwSetRegContext, can be different from the application that is making the call.

OVwSetRegContext sets the registration context to that of the specified application.

The registration context is the application for which subsequent registration calls, such as OVwGetApp,
are effective. For example, if the registration context were Foo, a call to OVwGetApp would retrieve the
registration information for the application Foo, not that of the NetView for AIX application that is making
the call.

The current registration context defaults to the application that is running. Use OVwGetAppName to
retrieve the name of the application making the call.

 Parameters
appName

Specifies an application name as it appears in the application registration file. If appName is NULL,
OVwSetRegContext sets the current registration context to the application that is making the call.

 Return Values

If successful, OVwGetRegContext returns a non-NULL character pointer. If unsuccessful, it returns NULL.
Because the return value for OVwGetRegContext is dynamically allocated, you must free the string when it
is no longer needed.

If successful, OVwSetRegContext returns 0 (zero). If unsuccessful, it returns −1 (negative one).

 Error Codes

OVwGetRegContext and OVwSetRegContext set the error code value that OVwError returns. The fol-
lowing list describes the possible errors:

 Chapter 2. Reference Pages 729

 OVwGetRegContext(3)

[OVw_APP_NOT_FOUND] The application appName is not a registered application.

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

 Examples

The following code shows how the routines can be used to retrieve application registration information for
NetView for AIX applications. It iterates all applications and prints some registration information for each
application:

 OVwAppRegInfo \appInfo;
 char \context;

char \savedContext ═ OVwGetRegContext();

for (context ═ OVwGetFirstRegContext(NULL); context;
context ═ OVwGetNextRegContext()) {

 OVwSetRegContext(context);
appInfo ═ OVwGetApp();
if (!appInfo) {

fprintf(stderr, “Error: %s\n“, OVwErrorMsg(OVwError()));
 exit(1);
 }

/\ process application info \/
printf(“Application: %s\n”, context);
printf(“Version: %s\n”, appInfo->version);
printf(“Command: %s\n“, appInfo->command);

 OVwFreeAppRegInfo(appInfo);
 }
 OVwSetRegContext(savedContext);

 Implementation Specifics

OVwGetRegContext and OVwSetRegContext support single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwGetRegContext or OVwSetRegContext, you need to link to the
following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See OVwGetApp in “OVwCreateApp(3)” on page 607.
� See “OVwGetFirstRegContext(3)” on page 717.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

730 Programmer's Reference

 OVwGetSelections(3)

 OVwGetSelections(3)

 Purpose

Retrieves the current map selection list

 Syntax
#include <OV/ovw.h>

OVwObjectIdList \OVwGetSelections(OVwMapInfo \map, char \actionId);

 Description

OVwGetSelections returns a list of object IDs for those objects currently selected on the specified map.
By supplying the name of a registered application action, OVwGetSelections will return the list of map
selections only if they are all valid for the action.

 Parameters
map Specifies a pointer to the MapInfo structure for an open map. The map parameter

can be obtained using OVwGetMapInfo or can be saved from the ovwMapOpen
event using OVwCopyMapInfo.

actionId Specifies a pointer to the name of the action registered in the application’s registra-
tion file whose selection rule should test whether the currently selected list of
objects is valid. If actionId is NULL, OVwGetSelections returns all selected objects.
Otherwise, a selection list is returned only if every selected object is valid according
to the action’s selection rule.

 Return Values

If successful, OVwGetSelections returns a non-NULL OVwObjectIdList pointer. If unsuccessful, it returns
a NULL pointer.

 Error Codes

OVwGetSelections sets the error code value that OVwError returns. The following list describes the pos-
sible errors:

[OVw_ACTION_NOT_FOUND] The named action has not been registered for this application.

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MAP_NOT_OPEN] The argument map does not specify an open map.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_SUCCESS] Either there were no objects selected on the map or the selections
were not valid for the specified action.

 Chapter 2. Reference Pages 731

 OVwGetSelections(3)

 Examples

You can highlight the current list of selected objects by entering:

 OVwObjectIdList \objs;

/\ Get all objects currently selected \/
objs ═ OVwGetSelections(map, NULL);

/\ Highlight the selections \/
OVwHighlightObjects (map, objs, FALSE);

/\ Free ID list memory \/
OVwDbFreeObjectIdList(objs);

 Implementation Specifics

OVwGetSelections supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwGetSelections, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.
� See OVwDbFreeObjectIdList in “OVwDbListObjectsByFieldValue(3)” on page 667.

732 Programmer's Reference

 OVwGetSubmapInfo(3)

 OVwGetSubmapInfo(3)

 Purpose

Returns submap information

 Related Functions
 OVwFreeSubmapInfo

 Syntax
#include <OV/ovw.h>

OVwSubmapInfo \OVwGetSubmapInfo(OVwMapInfo \map, OVwSubmapId submapId);

void OVwFreeSubmapInfo(OVwSubmapInfo \submap);

 Description

OVwGetSubmapInfo returns information about a submap on the open map. If the parent_object_id field of
the OVwSubmapInfo structure is ovwNullObjectId, the submap is an orphan submap and has no parent
object; otherwise, parent_object_id specifies the parent object of the submap.

OVwFreeSubmapInfo frees memory allocated for an OVwSubmapInfo structure. It should be used to free
the OVwSubmapInfo structure returned by OVwGetSubmapInfo.

 Parameters
map Specifies a pointer to the MapInfo structure for an open map. The map parameter

can be obtained using OVwGetMapInfo or saved from the ovwMapOpen event using
OVwCopyMapInfo.

submap Specifies a pointer to the OVwSubmapInfo structure to free

submapId Specifies the submap ID of the submap

 Return Values

If successful, OVwGetSubmapInfo returns a pointer to an OVwSubmapInfo structure. If unsuccessful, it
returns NULL.

 Error Codes

OVwGetSubmapInfo sets the error code value that OVwError returns. The following list describes the
possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MAP_NOT_OPEN] The argument map does not specify an open map.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

 Chapter 2. Reference Pages 733

 OVwGetSubmapInfo(3)

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_SUBMAP_NOT_FOUND] The submap identified by submapId does not exist on the open
map.

 Implementation Specifics

OVwGetSubmapInfo and OVwFreeSubmapInfo support single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwGetSubmapInfo or OVwFreeSubmapInfo, you need to link to the
following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwCreateSubmap(3)” on page 619.
� See “OVwError(3)” on page 688.
� See “OVwGetMapInfo(3)” on page 719.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

734 Programmer's Reference

 OVwGetSymbolInfo(3)

 OVwGetSymbolInfo(3)

 Purpose

Returns symbol information

 Related Functions
 OVwFreeSymbolInfo

 Syntax
#include <OV/ovw.h>

OVwSymbolInfo \OVwGetSymbolInfo(OVwMapInfo \map,
 OVwSymbolId symbolId);

void OVwFreeSymbolInfo(OVwSymbolInfo \symbol);

 Description

OVwGetSymbolInfo returns information about a symbol on the open map.

OVwFreeSymbolInfo frees memory allocated for an OVwSymbolInfo structure. It should be used to free
the OVwSymbolInfo structure returned by OVwGetSymbolInfo.

 Parameters
map Specifies a pointer to the MapInfo structure for an open map. The map parameter

can be obtained using OVwGetMapInfo or saved from the ovwMapOpen event using
OVwCopyMapInfo.

symbol Specifies a pointer to the OVwSymbolInfo structure to be freed.

symbolId Specifies the symbol ID of the symbol.

 Return Values

If successful, OVwGetSymbolInfo returns a pointer to an OVwSymbolInfo structure. If unsuccessful, it
returns NULL.

 Error Codes

OVwGetSymbolInfo sets the error code value that OVwError returns. The following list describes the pos-
sible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MAP_NOT_OPEN] The argument map does not specify an open map.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_SYMBOL_NOT_FOUND] The symbol specified by symbolId does not exist on the open map.

 Chapter 2. Reference Pages 735

 OVwGetSymbolInfo(3)

 Implementation Specifics

OVwGetSymbolInfo and OVwFreeSymbolInfo support single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwGetSymbolInfo or OVwFreeSymbolInfo, you need to link to the
following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwCreateSymbol(3)” on page 623.
� See “OVwError(3)” on page 688.
� See “OVwGetMapInfo(3)” on page 719.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

736 Programmer's Reference

 OVwGetSymbolsByObject(3)

 OVwGetSymbolsByObject(3)

 Purpose

Returns symbols for an object

 Syntax
#include <OV/ovw.h>

OVwSymbolList \OVwGetSymbolsByObject(OVwMapInfo \map,
 OVwObjectId objectId);

 Description

OVwGetSymbolsByObject returns a list of all the symbols that represent an object on the open map.

OVwFreeSymbolList, described in “OVwListSymbols(3)” on page 750, should be used to free the
OVwSymbolList structure returned by OVwGetSymbolsByObject.

Generally, an object exists on a map when it is represented by a symbol on that map. Therefore,
OVwGetSymbolsByObject will normally return at least one symbol. However, there are two cases in which
an object can exist on a map without having an associated symbol:

� A submap is created with a parent object that is not yet represented by a symbol on the map.

� The Cut operation is used to cut the last symbol of an object to the clipboard, and the clipboard has
not yet been cleared by another operation.

 Parameters
 map Specifies a pointer to the MapInfo structure for an open map. The map parameter

can be obtained using OVwGetMapInfo or saved from the ovwMapOpen event using
OVwCopyMapInfo.

 objectId Specifies the object ID of the object.

 Return Values

If successful, OVwGetSymbolsByObject returns a pointer to an OVwSymbolList structure. If unsuccessful,
it returns NULL.

 Error Codes

OVwGetSymbolsByObject sets the error code value that OVwError returns. The following list describes
the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MAP_NOT_OPEN] The argument map does not specify an open map.

[OVw_OBJECT_NOT_ON_MAP] The object specified by objectId does not exist on the open map.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

 Chapter 2. Reference Pages 737

 OVwGetSymbolsByObject(3)

 Libraries

When compiling a program that uses OVwGetSymbolsByObject, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwGetMapInfo(3)” on page 719.
� See “OVwInit(3)” on page 741.
� See “OVwListSymbols(3)” on page 750.
� See “OVwApiIntro(5)” on page 560.
� See OVwFreeSymbolList in “OVwListSymbols(3)” on page 750.

738 Programmer's Reference

 OVwHighlightObject(3)

 OVwHighlightObject(3)

 Purpose

Highlights objects on the map

 Related Functions
 OVwHighlightObjects

 Syntax
#include <OV/ovw.h>

int OVwHighlightObject(OVwMapInfo \map, OVwObjectId object,
 OVwBoolean clearPrevious);

int OVwHighlightObjects(OVwMapInfo \map, OVwObjectIdList \objectList,
 OVwBoolean clearPrevious);

 Description

OVwHighlightObject highlights the specified object in the open map, optionally clearing previously high-
lighted objects on the map. When OVwHighlightObject successfully highlights the specified object, the
graphical interface opens a submap where there is a highlighted symbol for the object.

OVwHighlightObjects highlights a list of objects in the open map, optionally clearing previously highlighted
objects on the map. If only one object is specified in the list of objects, and that object is successfully
highlighted, the graphical interface opens a submap that has a highlighted symbol for that object.

Note: When multiple objects are specified in a call to OVwHighlightObjects, it is possible that some
objects are not on the map; therefore, they are not highlighted. OVwHighlightObjects will return success
in this case, but the return value of OVwError will be [OVw_OBJECT_NOT_ON_MAP]. Use
OVwHighlightObject to ensure that every object is highlighted successfully.

 Parameters
clearPrevious Specifies a boolean flag, which, when TRUE, causes the graphical interface to

clear currently highlighted objects on the map before highlighting the objects
specified in the call. If it is FALSE, currently highlighted objects remain high-
lighted. The objects specified in the call are highlighted in addition to those
objects already highlighted on the map.

map Specifies a pointer to the MapInfo structure for an open map. The map param-
eter can be obtained using OVwGetMapInfo or saved from the ovwMapOpen
event using OVwCopyMapInfo.

object Specifies the object ID of the object to be highlighted.

objectList Specifies a pointer to a list of object IDs of the objects to be highlighted.

 Return Values

If successful, OVwHighlightObject and OVwHighlightObjects return 0 (zero). If unsuccessful, they return
−1 (negative one).

 Chapter 2. Reference Pages 739

 OVwHighlightObject(3)

 Error Codes

OVwHighlightObject and OVwHighlightObjects set the error code value that OVwError returns. The fol-
lowing list describes the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MAP_NOT_OPEN] The argument map does not specify an open map.

[OVw_OBJECT_NOT_ON_MAP] The object does not exist on the open map.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

 Examples

The following example shows how an application can highlight the current list of selected objects:

OVwObjectIdList \objs;

/\ Get the current selection list \/
objs ═ OVwGetSelections(map, NULL);

/\ Highlight the selections \/
OVwHighlightObjects (map, objs, FALSE);
/\ Free list of IDs \/
OVwDbFreeObjectIdList(objs);

 Implementation Specifics

OVwHighlightObject and OVwHighlightObjects support single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwHighlightObject or OVwHighlightObjects, you need to link to the
following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.
� See OVwDbFreeObjectIdList in “OVwDbListObjectsByFieldValue(3)” on page 667.

740 Programmer's Reference

 OVwInit(3)

 OVwInit(3)

 Purpose

Initializes an application’s connection to the NetView for AIX program.

 Syntax
#include <OV/ovw.h>

int OVwInit();

 Description

OVwInit initializes internal API data structures and the communications channel between an NetView for
AIX application and the NetView for AIX program. It must be called before any other EUI API call. Each
application or process can call OVwInit only once; subsequent calls will result in errors. If your application
calls OVwInit, then before it exits it should call OVwDone.

 Return Values

If successful, OVwInit returns 0 (zero). If unsuccessful, it returns −1 (negative one).

 Error Codes

OVwInit sets the error code value that OVwError returns. The following list describes the possible errors:

[OVw_ALREADY_INITIALIZED] The API has been initialized with a prior call to OVwInit.

[OVw_CONNECT_ERROR] A failure occurred when attempting to connect to the NetView for
AIX program.

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OVW_NOT_RUNNING] The application was not invoked from the NetView for AIX program.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

 Examples

The following code fragment shows how to initialize the EUI API prior to other OVw calls:

if (OVwInit() < ð) {
fprintf(stderr, “foo: %s\n”, OVwErrorMsg(OVwError()));

 exit(1);
}

OVwAddCallback(ovwEndSession, NULL, (OVwCallbackProc)endCB, NULL);

 Libraries

When compiling a program that uses OVwInit, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Chapter 2. Reference Pages 741

 OVwInit(3)

 Related Information
 � See ovw(1).
� See “OVwDone(3)” on page 685.
� See “OVwError(3)” on page 688.
� See “OVwApiIntro(5)” on page 560.

742 Programmer's Reference

 OVwIsIdNull(3)

 OVwIsIdNull(3)

 Purpose

Tests and compares EUI API IDs

 Related Functions
 OVwIsIdEqual

 Syntax
#include <OV/ovw.h>

OVwBoolean OVwIsIdNull(id)

OVwBoolean OVwIsIdEqual(id1, id2)

 Description

OVwIsIdNull and OVwIsIdEqual are macros for testing and comparing IDs used in the EUI API. These
macros should be used with object IDs (OVwObjectId), field IDs (OVwFieldId), submap IDs
(OVwSubmapId), and symbol IDs (OVwSymbolId). These macros are defined in the <OV/ovw_types.h>
header file, which is included by the <OV/ovw.h> header file.

OVwIsIdNull is a macro that returns TRUE if id has a null value; otherwise, it returns FALSE.

OVwIsIdEqual is a macro that returns TRUE if id1 and id2 are equal; otherwise, it returns FALSE. Both
IDs should be of the same type.

 Parameters
id Specifies an object ID, field ID, submap ID, or symbol ID.

id1 Specifies an object ID, field ID, submap ID, or symbol ID.

id2 Specifies an object ID, field ID, submap ID, or symbol ID.

 Warning

Failure to use OVwIsIdNull and OVwIsIdEqual may result in future compatibility problems if the implemen-
tation of IDs in the EUI API is changed.

 Libraries

When compiling a program that uses OVwIsIdNull or OVwIsIdEqual, you need to link to the following
libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Chapter 2. Reference Pages 743

 OVwIsIdNull(3)

 Related Information
� See “OVwApiIntro(5)” on page 560.

744 Programmer's Reference

 OVwListObjectsOnMap(3)

 OVwListObjectsOnMap(3)

 Purpose

Lists objects on a map

 Related Functions
 OVwFreeObjectList

 Syntax
#include <OV/ovw.h>

OVwObjectList \OVwListObjectsOnMap(OVwMapInfo \map,
 OVwFieldBindList \capabilitySet);

void OVwFreeObjectList(OVwObjectList \objectList);

 Description

OVwListObjectsOnMap returns a list of objects on the open map.

The optional parameter fieldValues enables filtering to be done based on the values of fields specified in
the list. Capability field values can be specified to get a list of different kinds of objects. The filter is a
logical AND of fields in the argument fieldValues. If fieldValues is NULL, all objects on the open map are
returned.

OVwFreeObjectList frees the memory allocated for an OVwObjectList structure. It should be used to free
the OVwObjectList structure returned by OVwListObjectsOnMap.

 Parameters
fieldValues Specifies a pointer to an optional filter based on a list of field values.

map Specifies a pointer to the MapInfo structure for an open map. The map parameter
can be obtained using OVwGetMapInfo or saved from the ovwMapOpen event using
OVwCopyMapInfo.

objectList Specifies a pointer to an OVwObjectList structure to be freed.

 Return Values

If successful, OVwListObjectsOnMap returns a pointer to an OVwObjectList structure. If unsuccessful, it
returns NULL. The number of items in the object list may be zero if no object matches the filter.

 Error Codes

OVwListObjectsOnMap sets the error code value that OVwError returns. The following list describes the
possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_DB_CONNECTION_LOST] The connection to ovwdb was lost.

 Chapter 2. Reference Pages 745

 OVwListObjectsOnMap(3)

[OVw_FIELD_NOT_FOUND] A field ID in the fieldValues argument does not indicate a field in
the database.

[OVw_FIELD_TYPE_MISMATCH] The field data type provided in an OVwFieldBinding structure in
fieldValues does not match the field data type defined for the given
field ID.

[OVw_MAP_NOT_OPEN] The argument map does not specify an open map.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

 Implementation Specifics

OVwListObjectsOnMap and OVwFreeObjectList support single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwListObjectsOnMap or OVwFreeObjectList, you need to link to
the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
 � See ovwdb(8).
� See “OVwError(3)” on page 688.
� See “OVwGetMapInfo(3)” on page 719.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

746 Programmer's Reference

 OVwListSubmaps(3)

 OVwListSubmaps(3)

 Purpose

Lists submaps on a map

 Related Functions
 OVwFreeSubmapList

 Syntax

#include <OV/ovw.h>

OVwSubmapList \OVwListSubmaps(OVwMapInfo \map, char \appName,
int submapType, OVwFieldBindList \parentFieldValues);

void OVwFreeSubmapList(OVwSubmapList \submapList);

 Description

OVwListSubmaps returns a filtered list of submaps from the open map. A logical AND of the three filters
(appName, submapType, and parentFieldValues) determines which submaps are returned. If a NULL
value is specified for all of these filters, all submaps on the map are returned.

OVwFreeSubmapList frees the memory allocated for an OVwSubmapList structure. OVwFreeSubmapList
should be called to free the OVwSubmapList structure returned by OVwListSubmaps.

 Parameters
appName Specifies a pointer to the name of the application that created the submaps.

An appName NULL value matches any application. OVwGetAppName returns
the name of the application making the call.

map Specifies a pointer to the MapInfo structure for an open map. The map param-
eter can be obtained using OVwGetMapInfo or saved from the ovwMapOpen
event using OVwCopyMapInfo.

parentFieldValues Specifies a pointer to a filter, based on a list of field values that are compared
with the field values of the parent objects of submaps. A logical AND of the
fields in the list is used. If parentFieldValues is NULL, no filtering is done on
the field values of the parent object.

submapList Specifies a pointer to an OVwSubmapList structure to free.

submapType Specifies a filter for the submap type set by the application that created the
submap. The value of submapType is application-specific and only unique
within the scope of the creating application. A submapType value of
ovwAnySubmapType matches any submap.

 Return Values

If successful, OVwListSubmaps returns a pointer to an OVwSubmapList structure. If unsuccessful, it
returns NULL. The number of items in the submap list may be zero if no submap matches the filters.

 Chapter 2. Reference Pages 747

 OVwListSubmaps(3)

 Error Codes

OVwListSubmaps sets the error code value that OVwError returns. The following list describes the pos-
sible errors:

[OVw_APP_NOT_FOUND] The application specified by appName is not registered in an appli-
cation registration file.

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_DB_CONNECTION_LOST] The connection to ovwdb was lost.

[OVw_FIELD_NOT_FOUND] A field ID in the fieldValues argument does not indicate a field in
the database.

[OVw_FIELD_TYPE_MISMATCH] The field data type provided in an OVwFieldBinding structure in
fieldValues does not match the field data type defined for the given
field ID.

[OVw_MAP_NOT_OPEN] The argument map does not specify an open map.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

 Examples

You can return all submaps on the open map by entering the following code:

OVwListSubmaps(map, NULL, ovwAnySubmapType, NULL);

You can return all submaps created by the calling application by entering the following code:

char \appname = OVwGetAppName();

OVwListSubmaps(map, appname, ovwAnySubmapType, NULL);

You can return all submaps of type 2 created by the IP Map application by entering the following code:

OVwListSubmaps(map, “IP Map”, 2, NULL);

The following example shows how to print the names of all submaps on the open map:

 int i;
 OVwSubmapList \submap_list;

OVwMapInfo \map ═ OVwGetMapInfo();

submap_list ═ OVwListSubmaps(map, NULL, ovwAnySubmapType, NULL);
for (i ═ ð; i < submap_list->count; i++) {

 printf(“%s\n”, submap_list→submaps[i].submap_name);
 }
 OVwFreeSubmapList(submap_list);
OVwFreeMapInfo(map);

 Implementation Specifics

OVwListSubmaps and OVwFreeSubmapList support single-byte and multi-byte character code sets.

748 Programmer's Reference

 OVwListSubmaps(3)

 Libraries

When compiling a program that uses OVwListSubmaps or OVwFreeSubmapList, you need to link to the
following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
 � See ovwdb(8).
� See “OVwError(3)” on page 688.
� See “OVwGetAppName(3)” on page 701.
� See “OVwGetMapInfo(3)” on page 719.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

 Chapter 2. Reference Pages 749

 OVwListSymbols(3)

 OVwListSymbols(3)

 Purpose

Lists symbols on a submap

 Related Functions
 OVwFreeSymbolList

 Syntax
#include <OV/ovw.h>

OVwSymbolList \OVwListSymbols(OVwMapInfo \map, OVwSubmapId submapId,

OVwPlaneType plane, char \appName);

void OVwFreeSymbolList(OVwSymbolList \symbolList);

 Description

OVwListSymbols returns a filtered list of symbols on a submap of the open map. A logical AND of the
appName and plane filters determines which symbols are returned. If appName has a NULL value and
plane has the value ovwAllPlanes, all symbols on the submap are returned.

The appName parameter provides a filter for the set of symbols in a submap in which a particular applica-
tion is interested. The apps field of the OVwSymbolInfo structure lists the applications that have
expressed an interest in the symbol. This list is initialized with the application creating the symbol.
OVwSetSymbolApp and OVwClearSymbolApp can be used to modify this list. This mechanism enables a
given application to define a set of symbols, on a particular submap, that conforms to the semantics of
that submap as defined by the application.

A symbol appears on the application plane of the submap only if there is at least one application that is
interested in it. If no application is interested in the symbol, it appears on the user plane.

OVwFreeSymbolList frees the memory allocated for an OVwSymbolList structure. Use
OVwFreeSymbolList to free the OVwSymbolList structure, which is returned by OVwListSymbols.

 Parameters
appName Specifies a pointer to the name of the application whose symbols should be

returned. OVwGetAppName returns the name of the calling application. A NULL
value matches any application.

map Specifies a pointer to the MapInfo structure for an open map. The map parameter
can be obtained using OVwGetMapInfo or saved from the ovwMapOpen event using
OVwCopyMapInfo.

750 Programmer's Reference

 OVwListSymbols(3)

plane Specifies a filter for the plane on which the symbols exist. The permitted values are
defined in the <OV/ovw.h> header file:

ovwAllPlanes Return symbols on all planes.

ovwAppPlane Return only symbols on the application plane.

ovwUserPlane Return only symbols on the user plane.

If zero (0) is specified, no symbols will be returned.

submapId Specifies the ID of the submap.

symbolList Specifies the OVwSymbolList structure to be freed.

 Return Values

If successful, OVwListSymbols returns a pointer to an OVwSymbolList structure. If unsuccessful, it returns
NULL. The number of items in the symbol list might be zero if no symbol matches the filters.

 Error Codes

OVwListSymbols sets the error code value that OVwError returns. The following list describes the pos-
sible errors:

[OVw_APP_NOT_FOUND] The application specified by appName is not registered in an appli-
cation registration file.

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MAP_NOT_OPEN] The argument map does not specify an open map.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_SUBMAP_NOT_FOUND] The submap specified by submapId does not exist on the open
map.

[OVw_SUBMAP_PLANE_INVALID] The argument plane has a bit set that is not valid.

 Examples

You can return all symbols on the specified submap by entering the following code:

OVwListSymbols(map, submap_id, ovwAllPlanes, NULL);

You can return all symbols of the calling application by entering the following code:

char \appname = OVwGetAppName();
OVwListSymbols(map, submap_id, ovwAppPlane, appname);

 Implementation Specifics

OVwListSymbols and OVwFreeSymbolList support single-byte and multi-byte character code sets.

 Chapter 2. Reference Pages 751

 OVwListSymbols(3)

 Libraries

When compiling a program that uses OVwListSymbols or OVwFreeSymbolList, you need to link to the
following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwGetAppName(3)” on page 701.
� See “OVwGetMapInfo(3)” on page 719.
� See “OVwInit(3)” on page 741.
� See “OVwSetSymbolApp(3)” on page 808.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

752 Programmer's Reference

 OVwListSymbolTypes(3)

 OVwListSymbolTypes(3)

 Purpose

Returns symbol type information

 Related Functions
 OVwListSymbolTypeCaps
 OVwFreeSymbolTypeList

 Syntax
#include <OV_ovw.h>

OVwSymbolTypeList \OVwListSymbolTypes();

OVwFieldBindList \OVwListSymbolTypeCaps(OVwSymbolType symbol);

void OVwFreeSymbolTypeList(OVwSymbolTypeList \symbolTypeList)

 Description

OVwListSymbolTypes is used to return a list of all the currently registered symbol types. These symbol
types are used primarily to present a graphic representation of an object. They are secondarily used to
determine initial capability-field values of objects.

OVwListSymbolTypeCaps is used to return a list of the capability-field values which would be set if the
user added a map object using this symbol type. It is also possible for an application to use the symbol
type to define an initial set of capability-field values for an object. See “OVwCreateSymbol(3)” on
page 623 for a more complete description of this latter use of symbol capabilities.

OVwFreeSymbolTypeList frees the memory allocated for an OVwSymbolTypeList structure.
OVwFreeSymbolTypeList should be used to free the OVwSymbolTypeList structure returned by
OVwListSymbolTypes.

OVwDbFreeFieldBindList should be used to free the OVwFieldBindList structure returned by
OVwListSymbolTypeCaps.

 Parameters
symbol Specifies the symbol type for which to return the capability list.

 Return Values

If successful, OVwListSymbolTypes and OVwListSymbolTypeCaps return pointers to the requested lists. If
unsuccessful, they return NULL.

 Chapter 2. Reference Pages 753

 OVwListSymbolTypes(3)

 Error Codes

OVwListSymbolTypes and OVwListSymbolTypeCaps set the error code value that OVwError returns. The
following list describes the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

 Implementation Specifics

OVwListSymbolTypes and its related functions support single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwListSymbolTypes or its related functions, you need to link to the
following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwCreateSymbol(3)” on page 623.
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.
� See OVwDbFreeFieldBindList in “OVwDbGetFieldValues(3)” on page 654.

754 Programmer's Reference

 OVwLockRegUpdates(3)

 OVwLockRegUpdates(3)

 Purpose

Acquires permission to modify registration information

 Related Functions
 OVwUnlockRegUpdates

 Syntax
#include <OV/ovw.h>
#include <OV/ovw_reg.h>

int OVwLockRegUpdates(OVwBoolean block);

int OVwUnlockRegUpdates();

 Description

OVwLockRegUpdates acquires permission for the application to make subsequent calls that modify
NetView for AIX registration information. Such calls include OVwActionRegistration, OVwAddMenuItem,
OVwAddMenuItemFunction, OVwAppRegistration, OVwMenuRegistration, and OVwMenuItemRegistration.
Only one NetView for AIX application is permitted to modify registration information at a time, so the lock
is needed to enforce this mutual exclusion.

OVwUnlockRegUpdates releases previously acquired update permissions.

 Parameters
block If TRUE, OVwLockRegUpdates will not return until the lock is acquired. If FALSE,

OVwLockRegUpdates will return immediately with an indication of success or failure.

 Return Values

If successful, OVwLockRegUpdates and OVwUnlockRegUpdates return 0 (zero). If unsuccessful, they
return −1.

 Error Codes

OVwLockRegUpdates and OVwUnlockRegUpdates set the error code value that OVwError returns. The
following list describes the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_PERMISSION_DENIED] The registration update permissions could not be acquired.

 Chapter 2. Reference Pages 755

 OVwLockRegUpdates(3)

 Libraries

When compiling a program that uses OVwLockRegUpdates or OVwUnlockRegUpdates, you need to link
to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

756 Programmer's Reference

 OVwMainLoop(3)

 OVwMainLoop(3)

 Purpose

Defines NetView for AIX graphical user interface MainLoop, which continuously processes NetView for AIX
events

 Syntax

#include <OV/ovw.h>

void OVwMainLoop();

 Description

OVwMainLoop is a macro that defines a while loop that continuously processes NetView for AIX events
and application-registered input events. Applications must either call OVwMainLoop or OVwXtMainLoop
for application callbacks, registered with OVwAddCallback, to be functional.

OVwMainLoop returns only if the connection to the NetView for AIX program is closed, and there are no
more active input sources previously registered with OVwAddInput. Applications should exit in response
to the ovwEndSession event rather than depending on OVwMainLoop to return.

 Examples

The following code fragment illustrates how a minimal NetView for AIX application uses OVwMainLoop:

 void
EndSessionProc(void \userData, OVwEventType type,

 OVwBoolean normalEnd)
 {
 if (normalEnd)

printf(“ovw terminated normally.\n”);
 else

printf(“ovw terminated abnormally.\n”);
 OVwDone();
 exit(!normalEnd);
 }

 main()
 {

if (OVwInit() < ð) {
fprintf(stderr, “example: %s\n”, OVwErrorMsg(OVwError()));

 exit(1);
 }

 OVwAddCallback(ovwEndSession, NULL,
 (OVwCallbackProc)EndSessionProc, NULL);

 OVwMainLoop();
 }

 Chapter 2. Reference Pages 757

 OVwMainLoop(3)

 Libraries

When compiling a program that uses OVwMainLoop, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwAddCallback(3)” on page 539.
� See “OVwAddInput(3)” on page 543.
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

758 Programmer's Reference

 OVwMapCloseCB(3)

 OVwMapCloseCB(3)

 Purpose

Functions as a callback for a map-close event

 Syntax

#include <OV/ovw.h>

void (\OVwMapCloseCB) (void \userData, OVwEventType type,

OVwMapInfo \map, time_t closing_time);

 Description

To receive an event indicating that a map is being closed, use OVwAddCallback to register a callback
function of type OVwMapCloseCB to be called when an ovwMapClose event is generated. A map close
event is generated when a map is closed through the graphical interface. A map close event implies that
the submaps within the map were closed. A submap close callback will not be generated when a map
close event occurs.

All applications receiving an ovwMapClose event must call OVwAckMapClose to acknowledge the close of
the map. The map will be closed only when all applications receiving the ovwMapClose event have called
OVwAckMapClose. This is done so that all applications are in agreement when a map is closed and
applications do not mistakenly perform operations on a map that has already been closed.

The closing_time parameter is a proposed closing time for the map, based on the time the map-close
event was generated. When calling OVwAckMapClose, an application can agree with the default closing
time by returning the value of closing_time or a default value of 0 (zero). Alternately, an application that is
interrupted in the middle of making map updates can indicate an earlier map closing time to indicate that
there are still updates that need to be performed on the map. The actual closing time for the map will be
the earliest time indicated by any application. This final closing time will be available in the
last_closed_time field of the OVwMapInfo structure passed in the ovwMapOpen event when the map is
next opened.

Because application acknowledgement is required to close a map, response time for closing a map might
be slow if applications are busy doing other processing. In order to avoid this, it is strongly recommended
that applications receiving the ovwMapClose event use the OVwPeekOVwEvent routine to regularly check
for the ovwMapClose event, especially during lengthy processing. If OVwPeekOVwEvent returns TRUE
for an ovwMapClose event, the application should ignore subsequent events or process them as quickly
as possible until the map close event is received. Also, once it is discovered through OVwPeekOVwEvent
that a map close event is imminent, the application can begin determining what map close time to use.

There is a map close time-out, so that if all applications do not respond within the number of seconds
specified by the NetView for AIX X resource closeTimeout, the map is closed anyway. The default is two
minutes .

 Parameters
 closing_time Returns the proposed closing time for the map. If acceptable, this time can be

passed as the close_time parameter of OVwAckMapClose.

 map Specifies a pointer to the OVwMapInfo structure for the map that is being closed.

 Chapter 2. Reference Pages 759

 OVwMapCloseCB(3)

 type Specifies the type of event that caused this callback to be invoked, namely
ovwMapClose.

userData Specifies user data provided when the callback was added.

 Examples

The following code fragment illustrates how to register a callback routine that receives a map-close event:

 void
mapCloseProc(void \userData, OVwEventType type,

OVwMapInfo \map, time_t closing_time)
 {

time_t new_close_time ═ (time_t) ð;

/\ do cleanup for map being closed \/

 /\
\ If necessary, compute an earlier new_close_time
\ based on updates that need to be done next time
\ the map is opened.

 \/
 OVwAckMapClose(map, new_close_time);
 }

 OVwAddCallback(ovwMapClose, NULL,
(OVwCallbackProc) mapCloseProc, NULL);

 Implementation Specifics

OVwMapCloseCB supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwMapCloseCB, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwAckMapClose(3)” on page 528.
� See “OVwAddCallback(3)” on page 539.
� See “OVwMapOpenCB(3)” on page 761.
� See “OVwPeekOVwEvent(3)” on page 763.
� See “OVwApiIntro(5)” on page 560.

760 Programmer's Reference

 OVwMapOpenCB(3)

 OVwMapOpenCB(3)

 Purpose

Functions as a callback for a map open event

 Syntax

#include <OV/ovw.h>

void (\OVwMapOpenCB) (void \userData, OVwEventType type,

OVwMapInfo \map, OVwFieldBindList \configParams);

 Description

To receive an event indicating that a new map has been opened, use OVwAddCallback to register a
callback function of type OVwMapOpenCB to be called when an ovwMapOpen event is generated.

Note: The ovwMapOpen event initially occurs at startup time, before registered applications are have
been started. Applications do not receive a callback for this initial map open event.

The permissions field of the OVwMapInfo structure returned will indicate whether the map has been
opened ovwReadOnly or ovwReadWrite. If a map is opened ovwReadOnly, all calls that modify the open
map will result in an OVw_MAP_READ_ONLY error, except for calls to change status. See
“OVwSetStatusOnObject(3)” on page 803 for more information.

The configParams parameter points to the current values of any map-specific application configuration
fields enrolled by the application through an application registration file. If no fields were enrolled, the
value of this parameter will be NULL.

If the application is enabled for the open map, as determined by the application's configuration parame-
ters, the application should begin the process of synchronizing the map with the latest status and topology
information. This initial update should be enclosed between OVwBeginMapSync and OVwEndMapSync
calls.

The last_closed_time field of the OVwMapInfo structure gives the last time a read-write version of the map
was closed. This time can be used to determine what changes are needed to update the map. A map
that is being opened for the first time since it was created will have a last_closed_time of 0 (zero).

 Parameters
 configParams Specifies a pointer to the application configuration field values for the open map.

This parameter will be NULL if the application has not enrolled any application con-
figuration fields through an application registration file.

 map Specifies a pointer to an OVwMapInfo structure providing information about the map
just opened. This parameter can be saved with OVwCopyMapInfo (see
“OVwGetMapInfo(3)” on page 719) for later use as the map parameter in routines
that operate on the open map.

 type Specifies the type of event that caused this callback to be invoked, namely
ovwMapOpen.

 userData Specifies user data provided when the callback was added.

 Chapter 2. Reference Pages 761

 OVwMapOpenCB(3)

 Examples

The following code fragment illustrates how to register a callback routine that receives map-open events:

 void
mapOpenProc(void \userData, OVwEventType type,

OVwMapInfo \map, OVwFieldBindList \configParams)
 {

/\ check configParams \/
if (enabled_for_map) {

 OVwBeginMapSync(map);
 /\

\ Update map with status changes since
 \ map->last_closed_time.
 \/

if (map->permissions ══ ovwMapReadWrite) {
/\ update map with topology changes \/

 }
 OVwEndMapSync(map);
 }
 }

 OVwAddCallback(ovwMapOpen, NULL,
(OVwCallbackProc) mapOpenProc, NULL);

 Implementation Specifics

OVwMapOpenCB supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwMapOpenCB, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
� See “OVwAddCallback(3)” on page 539.
� See “OVwBeginMapSync(3)” on page 573.
� See “OVwGetMapInfo(3)” on page 719.
� See “OVwSetStatusOnObject(3)” on page 803.
� See “OVwMapCloseCB(3)” on page 759.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

762 Programmer's Reference

 OVwPeekOVwEvent(3)

 OVwPeekOVwEvent(3)

 Purpose

Checks for specific NetView for AIX or input events

 Related Functions
 OVwPeekInputEvent

 Syntax
#include <OV/ovw.h>

OVwBoolean OVwPeekOVwEvent(OVwEventType event);

OVwBoolean OVwPeekInputEvent(OVwInputId id);

 Description

OVwPeekOVwEvent enables your application to determine whether a particular type of NetView for AIX
event is awaiting processing. This is particularly helpful in applications that must handle the ovwMapClose
event promptly. By checking for ovwMapClose at certain intervals during lengthy processing, you can
quickly stop processing so that the map close can be received and acknowledged promptly. See
“OVwAckMapClose(3)” on page 528 and “OVwMapCloseCB(3)” on page 759 for more details on handling
the ovwMapClose event.

OVwPeekInputEvent provides a similar mechanism for application-registered input sources by enabling
your application to determine whether a registered input source has input waiting to be processed.

 Parameters
event Specifies an NetView for AIX event as defined in the <OV/ovw.h> header file

id Specifies an OVwInputId, which results from a prior call to OVwAddInput

 Return Values

If there are pending NetView for AIX events, OVwPeekOVwEvent returns TRUE. If there are no pending
NetView for AIX events, OVwPeekOVwEvent returns FALSE.

If there are any pending input events, OVwPeekInputEvent returns TRUE. If there are no pending
NetView for AIX events, OVwPeekInputEvent returns FALSE.

If a failure occurs, the functions return FALSE.

 Chapter 2. Reference Pages 763

 OVwPeekOVwEvent(3)

 Error Codes

OVwPeekOVwEvent and OVwPeekInputEvent set the error code value that OVwError returns. The fol-
lowing list describes the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

 Examples

The following code fragment illustrates how an application might use OVwPeekOVwEvent to stop map
synchronization if the map has been closed:

OVwBeginMapSync(map);
syncing ═ TRUE;
mapClosing ═ FALSE;

while (syncing) {
if (OVwPeekOVwEvent(ovwMapClose) ══ TRUE) {

syncing ═ FALSE;
mapClosing ═ TRUE;

} else {
/\ Process a few map synchronization steps \/

 }
}

OVwEndMapSync(map);

 Libraries

When compiling a program that uses OVwPeekOVwEvent or OVwPeekInputEvent, you need to link to the
following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwPending(3)” on page 765.
� See “OVwApiIntro(5)” on page 560.

764 Programmer's Reference

 OVwPending(3)

 OVwPending(3)

 Purpose

Tests for pending NetView for AIX or application-registered events

 Syntax
#include <OV/ovw.h>

OVwBoolean OVwPending();

 Description

OVwPending returns a boolean value indicating whether there is an NetView for AIX event or
application-registered input event waiting to be processed.

 Return Values

If there are pending events, OVwPending returns TRUE. If there are no pending events, it returns FALSE.
If OVwPending experiences a failure, it returns FALSE.

 Error Codes

OVwPending sets the error code value that OVwError returns. The following list describes the possible
errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX process was lost.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

 Examples

A fragment from the code for OVwXtMainLoop demonstrates the use of OVwPending:

 while (1) {
 if (OVwPending())
 OVwProcessEvent();
 else
 XtProcessEvent(XtIMAll);
 }

 Libraries

When compiling a program that uses OVwPending, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Chapter 2. Reference Pages 765

 OVwPending(3)

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwProcessEvent(3)” on page 767.
� See “OVwApiIntro(5)” on page 560.

766 Programmer's Reference

 OVwProcessEvent(3)

 OVwProcessEvent(3)

 Purpose

Processes a pending NetView for AIX event

 Syntax
#include <OV/ovw.h>

int OVwProcessEvent();

 Description

OVwProcessEvent processes pending NetView for AIX events or application-defined input events.
Callbacks are invoked for these events based on previous registration with OVwAddCallback,
OVwAddActionCallback, or OVwAddInput.

 Return Values

If successful, OVwProcessEvent returns 0 (zero). If unsuccessful, it returns −1.

 Error Codes

OVwProcessEvent sets the error code value that OVwError returns. The following list describes the pos-
sible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred..

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

 Examples

The following fragment shows how OVwMainLoop uses OVwProcessEvent:

while(1) {
if (OVwProcessEvent() < ð)

 break;
}

 Libraries

When compiling a program that uses OVwProcessEvent, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Chapter 2. Reference Pages 767

 OVwProcessEvent(3)

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwPending(3)” on page 765.
� See “OVwApiIntro(5)” on page 560.

768 Programmer's Reference

 OVwRegIntro(5)

 OVwRegIntro(5)

 Purpose

Provides an overview of NetView for AIX graphical user interface registration files

 Description

NetView for AIX graphical user interface registration files are a mechanism for:

� Integrating applications into the NetView for AIX graphical user interface

� Defining symbol types for the NetView for AIX graphical user interface map

� Creating fields in the NetView for AIX graphical user interface Object Database (see ovwdb(8))

� Enabling managers to access your agent or application through the NetView for AIX program

When the NetView for AIX program processes a set of registration files, it creates a list of all the files in a
registration directory, collates the list, then parses and processes each of the files in this collated order.

Use the NetView for AIX program's -verify option to ensure the accuracy of the registration files before
starting an NetView for AIX session after registration files have been modified.

Application Integration

Application registration files define how an application integrates with NetView for AIX graphical user inter-
face. This information includes details, such as:

� The definition of specific actions the application can perform

� A command line to start the application

� Flags telling the NetView for AIX program how the application command should be started and
managed

� Graphical interface menus and menu items that start or signal the application to perform defined
actions

� Descriptions of dialog boxes the application will use for map semantic information

Applications that are started from the NetView for AIX program and those that use the EUI API must be
registered through an application registration file. The file provides the necessary information for the
NetView for AIX program to invoke and manage the application processes.

An application can have certain actions defined for it. These, too, are specified in the registration file and
can be linked to menu items, within the registration file, or to executable symbols, through the EUI API or
the graphical user interface.

Some applications manage semantics, or semantic planes, of graphical interface maps. These applica-
tions need to specify how certain dialog boxes look for various semantic operations. Within the registra-
tion file, the application enrolls fields for these dialog boxes, based on rules about the objects it will
manage. Details on how to use field enrollment in connection with the EUI API are available in the
NetView for AIX Programmer's Guide.

Application registration files are located in the /usr/OV/registration/$LANG directory. The NetView for AIX
application parses the files in collated, file name order. Once all the application registration files have
been parsed, application menus are registered in the menu bar. The NetView for AIX graphical user

 Chapter 2. Reference Pages 769

 OVwRegIntro(5)

interface menu registration is processed first, followed by all other applications in application name order.
That is, application Alpha's menu items are registered before application Omega's.

Application Block

The Application block contains information about how an application is integrated with the NetView for AIX
program. Only one application can be registered in a single application registration file. See Example of
Application Registration on page 791 for an example registration file.

The application name must uniquely identify an application. For example, each of the following sample
application registrations attempt to define the same application, Sample App. However, both application
registrations cannot be registered.

First sample application registration

Application “Sample App” {
Command “/usr/local/bin/checknode -test”;

 :
 :
 }

Second sample application registration

Application “Sample App” {
Command “/usr/bin/foo -x -y -z ${OVwSelections}”;

 :
 }

The NetView for AIX application emits a warning if there are multiple registrations for an application and
ignores duplicate registrations.

Command and Process Flags

The Command statement contains process flags and a command string that has command-line argu-
ments used to invoke the application. This declaration outside an action declaration is global, in that
any actions defined later assume that the application process is started with this command. This
command can be overridden within an action declaration. This global declaration can be omitted, pro-
vided there are command statements within all action declarations.

The NetView for AIX application executes the command string by executing the /bin/sh -c exec
command. For the command invocation to succeed, the first element of the command string must be
the path of an executable file. The full syntax of sh(1) can be used in the command string, including
references to environment variables inherited from the NetView for AIX program. Additionally, the
NetView for AIX program sets the following environment variables, which the application inherits:

 OVwSelections
This is a list, separated by blanks, of the selection names of the objects in the selection list at the
time the application is invoked. When an object menu is in use, OVwSelections is set to the
selection name of the object from which the action was selected.

 OVwNumSelections
This is set to the number of objects in the selection list at the time the application is invoked.
When an object menu is in use, OVwNumSelections is set to one.

 OVwSelectionn (n=1, 2, ..., 10)
Each of these environment variables contains the selection name of an object in the selection list
at the time the application is invoked. OVwSelection1 is set to the name of the first object
selected, OVwSelection2 the second, and so on, up to OVwSelection10 which is set to the
selection name of the tenth object selected. The ordering of the selected objects for these vari-

770 Programmer's Reference

 OVwRegIntro(5)

ables is the order in which they were selected on the map. When an object menu is in use,
OVwSelectionn contains the selection name of the object menu from which the action was
selected.

 OVwActionID
This is the name of the action declaration block, as defined in the registration file, by which the
application was invoked.

 OVwMenuItem
If an application action is invoked from a menu, this variable will be set and will contain the label of
the menu item that caused the action.

The process flags listed in the command statement tell the NetView for AIX program how to manage
the application process or processes. They are specified with the Command in the application block,
as shown in the following example:

Application “Sample App” {
Command -Shared -Initial -Restart “/usr/bin/foo -x -y -z

 ${OVwSelections}”;
 :
 }

Valid process flags are:

-Initial
This flag tells the NetView for AIX program to start the application when the NetView for AIX
program starts. The NetView for AIX program will invoke the application with the command speci-
fied by the Command line in the application block. By default, this flag is not enabled and an
application is only started when an application action is triggered by a menu item or an executable
symbol.

-Shared
This flag tells the NetView for AIX program that the application process instance is shared across
actions. Once the process is started by a menu item, executable symbol, or a set Initial flag, it
continues to run until the command instance exits. The process is then notified by the EUI API
when actions are requested by menu items or executable symbols. Applications that do not use
the EUI API can have the Shared flag enabled, meaning only that the first instance of the applica-
tion will be the only instance running until it exits. It must use the EUI API to intercept further
action requests from menu items or executable symbols.

-Restart
This flag tells the NetView for AIX program that the application is a required application for normal
operation and should be restarted if it exits. This flag is intended for use by applications that
manage semantics of graphical interface maps and should always be present for the duration of an
NetView for AIX session.

Application Description

The Description block provides a brief description of the application for use in the
Help..Indexes..Applications dialog box, which displays all the applications installed and registered with
the NetView for AIX program.

The description block contains a comma-separated list of strings. Within the application index, each
string will appear on a separate line.

 Chapter 2. Reference Pages 771

 OVwRegIntro(5)

Application Copyright

The Copyright block provides the copyright string used in “Help..Indexes..Applications” dialog box. Like
the description, this block contains a comma-separated list of strings. Within the application index,
each string appears on a separate line.

Application Version

The version statement defines a string which is the application version information. This version string
appears in the Help..On Version and Help..Indexes..Applications dialog boxes.

Help Directory

The HelpDirectory statement specifies the name of the directory where the application’s help files
reside. These files are presented in response to help requests by the NetView for AIX graphical user
interface help system, ovhelp. The directory is listed as a flat name, not a path, assuming that the
directory is located in relation to /usr/OV/help/$LANG.

For example:

HelpDirectory “IPMap”;

Name Field

The NameField section provides a mechanism for the application to quickly access the selected objects
by some name field other than the selection name. The environment variable $OVwSelections con-
tains, by default, the selection names of all the objects in the selection list at application startup. In
some cases, that name can be different from the names that the application is constructed to handle.
For example, the telnet command can be specified as a menu item. Generally, the selection name for
objects on the map is the hostname; however, users can select object names. To indicate that the
command gets only host names, the application registration can contain a NameField section indicating
that objects should be named by host name.

For example:

Application “Telnet” {
Command “/usr/bin/X11/xterm -e /usr/bin/telnet ${OVwSelection1}”;
NameField “IP Hostname”;

 :
 }

The string IP Hostname refers to the object field by the same name. Any registered name field can be
used in this binding. If an object that does not have a host name appears in the selection list, any
menu items by which the application is invoked will be grayed out.

The NameField section accepts a list of field names. The first field that is defined for an object will be
used in the selection list environment settings. In the following example, if an object that does not
have an IP hostname were selected, its selection name would be used.

Application “Telnet” {
Command “/usr/bin/telnet ${OVwSelection1}”;
NameField “IP Hostname”, “Selection Name”;

 :
 }

Application Menu Integration

The MenuBar and Menu sections provide a specification of how the application interfaces with the graph-
ical interface menu bar. Both are functionally equivalent, with one exception. The MenuBar block
declares menu selections for top-level menus on the menu bar. The Menu block declares selections for
menu cascades included in the top-level menus (top-level meaning the first cascade beneath a menu bar
item). Thus, the scope of the MenuBar menuId is global (across applications) and also specifies the label

772 Programmer's Reference

 OVwRegIntro(5)

of the item on the menu bar. The scope of the Menu menuId is limited to the Application block and has
no influence on the label of the button that brings up the menu cascade.

The Menu and MenuBar sections contain declarations of menu items for the application. Because the
body of the Menu and MenuBar sections are the same, discussion of menu item declaration is deferred to
the Menu section.

MenuBar Registration

The MenuBar section provides registration of new menu bar selections and registration of menu items
within the top-level menus.

MenuName

The MenuName for the MenuBar section serves to distinguish MenuBar declarations and to name
top-level (menu bar) menus. This MenuName is global in scope. It corresponds to the label for the
menu bar. For example, the following code fragment is a declaration that describes entries for the
application under the Administer menu on the menu bar.

MenuBar Administer _A {
 :
 }

The Help MenuName is reserved to be the menubar item that is attached to the right side of the
menubar.

Mnemonic

Along with the label for the menu bar item, an application can specify an optional mnemonic in the
declaration of the menu. For example, an application that is registering for a new menu bar item Con-
figure can specify the following to add a new top-level menu on the menu bar called Configure with the
mnemonic character C.

MenuBar “Configure” _C {
 :
 }

The MenuName Configure is now global in scope; other applications can register menus under this
same top-level menu. If there are multiple declarations for a top-level menu that specify different mne-
monics, the NetView for AIX program emits a warning and uses the first mnemonic registered for that
cascade.

Precedence

The precedence is an integer value from 0 (zero) to 100 enclosed in a < and > symbol, which weights
the importance of a menu bar cascade or item on the Tool window. Menu bar cascades or tools are
listed in the menu bar or Tool window according to precedence and, within items of the same preced-
ence, the order in which they are registered (collated order of application name). As shown in the
following example, the NetView for AIX program registers the File cascade as the leftmost cascade by
giving it the highest precedence value and by listing it first within the registration file:

MenuBar <1ðð> “File” _F {
 :
 }

Similarly, a tool called GraphDemo can be positioned at the top of the Tool window by giving it the
highest precedence value:

Tool <1ðð> “GraphDemo” {
 :
 }

 Chapter 2. Reference Pages 773

 OVwRegIntro(5)

Menu Registration

The Menu section enables an application to specify a group of menu items to appear within a single menu
cascade. For the declared menu to be useful, it must be associated with some menu item with the f.menu
function.

The following example illustrates Menu registration:

Application “Mail Manager”
 {

 MenuBar “Monitor”
 {
 “Mail” f.menu “MailMenu”;
 }

 ObjectMenu
 {
 “Menuitem” f.action “Menuitem”;
 “Menuitem” f.action “Menuitem”;
 }

 Tool “Label”
 {

Icon Bitmap “Filename”
 LabelColor “Color”;
 DragBitmap “Filename”;
 SelectionMechanism “drag-drop”,“double-click”;

Action “Action Name”;
 }

 Menu “MailMenu”
 {
 “Mail Log” f.action “MailLog”;
 “Mail Queue” f.action “Mailq”;
 }

 :
 :
 }

In the previous example, the application connects with the Monitor menu on the main menu bar. A menu
item named Mail selects the MailMenu cascade menu that contains at least two items, Mail Queue and
Mail Log.

MenuID

A MenuID provides a reference to the specified group of menu items. The sole purpose of the MenuID
is to provide a way for the application to connect the group of menu items to a menu cascade button.
The scope of this MenuID is limited to the application registration. An application can declare a group
of menu items using the same MenuID that another application uses for another group of menu items.
MailMenu is a MenuID in the preceding example.

774 Programmer's Reference

 OVwRegIntro(5)

MenuItem Registration

Menu items are declared within the Menu and MenuBar sections.

The following example is a sample MenuBar section.

MenuBar <1ðð> File _F
{
 <1ðð> “New Map...” _N f.new_map;
 <1ðð> “Open Map...” _O f.avail_maps;
 <1ðð> “Describe Map...” _M f.map_desc;
 <1ðð> “Refresh Map” _R f.refresh_map;

<1ðð> “Save Map As...” _A f.save_map;
 <1ðð> “Delete Map...” _D f.avail_maps;

<1ðð> “Map Snapshot” _h f.menu “Map Snapshot”;
 <ð> “Exit” _E Cntl<Key>E f.exit;

A menu item is composed of the following components:

Precedence

The precedence value is optional. It can range from 0-to-100 enclosed by a < and >
symbol and, by default, is set to 50. This is an integer value that weights the importance
of a menu item. Menu items are listed in graphical interface menus according to preced-
ence and, within items of the same precedence, the order in which they were registered
(the collated order of the application name).

Label

The label for the menu item as it should appear in a menu. It is a required field.

Mnemonic

A character that enables keyboard traversal of a menu. The mnemonic declaration
begins with an underscore followed by the mnemonic character needed for the menu
selection.

The mnemonic is an optional field. If another mnemonic is already specified, by another
application, for the same menu item, the NetView for AIX program issues a warning and
the previously defined mnemonic is used instead.

Accelerator

A key sequence that invokes a menu selection without displaying the menu.

This is an optional field. If the menu item already has an accelerator associated with it,
through another application, the NetView for AIX program issues a warning and uses the
previously-defined accelerator.

Function

A function describes the behavior of each menu selection. Functions begin with the two
characters, f., followed by a name. A special function named “!” provides easy inte-
gration of shell commands with graphical interface menus.

 “!” “command line”
The ! function enables shell commands to be integrated into menu selections
quickly. Because it specifies a shell command, an application would never be noti-
fied when this item is selected. Therefore, you do not need to declare a separate
action for it. However, if conditions of the menu item are specified, such as the
number of selections or a selection rule, you should declare an action with this infor-
mation and list the required shell command in the action item arguments.

 Chapter 2. Reference Pages 775

 OVwRegIntro(5)

 f.action
The f.action function takes an ActionID, which is associated with some Action decla-
ration elsewhere in the file. It connects the action to the menu item so that when the
item is selected, the application is, if necessary, invoked and notified of the selected
action.

 f.menu
This function provides for the declaration of a menu cascade within a menu. A pre-
vious menu example shows f.menu declaring the MailMenu cascade.

 f. “built-in-function-name”
Built-in functions are internal to the NetView for AIX program. They are functions
that implement internal NetView for AIX callbacks, providing functionality for menu
items, such as Help..On Version, File..New Map..., and so on. These are provided
so that the NetView for AIX program can use the same file-based menu registration
just as other applications do. Each function begins with the f. followed by a unique
identifier describing the function. The NetView for AIX registration file contains
several examples of internal functions, such as f.star center.

Note: These internal functions are designed for the NetView for AIX program. If
you use them with other applications, use them with caution.

Application Action Definition

The Action section is used to define actions which an application can perform. Actions can then be con-
nected to menu items through the registration file or to executable symbols through the user interface.

An application that specifies the Initial flag does not need to define any actions if it will run under the
NetView for AIX program. Otherwise, an action must be defined to enable application invocation by menu
items or executable symbols.

The action definition contains information, such as the object types that are valid for the action, the
command that invokes the application, and the command that passes to the application if it is already
running.

Through the EUI API, an application is notified that an action has been requested by registering a callback
for the action. This is accomplished using the OVwAddActionCallback registration mechanism. The
parameters to the callback will include the name of the action (the ActionID described below), callback
arguments specified for the action, and the map and submap where the action was requested. The
parameters will also include the current selection list unless the action is invoked from the ObjectMenu, in
which case the selection contains the object clicked on to display the ObjectMenu.

ActionID An identifier, or name, for the action that the application can use to receive notification
when the action is requested. It is also used as an argument to f.action to tie the action to
a menu item. The scope of the name is limited to the application; other applications can
have defined actions by the same name.

To continue an example started earlier, the Mail Manager registration referred to an action
called MailLog. The following code fragment is a definition for that action that uses ele-
ments of the action definition described in the following sections.

776 Programmer's Reference

 OVwRegIntro(5)

Application “Mail Manager”
 {

 MenuBar “Monitor”
 {
 “Mail” f.menu “MailMenu”;
 }

 Menu “MailMenu”
 {
 “Mail Queue” f.action “Mailq”;
 “Mail Log” f.action “MailLog”;
 }

 :

 Action “MailLog”
 {
 SelectionRule isNode;
 MinSelected 1;
 MaxSelected 1;
 Security;

Command ’xterm -title “${OVwMenuItem} ($OVwSelection1)” \
-e sh -c “/usr/bin/rexec ${OVwSelection1} \
-l root tail -f /usr/spool/mqueue/syslog”’;

 }

 :
 :
 }

This action specifies that exactly one object can be selected for the action to take place
(MinSelected 1 and MaxSelected 1). It also specifies that the object on which it acts must
be a node that supports IP. Finally, it lists the command that should be used to perform
the action.

Selection Rule

A logical expression, using the AND (&&), OR (||) and NOT (!) operators, on capability
fields. Capability fields are specially designated fields in the object database used for clas-
sifying an object. The field registration section below describes how to define a field as a
capability.

Capability fields are limited to Boolean and Enumerated types.

The logical expression is classical in its definition. Refer to Grammar on page 784 for the
detailed syntax of the SelectionRule expression.

Note: The selection rule applies to the object used to invoke the ObjectMenu when the
action is invoked from the ObjectMenu.

MinSelected A means of specifying the minimum number of objects that must be selected for the action
to be enabled.

If MinSelected is not specified, it is assumed to be zero, meaning that no objects must be
selected for the item to be active.

If MinSelected is not specified, and the action contains a SelectionRule, it is assumed to
be 1, meaning that at least one object matching the selection rule must be selected for the
action to be activated. If MinSelected is set to zero and the action includes a selection

 Chapter 2. Reference Pages 777

 OVwRegIntro(5)

rule, the action is valid when nothing is selected, but if there are any selections they must
meet the selection rule criteria.

When actions are connected to menu items, the value of MinSelected must be consistent
across all actions associated with a specific menu item. Two actions (within the same
application or from different applications) with different MinSelected settings cannot be con-
nected to the same menu item. Subsequent conflicting menu item registrations are
flagged as errors and are ignored.

MaxSelected

An upper boundary for the number of selections on which an action can be applied. If
MaxSelected is not specified, any number of objects can be selected for the action. If
MaxSelected is set to zero, the action is only valid when nothing is selected.

Security

Specifies that this action is not available unless NetView for AIX security is being used. If
security is turned off, the action is still displayed, but it is greyed out and not selectable.

Note: This field is not dynamic, and cannot be checked or changed through the
OVwSetAction or OVwGetAction APIs, as can some of the other fields in the Action block.

Process Flags

The same process flags as those for the Application section. In the Action section, these
flags override any global (within the application) settings.

A command process is uniquely identified by its flags and command string. In this
example:

Application “Silly App” {

 Action “Foo”
 {

Command -Initial -Shared “/usr/bin/foo -x”;
 }

 :

 Action Bar
 {

Command “/usr/bin/foo -x”;
 }
 }

Each command is considered separately because the process flags differ. The Fleep
command is shared across actions and is started with the NetView for AIX program. The
Bar action command will be invoked each time the action is requested.

Command

The command section provides the same functions as the Command section in the application, but speci-
fies a specific command for an application that can override the application-level command. If no
command is specified at the application level, a command must be specified for each defined action. The
command in the action section should specify application startup. If the command specifies application
startup, the command will start the application if it is not running so that the application can handle the
action request. (The application can exit even if the Shared flag is enabled).

778 Programmer's Reference

 OVwRegIntro(5)

Name Field Provides the same object name capability as the NameField setting in the Application
section, but on a per-action basis.

CallbackArgs Is a string that is broken into an argument vector and passed to the application’s action
callback in the argc and argv parameters. It can be used as a more general means for
passing parameters from the registration file to specific, application-action callbacks.
The CallbackArgs are not available to applications that do not use the EUI API.

ObjectMenu Registration

The ObjectMenu section enables you to register items on the context menu for objects. It works iden-
tically to a Menu block. Each item registered in the ObjectMenu block appears on the context menu that
appears when you click button 3 on any object in the map.

When you use actions with the context menu, the selection list is set to the object that you clicked on to
bring up the context menu, not to the list of selected objects on the map. For example, if you have
selected node A and brought up a context menu for node B, the operations you select from the context
menu apply to node B instead of node A. Also, the selection list you use to implement action contains
node B only. Actions selected from a context menu apply only to that object. You should not use the
context menu for actions that require multiple objects.

Tool Registration

The Tool section enables you to register tool items in the Tool window. The following conditions apply to
the registration of tool items:

� Tools default to a solid color when no icon is specified.
� SelectionMechanism is mandatory.
� Action is mandatory.
� DragBitmap defaults to a rectangle unless a bitmap icon is used, in which case the drag bitmap

defaults to the icon bitmap.
� Position of an item in the Tool window can be determined by setting a precedence for the tool item.

(See “OVwAddObjMenuItem(3)” on page 550.)

Application Field Enrollment

The field enrollment section is needed only by applications that will manage the semantics of graphical
interface maps. It enables the application to present fields from the object database within dialog boxes
used by semantic applications.

Field enrollment is rule based. A rule indicates interest in a particular type of object based on capability
fields. The application can enroll various fields based on a rule describing the kind of object associated
with a particular dialog box.

The field enrollment section begins with the keyword Enroll, followed by the type of dialog box for which
fields are being enrolled. After defining a dialog box with an Enroll block, if you have at least one
"Command" statement defined in your registration file, you must register your application to be notified
when a user performs actions that require dialog-box input. Your application must register both Query and
Confirm callback routines. If you have no "Command" statements defined in your registration file, your
Enroll blocks will be accepted by NetView for AIX and will be displayed whenever these actions are
invoked by the user.

Dialog Boxes

Applications can enroll fields for the following semantic dialog boxes.

 Chapter 2. Reference Pages 779

 OVwRegIntro(5)

Add The dialog box presented when adding an object to the map. See
“OVwVerifyAdd(3)” on page 833.

Describe The dialog box presented when describing an object on the map. See
“OVwVerifyDescribeChange(3)” on page 849.

Connect The dialog box presented when connecting two objects on the map. See
“OVwVerifyConnect(3)” on page 842.

Configuration The dialog box presenting per map parameters for configuring the application. This
dialog box is special in that it is not associated with a particular object. See
“OVwVerifyAppConfigChange(3)” on page 839.

Rule

Rule sections contain field enrollment based on certain capabilities of an object associated with the dialog
box. The rule is a logical expression involving capability fields, such as the SelectionRule for application
actions. It specifies features of objects the application is interested in for the dialog box.

Note: The rule applies to the object used to invoke the ObjectMenu when the action is invoked from the
ObjectMenu.

A dialog box enrollment section can contain several rule sections, each defining a different dialog box.
When a dialog box is presented for a particular object, the object is tested against the specified rules. If a
rule matches, the field enrollment within the corresponding rule section is used for the dialog box. The
first rule that matches (the rules being scanned in the order specified in the registration file) determines
the dialog box; no other matching rules are used for the dialog box.

Note: Configuration dialog boxes do not use rules because they are not associated with an object. they
contain only field enrollment sections.

Rule Options

The only rule option defined is the InitialVerify option. By default, this option is disabled, or Off.
InitialVerify indicates that the application should be immediately contacted when the dialog box is dis-
played to provide default field values.

Note: If an object exists, as it would for the Describe operation, the field values are initialized auto-
matically to the values set for the object.

Scale

The scale setting provides a scale for parameters to Geometry in the field enrollment section. If no
scale is provided, the scale is assumed to be 1.

Field Enrollment

Field enrollment sections specify which fields should appear in the dialog box and how those fields should
be presented.

See Example of Field Registration on page 793 for an example field registration file.

Options

The following options can be set per field enrolled. If an option setting is absent, it is assumed to be
off.

NoDisplay If Nodisplay is turned on, it enables the application to be sent the field value
even if it is not displayed in the dialog box.

ImmediateVerify If ImmediateVerify is turned on, send all enrolled fields and their values to the
application immediately after a value has been entered in this field.

780 Programmer's Reference

 OVwRegIntro(5)

Label

The label for the field within the dialog box. If no label is specified, the name of the field is used for
the label.

Geometry

The Geometry of the field is specified with four integers. They are, in order specified: X-position,
Y-position, width, and height.

Edit Policy

The edit policy describes whether the field can be edited or is read only. If the policy is Edit, the field
can be edited at any time; if it is NoEdit, the field is only displayed.

Note: Only the first application to enroll a field with the Edit edit policy will be permitted to enroll the
field in other dialog boxes with a policy of Edit. Any other application that enrolls this field for a dialog
box will automatically get an edit policy of NoEdit.

“EditOnCreation” indicates that the field can be edited only at the time a new map is created.
EditOnCreation can be used only for Configuration dialog box fields.

List Display Policy

For fields that are lists, this policy describes how the list is displayed. If a List Display Policy is speci-
fied for a field which is not a list, it is ignored.

The only valid ListDisplayPolicy is SelectionListBox, meaning that the list is presented within a
selection list. SelectionListBox is the default display policy for lists.

List Selection Policy

The List Selection Policy specifies the behavior of the selection list. Valid choices are:

None
No specific items can be selected. This is the default.

Single
Only one item in the selection list can be selected.

Multiple
More than one item in the selection list can be selected.

Integer Display Policy

The integer display policy describes how Integer32 fields are displayed in the dialog box. Possible
choices are:

Integer The integer is displayed in the usual decimal form. This is the default.

Unsigned The integer is displayed as an unsigned decimal value.

Hex The integer is displayed in hexadecimal.

Octal The integer is displayed in octal.

IPAddr The integer is displayed as an IP address in dot notation, that is, as the string returned
from a call to inet_ntoa(3).

Edit Position
Specifies the position within a String or List type field where editing can occur. By default, if no edit
position is specified, the entire field can be edited. The edit position is a range beginning with char-
acter x.

Field Default Value
This field enables you to specify a default value for the field. This default value is supported only for
application configuration fields.

 Chapter 2. Reference Pages 781

 OVwRegIntro(5)

Symbol Class Registration

A Symbol Class registration file provides a way to define a new class of symbols. See Example of
Symbol Class and Symbol Type Registration on page 792 for an example symbol class and symbol type
registration file. A symbol class is represented graphically by a symbol's outer shape. The symbol class
registration files are located in the directory /usr/OV/symbols/$LANG. These files contain the following
information:

Class Name

The name given to the symbol class.

Scale

The scale specifies the scale of coordinates given in the shape description. If no scale
is specified, it is assumed to be 1.

Shape

A symbol class shape is defined with Arcs or Segments. The shapes defined by Arc
and Segment lines are assumed to be closed polygons.

Arc
Specifies an enclosed Arc shape. It provides a way to display circles, ellipses, and
wedges for the class shape. An arc is defined within a conceptual rectangle of a
particular width and height. A point is designated within the rectangle as the origin of
the end point of a line which will be rotated to form the solid arc. A rotation is given
with an optional starting angle and a number of degrees to rotate, meaning that the
line whose end point is at the origin, will rotate from the starting angle for the speci-
fied number of degrees within the rectangle of the specified width and height.

Origin
An end point for the line that will be rotated to form the arc.

Size
The width and height of the conceptual rectangle in which the line will rotate.

Rotation
Specification of the starting angle and number of degrees to rotate for rotating
the line. If no starting angle is specified, it is assumed to be 0, meaning that
rotation will start from a three o’clock position within the rectangle. The angles
are specified in degrees. The line is rotated from the first angle, which is the
number of degrees from a three o’clock position, a total number of degrees
specified by the second angle.

Segment
Specifies a series of line segments, which outline a polygon. The last point in the
series is automatically connected to the first point in the series.

The NetView for AIX Programmer's Guide provides more details on how to construct
class shapes with the Segment and Arc statements.

Default Layout

Specifies the default symbol layout algorithm to use for submaps of the symbols in
this class. The possible choices are Ring, Bus, Star, Tree, PointToPoint,
RowColumn, and None. This default can be overridden within a symbol type defi-
nition.

782 Programmer's Reference

 OVwRegIntro(5)

Capabilities

Specifies the default capabilities for objects represented by symbols within this
symbol class. These capabilities will be assigned when a object is created for this
symbol, that is, when the symbol is placed on the map from the symbol palette.

Capabilities are indicated by specifying a capability field name and its default value.
Capability fields are limited to boolean and enumerated types.

These capabilities can be extended or overridden within a symbol type definition.

Variety

Informs the graphical interface what kinds of symbols you are defining. By default,
symbols are considered to be ICON symbols, that is, they are icons that represent
objects. A symbol class can also contain CONNECTION symbols, meaning that the
symbol types represent connections on the map.

Symbol Type Registration

A SymbolType registration file provides a way to define a new symbol type within a class of symbols. A
symbol type definition consists of a symbol class, which defines its shape, and bitmaps to put within the
class shape. The symbol type registration files are located in the /usr/OV/symbols/$LANG directory.

Class Name
Designates the shape of the symbol. All symbols must be defined within existing symbol
classes. If an undefined class name is given, the NetView for AIX program emits an
error and ignores the symbol class registration.

Symbol Type Name
Is the name given to the symbol type. A symbol type is then referenced by the combi-
nation of its class name and symbol type (subclass) name, for example,
Computer:Mainframe.

Symbol Bitmaps (FileBase)

The bitmap for a symbol type appears within the class shape. The basename of the
bitmap is specified with the FileBase keyword. The base identifies the bitmap within the
/usr/OV/bitmaps/$LANG directory. Files in this directory are named filebase.size.p (the
bitmap) and filebase.size.m (the mask). Given the FileBase, the NetView for AIX
program searches the bitmap directory for files beginning with this name and deter-
mines, from the size portion of the filenames, how many bitmap sizes there are.

CursorSize

Informs the graphical interface which bitmap should be used for the cursor when moving
the symbol on the map. The default cursor size is determined automatically by the
graphical interface.

Default Layout

Specifies the default symbol layout algorithm to use for submaps of the symbol type.
The possible choices are Ring, Bus, Star, Tree, PointToPoint, RowColumn, and None.

Capabilities

Enables you to specify default capabilities for objects represented by this symbol type.
These capabilities will be assigned when an object is created for this symbol, that is,
when the symbol is placed on the map from the symbol palette.

Capabilities are indicated by specifying a capability field name and its default value.
Remember, capability fields are limited to boolean and enumerated types.

 Chapter 2. Reference Pages 783

 OVwRegIntro(5)

Field Registration

The field registration section provides a means for creating fields in the object database. Field registration
files can be provided by applications to ensure that fields used within a dialog box enrollment section exist
in the object database. Fields cannot be enrolled in a dialog box until they exist in the database.

The field registration section begins with the keyword Field, followed by a block that describes the field’s
name, type, and properties.

Field Name

The name of the field to be referenced in the object database. The field name must be
unique.

Field Type

The following types are allowed for fields in the object database.

Boolean True or False value.

String Any character string.

Enumeration
An enumerated type. The specific enumeration constants can be declared in
an enumeration section of the field registration.

Integer32 A 32 bit integer.

Field Flags

The field flags indicate properties of the field. They are:

List A list of the specified type. The only supported types for lists are strings and
integers.

Name A name field. Name fields uniquely identify objects, so there is only one
object with a specific value for this field.

Locate A locate operation can be performed on this field. This field will appear in the
Locate by Attribute dialog box.

General Appears in the general attributes section of the Add and Description dialog
boxes on an object.

Capability A capability field, used to classify an object. Only booleans and enumerated
types are supported as capability fields.

Field Enumeration

This section specifies the constant symbolic names of the enumerated values for an enumerated type.
The first name listed is the name for the value, or index, 0 (zero); the second is the name for the value, or
index, 1; and so on. The first value must be the name unset.

Grammar

The following example is a consolidated grammar for application, symbol, and field registration files. Ele-
ments of the grammar that are in quotation marks are tokens that are recognized case insensitively.

Registration ::═ Application | Symbols | Fields | Empty

Application ::═ “Application” AppName AppParent AppBlock

784 Programmer's Reference

 OVwRegIntro(5)

AppName ::═ StringOrIdentifier

StringOrIdentifier ::═ String | Identifier

String ::═ “\”” zero or more characters “\”” |
“’” zero or more characters “’”

Identifier ::═ one letter (a-z) followed by zero or more letters,
digits, or underscores

AppParent ::═ “:” AppName | Empty

AppBlock ::═ EmptyBlock | “{” AppStmts “}”

EmptyBlock ::═ “{” “}”

AppStmts ::═ AppStmt | AppStmts AppStmt

AppStmt ::═ Description | HelpDirectory | Naming | Command | Version
| Copyright | MenuBar | ObjectMenu | Tool | Menu | Action
| Enrollment | “;”

Description ::═ “Description” DescriptionBlock

DescriptionBlock ::═ EmptyBlock | “{” DescriptionText “}”

DescriptionText ::═ Strings

Strings ::═ String | String “,” | String “,” Strings

Copyright ::═ “Copyright” CopyrightBlock

CopyrightBlock ::═ EmptyBlock | “{” CopyrightText “}”

CopyrightText ::═ Strings

HelpDirectory ::═ “HelpDirectory” Pathname “;”

Pathname ::═ String

Naming ::═ “NameField” NameFields “;”

NameFields ::═ NameField | NameFields “,” NameField

NameField ::═ StringOrIdentifier

Command ::═ “Command” ProcessFlags String “;” | “Command” String “;”

ProcessFlags ::═ ProcFlag | ProcessFlags ProcFlag

ProcFlag ::═ “-Initial” | “-Shared” | “-Restart”

Version ::═ “Version” String “;”

MenuBar ::═ “MenuBar” Precedence MenuID Mnemonic MenuBlock

Mnemonic ::═ An underscore followed by one or more non-whitespace characters

 Chapter 2. Reference Pages 785

 OVwRegIntro(5)

Integer ::═ one or more decimal digits
| “-” one or more decimal digits

Menu ::═ “Menu” MenuID MenuBlock

MenuID ::═ StringOrIdentifier

ObjectMenu ::═ “ObjectMenu” MenuBlock

Tool ::═ “Tool” Precedence ToolID ToolBlock

ToolBlock ::═ “{” ToolStmts “}”

ToolID ::═ StringOrIdentifier

ToolStmts ::═ ToolStmt | ToolStmts ToolStmt

ToolStmt ::═
 Icon

| LabelColor |DragBitmap |SelectionMechanism.
| ActionSpecification | “;”

Icon ::═ “Icon” IconSpecifier StringOrIdentifier

IconSpecifier ::═ “Bitmap”
| “Gif” | “Solid”

LabelColor ::═ “LabelColor” StringOrIdentifier

DragBitmap ::═ “DragBitmap” StringOrIdentifier

SelectionMechanism ::═ “SelectionMechanism” SelectionSpecifierList

SelectionSpecifierList ::═
SelectionSpecifierList “,” SelectionSpecifier | SelectionSpecifier

SelectionSpecifier ::═ “double-click” | “drag-drop”

MenuBlock ::═ EmptyBlock | “{” MenuStmts “}”

MenuStmts ::═ MenuItem | MenuStmts MenuItem

MenuItem ::═ Precedence Label Mnemonic Accelerator Function “;” | “;”

Precedence ::═ “<” Integer “>” | Empty

Label ::═ String | Bitmap

Bitmap ::═ “@” Pathname

Accelerator ::═ ModifierList “<Key>” KeyName
 | Empty

ModifierList ::═ ModifierName | ModifierList ModifierName

ModifierName ::═ “Ctrl” | “Shift” | “Alt” | “Meta” | “Lock”
| “Mod1” | “Mod2” | “Mod3” | “Mod4” | “Mod5”
| “None” | “Any”

786 Programmer's Reference

 OVwRegIntro(5)

KeyName ::═ An X11 keysym name. Keysym names can be in the
keysymdef.h file (remove the XK_ prefix).

Function ::═ “!” ShellCommand | “f.action” FunctionArg
| “f.menu” FunctionArg

FunctionArg ::═ StringOrIdentifier | Empty

ShellCommand ::═ String

Action ::═ “Action” ActionID ActionBlock

ActionID ::═ StringOrIdentifier

ActionBlock ::═ EmptyBlock | “{” ActionStmts “}”

ActionStmts ::═ ActionStmt | ActionStmts ActionStmt

ActionStmt ::═ SelectionRule | Naming | MinSelected | MaxSelected
| CallbackArgs | Command | “;”

SelectionRule ::═ “SelectionRule” Expression “;”

Expression ::═ Expression “&&” Expression | Expression “||” Expression
| “!” Expression | “(” Expression “)” | BooleanExpression

BooleanExpression ::═ Integer | CapabilityFieldName
| CapabilityFieldName Operator String
| CapabilityFieldName Operator Integer

CapabilityFieldName ::═ StringOrIdentifier

Operator ::═ “══” | “!═”

MinSelected ::═ “MinSelected” Integer “;”

MaxSelected ::═ “MaxSelected” Integer “;”

CallbackArgs ::═ “CallbackArgs” String

Enrollment ::═ “Enroll” AddDescribe | “Enroll” Connect | “Enroll” Config

AddDescribe ::═ “Add” AddDescribeBlock | “Describe” AddDescribeBlock
| “Add” “,” “Describe” AddDescribeBlock
| “Describe” “,” “Add” AddDescribeBlock

AddDescribeBlock ::═ EmptyBlock | “{” EnrollAddRules “}”

EnrollAddRules ::═ Rule | EnrollAddRules Rule

Connect ::═ “Connect” ConnectBlock

ConnectBlock ::═ EmptyBlock | “{” EnrollConRules “}”

EnrollConRules ::═ ConnectRule | EnrollConRules ConnectRule

Config ::═ “Configuration” ConfigBlock

 Chapter 2. Reference Pages 787

 OVwRegIntro(5)

ConfigBlock ::═ EmptyBlock | “{” FieldEnrolls “}”

Rule ::═ “If” Expression FieldEnrollsBlock

FieldEnrollsBlock ::═ EmptyBlock | “{” FieldEnrolls “}”

FieldEnrolls ::═ FieldEnrollment | FieldEnrolls FieldEnrollment

RuleGlobal ::═ Scale | RuleOptions | EnrollHelp | “;”

EnrollHelp ::═ “HelpFile” Pathname “;” | “HelpIndex” Pathname “;”

ConnectRule ::═ “If” Expression “,” Expression FieldEnrollsBlock

RuleOptions ::═ “InitialVerify” OnOff “;”

OnOff ::═ “On” | “Off”

FieldEnrollment ::═ RuleGlobal | “Field” FieldEnrollName FieldEnrollmentBlock

FieldEnrollName ::═ StringOrIdentifier

FieldEnrollmentBlock ::═ EmptyBlock | “{” FieldEnrollStmts “}”

FieldEnrollStmts ::═ FieldEnrollStmt | FieldEnrollStmts FieldEnrollStmt

FieldEnrollStmt ::═ FieldOptions | FieldLabel | FieldGeometry
| FieldEditPolicy | FieldListDisplayPolicy
| FieldListSelectionPolicy | FieldIntegerDisplayPolicy
| FieldEditPosition | FieldDefaultValue | “;”

FieldOptions ::═ “NoDisplay” OnOff “;“ | “ImmediateVerify” OnOff “;”

FieldLabel ::═ “Label” String “;”

FieldGeometry ::═ “Geometry” Integer “,” Integer “;”
| “Geometry” Integer “,” Integer “,” Integer “,” Integer “;”

FieldEditPolicy ::═ “EditPolicy” EditPolicy “;”

EditPolicy ::═ “Edit” | “NoEdit” | “EditOnCreation”

FieldListDisplayPolicy ::═ “ListDisplayPolicy” ListDisplayPolicy “;”

ListDisplayPolicy ::═ “SelectionListBox”

FieldListSelectionPolicy ::═ “ListSelectionPolicy” ListSelectionPolicy “;”

ListSelectionPolicy ::═ “None” | “Single” | “Multiple”

FieldIntegerDisplayPolicy ::═ “IntegerDisplayPolicy” IntegerDisplayPolicy “;”

IntegerDisplayPolicy ::=“Hex” | “Octal” | “Integer” | “Unsigned” | “IPAddr”

FieldEditPosition ::═ “EditPosition” Integer “;”

FieldDefaultValue ::═ “DefaultValue” StringOrIdentifier “;”

788 Programmer's Reference

 OVwRegIntro(5)

Symbols ::═ Symbol | Symbols Symbol

Symbol ::═ SymbolClass | SymbolType

SymbolClass ::═ “SymbolClass” SymClassName SymClassBlock

SymClassName ::═ StringOrIdentifier

SymClassBlock ::═ EmptyBlock | “{” SymClassStmts “}”

SymClassStmts ::═ SymClassStmt | SymClassStmts SymClassStmt

SymClassStmt ::═ Scale | Shape | VarietyStmt | Capabilities
| DefaultStatusSource | Layout | “;”

Scale ::═ “Scale” Integer “;”

Shape ::═ Arc | Segment

Arc ::═ “Arc” Origin Size Rotation “;”

Origin ::═ “Origin” Point

Point ::═ “(” Integer “,” Integer “)”

Size ::═ “Size” Point

Rotation ::═ “Rotation” Integer | “Rotation” Integer “,” Integer

Segment ::═ “Segment” Segments “;”

Segments ::═ Point | Point “To” Segments | Empty

VarietyStmt ::═ “Variety” Variety “;”

Variety ::═ “Icon” | “Connection”

DefaultStatusSource ::═ “DefaultStatusSource” StatusSource “;”

StatusSource ::═ “Compound” | “Object” | “Symbol”

SymbolType ::═ “SymbolType” SymClassName “:” SymbolName SymBlock

SymbolName ::═ StringOrIdentifier

SymBlock ::═ EmptyBlock | “{” SymStmts “}”

SymStmts ::═ SymStmt | SymStmts SymStmt

SymStmt ::═ FileBase | CursorSize | Layout | Capabilities
| DefaultStatusSource | LineStmts | “;”

FileBase ::═ “FileBase” StringOrIdentifier “;”

CursorSize ::═ “CursorSize” Integer

LineStmts ::═ LineStyle | LineDashPattern

 Chapter 2. Reference Pages 789

 OVwRegIntro(5)

LineStyle ::═ “LineStyle” “Solid” “;” | “LineStyle” “Dash” “;”

LineDashPattern ::═ “LineDashPattern” DashLengths “;”

DashLengths ::═ DashLength | DashLength “,” DashLengths

DashLength ::═ Integer

Layout ::═ “DefaultLayout” LayoutName “;”

LayoutName ::═ “Ring” | “Bus” | “Star” | “Tree” |
“PointToPoint” | “RowColumn”

Capabilities ::═ “Capabilities” CapabilityBlock

CapabilityBlock ::═ EmptyBlock | “{” CapabilityStmts “}”

CapabilityStmts ::═ CapabilityStmt | CapabilityStmts CapabilityStmt

CapabilityStmt ::═ CapabilityFieldName “;”
| CapabilityFieldName “═” StringOrIdentifier “;”
| CapabilityFieldName “═” Integer “;”

Fields ::═ Field | Fields Field

Field ::═ “Field” FieldRegisterName FieldBlock

FieldRegisterName ::═ StringOrIdentifier

FieldBlock ::═ EmptyBlock | “{” FieldDefStmts “}”

FieldDefStmts ::═ FieldDefStmt | FieldDefStmts FieldDefStmt

FieldDefStmt ::═ FieldType | FieldFlags | FieldEnumeration | “;”

FieldType ::═ “Type” FieldTypeName “;”

FieldTypeName ::═ “Boolean” | “String” | “Enumeration” | “Integer32”

FieldFlags ::═ “Flags” FieldFlagStmts “;”

FieldFlagStmts ::═ FieldFlag | FieldFlag “,” FieldFlagStmts | Empty

FieldFlag ::═ “List” | “Name” | “Locate” | “General” | “Capability”

FieldEnumeration ::═ “Enumeration” EnumDefs “;”

EnumDefs ::═ EnumDef | EnumDef “,” EnumDefs

EnumDef ::═ EnumName

EnumName ::═ StringOrIdentifier

Empty ::═

790 Programmer's Reference

 OVwRegIntro(5)

 Examples

The following examples are simple registration files for the registrations described in the previous sections.

Example of Application Registration

/\ XYZ Windows Terminal Connect
\/

Application “XYZ Windows Terminal Connect”
{
 Version “2.ð”;

 Description {
“Enables you to create a terminal emulator window on a local ”,
“system that is connected to a remote system by a network ”,
“virtual terminal protocol. ”

 }

 Copyright {
“(c)Copyright 1992 XYZ Corp..”

 }

// There is no application command statement. Instead, each action
// defines its own command.

MenuBar <1ðð> “Misc” _s
 {

<1ðð> “Terminal Connect” _T f.menu “Terminal Connect”;
 }

Menu “Terminal Connect”
 {

<1ðð> “Telnet (xterm)” _x f.action “XTerm Telnet”;
 <1ðð> “Vt3k” _V f.menu “Vt3k Menu”;
 }

Menu “Vt3k Menu”
 {

<1ðð> “Block Mode ...” _B f.action “Block vt3k”;
<1ðð> “Type Ahead ...” _T f.action “Typeahead vt3k”;

 }

Action “XTerm Telnet”
 {
 MinSelected 1;
 MaxSelected 1;

SelectionRule isNode&& (vendor══“IBM”);
NameField “IP Hostname”;
Command “${xnmtelnet:-/usr/OV/bin/xnmtelnet} xterm”;

 }

Action “Block vt3k”
 {

 Chapter 2. Reference Pages 791

 OVwRegIntro(5)

 MinSelected 1;
 MaxSelected 1;

SelectionRule isNode && (vendor══“IBM”);
NameField “IP Hostname”;
Command “${xnmvt3k:-/usr/OV/bin/xnmvt3k} block”;

 }
Action “Typeahead vt3k”

 {
 MinSelected 1;
 MaxSelected 1;

SelectionRule isNode && (vendor══“XYZ”);
NameField “IP Hostname”;

 Command “${xnmvt3k:-/usr/OV/bin/xnmvt3k}typeahead”;
 }
}

Example of Symbol Class and Symbol Type Registration

/\ Network symbols \/

SymbolClass “Network”
{
 Scale 7;

Arc Origin (-2, -1) Size (17, 17) Rotation ð, 36ð;
 DefaultStatusSource Compound;
 DefaultLayout PointToPoint;
 Variety Icon;
 Capabilities {

isNetwork ═ 1;
 }
}

SymbolType “Network” : “Network”
{
 Filebase “ip_net”;
 CursorSize 38;
}

SymbolType “Network” : “IP Network”
{
 Filebase “ip”;
 CursorSize 38;

 Capabilities {
isIP ═ 1;

 }
}

SymbolType “Network” : “Bus”
{
 Filebase “bus”;
 CursorSize 38;

 Capabilities {
isNetwork ═ ð;
isSegment ═ 1;

792 Programmer's Reference

 OVwRegIntro(5)

isBusSegment ═ 1;
 }

 DefaultLayout Bus;
}

SymbolType “Network” : “Token Ring”
{
 Filebase “ring”;
 CursorSize 38;

 Capabilities {
isNetwork ═ ð;
isSegment ═ 1;
isTokenRingSegment ═ 1;

 }

 DefaultLayout Ring;
}

Example of Field Registration

/\ OVW fields \/

Field “vendor” {
 Type Enumeration;

Flags capability, general, locate;
Enumeration “Unset”, “IBM”, “Other”;

}

Field “IP Hostname” {
 Type StringType;
 Flags name, locate;
}

Field “isLocation” {
 Type Boolean;
 Flags capability;
}

Field “isIP” {
 Type Boolean;
 Flags capability, locate;
}

 Libraries

When compiling a program that uses NetView for AIX graphical interface registration files, you need to link
to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Chapter 2. Reference Pages 793

 OVwRegIntro(5)

 Related Information
 � See ovw(1).
 � See ovwdb(8).
� See NetView for AIX Application Interface Style Guide.
� See NetView for AIX Programmer's Guide.
� See NetView for AIX User's Guide for Beginners.

794 Programmer's Reference

 OVwRenameRegContext(3)

 OVwRenameRegContext(3)

 Purpose

Changes the name of a registration context

 Syntax

#include <OV/ovw.h>
#include <OV/ovw_reg.h>

int OVwRenameRegContext(char \fromAppName, char \toAppName);

 Description

OVwRenameRegContext changes the name of a registered NetView for AIX application.

Before calling OVwRenameRegContext, the application must have successfully called
OVwLockRegUpdates to acquire permission to modify the registration context. Changes to the application
registration will only become permanent after calling OVwSaveRegUpdates.

Use this function if your application needs to dynamically create or modify application registration. If your
application registration is static, use the application registration files for defining registration information.

 Parameters
 fromAppName Specifies a pointer to the name of the application that is being altered. If

fromAppName is NULL, the current application is renamed.

 toAppName Specifies a pointer to the new application name.

 Return Values

If successful, OVwRenameRegContext returns 0 (zero). If unsuccessful, it returns −1 (negative one).

 Error Codes

OVwRenameRegContext sets the error code value that OVwError returns. The following list describes the
possible errors:

[OVw_APP_NOT_FOUND] The application appName is not a registered application.

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED]
The EUI API has not been initialized with OVwInit.

[OVw_PERMISSION_DENIED] The application has not called OVwLockRegUpdates prior to this function
call.

 Implementation Specifics

OVwRenameRegContext supports single-byte and multi-byte character code sets.

 Chapter 2. Reference Pages 795

 OVwRenameRegContext(3)

 Libraries

When compiling a program that uses OVwRenameRegContext, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwGetAppConfigValues(3)” on page 698.
� See “OVwGetFirstRegContext(3)” on page 717.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

796 Programmer's Reference

 OVwSaveRegUpdates(3)

 OVwSaveRegUpdates(3)

 Purpose

Saves modifications to registration information

 Related Functions
 OVwUndoRegUpdates

 Syntax
#include <OV/ovw.h>
#include <OV/ovw_reg.h>

int OVwSaveRegUpdates(OVwBoolean updateFiles);

int OVwUndoRegUpdates();

 Description

OVwSaveRegUpdates causes the NetView for AIX program to save changes that have been made to
registration information through the EUI API. The changes affect the current NetView for AIX session and
can optionally be saved in the appropriate application registration files. EUI API calls that alter application
registration information include OVwActionRegistration, OVwAddMenuItem, OVwAddMenuItemFunction,
OVwAppRegistration, OVwMenuRegistration, and OVwMenuItemRegistration.

OVwUndoRegUpdates will destroy any changes that have been made to registration information since the
last call to OVwSaveRegUpdates or OVwLockRegUpdates.

 Parameters
updateFiles If TRUE, changes to registration information are saved in the appropriate application

registration files. If FALSE, only the current graphical interface session will retain
the modifications.

 Return Values

If successful, OVwSaveRegUpdates and OVwUndoRegUpdates return 0 (zero). If unsuccessful, they
return −1 (negative one).

 Error Codes

OVwSaveRegUpdates and OVwUndoRegUpdates set the error code value that OVwError returns. The
following list describes the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_PERMISSION_DENIED] The application either has not called OVwLockRegUpdates prior to
this function call or is not running with a uid or gid with permission
to save changes to the registration files.

 Chapter 2. Reference Pages 797

 OVwSaveRegUpdates(3)

 Libraries

When compiling a program that uses OVwSaveRegUpdates or OVwUndoRegUpdates, you need to link to
the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwLockRegUpdates(3)” on page 755.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

798 Programmer's Reference

 OVwSelectListChangeCB(3)

 OVwSelectListChangeCB(3)

 Purpose

Functions as a callback for a selection list change event

 Syntax

#include <OV/ovw.h>

void (\OVwSelectListChangeCB) (void \userData, OVwEventType type,
 OVwMapInfo \map);

 Description

To receive an event indicating that the user has changed the map selection list, use OVwAddCallback to
register a callback function of type OVwSelectListChangeCB to be called when an ovwSelectListChange
event is generated.

 Parameters
map Specifies a pointer to the OVwMapInfo structure for the map whose selection list has

changed.

type Specifies the type of event that caused this callback to be invoked. For this callback, type
will always be ovwSelectListChange.

userData Specifies a pointer to the application data registered by the OVwAddCallback function.

 Examples

The following code fragment shows an example of registering a callback routine for receiving a map
selection list change event:

 void
SelectListChangeProc(void \userData, OVwEventType type,

 OVwMapInfo \map)
 {
 OVwObjectIdList \objs;

/\ Get the new selection list \/
objs ═ OVwGetSelections(map, NULL);

/\ Highlight the new selections \/
OVwHighlightObjects (map, objs, FALSE);

 }

 OVwAddCallback(ovwSelectListChange, NULL,
(OVwCallbackProc) SelectListChangeProc, NULL);

 Implementation Specifics

OVwSelectListChangeCB supports single-byte and multi-byte character code sets.

 Chapter 2. Reference Pages 799

 OVwSelectListChangeCB(3)

 Libraries

When compiling a program that uses OVwSelectListChangeCB, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwAddCallback(3)” on page 539.
� See “OVwApiIntro(5)” on page 560.

800 Programmer's Reference

 OVwSetBackgroundGraphic(3)

 OVwSetBackgroundGraphic(3)

 Purpose

Sets the background graphic for a submap

 Related Functions
 OVwClearBackgroundGraphic

 Syntax
#include <OV/ovw.h>

int OVwSetBackgroundGraphic(OVwMapInfo \map, OVwSubmapId submapId,
 char \filename);

int OVwClearBackgroundGraphic(OVwMapInfo \map, OVwSubmapId submapId);

 Description

OVwSetBackgroundGraphic is used to set the background picture for a specified submap.

OVwClearBackgroundGraphic is used to remove a picture from the specified submap and restore the
standard mapBackground color as a solid pattern.

 Parameters
filename Specifies a pointer to the fully-qualified name of the file that contains the picture

information. The picture can be in one of the following 2 formats:

� Graphics Interchange Format (GIF) by CompuServe**
� X Bitmap format.

The distinction between picture formats is made automatically.

map Specifies a pointer to the MapInfo structure for an open map. The map parameter
can be obtained using OVwGetMapInfo or saved from the ovwMapOpen event using
OVwCopyMapInfo.

submapId Specifies the ID of the submap.

 Return Values

If successful, OVwSetBackgroundGraphic and OVwClearBackgroundGraphic return 0 (zero). If unsuc-
cessful, they return −1 (negative one).

 Error Codes

OVwSetBackgroundGraphic and OVwClearBackgroundGraphic set the error code value that OVwError
returns. The following list describes the possible errors:

[OVw_BG_FILE_ERROR] The file specified by filename was not found.

[OVw_BG_BAD_FORMAT] The file specified by filename is not in a valid graphics format.

 Chapter 2. Reference Pages 801

 OVwSetBackgroundGraphic(3)

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MAP_NOT_OPEN] The argument map does not specify an open map.

[OVw_MAP_READ_ONLY] The map is open read-only.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_SUBMAP_NOT_FOUND] The submap specified by submapId does not exist on the
open map.

[OVw_SUBMAP_PERMISSION_DENIED] The submap is an exclusive submap created by another
application.

 Implementation Specifics

OvwSetBackgroundGraphic and OVwClearBackgroundGraphic support single-byte and multi-byte char-
acter code sets.

 Libraries

When compiling a program that uses OVwSetBackgroundGraphic or OVwClearBackgroundGraphic, you
need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwGetMapInfo(3)” on page 719.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.
� CompuServe Graphics Interchange Format(sm) Version 89a.

802 Programmer's Reference

 OVwSetStatusOnObject(3)

 OVwSetStatusOnObject(3)

 Purpose

Sets status of objects and symbols

 Related Functions
 OVwSetStatusOnObjects
 OVwSetStatusOnSymbol
 OVwSetStatusOnSymbols

 Syntax

#include <OV/ovw.h>

int OVwSetStatusOnObject(OVwMapInfo \map, OVwObjectId objectId,
 OVwStatusType status);

int OVwSetStatusOnObjects(OVwMapInfo \map,
 OVwObjectStatusList \objectList);

int OVwSetStatusOnSymbol(OVwMapInfo \map, OVwSymbolId symbolId,
 OVwStatusType status);

int OVwSetStatusOnSymbols(OVwMapInfo \map,
 OVwSymbolStatusList \symbolList);

 Description

OVwSetStatusOnObject sets the status of all symbols on the open map of the object specified by objectId
that have the symbol status source ovwObjectStatusSource. No error is returned if none of the symbols
representing the object has status source ovwObjectStatusSource. In addition to being set on all symbols
whose status source is ovwObjectStatusSource, the object status is stored in the object_status field of the
OVwObjectInfo structure for the object.

OVwSetStatusOnObjects sets the object status on multiple objects. This is more efficient than making
separate calls to set the status for each object, because compound status propagation is disabled until the
status of all objects in the list have been set. OVwSetStatusOnObjects will return an error if the operation
fails for any of the items in the list. Even if an error occurs, the operation will still be performed for all
those items on which it can. Upon return, the error field of the OVwObjectStatus structure indicates
whether the operation succeeded for a particular object; a value of OVw_SUCCESS indicates success.

OVwSetStatusOnSymbol sets the status of the symbol specified by symbolId to the given status if the
symbol has status source, ovwSymbolStatusSource, and if the application has permission to modify the
symbol. The application has permission to modify the symbol if it is not a symbol on the application plane
of an exclusive submap created by another application. An error results if the status source of the symbol
is not ovwSymbolStatusSource or the application does not have permission.

OVwSetStatusOnSymbols sets the symbol status on multiple symbols. This is more efficient than making
individual calls to set the status for each symbol, because compound status propagation is disabled until
the status of all symbols in the list have been set. OVwSetStatusOnSymbols will return an error if the
operation fails for any of the items in the list. Even if an error occurs, the operation will still be performed

 Chapter 2. Reference Pages 803

 OVwSetStatusOnObject(3)

for all those items on which it can. Upon return, the error field of the OVwObjectStatus structure indicates
whether the operation succeeded for a particular symbol; an OVw_SUCCESS value indicates success.

The OVwSetSymbolStatusSource routine can be used to change the status source of a symbol. Valid
status source values are ovwSymbolStatusSource, ovwObjectStatusSource, and
ovwCompoundStatusSource.

 Parameters
 map Specifies a pointer to the MapInfo structure for an open map. The map parameter

can be obtained using OVwGetMapInfo or saved from the ovwMapOpen event using
OVwCopyMapInfo.

 objectId Specifies the ID of the object.

 objectList Specifies a pointer to a list of objects and the status values to set.

 status Specifies the status. The permitted values are defined in the <OV/ovw_types.h>
header file:

ovwUnknownStatus The status is unknown.

ovwNormalStatus The status is up or normal.

ovwMarginalStatus The status is marginal (some problem exists).

ovwCriticalStatus The status is down or critical.

The value ovwUnmanagedStatus is not valid and cannot be used to unmanage an
object; unmanaging objects is solely under end user control.

The value ovwAcknowledgeStatus can be set by OVwSetStatusOnObject or
OVwSetStatusOnObjects but cannot be set by OVwSetStatusOnSymbol or
OVwSetStatusOnSymbols.

 symbolId Specifies the ID of the symbol.

 symbolList Specifies a pointer to a list of symbols and the status values to set for them.

 Return Values

If successful, OVwSetStatusOnObject and its related functions return 0 (zero). If unsuccessful, they return
−1 (negative one).

 Error Codes

OVwSetStatusOnObject and its related functions set the error code value that OVwError returns. The
following list describes the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was
lost.

[OVw_MAP_NOT_OPEN] The argument map does not specify an open map.

[OVw_OBJECT_INVALID_STATUS] The argument status has a value that is not valid.

[OVw_OBJECT_NOT_ON_MAP] The object specified by objectId does not exist on
the open map.

804 Programmer's Reference

 OVwSetStatusOnObject(3)

[OVw_OBJECT_UNMANAGED] The object indicated by objectId or symbolId is
unmanaged. The status of an unmanaged object
cannot be set.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_SYMBOL_INVALID_STATUS] The argument status has a value that is not valid.

[OVw_SYMBOL_NOT_FOUND] The symbol specified by symbolId does not exist on
the open map.

[OVw_SYMBOL_STATUS_SOURCE_MISMATCH] The symbol, specified by symbolId, does not have
status source, ovwSymbolStatusSource.

[OVw_SUBMAP_PERMISSION_DENIED] The symbol, specified by symbolId, has status
source, ovwSymbolStatusSource, and the symbol is
on the application plane of an exclusive submap
created by another application.

 Implementation Specifics

OVwSetStatusOnObject and its related functions support single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwSetStatusOnObject or one of its related functions, you need to
link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwGetMapInfo(3)” on page 719.
� See “OVwInit(3)” on page 741.
� See “OVwSetSymbolStatusSource(3)” on page 820.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 805

 OVwSetSubmapName(3)

 OVwSetSubmapName(3)

 Purpose

Sets name of a submap

 Syntax
#include <OV/ovw.h>

int OVwSetSubmapName(OVwMapInfo \map, OVwSubmapId submapId,
 char \submapName);

 Description

OVwSetSubmapName sets the name of a submap. The name of a submap usually identifies the parent
object of the submap. Although the submap name is not required to be unique, it is good practice for it to
be a unique name. The submap name is displayed as the title of the submap window and is used to
identify the submaps in the map dialog box.

An application is not permitted to change the name of an exclusive submap created by another applica-
tion.

 Parameters
map Specifies a pointer to the MapInfo structure for an open map. The map param-

eter can be obtained using OVwGetMapInfo or saved from the ovwMapOpen
event using OVwCopyMapInfo.

submapId Specifies the submap ID of the submap.

submapName Specifies a pointer to the name of the submap.

 Return Values

If successful, OVwSetSubmapName returns 0 (zero). If unsuccessful, it returns −1 (negative one).

 Error Codes

OVwSetSubmapName sets the error code value that OVwError returns. The following list describes the
possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MAP_NOT_OPEN] The argument map does not specify an open map.

[OVw_MAP_READ_ONLY] The map is open with read-only permission.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_SUBMAP_NOT_FOUND] The submap specified by submapId does not exist on the
open map.

[OVw_SUBMAP_PERMISSION_DENIED] The submap is an exclusive submap created by another
application.

806 Programmer's Reference

 OVwSetSubmapName(3)

 Implementation Specifics

OVwSetSubmapName supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwSetSubmapName, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwCreateSubmap(3)” on page 619.
� See “OVwError(3)” on page 688.
� See “OVwGetMapInfo(3)” on page 719.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 807

 OVwSetSymbolApp(3)

 OVwSetSymbolApp(3)

 Purpose

Sets application interest in a symbol

 Related Functions
 OVwClearSymbolApp

 Syntax

#include <OV/ovw.h>

int OVwSetSymbolApp(OVwMapInfo \map, OVwSymbolId symbolId);

int OVwClearSymbolApp(OVwMapInfo \map, OVwSymbolId symbolId);

 Description

OVwSetSymbolApp is used to express application interest in a symbol. It adds the calling application to
the list of applications interested in the symbol. This list is stored in the apps field of the OVwSymbolInfo
structure for the symbol. The application that creates a symbol is automatically added to the list of inter-
ested applications for that symbol. Also, any application the user configures for that symbol is automat-
ically added to the list of interested applications for that symbol.

This method enables applications to define a set of symbols on a particular submap that satisfy the
semantic constraints for that submap. OVwListSymbols can be used to get a list of only those symbols on
a particular submap in which an application is interested.

OVwClearSymbolApp is used to clear application interest in a symbol. It removes the calling application
from the list of applications interested in the symbol. An application is not permitted to set or clear interest
in a symbol on the application plane of an exclusive submap created by another application.

 Parameters
map Specifies a pointer to the MapInfo structure for an open map. The map parameter

can be obtained using OVwGetMapInfo or saved from the ovwMapOpen event using
OVwCopyMapInfo.

symbolId Specifies the ID of the symbol.

 Return Values

If successful, OVwSetSymbolApp and OVwClearSymbolApp return 0 (zero). If unsuccessful, they return
−1 (negative one).

808 Programmer's Reference

 OVwSetSymbolApp(3)

 Error Codes

OVwSetSymbolApp and OVwClearSymbolApp set the error code value that OVwError returns. The fol-
lowing list describes the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MAP_NOT_OPEN] The argument map does not specify an open map.

[OVw_MAP_READ_ONLY] The map is open with read-only permission.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_SUBMAP_PERMISSION_DENIED] The symbol exists on the application plane of an exclusive
submap created by another application.

[OVw_SYMBOL_NOT_FOUND] The symbol specified by symbolId does not exist on the open
map.

 Implementation Specifics

OVwSetSymbolApp and OVwClearSymbolApp support single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwSetSymbolApp or OVwClearSymbolApp, you need to link to the
following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwGetMapInfo(3)” on page 719.
� See “OVwInit(3)” on page 741.
� See “OVwListSymbols(3)” on page 750.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 809

 OVwSetSymbolBehavior(3)

 OVwSetSymbolBehavior(3)

 Purpose

Sets the behavior of a symbol

 Syntax

#include <OV/ovw.h>

int OVwSetSymbolBehavior(OVwMapInfo \map, OVwSymbolId symbolId,

int behavior, char \appName, char \actionId,
 OVwObjectIdList \targetObjects);

 Description

OVwSetSymbolBehavior sets the behavior of a symbol on the open map to either ovwSymbolExplodable
or ovwSymbolExecutable. By default, symbols are created as explodable. OVwSetSymbolBehavior must
be used to make a symbol executable.

Double-clicking with the mouse on an explodable symbol results in the display of a child submap that
shows the contents of the object that is represented by the symbol, if such a submap exists.

Double-clicking with the mouse on a executable symbol results in an assigned action being performed by
an application, using a pre-set list of target objects as the selection list for the action.

If ovwSymbolExecutable is specified as the symbol behavior, the appName parameter specifies the appli-
cation whose application registration file contains a definition of the action, specified by actionId, to
perform when the symbol is executed. An error occurs if the application or action are not registered. See
“OVwRegIntro(5)” on page 769 for more information on application registration. The application can reg-
ister to receive a callback for the registered action using OVwAddActionCallback.

Changing the behavior of a symbol to executable does not affect how the symbol gets its status. If an
executable symbol has compound status source, it still derives its status from the child submap of its
associated object. The existence of a child submap is not affected by making a symbol executable. The
child submap will continue to exist, even though it can no longer be accessed through this particular
symbol. If the last explodable symbol of a parent object is made executable, the only way to access the
child submap is through the submap list box.

An application is not permitted to set or clear interest in a symbol on the application plane of an exclusive
submap created by another application.

 Parameters
actionId Specifies a pointer to the action to perform when the symbol is executed. The

action specified by actionId must be defined in an application registration file for the
application appName. This parameter is used only if behavior is
ovwSymbolExecutable.

appName Specifies a pointer to the application that has registered the action specified by
actionId. OVwGetAppName returns the name of the calling application. This
parameter is used only if behavior is ovwSymbolExecutable.

810 Programmer's Reference

 OVwSetSymbolBehavior(3)

behavior Specifies the symbol behavior. The permitted values are defined in <OV/ovw.h>:

ovwSymbolExplodable
The symbol opens into the child submap of its object.

ovwSymbolExecutable
The symbol can execute an application action.

map Specifies a pointer to the MapInfo structure for an open map. The map parameter
can be obtained using OVwGetMapInfo or saved from the ovwMapOpen event using
OVwCopyMapInfo.

symbolId Specifies the ID of the symbol.

targetObjects Specifies a pointer to a list of objects on which to perform the action actionId. This
object list is used as the selection list sent to the application when the action is
performed by double-clicking on the executable symbol. If this argument is NULL,
the selection list will contain no objects. This parameter is used only if behavior is
ovwSymbolExecutable.

 Return Values

If successful, OVwSetSymbolBehavior returns 0 (zero). If unsuccessful, they return −1 (negative one).

 Error Codes

OVwSetSymbolBehavior sets the error code value that OVwError returns. The following list describes the
possible errors:

[OVw_ACTION_NOT_APPLICABLE] This error code is returned if any of the following conditions are
true.

� The objects specified by targetObjects do not meet the
selection list requirements of the action specified by
actionId. See the registration file definition of the action to
find its selection list requirements.

� There is no command specifying the action.

� The command does not match the application's command.

[OVw_ACTION_NOT_FOUND] The action specified by actionId is not registered by the applica-
tion appName.

[OVw_APP_NOT_FOUND] The application appName is not a registered application.

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MAP_NOT_OPEN] The argument map does not specify an open map.

[OVw_MAP_READ_ONLY] The map is open with read-only permission.

[OVw_OBJECT_NOT_ON_MAP] An object specified in targetObjects does not exist on the open
map.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_SUBMAP_PERMISSION_DENIED] The symbol exists on the application plane of an exclusive
submap created by another application.

 Chapter 2. Reference Pages 811

 OVwSetSymbolBehavior(3)

[OVw_SYMBOL_INVALID_BEHAVIOR] The argument behavior has a value that is not valid.

[OVw_SYMBOL_NOT_FOUND] The symbol specified by symbolId does not exist on the open
map.

 Implementation Specifics

OVwSetSymbolBehavior supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwSetSymbolBehavior, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwAddActionCallback(3)” on page 532.
� See “OVwError(3)” on page 688.
� See “OVwGetAppName(3)” on page 701.
� See “OVwGetMapInfo(3)” on page 719.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

812 Programmer's Reference

 OVwSetSymbolLabel(3)

 OVwSetSymbolLabel(3)

 Purpose

Sets label of a symbol

 Syntax

#include <OV/ovw.h>

int OVwSetSymbolLabel(OVwMapInfo \map, OVwSymbolId symbolId,
 char \label);

 Description

OVwSetSymbolLabel sets the label of a symbol on the open map. The symbol label is displayed beneath
the symbol and does not need to be unique.

OVwSetSymbolLabel should be used with discretion. If an application originally set the symbol label and
the user has not modified it (that is, the label has the original value set by the application), the application
can change the label. Generally, an application should not change a label that has been modified by the
user.

An application is not permitted to set or clear interest in a symbol on the application plane of an exclusive
submap created by another application.

 Parameters
label

Specifies a pointer to the new symbol label.

map
Specifies a pointer to the MapInfo structure for an open map. The map parameter can be obtained
using OVwGetMapInfo or saved from the ovwMapOpen event using OVwCopyMapInfo.

symbolId
Specifies the ID of the symbol.

 Return Values

If successful, OVwSetSymbolLabel returns 0 (zero). If unsuccessful, it returns −1 (negative one).

 Error Codes

OVwSetSymbolLabel sets the error code value that OVwError returns. The following list describes the
possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MAP_NOT_OPEN] The argument map does not specify an open map.

[OVw_MAP_READ_ONLY] The map is open with read-only permission.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

 Chapter 2. Reference Pages 813

 OVwSetSymbolLabel(3)

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_SUBMAP_PERMISSION_DENIED] The symbol exists on the application plane of an exclusive
submap created by another application.

[OVw_SYMBOL_NOT_FOUND] The symbol specified by symbolId does not exist on the open
map.

 Implementation Specifics

OVwSetSymbolLabel supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwSetSymbolLabel, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwGetMapInfo(3)” on page 719.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

814 Programmer's Reference

 OVwSetSymbolPosition(3)

 OVwSetSymbolPosition(3)

 Purpose

Sets position of a symbol

 Syntax

#include <OV/ovw.h>

int OVwSetSymbolPosition(OVwMapInfo \map, OVwSymbolId symbolId,
 OVwSymbolPosition \position);

 Description

OVwSetSymbolPosition moves a symbol to a new position. The symbol identified by symbolId is moved
to the position specified by the argument position. Only an icon symbol (a symbol with the variety
ovwIconSymbol) can be moved using OVwSetSymbolPosition. The effect of moving a symbol depends on
the placement style used, the layout style of the submap on which the symbol exists, whether automatic
layout is enabled or disabled on the submap, and whether the symbol is hidden.

The effect of using the position parameter of the symbol creation routines is the same as using
OVwSetSymbolPosition, except that a newly created symbol has no previous position from which to be
moved. See “OVwCreateSymbol(3)” on page 623 for more information.

An application is not permitted to set or clear interest in a symbol on the application plane of an exclusive
submap created by another application.

The placement field of the position argument specifies the placement style to use when moving the
symbol. Certain placement values are valid for certain types of submap layouts. The placement styles
ovwNoPosition and ovwCoordPosition are valid for all layouts. (A NULL value for the position argument is
equivalent to specifying ovwNoPosition as the placement style.) The placement style
ovwSequencePosition is valid for any sequence layout (that is, ovwRowColumnLayout, ovwBusLayout,
ovwStarLayout, ovwRingLayout, and ovwTreeLayout). The placement style ovwStarCenterPosition is valid
only for the star layout, ovwStarLayout.

The following list summarizes the valid placement styles for each submap layout:

Submap layout Placement styles

ovwNoLayout ovwNoPosition, ovwCoordPosition

ovwPointToPointLayout ovwNoPosition, ovwCoordPosition

ovwRowColumnLayout ovwNoPosition, ovwCoordPosition, ovwSequencePosition

ovwBusLayout ovwNoPosition, ovwCoordPosition, ovwSequencePosition

ovwStarLayout ovwNoPosition, ovwCoordPosition, ovwSequencePosition,
ovwStarCenterPosition

ovwRingLayout ovwNoPosition, ovwCoordPosition, ovwSequencePosition

ovwTreeLayout ovwNoPosition, ovwCoordPosition, ovwSequencePosition

ovwMultipleConnLayout ovwNoPosition, ovwCoordPosition

 Chapter 2. Reference Pages 815

 OVwSetSymbolPosition(3)

The position field of the OVwSymbolInfo structure gives the current position of a given icon symbol. The
following list summarizes the placement style information returned for symbols in submaps having each
layout:

Submap layout Placement styles

ovwNoLayout ovwNoPosition, ovwCoordPosition

ovwPointToPointLayout ovwNoPosition, ovwCoordPosition

ovwRowColumnLayout ovwNoPosition, ovwSequencePosition

ovwBusLayout ovwNoPosition, ovwSequencePosition

ovwStarLayout ovwNoPosition, ovwSequencePosition, ovwStarCenterPosition

ovwRingLayout ovwNoPosition, ovwSequencePosition

ovwTreeLayout ovwNoPosition, ovwSequencePosition

ovwMultipleConnLayout ovwNoPosition, ovwCoordPosition

No Position: If the placement is specified as ovwNoPosition or a value of NULL is used for the position
argument, the symbol is first removed from its previous position. If automatic layout is enabled for the
submap, the layout algorithm is then executed to place the symbol. If automatic layout is disabled, the
symbol is added to the symbol holding area at the bottom of the submap for future inclusion in the
submap. Symbols in the holding area always have a placement value of ovwNoPosition.

Coordinate Position: If the placement is specified as ovwCoordPosition, the symbol is removed from its
previous position and placed at the specified coordinate position. Symbol placement by coordinates takes
effect immediately, regardless of whether automatic layout is enabled or disabled.

The width and height fields of the OVwSymbolPosition structure are used to define a grid coordinate
system for interpreting the X and Y symbol coordinates. For example, a symbol placed at position (100,
100) on a (200 x 200) grid will be placed in the center of the submap. A symbol placed at position (150,
200) on a (300 x 400) grid will also be placed in the center of the submap. For best results, use the same
grid size for all symbols placed on a particular submap. The grid coordinates are automatically translated
into the virtual coordinates that are stored for the submap; the virtual coordinates are, in turn, translated
into screen coordinates used when the symbol is actually displayed. It is not necessary to know the virtual
size of a submap or its screen size when placing symbols, because symbols are placed according to a
grid coordinate system specified when the symbol is placed. (The coordinates returned in the position
field of the OVwSymbolInfo structure are in the virtual coordinate system of the submap.)

Coordinate placement can be used to position symbols relative to one another or at some fixed point on
background graphics. See “OVwSetBackgroundGraphic(3)” on page 801. Submaps without background
graphics are scaled so that unused space on the edges of the virtual coordinate system for the submap is
not displayed. Unused space is not clipped in this way for submaps with background graphics, since
symbol placement is maintained relative to the background graphics. The virtual size of a submap with
background graphics is determined by the size of the background graphics, so that a symbol added at
position (50, 50) on a (200 x 200) grid will appear at a position 25% of the way from the upper left-hand
corner along both the X and Y axes. When the background graphics are scaled because of a change in
the size of the submap window, the symbol will remain at the same position relative to the background
graphics.

The grid size can be used to determine how large symbols appear on the submap. For example, two
symbols placed at positions (25, 25) and (75, 75) on a (100 x 100) grid will appear in the same positions
relative to one another as symbols placed at positions (250, 250) and (750, 750) on a (1000 x 1000) grid,
but the symbols in the latter case will appear smaller because of the greater distance between them.

816 Programmer's Reference

 OVwSetSymbolPosition(3)

If the symbol is moved on a submap with a non-sequence layout, it will be placed at the appropriate
coordinate position and have a placement style of ovwCoordPosition. If the submap has a sequence
layout, the symbol will be placed at the coordinate position and then the virtual coordinate position will be
used to determine a relative position in the sequence; the symbol will thereafter have a placement style of
ovwSequencePosition. If the submap has a sequence layout and automatic layout is enabled, the auto-
matic layout algorithm is executed to evenly position the symbols and the coordinate position will be lost.

If the symbol being moved has a current placement value of ovwStarCenterPosition, it will be moved to
the new coordinate position, but it will have a placement value of ovwStarCenterPosition.

It is important to note that symbol positions specified by coordinates are lost whenever the automatic
layout algorithm is executed. For the application to disallow all automatic layout, the submap should be
created with the layout ovwNoLayout.

Sequence Position: If the placement is specified as ovwSequencePosition, the symbol is first removed
from its previous position. If automatic layout is enabled for the submap, the symbol is then placed in the
sequence immediately after the specified predecessor symbol and the layout algorithm is executed to
evenly space all symbols. If automatic layout is disabled, the symbol is added to the symbol holding area;
the predecessor information for the symbol is saved and used if the symbol is subsequently included in
the submap using automatic layout. A value of ovwNullSymbolId for the predecessor symbol ID will result
in the symbol being placed as the first symbol in the sequence.

Star Center Position: If the placement is specified as ovwStarCenterPosition, the symbol is removed
from its previous position and placed as the center of a star layout. The setting of a symbol as the star
center takes effect regardless of whether automatic layout is enabled or disabled. If there is an existing
star center, that symbol is displaced as the star center. If an existing star center is displaced and auto-
matic layout is enabled for the submap, the displaced star center is placed on the submap by executing
the layout algorithm for the submap. If an existing star center is displaced and automatic layout is disa-
bled, the displaced star center is added to the symbol holding area. Making a symbol the star center
causes it to be placed in the center of the star layout; it does not have any effect on the connections in a
star submap.

Hidden Symbols: Hidden symbols, which are symbols that exist on the submap but are not displayed,
can be moved. Moves that result in a placement of ovwSequencePosition or ovwStarCenterPosition will
take effect but will not become visible until the symbol is unhidden. Moves that merely result in a change
in the coordinate position of a symbol will be silently ignored, since the symbol is not visible anyway. An
automatic layout will not be executed as a result of the move of a hidden symbol, unless a displaced star
center needs to be placed and automatic layout is enabled.

Move Event: The ovwConfirmMoveSymbol event is generated as a result of a symbol being moved using
OVwSetSymbolPosition. See “OVwConfirmMoveSymbolCB(3)” on page 599 for more information. After
OVwSetSymbolPosition is called, the placement of a symbol can be returned in the move event as
ovwNoPosition if (1) the symbol was added to the symbol holding area because automatic layout was
disabled or (2) the move did not become effective immediately because the submap was not displayed.

 Parameters
map Specifies a pointer to the MapInfo structure for an open map. The map parameter

can be obtained using OVwGetMapInfo or saved from the ovwMapOpen event using
OVwCopyMapInfo.

position Specifies a pointer to a structure describing the symbol position.

symbolId Specifies the ID of the symbol.

 Chapter 2. Reference Pages 817

 OVwSetSymbolPosition(3)

 Return Values

If successful, OVwSetSymbolPosition returns 0 (zero). If unsuccessful, it returns −1 (negative one).

 Error Codes

OVwSetSymbolPosition sets the error code value that OVwError returns. The following list describes the
possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_ICON_SYMBOL_BAD_COORDS] The x or y coordinate specified in the position argument has a
value that is less than zero or greater than the width or height
that sets the scale for the coordinates.

[OVw_ICON_SYMBOL_BAD_GRID] The width or height specified in the position argument for
setting the scale for the x and y coordinates has a value less
than or equal to zero.

[OVw_ICON_SYMBOL_PRED_NOT_FOUND]
The symbol specified in the position argument as the prede-
cessor of the symbol symbolId does not exist on the same
submap as the symbol symbolId.

[OVw_MAP_NOT_OPEN] The argument map does not specify an open map.

[OVw_MAP_READ_ONLY] The map is open with read-only permission.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_SUBMAP_INVALID_SYMBOL_PLACEMENT]
The placement field of the position argument has a value that
is not valid for the layout of the submap on which the symbol
symbolId appears.

[OVw_SUBMAP_PERMISSION_DENIED] The symbol exists on the application plane of an exclusive
submap created by another application.

[OVw_SYMBOL_NOT_FOUND] The symbol specified by symbolId does not exist on the open
map.

[OVw_SYMBOL_WRONG_VARIETY] The symbol specified by symbolId does not have variety
ovwIconSymbol. Position can only be set for icon symbols.

 Implementation Specifics

OVwSetSymbolPosition supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwSetSymbolPosition, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

818 Programmer's Reference

 OVwSetSymbolPosition(3)

 Related Information
 � See ovw(1).
� See “OVwConfirmMoveSymbolCB(3)” on page 599.
� See “OVwCreateSymbol(3)” on page 623.
� See “OVwError(3)” on page 688.
� See “OVwGetMapInfo(3)” on page 719.
� See “OVwInit(3)” on page 741.
� See “OVwSetBackgroundGraphic(3)” on page 801.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 819

 OVwSetSymbolStatusSource(3)

 OVwSetSymbolStatusSource(3)

 Purpose

Sets status source of a symbol

 Syntax

#include <OV/ovw.h>

int OVwSetSymbolStatusSource(OVwMapInfo \map, OVwSymbolId symbolId,
 int statusSource);

 Description

OVwSetSymbolStatusSource changes the status source of a symbol on the open map.

If a symbol has status source ovwObjectStatusSource, status can only be set for the symbol using
OVwSetStatusOnObject or OVwSetStatusOnObjects. This status source should be used when it is appro-
priate for the status of all symbols of an object to be the same and to reflect the object status.

If a symbol has status source ovwCompoundStatusSource, status is determined by user configurable
status propagation rules implemented by the graphical interface. The status of the symbol is determined
by the status of the symbols in the child submap of the object represented by the symbol.

If a symbol has status source ovwSymbolStatusSource, status can only be set for the symbol using
OVwSetStatusOnSymbol or OVwSetStatusOnSymbols, described in “OVwSetStatusOnObject(3)” on
page 803. This status source, in conjunction with OVwSetStatusOnSymbol, should be used when it is
appropriate for a symbol to have its status determined by context. Thus, the different symbols repres-
enting an object could have different status depending on where they appear on the map. This status
source also allows an application to implement its own status propagation rules.

You can change the status source of a symbol through the graphical interface.

an application is not permitted to set or clear interest in a symbol on the application plane of an exclusive
submap created by another application.

 Parameters
map Specifies a pointer to the MapInfo structure for an open map. The map param-

eter can be obtained using OVwGetMapInfo or saved from the ovwMapOpen
event using OVwCopyMapInfo.

statusSource Specifies the status source for the symbol. The permitted values are defined in
<OV/ovw.h>:

ovwObjectStatusSource The symbol gets its status from the status of the
object.

ovwCompoundStatusSource The symbol gets its status through propagation from
the child submap of the object.

ovwSymbolStatusSource The symbol has its status set explicitly.

symbolId Specifies the ID of the symbol.

820 Programmer's Reference

 OVwSetSymbolStatusSource(3)

 Return Values

If successful, OVwSetSymbolStatusSource returns 0 (zero). If unsuccessful, it returns −1 (negative one).

 Error Codes

OVwSetSymbolStatusSource sets the error code value that OVwError returns. The following list describes
the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MAP_NOT_OPEN] The argument map does not specify an open map.

[OVw_MAP_READ_ONLY] The map is open with read-only permission.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_SUBMAP_PERMISSION_DENIED] The symbol exists on the application plane of an exclusive
submap created by another application.

[OVw_SYMBOL_INVALID_STATUS_SOURCE]
The argument statusSource has a value that is not valid.

[OVw_SYMBOL_NOT_FOUND] The symbol specified by symbolId does not exist on the
open map.

 Implementation Specifics

OVwSetSymbolStatusSource supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwSetSymbolStatusSource, you need to link to the following
libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwGetMapInfo(3)” on page 719.
� See “OVwInit(3)” on page 741.
� See “OVwSetStatusOnObject(3)” on page 803.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 821

 OVwSetSymbolType(3)

 OVwSetSymbolType(3)

 Purpose

Sets symbol type of a symbol

 Syntax

#include <OV/ovw.h>

int OVwSetSymbolType(OVwMapInfo \map, OVwSymbolId symbolId,
OVwSymbolType symbolType, unsigned int flags);

 Description

OVwSetSymbolType changes the symbol type of a symbol. The symbol type determines the visual
appearance of the symbol. It can also be used to initialize capability field values on the underlying object.

Symbol types are created by registering them in a symbol type registration file. See “OVwRegIntro(5)” on
page 769 for more information. A symbol type has two components: a symbol class and a symbol sub-
class. A symbol type is represented as a string of the form “<class>:<subclass>” (for example,
“Computer:Workstation”).

A symbol type has a variety (icon or connection) that is determined by the variety of its symbol class as
defined in the symbol type registration file. Only symbol types of the icon variety can be used with
symbols of the ovwIconSymbol variety, and only symbol types of the connection variety can be used with
symbols of the ovwConnSymbol variety. (Symbol types belonging to the Connection symbol class are
used for connection symbols.)

An application is not permitted to set or clear interest in a symbol on the application plane of an exclusive
submap created by another application.

 Parameters
flags Specifies flags that can be used when setting the symbol type. These are the

same flags available when creating a symbol. This is the logical OR of the fol-
lowing flags defined in <OV/ovw.h>:

ovwNoSymbolFlags This value can be specified if no flags are
needed.

ovwMergeDefaultCapabilities The default capability field values for the symbol
type symbolType will be set on the symbol’s
object for those fields that do not already have
values set. Default capabilities are defined in
the symbol registration file.

ovwDoNotDisplayLabel The symbol label will not be displayed. Leaving
this flag cleared will not affect whether or not the
symbol label is displayed.

map Specifies a pointer to the MapInfo structure for an open map. The map param-
eter can be obtained using OVwGetMapInfo or saved from the ovwMapOpen
event using OVwCopyMapInfo.

822 Programmer's Reference

 OVwSetSymbolType(3)

symbolId Specifies the ID of the symbol.

symbolType Specifies the symbol type to use for displaying the symbol. Symbol-type values
are defined in the symbol type registration files. Some predefined symbol types
are also listed in the <OV/sym_types.h> header file. For connection symbols, a
NULL value can be used to indicate the default connection symbol type. A NULL
value is not allowed for icon symbols.

 Return Values

If successful, OVwSetSymbolType returns 0 (zero). If unsuccessful, it returns −1 (negative one).

 Error Codes

OVwSetSymbolType sets the error code value that OVwError returns. The following list describes the
possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_MAP_NOT_OPEN] The argument map does not specify an open map.

[OVw_MAP_READ_ONLY] The map is open with read-only permission.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

[OVw_SUBMAP_PERMISSION_DENIED] The symbol exists on the application plane of an exclusive
submap created by another application.

[OVw_SYMBOL_INVALID_FLAGS] The argument flags has a value that is not valid.

[OVw_SYMBOL_NOT_FOUND] The symbol specified by symbolId does not exist on the open
map.

[OVw_SYMBOL_TYPE_NOT_FOUND] The argument symbolType is not a registered symbol type.

[OVw_SYMBOL_TYPE_WRONG_VARIETY]
The argument symbolType has a symbol type variety (icon or
connection) that does not match the variety of the symbol
specified by symbolId.

 Implementation Specifics

OVwSetSymbolType supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwSetSymbolType, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Chapter 2. Reference Pages 823

 OVwSetSymbolType(3)

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwGetMapInfo(3)” on page 719.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

824 Programmer's Reference

 OVwShowHelp(3)

 OVwShowHelp(3)

 Purpose

Requests presentation of help information

 Syntax

#include <OV/ovw.h>

int OVwShowHelp(unsigned long helpType, char \helpRequest);

 Description

OVwShowHelp enables applications to implement an integrated, context-sensitive help system. It requests
that the NetView for AIX help system display the specified help for the application. The type of request
and request string are relayed by the NetView for AIX program to the designated NetView for AIX help
application, ovhelp, which processes the help request appropriately.

 Parameters
helpRequest

Specifies a pointer to the name of the help to be displayed. Generally, this string is a file path relative
to the application’s registered help directory. The string is processed according to the specified
helpType.

helpType
Specifies the type of help being requested. The standard help types are defined in the OV/ovw.h
header file:

ovwHelpIndex
The path of an ovhelp help index, relative to the registered help directory, is assumed to be
helpRequest. If the application has not registered a help directory, the path is assumed to be
relative to the NetView for AIX help directory, /usr/OV/help/$LANG.

ovwHelpFile
The path of an ovhelp help file, relative to the registered help directory, is assumed to be
helpRequest. If the application has not registered a help directory, the path is assumed to be
relative to the NetView for AIX help directory, /usr/OV/help/$LANG.

 Return Values

If successful, OVwShowHelp returns 0 (zero). If unsuccessful, it returns −1 (negative one).

 Chapter 2. Reference Pages 825

 OVwShowHelp(3)

 Error Codes

OVwShowHelp sets the error code value that OVwError returns. The following list describes the possible
errors:

[OVw_APP_NOT_FOUND] The NetView for AIX help system application, ovhelp, is not running.

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

 Implementation Specifics

OVwShowHelp supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwShowHelp, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovhelp(1).
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

826 Programmer's Reference

 OVwSubmapCloseCB(3)

 OVwSubmapCloseCB(3)

 Purpose

Functions as a callback for a submap-close event

 Syntax

#include <OV/ovw.h>

void (\OVwSubmapCloseCB) (void \userData, OVwEventType type,
OVwMapInfo \map, OVwSubmapInfo \submap);

 Description

To receive an event indicating that a submap is being closed, use OVwAddCallback to register a callback
function of type OVwSubmapCloseCB, to be called when an ovwSubmapClose event is generated. You
can close a submap through the graphical interface.

A map-close event is generated when a map is closed through the graphical interface. (See
“OVwMapCloseCB(3)” on page 759.) A map close event implies that the submaps within the map were
closed. OVwSubmapCloseCB is not generated when a submap is closed because a map is closed.

 Parameters
map Specifies a pointer to the OVwMapInfo structure for the open map.

submap Specifies a pointer to the OVwSubmapInfo structure for the submap being closed.

type Specifies the type of event that caused this callback to be invoked, namely
ovwSubmapClose.

userData Specifies a pointer to the user data registered for the callback.

 Implementation Specifics

OVwSubmapCloseCB supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwSubmapCloseCB, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Chapter 2. Reference Pages 827

 OVwSubmapCloseCB(3)

 Related Information
 � See ovw(1).
� See “OVwAddCallback(3)” on page 539.
� See “OVwSubmapOpenCB(3)” on page 829.
� See “OVwApiIntro(5)” on page 560.
� See “OVwMapCloseCB(3)” on page 759.

828 Programmer's Reference

 OVwSubmapOpenCB(3)

 OVwSubmapOpenCB(3)

 Purpose

Functions as a callback for a submap-open event

 Syntax

#include <OV/ovw.h>

void (\OVwSubmapOpenCB) (void \userData, OVwEventType type,

OVwMapInfo \map, OVwSubmapInfo \submap);

 Description

To receive an event indicating that a submap is being opened, use OVwAddCallback to register a callback
function of type OVwSubmapOpenCB, to be called when an ovwSubmapOpen event is generated. A
submap-open event is generated when a submap is displayed with the OVwDisplaySubmap routine or
opened by a user through the graphical interface. The ovwSubmapOpen event occurs for the home
submap at startup before registered applications have been started, so applications do not receive this
initial submap open event.

 Parameters
 map Specifies a pointer to the OVwMapInfo structure for the open map. The map

parameter can be obtained using OVwGetMapInfo or saved from the ovwMapOpen
event using OVwCopyMapInfo.

 submap Specifies a pointer to the OVwSubmapInfo structure for the submap being opened.

 type Specifies the type of event that caused this callback to be invoked, namely
ovwSubmapOpen.

 userData Specifies a pointer to the user data registered for this callback.

 Implementation Specifics

OVwSubmapOpenCB supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwSubmapOpenCB, you need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Chapter 2. Reference Pages 829

 OVwSubmapOpenCB(3)

 Related Information
 � See ovw(1).
� See “OVwAddCallback(3)” on page 539.
� See “OVwDisplaySubmap(3)” on page 683.
� See “OVwSubmapCloseCB(3)” on page 827.
� See “OVwApiIntro(5)” on page 560.

830 Programmer's Reference

 OVwUserSubmapCreateCB(3)

 OVwUserSubmapCreateCB(3)

 Purpose

Functions as a callback for a user, submap-create event

 Syntax

#include <OV/ovw.h>

void (\OVwUserSubmapCreateCB) (void \userData, OVwEventType type,

OVwMapInfo \map, OVwSymbolInfo \symbol, OVwSubmapInfo \submap)

 Description

To receive an event indicating that a user is attempting to open a submap that has not been created yet,
use OVwAddCallback to register a callback function of type OVwUserSubmapCreateCB, to be called when
an ovwUserSubmapCreate event is generated. This is useful for applications that need to create submaps
on user request. An ovwUserSubmapCreate event is generated when a user tries to open a submap that
does not yet exist by double-clicking on an explodable symbol that has an object without a child submap.
An application will receive the OVwUserSubmapCreate callback only if it has registered application interest
in the symbol on which the user double-clicked and that symbol does not have a submap. See
“OVwSetSymbolApp(3)” on page 808 for more information.

The routine OVwAckUserSubmapCreate should always be called in the callback for the
ovwUserSubmapCreate event to indicate whether the application had created a submap in response to the
user action. If the application does not create a submap, the user will be prompted and given the opportu-
nity to create a submap.

 Parameters
 map Specifies a pointer to the OVwMapInfo structure for the open map. The map

parameter can be obtained using OVwGetMapInfo or saved from the ovwMapOpen
event using OVwCopyMapInfo.

 submap Specifies a pointer to the OVwSubmapInfo structure for the submap on which the
symbol exists that the user is trying to open.

 symbol Specifies a pointer to the OVwSymbolInfo structure for the symbol that the user is
trying to open to display its child submap.

 type Specifies the type of event that caused this callback to be invoked, namely
ovwUserSubmapCreate.

 userData Specifies a pointer to the user data registered for this callback.

 Chapter 2. Reference Pages 831

 OVwUserSubmapCreateCB(3)

 Examples

The following code fragment illustrates how to register a callback routine for receiving a user,
submap-create event:

void userSubmapCreateCB(void \userData, OVwEventType type,
OVwMapInfo \map, OVwSymbolInfo \symbol,

 OVwSubmapInfo \submap)
 {

OVwSubmapId submap_id ═ ovwNullSubmapId;

 /\

\ Check whether it is appropriate
for the application
\ to create a submap. If so, create
submap and set

 \ submap_id.
 \/

 OVwAckUserSubmapCreate(map, submap_id,
 symbol->symbol_id);
 }

 OVwAddCallback(ovwUserSubmapCreate, NULL,

(OVwCallbackProc) userSubmapCreateCB, NULL);

 Implementation Specifics

OVwUserSubmapCreateCB supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwUserSubmapCreateCB, you need to link to the following
libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwAckUserSubmapCreate(3)” on page 530.
� See “OVwAddCallback(3)” on page 539.
� See “OVwApiIntro(5)” on page 560.

832 Programmer's Reference

 OVwVerifyAdd(3)

 OVwVerifyAdd(3)

 Purpose

Validates the initial description information for an object when a user adds its symbol to the open map

 Related Functions
 OVwQueryAddSymbolCB
 OVwConfirmAddSymbolCB

 Syntax

#include <OV/ovw.h>

int OVwVerifyAdd(OVwMapInfo \map, OVwFieldBindList \dialogBoxFields,

OVwBoolean verified, OVwBoolean appPlane, char \errorMsg);

void (\OVwQueryAddSymbolCB) (void \userData, OVwEventType type,

OVwMapInfo \map, OVwSubmapInfo \submap,
 OVwFieldBindList \capabilityFields,
 OVwFieldBindList \dialogBoxFields);

void (\OVwConfirmAddSymbolCB) (void \userData, OVwEventType type,

OVwMapInfo \map, OVwSymbolInfo \symbol,
 OVwFieldBindList \capabilityFields,
 OVwFieldBindList \dialogBoxFields);

 Description

These callbacks manage events sent to applications that have registered to receive them whenever an
add operation is selected by the user or requested by another application. See “OVwApiIntro(5)” on
page 560 for an overview of the EUI API, including the role of the asynchronous NetView for AIX events.

An application that needs to be notified when an object is added should register these callbacks through
the OVwAddCallback function call, using ovwQueryAddSymbol and ovwConfirmAddSymbol as the callback
types.

When the user adds a symbol to the map, an add dialog box is presented on the display. If the applica-
tion has enrolled fields for the add dialog box through the Application Registration File, the user has the
option to open an application specific add-dialog box.

If the user opens the application-specific add-dialog box, there are several buttons on the bottom of that
box: OK, Verify, and Cancel. When this dialog box is first opened, the OK button is grayed out and
cannot be pressed, but the Verify and Cancel buttons can be used. After filling in the dialog box fields,
the user should press the Verify button. The NetView for AIX program will send an OVwQueryAddSymbol
event to the appropriate application. The NetView for AIX program will include a list of all fields enrolled in
that dialog box and their values in the dialogBoxFields parameter. All of the capability fields and their
values will be sent in the capabilityFields parameter.

Upon receipt of this event, the callback routine must determine whether the user-specified information is
valid and whether the symbol should be added to the application or the user plane. If so, the application
must call OVwVerifyAdd with the verified parameter set to TRUE. If any of the user-specified information
is not valid or the symbol should not be added to the application or user plane, the application must call

 Chapter 2. Reference Pages 833

 OVwVerifyAdd(3)

OVwVerifyAdd with the verified parameter set to FALSE. If the application fails to call OVwVerifyAdd in
response to an ovwQueryAddSymbol event, the graphical interface will hang.

The field values entered by the user are valid if they are complete and consistent with the model being
enforced by the application. For example, for an application enforcing IP rules, the IP Address field has
very strict rules about what an IP address can look like. The value “15.two.100.three” is an incorrect value
because alpha characters are not allowed.

When testing for correctness, the application must also consider the submap to which the symbol is being
added. The submap will likely play a significant part in determining if the information is valid. For
example, an IP application can enforce the rule that a submap contains symbols for objects that are con-
nected to a particular network. If the user attempts to add a symbol for an object that is not connected to
that network, then the information is not valid (although it can be valid without the context of the submap).

There can be fields for which the application cannot determine correctness. A field that is strictly for user
convenience, such as comments, will not be tested by the application. Any information entered in these
fields is assumed correct. Therefore only a subset of the fields in the dialog box will actually contribute to
the validity of the new object.

The application and user planes are concepts used by the NetView for AIX program to separate symbols
based on the validity of their information. Objects whose symbols are on the application plane in a partic-
ular submap will all have valid information in the context of that submap. An application is not permitted to
place the symbol of an object that has information that is not valid onto the application plane. The user
plane is for symbols of objects that are, for whatever reason, not valid in the context of the submap.

The application plane is typically used to represent objects that are semantically correct, whereas the user
plane can contain anything. For example, an application might set the status of symbols only on the
application plane. Most applications will not acknowledge the existence of symbols on the user plane.

If all input fields are valid, the callback routine responds by calling OVwVerifyAdd with the verified field set
to TRUE and the appPlane field set to TRUE. If the information is valid but not for the submap specified,
the verified field is set to TRUE and the appPlane field is set to FALSE so the symbol is placed in the user
plane. If there is a problem, then the application calls OVwVerifyAdd with the verified field set to FALSE
and the appPlane field set to FALSE. In this case, the appPlane field cannot be set to TRUE. If either
field is set to FALSE then an error message should be passed.

In OVwVerifyAdd, the dialogBoxFields parameter is a list of fields from the dialogBoxFields list passed by
OVwQueryAddSymbolCB. The values of these fields can be left unchanged or a modified version of them
can be returned. The dialog box will be updated to reflect the values returned by the application.

When verified is TRUE, the OK button on the dialog box is made operable so the user can press it. Once
the OK button is pressed on the top level add dialog box (not the application-specific dialog box), the
NetView for AIX program will send another event, OVwConfirmAddSymbol, to the application. When this
event is received, the callback routine processes the add.

If, after pressing the Verify button, the user changes one of the fields, the OK button is again grayed out
by the graphical interface. Now the user must re-verify the information on the screen before being allowed
to press OK.

The OVwConfirmAddSymbol events can also be sent to an application if another application adds a
symbol to a submap. In this case, the OVwQueryAddSymbol event is not sent. As a result, the informa-
tion in dialogBoxFields might not be valid because the application that created the symbol might not check
what the values are. This means that an application cannot depend on the dialogBoxFields values to be
correct and therefore must recheck them when the OVwConfirmAddSymbol event is received. If one or

834 Programmer's Reference

 OVwVerifyAdd(3)

more of the values is found to be incorrect, then the application can assume that this symbol is being
added by another application and can be ignored.

InitialVerify and ImmediateVerify are two of the options that can be used in the registration file when
enrolling fields in the dialog box. See “OVwRegIntro(5)” on page 769 for a more detailed description.
These options are useful for making the dialog box interactions easier to use. They are similar; each
causes the NetView for AIX program to send an ovwQueryAddSymbol event before the user presses the
Verify button. The difference is the action that triggers the NetView for AIX program to send the event. If
a dialog box has the InitialVerify option set, the NetView for AIX program will send the
ovwQueryAddSymbol event when the user opens the application-specific describe dialog box but before it
is actually displayed. It enables the application to fill in some default values for the fields, by setting the
values of the fields in dialogBoxFields and calling OVwVerifyAdd. After the application makes this call, the
NetView for AIX program fills in the field values and displays the dialog box.

If a field has the ImmediateVerify option set, the NetView for AIX program sends the ovwQueryAddSymbol
event whenever the user exits that field. This can be used by the application to fill in other fields based on
the value of this field as a convenience to the user.

 Parameters
 appPlane Specifies whether the object can be added to the application plane of the

submap identified by submap ID. If the value of this field is TRUE, the symbol
is allowed on the application plane. If not, the object will be added to the user
plane. The appPlane field should be FALSE is the verified field is FALSE.

 capabilityFields Specifies a pointer to a list of the capability fields set for this object along with
their values.

 dialogBoxFields Specifies a pointer to a list of the fields in the Add dialog box along with their
values.

 errorMsg Specifies error message to display to the user. This is a NULL-terminated
string that the graphical interface displays in the messages field in the add
dialog box. The string is auto-wrapped to match the width of the messages
field. You can use newline characters (ln) to force line endings if you want to
have some formatting control.

 map Specifies a pointer to the MapInfo structure for the open map. The map param-
eter can be obtained using OVwGetMapInfo or saved from the ovwMapOpen
event using OVwCopyMapInfo.

 submap Specifies a pointer to the SubmapInfo structure for the submap to which the
object is being added.

 symbol Specifies a pointer to the SymbolInfo structure for the symbol added to the
current map.

 type Specifies the type of the event that caused OVwQueryAddSymbolCB or
OVwConfirmAddSymbolCB to be invoked, namely ovwQueryAddSymbol or
ovwConfirmAddSymbol. This is useful for callbacks that handle several event
types.

 userData Specifies a pointer to the user data registered for the callback.

 verified Specifies whether field information is consistent and complete according to the
application. If verified is TRUE, the user can make the changes; otherwise, the
user cannot make them.

 Chapter 2. Reference Pages 835

 OVwVerifyAdd(3)

 Return Values

If successful, OVwVerifyAdd returns 0 (zero). If unsuccessful, it returns −1 (negative one).

 Error Codes

OVwVerifyAdd sets the error code value that OVwError returns. The following list describes the possible
errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

836 Programmer's Reference

 OVwVerifyAdd(3)

 Examples
� The following example illustrates a typical add interaction between the NetView for AIX program and

an application.

 void

queryAddProc(void \userData, OVwEventType type, OVwMapInfo \map,
 OVwSubmapInfo \submap,
 OVwFieldBindList \capabilityFields,
 OVwFieldBindList \dialogBoxFields);
 {

/\ verify the field values in dialogBoxFields \/

if (infoIsOK()) {
/\ say OK and put on appPlane \/

if (OVwVerifyAdd (map,
 dialogBoxFields,

TRUE, TRUE, NULL)); {
/\ bail out because of error in OVwVerifyAdd \/

 }
} else {
/\ say not OK and why \/

if (OVwVerifyAdd (map,
 dialogBoxFields,

FALSE, FALSE, “bogus data”))
/\ bail out because of error in OVwVerifyAdd \/

 }
 }
 }

 void

confirmAddProc(void \userData, OVwEventType type, OVwMapInfo \map,
OVwSubmapInfo \submap, OVwSymbolInfo \symbol,

 OVwFieldBindList \capabilityFields);
 OVwFieldBindList \dialogBoxFields,
 {

/\ recheck the dialogBoxFields here since
this event may be sent to us as a result of an add by
another application. \/

/\ if the field values are OK, add the
symbol to our internal structure. \/

 }

 Implementation Specifics

OVwVerifyAdd and its related functions support single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwVerifyAdd or one of its related functions, you need to link to the
following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Chapter 2. Reference Pages 837

 OVwVerifyAdd(3)

 Related Information
 � See ovw(1).
� See “OVwAddCallback(3)” on page 539.
� See “OVwCreateSubmap(3)” on page 619.
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

838 Programmer's Reference

 OVwVerifyAppConfigChange(3)

 OVwVerifyAppConfigChange(3)

 Purpose

Validates the user change of application configuration values

 Related Functions
 OVwQueryAppConfigCB
 OVwConfirmAppConfigCB

 Syntax

#include <OV/ovw.h>

int OVwVerifyAppConfigChange(OVwMapInfo \map,
 OVwFieldBindList \configParams,

OVwBoolean verified, char \errorMsg);

void (\OVwQueryAppConfigCB) (void \userData, OVwEventType type,

OVwMapInfo \map, OVwFieldBindList \configParams);

void (\OVwConfirmAppConfigCB) (void \userData, OVwEventType type,

OVwMapInfo \map, OVwFieldBindList \configParams);

 Description

The callbacks OVwQueryAppConfigCB and OVwConfirmAppConfigCB handle events sent to applications
that have registered to receive them when the user changes the application configuration. See
“OVwApiIntro(5)” on page 560 for an overview of the EUI API, including the role of the asynchronous
NetView for AIX events.

An application that needs to be notified when the configuration is changed should register these callbacks
through the OVwAddCallback function call, using ovwQueryAppConfigChange and
ovwConfirmAppConfigChange, respectively, as the event types.

An ovwQueryAppConfigChange event is sent when the user modifies the application configuration param-
eters for the currently open map. To do this, the user can use the Configuration dialog box specific to this
application. The Application Registration File is used to enroll fields in this dialog box; see
“OVwRegIntro(5)” on page 769 for more information about this file.

When the application's Configuration dialog box is presented, it has several buttons on the bottom of the
box: OK, Verify, and Cancel. When you type anything in the box, the OK button is grayed out so it cannot
be pressed. The Verify and Cancel buttons can be used. When you modify any field, you should press
the Verify button so the application can verify the changes. The NetView for AIX program will send an
ovwQueryAppConfigChange event to the application.

The OVwQueryAppConfigCB routine is invoked upon receipt of this event. This routine must determine
whether the field values entered by the user are valid. The definition of valid is completely determined by
the application. An example of a field with an invalid value is an integer field containing a value that is
specified out of range.

Note: When the user selects Edit..New Map, a NULL map pointer is passed to the
OVwQueryAppConfigCB callback routine, and that NULL pointer can be passed to the

 Chapter 2. Reference Pages 839

 OVwVerifyAppConfigChange(3)

OVwVerifyAppConfigChange function. No ovwConfirmAppConfigChange event will be generated in this
situation.

All fields in the dialog box, with their values, are in the configParams parameter. The callback routine can
update these values by changing the values in the list and passing a pointer to the list in the
OVwVerifyAppConfigChange call. If no change is necessary, the list is passed back unchanged.

If the callback routine determines that the field values are valid, it responds by calling
OVwVerifyAppConfigChange with the verified flag set to TRUE. The graphical interface will then make the
OK button operable so the user can commit the changes. If there was a problem found with one or more
of the fields, the callback routine calls OVwVerifyAppConfigChange with the verified field set to FALSE
and errorMsg set to an appropriate message. In this case, the graphical interface will keep the OK button
disabled and display the message so that the user can fix the problem and re-verify the information before
being permitted to commit the data.

After the data in the Configuration dialog box has been verified and the user presses the OK button, the
NetView for AIX program sends an ovwConfirmAppConfigChange event to the application. The
OVwConfirmAppConfigCB handles this event.

InitialVerify and ImmediateVerify are two of the options that can be used in the registration file when
enrolling fields in the dialog box. See “OVwRegIntro(5)” on page 769 for a more detailed description.
These options are useful for making the dialog box interactions easier to use. They are similar; each
causes the NetView for AIX program to send an ovwQueryAppConfig event before the user presses the
Verify button. The difference is the action that triggers the NetView for AIX program to send the event. If
a dialog box has the InitialVerify option set, the NetView for AIX program will send the
ovwQueryAppConfigChange event when the user opens the application-specific describe dialog box but
before it is actually displayed. It enables the application to fill in some default values for the fields, by
setting the values of the fields in ConfigParams dialogBoxFields and calling OVwVerifyAppConfigChange.
After the application makes this call, the NetView for AIX program fills in the field values and displays the
dialog box.

If a field has the ImmediateVerify option set, then the NetView for AIX program sends the
ovwQueryAppConfigChange event when the user exits that field. This can be used by the application to
fill in other fields, based on the value of this field, as a convenience to the user.

 Parameters
 configParams Specifies a pointer to application-specific configuration parameters for the

current map.

 errorMsg Specifies a pointer to error message to display to the user. It is a
NULL-terminated string that the graphical interface will display in the messages
field of the dialog box. The string is auto-wrapped by the graphical interface to
fit the width of the messages field. You can use a newline character (ln) to
force a line ending if you want some formatting control.

 map Specifies a pointer to the MapInfo structure for the currently open map. The
map parameter can be obtained using OVwGetMapInfo or saved from the
ovwMapOpen event using OVwCopyMapInfo.

 type Specifies the type of event which caused this callback routine to be invoked,
namely ovwqueryAppConfig or ovwConfirmAppConfig. This is useful if a single
callback handles multiple events types.

840 Programmer's Reference

 OVwVerifyAppConfigChange(3)

 verified Specifies whether field information is consistent and complete according to the
application. If verified is TRUE, the user can commit the changes; otherwise,
the user cannot commit them.

 userData Specifies a pointer to the user data registered for the callback.

 Return Values

If successful, OVwVerifyAppConfigChange returns 0 (zero). If unsuccessful, it returns −1 (negative one).

 Error Codes

OVwVerifyAppConfigChange sets the error code value that OVwError returns. The following list describes
the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

 Examples

See “OVwVerifyAdd(3)” on page 833 for an example interaction. The interaction model for
OVwVerifyAppConfigChange is similar.

 Implementation Specifics

OVwVerifyAppConfigChange and its related functions support single-byte and multibyte character code
sets.

 Libraries

When compiling a program that uses OVwVerifyAppConfigChange or one of its related functions, you
need to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwAddCallback(3)” on page 539.
� See “OVwError(3)” on page 688.
� See “OVwGetAppConfigValues(3)” on page 698.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

 Chapter 2. Reference Pages 841

 OVwVerifyConnect(3)

 OVwVerifyConnect(3)

 Purpose

Validates the user-selected connect operation for two symbols

 Related Functions
 OVwQueryConnectSymbolsCB
 OVwConfirmConnectSymbolsCB

 Syntax

#include <OV/ovw.h>

int OVwVerifyConnect(OVwMapInfo \map, OVwObjectInfo \object1,

OVwObjectInfo \object2, OVwFieldBindList \dialogBoxFields,
OVwBoolean verified, OVwBoolean appPlane,

 char \errorMsg);

void (\OVwQueryConnectSymbolsCB) (void \userData, OVwEventType type,

OVwMapInfo \map, OVwSubmapInfo \submap, OVwObjectInfo \object1,
OVwObjectInfo \object2, OVwFieldBindList \capabilityFields,

 OVwFieldBindList \dialogBoxFields);

void (\OVwConfirmConnectSymbolsCB) (void \userData, OVwEventType type,

OVwMapInfo \map, OVwSymbolInfo \symbol, OVwObjectInfo \object1,
OVwObjectInfo \object2, OVwFieldBindList \capabilityFields,

 OVwFieldBindList \dialogBoxFields);

 Description

The callbacks OVwQueryConnectSymbolsCB and OVwConfirmConnectSymbolsCB handle events sent to
applications that have registered to receive them when the user selects the connect operation. See
“OVwApiIntro(5)” on page 560 for an overview of the EUI API, including the role of the asynchronous
NetView for AIX events.

An application that needs to be notified when the connect operation is selected by the user or another
application should register these callbacks by using the OVwAddCallback function call and by using
ovwQueryConnectSymbols and ovwConfirmConnectSymbols as the event types.

When you add a connection between two symbols on the map, the graphical interface displays an add
connection dialog box. If your application has enrolled fields for the add connection dialog box, you can
open an add connection dialog box specific to your application. See “OVwRegIntro(5)” on page 769 for
more information.

If you open the application-specific dialog box, there are several buttons on the bottom of that box: OK,
Verify, and Cancel. When this dialog box is first opened, the OK button is grayed out and cannot be
pressed but the Verify and Cancel can be used. When you have filled in the dialog box fields, you should
press the Verify button. The NetView for AIX program will send an ovwQueryConnectSymbols event to
the appropriate application. The NetView for AIX program will include a list of all fields enrolled in that
dialog box and their values in the dialogBoxFields parameter. All of the capability fields and their values
will be sent in the capabilityFields parameter.

842 Programmer's Reference

 OVwVerifyConnect(3)

Upon receipt of this event, the callback routine must determine whether the field values are correct. If
they are, the application must call OVwVerifyConnect with the verified parameter set to TRUE. If any of
the fields are not correct, the application must call OVwVerifyConnect with the verified parameter set to
FALSE. If the application fails to call OVwVerifyConnect in response to an ovwQueryConnectSymbols
event then the graphical interface will hang.

If OVwVerifyConnect is called with the verified parameter set to TRUE, then the graphical interface will
make the OK button operable on the add connection dialog box. When this occurs, you can press that
button to continue with the operation. After you press the OK button on the application-specific dialog box,
the main add connection dialog box is still open. When the OK button on the main connect dialog box is
pressed, the NetView for AIX program sends an ovwConfirmConnectSymbols event to the appropriate
applications.

When the ovwConfirmConnectSymbols is received, the application must make sure the dialogBoxFields
are correct, even though they were already checked in OVwQueryConnectSymbolsCB. This is required
because the ovwConfirmConnectSymbols event can be sent to an application as a result of another appli-
cation's adding a connection to a submap. In this case, the ovwQueryConnectSymbols event is not gener-
ated. If the dialogBoxFields are found to be correct, you can make a record of this information and
proceed with processing. If any of the dialogBoxFields are found to be incorrect, your application can
assume that the connection is being added by another application and can be ignored.

InitialVerify and ImmediateVerify are two of the options that you can use in the registration file when
enrolling fields in the dialog box. See “OVwRegIntro(5)” on page 769 for a more detailed description.
These options are useful for making the dialog box interactions easier to use. They are similar; each
causes the NetView for AIX program to send an ovwQueryConnectSymbols event before the user presses
the Verify button. The difference is the action that triggers the NetView for AIX program to send the event.
If a dialog box has the InitialVerify option set, the NetView for AIX program will send the
ovwQueryConnectSymbols event when the user opens the application-specific describe dialog box but
before it is actually displayed. It enables the application to fill in some default values for the fields, by
setting the values of the fields in dialogBoxFields and calling OVwVerifyConnect. After the application
makes this call, the NetView for AIX program fills in the field values and displays the dialog box.

If a field has the ImmediateVerify option set, the NetView for AIX program sends the
ovwQueryConnectSymbols event when the user exits that field. This can be used by the application to fill
in other fields based on the value of this field as a convenience to the user.

 Parameters
 capabilityFields Specifies a pointer to a list of capability fields set for the connect object being

added.

 dialogBoxFields Specifies a pointer to a list of dialog box fields.

 errorMsg Specifies a pointer to error message to display to the user. This is a
NULL-terminated string that the graphical interface will display in the messages field
of the add connection dialog box. The string is auto-wrapped to fit the width of the
field. You can use a newline character (ln) to force a line ending if you want some
formatting control.

 map Specifies a pointer to the MapInfo structure for the open map. The map parameter
can be obtained using OVwGetMapInfo or saved from the ovwMapOpen event using
OVwCopyMapInfo.

 object1 Specifies a pointer to the ObjectInfo structure for object1.

 Chapter 2. Reference Pages 843

 OVwVerifyConnect(3)

 object2 Specifies a pointer to the ObjectInfo structure for object2.

 appPlane Specifies whether the object can be added to the application plane of the submap
identified by submap ID. If not, the object will be added to the user plane. The
appPlane field should be FALSE if the verified field is FALSE.

 submap Specifies a pointer to the SubmapInfo structure for the submap to which the symbol
is being added.

 symbol Specifies a pointer to the SymbolInfo structure for the symbol added to the current
map.

 type Specifies the type of event that caused the callback to be invoked, namely
ovwQueryConnectSymbols or ovwConfirmConnectSymbols. This is useful for
callbacks that handle several event types.

 userData Specifies a pointer to the user data registered for the callback.

 verified Specifies whether field information is consistent and complete according to the
application. If verified is TRUE, the user will be allowed to commit the changes;
otherwise, no changes are allowed.

 Return Values

If successful, OVwVerifyConnect returns 0 (zero). If unsuccessful, it returns −1 (negative one).

 Error Codes

OVwVerifyConnect sets the error code value that OVwError returns. The following list describes the pos-
sible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED]
The EUI API has not been initialized with OVwInit.

 Examples

See the example for OVwQueryAddSymbol in “OVwVerifyAdd(3)” on page 833 for a sample interaction.
The interaction model for OVwQueryAddSymbolCB is similar to that for OVwQueryConnectSymbolsCB.

 Implementation Specifics

OVwVerifyConnect supports single-byte and multi-byte character code sets.

 Libraries

When compiling a program that uses OVwVerifyConnect and its related functions, you need to link to the
following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

844 Programmer's Reference

 OVwVerifyConnect(3)

 Related Information
 � See ovw(1).
� See “OVwAddCallback(3)” on page 539.
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

 Chapter 2. Reference Pages 845

 OVwVerifyDeleteSymbol(3)

 OVwVerifyDeleteSymbol(3)

 Purpose

Validates the deletion of symbols

 Related Functions
 OVwQueryDeleteSymbolsCB
 OVwConfirmDeleteSymbolsCB

 Syntax

#include <OV/ovw.h>

int OVwVerifyDeleteSymbol(OVwMapInfo \map,
 OVwSymbolVerifyList \symbolVerifyList);

void (\OVwQueryDeleteSymbolsCB) (void \userData, OVwEventType type,

OVwMapInfo \map, OVwSymbolVerifyList \symbolVerifyList);

void (\OVwConfirmDeleteSymbolsCB) (void \userData, OVwEventType type,

OVwMapInfo \map, OVwSymbolList \symbolList);

 Description

The callbacks handle events sent to applications that have registered to receive them whenever a delete
operation is performed. See “OVwApiIntro(5)” on page 560 for an overview of the EUI API including the
role of the asynchronous NetView for AIX events.

An application that needs to be notified when a delete operation is selected by the user or another appli-
cation should register these callbacks through the OVwAddCallback function call, using
ovwQueryDeleteSymbols and ovwConfirmDeleteSymbols as the callback types.

Delete events are generated as a result of the user or another application deleting symbols or objects from
the map. When the user deletes a symbol from the map, the NetView for AIX program will send a
ovwQueryDeleteSymbols event to the applications that have registered interest in that symbol. Applica-
tions can receive OVwQueryDeleteSymbolsCB only if they have registered interest in the symbol that has
been deleted. The application can allow or deny each individual symbol delete operation. If the applica-
tion determines that the operation is valid then it sets the verified parameter for that symbol to TRUE,
otherwise verified is set to FALSE. Once all symbols in the list are processed, the application must call
OVwVerifyDeleteSymbol sending the list of symbols back to the NetView for AIX program. Once the
NetView for AIX program gets the list back, it will selectively delete the symbols. The symbols for which
the application set verified to TRUE are deleted while the symbol for which verified was FALSE are not. A
dialog box for the symbols that were not deleted is then displayed that tells the user that the delete opera-
tion was denied and that the user can hide the symbol.

In the case where an application is deleting symbols from the map, there are no ovwQueryDeleteSymbols
events generated only ovwConfirmDeleteSymbols. Applications should, therefore, be very careful about
what symbols they delete from shared submaps since other applications may depend on their existence.

846 Programmer's Reference

 OVwVerifyDeleteSymbol(3)

For the set of deleted symbols, the NetView for AIX program sends a ovwConfirmDeleteSymbols event.
When the application receives the ovwConfirmDeleteSymbols event it must delete that symbol from its
internal structures since it has been removed from the map.

If the last symbol for a given object gets deleted then the graphical interface deletes that object and sends
an ovwConfirmDeleteObject event. See “OVwConfirmDeleteObjectsCB(3)” on page 588 for more details.

 Parameters
 map

Specifies a pointer to the MapInfo structure for the open map. The map parameter can be obtained
using OVwGetMapInfo or saved from the ovwMapOpen event using OVwCopyMapInfo.

 symbolVerifyList
Specifies a pointer to a list of SymbolVerify structures that represent each symbol to be deleted.
Included in the structure is a flag that indicates if that symbol can be deleted. If not, the graphical
interface will tell the user and allow him to hide the object.

 symbolList
Specifies a pointer to a list of SymbolInfo structures for the symbols to be deleted.

 type
The type of event that caused the callback to be invoked, namely ovwQueryDeleteSymbols or
ovwConfirmDeleteSymbols. This is useful if one callback handles multiple event types.

 userData
Specifies a pointer to the user data registered for the callback.

 Return Values

If successful, OVwVerifyDeleteSymbol returns 0 (zero). If unsuccessful, it returns −1 (negative one).

 Error Codes

OVwVerifyDeleteSymbol sets the error code value that OVwError returns. The following list describes the
possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

 Examples

See the example in “OVwVerifyAdd(3)” on page 833 for a sample interaction.

 Implementation Specifics

OVwVerifyDeleteSymbol and its related functions support single-byte and multi-byte character code sets.

 Chapter 2. Reference Pages 847

 OVwVerifyDeleteSymbol(3)

 Libraries

When compiling a program that uses OVwVerifyDeleteSymbol or one of its related functions, you need to
link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwAddCallback(3)” on page 539.
� See “OVwConfirmDeleteObjectsCB(3)” on page 588.
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

848 Programmer's Reference

 OVwVerifyDescribeChange(3)

 OVwVerifyDescribeChange(3)

 Purpose

Validates the user change of description information for an object

 Related Functions
 OVwQueryDescribeCB
 OVwConfirmDescribeCB

 Syntax
#include <OV/ovw.h>

int OVwVerifyDescribeChange(OVwMapInfo \map, OVwObjectInfo \object,

OVwFieldBindList \dialogBoxFields, OVwBoolean verified,
 char \errorMsg);

void (\OVwQueryDescribeCB) (void \userData, OVwEventType type,

OVwMapInfo \map, OVwObjectInfo \object,
 OVwFieldBindList \dialogBoxFields);

void (\OVwConfirmDescribeCB) (void \userData, OVwEventType type,

OVwMapInfo \map, OVwObjectInfo \object,
 OVwFieldBindList \dialogBoxFields);

 Description

The callbacks handle events sent to applications that have registered to receive them whenever a
describe operation is selected by the user. See “OVwApiIntro(5)” on page 560 for an overview of the EUI
API including the role of the asynchronous NetView for AIX events.

An application that needs to be notified when a describe operation is selected should register these
callbacks through the OVwAddCallback function call, using ovwQueryDescribe and ovwConfirmDescribe
as the event types.

An ovwVerifyDescribeChange event is sent when the user modifies the object describe parameters for the
currently open map. To do this, you can use the Object Description dialog box specific to this application.
The Application Registration File is used to enroll fields in this dialog box; see “OVwRegIntro(5)” on
page 769 for more information about this file.

When the application's Object Description dialog box is presented, it has several buttons on the bottom of
that box: OK, Verify, and Cancel. When the box is first opened, the OK button is grayed out so it cannot
be pressed. The Verify and Cancel buttons remain operable. When you modify any field, you are
expected to press the Verify button so the application can verify the changes. When the Verify button is
pressed, the NetView for AIX program will send an ovwQueryDescribe event to the application. One of
the parameters of this event is dialogBoxFields which contains a list of the fields enrolled in this dialog box
along with their values.

Upon receipt of this event, it is the responsibility of the application to determine if the values of these fields
are correct. If they are then the application must call OVwVerifyDescribeChange with the verified param-
eter set to TRUE. If any of the fields are not correct then it must call OVwVerifyDescribeChange with the

 Chapter 2. Reference Pages 849

 OVwVerifyDescribeChange(3)

verified parameter set to FALSE. If the application fails to call OVwVerifyDescribeChange then the graph-
ical interface will hang.

If OVwVerifyDescribeChange is called with the verified parameter set to TRUE, then the graphical inter-
face will make the OK button operable on the Object Description dialog box. Then the user can press that
button to continue with the operation. After pressing the OK button on the application-specific dialog box,
the main Object Description dialog box is still open. When the OK button on the main Object Description
dialog box is pressed, the NetView for AIX program sends an ovwConfirmDescribeChange event to the
appropriate applications.

When the ovwConfirmDescribe is received, the application must make the update to its internal structures
and/or its database since the NetView for AIX object database has been changed to reflect these new
values. Since the dialogBoxFields were already checked for correctness when the ovwQueryDescribe was
sent, the OVwConfirmDescribeCB routine need not recheck them.

Two of the options that can be used in the registration file when enrolling fields in the dialog box are
InitialVerify and ImmediateVerify. See “OVwRegIntro(5)” on page 769 for a more detailed description.
These options are very useful for making the dialog box interactions easier to use. They are very similar
in nature. They each cause the NetView for AIX program to send an ovwQueryDescribe event before the
user presses the Verify button. The difference is the action that triggers the NetView for AIX program to
send the event. If a dialog box has the InitialVerify option set then the NetView for AIX program will send
the ovwQueryDescribe event when the user opens the application-specific Object Description dialog box
but before it is actually displayed. It gives the application the chance to fill in some default values for the
fields. This is accomplished by setting the values of the fields in dialogBoxFields and calling
OVwVerifyDescribeChange. After the application makes this call, the NetView for AIX program fills in the
field values and displays the dialog box.

If a field has the ImmediateVerify option set, then the NetView for AIX program sends the
ovwQueryDescribe event whenever the user exits that field. This can be used by the application to fill in
other fields based on the value of this field as a convenience to the user.

 Parameters
 dialogBoxFields

Specifies a pointer to a list of application-specific add dialog box fields.

 errorMsg
Specifies a pointer to error message to display to the user.

 map
Specifies a pointer to the MapInfo structure for the open map. The map parameter can be obtained
using OVwGetMapInfo or saved from the ovwMapOpen event using OVwCopyMapInfo.

 object
Specifies a pointer to the ObjectInfo structure for the object for which the describe box semantic infor-
mation is being modified.

 type
The type of event that caused the callback routine to be invoked, namely ovwQueryDescribe or
ovwConfirmDescribe. This is useful if one callback handles multiple event types.

 verified
Specifies whether field information is consistent and complete according to the application. If verified
is TRUE, the user will be allowed to commit the changes; otherwise, no changes are allowed.

850 Programmer's Reference

 OVwVerifyDescribeChange(3)

 userData
Specifies a pointer to the user data provided when the callback was added.

 Return Values

If successful, OVwVerifyDescribeChange returns 0 (zero). If unsuccessful, it returns −1 (negative one).

 Error Codes

OVwVerifyDescribeChange sets the error code value that OVwError returns. The following list describes
the possible errors:

[OVw_CONNECTION_LOST] The connection to the NetView for AIX program was lost.

[OVw_OUT_OF_MEMORY] A memory allocation failure occurred.

[OVw_OVW_NOT_INITIALIZED] The EUI API has not been initialized with OVwInit.

 Examples

See the example in “OVwVerifyAdd(3)” on page 833 for a sample interaction. The interaction model for
OVwVerifyAdd is similar to that for OVwVerifyDescribeChange.

 Implementation Specifics

OVwVerifyDescribeChange and its related functions support single-byte and multi-byte character code
sets.

 Libraries

When compiling a program that uses OVwVerifyDescribeChange or one of its related functions, you need
to link to the following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwAddCallback(3)” on page 539.
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.
� See “OVwRegIntro(5)” on page 769.

 Chapter 2. Reference Pages 851

 OVwXtAddInput(3)

 OVwXtAddInput(3)

 Purpose

Registers the NetView for AIX event source with X

 Related Functions
 OVwXtAppAddInput

 Syntax
#include <OV/ovw.h>

void \OVwXtAddInput();

void \OVwXtAppAddInput(void \app_c);

 Description

OVwXtAddInput registers the NetView for AIX event source with X so that NetView for AIX events are
processed during XtMainLoop or XtAppMainLoop.

OVwXtAppAddInput works like OVwXtAddInput, but for a specific X application context.

OVwXtAddInput and OVwXtAppAddInput should be used to allow X applications to use the EUI API. They
should be called only after a successful call to OVwInit.

Note: You cannot use these calls with OVwXtMainLoop or OVwXtAppMainLoop. Choose the routine that
works best for your X application.

 Parameters
 app_c

Specifies a pointer to the X application context for the application.

 Return Values

OVwXtAddInput and OVwXtAppAddInput return, a void pointer to the XtInputId resulting from a call to
XtAddInput or XtAppAddInput.

852 Programmer's Reference

 OVwXtAddInput(3)

 Examples

The following example shows the code for OVwXtAddInput. (Customize it as you choose.)

#include <X11/Intrinsic.h>
#include <OV/ovw.h>
#include <stdlib.>
#include <sys/stat.h>

/\ An X input handler to dispatch NetView for AIX events \/

void
__OVwXtInputCB(XtPointer closure, int \fd, XtInputId \ id)
{

struct stat buf;

 /\

\\ Flush any pending NetView for AIX events
 \/

while (OVwPending()) }
if (OVwProcessEvent() < ð) {

if (id && \id);
 XtRemoveInput(\id);
 OVwDone();
 return;
 }
 /\

\\ If the file descriptor has gone bad, remove it from
\\ the Xt select loop.

 \/
if (fd && \fd >═ ð) {

if (fstat(\fd, &buf) < ð) {
if (id && \id)

 XtRemoveInput(\id);
 OVwDone();
 return;
 }
 }
 }
}

void \ /\ XtInputId \/
OVwXtAddInput()
{
 XtInputId id;
 int fd;

fd ═ OVwFileDescriptor();
if (fd >═ ð)

id ═ XtAddInput (fd, (XtPointer)XtInputReadMask, __OVwXtInputCB, NULL);
return (void \)id;

}

 Implementation Specifics

OVwXtAddInput and OVwXtAppAddInput support single-byte and multi-byte character code sets.

 Chapter 2. Reference Pages 853

 OVwXtAddInput(3)

 Libraries

When compiling a program that uses OVwXtAddInput or OVwXtAppAddInput, you need to link to the fol-
lowing libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwXtMainLoop(3)” on page 855.
� See “OVwApiIntro(5)” on page 560.

854 Programmer's Reference

 OVwXtMainLoop(3)

 OVwXtMainLoop(3)

 Purpose

Dispatches X and NetView for AIX events continuously

 Related Functions
 OVwXtAppMainLoop

 Syntax

#include <OV/ovw.h>
#include <X11/Intrinsic.h>

void OVwXtMainLoop();

void OVwXtAppMainLoop(void \app_c);

 Description

OVwXtMainLoop is a replacement for XtMainLoop that dispatches NetView for AIX events and input
events registered with the NetView for AIX program, in addition to X events. It is intended for use with
applications that are using the Xt intrinsics.

OVwXtAppMainLoop is a replacement for XtAppMainLoop. It works like OVwXtMainLoop, but for a spe-
cific X application context.

Note: You cannot use these calls with OVwXtAddInput or OVwXtAppAddInput. Choose the routine that
works best for your X application.

 Parameters
 app_c

Specifies a pointer to the X application context for the application.

 Return Values

OVwXtMainLoop and OVwXtAppMainLoop have no return value.

 Chapter 2. Reference Pages 855

 OVwXtMainLoop(3)

 Examples

The following example depicts the code for OVwXtMainLoop. (Customize it you choose.):

#include <X11/Intrinsic.h>
#include <OV/ovw.h>
#include <stdlib.h>
#include <sys/stat.h>

/\ An X input handler to dispatch an NetView for AIX event \/
void
__OVwInputCB(XtPointer closure, int \fd, XtInputId \id)
{

struct stat buf;

/\ Process an NetView for AIX event \/
if (OVwProcessEvent() < ð) {

if (id && \id)
 XtRemoveInput(\id);
 OVwDone();
 return;

 /\

\\ If the file descriptor has gone bad, remove it from
\\ the Xt select loop.

 \/
if (fd && \fd >═ ð) {

if (fstat(\fd, &buf) < ð) {
if (id && \id)

 XtRemoveInput(\id);
 OVwDone();
 return;
 }
 }
}

void
OVwXtMainLoop()
{

int fd ═ OVwFileDescriptor();
if (fd >═ ð)

XtAddInput (fd, (XtPointer)XtInputReadMask, __OVwInputCB, NULL);
 while (1) {
 if (OVwPending())
 OVwProcessEvent();
 else
 XtProcessEvent(XtIMAll);
 }
}

 Implementation Specifics

OVwXtMainLoop and OVwXtAppMainLoop support single-byte and multi-byte character code sets.

856 Programmer's Reference

 OVwXtMainLoop(3)

 Libraries

When compiling a program that uses OVwXtMainLoop or OVwXtAppMainLoop, you need to link to the
following libraries:

 � /usr/OV/lib/libovw.a
 � /usr/OV/lib/libov.a
 � /usr/OV/lib/libntl.a

 Related Information
 � See ovw(1).
� See “OVwError(3)” on page 688.
� See “OVwInit(3)” on page 741.
� See “OVwApiIntro(5)” on page 560.

 Chapter 2. Reference Pages 857

 SnmpCleanup(3)

 SnmpCleanup(3)

 Purpose

Deallocates all WinSNMP application resources

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpCleanup (void);

 Description

The SnmpCleanup function informs the implementation that the calling application is disconnecting and no
longer requires the open resources allocated to it by the implementation. The implementation deallocates
all resources allocated to the application, unless they have also been allocated to other active applications.

Note: It is the responsibility of an application to use the respective SnmpFree<xxx> functions to free
specific resources created on its behalf and to use SnmpClose to clean-up after every session
opened with SnmpCreateSession.

If an application must perform an emergency exit and call SnmpCleanup without performing the
SnmpFree and SnmpClose steps, an implementation must cleanup all resources under its control
which were created on behalf of or otherwise allocated to that application. Even in this emergency
situation, however, the application must call SnmpCleanup to enable this functionality in the imple-
mentation.

 Return Values

When the function is successful, the return value is SNMPAPI_SUCCESS. Every subsequent WinSNMP
API function call, until another successful SnmpStartup call, returns SNMPAPI_FAILURE with
SnmpGetLastError or SnmpGetLastErrorStr set to report SNMPAPI_NOT_INITIALIZED.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. The application should
behave as though it had returned SNMPAPI_SUCCESS. As an additional step the application could call
SnmpGetLastError or SnmpGetLastErrorStr to ascertain the reason for failure.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

858 Programmer's Reference

 SnmpCleanup(3)

 Related Information
� See “SnmpClose(3)” on page 860.
� See “SnmpCreateSession(3)” on page 869.
� See “SnmpRecvMsg(3)” on page 919.
� See “SnmpRegister(3)” on page 922.
� See “SnmpGetLastErrorStr(3)” on page 898.
� See “SnmpSendMsg(3)” on page 927.
� See “SnmpStartup(3)” on page 942.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about WinSNMP communications functions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

 Chapter 2. Reference Pages 859

 SnmpClose(3)

 SnmpClose(3)

 Purpose

Closes a WinSNMP session

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpClose (
IN HSNMP_SESSION session);

 Description

The SnmpClose function causes the implementation to deallocate or close memory, resources, communi-
cations mechanisms, and data structures associated with the specified session on behalf of the calling
application.

Closing a session on asynchronous requests that are outstanding causes those requests to be discarded
by the implementation.

Note: A well-behaved WinSNMP application calls SnmpClose for each session opened by
SnmpCreateSession. When an emergency exit is required of the application, it must at least call
SnmpCleanup. A well-behaved WinSNMP implementation must react to an SnmpCleanup call as
though it were a series of SnmpClose calls for each open session allocated to the calling applica-
tion.

 Parameters
session Identifies the handle of the session to close.

 Return Values

When the function is successful, the return value is SNMPAPI_SUCCESS.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. Use SnmpGetLastError or
SnmpGetLastErrorStr to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_SESSION_INVALID Indicates that the session parameter is not valid.

860 Programmer's Reference

 SnmpClose(3)

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpCleanup(3)” on page 858.
� See “SnmpCreateSession(3)” on page 869.
� See “SnmpRecvMsg(3)” on page 919.
� See “SnmpRegister(3)” on page 922.
� See “SnmpGetLastErrorStr(3)” on page 898.
� See “SnmpSendMsg(3)” on page 927.
� See “SnmpStartup(3)” on page 942.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about WinSNMP communications functions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

 Chapter 2. Reference Pages 861

 SnmpContextToStr(3)

 SnmpContextToStr(3)

 Purpose

Retrieves a textual context descriptor corresponding to the given WinSNMP context

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpContextToStr (
 IN HSNMP_CONTEXT context,
 OUT smiLPOCTETS string);

 Description

The SnmpContextToStr function populates an smiOCTETS descriptor with a context value appropriate to
the entity/context translation mode in effect at the time of execution.

The application provides only the address of a valid smiOCTETS descriptor structure as the string param-
eter. The implementation, upon successful execution of the SnmpContextToStr function, populates the len
and ptr members of the descriptor. The application must call the SnmpFreeDescriptor, when appropriate,
to enable the implementation to free the memory resources so consumed.

Note: Strings referenced in descriptors (such as an smiOCTETS structure) do not require a NULL termi-
nating byte. Applications should not expect a NULL-terminated string to be returned in an OUTput
smiOCTETS parameter.

When the translation mode in effect is SNMPAPI_TRANSLATED, the implementation returns the user-
friendly textual name of this context value from the local database. When a user-friendly name does not
exist, the function returns either SNMPAPI_UNTRANSLATED_V1 or SNMPAPI_UNTRANSLATED_V2
(see the following descriptions), depending upon whether the context value is known to be an SNMPv1 or
SNMPv2 construct.

NetView for AIX Implementation Note

The WinSNMP local database is currently implemented as the configuration file:
/usr/OV/conf/snmpv2.conf. Users may define SNMPv2C and secure SNMPv2USEC agents by
inserting entries into this file.

When the translation mode in effect is SNMPAPI_UNTRANSLATED_V1 and the subject context value is
an SNMPv1 construct, the implementation returns the raw community string (which may contain non-
printable byte values). When the subject context value is an SNMPv2 construct, the implementation
behaves as though the entity/context translation mode setting were SNMPAPI_UNTRANSLATED_V2 for
the purposes of this call only.

When the translation mode in effect is SNMPAPI_UNTRANSLATED_V2 and the subject context value is
an SNMPv2 construct, the implementations returns the raw Context ID (in textual form). When the subject
entity is an SNMPv1 construct, the implementation behaves as though the entity/context translation mode
setting were SNMPAPI_UNTRANSLATED_V1 for the purposes of this call only.

862 Programmer's Reference

 SnmpContextToStr(3)

NetView for AIX Implementation Note

The SNMP_UNTRANSLATED_V2 mode above was originally based upon the old “Party Based
SNMPv2” model which is now historic. The IBM implementation now associates the
SNMPAPI_UNTRANSLATED_V2 mode with the newly standardized “Community Based SNMPv2C”
model.

When the translation mode in effect is SNMPAPI_UNTRANSLATED_V2, the IBM implementation does
not return a Context ID (obsolete) as described above but instead returns the raw community string as
it does for the SNMPAPI_UNTRANSLATED_V1 mode.

 Parameters
context Identifies the handle specifying a context.

string Identifies a pointer to an smiOCTETS descriptor buffer that receives the string which identifies
the context.

 Return Values

When the function is successful, the return value is SNMPAPI_SUCCESS.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. Use the SnmpGetLastError
or SnmpGetLastErrorStr function to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_CONTEXT_INVALID Indicates that the context handle is not valid.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpEntityToStr(3)” on page 884.
� See “SnmpFreeContext(3)” on page 886.
� See “SnmpFreeEntity(3)” on page 890.
� See “SnmpStrToContext(3)” on page 945.
� See “SnmpStrToEntity(3)” on page 948.

 Chapter 2. Reference Pages 863

 SnmpContextToStr(3)

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about entity and context translation modes and the section about entity and context func-
tions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

864 Programmer's Reference

 SnmpCountVbl(3)

 SnmpCountVbl(3)

 Purpose

Counts the number of varbinds in a varbindlist structure

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpCountVbl (
 IN HSNMP_VBL vbl);

 Description

The SnmpCountVbl function counts the number of varbinds in the varbindlist identified by the vbl input
parameter.

The value returned when the result is SNMPAPI_SUCCESS represents the maximum “index” value in the
SnmpGetVb and SnmpSetVb functions.

 Parameters
vbl Identifies the subject varbindlist.

 Return Values

When the function is successful, the return value is the count of varbinds in the varbindlist.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. Use the SnmpGetLastError
or SnmpGetLastErrorStr function to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_VBL_INVALID Indicates that the vbl parameter is not valid.

SNMPAPI_NOOP Indicates that the vbl resources contained no varbinds at this time.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Chapter 2. Reference Pages 865

 SnmpCountVbl(3)

 Related Information
� See “SnmpCreateVbl(3)” on page 872.
� See “SnmpDeleteVb(3)” on page 876.
� See “SnmpDuplicateVbl(3)” on page 880.
� See “SnmpFreeVbl(3)” on page 894.
� See “SnmpGetVb(3)” on page 911.
� See “SnmpSetVb(3)” on page 940.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about WinSNMP variable binding functions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

866 Programmer's Reference

 SnmpCreatePdu(3)

 SnmpCreatePdu(3)

 Purpose

Creates an SNMP protocol data unit (PDU) for use in subsequent communication requests

 Syntax
#include <WinSNMP.h>

HSNMP_PDU SnmpCreatePdu (
 IN HSNMP_SESSION session,
 IN smiINT PDU_type,
 IN smiINT32 request_id,

IN smiINT error_status, -- "non_repeaters" for BulkPDU
IN smiINT error_index, -- "max_repetitions" for BulkPDU

 IN HSNMP_VBL vbl);

 Description

The SnmpCreatePdu function allocates and initializes an SNMP protocol data unit for subsequent use in
SnmpSendMsg, SnmpEncodeMsg, and other functions.

All input parameters to SnmpCreatePdu must be present. If all input parameters (other than the session
parameter) are Null, the created PDU defaults to the following attributes:

PDU_type: SNMP_PDU_GETNEXT
request_id: <WinSNMP-generated value>
error_status: SNMP_ERROR_NOERROR
error_index: 0
vbl: NULL

After completing operations with the created PDU, the SnmpFreePdu function should be called to release
the resources allocated to the PDU by the SnmpCreatePdu function.

 Parameters
session Identifies the handle of the allocating session.

PDU_type
NULL or one of the following values. If NULL, the WinSNMP implementation supplies
SNMP_PDU_GETNEXT.

request_id
An application-supplied value used to identify the PDU or NULL, in which case the WinSNMP
implementation supplies a value.

SNMP_PDU_GET Indicates a GetRequest PDU
SNMP_PDU_GETNEXT Indicates a GetNextRequest PDU
SNMP_PDU_GETBULK Indicates an SNMPv2 GetBulkRequest PDU
SNMP_PDU_V1TRAP Indicates an SNMPv1 Trap PDU
SNMP_PDU_SET Indicates a SetRequest PDU
SNMP_PDU_INFORM Indicates an SNMPv2 InformRequest PDU
SNMP_PDU_RESPONSE Indicates a Response PDU
SNMP_PDU_TRAP Indicates an SNMPv2 Trap PDU

 Chapter 2. Reference Pages 867

 SnmpCreatePdu(3)

error_status
Ignored (and may be NULL) on input for all PDU types except SNMP_PDU_GETBULK, in
which case it represents the value for non_repeaters. For all other PDU types, the WinSNMP
implementation supplies SNMP_ERROR_NOERROR.

error_index
Ignored (and may be NULL) on input for all PDU types except SNMP_PDU_GETBULK, in
which case it represents the value for max_repetitions. The WinSNMP implementation returns
0 (zero) for all other PDU types.

vbl A handle to a varbindlist data structure (or NULL).

 Return Values

When the function is successful, the return value identifies the created SNMP PDU handle.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. Use the SnmpGetLastError
or SnmpGetLastErrorStr function to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_SESSION_INVALID Indicates that the session handle is not valid.

SNMPAPI_PDU_INVALID Indicates that the PDU_type value is not valid.

SNMPAPI_VBL_INVALID Indicates that the vbl is not valid.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpDuplicatePdu(3)” on page 878.
� See “SnmpGetPduData(3)” on page 900.
� See “SnmpFreePdu(3)” on page 892.
� See “SnmpSetPduData(3)” on page 930.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about WinSNMP PDU functions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

868 Programmer's Reference

 SnmpCreateSession(3)

 SnmpCreateSession(3)

 Purpose

Creates a WinSNMP session and initializes resources for subsequent communication functions

 Syntax
#include <WinSNMP.h>

HSNMP_SESSION SnmpCreateSession (IN HWND hWnd,
IN UINT wMsg,
IN CALLBACK fCallBack,
IN LPVOID lpClientData);

 Description

The SnmpCreateSession function enables the implementation to allocate and initialize memory, resources,
communications mechanisms, and data structures for the application. The application continues to use
the “session identifier” returned by the implementation in subsequent WinSNMP function calls to facilitate
resource accounting on a per session basis. This mechanism enables the implementation to perform an
orderly release of resources in response to a subsequent SnmpClose function call for a given session.

An application can open multiple sessions. A successful SnmpCreateSession call always returns a unique
session handle (with respect to all other currently open sessions for the calling application).

Two popular modes of window notification are possible using SnmpCreateSession, notification messages
and notification callbacks. The hWnd parameter specifies the window handle to be notified when an asyn-
chronous request completes or trap/notification occurs. If the implementation supports notification mes-
sages, the wMsg parameter specifies the message number that the window is sent. If the implementation
supports notification callbacks, the fCallBack parameter is a pointer to the applications callback function
which will be executed to inform the window that an asynchronous request has completed or failed.
Although an implementation may support both notification modes, the application must indicate which
mode the new WinSNMP session is to use. The wMsg and fCallBack parameters are therefore mutually
exclusive. If one is specified, the other must be set to NULL.

NetView for AIX Implementation Note

The IBM implementation supports notification callbacks only, since this is the method used by the AIX
X-Window system. This implementation interprets the hWnd parameter as an X-Window application
context which identifies the window to be notified. A NULL hWnd parameter indicates that the calling
application is not X-Window based (such as an AIX command line application). The HWND data type
is equivalent to the XtAppContext type as returned by numerous X-Window Intrinsics functions (for
example, XtAppInitialize(), XtCreateApplicationContext(), XtDisplayToApplicationContext(), and
XtWidgetToApplicationContext()).

Since the notification message model is not supported, the wMsg parameter is not used by the IBM
implementation. The user should set this parameter to NULL.

The format of the user's callback function should be as follows:

 Chapter 2. Reference Pages 869

 SnmpCreateSession(3)

 CALLBACK <fCallBack> (IN HSNMP_SESSION session,
IN HWND hWnd,
IN UINT wMsg,
IN WPARAM wParam,
IN LPARAM lParam,
IN LPVOID lpClientData);

The session parameter contains the owning session ID of the request being processed. The hWnd
parameter contains the X-Window ID (XtAppContext) which corresponds to the owning session. Since the
notification message model is not supported, the the wMsg parameter is zero (0). If this is a failed
request, the wParam parameter contains one of the error codes listed for “SnmpRecvMsg(3)” on
page 919. The lParam parameter contains the request ID of the request being processed. The
lpClientData parameter points to generic data supplied by the user.

If the callback is executed with wParam set to NULL (indicating a successful request), the function should
proceed to SnmpRecvMsg to retrieve the subject PDU for immediate or subsequent processing. If the
callback is executed with wParam set to a non-NULL error code, the function may want to notify the user
or perform some other corrective action.

Note: A well-behaved WinSNMP application will call SnmpClose for each session opened by
SnmpCreateSession. When an emergency exit is required of the application, it must at least call
SnmpCleanup. The implementation reacts as though a series of SnmpClose calls for each open
session allocated to the calling application has been received.

 Parameters
hWnd Identifies the application's notification window (X-Window application context).

wMsg This parameter is ignored by NetView for AIX. Should be set to NULL.

fCallBack Identifies the application's callback function.

lpClientData
Pointer to generic application data.

 Return Values

When the function is successful, the return value is a handle which identifies the WinSNMP session
opened by the implementation on behalf of the calling application.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. Use the SnmpGetLastError
or SnmpGetLastErrorStr function to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_HWND_INVALID Indicates that the hWnd parameter is not a valid window handle.

SNMPAPI_MSG_INVALID Indicates that the wMsg parameter is not a valid message value.

SNMPAPI_MODE_INVALID Indicates that the combination of values passed does not identify a valid
notification mode.

870 Programmer's Reference

 SnmpCreateSession(3)

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpCleanup(3)” on page 858.
� See “SnmpClose(3)” on page 860.
� See “SnmpRecvMsg(3)” on page 919.
� See “SnmpRegister(3)” on page 922.
� See “SnmpGetLastErrorStr(3)” on page 898.
� See “SnmpSendMsg(3)” on page 927.
� See “SnmpStartup(3)” on page 942.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about sessions and the section about WinSNMP communications functions in the NetView
for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

 Chapter 2. Reference Pages 871

 SnmpCreateVbl(3)

 SnmpCreateVbl(3)

 Purpose

Creates and initializes a new varbindlist structure

 Syntax
#include <WinSNMP.h>

HSNMP_VBL SnmpCreateVbl (
 IN HSNMP_SESSION session,
 IN smiLPCOID name,
 IN smiLPCVALUE value);

 Description

The SnmpCreateVbl function creates a new varbindlist structure for the calling application. If the name
and value parameters are not NULL, SnmpCreateVbl uses them to construct the initial varbind member of
the varbindlist.

If the name parameter is not NULL and the value parameter is NULL, the varbindlist is initialized, with the
value set to NULL and with the syntax of SNMP_SYNTAX_NULL. If the name parameter is NULL, the
varbindlist is not initialized, and the value parameter is ignored.

Each call to SnmpCreateVbl must be matched with a corresponding call to SnmpFreeVbl to release the
resources associated with the varbindlist. A memory leak results if a variable used to hold an
HSNMP_VBL value returned by SnmpCreateVbl (or SnmpDuplicateVbl) is reused for a subsequent
SnmpCreateVbl (or SnmpDuplicateVbl) operation before it has been passed to SnmpFreeVbl.

 Parameters
session Identifies the handle of the allocating session.

name If not NULL, points to an OID for initialization of the varbindlist.

value If not NULL, points to a value for initialization of the varbidlist.

 Return Values

When the function is successful, the return value identifies a handle to the newly created varbindlist struc-
ture.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. Use the SnmpGetLastError
or SnmpGetLastErrorStr function to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

872 Programmer's Reference

 SnmpCreateVbl(3)

SNMPAPI_SESSION_INVALID Indicates that the session handle is not valid.

SNMPAPI_OID_INVALID Indicates that the name parameter referenced an OID structure that is
not valid.

SNMPAPI_SYNTAX_INVALID Indicates that the syntax field of the value parameter is not valid.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpCountVbl(3)” on page 865.
� See “SnmpDeleteVb(3)” on page 876.
� See “SnmpDuplicateVbl(3)” on page 880.
� See “SnmpFreeVbl(3)” on page 894.
� See “SnmpGetVb(3)” on page 911.
� See “SnmpSetVb(3)” on page 940.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about WinSNMP variable binding functions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

 Chapter 2. Reference Pages 873

 SnmpDecodeMsg(3)

 SnmpDecodeMsg(3)

 Purpose

Decodes the specified SNMP message

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpDecodeMsg (
 IN HSNMP_SESSION session,
 OUT LPHSNMP_ENTITY srcEntity,
 OUT LPHSNMP_ENTITY dstEntity,
 OUT LPHSNMP_CONTEXT context,
 OUT LPHSNMP_PDU pdu,
 IN smiLPCOCTETS msgBufDesc);

 Description

The SnmpDecodeMsg function is the converse of the SnmpEncodeMsg function. It takes as input a
session identifier and a far pointer to an smiOCTETS structure which describes an encoded or serialized
SNMP message to be decoded into its constituent components. The session identifier is required because
new resources are created by the implementation and allocated to the application as a result of calling this
function, if it is successful. The msgBufDesc input parameter consists of two elements: the len member
identifies the maximum number of bytes to process and the ptr member points to the encoded or serial-
ized SNMP message to decode.

The SnmpDecodeMsg function is meant to be symmetrical with the SnmpEncodeMsg function. Refer to
“SnmpEncodeMsg(3)” on page 882 for additional insight into the operation and possible failure modes of
the SnmpDecodeMsg function.

 Parameters
session Identifies the session that performs the operation.

srcEntity Identifies the subject management entity.

dstEntity Identifies the target management entity.

context Identifies the target context of interest.

PDU Identifies the SNMP protocol data unit.

msgBufDesc
Identifies the buffer holding the encoded SNMP message.

 Return Values

When the function is successful, the return value is the actual number of bytes decoded. This may be
equal to or less than the len member of the msgBufDesc input parameter. Also, upon success, the
SnmpDecodeMsg returns handle values in the srcEntity, dstEntity, context, and pdu output parameters.
These resources are to be freed by the application using the appropriate SnmpFree<xxx> functions, or by
the implementation in response to an SnmpClose or SnmpCleanup function call.

874 Programmer's Reference

 SnmpDecodeMsg(3)

When the function is unsuccessful, the return value is SNMPAPI_FAILURE and SnmpGetLastError or
SnmpGetLastErrorStr is set to report one of the following error codes.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_SESSION_INVALID Indicates that a session parameter is not valid.

SNMPAPI_ENTITY_INVALID Indicates that an entity parameter is not valid.

SNMPAPI_CONTEXT_INVALID Indicates that the context parameter is not valid.

SNMPAPI_PDU_INVALID Indicates that the PDU parameter is not valid.

SNMPAPI_OUTPUT_TRUNCATED
Indicates that the buffer was too small. That is, len bytes of ptr were
consumed before reaching the end of the encoded message; no output
parameters are created.

SNMPAPI_MESSAGE_INVALID Indicates that the SNMP message described by the msgBufDesc param-
eter is not valid; no output resources are created.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpEncodeMsg(3)” on page 882.
� See “SnmpFreeDescriptor(3)” on page 888.
� See “SnmpGetLastError(3)” on page 896.
� See “SnmpGetLastErrorStr(3)” on page 898.
� See “SnmpOidCompare(3)” on page 913.
� See “SnmpOidCopy(3)” on page 915.
� See “SnmpOidToStr(3)” on page 917.
� See “SnmpStrToOid(3)” on page 951.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about WinSNMP utility functions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

 Chapter 2. Reference Pages 875

 SnmpDeleteVb(3)

 SnmpDeleteVb(3)

 Purpose

Deallocates resources associated with the specified WinSNMP varbindlist

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpDeleteVb (
 IN HSNMP_VBL vbl,
 IN smiUINT32 index);

 Description

The SnmpDeleteVb function removes a varbind entry from a varbindlist.

Valid values for the index parameter come from the SnmpCountVbl function and from the error_index
component of GetResponse PDUs returned with the SnmpRecvMsg function. These values range from 1
to n, where n is the total number of varbinds in the varbindlist.

A typical use for this function is when a GetResponse PDU includes an SNMP error and the user elects to
resubmit the original request PDU without the offending varbind.

Following a successful SnmpDeleteVb operation, any varbinds that previously came after the deleted
varbind, logically “move up” in the varbindlist, this means that their index values decrease by one position
and the total number of varbinds in the varbindlist, as returned by SnmpCountVbl, also decrease by one.

It is legal to end up with an empty varbindlist by executing SnmpDeleteVb (hVBL, 1) on the last remaining
varbind in a varbindlist. In this case, the varbindlist itself (as a HANDLE'd object) is valid and must even-
tually be released through SnmpFreeVbl.

Sample pseudo-code for SnmpDeleteVb:

-- Omitting error-checking the function calls for clarity's sake...
nReqID = SnmpRecvMsg (session, &rSrc, &rDst, &rCtx, &rPDU);
SnmpGetPduData (rPDU, &rType, &rReqid, &rErrstat, &rErridx, &rVBL);
-- Assuming type == GetResponse-PDU and
-- Assuming error_status != SNMP_ERROR_NOERROR...
-- Assuming the error is something we cannot or do not want to fix...

-- If error_index == 1, do an SnmpCountVbl (3);
-- if count <= 1 follow another strategy (like SnmpFreeVbl (sVBL))

-- Assuming error_index > 1 || count > 1...
SnmpDeleteVb (sVBL, rErridx);
-- And assuming we want to re-try the SNMP operation
-- ...with a new Request_ID just for good measure...
sReqid++;
SnmpSetPduData (sPDU, NULL, &sReqid, NULL, NULL, &sVBL);
SnmpSendMsg (session, sSrc, sDst, sCtx, sPDU);
-- No need for the received PDU or VBL any longer...
SnmpFreePdu (rPDU);
SnmpFreeVbl (rVBL);
-- Go back to doing what we were doing before all of this started...

876 Programmer's Reference

 SnmpDeleteVb(3)

 Parameters
vbl Identifies the target varbindlist.

index Identifies the position of the subject varbind within the varbindlist.

 Return Values

When the function is successful, the return value is SNMPAPI_SUCCESS.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. Use the SnmpGetLastError
or SnmpGetLastErrorStr function to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_VBL_INVALID Indicates that the vbl parameter is not valid.

SNMPAPI_INDEX_INVALID Indicates that the index parameter is not valid.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpCountVbl(3)” on page 865.
� See “SnmpCreateVbl(3)” on page 872.
� See “SnmpDuplicateVbl(3)” on page 880.
� See “SnmpFreeVbl(3)” on page 894.
� See “SnmpGetVb(3)” on page 911.
� See “SnmpSetVb(3)” on page 940.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about WinSNMP variable binding functions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

 Chapter 2. Reference Pages 877

 SnmpDuplicatePdu(3)

 SnmpDuplicatePdu(3)

 Purpose

Duplicates the specified PDU

 Syntax
#include <WinSNMP.h>

HSNMP_PDU SnmpDuplicatePdu (
 IN HSNMP_SESSION session,
 IN HSNMP_PDU PDU);

 Description

The SnmpDuplicatePdu function duplicates an SNMP PDU structure identified by the PDU parameter.

After using the duplicated message, the SnmpFreePdu function should be called to release the resources
allocated to the PDU by the SnmpDuplicatePdu function.

Note: The handle returned by a successful call to SnmpDuplicatePdu is unique among active PDU
handles, at least within the calling application.

 Parameters
session Identifies the handle of the allocating session.

PDU Identifies the SNMP PDU to duplicate.

 Return Values

When the function is successful, the return value is a handle which identifies the new (duplicated) SNMP
PDU.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. Use the SnmpGetLastError
or SnmpGetLastErrorStr function to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_SESSION_INVALID Indicates that the session handle is not valid.

SNMPAPI_PDU_INVALID Indicates that the PDU parameter is not valid.

878 Programmer's Reference

 SnmpDuplicatePdu(3)

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpCreatePdu(3)” on page 867.
� See “SnmpFreePdu(3)” on page 892.
� See “SnmpGetPduData(3)” on page 900.
� See “SnmpSetPduData(3)” on page 930.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about WinSNMP PDU functions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

 Chapter 2. Reference Pages 879

 SnmpDuplicateVbl(3)

 SnmpDuplicateVbl(3)

 Purpose

Duplicates the specified varbindlist structure

 Syntax
#include <WinSNMP.h>

HSNMP_VBL SnmpDuplicateVbl (
 IN HSNMP_SESSION session,
 IN HSNMP_VBL vbl);

 Description

The SnmpDuplicateVbl function creates a new varbindlist structure for the specified session in the calling
application and initializes it with a copy of the input vbl parameter (which may be empty).

Every call to SnmpDuplicateVbl must be matched with a corresponding call to SnmpFreeVbl to release the
resources associated with the varbindlist. A memory leak results if a variable used to hold an
HSNMP_VBL value returned by SnmpDuplicateVbl (or SnmpCreateVbl) is reused for a subsequent
SnmpDuplicateVbl (or SnmpCreateVbl) operation before it has been passed to SnmpFreeVbl.

Note: The handle returned by a successful call to SnmpDuplicateVbl is unique among active VBL
handles, at least within the calling application.

 Parameters
session Identifies the handle of the allocating session.

vbl Identifies the varbindlist to be duplicated.

 Return Values

When the function is successful, the return value identifies a newly created varbindlist structure.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. Use the SnmpGetLastError
or SnmpGetLastErrorStr function to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_SESSION_INVALID Indicates that the session handle is not valid.

SNMPAPI_VBL_INVALID Indicates that the vbl parameter is not valid.

880 Programmer's Reference

 SnmpDuplicateVbl(3)

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpCountVbl(3)” on page 865.
� See “SnmpCreateVbl(3)” on page 872.
� See “SnmpDeleteVb(3)” on page 876.
� See “SnmpFreeVbl(3)” on page 894.
� See “SnmpGetVb(3)” on page 911.
� See “SnmpSetVb(3)” on page 940.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about WinSNMP variable binding functions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

 Chapter 2. Reference Pages 881

 SnmpEncodeMsg(3)

 SnmpEncodeMsg(3)

 Purpose

Encodes an SNMP message without sending it

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpEncodeMsg (
 IN HSNMP_SESSION session,
 IN HSNMP_ENTITY srcEntity,
 IN HSNMP_ENTITY dstEntity,
 IN HSNMP_CONTEXT context,
 IN HSNMP_PDU pdu,
 OUT smiLPOCTETS msgBufDesc);

 Description

The SnmpEncodeMsg routine takes as its first five input parameters the same parameters passed to
SnmpSendMsg. The implementation uses these parameters to form an SNMP “message” as though they
had arrived through the SnmpSendMsg function. The implementation does not, however, attempt to
transmit the resulting message to the dstEntity parameter. Instead, it uses the msgBufDesc parameter to
return to the application the encoded or serialized SNMP message that it would have transmitted to the
dstEntity parameter if SnmpSendMsg had been called.

The member elements of the smiOCTETS structure pointed to by the msgBufDesc structure are ignored
and overwritten by the implementation upon a successful execution of this function.

The application must eventually call the SnmpFreeDescriptor function to enable the implementation to free
any resources that might have been allocated to populate the ptr member of the msgBufDesc structure.

When the normal integrity checks performed for SnmpSendMsg are unsuccessful for any of the first five
input parameters, the return value is SNMPAPI_FAILURE and SnmpGetLastError or SnmpGetLastErrorStr
is set to return the appropriate extended error code.

 Parameters
session Identifies the session that performs the operation.

srcEntity Identifies the subject management entity.

dstEntity Identifies the target management entity.

context Identifies the target context of interest.

PDU Identifies the SNMP PDU containing the requested operation.

msgBufDesc
Identifies the variable to receive the encoded SNMP message.

882 Programmer's Reference

 SnmpEncodeMsg(3)

 Return Values

When the function is successful, the return value is the length, in bytes, of the encoded SNMP message.
(This value is also in the len member of the msgBufDesc output parameter.)

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. Use SnmpGetLastError or
SnmpGetLastErrorStr to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_SESSION_INVALID Indicates that a session parameter is not valid.

SNMPAPI_ENTITY_INVALID Indicates that an entity parameter is not valid.

SNMPAPI_CONTEXT_INVALID Indicates that the context parameter is not valid.

SNMPAPI_PDU_INVALID Indicates that the PDU parameter is not valid.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpDecodeMsg(3)” on page 874.
� See “SnmpFreeDescriptor(3)” on page 888.
� See “SnmpGetLastError(3)” on page 896.
� See “SnmpGetLastErrorStr(3)” on page 898.
� See “SnmpOidCompare(3)” on page 913.
� See “SnmpOidCopy(3)” on page 915.
� See “SnmpOidToStr(3)” on page 917.
� See “SnmpStrToOid(3)” on page 951.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about WinSNMP utility functions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

 Chapter 2. Reference Pages 883

 SnmpEntityToStr(3)

 SnmpEntityToStr(3)

 Purpose

Returns a textual string for the given WinSNMP entity

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpEntityToStr (
 IN HSNMP_ENTITY entity,
 IN smiUINT32 size,
 OUT LPSTR string);

 Description

The SnmpEntityToStr function returns a string value identifying an entity.

When the translation mode in effect is SNMPAPI_TRANSLATED, the implementation returns the user-
friendly textual name of this entity from the local database. When a user-friendly name does not exist, the
function returns either SNMPAPI_UNTRANSLATED_V1 or SNMPAPI_UNTRANSLATED_V2 (see the fol-
lowing descriptions), depending upon whether the entity is known to be SNMPv1 or SNMPv2.

NetView for AIX Implementation Note

The WinSNMP local database is currently implemented as the configuration file:
/usr/OV/conf/snmpv2.conf. Users may define SNMPv2C and secure SNMPv2USEC agents by
inserting entries into this file.

When the setting is SNMPAPI_UNTRANSLATED_V1 and the subject entity is an SNMPv1 creature, the
implementation returns the transport address of the entity (in textual form). When the subject entity is an
SNMPv2 creature, the implementation behaves as though the entity/context translation mode setting were
SNMPAPI_UNTRANSLATED_V2 for the purposes of this call only.

When the setting is SNMPAPI_UNTRANSLATED_V2 and the subject entity is an SNMPv2 creature, the
implementation returns the PartyID of the entity (in textual form). When the subject entity is an SNMPv1
creature, the implementation behaves as though the entity/context translation mode setting were
SNMPAPI_UNTRANSLATED_V1 for the purposes of this call only.

NetView for AIX Implementation Note

The SNMPAPI_UNTRANSLATED_V2 mode above was originally based upon the old “Party Based
SNMPv2” model which is now historic. The IBM implementation now associates the
SNMPAPI_UNTRANSLATED_V2 mode with the newly standardized “Community Based SNMPv2C“
model.

When the translation mode in effect is SNMPAPI_UNTRANSLATED_V2, the IBM implementation does
not return a PartyID (obsolete) as described above, but instead returns the textual form of the transport
address of the entity as it does for the SNMPAPI_UNTRANSLATED_V1 mode.

884 Programmer's Reference

 SnmpEntityToStr(3)

 Parameters
entity Identifies the handle specifying an entity.

size The size of the buffer that the application is providing to contain the string.

string Points to a buffer that receives the NULL-terminated string that identifies the management
entity.

 Return Values

When the function is successful, the return value is the number of bytes, including the NULL terminating
byte, in the output string. This return value may be less than or equal to the size parameter, but not
greater.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. Use the SnmpGetLastError
or SnmpGetLastErrorStr function to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_ENTITY_INVALID Indicates that the entity parameter is unknown.

SNMPAPI_OUTPUT_TRUNCATED
Indicates that the buffer was too small.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpContextToStr(3)” on page 862.
� See “SnmpFreeContext(3)” on page 886.
� See “SnmpFreeEntity(3)” on page 890.
� See “SnmpStrToContext(3)” on page 945.
� See “SnmpStrToEntity(3)” on page 948.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about entity and context translation modes and the section about entity and context func-
tions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

 Chapter 2. Reference Pages 885

 SnmpFreeContext(3)

 SnmpFreeContext(3)

 Purpose

Deallocates resources for the specified WinSNMP context

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpFreeContext (
 IN HSNMP_CONTEXT context);

 Description

The SnmpFreeContext function releases resources associated with a context returned by the
SnmpStrToContext function.

Un-freed resources created on behalf of the application are freed by the implementation upon execution of
an associated SnmpClose function or upon execution of an SnmpCleanup function. Nonetheless, a well-
behaved WinSNMP application individually frees all such resources using the atomic "free" functions. This
eliminates or, at least, minimizes batch-like loads on the implementation, so that other applications can be
serviced in a timely fashion.

 Parameters
context Identifies a context handle to be released.

 Return Values

When the function is successful, the return value is SNMPAPI_SUCCESS.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. Use the SnmpGetLastError
or SnmpGetLastErrorStr function to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_CONTEXT_INVALID Indicates that the context parameter is not valid.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

886 Programmer's Reference

 SnmpFreeContext(3)

 Related Information
� See “SnmpContextToStr(3)” on page 862.
� See “SnmpEntityToStr(3)” on page 884.
� See “SnmpFreeEntity(3)” on page 890.
� See “SnmpStrToContext(3)” on page 945.
� See “SnmpStrToEntity(3)” on page 948.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about entity and context functions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

 Chapter 2. Reference Pages 887

 SnmpFreeDescriptor(3)

 SnmpFreeDescriptor(3)

 Purpose

Deallocates resources associated with the specified WinSNMP descriptor object

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpFreeDescriptor (
 IN smiUINT32 syntax,
 IN smiLPOPAQUE descriptor);

 Description

The SnmpFreeDescriptor function is used by the application to inform the implementation that it no longer
requires access to a WinSNMP “descriptor object” that had been “populated” earlier on its behalf by the
implementation.

WinSNMP descriptor objects are either smiOID or smiOCTETS structures (or equivalents, such as
smiIPADDR and smiOPAQUE) and consist of a len member and a ptr member.

These objects are populated by the implementation on behalf of the application in response to any OUT
parameter of type smiOID, smiOCTETS, and smiVALUE. (Any smiVALUE structure may or may not
contain an smiOID or smiOCTETS structure in its value member upon return from SnmpGetVb, as indi-
cated by the associated syntax member of the smiVALUE structure.) In addition to SnmpGetVb, the fol-
lowing functions also result in the implementation populating a descriptor object for the application:
SnmpContextToStr, SnmpStrToOid, SnmpOidCopy, and SnmpEncodeMsg. Others may be added later.

Applications should not attempt to free memory returned in the ptr member of descriptor objects that have
been populated by the implementation. The method of memory allocation and, consequently, deallocation,
for these variables is private to the implementation, and hidden from the application except for the
SnmpFreeDescriptor interface described in this section.

The syntax parameter can be used by implementations to distinguish among different varieties of
descriptor objects, if necessary. The SNMPAPI_OPERATION_INVALID error can be returned if, for
example, the descriptor parameter does not satisfy implementation-specific requirements. For example,
the implementation can recognize that the ptr member does not identify an allocation that it has made on
behalf of the calling application or if the indicated allocation had already been released by the application
in a prior call to the SnmpFreeDescriptor.

 Parameters
syntax Identifies the “syntax” (data type) of the target descriptor.

descriptor Identifies the target descriptor object.

 Return Values

When the function is successful, the return value is SNMPAPI_SUCCESS.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE and SnmpGetLastError or
SnmpGetLastErrorStr is set to report one of the following error codes.

888 Programmer's Reference

 SnmpFreeDescriptor(3)

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_SYNTAX_INVALID Indicates that the syntax parameter is not valid.

SNMPAPI_OPERATION_INVALID
Indicates that the descriptor parameter is not valid.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpDecodeMsg(3)” on page 874.
� See “SnmpEncodeMsg(3)” on page 882.
� See “SnmpGetLastError(3)” on page 896.
� See “SnmpGetLastErrorStr(3)” on page 898.
� See “SnmpOidCompare(3)” on page 913.
� See “SnmpOidCopy(3)” on page 915.
� See “SnmpOidToStr(3)” on page 917.
� See “SnmpStrToOid(3)” on page 951.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about WinSNMP descriptors and the section about WinSNMP utility functions in the
NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

 Chapter 2. Reference Pages 889

 SnmpFreeEntity(3)

 SnmpFreeEntity(3)

 Purpose

Deallocates resources for the specified WinSNMP entity

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpFreeEntity (
 IN HSNMP_ENTITY entity);

 Description

The SnmpFreeEntity function releases resources associated with an entity returned by the
SnmpStrToEntity function.

Un-freed resources created on behalf of the application are freed by the implementation upon execution of
an associated SnmpClose function or upon execution of an SnmpCleanup function. Nonetheless, a well-
behaved WinSNMP application individually frees all such resources using the atomic "free" functions. This
eliminates or, at least, minimizes batch-like loads on the implementation, so that other applications can be
serviced in a timely fashion.

 Parameters
entity Identifies the entity handle to be released.

 Return Values

When the function is successful, the return value is SNMPAPI_SUCCESS.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. Use the SnmpGetLastError
or SnmpGetLastErrorStr function to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_ENTITY_INVALID Indicates that the entity parameter is not valid.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

890 Programmer's Reference

 SnmpFreeEntity(3)

 Related Information
� See “SnmpContextToStr(3)” on page 862.
� See “SnmpEntityToStr(3)” on page 884.
� See “SnmpFreeContext(3)” on page 886.
� See “SnmpStrToContext(3)” on page 945.
� See “SnmpStrToEntity(3)” on page 948.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about entity and context functions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

 Chapter 2. Reference Pages 891

 SnmpFreePdu(3)

 SnmpFreePdu(3)

 Purpose

Deallocates resources for the specified WinSNMP PDU

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpFreePdu (
 IN HSNMP_PDU PDU);

 Description

The SnmpFreePdu function releases resources associated with a PDU previously created by the
SnmpCreatePdu or SnmpDuplicatePdu function.

Un-freed resources created on behalf of the application are freed by the implementation upon execution of
an associated SnmpClose function or upon execution of an SnmpCleanup function. Nonetheless, a well-
behaved WinSNMP application individually frees all such resources using the atomic "free" functions. This
eliminates or, at least, minimizes batch-like loads on the implementation, so that other applications can be
serviced in a timely fashion.

Varbinds and VarBindLists are reusable independently of any given PDU. In WinSNMP, a varbind does
not exist outside of a varbindlist (even if the latter consists of only a single varbind). There is a separate
atomic function, SnmpFreeVbl, that deallocates varbindlist resources. Upon execution of SnmpFreePdu,
the WinSNMP implementation must free internal resources allocated to VBLs for that PDU. The internal
resources are different from the HSNMP_VBL resources requested and held by a session in the calling
application.

 Parameters
PDU Identifies the SNMP protocol data unit to be freed.

 Return Values

When the function is successful, the return value is SNMPAPI_SUCCESS.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. Use the SnmpGetLastError
or SnmpGetLastErrorStr function to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_PDU_INVALID Indicates that the PDU parameter is not valid.

892 Programmer's Reference

 SnmpFreePdu(3)

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpCreatePdu(3)” on page 867.
� See “SnmpDuplicatePdu(3)” on page 878.
� See “SnmpGetPduData(3)” on page 900.
� See “SnmpSetPduData(3)” on page 930.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about WinSNMP PDU functions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

 Chapter 2. Reference Pages 893

 SnmpFreeVbl(3)

 SnmpFreeVbl(3)

 Purpose

Deallocates resources associated with the specific VBL

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpFreeVbl (
 IN HSNMP_VBL vbl);

 Description

The SnmpFreeVbl function releases resources associated with a varbindlist structure previously allocated
by SnmpCreateVbl or SnmpDuplicateVbl. It is the responsibility of the WinSNMP applications to free
varbindlist resources allocated through calls to SnmpCreateVbl and SnmpDuplicateVbl.

Every call to SnmpCreateVbl must be matched with a corresponding call to SnmpFreeVbl to release the
resources associated with the varbindlist. A memory leak results if a variable used to hold an
HSNMP_VBL value returned by SnmpCreateVbl is reused for a subsequent SnmpCreateVbl operation
before it has been passed to SnmpFreeVbl.

Un-freed resources created on behalf of the application are freed by the implementation upon execution of
an associated SnmpClose function or upon execution of an SnmpCleanup function. Nonetheless, a well-
behaved WinSNMP application individually frees all such resources using the atomic "free" functions. This
eliminates or, at least, minimizes batch-like loads on the implementation, so that other applications can be
serviced in a timely fashion.

 Parameters
vbl Identifies the varbindlist to be released.

 Return Values

When the function is successful, the return value is SNMPAPI_SUCCESS.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. Use the SnmpGetLastError
or SnmpGetLastErrorStr function to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_VBL_INVALID Indicates that the vbl parameter is not valid.

894 Programmer's Reference

 SnmpFreeVbl(3)

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpCountVbl(3)” on page 865.
� See “SnmpCreateVbl(3)” on page 872.
� See “SnmpDeleteVb(3)” on page 876.
� See “SnmpDuplicateVbl(3)” on page 880.
� See “SnmpGetVb(3)” on page 911.
� See “SnmpSetVb(3)” on page 940.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about WinSNMP variable binding functions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

 Chapter 2. Reference Pages 895

 SnmpGetLastError(3)

 SnmpGetLastError(3)

 Purpose

Indicates why the last WinSNMP operation failed

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpGetLastError (
 IN HSNMP_SESSION session);

 Description

The SnmpGetLastError function returns an indication of why the last WinSNMP operation executed by the
application was unsuccessful.

This function should be called immediately after each unsuccessful API call, as the error information will
be overwritten by the next unsuccessful API call.

The session input parameter is provided to facilitate accommodation of multi-threaded Windows operating
environments. Single-threaded applications can always pass a NULL session value and retrieve the last
error information for the overall application.

SnmpGetLastError must be able to return a value to a WinSNMP application when: SnmpStartup is
unsuccessful, before any sessions are created with SnmpCreateSession, after all sessions are closed with
SnmpClose, or the application disconnects from the implementation with the SnmpCleanup function.

 Parameters
session Indicates the session for which error information is requested. If NULL, the application-wide

error information is returned.

 Return Values

This function returns the last WinSNMP error that occurred for the indicated session or for the application
(task) if the session is NULL (for example, when SnmpStartup is unsuccessful).

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpDecodeMsg(3)” on page 874.
� See “SnmpEncodeMsg(3)” on page 882.
� See “SnmpFreeDescriptor(3)” on page 888.
� See “SnmpGetLastErrorStr(3)” on page 898.
� See “SnmpOidCompare(3)” on page 913.
� See “SnmpOidCopy(3)” on page 915.
� See “SnmpOidToStr(3)” on page 917.

896 Programmer's Reference

 SnmpGetLastError(3)

� See “SnmpStrToOid(3)” on page 951.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about error handling and the section about WinSNMP utility functions in the NetView for
AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

 Chapter 2. Reference Pages 897

 SnmpGetLastErrorStr(3)

 SnmpGetLastErrorStr(3)

 Purpose

Provides a textual description of why the last WinSNMP operation failed

 Syntax
#include <WinSNMP.h>
#include <IBMwsnmp.h>

smiLPBYTE SnmpGetLastErrorStr(
 IN HSNMP_SESSION session);

 Description

The SnmpGetLastErrorStr function is an IBM extension to the NetView for AIX WinSNMP API. It is similar
to the SnmpGetLastError function, but returns a textual description of the last WinSNMP failure (instead of
an error code).

This function (or SnmpGetLastError) should be called immediately after one of the other WinSNMP func-
tions fail, as the error information may be overwritten by a subsequent failure.

The session input parameter is provided to facilitate accommodation of multi-threaded Windows operating
environments. Single-threaded applications can always pass a NULL session value and retrieve the last
error information for the overall application.

SnmpGetLastErrorStr must be able to return a value to a WinSNMP application when: SnmpStartup is
unsuccessful, before any sessions are created with SnmpCreateSession, after all sessions are closed with
SnmpClose, or the application disconnects from the implementation with the SnmpCleanup function.

 Parameters
session Indicates the session for which error information is requested. If NULL, the application-wide

error information is returned.

 Return Values

This function returns a pointer to a data buffer which contains a textual description of the last WinSNMP
failure for the specific session or for the entire application if the session is NULL.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

898 Programmer's Reference

 SnmpGetLastErrorStr(3)

 Related Information
� See “SnmpDecodeMsg(3)” on page 874.
� See “SnmpEncodeMsg(3)” on page 882.
� See “SnmpFreeDescriptor(3)” on page 888.
� See “SnmpGetLastError(3)” on page 896.
� See “SnmpOidCompare(3)” on page 913.
� See “SnmpOidCopy(3)” on page 915.
� See “SnmpOidToStr(3)” on page 917.
� See “SnmpStrToOid(3)” on page 951.

For further information see the following:

� The section about error handling and the section about WinSNMP utility functions in the NetView for
AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

 Chapter 2. Reference Pages 899

 SnmpGetPduData(3)

 SnmpGetPduData(3)

 Purpose

Extracts data from the specified PDU

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpGetPduData (
 IN HSNMP_PDU PDU
 OUT smiLPINT PDU_type,
 OUT smiLPINT32 request_id,

OUT smiLPINT error_status, -- "non_repeaters" for GetBulkRequest-PDU
OUT smiLPINT error_index, -- "max_repetitions" for GetBulkRequest-PDU

 OUT LPHSNMP_VBL vbl);

 Description

The SnmpGetPduData function extracts selected data elements from the specified PDU and copies them
to the respective locations given as corresponding output parameters.

All output parameters must be supplied to the function call, and any (or all) of them may be NULL. No
values are returned for output parameters passed as NULL.

On a successful return and if the parameter was not NULL, the PDU_type contains one of the following
values:

On a successful return and if the parameter was not NULL, the error_status contains one of the following
values:

SNMP_PDU_GET Indicates a GetRequest PDU
SNMP_PDU_GETNEXT Indicates a GetNextRequest PDU
SNMP_PDU_GETBULK Indicates an SNMPv2 GetBulkRequest PDU
SNMP_PDU_V1TRAP Indicates an SNMPv1 Trap PDU
SNMP_PDU_SET Indicates a SetRequest PDU
SNMP_PDU_INFORM Indicates an SNMPv2 InformRequest PDU
SNMP_PDU_RESPONSE Indicates a Response PDU
SNMP_PDU_TRAP Indicates an SNMPv2 Trap PDU

SNMP_ERROR_NOERROR Specifies the noError error

SNMP_ERROR_TOOBIG Specifies the tooBig error

SNMP_ERROR_NOSUCHNAME Specifies the noSuchName error

SNMP_ERROR_BADVALUE Specifies the badValue error

SNMP_ERROR_READONLY Specifies the readOnly error

SNMP_ERROR_GENERR Specifies the genErr error

SNMP_ERROR_NOACCESS Specifies the noAccess error

SNMP_ERROR_WRONGTYPE Specifies the wrongType error

SNMP_ERROR_WRONGLENGTH Specifies the wrongLength error

SNMP_ERROR_WRONGENCODING Specifies the wrongEncoding error

900 Programmer's Reference

 SnmpGetPduData(3)

SNMP_ERROR_WRONGVALUE Specifies the wrongValue error

SNMP_ERROR_NOCREATION Specifies the noCreation error

SNMP_ERROR_INCONSISTENTVALUE Specifies the inconsistentValue error

SNMP_ERROR_RESOURCEUNAVAILABLE Specifies the resourceUnavailable error

SNMP_ERROR_COMMITFAILED Specifies the commitFailed error

SNMP_ERROR_UNDOFAILED Specifies the undoFailed error

SNMP_ERROR_AUTHORIZATIONERROR Specifies the authorizationError error

SNMP_ERROR_NOTWRITABLE Specifies the notWritable error

SNMP_ERROR_INCONSISTENTNAME Specifies the inconsistentName error

As always, a well-behaved application must handle the case when an unexpected value (for example,
PDU_type or error_status) might be returned by a procedure call.

It is very important to note that the HSNMP_VBL resource returned when the call is successful and the vbl
parameter is not NULL represents a new varbindlist object. This is consistent with the primary purpose of
the SnmpGetPduData function, which is to translate the elements of a newly received PDU and with the
WinSNMP policy that says whenever the implementation returns a handled resource object to the applica-
tion, it is a newly allocated object. For PDUs that an application has either created for sending or has
already translated with SnmpGetPduData, the application is expected to "know" the values of the PDU
components. Calling SnmpGetPduData with a non-NULL vbl parameter against an existing translated
PDU is equivalent (with regards to the returned HSNMP_VBL object) to calling SnmpDuplicateVbl on the
vbl object already attached to the PDU.

Calling SnmpGetPduData with a non-NULL vbl parameter against a newly received PDU has the effect of
“attaching” the returned HSNMP_VBL object to the HSNMP_PDU object specified in the input pdu param-
eter. Calling SnmpGetPduData with a non-NULL vbl parameter against an existing (created or translated)
PDU, results in a new HSNMP_VBL object as discussed in this section, but does not disturb the original
HSNMP_VBL object value already attached to the PDU.

 Parameters
PDU Identifies the SNMP protocol data unit.

PDU_type
If not NULL, points to an smiINT variable that receives the PDU_type of the PDU.

request_id
If not NULL, points to an smiINT32 variable that receives the request_id of the PDU.

error_status
If not NULL, points to an smiINT variable that receives the error_status (or non_repeaters) of
the PDU.

error_index
If not NULL, points to an smiINT variable that receives the error_index (or max_repetitions) of
the PDU.

vbl If not NULL, points to an HSNMP_VBL variable that receives the handle to the varbindlist of
the PDU.

 Chapter 2. Reference Pages 901

 SnmpGetPduData(3)

 Return Values

When the function is successful, the return value is SNMPAPI_SUCCESS.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. Use the SnmpGetLastError
or SnmpGetLastErrorStr function to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_PDU_INVALID Indicates that the PDU parameter is not valid.

SNMPAPI_NOOP Indicates that all output parameters were NULL.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpCreatePdu(3)” on page 867.
� See “SnmpDuplicatePdu(3)” on page 878.
� See “SnmpFreePdu(3)” on page 892.
� See “SnmpSetPduData(3)” on page 930.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about WinSNMP PDU functions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

902 Programmer's Reference

 SnmpGetRetransmitMode(3)

 SnmpGetRetransmitMode(3)

 Purpose

Indicates the retransmission mode currently in effect

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpGetRetransmitMode (
OUT smiLPUINT32 nRetransmitMode);

 Description

The SnmpGetRetransmitMode function informs the calling application of the retransmission mode in effect
at the time of the call.

 Parameters
nRetransmitMode

Identifies the pointer to variable to receive the current retransmission mode.

 Return Values

When the function is successful, the return value is SNMPAPI_SUCCESS. In this case, nRetransmitMode
returns one of the following values:

SNMPAPI_ON
Indicates that the implementation is doing retransmission.

SNMPAPI_OFF
Indicates that the implementation is not doing retransmission.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. In this case, the value of
nRetransmitMode is undefined and meaningless to the application, and the value of SnmpGetLastError or
SnmpGetLastErrorStr is set to one of the following error codes.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Chapter 2. Reference Pages 903

 SnmpGetRetransmitMode(3)

 Related Information
� See “SnmpGetRetry(3)” on page 905.
� See “SnmpGetTimeout(3)” on page 907.
� See “SnmpGetTranslateMode(3)” on page 909.
� See “SnmpSetRetransmitMode(3)” on page 932.
� See “SnmpSetRetry(3)” on page 934.
� See “SnmpSetTimeout(3)” on page 936.
� See “SnmpSetTranslateMode(3)” on page 938.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about polling and retransmission and the section about WinSNMP local database func-
tions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

904 Programmer's Reference

 SnmpGetRetry(3)

 SnmpGetRetry(3)

 Purpose

Retrieves the retry value for the specified entity

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpGetRetry (
 IN HSNMP_ENTITY hEntity,
 OUT smiLPUINT32 nPolicyRetry,
 OUT smiLPUINT32 nActualRetry);

 Description

The SnmpGetRetry function returns current values for the retransmission retry value on a per-entity basis.
The retry value is expressed as a unit count. The nPolicyRetry value refers to the retry value currently
stored in the local database for the subject agent. The nActualRetry value refers to the last measured or
estimated response retry count reported by the implementation.

Implementations may provide utilities to load initial retry count values for the retransmission policy on a per
destination entity basis, or may automatically assign some initial default value. Subsequent modifications
to this value are made by applications with the SnmpSetRetry function.

NetView for AIX Implementation Note

If not specified using SnmpSetRetry, the IBM implementation defaults an entity's retry value to 2.

Implementations may or may not return measured or estimated values for the Actual Retry parameter to
the SnmpGetRetry function. In the latter case, the implementation should return zero (0).

Applications should monitor the Actual Retry value. If the value is near, equal to, or greater than the
current Policy Retry value, the latter should be increased accordingly (or other corrective action taken).

NetView for AIX Implementation Note

The IBM implementation does not currently measure or estimate the Actual Retry value and therefore
returns zero (0) for this parameter.

 Parameters
hEntity Indicates the destination entity of interest.

nPolicyRetry
Points to a variable to receive the retry count value for this entity as stored in the implementa-
tion's local database.

nActualRetry
Points to a variable to receive the last measured or estimated response retry count from the
destination agent.

 Chapter 2. Reference Pages 905

 SnmpGetRetry(3)

 Return Values

When the function is successful, the return value is SNMPAPI_SUCCESS.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE and the value of
SnmpGetLastError or SnmpGetLastErrorStr is set to one of the following error codes.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_ENTITY_INVALID Indicates that an entity parameter is not valid.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpGetRetransmitMode(3)” on page 903.
� See “SnmpGetTimeout(3)” on page 907.
� See “SnmpGetTranslateMode(3)” on page 909.
� See “SnmpSetRetransmitMode(3)” on page 932.
� See “SnmpSetRetry(3)” on page 934.
� See “SnmpSetTimeout(3)” on page 936.
� See “SnmpSetTranslateMode(3)” on page 938.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about polling and retransmission and the section about WinSNMP local database func-
tions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

906 Programmer's Reference

 SnmpGetTimeout(3)

 SnmpGetTimeout(3)

 Purpose

Retrieves timeout information for the specified entity

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpGetTimeout (
 IN HSNMP_ENTITY hEntity,
 OUT smiLPTIMETICKS nPolicyTimeout,
 OUT smiLPTIMETICKS nActualTimeout);

 Description

The SnmpGetTimeout function returns current values for the retransmission timeout value on a per-entity
basis. The timeout value is expressed in units of hundredths of seconds. The nPolicyTimeout value
refers to the timeout value currently stored in the local database for the subject agent. The
nActualTimeout value refers to the last measured or estimated response receipt interval reported by the
implementation.

Implementations may provide utilities to load initial timeout values for the retransmission policy on a per
destination entity basis, or may automatically assign some initial default value. Subsequent modifications
to this value are made by applications with the SnmpSetTimeout function.

NetView for AIX Implementation Note

If not specified using SnmpSetTimeout, the IBM implementation defaults an entity's timeout to 5
seconds.

Implementations may or may not return measured or estimated values for the Actual Timeout parameter to
the SnmpGetTimeout function. In the latter case, the implementation should return zero (0).

Applications should monitor the Actual Timeout value. If the value is near, equal to, or greater than the
current Policy Timeout value, the latter should be increased accordingly (or other corrective action taken).

NetView for AIX Implementation Note

The IBM implementation does not currently measure or estimate the Actual Timeout value and there-
fore returns zero (0) for this parameter.

 Parameters
hEntity Indicates the destination entity of interest.

nPolicyTimeout
Points to a variable to receive the timeout value for this entity as stored in the implementation's
local database.

 Chapter 2. Reference Pages 907

 SnmpGetTimeout(3)

nActualTimeout
Points to a variable to receive the last measured or estimated response time interval from the
destination agent.

 Return Values

When the function is successful, the return value is SNMPAPI_SUCCESS.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE and the value of
SnmpGetLastError or SnmpGetLastErrorStr is set to one of the following error codes.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_ENTITY_INVALID Indicates that an entity parameter is not valid.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpGetRetransmitMode(3)” on page 903.
� See “SnmpGetRetry(3)” on page 905.
� See “SnmpGetTranslateMode(3)” on page 909.
� See “SnmpSetRetransmitMode(3)” on page 932.
� See “SnmpSetRetry(3)” on page 934.
� See “SnmpSetTimeout(3)” on page 936.
� See “SnmpSetTranslateMode(3)” on page 938.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about polling and retransmission and the section about WinSNMP local database func-
tions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

908 Programmer's Reference

 SnmpGetTranslateMode(3)

 SnmpGetTranslateMode(3)

 Purpose

Indicates the entity/context translation mode currently in effect

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpGetTranslateMode (
OUT smiLPUINT32 nTranslateMode);

 Description

The SnmpGetTranslateMode function informs the calling application as to the entity/context translation
mode in effect at the time of the call.

 Parameters
nTranslateMode

Identifies the pointer to variable to receive the current translation mode.

 Return Values

When the function is successful, the return value is SNMPAPI_SUCCESS. In this case, nTranslateMode
returns one of the following values:

SNMPAPI_TRANSLATED Indicates that the local database look-up translation mode will be used.

SNMPAPI_UNTRANSLATED_V1
Indicates that the literal transport address and community string will be
used.

SNMPAPI_UNTRANSLATED_V2
Indicates that the literal SNMPv2 party and context IDs will be used.

NetView for AIX Implementation Note

The SNMPAPI_UNTRANSLATED_V2 mode above was originally based upon the old “Party Based
SNMPv2” model which is now historic. The IBM implementation now associates the
SNMPAPI_UNTRANSLATED_V2 mode with the newly standardized “Community Based SNMPv2C“
model.

SNMPAPI_UNTRANSLATED_V2 no longer indicates that a literal party and context IDs (both obsolete)
are used. Instead, the IBM implementation returns SNMPAPI_UNTRANSLATED_V2 to indicate that a
literal transport address and community string are used.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. In this case, the value of
nTranslateMode is undefined and meaningless to the application, and the value of SnmpGetLastError or
SnmpGetLastErrorStr is set to one of the following error codes.

 Chapter 2. Reference Pages 909

 SnmpGetTranslateMode(3)

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpGetRetransmitMode(3)” on page 903.
� See “SnmpGetRetry(3)” on page 905.
� See “SnmpGetTimeout(3)” on page 907.
� See “SnmpSetRetransmitMode(3)” on page 932.
� See “SnmpSetRetry(3)” on page 934.
� See “SnmpSetTimeout(3)” on page 936.
� See “SnmpSetTranslateMode(3)” on page 938.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about entity and context translation modes and the section about WinSNMP local data-
base functions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

910 Programmer's Reference

 SnmpGetVb(3)

 SnmpGetVb(3)

 Purpose

Extracts the varbind identified by the supplied index from a varbindlist structure

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpGetVb (
 IN HSNMP_VBL vbl,
 IN smiUINT32 index,
 OUT smiLPOID name,
 OUT smiLPVALUE value);

 Description

The SnmpGetVb function retrieves the object instance name and its associated value from the varbind
identified by the index parameter. The SnmpGetVb function returns the object instance name in the
descriptor pointed to by the name parameter and its associated value in the descriptor pointed to by the
value parameter.

Valid values for the index parameter come from the SnmpCountVbl function and from the error_index
component of GetResponse PDUs returned with the SnmpRecvMsg function. These values range from 1
to n, where n is the total number of varbinds in the varbindlist.

The member elements of the smiOID and smiVALUE structures pointed to by the name and value param-
eters are ignored on input and are overwritten by the implementation upon a successful execution of this
function.

On a successful return, the syntax field of the value variable contains one of the following object syntax
types:

 SNMP_SYNTAX_INT32
 SNMP_SYNTAX_OCTETS
 SNMP_SYNTAX_OID
 SNMP_SYNTAX_BITS
 SNMP_SYNTAX_IPADDR
 SNMP_SYNTAX_CNTR32
 SNMP_SYNTAX_GAUGE32
 SNMP_SYNTAX_TIMETICKS
 SNMP_SYNTAX_OPAQUE
 SNMP_SYNTAX_NSAPADDR
 SNMP_SYNTAX_CNTR64
 SNMP_SYNTAX_UINT32
 SNMP_SYNTAX_NULL
 SNMP_SYNTAX_NOSUCHOBJECT
 SNMP_SYNTAX_NOSUCHINSTANCE
 SNMP_SYNTAX_ENDOFMIBVIEW

The application must eventually call the SnmpFreeDescriptor function to enable the implementation to free
resources that might have been allocated to populate the ptr members of the name and (depending upon
its syntax member) value structures.

 Chapter 2. Reference Pages 911

 SnmpGetVb(3)

 Parameters
vbl Identifies the subject varbindlist.

index Identifies the position of the subject varbind within the varbindlist.

name Points to a variable to receive the OID portion of the varbind.

value Points to a variable to receive the value portion of the varbind.

 Return Values

When the function is successful, the return value is SNMPAPI_SUCCESS.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. Use the SnmpGetLastError
or SnmpGetLastErrorStr function to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_VBL_INVALID Indicates that the vbl parameter is not valid.

SNMPAPI_INDEX_INVALID Indicates that the index parameter is not valid.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpCountVbl(3)” on page 865.
� See “SnmpCreateVbl(3)” on page 872.
� See “SnmpDeleteVb(3)” on page 876.
� See “SnmpDuplicateVbl(3)” on page 880.
� See “SnmpFreeVbl(3)” on page 894.
� See “SnmpSetVb(3)” on page 940.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about WinSNMP variable binding functions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

912 Programmer's Reference

 SnmpOidCompare(3)

 SnmpOidCompare(3)

 Purpose

Lexicographically compares two object identifiers (OIDs)

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpOidCompare (
 IN smiLPCOID xOID,
 IN smiLPCOID yOID,
 IN smiUINT32 maxlen,
 OUT smiLPINT result);

 Description

The SnmpOidCompare function lexicographically compares two OIDs. If the maxlen value is non-zero,
then its value is used as an upper limit on the number of sub-identifiers to compare. This approach is
most often used to identify whether two OIDs have common prefixes or not. If the maxlen value is zero,
then the len members of the two smiOID structures determine the maximum number of sub-identifiers to
compare.

When the maxlen value is non-zero (but not greater than MAXOBJIDSIZE), the maximum number of sub-
identifiers that are compared is the minimum of the maxlen input parameter and the two len members of
the input OID structures. Either or both of the input OIDs can have a zero length without causing an error.

When the maxlen value is zero, the maximum number of sub-identifiers that are compared is the minimum
of the two len members of the input OID structures. Either or both of the input OIDs can have a zero
length without causing an error.

If the two OIDs are lexicographically equal when the maximum number of sub-identifiers are compared,
then:

� If the maxlen parameter value is used as the maximum number of sub-identifiers to compare, or if the
two OID parameters have equal len members which are less than the maxlen input parameter, the
result value is 0 (equal).

� If an OID len member is used as the value for the maximum number of sub-identifiers to compare
(because it is less than the non-zero maxlen input parameter or because the maxlen value is equal to
zero), and the other OID len member value is greater, the result value is <0 or >0, depending on
which OID parameter has which len value.

 Parameters
xOID Points to a variable holding an object identifier to compare.

yOID Points to a variable holding an object identifier to compare.

maxlen If non-zero, indicates the number of sub-identifiers to compare. Must be less than
MAXOBJIDSIZE.

result Points to a variable to receive the result of the comparison:

> 0 if xOID is greater than yOID
= 0 if xOID equals yOID

 Chapter 2. Reference Pages 913

 SnmpOidCompare(3)

< 0 if xOID is less than yOID

 Return Values

When the function is successful, the return value is SNMPAPI_SUCCESS.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. Use the SnmpGetLastError
or SnmpGetLastErrorStr function to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_OID_INVALID Indicates that either or both of the input OIDs were not valid.

SNMPAPI_SIZE_INVALID Indicates that the maxlen parameter was not valid; that is, greater than
MAXOBJIDSIZE.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpDecodeMsg(3)” on page 874.
� See “SnmpEncodeMsg(3)” on page 882.
� See “SnmpFreeDescriptor(3)” on page 888.
� See “SnmpGetLastError(3)” on page 896.
� See “SnmpGetLastErrorStr(3)” on page 898.
� See “SnmpOidCopy(3)” on page 915.
� See “SnmpOidToStr(3)” on page 917.
� See “SnmpStrToOid(3)” on page 951.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about WinSNMP utility functions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

914 Programmer's Reference

 SnmpOidCopy(3)

 SnmpOidCopy(3)

 Purpose

Duplicates the specified OID

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpOidCopy (
 IN smiLPCOID srcOID,
 OUT smiLPOID dstOID);

 Description

The SnmpOidCopy function copies the srcOID to the dstOID.

The member elements of the smiOID structure pointed to by the dstOID structure are ignored on input and
are overwritten by the implementation upon a successful execution of this function.

The application must eventually call the SnmpFreeDescriptor function to enable the implementation to free
any resources that have been allocated to populate the ptr member of the dstOID structure.

 Parameters
srcOID Points to a variable holding an object identifier.

dstOID Points to a variable to receive a copy of the srcOID.

 Return Values

When the function is successful, the return value is the number of sub-identifiers in the output OID. This
number is also the value of the len member of the dstOID structure upon return.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. Use the SnmpGetLastError
or SnmpGetLastErrorStr function to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_OID_INVALID Indicates that the srcOID was not valid.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Chapter 2. Reference Pages 915

 SnmpOidCopy(3)

 Related Information
� See “SnmpDecodeMsg(3)” on page 874.
� See “SnmpEncodeMsg(3)” on page 882.
� See “SnmpFreeDescriptor(3)” on page 888.
� See “SnmpGetLastError(3)” on page 896.
� See “SnmpGetLastErrorStr(3)” on page 898.
� See “SnmpOidCompare(3)” on page 913.
� See “SnmpOidToStr(3)” on page 917.
� See “SnmpStrToOid(3)” on page 951.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about WinSNMP utility functions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

916 Programmer's Reference

 SnmpOidToStr(3)

 SnmpOidToStr(3)

 Purpose

Converts a WinSNMP OID into a dotted numeric string

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpOidToStr (
 IN smiLPCOID srcOID,
 IN smiUINT32 size,
 OUT LPSTR string);

 Description

The SnmpOidToStr function converts an internal representation of an OID into a dotted numeric string
representation of an OID (for example, 1.2.3.4.5.6).

The format of the OID array in an smiOID structure is one integral sub-identifier per array element. That
is, the string 1.3.6.1 (lstrlen=7) becomes an array of {1,3,6,1} (len=4) and vice versa.

The application should use a string buffer of MAXOBJIDSTRSIZE length for this call, to be safe. If, as is
normally true, a shorter OID is actually decoded, the application can copy the resulting string to one of
appropriate length and either reuse or free the space allocated to the original buffer.

A NULL-terminated string is returned for convenience. The return value, upon success, includes the termi-
nating NULL byte.

 Parameters
srcOID Points to a variable holding an object identifier to be converted.

size The size of the buffer that the application is providing to contain the string.

string Points to a buffer that receives the string that identifies the management entity.

 Return Values

When the function is successful, the return value is the number of bytes, including the NULL terminating
byte, in the output string. This return value may be less than or equal to the size parameter, but not
greater.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. Use the SnmpGetLastError
or SnmpGetLastErrorStr function to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

 Chapter 2. Reference Pages 917

 SnmpOidToStr(3)

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_OID_INVALID Indicates that the srcOID was not valid.

SNMPAPI_OUTPUT_TRUNCATED
Indicates that the buffer was too small.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpDecodeMsg(3)” on page 874.
� See “SnmpEncodeMsg(3)” on page 882.
� See “SnmpFreeDescriptor(3)” on page 888.
� See “SnmpGetLastError(3)” on page 896.
� See “SnmpGetLastErrorStr(3)” on page 898.
� See “SnmpOidCompare(3)” on page 913.
� See “SnmpOidCopy(3)” on page 915.
� See “SnmpStrToOid(3)” on page 951.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about WinSNMP utility functions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

918 Programmer's Reference

 SnmpRecvMsg(3)

 SnmpRecvMsg(3)

 Purpose

Retrieves results of a completed SNMP request or trap for the specified session

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpRecvMsg (
 IN HSNMP_SESSION session,
 OUT LPHSNMP_ENTITY srcEntity,
 OUT LPHSNMP_ENTITY dstEntity,
 OUT LPHSNMP_CONTEXT context
 OUT LPHSNMP_PDU pdu);

 Description

The SnmpRecvMsg function retrieves the results from a completed asynchronous request made on a
given HSNMP_SESSION. It also receives traps registered for that session.

The implementation is only required to deliver information through SnmpRecvMsg that was contained in
the incoming SNMP message it received from the transport layer. For SNMPv2, all components are
included in the SNMP message itself. For SNMPv1, an implementation has several choices: it might
have access to additional transport layer data and elect to use that; it can probably associate an in-bound
GetResponse PDU with an out-bound request PDU and use the srcEntity and dstEntity values from that;
or it can return NULL for components missing from the received SNMP message.

NetView for AIX Implementation Note

The IBM implementation attempts to provide all of the output parameters listed. However, users
should check each output parameter for a NULL pointer before using.

The application is responsible for freeing the handle object resources returned by this function when it is
no longer needed by the application, by calling the SnmpFreePdu, SnmpFreeEntity, and SnmpFreeContext
functions when appropriate.

Note: There are four handle objects instantiated by a successful SnmpRecvMsg operation (for example,
the varbindlist component of the returned PDU is not instantiated until called for by the application
with the SnmpGetPduData function).

Replies are not necessarily received in the same order as their originating requests were sent. For traps
received from SNMPv1 entities, in addition to mapping them to SNMPv2 format, the implementation must
assign a non-zero RequestID. A RequestID value delivered through trap notification can possibly dupli-
cate a RequestID used by an application on a request PDU; applications need to check for this occur-
rence.

When a trap is delivered by SnmpRecvMsg, it is returned in the SNMPv2 format, even if a SNMPv1 entity
generated the trap. The SNMPv2 coexistence specification, as described in RFC 1908: Coexistence
between Version 1 and Version 2 of Internet-standard Network Management Framework, specifies the
mapping rules between the SNMPv1 and SNMPv2 trap formats. However, for the convenience of man-
agement applications, the final variable binding for a SNMPv1-generated trap is always

 Chapter 2. Reference Pages 919

 SnmpRecvMsg(3)

snmpTrapEnterpriseOID.0, even if the trap is a generic trap such as coldStart. For further information
about mapping traps between SNMPv1 and SNMPv2, see the NetView for AIX Programmer's Guide.

 Parameters
session Specifies the session that receives the SNMP message.

srcEntity Identifies the entity (agent role) which sent the message.

dstEntity Identifies the entity (manager role) which is to receive the message.

context Identifies the context from which the srcEntity issued the message.

pdu Identifies the PDU component of the received message.

 Return Values

When the function is successful, the return value is SNMPAPI_SUCCESS, and the OUT parameters are
populated with their corresponding values.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. For the transport layer (TL)
errors, the OUT parameters are populated with their corresponding values to enable applications to
recover gracefully. Use the SnmpGetLastError or SnmpGetLastErrorStr function to obtain extended error
information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_SESSION_INVALID Indicates that the session parameter is not valid.

SNMPAPI_NOOP Indicates that the message queue for this session is empty.

SNMPAPI_TL_NOT_INITIALIZED
Indicates that the transport layer is not initialized.

SNMPAPI_TL_NOT_SUPPORTED
Indicates that the transport does not support protocol.

SNMPAPI_TL_NOT_AVAILABLE
Indicates that the network subsystem has failed.

SNMPAPI_TL_RESOURCE_ERROR
Indicates that a transport resource error occurred.

SNMPAPI_TL_UNDELIVERABLE
Indicates that the destination is unreachable.

SNMPAPI_TL_SRC_INVALID Indicates that the source endpoint is not valid.

SNMPAPI_TL_INVALID_PARAM
Indicates that the parameter to transport call is not valid.

SNMPAPI_TL_PDU_TOO_BIG Indicates that the PDU is too big for transport.

SNMPAPI_TL_TIMEOUT Indicates that there is no response within the timeout interval.

SNMPAPI_TL_OTHER Indicates that the transport error is undefined.

920 Programmer's Reference

 SnmpRecvMsg(3)

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpCleanup(3)” on page 858.
� See “SnmpClose(3)” on page 860.
� See “SnmpCreateSession(3)” on page 869.
� See “SnmpRegister(3)” on page 922.
� See “SnmpGetLastErrorStr(3)” on page 898.
� See “SnmpSendMsg(3)” on page 927.
� See “SnmpStartup(3)” on page 942.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The following sections in the NetView for AIX Programmer's Guide:

– transport interface support
 – asynchronous modelt

– polling and retransmission
 – requestIDs

– WinSNMP communications functions

� The /usr/OV/conf/snmpv2.conf file for configuration information

 Chapter 2. Reference Pages 921

 SnmpRegister(3)

 SnmpRegister(3)

 Purpose

Registers the calling application to receive or discontinue trap and inform notifications

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpRegister (
 IN HSNMP_SESSION session,
 IN HSNMP_ENTITY srcEntity,
 IN HSNMP_ENTITY dstEntity,
 IN HSNMP_CONTEXT context,
 IN smiLPCOID notification,
 IN smiUINT32 status);

 Description

The SnmpRegister function registers the application's desire to receive or discontinue receiving trap and
inform notifications from the specified entity of interest (dstEntity), which acts in an agent role.

Note: In WinSNMP, all traps delivered to the applications are SNMPv2 traps. If an implementation
receives an SNMPv1 trap from an SNMPv1 agent, it must convert it to an SNMPv2 trap in accord-
ance with RFC 1908: Coexistence between Version 1 and Version 2 of Internet-standard Network
Management Framework.

For information about mapping traps between SNMPv1 and SNMPv2, see the NetView for AIX Program-
mer's Guide.

Notifications, traps or informs, are defined using OIDs, as specified in SNMPv2. Hence, an application
interested in receiving coldStart traps should construct an OID corresponding to this trap based upon the
RFC 1907: Management Information Base for Version 2 of the Simple Network Management Protocol
(SNMPv2C) and use this as the notification parameter.

Note: The value of the notification parameter is used for pattern matching against the OIDs of received
traps and notifications. That is, if the first 'n' sub-ids of a received SnmpTrapOID match all the
sub-ids ('n') of a notification value passed to SnmpRegister, then that SnmpTrapOID is a match.
Accordingly, a received SnmpTrapOID with fewer sub-ids than a given notification parameter must
fail the matching process with respect to that particular notification parameter.

An application may pass NULL for any or all of the srcEntity, dstEntity, context, and notification parame-
ters. The significance of NULL in any of these parameters is, effectively, to tell the implementation to not
filter out any received traps or notifications on the basis of this parameter.

When the notification parameter is NULL, then the application is indicating that it is interested in regis-
tering or unregistering for any and all notifications from the dstEntity, as indicated by the status parameter.

When the status parameter contains any value other than SNMPAPI_OFF or SNMPAPI_ON, it is treated
as though it were SNMPAPI_ON.

922 Programmer's Reference

 SnmpRegister(3)

Upon receipt of a trap or notification, the hWnd parameter specified in the SnmpCreateSession call for the
registered session is sent the wMsg specified. The application should call SnmpRecvMsg with this
session to retrieve the appropriate results.

It is the responsibility of a Level 3 implementation to acknowledge the receipt of an InformRequest-PDU.
This tells the issuing management entity that the inform made it to the implementation “platform,” but not
necessarily to any particular applications.

As described above, a NULL dstEntity input parameter to SnmpRegister tells the WinSNMP implementa-
tion to accept the specified notification from any and all sources. As the user application calls
SnmpRecvMsg to process each notification as it arrives, SnmpRecvMsg creates a “new” srcEntity output
parameter. This new entity “belongs” to the application as though it had caused its creation with
SnmpStrToEntity. Put differently, the behavior in this respect is the same as for SnmpDecodeMsg. This
is equally true, although less likely to occur, if a NULL srcEntity or context input parameters is passed to
SnmpRegister as well.

This functionality relates to not filtering traps and notifications received by the implementation. It does not
address the issue of how such traps and notifications are directed to the implementation in the first place.
This is assumed to occur “out-of-band” from the perspective of the application making use of NULL fil-
tering parameters as described in this section.

 Parameters
session Identifies the session which is interested in registering.

srcEntity Identifies the management entity (manager role) of interest; this is the trap recipient. (This is
the “source” of the notification request.)

dstEntity Identifies the management entity (agent role) of interest; this is the trap sender. (This is the
“target” of the notification request.)

context Identifies the context of interest.

notification
Identifies the trap or notification OID matching sequence to be registered or un-registered.

status Indicates whether to register (SNMPAPI_ON) or un-register (SNMPAPI_OFF) for the subject
notification.

 Return Values

When the function is successful, the return value is SNMPAPI_SUCCESS.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. Use the SnmpGetLastError
or SnmpGetLastErrorStr function to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_SESSION_INVALID Indicates that the session parameter is not valid.

SNMPAPI_ENTITY_INVALID Indicates that the entity parameter is not valid.

 Chapter 2. Reference Pages 923

 SnmpRegister(3)

SNMPAPI_CONTEXT_INVALID Indicates that the context parameter is not valid.

SNMPAPI_OID_INVALID Indicates that the notification parameter is not valid.

SNMPAPI_TL_NOT_INITIALIZED
Indicates that the transport layer is not initialized.

SNMPAPI_TL_IN_USE Indicates that the trap port is not available.

SNMPAPI_TL_NOT_AVAILABLE
Indicates that the network subsystem has failed.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpCleanup(3)” on page 858.
� See “SnmpClose(3)” on page 860.
� See “SnmpCreateSession(3)” on page 869.
� See “SnmpRecvMsg(3)” on page 919.
� See “SnmpGetLastErrorStr(3)” on page 898.
� See “SnmpSendMsg(3)” on page 927.
� See “SnmpStartup(3)” on page 942.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about WinSNMP communications functions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

924 Programmer's Reference

 SnmpSelect(3)

 SnmpSelect(3)

 Purpose

Checks the I/O status of multiple file descriptors and message queues, handling SNMP file descriptors
transparently

 Syntax
#include <WinSNMP.h>
#include <IBMwsnmp.h>

smiINT SnmpSelect(
IN smiINT nfds,
IN fd_set \readfds,
IN fd_set \writefds,
IN fd_set \exceptfds,
IN struct timeval \timeout);

 Description

The SnmpSelect function is an IBM extension to the NetView for AIX WinSNMP API. It is similar to the
Standard C Library “select” function in that it checks the file descriptors specified by the application to see
if they are ready for reading (receiving) or writing (sending), or if they have an exceptional condition
pending.

The application calls SnmpSelect with initialized numfds, fd_set, and timeval parameters. SnmpSelect
then internally adds its own related fd information for all pending SNMP requests to the fd set specified by
the application and proceeds to wait for an event. When an fd is finally ready for processing, SnmpSelect
determines whether the fd is related to SNMP or whether it belongs to the application. Any SNMP related
fds will be handled internally. SnmpSelect returns to the calling application when:

� An fd which the application owns is ready for processing.
� The application timeout has expired.
� A select error has occurred on one of the fds owned by the application.
� An unrecoverable SNMP error has occurred.
� There are no application-defined or SNMP-defined fds left to select upon.

Note that SnmpSelect handles all incoming SNMP data, SNMP timeout, SNMP retries, and other SNMP
related errors by calling the appropriate owning session's callBack function which was specified when the
session was created with SnmpCreateSession. Only errors which cannot be isolated to a specific
WinSNMP session result in an SnmpSelect failure.

 Parameters
nfds Specifies the number of application file descriptors to check.

readfds The set of file descriptors to be checked for reading.

writefds The set of file descriptors to be checked for writing.

exceptfds The set of file descriptors to be checked for exceptions.

timeout The application defined timeval structure.

 Chapter 2. Reference Pages 925

 SnmpSelect(3)

 Return Values

If the function is successful, the return value is set to the total number of file descriptors that satisfy the
selection criteria.

If the time limit specified by the timeout parameter expires without an application's file descriptor being
satisfied, a 0 (zero) is returned.

If the function is unsuccessful due to a select on one of the application's file descriptors, the return value is
-1. An application should then check the global variable errno for the appropriate error code.

If the function is unsuccessful due to an SNMP error which cannot be associated with an owning session,
the return value is -2.

 Error Codes

If the return value was -1, the application should check the global variable errno for the appropriate error
code. (Refer to the AIX select man page for further error code information.)

If the return value was -2, the application should call SnmpGetLastError or SnmpGetLastErrorStr to ascer-
tain the reason for failure.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpCleanup(3)” on page 858.
� See “SnmpClose(3)” on page 860.
� See “SnmpCreateSession(3)” on page 869.
� See “SnmpRecvMsg(3)” on page 919.
� See “SnmpRegister(3)” on page 922.
� See “SnmpSendMsg(3)” on page 927.
� See “SnmpStartup(3)” on page 942.

For further information see the following:

� The section about WinSNMP communications functions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

926 Programmer's Reference

 SnmpSendMsg(3)

 SnmpSendMsg(3)

 Purpose

Sends an SNMP message to the specified destination entity

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpSendMsg (
 IN HSNMP_SESSION session,
 IN HSNMP_ENTITY srcEntity,
 IN HSNMP_ENTITY dstEntity,
 IN HSNMP_CONTEXT context,
 IN HSNMP_PDU pdu);

 Description

The SnmpSendMsg function requests that the specified PDU be transmitted to the destination entity, using
the specified context and, for SNMPv2 communications, the designated source entity.

When a transmission request is received by the implementation through the SnmpSendMsg function, the
WinSNMP implementation determines which version of SNMP and which transport to use. These deci-
sions are based on the implementation's capabilities and the corresponding properties associated with the
requesting session and with the remote entity which holds the context to be accessed, based on values in
the local database.

This function returns immediately. If the return indicates an error, SnmpGetLastError or
SnmpGetLastErrorStr should be called immediately to find out the error type. When the asynchronous
request completes, the hWnd specified in the SnmpCreateSession call is sent the wMsg specified. The
application should call SnmpRecvMsg with this HSNMP_SESSION to retrieve the results from the request.

Note: It is the responsibility of the WinSNMP implementation to verify the correctness of the PDU struc-
ture (and other SnmpSendMsg input parameters) and to return a failure to the caller and an
extended error code through SnmpGetLastError or SnmpGetLastErrorStr. For example, for a
PDU_type other than SNMP_PDU_GETBULK and SNMP_PDU_RESPONSE (if allowed), passed
values (other than zero) for error_status and/or error_index would constitute a PDU structure that
is not valid and the implementation should return SNMPAPI_FAILURE and set SnmpGetLastError
or SnmpGetLastErrorStr to report SNMPAPI_PDU_INVALID.

An application may assign a RequestID to a PDU at any time through the SnmpCreatePdu or
SnmpSetPduData functions. If the RequestID component is zero at the time of the
SnmpCreatePdu call, the implementation assigns a non-zero RequestID to the PDU. An applica-
tion that wants to use a zero-valued RequestID must set it to that value with the SnmpSetPduData
function.

As SNMP replies do not necessarily come back in the same order as requests were sent, the
application should check the RequestID of the received message to match it with the appropriate
request.

If an SNMPv2 feature is requested, but the dstEntity implies an entity using SNMPv1, then the down-
grading procedures defined in the RFC 1908: Coexistence between Version 1 and Version 2 of Internet-
standard Network Management Framework are used. If downgrading is not possible (for example, an

 Chapter 2. Reference Pages 927

 SnmpSendMsg(3)

InformRequest-PDU directed at an SNMPv1 agent), then the function is unsuccessful and
SnmpGetLastError or SnmpGetLastErrorStr returns SNMPAPI_OPERATION_INVALID.

 Parameters
session Identifies the session that performs the operation.

srcEntity Identifies the subject management entity.

dstEntity Identifies the target management entity.

context Identifies the target context of interest.

pdu Identifies the SNMP PDU containing the operation.

 Return Values

When the function is successful, the return value is SNMPAPI_SUCCESS.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. Use SnmpGetLastError or
SnmpGetLastErrorStr to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_SESSION_INVALID Indicates that a session parameter is not valid.

SNMPAPI_ENTITY_INVALID Indicates that an entity parameter is not valid.

SNMPAPI_CONTEXT_INVALID Indicates that the context parameter is not valid.

SNMPAPI_PDU_INVALID Indicates that the PDU parameter is not valid.

SNMPAPI_OPERATION_INVALID
Indicates that the PDU_type element is inappropriate for the destination
entity.

SNMPAPI_TL_NOT_INITIALIZED
Indicates that the transport layer is not initialized.

SNMPAPI_TL_NOT_SUPPORTED
Indicates that transport does not support protocol.

SNMPAPI_TL_NOT_AVAILABLE
Indicates that the network subsystem has failed.

SNMPAPI_TL_RESOURCE_ERROR
Indicates that a transport resource error occurred.

SNMPAPI_TL_SRC_INVALID Indicates that the source endpoint is not valid.

SNMPAPI_TL_INVALID_PARAM
Indicates that the parameter to transport call is not valid.

SNMPAPI_TL_PDU_TOO_BIG Indicates that the PDU is too big for transport.

SNMPAPI_TL_OTHER Indicates that the transport error is undefined.

928 Programmer's Reference

 SnmpSendMsg(3)

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpCleanup(3)” on page 858.
� See “SnmpClose(3)” on page 860.
� See “SnmpCreateSession(3)” on page 869.
� See “SnmpRecvMsg(3)” on page 919.
� See “SnmpRegister(3)” on page 922.
� See “SnmpGetLastErrorStr(3)” on page 898.
� See “SnmpStartup(3)” on page 942.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The following sections in the NetView for AIX Programmer's Guide:

– transport interface support
 – asynchronous modelt

– polling and retransmission
 – requestIDs

– WinSNMP communications functions

� The /usr/OV/conf/snmpv2.conf file for configuration information

 Chapter 2. Reference Pages 929

 SnmpSetPduData(3)

 SnmpSetPduData(3)

 Purpose

Updates the specified PDU with data supplied by the calling application

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpSetPduData (
 IN HSNMP_PDU PDU,
 IN smiLPINT PDU_type,
 IN smiLPINT32 request_id,

IN smiLPINT non_repeaters, -- for GetBulkRequest-PDU only
IN smiLPINT max_repetitions, -- for GetBulkRequest-PDU only

 IN LPHSNMP_VBL vbl);

 Description

The SnmpSetPduData function updates selected data elements in the specified PDU.

All parameters must be supplied to the function call, and any or all of them, except the PDU, may be
NULL. No values are changed in the PDU for input parameters passed as NULL (and they are passed as
pointers to values to allow for the case when NULL is the desired update value).

Not all possible combinations of individually legal component values are valid. The WinSNMP implemen-
tation must verify the validity of the PDU (and other message elements) when the application calls the
SnmpSendMsg or SnmpEncodeMsg function and reject all ill-formed or otherwise illegal PDU structures.

 Parameters
PDU Identifies the SNMP protocol data unit.

PDU_type
If not NULL, points to an smiINT variable that updates the PDU_type of the PDU.

request_id
If not NULL, points to an smiINT32 variable that updates the request_id of the PDU.

non_repeaters
If not NULL, points to an smiINT variable that updates the non_repeaters of the
GetBulkRequest-PDU (ignored for other PDU_types).

max_repetitions
If not NULL, points to an smiINT variable that updates the max_repetitions of the
GetBulkRequest-PDU (ignored for other PDU_types).

vbl If not NULL, points to an HSNMP_VBL variable that updates the handle to the varbindlist of the
PDU.

930 Programmer's Reference

 SnmpSetPduData(3)

 Return Values

When the function is successful, the return value is SNMPAPI_SUCCESS.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. Use the SnmpGetLastError
or SnmpGetLastErrorStr function to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_PDU_INVALID Indicates that the PDU parameter is not valid.

SNMPAPI_VBL_INVALID Indicates that the vbl parameter is not valid.

SNMPAPI_NOOP Indicates that all input parameters were NULL.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpCreatePdu(3)” on page 867.
� See “SnmpDuplicatePdu(3)” on page 878.
� See “SnmpFreePdu(3)” on page 892.
� See “SnmpGetPduData(3)” on page 900.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about WinSNMP PDU functions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

 Chapter 2. Reference Pages 931

 SnmpSetRetransmitMode(3)

 SnmpSetRetransmitMode(3)

 Purpose

Sets the retransmission mode for subsequent SnmpSendMsg operations

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpSetRetransmitMode (
 IN smiUINT32 nRetransmitMode);

 Description

The SnmpSetRetransmitMode function enables the calling application to inform the implementation of the
desired retransmission mode (for example, timeout or retry) for subsequent SnmpSendMsg operations.

SNMPAPI_ON
Indicates that the implementation is doing retransmission.

SNMPAPI_OFF
The implementation is not doing retransmission.

Changing the retransmission mode from SNMPAPI_OFF to SNMPAPI_ON has no effect on any SNMP
communications initiated through SnmpSendMsg function calls which are outstanding prior to successful
return from the subject SnmpSetRetransmitMode function call. That is, an implementation does not have
to execute the retransmission policy for messages which it initially sent when the retransmission mode
was set to SNMPAPI_OFF and to which it has not yet received a response. An implementation may elect
to execute the retransmission policy on behalf of such messages in this case, but this behavior is not a
requirement and applications should not count on it. The purpose of this particular specification is to
enable the implementations to take maximum advantage of the SNMPAPI_OFF retransmission mode
when it is in effect.

When an application changes the retransmission mode from SNMPAPI_ON to SNMPAPI_OFF, the imple-
mentation should (but is not required to) cancel all further retransmission attempts for any outstanding
SNMP communications operations in effect prior to the call (and, of course, must not initiate any for sub-
sequent SnmpSendMsg functions until the application sets the mode back to SNMPAPI_ON). Applica-
tions, however, should assume that the implementation has done so. The reason this behavior is so
specified is that it might not be possible for an implementation to run through a list of outstanding SNMP
communications operations and turn each one off, while also receiving new SnmpSendMsg requests and
traps and notifications from prior SnmpRegister requests, without one or more previously set retransmit
timers waking up. Because this may be the “critical loop” for WinSNMP implementations, we need to
ensure that the implementations can handle it efficiently.

NetView for AIX Implementation Note

The IBM implementation will enforce the new retransmission mode for all outstanding (pending)
requests. Prior to the execution of this function, the default mode is SNMPAPI_ON.

932 Programmer's Reference

 SnmpSetRetransmitMode(3)

 Parameters
nRetransmitMode

Sets the current retransmission mode to one of the following values:

 SNMPAPI_ON
 SNMPAPI_OFF

 Return Values

When the function is successful, the return value is SNMPAPI_SUCCESS.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE and the value of
SnmpGetLastError or SnmpGetLastErrorStr is set to one of the following error codes.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_MODE_INVALID Indicates that the implementation does not support the requested trans-
lation mode.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpGetRetransmitMode(3)” on page 903.
� See “SnmpGetRetry(3)” on page 905.
� See “SnmpGetTimeout(3)” on page 907.
� See “SnmpGetTranslateMode(3)” on page 909.
� See “SnmpSetRetry(3)” on page 934.
� See “SnmpSetTimeout(3)” on page 936.
� See “SnmpSetTranslateMode(3)” on page 938.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about WinSNMP local database functions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

 Chapter 2. Reference Pages 933

 SnmpSetRetry(3)

 SnmpSetRetry(3)

 Purpose

Sets the number of retries for subsequent communication with the specified entity

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpSetRetry (
IN HSNMP_ENTITY hEntity,

 IN smiUINT32 nPolicyRetry);

 Description

The SnmpSetRetry function enables an application to set the Policy Retry count on a per destination entity
basis in the implementation's local database.

The retry value is expressed as a simple unit count. If this value is zero, and the application and the
implementation have agreed to SnmpSetRetransmitMode (SNMPAPI_ON), then the implementation
selects an operating value for this parameter when actually executing the retransmission policy.

NetView for AIX Implementation Note

If the retry value specified is zero (0), the IBM implementation defaults the policy number of retries to
2.

 Parameters
nEntity Indicates the destination entity of interest.

nPolicyRetry
Indicates the retry count for this entity to be stored in the implementation's local database.

 Return Values

When the function is successful, the return value is SNMPAPI_SUCCESS.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE and the value of
SnmpGetLastError or SnmpGetLastErrorStr is set to one of the following error codes.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_ENTITY_INVALID Indicates that an entity parameter is not valid.

934 Programmer's Reference

 SnmpSetRetry(3)

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpGetRetransmitMode(3)” on page 903.
� See “SnmpGetRetry(3)” on page 905.
� See “SnmpGetTimeout(3)” on page 907.
� See “SnmpGetTranslateMode(3)” on page 909.
� See “SnmpSetRetransmitMode(3)” on page 932.
� See “SnmpSetTimeout(3)” on page 936.
� See “SnmpSetTranslateMode(3)” on page 938.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about polling and retransmission and the section about WinSNMP local database func-
tions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

 Chapter 2. Reference Pages 935

 SnmpSetTimeout(3)

 SnmpSetTimeout(3)

 Purpose

Sets the timeout value for the specific entity

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpSetTimeout (
IN HSNMP_ENTITY hEntity,
IN smiTIMETICKS nPolicyTimeout);

 Description

The SnmpSetTimeout function enables an application to set the Policy Timeout value, in units of hun-
dredths of seconds, on a per destination entity basis in the implementation's local database.

If this value is zero, and both the application and the implementation agree to SnmpSetRetransmitMode
(SNMPAPI_ON), then the implementation selects an operating value for this parameter when actually exe-
cuting the retransmission policy.

NetView for AIX Implementation Note

If the specified timeout value is zero (0), the IBM implementation defaults the policy timeout to 5
seconds.

 Parameters
hEntity Indicates the destination entity of interest.

nPolicyTimeout
Indicates the timeout value for this entity to be stored in the implementation's local database.

 Return Values

When the function is successful, the return value is SNMPAPI_SUCCESS.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE and the value of
SnmpGetLastError or SnmpGetLastErrorStr is set to one of the following error codes.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_ENTITY_INVALID Indicates that an entity parameter is not valid.

936 Programmer's Reference

 SnmpSetTimeout(3)

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpGetRetransmitMode(3)” on page 903.
� See “SnmpGetRetry(3)” on page 905.
� See “SnmpGetTimeout(3)” on page 907.
� See “SnmpGetTranslateMode(3)” on page 909.
� See “SnmpSetRetransmitMode(3)” on page 932.
� See “SnmpSetRetry(3)” on page 934.
� See “SnmpSetTranslateMode(3)” on page 938.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about polling and retransmission and the section about WinSNMP local database func-
tions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

 Chapter 2. Reference Pages 937

 SnmpSetTranslateMode(3)

 SnmpSetTranslateMode(3)

 Purpose

Sets the entity/context translate mode

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpSetTranslateMode (
 IN smiUINT32 nTranslateMode);

 Description

The SnmpSetTranslateMode function enables the calling application to inform the implementation of the
desired entity/context translation mode to use for subsequent SnmpStrToEntity and SnmpStrToContext
function calls:

SNMPAPI_TRANSLATED Indicates that the local database look-up translation mode will be used.

SNMPAPI_UNTRANSLATED_V1
Indicates that the literal transport address and community string trans-
lation mode will be used.

SNMPAPI_UNTRANSLATED_V2
Indicates that the literal SNMPv2 party and context IDs translation mode
will be used.

NetView for AIX Implementation Note

The SNMPAPI_UNTRANSLATED_V2 mode above was originally based upon the old “Party Based
SNMPv2” model which is now historic. The IBM implementation now associates the
SNMPAPI_UNTRANSLATED_V2 mode with the newly standardized “Community Based SNMPv2C“
Draft-Standard.

SNMPAPI_UNTRANSLATED_V2 now indicates that the literal transport address and community string
translation mode is used.

Upon successful execution of the SnmpSetTranslateMode function, the requested translation mode
remains in effect for all subsequent SnmpStrToEntity and SnmpStrToContext function calls until another
SnmpSetTranslateMode call with a different nTranslateMode value is executed successfully.

 Parameters
nTranslateMode

Sets the current translation mode to one of the following values:

 SNMPAPI_TRANSLATED
 SNMPAPI_UNTRANSLATED_V1
 SNMPAPI_UNTRANSLATED_V2

938 Programmer's Reference

 SnmpSetTranslateMode(3)

 Return Values

When the function is successful, the return value is SNMPAPI_SUCCESS.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE and the value of
SnmpGetLastError or SnmpGetLastErrorStr is set to one of the following error codes.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_MODE_INVALID Indicates that the implementation does not support the requested trans-
lation mode.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpGetRetransmitMode(3)” on page 903.
� See “SnmpGetRetry(3)” on page 905.
� See “SnmpGetTimeout(3)” on page 907.
� See “SnmpGetTranslateMode(3)” on page 909.
� See “SnmpSetRetransmitMode(3)” on page 932.
� See “SnmpSetRetry(3)” on page 934.
� See “SnmpSetTimeout(3)” on page 936.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about entity and context translation modes and the section about local database functions
in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

 Chapter 2. Reference Pages 939

 SnmpSetVb(3)

 SnmpSetVb(3)

 Purpose

Adds and updates varbinds in a varbindlist structure

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpSetVb (
 IN HSNMP_VBL vbl,
 IN smiUINT32 index,
 IN smiLPCOID name,
 IN smiLPCVALUE value);

 Description

The SnmpSetVb function adds and updates varbind entries in a varbindlist.

Valid values for the index parameter range from 0 (zero) to n, where n is the total number of varbinds
currently in the varbindlist as reported by the SnmpCountVbl function. An index value of 0 (zero) indicates
the addition of a varbind to the varbindlist.

If the value parameter is NULL, the varbind is initialized, with the value set to NULL and with a syntax of
SNMP_SYNTAX_NULL.

 Parameters
vbl Identifies the target varbindlist.

index Identifies the position of the subject varbind within the varbindlist for an update operation or is
zero for an add or append operation.

name Points to a variable containing the object instance name to be set.

value If not NULL, points to a variable containing the associated value to be set.

 Return Values

When the function is successful, the return value is the position (index value) of the affected varbind. In
the case of successful update operations, the return value equals the index parameter. In the case of add
or append operations (in which the index parameter is zero), the return value is n+1, where n is the pre-
vious total count of varbinds in the varbindlist (per SnmpCountVbl).

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. Use the SnmpGetLastError
or SnmpGetLastErrorStr function to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

940 Programmer's Reference

 SnmpSetVb(3)

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_VBL_INVALID Indicates that the vbl parameter is not valid.

SNMPAPI_INDEX_INVALID Indicates that the index parameter is not valid.

SNMPAPI_OID_INVALID Indicates that the name parameter is not valid.

SNMPAPI_SYNTAX_INVALID Indicates that the syntax field of the value parameter is not valid.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpCountVbl(3)” on page 865.
� See “SnmpCreateVbl(3)” on page 872.
� See “SnmpDeleteVb(3)” on page 876.
� See “SnmpDuplicateVbl(3)” on page 880.
� See “SnmpFreeVbl(3)” on page 894.
� See “SnmpGetVb(3)” on page 911.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about WinSNMP variable binding functions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

 Chapter 2. Reference Pages 941

 SnmpStartup(3)

 SnmpStartup(3)

 Purpose

Initializes and allocates the necessary resources to perform other WinSNMP functions

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpStartup (
 OUT smiLPUINT32 nMajorVersion,
 OUT smiLPUINT32 nMinorVersion,
 OUT smiLPUINT32 nLevel,
 OUT smiLPUINT32 nTranslateMode
 OUT smiLPUINT32 nRetransmitMode);

 Description

The SnmpStartup function notifies the implementation that the calling application is going to use its ser-
vices, enabling the implementation to perform any required start-up procedures and allocations and to
return some useful housekeeping information to the application.

Note: Every WinSNMP application must call SnmpStartup at least once and this call must precede any
other WinSNMP API function call.

For information about levels of SNMP support, see the NetView for AIX Programmer's Guide.

When this call is unsuccessful, the application must not make any further WinSNMP API calls, other than
SnmpGetLastError or SnmpGetLastErrorStr and, if appropriate, retries to SnmpStartup. If an application
calls other WinSNMP API functions without a preceding successful SnmpStartup, the implementation
should return SNMPAPI_NOT_INITIALIZED.

An application which receives SNMPAPI_FAILURE and SNMP_ALLOC_ERROR in response to
SnmpStartup may elect to wait and to try again later in the hope that the implementation then has ade-
quate free resources.

SnmpStartup is idempotent. This means that an application can call it multiple times with impunity. Mul-
tiple SnmpStartup calls do not require multiple SnmpCleanup calls. Every application must call
SnmpStartup at least once, before any other WinSNMP API call, and must call SnmpCleanup at least
once, as the last WinSNMP API call.

 Parameters
nMajorVersion

Indicates the pointer to variable to receive the major version number of the WinSNMP API
implemented.

nMinorVersion
Indicates the pointer to variable to receive the minor version number of the WinSNMP API
implemented.

nLevel Indicates the pointer to variable to receive the highest level of SNMP communications sup-
ported by the implementation.

942 Programmer's Reference

 SnmpStartup(3)

nTranslateMode
Indicates the pointer to variable to receive the default entity/context translation mode in effect
for the implementation.

nRetransmitMode
Indicates the pointer to variable to receive the default retransmission mode in effect for the
implementation.

 Return Values

When the function is successful, the return value is SNMPAPI_SUCCESS. The output parameters contain
appropriate values, as follows:

nMajorVersion contains the major version number of the WinSNMP API implemented; the only legal value
at this time is 1 (v1.nMinorVersion).

nMinorVersion contains the minor version number of the WinSNMP API implemented; legal values at this
time are 0 (v1.0) and 1 (v1.1).

nLevel contains the highest level of SNMP communications supported by the implementation. This may
be one of the following values:

SNMPAPI_NO_SUPPORT Indicates Level 0 (Message builder)

SNMPAPI_V1_SUPPORT Indicates Level 1 (SNMPv1 agents)

SNMPAPI_V2_SUPPORT Indicates Level 2 (SNMPv2 agents)

SNMPAPI_M2M_SUPPORT Indicates Level 3 (Manager-to-Manager)

nTranslateMode contains the current default mode of translation of the entity and context parameters
when used as inputs to SnmpStrToEntity and SnmpStrToContext functions. This may be one of the fol-
lowing values:

SNMPAPI_TRANSLATED Indicates that the local database look-up translation mode will be used.

SNMPAPI_UNTRANSLATED_V1
Indicates that the literal SNMPv1 transport address and community string
translation mode will be used.

SNMPAPI_UNTRANSLATED_V2
Indicates that the literal SNMPv2 partyID and contextIDs translation
mode will be used.

NetView for AIX Implementation Note

The SNMPAPI_UNTRANSLATED_V2 mode above was originally based upon the old “Party Based
SNMPv2” model which is now historic. The IBM implementation now associates the
SNMPAPI_UNTRANSLATED_V2 mode with the newly standardized “Community Based SNMPv2C“
Draft-Standard.

SNMPAPI_UNTRANSLATED_V2 now indicates that the literal transport address and community string
is used.

nRetransmitMode contains the current default retransmission mode in effect for the implementation. This
may be one of the following values:

SNMPAPI_OFF Indicates that the implementation is not executing the retransmission policy.

 Chapter 2. Reference Pages 943

 SnmpStartup(3)

SNMPAPI_ON Indicates that the implementation is executing the retransmission policy.

When this function is unsuccessful, the return value is SNMPAPI_FAILURE. Use the SnmpGetLastError
or SnmpGetLastErrorStr function to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpCleanup(3)” on page 858.
� See “SnmpClose(3)” on page 860.
� See “SnmpCreateSession(3)” on page 869.
� See “SnmpRecvMsg(3)” on page 919.
� See “SnmpRegister(3)” on page 922.
� See “SnmpGetLastErrorStr(3)” on page 898.
� See “SnmpSendMsg(3)” on page 927.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about WinSNMP communications functions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

944 Programmer's Reference

 SnmpStrToContext(3)

 SnmpStrToContext(3)

 Purpose

Defines a WinSNMP context identified by the input string

 Syntax
#include <WinSNMP.h>

HSNMP_CONTEXT SnmpStrToContext (
 IN HSNMP_SESSION session,
 IN smiLPCOCTETS string);

 Description

The SnmpStrToContext function accepts an octet string naming the collection of managed objects of
interest (for SNMPAPI_TRANSLATED mode), a community string (for SNMPAPI_UNTRANSLATED_V1
mode), or a contextID (for SNMPAPI_UNTRANSLATED_V2 mode) and returns a handle to an
implementation-specific representation of context information for use with the SnmpSendMsg and
SnmpRegister functions.

The smiOCTETS descriptor pointed to by the string parameter in the SnmpStrToContext function is both
allocated and populated by the application. Hence, SnmpFreeDescriptor should not be called to free the
memory associated with the ptr member of this descriptor.

Note: Strings referenced in descriptors (such as an smiOCTETS structure) do not require a NULL termi-
nating byte. Such a string can be used in an IN smiOCTETS parameter by setting the len member
to ignore it.

When the application no longer needs this context handle, the SnmpFreeContext function should be called
to release the resources associated with the handle.

When the current entity/context translation mode is SNMPAPI_TRANSLATED, the string parameter is
assumed to describe a user-friendly name (in textual form) to be translated through the local database.

NetView for AIX Implementation Note

The WinSNMP local database is currently implemented as the configuration file:
/usr/OV/conf/snmpv2.conf. Users may define SNMPv2C and secure SNMPv2USEC agents by
inserting entries into this file.

When the current entity/context translation mode is SNMPAPI_UNTRANSLATED_V1, the string parameter
is assumed to describe a literal community string (which may contain non-printable ASCII byte values).

When the current entity/context translation mode is SNMPAPI_UNTRANSLATED_V2, the string parameter
is assumed to describe a literal contextID (in textual form).

 Chapter 2. Reference Pages 945

 SnmpStrToContext(3)

NetView for AIX Implementation Note

The SNMPAPI_UNTRANSLATED_V2 mode above was originally based upon the old “Party Based
SNMPv2” model which is now historic. The IBM implementation now associates the
SNMPAPI_UNTRANSLATED_V2 mode with the newly standardized “Community Based SNMPv2C“
Draft-Standard.

SNMPAPI_UNTRANSLATED_V2 now indicates that the string parameter is assumed to describe a
literal community string. For the purpose of this StrToContext function,
SNMPAPI_UNTRANSLATED_V1 and SNMPAPI_UNTRANSLATED_V2 can be used interchangeably
since they both refer to an SNMP community string.

 Parameters
session Identifies the handle of the allocating session.

string Identifies the pointer to an smiOCTETS descriptor identifying a collection of managed objects,
community string, or contextIDs.

 Return Values

When the function is successful, the return value is an HSNMP_CONTEXT handle.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. Use the SnmpGetLastError
or SnmpGetLastErrorStr function to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_SESSION_INVALID Indicates that the session handle is not valid.

SNMPAPI_CONTEXT_INVALID Indicates that the string descriptor is not valid (for example, the len or the
ptr member is NULL).

SNMPAPI_CONTEXT_UNKNOWN
Indicates that the value referenced in the string descriptor is unknown.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

946 Programmer's Reference

 SnmpStrToContext(3)

 Related Information
� See “SnmpContextToStr(3)” on page 862.
� See “SnmpEntityToStr(3)” on page 884.
� See “SnmpFreeContext(3)” on page 886.
� See “SnmpFreeEntity(3)” on page 890.
� See “SnmpStrToEntity(3)” on page 948.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about entity and context translation modes and the section about entity and context func-
tions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

 Chapter 2. Reference Pages 947

 SnmpStrToEntity(3)

 SnmpStrToEntity(3)

 Purpose

Creates a WinSNMP entity identified by the null-terminated input string

 Syntax
#include <WinSNMP.h>

HSNMP_ENTITY SnmpStrToEntity (
 IN HSNMP_SESSION session,
 IN LPCSTR entity);

 Description

The SnmpStrToEntity function accepts a pointer to a null-terminated text string identifying an entity of
interest and, if successful, returns a handle to an implementation-specific representation of entity informa-
tion. The resulting entity handle may be used as either a srcEntity value or as a dstEntity value. The
semantics of the input string are governed by the value of entity/context translation mode in effect at the
time of the call.

When the application no longer needs to utilize this entity handle, the SnmpFreeEntity function should be
called to release the resources associated with it.

When the current entity/context translation mode is SNMPAPI_TRANSLATED, the entity parameter is
assumed to be a user-friendly textual name to be translated through the local database.

NetView for AIX Implementation Note

The WinSNMP local database is currently implemented as the configuration file:
/usr/OV/conf/snmpv2.conf. Users may define SNMPv2C and secure SNMPv2USEC agents by
inserting entries into this file.

When the current entity/context translation mode is SNMPAPI_UNTRANSLATED_V1, the entity parameter
is assumed to be a literal transport address (in textual form). The implementation attempts to identify local
database resources associated with this SNMPv1 address and supplies working defaults when no such
entry exists in the local database. This is to enable "out-of-the-box" SNMPv1/UDP operation with
WinSNMP.

When the current entity/context translation mode is SNMPAPI_UNTRANSLATED_V2, the entity parameter
is assumed to be a literal PartyID (in textual form). The implementation attempts to identify local database
resources associated with this SNMPv2 “party” and supplies working defaults when no such entry exists in
the local database. This is to enable "out-of-the-box" SNMPv2/InitialPartyID operation with WinSNMP.

948 Programmer's Reference

 SnmpStrToEntity(3)

NetView for AIX Implementation Note

The SNMPAPI_UNTRANSLATED_V2 mode above was originally based upon the old “Party Based
SNMPv2” model which is now historic. The IBM implementation now associates the
SNMPAPI_UNTRANSLATED_V2 mode with the newly standardized “Community Based SNMPv2C”
Draft-Standard.

SNMPAPI_UNTRANSLATED_V2 now indicates that the entity parameter is assumed to be the literal
transport address (in textual form) of an SNMPv2C node. The IBM implementation attempts to identify
local database resources associated with this entity and supplies working defaults when no such entry
exists. If there are multiple entries in the database for this address, the first such entry is used.

 Parameters
session Identifies the handle of the allocating session.

entity Identifies the pointer to a NULL-terminated text string identifying the management entity of
interest.

 Return Values

When the function is successful, the return value is an HSNMP_ENTITY handle.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. Use the SnmpGetLastError
or SnmpGetLastErrorStr function to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

SNMPAPI_SESSION_INVALID Indicates that the session handle is not valid.

SNMPAPI_ENTITY_UNKNOWN Indicates that the entity parameter is unknown.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpContextToStr(3)” on page 862.
� See “SnmpEntityToStr(3)” on page 884.
� See “SnmpFreeContext(3)” on page 886.
� See “SnmpFreeEntity(3)” on page 890.
� See “SnmpStrToContext(3)” on page 945.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

 Chapter 2. Reference Pages 949

 SnmpStrToEntity(3)

� The section about entity and context translation modes and the section about entity and context func-
tions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

950 Programmer's Reference

 SnmpStrToOid(3)

 SnmpStrToOid(3)

 Purpose

Converts a textual object identifier into an internal WinSNMP OID

 Syntax
#include <WinSNMP.h>

SNMPAPI_STATUS SnmpStrToOid (
 IN LPCSTR string,
 OUT smiLPOID dstOID);

 Description

The SnmpStrToOid function converts a textual representation of the dotted numeric form of an object iden-
tifier into an internal object identifier representation.

The format of the OID array in an smiOID structure is one integral sub-identifier per array element. That
is, the string 1.3.6.1 (lstrlen=7) becomes an array of {1,3,6,1} (len=4) and vice versa.

The member elements of the smiOID structure pointed to by the dstOID structure are ignored on input and
are overwritten by the implementation upon a successful execution of this function.

The application must eventually call the SnmpFreeDescriptor function to enable the implementation to free
any resources that might have been allocated to populate the ptr member of the dstOID structure.

This function is unsuccessful with SNMPAPI_OID_INVALID, for example, if the string input parameter is
not NULL terminated, is of insufficient length, is longer than MAXOBJIDSTRSIZE, or does not constitute
the textual form of a valid OID.

 Parameters
string Points to a NULL terminated string to be converted.

dstOID Points to an smiOID variable to receive the converted value.

 Return Values

When the function is successful, the return value is the number of sub-identifiers in the output object iden-
tifier. This number is also the value of the len member of the dstOID structure upon return.

When the function is unsuccessful, the return value is SNMPAPI_FAILURE. Use the SnmpGetLastError
or SnmpGetLastErrorStr function to obtain extended error information.

 Error Codes
SNMPAPI_NOT_INITIALIZED Indicates that SnmpStartup has not successfully executed since the

program began or since SnmpCleanup successfully completed.

SNMPAPI_ALLOC_ERROR Indicates that the implementation is unable to obtain sufficient resources
to carry out the requested action.

SNMPAPI_OTHER_ERROR Indicates that an unknown, undefined, or indeterminate error occurred.

 Chapter 2. Reference Pages 951

 SnmpStrToOid(3)

SNMPAPI_OID_INVALID Indicates that the string was not valid.

 Libraries

When compiling a program that uses this function, you need to link to the following library:

 � /usr/OV/lib/libnvwinsnmp.a

 Related Information
� See “SnmpDecodeMsg(3)” on page 874.
� See “SnmpEncodeMsg(3)” on page 882.
� See “SnmpFreeDescriptor(3)” on page 888.
� See “SnmpGetLastError(3)” on page 896.
� See “SnmpGetLastErrorStr(3)” on page 898.
� See “SnmpOidCompare(3)” on page 913.
� See “SnmpOidCopy(3)” on page 915.
� See “SnmpOidToStr(3)” on page 917.

This function is part of the WinSNMP open interface. For further information see the following:

� The Windows SNMP Manager API Specification Version 1.1a

� The section about WinSNMP utility functions in the NetView for AIX Programmer's Guide

� The /usr/OV/conf/snmpv2.conf file for configuration information

952 Programmer's Reference

 XnvApplicationShell(3)

 XnvApplicationShell(3)

 Purpose

Functions as the main top-level window for an application managed by the NetView for AIX graphical inter-
face. The XnvApplicationShell widget must be used when the application is managed by the NetView for
AIX graphical interface. The widget can perform Drag/Drop operations and can go inside and outside the
Control Desk, a special area in the NetView for AIX server.

 Syntax
#include “<OV/XnvApplicationShell.h>”

 Dependencies

The XnvApplicationShell widget must be created by reference to xnvApplicationShellWidgetClass, the
widget class associated with it.

 Description

XnvApplicationShell is used as the main top-level window for an application that is managed by the
NetView for AIX EUI. An application should have more than one XnvApplicationShell only if it implements
multiple logical applications.

XnvApplicationShell inherits behavior and resources from Core, Composite Shell, WMShell, VendorShell,
TopLevelShell, and ApplicationShell.

The class pointer is xnvApplicationShellWidgetClass, and the class name is xnvApplicationShell.

If the XnvApplicationShell cannot find the NetView for AIX server at the XtRealize time, the shell starts
without communication with the EUI server. Also, Drag/Drop operations are disabled.

If the XnvNassociatedShell resource receives a wrong parameter, the shell behaves the same as when
this resource does not exist.

The resources to set the icon representation of the shell inside the Control Desk are:

 XnvNiconType
 XnvNiconColor
 XnvNiconPicture
 XnvNiconLabel
 XnvNiconLabelColor

The following table defines a set of widget resources used by the programmer to specify data. The pro-
grammer can also set the resource values for the inherited classes to set attributes for this widget. To
reference a value by name or by class in an .Xdefaults file, remove the XnvN or XnvC prefix and use the
remaining letters. To specify one of the defined values for a resource in an .Xdefault file, remove the Xnv
prefix and use the remaining letters (in either lowercase or uppercase, including any underscores between
words). The codes in the access column indicate whether the given resource can be set at creation time
(C), set by using XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

 Chapter 2. Reference Pages 953

 XnvApplicationShell(3)

Table 20. Widget Resources for XnvApplicationShell

Name Class Default Type Access

XnvNeuiManaged XtCBoolean False Boolean C

XnvNassociatedShell XtCWidget NULL Widget C

XnvNoutside XtCBoolean False Boolean C

XnvNiconType XtCBoolean False Boolean C/S/G

XnvNiconColor XtCString NULL String C/S/G

XnvNiconPicture XtCString NULL String C/S/G

XnvNiconLabel XtCString NULL String C/S/G

XnvNiconLabelColor XtCString NULL String C/S/G

The XnvApplicationShell widget replaces the Toolkit Intrinsics associated widget, ApplicationShell, and
should perform the same job as the common widget. But the XnvApplicationShell widget allows the
created shells to be controlled by the NetView for AIX server and to have certain characteristics, such as
the Box area. This area is a small bar over the shell area that enables you to perform Drag/Drop oper-
ations. These operations move the application shells inside and outside the Control Desk, which is an
application repository. In addition to the resources of its Intrinsics-associated widget (ApplicationShell), the
XnvApplicationShell has the following new resources:

XnvNeuiManaged (True/False)
Specifies whether the XnvApplicationShell will be managed by the NetView for AIX
EUI. This resource, associated with the other resources, enables you to move the
XnvApplicationShell to a WorkSpace called Control Desk and to drag it inside and
outside at any time. If this resource is False, the other resources have no meaning.

XnvNassociatedShell (<widget_id>)
Specifies, for secondary XnvApplicationShell widgets in the same application, the
Control Desk to initially start them. This Control Desk will be the same one that
uses the associated Shell referenced in XnvNassociatedShell. If XnvNoutside is set
to True, XnvNassociatedShell has no meaning.

Note: At the Realize time, if the XnvApplicationShell has the XnvNeuiManaged
resource set to True, and if no NetView for AIX EUI is found, the resource is turned
to False automatically and the other new resources are ignored, but no warning
message appears.

XnvNoutside (True/False)
Specifies the first place that the XnvApplicationShell widget will appear, if
XnvNeuiManaged resource was set to True. If XnvNoutside is True,
XnvApplicationShell is started automatically inside the NetView for AIX Control
Desk. If XnvNoutside is False, XnvApplicationShell is started with no Control Desk
associated with it.

XnvNiconType (XnvICON_COLOR, XnvICON_PICTURE)
Specifies the type of the icon that will be associated with ApplicationShell to repre-
sent it inside the Control Desk.

XnvNiconColor (<color_name>)
Specifies the color name to use as the icon background if XnvNiconType is set to
True (XnvICON_COLOR).

XnvNiconPicture (<picture_filename>)
Specifies the file name of the picture to use as the icon background if
XnvNiconType is set to XnvICON_PICTURE. (XnvICON_PICTURE).

954 Programmer's Reference

 XnvApplicationShell(3)

XnvNiconLabel (<label_string>)
Specifies the label name to be written in the icon.

XnvNiconLabelColor (<color_name>)
Specifies the color name to be used to paint the label color in the icon.

Note: The new resources that have only C access can be set only during the Creation time. They
cannot be updated by a SetValues call.

 Examples

Arg args[1ð];
int argcnt;
Widget shell;

argcnt = ð;
XtSetArg(args[argcnt], XnvNeuiManaged, True]; argcnt++;
XtSetArg(args[argcnt], XnvNoutside, False); argcnt++;
XtSetArg(args[argcnt], XnvNassociatedShell, NULL); argcnt++;
XtSetArg(args[argcnt], XnvNiconType, XnvICON_COLOR); argcnt++;
XtSetArg(args[argcnt], XnvNiconColor, “blue”); argcnt++;
XtSetArg(args[argcnt], XnvNiconLabel, “example”); argcnt++;
XtSetArg(args[argcnt], XnvNiconLabelColor, “black”); argcnt++;
XtSetArg(args[argcnt], XtNwidth, 4ðð); argcnt++;
XtSetArg(args[argcnt], XtNheight, 4ðð) argcnt++;
shell = XtAppCreateShell
 (
 “applicationName”,
 “applicationClass”,
 xnvApplicationShellWidgetClass,
 display,
 args,
 argcnt
);

XtRealizeWidget(shell);

Note: This example creates an XnvApplicationShell managed by the NetView for AIX EUI, inside the
Control Desk, with no associated shell (the shell is started in the Primary Control Desk). The icon that
represents the application shell inside the Control Desk has a blue background and a black label
“example.” The shell will have a Box area for Drag/Drop operations and its size outside the Control Desk
will be 400×400 pixels.

 Chapter 2. Reference Pages 955

 XnvTopLevelShell(3)

 XnvTopLevelShell(3)

 Purpose

Functions as the main top-level window for an application managed by the NetView for AIX EUI. The
XnvTopLevelShell widget must be used when the application is managed by the NetView for AIX EUI.
The widget can perform Drag/Drop operations and can go inside and outside the Control Desk, a special
area in the NetView for AIX server.

 Syntax
#include “<OV/XnvTopLevelShell.h>”

 Dependencies

The XnvTopLevelShell widget must be created by reference to xnvTopLevelShellWidgetClass, the widget
class associated with it.

 Description

XnvTopLevelShell is used as the main top-level window for a application that is managed by the NetView
for AIX EUI. An application should have more than one XnvTopLevelShell only if it implements multiple
logical applications.

XnvTopLevelShell inherits behavior and resources from Core, Composite Shell, WMShell, VendorShell,
and TopLevelShell.

The class pointer is xnvTopLevelShellWidgetClass, and the class name is xnvTopLevelShell.

If the XnvTopLevelShell cannot find the NetView for AIX server at the XtRealize time, the shell starts
without communication with the EUI server. Also, Drag/Drop operations are disabled.

If the XnvNassociatedShell resource receives a wrong parameter, the shell behaves the same as when
this resource does not exist.

The resources to set the icon representation of the shell inside the Control Desk are:

 XnvNiconType
 XnvNiconColor
 XnvNiconPicture
 XnvNiconLabel
 XnvNiconLabelColor

The following table defines a set of widget resources used by the programmer to specify data. The pro-
grammer can also set the resource values for the inherited classes to set attributes for this widget. To
reference a value by name or by class in an .Xdefaults file, remove the XnvN or XnvC prefix and use the
remaining letters. To specify one of the defined values for a resource in an .Xdefault file, remove the Xnv
prefix and use the remaining letters (in either lowercase or uppercase, including any underscores between
words). The codes in the access column indicate whether the given resource can be set at creation time
(C), set by using XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

956 Programmer's Reference

 XnvTopLevelShell(3)

Table 21. Widget Resources for XnvTopLevelShell

Name Class Default Type Access

XnvNeuiManaged XtCBoolean False Boolean C

XnvNassociatedShell XtCWidget NULL Widget C

XnvNoutside XtCBoolean False Boolean C

XnvNiconType XtCBoolean False Boolean C/S/G

XnvNiconColor XtCString NULL String C/S/G

XnvNiconPicture XtCString NULL String C/S/G

XnvNiconLabel XtCString NULL String C/S/G

XnvNiconLabelColor XtCString NULL String C/S/G

The XnvTopLevelShell widget replaces the Toolkit Intrinsics associated widget, TopLevelShell, and should
perform the same job as the common widget. But the XnvTopLevelShell widget allows the created shells
to be controlled by the NetView for AIX server and to have certain characteristics, such as the Box area.
This area is a small bar over the shell area that enables you to perform Drag/Drop operations. These
operations move the application shells inside and outside the Control Desk, which is an application reposi-
tory. In addition to the resources of its Intrinsics-associated widget (TopLevelShell), the XnvTopLevelShell
has the following new resources:

XnvNeuiManaged (True/False)
Specifies whether the XnvTopLevelShell will be managed by the NetView for AIX
EUI. This resource, associated with the other resources, enables you to move the
XnvTopLevelShell to a WorkSpace called Control Desk and to drag it inside and
outside at any time. If this resource is False, the other resources have no meaning.

Note: At the Realize time, if the XnvTopLevelShell has the XnvNeuiManaged
resource set to True, and if no NetView for AIX EUI is found, the resource is turned
to False automatically and the other new resources are ignored, but no warning
message appears.

XnvNassociatedShell (<widget_id>)
Specifies, for secondary XnvTopLevelShell widgets in the same application, the
Control Desk to initially start them. This Control Desk will be the same one that
uses the associated Shell referenced in XnvNassociatedShell. If XnvNoutside is set
to True, XnvNassociatedShell has no meaning.

XnvNoutside (True/False)
Specifies the first place that the XnvTopLevelShell widget will appear, if
XnvNeuiManaged was set to True. If XnvNoutside is True, XnvTopLevelShell is
started automatically inside the NetView for AIX Control Desk. If XnvNoutside is
False, XnvTopLevelShell is started with not Control Desk associated with it.

XnvNiconType (XnvICON_COLOR, XnvICON_PICTURE)
Specifies the type of the icon that will be associated with TopLevelShell to represent
it inside the Control Desk.

XnvNiconColor (<color_name>)
Specifies the color name to use as the icon background.

XnvNiconPicture (<picture_filename>)
Specifies the file name of the picture to use as the icon background if
XnvNiconType is set to XnvICON_PICTURE. (XnvICON_PICTURE).

 Chapter 2. Reference Pages 957

 XnvTopLevelShell(3)

XnvNiconLabel (<label_string>)
Specifies the label name to be written in the icon.

XnvNiconLabelColor (<color_name>)
Specifies the color name to be used to paint the label color in the icon.

Note: The new resources that have only C access can be set only during the Creation time. They
cannot be updated by a SetValues call.

 Examples

Arg args[1ð];
int argcnt;
Widget shell;

argcnt = ð;
XtSetArg(args[argcnt], XnvNeuiManaged, True]; argcnt++;
XtSetArg(args[argcnt], XnvNoutside, False); argcnt++;
XtSetArg(args[argcnt], XnvNassociatedShell, NULL); argcnt++;
XtSetArg(args[argcnt], XnvNiconType, XnvICON_COLOR); argcnt++;
XtSetArg(args[argcnt], XnvNiconColor, “blue”); argcnt++;
XtSetArg(args[argcnt], XnvNiconLabel, “example”); argcnt++;
XtSetArg(args[argcnt], XnvNiconLabelColor, “black”); argcnt++;
XtSetArg(args[argcnt], XtNwidth, 4ðð); argcnt++;
XtSetArg(args[argcnt], XtNheight, 4ðð) argcnt++;
shell = XtAppCreateShell
 (
 “applicationName”,
 “applicationClass”,
 xnvTopLevelShellWidgetClass,
 display,
 args,
 argcnt
);

XtRealizeWidget(shell);

Note: This example creates an XnvTopLevelShell managed by the NetView for AIX EUI, inside the
Control Desk, with no associated shell (the shell is started in the Primary Control Desk). The icon that
represents the application shell inside the Control Desk has a blue background and a black label
“example.” The shell will have a Box area for Drag/Drop operations and its size outside the Control Desk
will be 400×400 pixels.

958 Programmer's Reference

 Chapter 3. XOM Package

Note: The information contained in this chapter was extracted from the X/Open & X.400 OSI Object Man-
agement API Specification, Version 2.0 (XAPIA), Chapter 6, Object Management Package.

This chapter defines the OM package. The object identifier, referred to symbolically as om, that is
assigned to the package, as defined by this edition of this document, is that specified in ASN.1 as
{joint-iso-ccitt-mhs-motis(6) group(6) white(1) api(2) om(4)}.

 Class Hierarchy

This section depicts the hierarchical organization of the OM classes. Subclassification is indicated by
indentation. The names of abstract classes are in italics. For example, Encoding is an immediate sub-
class of Object, an abstract class. The names of classes to which the Encode function apply are in bold .
The Create function applies to all concrete classes.

Object

 � Encoding
 � External

 Class Definitions

This section defines the OM classes.

 Encoding

An instance of class Encoding is an object represented in a form suitable for conveyance between work-
spaces, transport through a network, or storage in a file. An encoding also may be a suitable way to
present to an intermediate service provider (for example, a directory or message transfer system) an
object it does not recognize.

Table 22. General Information about the XOM Package

XOM Package

Object identifier {joint-iso-ccitt-mhs-motis(6) group(6) white(1) api(2) om(4)}

Encoding “\x56\x06\x01\x02\x04”

Constant OM_OM

Header file xom.h

 Copyright IBM Corp. 1992, 1995 959

This class has the attributes listed in Table 23.

Table 23. Attributes Specific to Encoding

Attribute Value Syntax Value
Length

Value
Number

Value Ini-
tially

Class String (Object Identifier) - 1 -

Object Class String (Object Identifier) - 1 -

Object Encoding String - 1 -

Rules String (Object Identifier) - 1 ber

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

If the Rules attribute is ber or canonical-ber, the syntax of the String attribute shall be String
(Encoding).

Object Class Identifies the class of the object that the Object Encoding attribute encodes. The
class shall be concrete.

Object Encoding The encoding itself.

Rules Identifies the set of rules that were followed to produce the Object Encoding attri-
bute. Among the defined values of this attribute are those referred to symbolically
as follows:

� ber Specified in ASN.1 as {joint-iso-ccitt asn1(1) basic-encoding(1)}, this value
denotes the BER (see clause 25.2 of [2]).

Note: An instance of this class may not appear, in general, as a value whose syntax is Object(C), if C is
not Encoding, even if the class of the object encoded is C.

 External

An instance of class External is a data value, not necessarily describable using ASN.1, and one or more
information items that describe the data value and identify its data type. This class corresponds to
ASN.1's External type, and thus the class and the attributes specific to it are more fully described, indi-
rectly, in clause 34 of [1].

This class has the attributes listed in Table 24.

Table 24. Attributes Specific to External

Attribute Value Syntax Value
Length

Value
Number

Value Ini-
tially

Class String (Object Identifier) - 1 -

Arbitrary Encoding String (Bit) - 0-1 -

ASN.1 Encoding String (Encoding) - 0-1 -

Data Value Descriptor String (Object Descriptor) - 0-1 -

Direct Reference String (Object Identifier) - 0-1 -

Indirect Reference Integer - 0-1 -

Octet Aligned Encoding String (Octet) - 0-1 -

960 Programmer's Reference

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

Exactly one of the following three attributes shall be present: Arbitrary Encoding, ASN.1 Encoding,
or Octet Aligned Encoding.

Arbitrary Encoding A representation of the data value as a bit string. This attribute is described
more fully in clause 34 of [1].

ASN.1 Encoding The data value. This attribute may be present only if the data type is an
ASN.1 type. This attribute is described more fully in clause 34 of [1].

If this attribute value's syntax is an Object syntax, the data value's implied rep-
resentation is that produced by the Encode function when its Object argument
is the attribute value and its Rules argument is ber . Thus the object's class
shall be one to which the Encode function applies.

Data Value Descriptor A description of the data value. This attribute is described more fully in clause
34 of [1].

Direct Reference A direct reference to the data type. This attribute is described more fully in
clause 34 of [1].

Indirect Reference An indirect reference to the data type. This attribute is described more fully in
clause 34 of [1].

Octet Aligned Encoding A representation of the data value as an octet string. This attribute is
described more fully in clause 34 of [1].

 Object

The class Object represents information objects of any variety. This abstract class is distinguished by the
facts that it has no superclass and that all other classes are its subclasses.

The attributes specific to this class are listed in Table 25.

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

Class Identifies the object's class.

Table 25. Attributes Specific to Object

Attribute Value Syntax Value
Length

Value
Number

Value Ini-
tially

Class String (Object Identifier) - 1 -

 Chapter 3. XOM Package 961

962 Programmer's Reference

Chapter 4. XMP API Management Service Packages

This chapter describes the following three X/Open Management Protocols (XMP) API management service
packages and the classes they contain:

� Common Management Service (Common) package
� CMIS Management Service (CMIS) package
� SNMP Management Service (SNMP) package

 General Information

The following is general information about the XMP management service packages. This information
includes the object identifier for the package, the encoding of the object identifier, the constant that repres-
ents the object identifier, and the header file that contains the constants which represent the OM classes
and OM attributes in the C language.

Common errors are defined in the Common Management Service package, while service-specific errors
are defined in the CMIS Management Service package and the SNMP Management Service package,
respectively.

OM Class Hierarchies

This section includes the hierarchical organization of all OM classes belonging to the three service pack-
ages (Common, CMIS, and SNMP), as well as the hierarchical organization of the OM classes specific to
each of the three service packages. These hierarchies show which OM classes inherit additional OM
attributes from their superclasses.

In the hierarchical lists, subclasses are indented and the names of abstract OM classes are in italics. For
example, the concrete class Presentation-Address is an immediate subclass of the abstract class Address.

Table 26. General Information about the Management Service Packages

Common Package

Object identifier {iso(1) member-national-body(2) bsi(826) disc(0) xopen(1050) XMP(1) common(1)}

Encoding “\x2a\x86\x3a\x0\x88\x1a\x1\x01”

Constant MP_COMMON_PKG

Header file xmp_cmis.h

CMIS Package

Object identifier {iso(1) member-national-body(2) bsi(826) disc(0) xopen(1050) XMP(1) cmis(2)}

Encoding “\x2a\x86\x3a\x0\x88\x1a\x1\x02”

Constant MP_CMIS_PKG

Header file xmp_xmis.h

SNMP Package

Object identifier {iso(1) member-national-body(2) bsi(826) disc(0) xopen(1050) XMP(1) snmp(3)}

Encoding “\x2a\x86\x3a\x0\x88\x1a\x1\x03”

Constant MP_SNMP_PKG

Header file xmp_snmp.h

 Copyright IBM Corp. 1992, 1995 963

The following table shows all the subclasses of the OM class Object and indicates to which service
package each class belongs.

Table 27 (Page 1 of 3). Hierarchical Organization of Management Service OM Classes

OM Class Service Package

Access-Control Common

 Community-Name Common

 External-AC Common

Action-Argument Common

 CMIS-Action-Argument CMIS

Action-Error CMIS

Action-Error-Info CMIS

Action-Info CMIS

Action-Reply CMIS

Action-Result Common

 CMIS-Action-Result CMIS

Action-Type-Id CMIS

Address Common

 Network-Address Common

AE-Title Common

Application-Syntax SNMP

Attribute CMIS

Attribute-Error CMIS

Attribute-Id CMIS

Attribute-Id-Error CMIS

Attribute-Id-List CMIS

AVA Common

Base-Managed-Object-Id CMIS

Cancel-Get-Argument Common

 CMIS-Cancel-Get-Argument CMIS

CMIS-Filter CMIS

Complexity-Limitation CMIS

Context Common

Create-Argument Common

 CMIS-Create-Argument CMIS

Create-Object-Instance CMIS

Create-Result Common

 CMIS-Create-Result CMIS

Delete-Argument Common

 CMIS-Delete-Argument CMIS

Delete-Error CMIS

964 Programmer's Reference

Table 27 (Page 2 of 3). Hierarchical Organization of Management Service OM Classes

OM Class Service Package

Delete-Result Common

 CMIS-Delete-Result CMIS

Error Common

 Communications-Error Common

 Library-Error Common

 Service-Error Common

 CMIS-Service-Error CMIS

 SNMP-Service-Error SNMP

 System-Error Common

Error-Info CMIS

Event-Reply CMIS

Event-Report-Argument Common

 CMIS-Event-Report-Argument CMIS

 SNMP-Trap-Argument SNMP

Event-Report-Result Common

 CMIS-Event-Report-Result CMIS

Event-Type-Id CMIS

Filter-Item CMIS

Get-Argument Common

 CMIS-Get-Argument CMIS

 SNMP-Get-Argument SNMP

Get-Info-Status CMIS

Get-List-Error Common

 CMIS-Get-List-Error CMIS

Get-Result Common

 CMIS-Get-Result CMIS

 SNMP-Get-Result SNMP

Invalid-Argument-Value CMIS

Linked-Reply-Argument Common

 CMIS-Linked-Reply-Argument CMIS

Missing-Attribute-Value CMIS

Modification CMIS

Multiple-Reply CMIS

Name Common

 DS-DN Common

No-Such-Action CMIS

No-Such-Action-Id CMIS

No-Such-Argument CMIS

 Chapter 4. Management Service Packages 965

Class Restrictions: A management program is not permitted to create or modify instances of some OM
classes, because these OM classes only are returned by the XMP API and never supplied to it (for
example, Library-Error). The description of the OM class given in “The OM Classes” on page 969 indi-
cates whether instances cannot be created or modified.

All OM classes can be encoded using om_encode() and om_decode(), unless stated otherwise in the
class description.

Table 27 (Page 3 of 3). Hierarchical Organization of Management Service OM Classes

OM Class Service Package

No-Such-Event-Id CMIS

No-Such-Event-Type CMIS

Object-Class CMIS

Object-Instance CMIS

Object-Syntax SNMP

Processing-Failure CMIS

Relative-Name Common

 DS-RDN Common

Scope CMIS

Session Common

Set-Argument Common

 CMIS-Set-Argument CMIS

 SNMP-Set-Argument SNMP

Set-Info-Status CMIS

Set-List-Error Common

 CMIS-Set-List-Error CMIS

Set-Result Common

 CMIS-Set-Result CMIS

 SNMP-Set-Result SNMP

Simple-Syntax SNMP

SNMP-Response SNMP

Specific-Error-Info CMIS

Substring CMIS

Substrings CMIS

Title Common

 Entity-Name Common

Var-Bind SNMP

966 Programmer's Reference

The Common Management Service Package

The OM class superior to the classes in the Common package is the Object OM class. It is defined in the
X/Open OSI-Abstract-Data Manipulation (XOM) API, CAE Specification. The Common package contains
the following subclasses to the OM class Object:

 � Access-Control
 – Community-Name
 – External-AC

 � Action-Argument
 � Action-Result
 � Address

 – Network-Address.
 � AVA
 � Cancel-Get-Argument
 � Context
 � Create-Argument
 � Create-Result
 � Delete-Argument
 � Delete-Result
 � Error

 – Communications-Error
 – Library-Error
 – Service-Error
 – System-Error.

 � Event-Report-Argument
 � Event-Report-Result
 � Extension
 � Get-Argument
 � Get-List-Error
 � Get-Result
 � Linked-Reply-Argument
 � Name

 – DS-DN
 � Relative-Name

 – DS-RDN.
 � Session
 � Set-Argument
 � Set-List-Error
 � Set-Result
 � Title

 – Entity-Name.

The CMIS Management Service Package

The OM class superior to the classes in the CMIS package is the Object OM class. It is defined in the
X/Open OSI-Abstract-Data Manipulation (XOM) API, CAE Specification. The CMIS package contains the
following subclasses to the OM class Object.

Note: The abstract OM classes are in italics. They are defined in the Common package.

 � Action-Argument
 – CMIS-Action-Argument.

 � Action-Error
 � Action-Error-Info

 Chapter 4. Management Service Packages 967

 � Action-Info
 � Action-Reply
 � Action-Result

 – CMIS-Action-Result.
 � Action-Type-Id
 � Attribute
 � Attribute-Error
 � Attribute-Id
 � Attribute-Id-Error
 � Attribute-Id-List
 � Base-Managed-Object-Id
 � Cancel-Get-Argument

 – CMIS-Cancel-Get-Argument.
 � CMIS-Filter
 � Complexity-Limitation
 � Create-Argument

 – CMIS-Create-Argument.
 � Create-Object-Instance
 � Create-Result

 – CMIS-Create-Result.
 � Delete-Argument

 – CMIS-Delete-Argument.
 � Delete-Error
 � Delete-Result

 – CMIS-Delete-Result.
 � Error

 – Service-Error
 - CMIS-Service-Error.

 � Error-Info
 � Event-Reply
 � Event-Report-Argument

 – CMIS-Event-Report-Argument.
 � Event-Report-Result

 – CMIS-Event-Report-Result.
 � Event-Type-Id
 � Filter-Item
 � Get-Argument

 – CMIS-Get-Argument.
 � Get-Info-Status
 � Get-List-Error

 – CMIS-Get-List-Error.
 � Get-Result

 – CMIS-Get-Result.
 � Invalid-Argument-Value
 � Linked-Reply-Argument

 – CMIS-Linked-Reply-Argument.
 � Missing-Attribute-Value
 � Modification
 � Multiple-Reply
 � No-Such-Action
 � No-Such-Action-Id
 � No-Such-Argument
 � No-Such-Event-Id
 � No-Such-Event-Type

968 Programmer's Reference

 � Object-Class
 � Object-Instance
 � Processing-Failure
 � Scope
 � Set-Argument

 – CMIS-Set-Argument.
 � Set-Info-Status
 � Set-List-Error

 – CMIS-Set-List-Error.
 � Set-Result

 – CMIS-Set-Result.
 � Specific-Error-Info
 � Substring
 � Substrings.

The SNMP Management Service Package

The OM class superior to the classes in the SNMP package is the Object OM class. It is defined in the
X/Open OSI-Abstract-Data Manipulation (XOM) API, CAE Specification. The SNMP package contains the
following subclasses to the OM class Object.

Note: The abstract OM classes are in italics. They are defined in the Common package.

 � Application-Syntax
 � Error

 – Service-Error
 - SNMP-Service-Error.

 � Event-Report-Argument
 – SNMP-Trap-Argument.

 � Get-Argument
 – SNMP-Get-Argument.

 � Get-Result
 – SNMP-Get-Result.

 � Object-Syntax
 � Set-Argument

 – SNMP-Set-Argument.
 � Set-Result

 – SNMP-Set-Result.
 � Simple-Syntax
 � SNMP-Response
 � Var-Bind.

The OM Classes

This section describes each OM class. The OM classes are presented in alphabetical order, regardless of
the package to which each OM class belongs.

The OM attributes that can be found in an instance of an OM class are those that are specific to that OM
class and those that are inherited from each of its superclasses. These OM attributes are defined in a
table.

Note: The order in which the OM attributes are presented in the tables is not necessarily the order in
which attributes are returned. That order is unknown. In general, the OM attributes are listed in the same
order as the ASN.1 mapping.

 Chapter 4. Management Service Packages 969

Reading the OM Attribute Tables: The OM attribute tables provide the following information:

Column Name Contents

OM Attribute The name of each OM attribute.

Value Syntax The syntax of the values of the OM attribute. For example, Object(Object-Class) means
the value of the attribute is an object and the type (class) of the object is Object-Class.
Similarly, String(Printable) means the value of the attribute is a printable string.

An any in this column indicates that the syntax of the OM attribute is determined by the
value of another OM attribute, which is indicated in the description. Use the following
rules to fill in the syntax and value fields:

1. If the attribute has a syntax that is defined in one of the Common, CMIP, or SNMP
packages, use that syntax and set the value accordingly.

2. If the value is one of the following ASN.1 simple types, use the appropriate OM
syntax specification, with the prefix OM_S and set the value accordingly:

 � OM_S_BIT_STRING
 � OM_S_BOOLEAN
 � OM_S_GENERAL_STRING
 � OM_S_GENERALIZED_TIME
 � OM_S_GRAPHIC_STRING
 � OM_S_IA5_STRING
 � OM_S_INTEGER
 � OM_S_NULL
 � OM_S_NUMERIC_STRING
 � OM_S_OBJECT_DESCRIPTOR_STRING
 � OM_S_OBJECT_IDENTIFIER_STRING
 � OM_S_OCTET_STRING
 � OM_S_PRINTABLE_STRING
 � OM_S_TELETEX_STRING
 � OM_S_UTC_TIME_STRING
 � OM_S_VIDEOTEX_STRING
 � OM_S_VISIBLE_STRING
 � OM_S_REAL
 � OM_S_UNLIMITED_INTEGER

3. Lastly, you have the option to set the syntax field to OM_S_ENCODING_STRING,
and use your own functions to encode (or decode) the attribute value (using BER) to
(or from) a string representation. This encoded string is used as the value of the
attribute.

Value Length Any restrictions on the length (in bits, octets (bytes), or characters) of each value.

Note: The value in this column is assigned a C language identifier. Refer to the
NetView for AIX Programmer's Guide for information about the identifier.

Value Number Any restrictions on the number of values.

A ð-1 in this column indicates that the OM attribute is optional. In some cases, the OM
attribute can be mutually exclusive of one or more other OM attributes. The description
of the OM attribute indicates if the mutually exclusive restriction applies to it.

970 Programmer's Reference

Notes:

1. The function calls can place additional restrictions on the number of values. Such
restrictions are defined in the description of each XMP function call.

2. The value in this column is assigned a C language identifier.

Initial Value The value, if any, that the om_create() function supplies.

See For OM attributes with a value syntax of object, this column contains the number of the
page that describes the OM class of the object.

 Access-Control

The OM class Access-Control represents access privileges. It is information of unspecified form to be
used as input to access-control functions.

It is an abstract class, which has the attributes of its superclass, Object.

Most of the CMIS functions take an access-control parameter, the value of which must be an instance of
one of the subclasses of this OM class. Thus, this OM class serves to group all possible representations
of access control.

There are two subclasses of this OM class:

� Community-Name, which provides SNMP access-control information
� External-AC, which provides an externally defined access control.

 Action-Argument

The OM class Action-Argument represents the supplied argument of an action. It is an abstract class,
which has the attributes of its superclass, Object.

There is one subclass of this OM class:

CMIS-Action-Argument, which is the supplied argument of a CMIS action.

 Action-Error

An instance of the OM class Action-Error is the information associated with an error for an attempted
CMIS action.

An instance of this OM class has the following OM attributes.

Table 28. OM Attributes of an Action-Error Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

managed Object-Class Object(Object-Class) – 0-1 – 1017

managed Object-Instance Object(Object-Instance) – 0-1 – 1017

current-Time String(Generalized-Time) – 0-1 – –

action Error-Info Object(Action-Error-Info) – 1 – 972

 Chapter 4. Management Service Packages 971

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

managed-Object-Class
The class of the managed object that attempted to perform the action.

managed-Object-Instance
The instance of the managed object that attempted to perform the action.

current-Time
The time at which the response was generated.

action-Error-Info
The error information that resulted from the action requested.

 Action-Error-Info

An instance of the OM class Action-Error-Info documents one action-related problem encountered while
performing an action.

An instance of this OM class has the following OM attributes.

Table 29. OM Attributes of an Action-Error-Info Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

error-Status Enum(Error-Status) – 1 – –

error-Info Object(Error-Info) – 1 – 1004

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

error-Status
The error notification for the operation. Its value is one of the following:

� access-denied , meaning that the requested action was not performed, due to security
reasons

� no-such-action, meaning that the action type specified is not supported

� no-such-argument, meaning that the argument specified is not recognized or supported

� invalid-argument-value, meaning that the argument value was out of range or otherwise
inappropriate.

error-Info Additional information about the error.

 Action-Info

An instance of the OM class Action-Info is the information about an action that is to be performed.

972 Programmer's Reference

An instance of this OM class has the following OM attributes.

Table 30. OM Attributes of an Action-Info Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

action Type Object(Action-Type-Id) – 1 – 974

action Info-Arg Any – 0-1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

action-Type
The action type, which indicates the action to be performed.

action-Info-Arg
Additional information, whenever it is necessary, to define further the nature, variations, or
operands of the action to be performed. The syntax and semantics of this OM attribute depend
upon the action requested.

The OM value syntax for this OM attribute is determined by the value of the action-Type OM
attribute, according to the rules expressed in “Reading the OM Attribute Tables” on page 970.

 Action-Reply

An instance of the OM class Action-Reply is the information associated with the reply to a performed
action.

An instance of this OM class has the following OM attributes.

Table 31. OM Attributes of an Action-Reply Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

action Type Object(Action-Type-Id) – 1 – 974

action Reply-Info Any – 1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

action-Type
The action type, which indicates the action that was performed.

action-Reply-Info
The reply information about the action performed on a managed object. The syntax and
semantics of this OM attribute depend upon the action performed. The OM value syntax for
this OM attribute is determined by the value of the action-Type OM attribute, according to the
rules expressed in “Reading the OM Attribute Tables” on page 970.

 Chapter 4. Management Service Packages 973

 Action-Result

The OM class Action-Result represents the result of a successful action. It is an abstract class, which has
the attributes of its superclass, Object.

There is one subclass of this OM class:

CMIS-Action-Result, which is the result of a successful CMIS action. It can be omitted in the last
response of multiple replies.

 Action-Type-Id

An instance of the OM class Action-Type-Id represents an identifier of an action.

An instance of this OM class can have the following OM attributes.

Note: In addition to the class attribute, an instance must have one, and only one, of the other OM attri-
butes.

Table 32. OM Attributes of an Action-Type-Id Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

global-Form String(Object-Identifier) – 0-1 – –

local-Form Integer – 0-1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

global-Form
A registered action-type identifier.

local-Form
When this OM attribute is used, the permissible values for the integers and their meanings are
defined as part of the application context in which they are used.

 Address

The OM class Address represents the address of a particular management entity or method. It contains
various subclasses used to define the specific location of a particular agent or manager. For example, the
Network-Address subclass typically is used to define the location of an SNMP agent or manager.

It is an abstract class, which has only the OM attributes of its superclass, Object.

An address is an unambiguous name, label, or number that identifies the location of the entity or method.
All addresses are represented as instances of some subclass of this OM class.

There is one subclass of this OM class:

 � Network-Address (SNMP).

974 Programmer's Reference

 AE-Title

An instance of the OM class AE-Title has the OM attributes of its superclass - Object - and additionally the
OM attributes listed below.

Exactly one OM attribute is permitted in an instance of this OM class.

Table 33. OM Attributes of an AE-Title

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

ae-Title-Form1 Object (DD-DN) - 0 - 1 - -

ae-Title-Form2 String (Object-Identifier) - 0 - 1 - -

 Application-Syntax

Note: This OM class is applicable to SNMP only.

An instance of the OM class Application-Syntax is the data value of an application-wide type, the syntax of
which corresponds to defined ASN.1 types, which are constructed on ASN.1 primitive types.

An instance of this OM class can have the following OM attributes.

Note: In addition to the class attribute, an instance must have one, and only one, of the other OM attri-
butes.

Table 34. OM Attributes of an Application-Syntax Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

address Object(Network-Address) – 0-1 – 1014

counter Integer – 0-1 – –

gauge Integer – 0-1 – –

ticks Integer – 0-1 – –

arbitrary String(Encoding) – 0-1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

address It represents an address from one of (possibly) several protocol families.

counter A data value of integer syntax.

It represents a nonnegative integer that monotonically increases until it reaches a maximum
value; then it wraps around and starts increasing again from zero. The maximum value for
counters is 232−1 (that is, 4,294,967,295).

gauge A data value of integer syntax.

It represents a nonnegative integer, which can increase or decrease, but which latches at a
maximum value. The maximum value for gauges is 232−1 (that is, 4,294,967,295).

 Chapter 4. Management Service Packages 975

ticks A data value of integer syntax.

It represents a nonnegative integer that counts the time in hundredths of a second, starting
from a given time period.

arbitrary A data value of string syntax.

It provides the capability to pass arbitrary ASN.1 syntax. A value is encoded, using the ASN.1
basic rules, into a string of octets. This, in turn, is encoded as an octet string, in effect double-
wrapping the original ASN.1 value.

 Attribute

An instance of the OM class Attribute is an attribute of a managed object.

An instance of this OM class has the following OM attributes.

Table 35. OM Attributes of an Attribute Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

attribute-Id Object(Attribute-Id) – 1 – 978

attribute-Value Any – 1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

attribute-Id
The attribute type, which indicates the class of information provided by the attribute.

attribute-Value
The attribute value. The representation of the attribute value depends on the attribute type.
The OM value syntax for this OM attribute is determined by the value of the attribute-Id OM
attribute, according to the rules expressed in “Reading the OM Attribute Tables” on page 970.

 Attribute-Error

An instance of the OM class Attribute-Error documents one attribute-related problem encountered while
performing a set operation. It is the error information generated while attempting to modify an attribute of
a managed object.

An instance of this OM class has the following OM attributes.

Table 36 (Page 1 of 2). OM Attributes of an Attribute-Error Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

error-Status Enum(Error-Status) – 1 – –

modify-Operator Enum(Modify-Operator) – 0-1 – –

attribute-Id Object(Attribute-Id) – 1 – 978

976 Programmer's Reference

Table 36 (Page 2 of 2). OM Attributes of an Attribute-Error Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

attribute-Value Any – 0-1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

error-Status
The error notification for the operation. Its value is one of the following:

� access-denied, meaning that the requested operation was not performed, due to security
reasons.

� no-such-attribute, meaning that the identifier for the specified attribute is not recognized.

� invalid-attribute-value, meaning that the attribute value is either out of range or otherwise
inappropriate.

� invalid-operation, meaning that the operation specified by modify-Operator cannot be per-
formed on the specified attribute. (For example, the set-to-default operator is specified, but
there is no defined default.)

� invalid-operator, meaning that the operator specified by modify-Operator is not recognized.

modify-Operator
Specifies the way in which the attribute was attempted to be modified. The following are the
possible operators:

� replace, meaning that the attribute values are used to replace the current values of the
attribute.

� add-values, meaning that the attribute values are to be added to the current values of the
attribute. This operator applies only to a set-valued attribute and performs a set union (in
the mathematical sense) between the current values of the attribute and the attribute
values specified.

� remove-values, meaning that the attribute values specified are to be removed from the
current values of the attribute. This operator applies only to a set-valued attribute and per-
forms a set difference (in the mathematical sense) between the current values of the attri-
bute and the attribute values specified. Values specified in the attribute-Value OM attribute
that are not in the current values of the attribute do not cause an error to be returned.

� set-to-default, meaning one of the following:

– When this operator is applied to a single-valued attribute, the value of the attribute is
set to its default value.

– When this operator is applied to a set-valued attribute, the values of the attribute are
set to their default values, and only as many values as defined by the default are
assigned.

– When this operator is applied to an attribute group, each member of the attribute group
is set to its default value.

The modify operator is present for the invalid-operation and invalid-operator errors.

attribute-Id
The attribute type, which indicates to which attribute the class of information applies.

 Chapter 4. Management Service Packages 977

attribute-Value
The attribute value. The representation of the attribute value depends on the attribute type.
The OM value syntax for this OM attribute is determined by the value of the attribute-Id OM
attribute, according to the rules expressed in “Reading the OM Attribute Tables” on page 970.

The attribute value is absent for the set-to-default operator.

 Attribute-Id

An instance of the OM class Attribute-Id represents an identifier of a managed-object attribute.

An instance of this OM class can have the following OM attributes.

Note: In addition to the class attribute, an instance must have one, and only one, of the other OM attri-
butes.

Table 37. OM Attributes of an Attribute-Id Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

global-Form String(Object-Identifier) – 0-1 – –

local-Form Integer – 0-1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

global-Form
A registered attribute-type identifier.

local-Form
When this OM attribute is used, the permissible values and their meanings are defined as part
of the application context in which they are used.

 Attribute-Id-Error

An instance of the OM class Attribute-Id-Error documents one attribute-related problem encountered while
performing a get operation.

An instance of this OM class has the following attributes.

Table 38. OM Attributes of an Attribute-Id-Error Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

error-Status Enum(Error-Status) – 1 – –

attribute-Id Object(Attribute-Id) – 1 – 978

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

978 Programmer's Reference

class Identifies the class of the object.

error-Status
Identifies the attribute-related problem. Its value is one of the following:

� access-denied, meaning that the requested operation was not performed, due to security
reasons

� no-such-attribute, meaning that the identifier for the specified attribute is not recognized.

attribute-Id
The attribute type, which identifies the attribute for which the value could not be read or modi-
fied.

 Attribute-Id-List

An instance of the OM class Attribute-Id-List is a list of identifiers that specify attributes for which a value
is returned.

An instance of this OM class has the following attributes.

Table 39. OM Attributes of an Attribute-Id-List Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

attribute-Ids Object(Attribute-Id) – 0-128 – 978

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

attribute-Ids
Specify the attributes for which values are to be returned.

 AVA

An instance of the OM class AVA (attribute value assertion) provides the value of a distinguishing attribute
of a managed-object instance.

An instance of this OM class has the following attributes.

Table 40. OM Attributes of an AVA Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

naming Attribute-Id String(Object-identifier) – 1 – –

naming Attribute-Value Any – 1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

 Chapter 4. Management Service Packages 979

naming-Attribute-Id
The attribute type that identifies the attribute value assertion (AVA).

naming-Attribute-Value
The attribute value. The representation of the attribute value depends on the attribute type.
The OM value syntax that is allowed for this OM attribute is determined by the value of the
naming-Attribute-Id OM attribute according to the rules expressed in “Reading the OM Attribute
Tables” on page 970, and with the restrictions expressed in ISO 10165-1, Management Infor-
mation Services—Structure of Management Information Part 1: Management Information
Model.

Its syntax must be one of the following types:

 � Integer
 � Boolean
 � Null
 � Enum(*)
 � String(*).

 Base-Managed-Object-Id

An instance of the OM class Base-Managed-Object-Id is the pairing of the managed-object class identifier
with the name of a managed-object instance.

An instance of this OM class has the following attributes.

Table 41. OM Attributes of a Base-Managed-Object-Id Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

base-Managed Object-Class Object(Object-Class) – 1 – 1017

base-Managed Object-Instance Object(Object-Instance) – 1 – 1017

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

base-Managed-Object-Class
The class of the base managed object (a managed object used as the starting point for the
selection of managed objects).

base-Managed-Object-Instance
The instance of the base managed object.

 Cancel-Get-Argument

The OM class Cancel-Get-Argument represents the supplied argument of a cancel-get operation. It is an
abstract class, which has the attributes of its superclass, Object.

There is one subclass of this OM class:

CMIS-Cancel-Get-Argument, which is the supplied argument of a CMIS cancel-get operation.

980 Programmer's Reference

 CMIS-Action-Argument

An instance of the OM class CMIS-Action-Argument is the supplied argument of a CMIS action.

An instance of this OM class has the following attributes.

Table 42. OM Attributes of a CMIS-Action-Argument Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

base-Managed Object-Class Object(Object-Class) – 1 – 1017

base-Managed Object-Instance Object(Object-Instance) – 1 – 1017

access-Control Object(Access-Control) – 0-1 – 971

synchronization Enum(CMIS-Sync) – 0-1 – –

scope Object(Scope) – 0-1 – 1019

filter Object(CMIS-Filter) – 0-1 – 987

action-Info Object(Action-Info) – 1 – 972

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

base-Managed-Object-Class
The class of the managed object that is to be used as the starting point for the selection of
managed objects on which the filter, when supplied, is to be applied. This OM attribute is not
meaningful if the corresponding base-Managed-Object-Instance OM attribute specifies the root
of the naming tree.

base-Managed-Object-Instance
The instance of the base managed object.

access-Control
Access-control information for the purpose of obtaining permission to perform the action on the
selected managed object.

synchronization
Indicates how to synchronize the selected object instances. It can take either of the following
values:

� atomic, meaning that all managed objects selected for the operation are checked to ensure
that they can perform it successfully. If at least one of the managed objects is not able to
perform the operation successfully, then none perform it; otherwise, all perform it.

� best-effort, meaning that all managed objects selected for the operation are requested to
perform it.

If this OM attribute is not supplied, best-effort synchronization is assumed. If only the base
managed object is selected for the operation, this OM attribute, if present, is ignored.

scope Indicates the subtree, rooted at the base managed object, which is searched. When the scope
is not specified, the scoped managed object is the specified base managed object.

filter Specifies the set of assertions that defines the filter test to be applied to the scoped managed
objects. If the filter is not specified, all of the managed objects included by the scope are
selected.

 Chapter 4. Management Service Packages 981

action-Info
Specifies the action to be performed, as well as any additional information needed to define the
action further.

 CMIS-Action-Result

An instance of the OM class CMIS-Action-Result is the result of a successful CMIS action.

An instance of this OM class has the following attributes.

Table 43. OM Attributes of a CMIS-Action-Result Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

managed Object-Class Object(Object-Class) – 0-1 – 1017

managed Object-Instance Object(Object-Instance) – 0-1 – 1017

current-Time String(Generalized-Time) – 0-1 – –

action-Reply Object(Action-Reply) – 0-1 – 973

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

managed-Object-Class
The class of the managed object that performed the action. This OM attribute can be absent
only if the base object alone is specified as the scope.

managed-Object-Instance
The instance of the managed object that performed the action. This OM attribute can be
absent only if the base object alone is specified as the scope.

current-Time
The time at which the response was generated.

action-Reply
The returned result information of the successful action.

 CMIS-Cancel-Get-Argument

An instance of the OM class CMIS-Cancel-Get-Argument is the supplied argument of a CMIS cancel-get
operation.

An instance of this OM class has the following attributes.

Table 44. OM Attribute of a CMIS-Cancel-Get-Argument Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

get-Invoke-Id Integer – 1 – –

982 Programmer's Reference

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

get-Invoke-Id
The identifier assigned to the previously requested and currently outstanding get operation.

 CMIS-Create-Argument

An instance of the OM class CMIS-Create-Argument is the supplied argument of a CMIS create operation.

An instance of this OM class has the following attributes.

Table 45. OM Attributes of a CMIS-Create-Argument Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

managed Object-Class Object(Object-Class) – 1 – 1017

create Object-Instance Object(Create-Object-Instance) – 0-1 – 1001

access-Control Object(Access-Control) – 0-1 – 971

reference Object-Instance Object(Object-Instance) – 0-1 – 1017

attribute-List Object(Attribute) – 0-128 – 976

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

managed-Object-Class
The class of the new managed-object instance that is to be created.

create-Object-Instance
The object-instance information that is relevant to the managed object to be created.

access-Control
Access-control information for the purpose of obtaining permission to create the specified
managed object.

reference-Object-Instance
An existing managed-object instance of the same class as the managed-object instance to be
created. For any attribute values, except the distinguishing attribute, not specified by the
attribute-List OM attribute, the attribute values of the existing managed-object instance are
used as default values for the new managed object.

attribute-List
Specifies the set of attribute identifiers and values to be assigned to the new managed-object
instance. The remaining attributes are assigned a set of default values according to the object
class definition of the new object.

 Chapter 4. Management Service Packages 983

 CMIS-Create-Result

An instance of the OM class CMIS-Create-Result is the result of a successful CMIS create operation.

An instance of this OM class has the following attributes.

Table 46. OM Attributes of a CMIS-Create-Result Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

managed Object-Class Object(Object-Class) – 0-1 – 1017

managed Object-Instance Object(Object-Instance) – 0-1 – 1017

current-Time String(Generalized-Time) – 0-1 – –

attribute-List Object(Attribute) – 0-128 – 976

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

managed-Object-Class
The class of the newly created managed object.

managed-Object-Instance
The identifier of the new managed-object instance. It must be returned if it was not supplied in
the argument for the create operation.

current-Time
The time at which the response was generated.

attribute-List
The complete list of all attribute identifiers and values, if any, that were assigned to the new
managed-object instance.

 CMIS-Delete-Argument

An instance of the OM class CMIS-Delete-Argument is the supplied argument of a CMIS delete operation.

An instance of this OM class has the following attributes.

Table 47. OM Attributes of a CMIS-Delete-Argument Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

base-Managed Object-Class Object(Object-Class) – 1 – 1017

base-Managed Object-Instance Object(Object-Instance) – 1 – 1017

access-Control: Object(Access-Control) – 0-1 – 971

synchronization Enum(CMIS-Sync) – 0-1 – –

scope Object(Scope) – 0-1 – 1019

filter Object(CMIS-Filter) – 0-1 – 987

984 Programmer's Reference

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

base-Managed-Object-Class
The class of the managed object that is to be used as the starting point for the selection of
managed objects on which the filter (when supplied) is to be applied. This OM attribute is not
meaningful if the corresponding base-Managed-Object-Instance OM attribute specifies the root
of the naming tree.

base-Managed-Object-Instance
The instance of the base managed object.

access-Control
Access-control information for the purpose of obtaining permission to delete the specified
managed object.

synchronization
Indicates how to synchronize the selected object instances. It can take either of the following
values:

� atomic, meaning that all managed objects selected for the operation are checked to ensure
that they can perform it successfully. If at least one of the managed objects is not able to
perform the operation successfully, then none perform it; otherwise, all perform it.

� best-effort, meaning that all managed objects selected for the operation are requested to
perform it.

If this OM attribute is not supplied, best-effort synchronization is performed. If only the base
managed object is selected for the operation, this OM attribute, if present, is ignored.

scope Indicates the subtree, rooted at the base managed object, that is to be searched. When the
scope is not specified, the scoped managed object is the specified base managed object.

filter Specifies the set of assertions that defines the filter test to be applied to the scoped managed
objects. If the filter is not specified, all of the managed objects included by the scope are
selected. All the selected managed objects are to be deleted.

 CMIS-Delete-Result

An instance of the OM class CMIS-Delete-Result is the result of a successful CMIS delete operation.

An instance of this OM class has the following OM attributes.

Table 48. OM Attributes of a CMIS-Delete-Result Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

managed Object-Class Object(Object-Class) – 0-1 – 1017

managed Object-Instance Object(Object-Instance) – 0-1 – 1017

current-Time String(Generalized-Time) – 0-1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

 Chapter 4. Management Service Packages 985

managed-Object-Class
The class of the managed object that was deleted. It can be absent only if the base object
alone was specified.

managed-Object-Instance
The instance of the managed object that was deleted. It can be absent only if the base object
alone was specified.

current-Time
The time at which the response was generated.

 CMIS-Event-Report-Argument

An instance of the OM class CMIS-Event-Report-Argument is the supplied information about a CMIS
event.

An instance of this OM class has the following OM attributes.

Table 49. OM Attributes of a CMIS-Event-Report-Argument Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

managed Object-Class Object(Object-Class) – 1 – 1017

managed Object-Instance Object(Object-Instance) – 1 – 1017

event-Time String(Generalized-Time) – 0-1 – –

event-Type Object(Event-Type-Id) – 1 – 1006

event-Info Any – 0-1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

managed-Object-Class
The class of the managed object in which the event occurred.

managed-Object-Instance
The instance of the managed object in which the event occurred.

event-Time
The time at which the event was generated.

event-Type
The event type, which indicates the particular event being reported.

event-Info The information supplied with the event being reported. The syntax and semantics of this OM
attribute depend upon the event reported. The OM value syntax for this OM attribute is deter-
mined by the value of the event-Type OM attribute, according to the rules expressed in
“Reading the OM Attribute Tables” on page 970.

986 Programmer's Reference

 CMIS-Event-Report-Result

An instance of the OM class CMIS-Event-Report-Result is the result of a reported CMIS event report.

An instance of this OM class has the following attributes.

Table 50. OM Attributes of a CMIS-Event-Report-Result Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

managed Object-Class Object(Object-Class) – 0-1 – 1017

managed Object-Instance Object(Object-Instance) – 0-1 – 1017

current-Time String(Generalized-Time) – 0-1 – –

event-Reply Object(Event-Reply) – 0-1 – 1005

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

managed-Object-Class
The class of the managed object in which an event occurred.

managed-Object-Instance
The instance of the managed object that generated the event.

current-Time
The time at which the response was generated.

event-Reply
The returned result information of the reported event.

 CMIS-Filter

An instance of the OM class CMIS-Filter is a set of assertions that defines the filter test to be applied to a
managed object. A filter is one or more assertions about the presence or value of attributes in a managed
object. A multiple assertion is an expression composed of simpler filters, referred to as nesting, using the
logical operators AND, OR, and NOT. Each assertion can be a test for equality, ordering, presence, or set
comparison.

Assertions about the value of an attribute are evaluated according to the matching rules associated with
the attribute syntax. If an attribute value assertion is present in the filter, and that attribute is not present
in the scoped managed object, then the result of the test for that attribute value assertion is evaluated as
false. The managed object is selected only if the value assertion of the filter is true.

 Chapter 4. Management Service Packages 987

An instance of this OM class can have the following OM attributes.

Note: In addition to the class attribute, an instance must have one, and only one, of the other OM attri-
butes.

Table 51. OM Attributes of a CMIS-Filter Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

item Object(Filter-Item) – 0-1 – 1007

and Object(CMIS-Filter) – 0-16 – 987

or Object(CMIS-Filter) – 0-16 – 987

not Object(CMIS-Filter) – 0-1 – 987

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

item A single assertion. Each assertion relates to just one attribute of the managed object to which
the filter test is to be applied.

and A collection of simpler CMIS filters. The filter is the logical conjunction of its components. The
value assertion of the filter is true, unless the value assertion of any of the nested filters is
false. If there are no nested components, the value assertion of the filter is true.

or A collection of simpler CMIS filters. The filter is the logical disjunction of its components. The
value assertion of the filter is false, unless the value assertion of any of the nested filters is
true. If there are no nested components, the value assertion of the filter is false.

not A CMIS filter. The result of this filter is reversed. The value assertion of the filter is true, if the
value assertion of the enclosed filter is false. If the value assertion of the enclosed filter is true,
however, then the value assertion of the filter is false.

A library error is returned by the XOM functions if an attempt is made to create a filter containing a
loop—that is, a filter that contains itself, possibly through several intermediate filters. Moreover, the OM
attribute item must be present in a nested CMIS filter in order to stop the recursion.

 CMIS-Get-Argument

An instance of the OM class CMIS-Get-Argument is the supplied argument of a CMIS get operation.

An instance of this OM class has the following OM attributes.

Table 52 (Page 1 of 2). OM Attributes of a CMIS-Get-Argument Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

base-Managed Object-Class Object(Object-Class) – 1 – 1017

base-Managed Object-Instance Object(Object-Instance) – 1 – 1017

access-Control Object(Access-Control) – 0-1 – 971

synchronization Enum(CMIS-Sync) – 0-1 – –

988 Programmer's Reference

Table 52 (Page 2 of 2). OM Attributes of a CMIS-Get-Argument Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

scope Object(Scope) – 0-1 – 1019

filter Object(CMIS-Filter) – 0-1 – 987

attribute-Id-List Object(Attribute-Id-List) – 0-1 – 979

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

base-Managed-Object-Class
The class of the managed object that is to be used as the starting point for the selection of
managed objects on which the filter (when supplied) is to be applied. This OM attribute is not
meaningful if the corresponding base-Managed-Object-Instance OM attribute specifies the root
of the naming tree.

base-Managed-Object-Instance
The instance of the base managed object.

access-Control
Access-control information for the purpose of obtaining permission to retrieve the attribute
values from the specified managed objects.

synchronization
Indicates how to synchronize the selected object instances. It can take either of the following
values:

� atomic, meaning that all managed objects selected for the operation are checked to ensure
that they can perform it successfully. If at least one of the managed objects is not able to
perform the operation successfully, then none perform it; otherwise, all perform it.

� best-effort, meaning that all managed objects selected for the operation are requested to
perform it.

If this OM attribute is not supplied, best-effort synchronization is performed. If the base
managed object alone is selected for the operation, this OM attribute, if present, is ignored.

scope Indicates the subtree, rooted at the base managed object, which is to be searched. When the
scope is not specified, the scoped managed object is the specified base managed object.

filter Specifies the set of assertions that defines the filter test to be applied to the scoped managed
objects. If the filter is not specified, all of the managed objects included by the scope are
selected.

attribute-Id-List
A list of identifiers specifying the attributes for which values are to be returned. If the attribute-
Id-List OM attribute is not present, all attributes are returned. If the attribute-Id-List OM attri-
bute is present, but empty, no attributes are returned.

 CMIS-Get-List-Error

An instance of the OM class CMIS-Get-List-Error is the result of a CMIS get operation that failed for one
or more attributes.

 Chapter 4. Management Service Packages 989

An instance of this OM class has the following OM attributes.

Table 53. OM Attributes of a CMIS-Get-List-Error Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

managed Object-Class Object(Object-Class) – 0-1 – 1017

managed Object-Instance Object(Object-Instance) – 0-1 – 1017

current-Time String(Generalised-Time) – 0-1 – –

get-Info-List Object(Get-Info-Status) – 1-128 – 1008

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

managed-Object-Class
The class of the managed object for which one or more attributes could not be read.

managed-Object-Instance
The identifier of the managed-object instance for which one or more attributes could not be
read.

current-Time
The time at which the response was generated.

get-Info-List
A list of all attribute identifiers and values that were read, as well as the identifiers and the error
notification of the attributes that could not be read.

 CMIS-Get-Result

An instance of the OM class CMIS-Get-Result is the result of a successful CMIS get operation.

An instance of this OM class has the following OM attributes.

Table 54. OM Attributes of a CMIS-Get-Result Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

managed Object-Class Object(Object-Class) – 0-1 – 1017

managed Object-Instance Object(Object-Instance) – 0-1 – 1017

current-Time String(Generalised-Time) – 0-1 – –

attribute-List Object(Attribute) – 0-128 – 976

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

managed-Object-Class
The class of the managed object for which zero, one, or more than one attributes were read.
This OM attribute can be absent only if the base object alone was specified as the scope.

990 Programmer's Reference

managed-Object-Instance
The identifier of the managed-object instance whose attribute values are returned. This OM
attribute can be absent only if the base object alone was specified as the scope.

current-Time
The time at which the response was generated.

attribute-List
A list of all attribute identifiers and values that were read.

 CMIS-Linked-Reply-Argument

An instance of the OM class CMIS-Linked-Reply-Argument is the argument of a linked reply to a
requested operation.

An instance of this OM class can have the following OM attributes.

Note: In addition to the class attribute, an instance must have one, and only one, of the other OM attri-
butes.

Table 55. OM Attributes of a CMIS-Linked-Reply-Argument Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

get-Result Object(CMIS-Get-Result) – 0-1 – 990

get-List-Error Object(CMIS-Get-List-Error) – 0-1 – 989

set-Result Object(CMIS-Set-Result) – 0-1 – 996

set-List-Error Object(CMIS-Set-List-Error) – 0-1 – 995

action-Result Object(CMIS-Action-Result) – 0-1 – 982

processing-Failure Object(Processing-Failure) – 0-1 – 1018

delete-Result Object(CMIS-Delete-Result) – 0-1 – 985

action-Error Object(Action-Error) – 0-1 – 971

delete-Error Object(Delete-Error) – 0-1 – 1001

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

get-Result
A partial, successful result of a get operation.

get-List-Error
A partial result of a get operation. It contains one or more attributes that could not be read.

set-Result
A partial, successful result of a set operation.

set-List-Error
A partial result of a confirmed set operation. It contains one or more attributes that could not
be modified.

action-Result
A partial, successful result of a confirmed action operation.

 Chapter 4. Management Service Packages 991

processing-Failure
Indicates that a general failure in processing the operation was encountered after partial results
were sent.

delete-Result
A partial, successful result of a confirmed delete operation.

action-Error
A partial, negative result of a confirmed action operation.

delete-Error
A partial, negative result of a confirmed delete operation.

 CMIS-Service-Error

An instance of the OM class CMIS-Service-Error reports a management error related to the provision of
CMIS service.

An instance of this OM class has the following OM attributes.

Table 56. OM Attributes of a CMIS-Service-Error Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

problem Enum(Problem) – 1 – –

parameter Any – 0-1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

The problem and parameter attributes are inherited from the OM class Error, which is defined in
“Error” on page 1004.

class Identifies the class of the object.

problem Provides details of a CMIS-Service-Error. Refer to Table 57 for a list and description of the
standard values for this OM attribute.

parameter
Provides additional information about the error. However, some error notifications do not
provide any additional information. In this case, the OM attribute parameter is absent.

The syntax for parameter depends on the value of the problem OM attribute. The following
table lists the possible values and meanings for problem and the corresponding meanings and
syntax for parameter.

Table 57 (Page 1 of 3). Problem and Parameter Values for a CMIS-Service-Error Object

Value and Meaning of Problem Syntax and Meaning of Parameter

access-denied

The requested operation was not performed, due to
security reasons.

Absent

No additional information is provided.

class-instance-conflict

The managed-object instance is not a member of the
specified class.

Object(Base-Managed-Object-Id)

Identifies the managed object.

992 Programmer's Reference

Table 57 (Page 2 of 3). Problem and Parameter Values for a CMIS-Service-Error Object

Value and Meaning of Problem Syntax and Meaning of Parameter

complexity-limitation

The requested operation was not performed because an
OM attribute (scope, filter, or synchronization) was too
complex.

Object(Complexity-Limitation)

Contains the OM attribute that was too complex.

Note: This OM attribute can be absent.

duplicate-managed-object-instance

The new managed-object instance value supplied by the
invoker of the create operation was already registered for
a managed object of the specified class.

Object(Object-Instance)

Specifies the name that was already registered.

get-list-error

One or more attribute values were not read.

Object(CMIS-Get-List-Error)

Contains the attributes that could not be read, as well as
those that were read.

invalid-argument-value

The event argument value or action argument value was
out of range or otherwise inappropriate.

Object(Invalid-Argument-Value)

Contains the event type or the action type and the argu-
ment value that is not valid.

invalid-attribute-value

The attribute value was out of range or otherwise inap-
propriate.

Object(Attribute)

Contains the attribute type and the attribute value that is
not valid.

invalid-filter

Contains the assertion that is not valid or the unrecog-
nized logical operator.

Object(CMIS-Filter)

Specifies the filter expression that is not valid.

invalid-object-instance

The name of the object instance does not comply with
the naming rules.

Object(Object-Instance)

Contains the name that is not valid for the managed-
object instance.

invalid-scope

The scope value is not valid.

Object(Scope)

Contains the scope value that is not valid.

missing-attribute-value

A required attribute value was not supplied and a default
value was not available.

Object(Missing-Attribute-Value)

Identifies the attributes for which some values were
required but were not supplied.

mistyped-operation

The invoke identifier of the get operation does not refer
to a get operation.

Absent

No additional information is provided.

no-such-action

The action type is not recognized.

Object(No-Such-Action)

Specifies the action type.

no-such-argument

The event or action is not recognized.

Object(No-Such-Argument)

Contains the event type or the action type. May also
contain the object class to which the event or the action
is related.

no-such-attribute

The identifier for an attribute or attribute group is not
recognized.

Object(Attribute-Id)

Contains the unrecognized attribute identifier.

no-such-event-type

The event is not recognized.

Object(No-Such-Event-Type)

Contains the event type and the object class to which
the event refers.

 Chapter 4. Management Service Packages 993

Table 57 (Page 3 of 3). Problem and Parameter Values for a CMIS-Service-Error Object

Value and Meaning of Problem Syntax and Meaning of Parameter

no-such-invoke-id

The invoke identifier of the get operation is not recog-
nized.

Integer

Specifies the invoke identifier that is not valid for the get
operation.

no-such-object-class

The class of the managed object is not recognized.

Object(Object-Class)

Contains the managed-object class identifier.

no-such-object-instance

The instance of the managed object is not recognized.

Object(Object-Instance)

Contains the name of the managed-object instance.

no-such-reference-object

The reference-object instance is not recognized.

Object(Object-Instance)

Contains the name of the referenced managed-object
instance.

operation-cancelled

The get operation was canceled by a cancel-get opera-
tion, and no further attribute values will be returned by
this invocation of the get service.

Absent

No additional information is provided.

processing-failure

A general failure was encountered during processing of
the operation.

Object(Processing-Failure)

Indicates a specific error and specific information about
the error.

Note: This OM attribute can be absent.

set-list-error

One or more attribute values were not modified.

Object(CMIS-Set-List-Error)

Specifies a set of attributes, the values of those that
were modified, and the values and the modify operator
of those that could not be changed.

synchronization-not-supported

The type of synchronization is not supported.

Enum(CMIS-Sync)

Specifies the type of synchronization that is not sup-
ported.

 CMIS-Set-Argument

An instance of the OM class CMIS-Set-Argument is the supplied argument of a CMIS set operation.

An instance of this OM class can have the following OM attributes.

Note: In addition to the class attribute, an instance must have one, and only one, of the other OM attri-
butes.

Table 58 (Page 1 of 2). OM Attributes of a CMIS-Set-Argument Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

base-Managed Object-Class Object(Object-Class) – 1 – 1017

base-Managed Object-Instance Object(Object-Instance) – 1 – 1017

access-Control Object(Access-Control) – 0-1 – 971

synchronization Enum(CMIS-Sync) – 0-1 – –

scope Object(Scope) – 0-1 – 1019

994 Programmer's Reference

Table 58 (Page 2 of 2). OM Attributes of a CMIS-Set-Argument Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

filter Object(CMIS-Filter) – 0-1 – 987

modification List Object(Modification) – 1-128 – 1012

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

base-Managed-Object-Class
The class of the managed object that is to be used as the starting point for the selection of
managed objects on which the filter (when supplied) is to be applied. This OM attribute is not
meaningful if the corresponding base-Managed-Object-Instance OM attribute specifies the root
of the naming tree.

base-Managed-Object-Instance
The instance of the base managed object.

access-Control
Access-control information for the purpose of obtaining permission to modify the attribute
values of the specified managed objects.

synchronization
Indicates how to synchronize the selected object instances. It can take either of the following
values:

� atomic, meaning that all managed objects selected for the operation are checked to ensure
that they can perform it successfully. If at least one of the managed objects is not able to
perform the operation successfully, then none perform it; otherwise, all perform it.

� best-effort, meaning that all managed objects selected for the operation are requested to
perform it.

If this parameter is not supplied, best-effort synchronization is performed. If the base managed
object alone is selected for the operation, this OM attribute, if present, is ignored.

scope Indicates the subtree, rooted at the base managed object, that is to be searched. When the
scope is not specified, the scoped managed object is the specified base managed object.

filter Specifies the set of assertions that defines the filter test to be applied to the scoped managed
object. If the filter is not specified, all of the managed objects included by the scope are
selected.

modification-List
A list that specifies the attribute identifier, the modify operator, and the attribute value to be set.
The attribute value can be absent in the set-to-default operation.

 CMIS-Set-List-Error

An instance of the OM class CMIS-Set-List-Error is the result of a CMIS set operation that failed for one or
more attributes.

An instance of this OM class has the following OM attributes.

 Chapter 4. Management Service Packages 995

Table 59. OM Attributes of a CMIS-Set-List-Error Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

managed Object-Class Object(Object-Class) – 0-1 – 1017

managed Object-Instance Object(Object-Instance) – 0-1 – 1017

current-Time String(Generalised-Time) – 0-1 – –

set-Info-List Object(Set-Info-Status) – 1-128 – 1022

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

managed-Object-Class
The class of the managed object for which one or more attributes could not be modified.

managed-Object-Instance
The identifier of the managed-object instance for which one or more attributes could not be
modified.

current-Time
The time at which the response was generated.

set-Info-List
The list of all attribute identifiers and values that were modified, together with the identifiers and
the error notification of the attributes that could not be changed.

 CMIS-Set-Result

An instance of the OM class CMIS-Set-Result is the result of a successful CMIS set operation.

An instance of this OM class has the following OM attributes.

Table 60. OM Attributes of a CMIS-Set-Result Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

managed Object-Class Object(Object-Class) – 0-1 – 1017

managed Object-Instance Object(Object-Instance) – 0-1 – 1017

current-Time String(Generalised-Time) – 0-1 – –

attribute-List Object(Attribute) – 0-128 – 976

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

managed-Object-Class
The class of the managed object for which zero, one, or more than one attributes were modi-
fied. This OM attribute can be absent only if the base object alone was specified as the scope.

996 Programmer's Reference

managed-Object-Instance
The identifier of the managed-object instance for which the attribute values were modified.
This OM attribute can be absent only if the base object alone was specified as the scope.

current-Time
The time at which the response was generated.

attribute-List
A list of all attribute identifiers and values that were modified.

 Communications-Error

An instance of the OM class Communications-Error reports an error occurring in the other services sup-
porting the Management Information Services.

A management program is not permitted to create or modify instances of this OM class.

An instance of this OM class has the following OM attributes.

Table 61. OM Attributes of a Communications-Error Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

problem Enum(Problem) – 1 – –

parameter Integer – 0-1 – –

Note: This attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

The problem and parameter attributes are inherited from the OM class Error, which is defined in
“Error” on page 1004.

class Identifies the class of the object.

problem Its value is communications-problem. The involved session is abruptly terminated (no longer
usable). No more results are returned for the outstanding operations or notifications.

parameter
The syntax value of this OM attribute is integer.

The communications error occurs only when the Communication Infrastructure cannot send the message
to the proper recipient. The probable causes of a communication error are listed as follows:

� the recipient (agent/manager) is not running
� the agent has not been registered in the ORS

 Community-Name

An instance of the OM class Community-Name represents access privileges of Internet. It is information
of unspecified form to be used as input to access-control functions.

 Chapter 4. Management Service Packages 997

An instance of this OM class has the following OM attributes.

Table 62. OM Attributes of a Community-Name Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

community String(Octet) – 1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

community
The name of the community to which the management program belongs. This name is used
as input to the authentication service for SNMP.

 Complexity-Limitation

An instance of the OM class Complexity-Limitation is the information that describes a complexity limitation
error.

An instance of this OM class has the following OM attributes.

Table 63. OM Attributes of a Complexity-Limitation Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

scope Object(Scope) – 0-1 – 1019

filter Object(CMIS-Filter) – 0-1 – 987

synchronization Enum(CMIS-Sync) – 0-1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

scope Indicates that the complexity limitation is related to the specified scope.

filter Indicates that the complexity limitation is related to the specified filter assertions.

synchronization
Indicates that the complexity limitation is related to the synchronization specified for the
managed objects. It can take either of the following values:

� atomic, meaning that all managed objects selected for the operation are checked to ensure
that they can perform it successfully. If at least one of the managed objects is not able to
perform the operation successfully, then none perform it; otherwise, all perform it.

� best-effort, meaning that all managed objects selected for the operation are requested to
perform it.

998 Programmer's Reference

 Context

An instance of the OM class Context defines the characteristics of a management interaction. These
characteristics are specific to a particular operation but are often used unchanged for many operations.

An instance of this OM class has the following OM attributes. The OM attributes of the Context OM class
are divided into two functional groups: (1) service controls, and (2) local controls.

Table 64. OM Attributes of a Context Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

Service Controls

access-Control Object(Access-Control) – 0-1 – 971

mode Enum(Mode) – 1
con-
firmed –

priority Enum(Priority) – 1 medium –

Local Controls

asynchronous Boolean – 1 false –

size-Limit Integer – 0-1 – –

time-Limit Integer – 0-1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

Although the presumption is that changes to the context will be made infrequently, the values can be
changed after every operation, if required. Each argument is represented by one of the OM attributes of
the Context OM class.

Service Controls

class Identifies the class of the object.

access-Control
The value for access control that is used as input to the authentication service.

mode Indicates that the management CMIS service is requested in a confirmed or nonconfirmed
mode. It is meaningful only for the mp_set_req(), mp_event_report_req(), and mp_action_req()
functions. Its value is either the constant MP_T_CONFIRMED, or MP_T_NON_CONFIRMED.

priority The priority, relative to other management service requests, according to which the manage-
ment information service provider attempts to satisfy the request. This is not a guaranteed
service. This OM attribute is without effect if it is not supported by the MIS provider. Its value
must be one of the following:

 � low
 � medium
 � high.

 Chapter 4. Management Service Packages 999

Local Controls

asynchronous
Indicates whether the XMP API operates in asynchronous mode.

This OM attribute is applicable only for those functions that can be called in asynchronous
mode as well as in synchronous mode.

The value is one of the following:

� false, meaning that the operation is to be performed sequentially (in synchronous mode);
the management program is blocked until a result or error is returned.

� true, meaning that the operation is to be performed in asynchronous mode (nonblocking).
The management program can perform multiple, concurrent asynchronous operations and
can associate a result obtained from mp_receive() with the original operation. The
maximum number of outstanding concurrent operations can be specified in the configura-
tion file. The default value of the constant MP_MAX_OUTSTANDING_OPERATIONS is
2000.

size-Limit Applicable only to functions that are used in synchronous mode and that can have linked
replies.

If the size-Limit attribute is present and its value is less than zero, the attribute is ignored. If
the size-Limit attribute is present and its value is greater than zero, the value indicates the
maximum number of linked responses about which mp_get_req(), mp_set_req(),
mp_action_req(), or mp_delete_req() return information. If this limit is exceeded, the service is
abandoned for any remaining replies, and a Library-Error (size-limit-exceeded) is returned. In
this case, the parameter attribute of the Library-Error has the syntax object(Multiple-Reply).
The number of received, partial results is equal to the size-Limit value. The objects that are
returned are unspecified (since they can depend, for example, on the timing of interactions
between management programs).

 time-Limit
Applicable only to functions that are used in synchronous mode.

If the time-Limit attribute is present and its value is less than zero, the attribute is ignored. If
the time-Limit attribute is present and its value is greater than zero, the value indicates the
maximum elapsed time, in seconds, within which the service must be provided. (It does not
indicate the processing time devoted to the request.) If this limit is reached, the service is
abandoned for any remaining linked replies, and a Library-Error (time-limit-exceeded) is
returned. If partial results were received, the parameter attribute of the Library-Error has the
syntax object(Multiple-Reply) and contains the partial results. If partial results were not
received, the parameter attribute is absent.

Management programs can assume that an object of the OM class Context, created with default values of
all its OM attributes, will work with all the XMP functions. You can use the constant
MP_DEFAULT_CONTEXT as an argument to the XMP functions, instead of creating an OM object with
default values.

 Create-Argument

An instance of the OM class Create-Argument is the supplied argument of a create operation. It is an
abstract class, which has the attributes of its superclass, Object.

There is one subclass of this OM class:

CMIS-Create-Argument, which is the supplied argument of a CMIS create operation.

1000 Programmer's Reference

 Create-Object-Instance

An instance of the OM class Create-Object-Instance is the object instance information provided for a new
managed object.

An instance of this OM class can have the following OM attributes.

Note: In addition to the class attribute, an instance must have one, and only one, of the other OM attri-
butes.

Table 65. OM Attributes of a Create-Object-Instance Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

managed Object-Instance Object(Object-Instance) – 0-1 – 1017

superior Object-Instance Object(Object-Instance) – 0-1 – 1017

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

managed-Object-Instance
The instance of the managed object that is to be registered.

superior-Object-Instance
An existing managed-object instance that is the superior of the new managed-object instance.

 Create-Result

An instance of the OM class Create-Result represents the result of a successful create operation. It is an
abstract class, which has the attributes of its superclass, Object.

There is one subclass of this OM class:

CMIS-Create-Result, which is the result of a successful CMIS create operation.

 Delete-Argument

The OM class Delete-Argument represents the supplied argument of a delete operation. It is an abstract
class, which has the attributes of its superclass, Object.

There is one subclass of this OM class:

CMIS-Delete-Argument is the supplied argument of a CMIS delete operation.

 Delete-Error

An instance of the OM class Delete-Error documents a problem encountered while performing a delete
operation.

 Chapter 4. Management Service Packages 1001

An instance of this OM class has the following OM attributes.

Table 66. OM Attributes of a Delete-Error Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

managed Object-Class Object(Object-Class) – 0-1 – 1017

managed Object-Instance Object(Object-Instance) – 0-1 – 1017

current-Time String(Generalised-Time) – 0-1 – –

delete-Error-Info Enum(Delete-Error-Info) – 1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

managed-Object-Class
The class of the managed object for which deletion was attempted.

managed-Object-Instance
The instance of the managed object for which deletion was attempted.

current-Time
The time at which the response was generated.

delete-Error-Info
The error notification for the operation. Its value can be only the following:

access-denied, meaning that the requested delete operation was not performed, due to
security reasons.

 Delete-Result

The OM class Delete-Result represents the result of a successful delete operation. It is an abstract class,
which has the attributes of its superclass, Object.

There is one subclass of this OM class:

CMIS-Delete-Result, which is the result of a successful CMIS delete operation.

 DS-DN

An instance of the OM class DS-DN represents the name of a managed object.

An instance of this OM class has the following OM attributes.

Table 67. OM Attributes of a DS-DN Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

RDNs Object(DS-RDN) – 0-16 – 1003

1002 Programmer's Reference

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

RDNs For a managed object, defines the path through the naming tree from its root to the managed
object. The order of the values is important:

1. The first value is closest to the root.
2. The last value is the relative distinguished name of the object.

Note: The DS-DN of the root is the null name (with no RDNs values).

 DS-RDN

An instance of the OM class DS-RDN is a relative distinguished name (RDN). An RDN uniquely identifies
the immediate subordinate of a managed object in the naming tree.

An instance of this OM class has the following OM attributes.

Table 68. OM Attributes of a DS-RDN Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

AVAs Object(AVA) – 1 – 979

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

AVAs An attribute value assertion (AVA) is composed of an attribute type and an attribute value. The
AVA attribute types used for an RDN can be a management attribute type selected for naming
managed objects. This OM attribute represents the attribute value assertions that are defined
in a name-binding as the single component of the RDN of the managed object.

 Entity-Name

An instance of the OM class Entity-Name represents the name of a management program.

An instance of this OM class has the following OM attributes.

Table 69. OM Attributes of an Entity-Name Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

entity String(Printable) 251 1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

entity A management program name or a system name.

 Chapter 4. Management Service Packages 1003

 Error

The OM class Error comprises the parameters common to all errors.

There are four subclasses of this OM class:

 � Communications-Error
 � Library-Error
 � Service-Error
 � System-Error.

Since each subclass represents a particular type of error, details about a particular error are returned in an
instance of the appropriate subclass.
The OM class Error has the following OM attributes:

Table 70. OM Attributes of an Error Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

problem Enum(Problem) – 1 – –

parameter Any – 0-1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

problem Provides details about the error. Each problem value is listed and described under the error
OM class to which it belongs.

parameter
Provides additional information about the error. The syntax of parameter depends on the value
of the problem OM attribute.

Some error notifications do not provide any additional information. In this case, the OM attri-
bute parameter is absent.

 Error-Info

An instance of the OM class Error-Info provides additional information for an Action-Error-Info.

An instance of this OM class can have the following OM attributes.

Note: In addition to the class attribute, an instance must have one, and only one, of the other OM attri-
butes.

Table 71. OM Attributes of an Error-Info Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

action-Type Object(Action-Type-Id) – 0-1 – 974

action-Argument Object(No-Such-Argument) – 0-1 – 1015

argument-Value Object(Invalid-Argument-Value) – 0-1 – 1009

1004 Programmer's Reference

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

action-Type
The action type that indicates which action was attempted.

action-Argument
The action type and, optionally, the corresponding managed-object class for which the argu-
ment type was not valid.

argument-Value
The action type and, optionally, the argument value that were inappropriate.

 Event-Reply

An instance of the OM class Event-Reply is the reply to an event report.

An instance of this OM class has the following OM attributes.

Table 72. OM Attributes of an Event-Reply Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

event-Type Object(Event-Type-Id) – 1 – 1006

event-Reply-Info Any – 0-1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

event-Type
The event type, which indicates the particular event being reported.

event-Reply-Info
The reply information for the event report. The syntax and meaning of this OM attribute
depend upon the event reported. The OM value syntax for this OM attribute is determined by
the value of the event-Type OM attribute according to the rules expressed in “Reading the OM
Attribute Tables” on page 970.

 Event-Report-Argument

The OM class Event-Report-Argument represents the supplied argument about an event. It is an abstract
class, which has the attributes of its superclass, Object.

There are two subclasses of this OM class:

� CMIS-Event-Report-Argument, which is the supplied information about a CMIS event

� SNMP-Trap-Argument, which provides the information conveyed in an SNMP trap.

 Chapter 4. Management Service Packages 1005

 Event-Report-Result

The OM class Event-Report-Result represents the result of an event report. It is an abstract class, which
has the attributes of its superclass, Object.

There is one subclass of this OM class:

CMIS-Event-Report-Result, which is the result of a CMIS event report.

 Event-Type-Id

An instance of the OM class Event-Type-Id represents an identifier of an event report.

An instance of this OM class can have the following OM attributes.

Note: In addition to the class attribute, an instance must have one, and only one, of the other OM attri-
butes.

Table 73. OM Attributes of an Event-Type-Id Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

global-Form String(Object-Identifier) – 0-1 – –

local-Form Integer – 0-1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

global-Form
A registered event-type identifier.

local-Form
When this OM attribute is used, the permissible values for the integers and their meanings are
defined as part of either the application context or the package in which they are used.

 External-AC

An instance of the OM class External-AC represents an externally defined access-control parameter. It is
information of unspecified form to be used as input to access-control functions.

An instance of this OM class has the following OM attributes.

Table 74. OM Attributes of an External-AC Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

external-AC Object(External) – 1 – ‡

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

1006 Programmer's Reference

‡: The external-AC class is defined in the X/Open OSI-Abstract-Data Manipulation (XOM) API,
CAE Specification.

class Identifies the class of the object.

external-AC
The externally defined access-control attribute.

 Filter-Item

An instance of the OM class Filter-Item is a component of a CMIS-Filter object. It is an assertion about
the existence or value of a single attribute type in a managed object.

The value of the filter item is undefined if:

� The attribute-Id is not known.

� The attribute-Value does not conform to the attribute syntax defined for that attribute identifier.

An instance of this OM class can have the following OM attributes.

Note: In addition to the class attribute, an instance must have one, and only one, of the other OM attri-
butes.

Table 75. OM Attributes of a Filter-Item Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

equality Object(Attribute) – 0-1 – 976

substrings Object(Substrings) – 0-8 – 1029

greater-Or-Equal Object(Attribute) – 0-1 – 976

less-Or-Equal Object(Attribute) – 0-1 – 976

present Object(Attribute-Id) – 0-1 – 978

subset-Of Object(Attribute) – 0-1 – 976

superset-Of Object(Attribute) – 0-1 – 976

non-Null-Set Intersection Object(Attribute) – 0-1 – 976

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

� class, which identifies the class of the object.

� equality, meaning that the value assertion for the filter item is true if the managed object contains an
attribute of the specified type— the attribute value of which is equal to that being asserted (according
to the equality matching rule in force). Otherwise, the value assertion for the filter item is false.

� substrings, meaning that the value assertion for the filter item is true if the managed object contains an
attribute of the specified attribute type— the value of which contains all of the specified substrings in
the given order. (Those specified values depend on the attribute type.) Otherwise, the value
assertion for the filter item is false.

� greater-Or-Equal, meaning that the value assertion for the filter item is true if, and only if, the managed
object contains an attribute of the specified type, and the asserted value is greater than or equal to the
attribute value (using the appropriate ordering algorithm).

 Chapter 4. Management Service Packages 1007

� less-Or-Equal, meaning that the value assertion for the filter item is true if, and only if, the managed
object contains an attribute of the specified type, and the asserted value is less than or equal to the
attribute value (using the appropriate ordering algorithm).

� present, meaning that the value assertion for the filter item is true if the managed object contains an
attribute of the specified type. Otherwise, the value assertion for the filter item is false.

� subset-Of, meaning that the value assertion for the filter item is true if, and only if, the managed object
contains a set-valued attribute of the specified type, and the asserted value is a subset (in the math-
ematical sense) of the attribute value.

� superset-Of, meaning that the value assertion for the filter item is true if, and only if, the managed
object contains a set-valued attribute of the specified type, and the asserted value is a superset (in the
mathematical sense) of the attribute value.

� non-Null-Set-Intersection, meaning that the value assertion for the filter item is true if, and only if, the
managed object contains a set-valued attribute of the specified type, and the intersection of the
asserted value with the attribute value is not empty.

 Get-Argument

The OM class Get-Argument represents the supplied argument of a get operation. It is an abstract class,
which has the attributes of its superclass, Object.

There are two subclasses of this OM class:

� CMIS-Get-Argument, which is the supplied argument of a CMIS get operation

� SNMP-Get-Argument, which is the supplied argument of an SNMP get operation.

 Get-Info-Status

An instance of the OM class Get-Info-Status is a component of the returned attribute list in a get opera-
tion.

An instance of this OM class can have the following OM attributes.

Note: In addition to the class attribute, an instance must have one, and only one, of the other OM attri-
butes.

Table 76. OM Attributes of a Get-Info-Status Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

attribute Id-Error Object(Attribute-Id-Error) – 0-1 – 978

attribute Object(Attribute) – 0-1 – 976

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

attribute-Id-Error
The attribute type and the error notification of an attribute that could not be read. The possible
error notification is either access-denied or no-such-attribute.

attribute The type and value of the attribute that was read.

1008 Programmer's Reference

 Get-List-Error

The OM class Get-List-Error represents the result of a get operation that failed for one or more attributes.
It is an abstract class, which has the attributes of its superclass, Object.

There is one subclass of this OM class:

CMIS-Get-List-Error, which is the result of a CMIS get operation that failed for one or more attributes.

 Get-Result

The OM class Get-Result represents the result of a successful get operation. It is an abstract class, which
has the attributes of its superclass, Object.

There are two subclasses of this OM class:

� CMIS-Get-Result, which is the result of a successful CMIS get operation

� SNMP-Get-Result, which is the result of a successful SNMP get or get-next operation.

 Invalid-Argument-Value

An instance of the OM class Invalid-Argument-Value is the information associated with an invalid-
argument-value error notification.

An instance of this OM class can have the following OM attributes.

Note: In addition to the class attribute, an instance must have one, and only one, of the other OM attri-
butes.

Table 77. OM Attributes of an Invalid-Argument-Value Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

action-Value Object(Action-Info) – 0-1 – 972

event-Value Object(Event-Reply) – 0-1 – 1005

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

action-Value
The action type and, if it exists, the action argument value that is not valid that could not be
performed.

event-Value
The event type and, if it exists, the event information value that is not valid for the event
reported.

 Chapter 4. Management Service Packages 1009

 Library-Error

An instance of the OM class Library-Error reports an error detected by the XMP function library.

An application is not permitted to create or modify instances of this OM class.

Each function has several possible errors that can be detected by the library itself and that are returned
directly by the subroutine. These errors occur when the library itself is unable to perform an action, submit
a service request, or parse a response from the system management service.

An instance of this OM class has the following OM attributes.

Table 78. OM Attributes of a Library-Error Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

problem Enum(Problem) – 1 – –

parameter Any – 0-1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

The problem and parameter attributes are inherited from the OM class Error, which is defined in
“Error” on page 1004.

class Identifies the class of the object.

problem Identifies the particular library error that has occurred. The error code section for each XMP
function lists only those errors that can be returned by the particular function.

parameter
Provides additional information about the Library-Error. Its OM value syntax is determined by
the value of the OM attribute problem. Some of the errors do not include any additional infor-
mation; in this case, the OM attribute parameter is absent.

The following list gives the possible cause of the failure and its associated information:

� bad-address, meaning that an address that is not valid was supplied.

� bad-argument, meaning that an argument that is not valid was supplied.

� bad-class, meaning that the OM class of either an argument, result, linked-reply, or error is
not supported for this operation.

� bad-context, meaning that a context argument that is not valid was supplied.

� bad-error, meaning that a service error that is not valid was supplied.

� bad-linked-reply, meaning that a linked reply that is not valid was supplied.

� bad-procedural-use, meaning that the procedural use of linked replies does not comply with
the ISO and X/Open standards, or that the permitted service primitive chaining is violated.

� bad-result, meaning that a result that is not valid was supplied.

� bad-session, meaning that a session that is not valid was supplied.

� bad-title, meaning that a title that is not valid was supplied.

� bad-workspace, meaning that a workspace argument that is not valid was supplied.

1010 Programmer's Reference

� miscellaneous, meaning that a miscellaneous error occurred during interaction with the
system management service. This error is returned if the XMP API cannot clear a transient
system error by retrying the affected system call.

� no-such-operation, meaning that the library has no knowledge of the designated operation
or notification in progress, or that the response does not match the invoked operation or
notification.

� not-supported, meaning that an attempt was made to use an option that is not yet avail-
able, or that was not agreed upon for use on the session.

� session-terminated, meaning that the session is terminated, and that the results of an out-
standing operation are no longer available.

� size-limit-exceeded, meaning that the maximum number of linked responses about which
the requested service should return information has been reached. The parameter OM
attribute specifies a Multiple-Reply object, which contains a number of received partial
results that is equal to the size-limit value. The syntax of parameter is
object(Multiple-Reply).

� time-limit-exceeded, meaning that the maximum elapsed time within which the requested
service must be provided has been reached. The parameter OM attribute specifies a
Multiple-Reply object, which contains any received, partial results. Its syntax is
object(Multiple-Reply). This OM attribute can be absent.

� too-many-operations, meaning that no more management operations can be performed
until at least one asynchronous operation has been completed.

� too-many-sessions, meaning that no more management sessions can be started.

 Linked-Reply-Argument

The OM class Linked-Reply-Argument is the argument of a linked reply to a requested management oper-
ation. It is an abstract class, which has the attributes of its superclass, Object.

There is one subclass of this OM class:

CMIS-Linked-Reply-Argument, which is the supplied argument of a linked reply to a CMIS manage-
ment operation.

 Missing-Attribute-Value

An instance of the OM class Missing-Attribute-Value represents a list of attribute identifiers for which
values are missing. This OM class is applicable only to a create operation.

An instance of this OM class has the following OM attributes.

Table 79. OM Attributes of a Missing-Attribute-Value Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

set-Of Attribute-Id Object(Attribute-Id) – 1-128 – 978

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

 Chapter 4. Management Service Packages 1011

class Identifies the class of the object.

set-Of-Attribute-Id
A list of attribute-type identifiers.

 Modification

An instance of the OM class Modification specifies how to modify an attribute.

An instance of this OM class has the following OM attributes.

Table 80. OM Attributes of a Modification Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

attribute-Id Object(Attribute-Id) – 1 – 978

attribute-Value Any – 0-1 – –

modify-Operator Enum(Modify-Operator) – 0-1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

attribute-Id
Either the attribute type, which indicates the class of information given by this attribute, or the
identifier of an attribute group. An attribute group identifier can be specified only when the
modify operator is set-to-default.

attribute-Value
The attribute values to be used in the modification. This OM attribute must be present if the
modify operator is not set-to-default.

The representation of the attribute value depends on the attribute type. The OM value syntax
for this OM attribute is determined by the value of the attribute-Id OM attribute according to the
rules expressed in “Reading the OM Attribute Tables” on page 970.

modify-Operator
Specifies the way in which the attribute values, if supplied, are to be applied to the attribute.
The possible operators are the following:

� replace, meaning that the attribute values are used to replace the current values of the
attribute.

� add-values, meaning that the attribute values are to be added to the current values of the
attribute. This operator applies only to a set-valued attribute and performs a set union (in
the mathematical sense) between the current values of the attribute and the attribute
values specified.

� remove-values, meaning that the attribute values specified are to be removed from the
current values of the attribute. This operator applies only to a set-valued attribute and per-
forms a set difference (in the mathematical sense) between the current values of the attri-
bute and the attribute values specified. Values specified in the attribute-Value OM attribute
that are not in the current values of the attribute do not cause an error to be returned.

1012 Programmer's Reference

� set-to-default, meaning one of the following:

– When this operator is applied to a single-valued attribute, the value of the attribute is
set to its default value.

– When this operator is applied to a set-valued attribute, the values of the attribute are
set to their default values, and only as many values as defined by the default are
assigned.

– When this operator is applied to an attribute group, each member of the attribute group
is set to its default value.

The OM attribute modify-Operator is optional. If it is not specified, the replace operator is
assumed.

 Multiple-Reply

An instance of the OM class Multiple-Reply is the completed result of a successful get, set, action, or
delete operation performed in synchronous, confirmed mode.

Multiple replies to a single operation can only occur if the invoker selects multiple managed objects, or
requests an action on a single managed object in which the action is defined to produce multiple
responses.

An instance of this OM class has the following OM attributes.

Table 81. OM Attributes of a Multiple-Reply Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

replies Object(CMIS-Linked-Reply-Argument) –
1 or
more – 991

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

replies The results of a get, set, action, or delete operation.

 Name

The OM class Name represents the name of an entry in a local registration file (LRF).

A name unambiguously distinguishes the managed object from all other objects whose entries appear in
the Object Registration Service (ORS). A name is a distinguished name. It is unique, since no other
distinguished name identifies the same object.

It is an abstract class, which has only the attributes of its superclass, Object.

This OM class serves to group all possible representations of names for managed objects. It is used to
construct an instance of the OM class Session.

There is one subclass of this OM class:

DS-DN, which provides a representation for names, including distinguished names.

 Chapter 4. Management Service Packages 1013

 Network-Address

An instance of the OM class Network-Address represents an address from the Internet protocol family.

An instance of this OM class has the following OM attributes.

Table 82. OM Attributes of a Network-Address Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

ip-Address String(Octet) 4 1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

ip-Address
Represents a 32-bit Internet address. It is represented as an octet string of length 4, in network
byte-order.

 No-Such-Action

An instance of the OM class No-Such-Action is the information associated with a no-such-action error
notification.

An instance of this OM class has the following OM attributes.

Table 83. OM Attributes of a No-Such-Action Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

managed Object-Class Object(Object-Class) – 1 – 1017

action-Type Object(Action-Type-Id) – 1 – 974

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

managed-Object-Class
Identifies the managed-object class to which the action is related.

action-Type
The action type, which indicates the particular action.

1014 Programmer's Reference

 No-Such-Action-Id

An instance of the OM class No-Such-Action-Id is an alternative to the information associated with a no-
such-argument error notification.

An instance of this OM class has the following OM attributes.

Table 84. OM Attributes of a No-Such-Action-Id Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

managed Object-Class Object(Object-Class) – 0-1 – 1017

action-Type Object(Action-Type-Id) – 1 – 974

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

managed-Object-Class
Identifies the managed-object class to which the action is related.

action-Type
The action type, which indicates the particular action.

 No-Such-Argument

An instance of the OM class No-Such-Argument represents the information associated with a no-such-
argument error.

An instance of this OM class can have the following OM attributes.

Note: In addition to the class attribute, an instance must have one, and only one, of the other OM attri-
butes.

Table 85. OM Attributes of a No-Such-Argument Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

action-Id Object(No-Such-Action-Id) – 0-1 – 1015

event-Id Object(No-Such-Event-Id) – 0-1 – 1016

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

action-Id The action type and, optionally, the managed-object class identifier of the action.

event-Id The event type and, optionally, the managed-object class to which the event is related.

 Chapter 4. Management Service Packages 1015

 No-Such-Event-Id

An instance of the OM class No-Such-Event-Id is an alternative to the information associated with a no-
such-argument error notification.

An instance of this OM class has the following OM attributes.

Table 86. OM Attributes of a No-Such-Event-Id Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

managed Object-Class Object(Object-Class) – 0-1 – 1017

event-Type Object(Event-Type-Id) – 1 – 1006

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

managed-Object-Class
Identifies the managed-object class to which the event is related.

event-Type
The event type, which indicates the particular event reported.

 No-Such-Event-Type

An instance of the OM class No-Such-Event-Type is the information associated with a no-such-event-type
error notification.

An instance of this OM class has the following OM attributes.

Table 87. OM Attributes of a No-Such-Event-Type Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

managed Object-Class Object(Object-Class) – 1 – 1017

event-Type Object(Event-Type-Id) – 1 – 1006

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

managed-Object-Class
Identifies the managed-object class to which the event is related.

event-Type
The event type, which indicates the particular event reported.

1016 Programmer's Reference

 Object-Class

An instance of the OM class Object-Class represents an identifier of a managed-object class.

An instance of this OM class can have the following OM attributes.

Note: In addition to the class attribute, an instance must have one, and only one, of the other OM attri-
butes.

Table 88. OM Attributes of an Object-Class Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

global-Form String(Object-Identifier) – 0-1 – –

local-Form Integer – 0-1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

global-Form
A registered object class identifier.

local-Form
When this OM attribute is used, the permissible values for the integers and their meanings are
defined as part of the application context in which they are used.

 Object-Instance

An instance of the OM class Object-Instance is the name of a managed-object instance.

An instance of this OM class can have the following OM attributes.

Table 89. OM Attributes of an Object-Instance Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

local-DN Object(DS-DN) – 1 – 1002

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

distinguished-Name
The sequence of relative distinguished names that define the path through the naming tree
from its root to the managed object. The distinguished name of the root of the naming tree is
the null name (no DS-RDN values). The order of the values is important:

1. The first value is closest to the root.
2. The last value is the relative distinguished name (RDN) of the object.

 Chapter 4. Management Service Packages 1017

This name has two parts:

� The initial part is interpreted as a system identifier relative to the global root of the naming
structure. It identifies the system managed object to which the operation is directed.

� The final part is interpreted in relation to this system managed object and identifies a
managed-object instance within the system.

The initial part of the name can be used as input to the LRF or to the ORS to get the Entity-
Name and the address of the agent that is in charge of the managed-object instance.

 Object-Syntax

Note: This OM class is applicable only to SNMP.

An instance of the OM class Object-Syntax is the data value of any object type, the syntax of which corre-
sponds to a simple type, an Application-Wide type, or a building set or sequence of those types.

An instance of this OM class can have the following OM attributes.

Note: In addition to the class attribute, an instance must have one, and only one, of the other OM attri-
butes.

Table 90. OM Attributes of an Object-Syntax Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

simple Object(Simple-Syntax) – 0–1 – 1023

application Wide Object(Application-Syntax) – 0–1 – 975

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

simple A data value of simple type.

application-Wide
A data value of application-wide syntax.

 Processing-Failure

An instance of the OM class Processing-Failure indicates an error that occurred during the processing of a
CMIS operation.

An instance of this OM class has the following OM attributes.

Table 91. OM Attributes of a Processing-Failure Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

managed Object-Class Object(Object-Class) – 1 – 1017

managed Object-Instance Object(Object-Instance) – 0-1 – 1017

specific Error-Info Object(Specific-Error-Info) – 1 – 1028

1018 Programmer's Reference

Note: The attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

managed-Object-Class
The class of the managed object to which the error is related.

managed-Object-Instance
The instance of the managed object to which the error is related. This OM attribute must be
present if Processing-Failure is a linked reply.

specific-Error-Info
Information about the error.

 Relative-Name

The OM class Relative-Name represents the name of a managed object in the naming tree.

It is an abstract class, which has only the attributes of its superclass, Object.

A relative distinguished name (RDN) is a part of a name and only distinguishes the object from others,
which are called its siblings. This OM class serves to group all possible representations of RDNs. An OM
attribute value that is an RDN is an instance of the subclass of this OM class.

There is one subclass of this OM class:

DS-RDN, which provides a representation for relative distinguished names.

 Scope

An instance of the OM class Scope indicates the subtree, rooted at the base managed object, that is to be
searched. The default scope is the base object alone.

An instance of this OM class can have the following OM attributes.

Note: In addition to the class attribute, an instance must have one, and only one, of the other OM attri-
butes.

Table 92. OM Attributes of a Scope Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

named-Numbers Enum(Scope) – 0-1 – –

individual-Levels Integer – 0-1 – –

base-To-Nth-Level Integer – 0-1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

named-Numbers
Indicates the standard scope levels. Its value is one of the following:

� base-object, meaning the base object alone

 Chapter 4. Management Service Packages 1019

� first-level-only, meaning the first-level subordinates of the base object
� whole-subtree, meaning the base object and all of its subordinates.

individual-Levels
A positive integer indicating the level to be selected.

base-To-Nth-Level
A positive integer indicating the depth (that is, the range of levels from 0 (zero) through the
integer value) that is to be selected. The base object and all of its subordinates, including the
Nth level, are selected.

For individual-Levels and base-To-Nth-Level, a value of 0 (zero) has the same meaning as a value of
base-object for named-Numbers.

For individual-Levels, a value of 1 has the same meaning as a value of first-level-only for
named-Numbers.

 Service-Error

The OM class Service-Error reports a management error related to the provision of service.

There are two subclasses of this OM class:

� CMIS-Service-Error, which provides service errors related to the use of CMIS
� SNMP-Service-Error, which provides service errors related to the use of SNMP.

It is an abstract OM class, which has only the OM attributes of its superclasses, which are Object and
Error.

 Session

An instance of the OM class Session identifies a particular link from the management program to the
communications infrastructure. The OM class contains all the information that describes a particular man-
agement interaction. The parameters that control such a session are set up in an instance of this OM
class, which is then passed as an argument to mp_bind(). This sets the OM attributes that describe the
actual characteristics of the session and starts the session. A session that has been started in this
manner must be passed as the first argument to each XMP function. No attributes of a started session
can be changed.

The function mp_unbind() is used to terminate the session, after which the parameters can be modified
and a new session started using the same instance, if required. Multiple concurrent sessions can be run
by using multiple instances of this OM class.

A session allows a requesting management program (the requester) to exchange information with another
management program (the responder).

A session thus enables:

� A manager to access the MIB. The responding agent resolution is processed by the management
information service provider, according to the managed objects accessed.

� An agent to receive indications and report notifications to the possible recipient managers.

1020 Programmer's Reference

An instance of this OM class has the following OM attributes.

Table 93. OM Attributes of a Session Object

OM Attributes Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

requestor Title Object(Title) – 0-1 – 1031

role Integer – 0-1
see
below –

file-Descriptor Integer – 1
see
below –

access-Control Object(Access-Control) – 0-1 – 971

functional-Units Integer – 0-1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

requestor-Title
Indicates the distinguished name of the user of this session (the requester). It is the system
name of the requesting management program.

The OM attribute requestor-Title is required for management programs that need to process
indicates messages using the mp_receive() function call. This is the normal case for agents,
and for managers that are expected to process incoming event reports.

role Indicates the roles acted by the requester. The value is specified by ORing zero, one, or more
of the following values:

� managing, invoker of management operations
� monitoring, performer of management notifications
� performing, performer of management operations
� reporting, invoker of management notifications.

The manager role corresponds to the values managing, monitoring, or both, while the agent
role corresponds to the values performing, reporting, or both.

Both roles are assumed to be acted if this OM attribute is not specified.

file-Descriptor
Indicates the file descriptor associated with the session. The value is used by the mp_wait()
function call. Its use for any other purpose is unspecified.

If the session is not started, the value is MP_NO_VALID_FILE_DESCRIPTOR.

access-Control
Privileged information to be used by access-control functions for the establishment of default
access rights for all exchanges on the session. Subsequent exchanges can specify additional
access-control information. This information is used by access-control functions, in conjunction
with the default access privileges, to determine the access status of the initiator of the session
for this and subsequent exchanges.

functional-Units
It identifies the service primitives and parameters supported by the session. Its value is speci-
fied by ORing zero, one, or more of the following values:

 � fu-multiple-object-selection

 Chapter 4. Management Service Packages 1021

 � fu-filter
 � fu-multiple-reply
 � fu-cancel-get.

All these functional units are assumed to be in use if this OM attribute is not supplied.

A default session can be created by passing the constant MP_DEFAULT_SESSION as the session
parameter to mp_bind().

The default session does not include a requestor-Title OM attribute; therefore, unsolicited messages
cannot be received.

 Set-Argument

The OM class Set-Argument represents the supplied argument of a set operation. It is an abstract class,
which has the attributes of its superclass, Object.

There are two subclasses of this OM class:

� CMIS-Set-Argument, which is the supplied argument of a CMIS set operation
� SNMP-Set-Argument, which is the supplied argument of an SNMP set operation.

 Set-Info-Status

An instance of the OM class Set-Info-Status is an element of the returned attribute list in a set operation.

An instance of this OM class can have the following OM attributes.

Note: In addition to the class attribute, an instance must have one, and only one, of the other OM attri-
butes.

Table 94. OM Attributes of a Set-Info-Status Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

attribute Error Object(Attribute-Error) – 0-1 – 976

attribute Object(Attribute) – 0-1 – 976

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

attribute-Error
The attribute type and the error notification of an attribute that could not be modified.

attribute The type and value of an attribute that was modified.

 Set-List-Error

The OM class Set-List-Error represents the result of a set operation that failed for one or more attributes.
It is an abstract class, which has the attributes of its superclass, Object.

There is one subclass of this OM class:

CMIS-Set-List-Error, which is the result of a CMIS set operation that failed for one or more attributes.

1022 Programmer's Reference

 Set-Result

The OM class Set-Result represents the result of a successful set operation. It is an abstract class, which
has the attributes of its superclass, Object.

There are two subclasses of this OM class:

� CMIS-Set-Result, which is the result of a successful CMIS set operation
� SNMP-Set-Result, which is the result of a successful SNMP set operation.

 Simple-Syntax

Note: This OM class is applicable only to SNMP.

An instance of the OM class Simple-Syntax is the data value of a simple type, the syntax of which corre-
sponds to every ASN.1 primitive type. Only the ASN.1 primitive types integer, octet string, object identifier
and NULL are permitted. These are sometimes referred to as nonaggregate types.

An instance of this OM class can have the following OM attributes.

Note: In addition to the class attribute, an instance must have one, and only one, of the other OM attri-
butes.

Table 95. OM Attributes of a Simple-Syntax Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

number Integer – 0-1 – –

string String(Octet) – 0-1 – –

object String(Object-Identifier) – 0-1 – –

empty NULL – 0-1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

number A data value of integer syntax.

If an enumerated integer is listed as an object type, then a named number having the value 0
(zero) cannot be present in the list of enumerations. Use of this value is prohibited.

string A data value of string syntax.

object A data value of object-identifier syntax.

empty No data value syntax.

 SNMP-Get-Argument

Note: This OM class is applicable only to SNMP.

An instance of the OM class SNMP-Get-Argument is the supplied argument of an SNMP get operation.

 Chapter 4. Management Service Packages 1023

An instance of this OM class has the following OM attributes.

Table 96. OM Attributes of an SNMP-Get-Argument Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

responder Ip-Address Object(Network-Address) – 1 – 1014

var-Id-List String(Object-Identifier) –
1 or
more – –

access-Control Object(Access-Control) – 0-1 – 997

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

responder-Ip-Address
Represents the responder address.

var-Id-List A simple list of variable names.

access-Control
Represents access-control information. The only subclass of the OM class Access-Control that
is permitted is Community-Name.

 SNMP-Get-Result

Note: This OM class is applicable only to SNMP.

An instance of the OM class SNMP-Get-Result is the information returned as a positive response to a
requested SNMP operation. It is generated upon receipt of the indication of a get or get-next operation.

An instance of this OM class has the following OM attributes.

Table 97. OM Attributes of an SNMP-Get-Result Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

var-Bind-List Object(Var-Bind) –
1 or
more – 1031

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

var-Bind-List
A simple list of the variable names and corresponding values that were read.

1024 Programmer's Reference

 SNMP-Response

Note: This OM class is applicable only to SNMP.

An instance of the OM class SNMP-Response is the information returned as a negative response to a
requested SNMP operation. It is generated upon receipt of the indication of a get, get-next, or set opera-
tion.

An instance of this OM class has the following OM attributes.

Table 98. OM Attributes of an SNMP-Response Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

error-Index Integer – 0-1 – –

var-Bind-List Object(Var-Bind) –
1 or
more – 1031

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

error-Index
The index of the object name component of the first object that is not valid that was encount-
ered in the var-Bind-List OM attribute.

var-Bind-List
A simple list of variable names and corresponding values.

 SNMP-Service-Error

Note: This OM class is applicable only to SNMP.

An instance of the OM class SNMP-Service-Error reports a management error related to the provision of
SNMP service.

An instance of this OM class has the following OM attributes.

Table 99. OM Attributes of an SNMP-Service-Error Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

problem Enum(Problem) – 1 – –

parameter Object(SNMP-Response) – 0-1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

The problem and parameter attributes are inherited from the OM class Error, which is defined in
“Error” on page 1004.

 Chapter 4. Management Service Packages 1025

class Identifies the class of the object.

problem This OM attribute provides details of the SNMP-Service-Error. The following are possible
causes of failure:

� too-big, meaning that the operation argument exceeds a local limitation of the performer.

� no-such-name, meaning that a specified object name is unknown or unavailable for the
requested operation, or is an aggregate type.

� bad-value, meaning that a specified object value is not appropriate.

� read-only, meaning that the value of a named object cannot be modified.

� gen-err, meaning that the value of a named object cannot be retrieved.

parameter
This OM attribute provides additional information about the error. Its syntax is
object(SNMP-Response). This OM attribute contains a simple list of variable names and corre-
sponding values, plus the index of the object name component of the first faulty object encount-
ered in that variable bindings list.

 SNMP-Set-Argument

Note: This OM class is applicable only to SNMP.

An instance of the OM class SNMP-Set-Argument is the information supplied as the argument of a
requested SNMP set operation.

An instance of this OM class has the following OM attributes.

Table 100. OM Attributes of an SNMP-Set-Argument Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

responder Ip-Address Object(Network-Address) – 1 – 1014

var-Bind-List Object(Var-Bind) –
1 or
more – 1031

access-Control Object(Access-Control) – 0-1 – 971

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

responder-Ip-Address
It represents a 32-bit Internet address.

var-Bind-List
A simple list of variable names and corresponding values.

access-Control
It represents access-control information. The only subclass of the OM class Access-Control
that is permitted is Community-Name.

1026 Programmer's Reference

 SNMP-Set-Result

Note: This OM class is applicable only to SNMP.

An instance of the OM class SNMP-Set-Result is the information returned in response to a requested
SNMP operation. It is generated upon receipt of the indication of a set operation.

An instance of this OM class has the following OM attributes.

Table 101. OM Attributes of an SNMP-Set-Result Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

var-Bind-List Object(Var-Bind) –
1 or
more – 1031

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

var-Bind-List
A simple list of the variable names and corresponding values that were modified.

 SNMP-Trap-Argument

Note: This OM class is applicable only to SNMP.

An instance of the OM class SNMP-Trap-Argument is the information conveyed in an SNMP trap.

An instance of this OM class has the following OM attributes.

Table 102. OM Attributes of an SNMP-Trap-Argument Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

responder Ip-Address Object(Network-Address) – 1 – 1014

enterprise String(Object-Identifier) – 1 – –

agent-Addr Object(Network-Address) – 1 – 1014

generic-Trap Enum(Generic-Trap) – 1 – –

specific-Trap Integer – 1 – –

time-Stamp Integer – 1 – –

var-Bind-List Object(Var-Bind) –
0 or
more – 1031

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

 Chapter 4. Management Service Packages 1027

responder-Ip-Address
Represents a 32-bit Internet address.

enterprise Represents the type of object generating the trap.

agent-Addr
Represents the address of the object generating the trap.

generic-Trap
Represents the type of generic trap. Its value is one of the following:

� cold-start, meaning that disturbing reinitialization is in progress.

� warm-start, meaning that graceful reinitialization is in progress.

� link-down, meaning that a failure in communication links has been detected.

� link-up, meaning that a communication link has been established.

� authentication-failure, meaning that a received message violates security rules.

� egp-neighbor-loss, meaning that a neighbor of the Exterior Gateway Protocol (EGP) has
been affected.

� enterprise-specific, meaning that some enterprise-specific event has occurred.

specific-Trap
A specific code, present even if the value of generic-Trap is not enterprise-specific.

time-Stamp
The time elapsed between the last initialization or reinitialization of the network entity and the
generation of the trap.

var-Bind-List
A simple list of variable names and corresponding values.

 Specific-Error-Info

An instance of the OM class Specific-Error-Info is a single-error type and its associated information.

An instance of this OM class has the following OM attributes.

Table 103. OM Attributes of a Specific-Error-Info Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

error-Id String(Object-Identifier) – 1 – –

error-Info Any – 1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

error-Id Indicates a particular error.

error-Info Additional information, when necessary, to define further the nature of the error. The syntax
and semantics of this OM attribute depend upon the error. The OM value syntax for this OM
attribute is determined by the value of the error-Id OM attribute, according to the following
rules:

1028 Programmer's Reference

1. The first possibility is that the error type and the representation of the corresponding values
are defined in a package, such as the selected error types that are defined in the Manage-
ment Content packages in Chapter 5, “XMP API Management Contents Packages.” In this
case, error values are represented as specified.

2. The second possibility is that the error type is not known, but the value is an ASN.1 simple
type, such as an integer or a string. In this case, the value is represented in the corre-
sponding type specified in the X/Open OSI-Abstract-Data Manipulation (XOM) API, CAE
Specification.

3. The last possibility is that the error type is not known and the value is an ASN.1 structured
type. In this case, the value is represented in Basic Encoding Rules (BER) with the OM
string syntax.

In cases 1 and 2, the XMP API provides an automatic encode and decode functionality.

Where error values have OM syntax string(*), they can be long, segmented strings. The XOM
functions om_read() and om_write() should be used to access them.

 Substring

An instance of the OM class Substring identifies the string involved in a Filter-Item for which the assertion
is substrings.

An instance of this OM class has the following OM attributes.

Table 104. OM Attributes of a Substring Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

attribute-Id Object(Attribute-Id) – 1 – 978

string String(*)
1 or
more 1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

attribute-Id
The attribute type, which indicates the class of information given by this attribute.

string The attribute values. The representation of the attribute value (the syntax of which is noted as
string(*)) is determined by the attribute type.

 Substrings

An instance of the OM class Substrings identifies the string involved in a Filter-Item for which the assertion
is substrings.

 Chapter 4. Management Service Packages 1029

An instance of this OM class can have the following OM attributes.

Note: In addition to the class attribute, an instance must have one, and only one, of the other OM attri-
butes.

Table 105. OM Attributes of a Substrings Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

initial-String Object(Substring) – 0-1 – 1029

Any-String Object(Substring) – 0-1 – 1029

final-String Object(Substring) – 0-1 – 1029

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

initial-String
If present, the substring that is to match the initial portion of the attribute value.

any-String
If present, a set of substrings, each of them matching a portion of the attribute value.

final-String
If present, the substring that is to match the final portion of the attribute value.

 System-Error

An instance of the OM class reports an error occurring in the underlying operating system.

A management program is not permitted to create or modify instances of this OM class.

An instance of this OM class has the following OM attributes.

Table 106. OM Attributes of a System-Error Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

problem Enum(Problem) – 1 – –

parameter Any – 0-1 – –

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

The problem and parameter attributes are inherited from the OM class Error, which is defined in
“Error” on page 1004.

class Identifies the class of the object.

problem Identifies the cause of the failure. Its value is the same as that of errno, which is defined in the
C language.

1030 Programmer's Reference

parameter
Provides additional information about the error. Its syntax value is integer. Each value corre-
sponds to a specific error, which is defined in the C language.

 Title

The OM class Title contains one subclass that is used to define the specific management program or
system name responsible for a managed-object instance.

It is an abstract class, which has the attributes of its superclass, Object.

There is one subclass of this OM class:

Entity-Name, which provides either the name or the location of a management program.

 Var-Bind

Note: This OM class is applicable only to SNMP.

An instance of the OM class Var-Bind is the pairing of the name and the value of a variable. The term
variable refers to an instance of a managed object.

An instance of this OM class has the following OM attributes.

Table 107. OM Attributes of a Var-Bind Object

OM Attribute Value Syntax
Value
Length

Value
Number

Initial
Value See

class String(Object-Identifier) – 1 – –

name String(Object-Identifier) – 1 – –

value Object(Object-Syntax) – 1 – 1018

Note: The class attribute is inherited from the OM class Object, which is defined in the X/Open
OSI-Abstract-Data Manipulation (XOM) API, CAE Specification.

class Identifies the class of the object.

name Identifies the object type.

value The value of the designated object.

 Chapter 4. Management Service Packages 1031

1032 Programmer's Reference

Chapter 5. XMP API Management Contents Packages

This chapter presents the Management Contents Packages provided by this XMP implementation. As
stated in the NetView for AIX Programmer's Guide, these packages represent the specific management
information, and describe how the values of the attributes are mapped to XOM classes. The following
packages are provided:

LNV Package Contains the attributes that need to be used when an XMP application talks to
an existing NetView for AIX CMOT agent such as the Event Sieve Manager.

DMI Package provides means to create the XOM classes that map the values of the attri-
butes of the managed object classes defined in ISO 10165-2, Management
Information Services—Structure of Management Information Part 2: Definition
of Management Information.

LNV Package Object Identifier

The #define constants related to this package are in the include file /usr/OV/include/lnv.h.

The LNV Package is assigned the OSI Object Identifier {1.3.18.0.0.3315.68}.

Object Identifier Table for LNV Attributes

Information Syntax Table for LNV Attribute Value

OM Attribute Table for CMOT-System-Id

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

DMI Package Object Identifier

The SMI-PART2 (DMI) package is assigned the OSI Object Identifier { iso(1) member-national-body(2)
bsi(826) disc(0) xopen(1050) xmp(1) dmi(4) }.

Table 108. Object Identifiers for LNV Attributes

Attribute Object Identifier

A-CMOT-System-Id { 1 3 6 1 2 1 9 3}

Table 109. Information Syntax for LNV Attribute Value

Attribute Attribute Syntax Multi-Valued

A-CMOT-System-Id Object (CMOT-System-Id) No

Table 110. OM Attributes of a CMOT-System-Id

OM Attribute Value Syntax Value Length Value Number

Inet-Addr String(Octet) - 0 or 1

 Copyright IBM Corp. 1992, 1995 1033

Object Identifier Tables

This section contains object identifier tables for the DMI package.

Object Identifiers for DMI Object Classes

Table 111. Object Identifiers for DMI Object Classes

Object Class Object Identifier

O-Alarm-Record { 2 9 3 2 3 1 }

O-Attribute-Value-Change-Record { 2 9 3 2 3 2 }

O-Discriminator { 2 9 3 2 3 3 }

O-Event-Forwarding-Discriminator { 2 9 3 2 3 4 }

O-Event-Log-Record { 2 9 3 2 3 5 }

O-Log { 2 9 3 2 3 6 }

O-Log-Record { 2 9 3 2 3 7 }

O-Object-Creation-Record { 2 9 3 2 3 8 }

O-Object-Deletion-Record { 2 9 3 2 3 9 }

O-Relationship-Change-Record { 2 9 3 2 3 10 }

O-Security-Alarm-Report-Record { 2 9 3 2 3 11 }

O-State-Change-Record { 2 9 3 2 3 12 }

O-System { 2 9 3 2 3 13 }

O-Top { 2 9 3 2 3 14 }

Object Identifiers for DMI Attributes

Table 112 (Page 1 of 4). Object Identifiers for DMI Attributes

Attribute Object Identifier

A-Active-Destination { 2 9 3 2 7 49 }

A-Additional-Information { 2 9 3 2 7 6 }

A-Additional-Text { 2 9 3 2 7 7 }

A-Administrative-State { 2 9 3 2 7 31 }

A-Alarm-Status { 2 9 3 2 7 32 }

A-Allomorphs { 2 9 3 2 7 50 }

A-Attribute-Identifier-List { 2 9 3 2 7 8 }

A-Attribute-List { 2 9 3 2 7 9 }

A-Attribute-Value-Change-Definition { 2 9 3 2 7 10 }

A-Availability-Status { 2 9 3 2 7 33 }

A-Back-Up-Destination-List { 2 9 3 2 7 51 }

A-Back-Up-Object { 2 9 3 2 7 40 }

A-Backed-Up-Object { 2 9 3 2 7 41 }

A-Backed-Up-Status { 2 9 3 2 7 11 }

A-Capacity-Alarm-Threshold { 2 9 3 2 7 52 }

1034 Programmer's Reference

Table 112 (Page 2 of 4). Object Identifiers for DMI Attributes

Attribute Object Identifier

A-Confirmed-Mode { 2 9 3 2 7 53 }

A-Control-Status { 2 9 3 2 7 34 }

A-Correlated-Notifications { 2 9 3 2 7 12 }

A-Corrupted-PD-Us-Received-Counter { 2 9 3 2 7 72 }

A-Corrupted-PD-Us-Received-Threshold { 2 9 3 2 7 89 }

A-Current-Log-Size { 2 9 3 2 7 54 }

A-Destination { 2 9 3 2 7 55 }

A-Discriminator-Construct { 2 9 3 2 7 56 }

A-Discriminator-Id { 2 9 3 2 7 1 }

A-Event-Time { 2 9 3 2 7 13 }

A-Event-Type { 2 9 3 2 7 14 }

A-Incoming-Connection-Reject-Error-Counter { 2 9 3 2 7 73 }

A-Incoming-Connection-Reject-Error-Threshold { 2 9 3 2 7 90 }

A-Incoming-Connection-Requests-Counter { 2 9 3 2 7 74 }

A-Incoming-Connection-Requests-Threshold { 2 9 3 2 7 91 }

A-Incoming-Disconnect-Counter { 2 9 3 2 7 75 }

A-Incoming-Disconnect-Error-Counter { 2 9 3 2 7 76 }

A-Incoming-Disconnect-Error-Threshold { 2 9 3 2 7 92 }

A-Incoming-Protocol-Error-Counter { 2 9 3 2 7 77 }

A-Incoming-Protocol-Error-Threshold { 2 9 3 2 7 93 }

A-Intervals-Of-Day { 2 9 3 2 7 57 }

A-Log-Full-Action { 2 9 3 2 7 58 }

A-Log-Id { 2 9 3 2 7 2 }

A-Log-Record-Id { 2 9 3 2 7 3 }

A-Logging-Time { 2 9 3 2 7 59 }

A-Managed-Object-Class { 2 9 3 2 7 60 }

A-Managed-Object-Instance { 2 9 3 2 7 61 }

A-Max-Log-Size { 2 9 3 2 7 62 }

A-Member { 2 9 3 2 7 42 }

A-Monitored-Attributes { 2 9 3 2 7 15 }

A-Name-Binding { 2 9 3 2 7 63 }

A-Notification-Identifier { 2 9 3 2 7 16 }

A-Number-Of-Records { 2 9 3 2 7 64 }

A-Object-Class { 2 9 3 2 7 65 }

A-Octets-Received-Counter { 2 9 3 2 7 78 }

A-Octets-Received-Threshold { 2 9 3 2 7 94 }

A-Octets-Retransmitted-Error-Counter { 2 9 3 2 7 79 }

A-Octets-Retransmitted-Threshold { 2 9 3 2 7 95 }

 Chapter 5. XMP API Management Contents Packages 1035

Table 112 (Page 3 of 4). Object Identifiers for DMI Attributes

Attribute Object Identifier

A-Octets-Sent-Counter { 2 9 3 2 7 80 }

A-Octets-Sent-Threshold { 2 9 3 2 7 96 }

A-Operational-State { 2 9 3 2 7 35 }

A-Outgoing-Connection-Reject-Error-Counter { 2 9 3 2 7 81 }

A-Outgoing-Connection-Reject-Error-Threshold { 2 9 3 2 7 97 }

A-Outgoing-Connection-Requests-Counter { 2 9 3 2 7 82 }

A-Outgoing-Connection-Requests-Threshold { 2 9 3 2 7 98 }

A-Outgoing-Disconnect-Counter { 2 9 3 2 7 83 }

A-Outgoing-Disconnect-Error-Counter { 2 9 3 2 7 84 }

A-Outgoing-Disconnect-Error-Threshold { 2 9 3 2 7 99 }

A-Outgoing-Protocol-Error-Counter { 2 9 3 2 7 85 }

A-Outgoing-Protocol-Error-Threshold { 2 9 3 2 7 100 }

A-Owner { 2 9 3 2 7 43 }

A-Packages { 2 9 3 2 7 66 }

A-Pdus-Received-Counter { 2 9 3 2 7 86 }

A-Pdus-Received-Threshold { 2 9 3 2 7 101 }

A-Pdus-Retransmitted-Error-Counter { 2 9 3 2 7 87 }

A-Pdus-Retransmitted-Error-Threshold { 2 9 3 2 7 102 }

A-Pdus-Sent-Counter { 2 9 3 2 7 88 }

A-Pdus-Sent-Threshold { 2 9 3 2 7 103 }

A-Peer { 2 9 3 2 7 44 }

A-Perceived-Severity { 2 9 3 2 7 17 }

A-Primary { 2 9 3 2 7 45 }

A-Probable-Cause { 2 9 3 2 7 18 }

A-Procedural-Status { 2 9 3 2 7 36 }

A-Proposed-Repair-Actions { 2 9 3 2 7 19 }

A-Provider-Object { 2 9 3 2 7 46 }

A-Relationship-Change-Definition { 2 9 3 2 7 20 }

A-Scheduler-Name { 2 9 3 2 7 67 }

A-Secondary { 2 9 3 2 7 47 }

A-Security-Alarm-Cause { 2 9 3 2 7 21 }

A-Security-Alarm-Detector { 2 9 3 2 7 22 }

A-Security-Alarm-Severity { 2 9 3 2 7 23 }

A-Service-Provider { 2 9 3 2 7 24 }

A-Service-User { 2 9 3 2 7 25 }

A-Source-Indicator { 2 9 3 2 7 26 }

A-Specific-Problems { 2 9 3 2 7 27 }

A-Standby-Status { 2 9 3 2 7 37 }

1036 Programmer's Reference

Table 112 (Page 4 of 4). Object Identifiers for DMI Attributes

Attribute Object Identifier

A-Start-Time { 2 9 3 2 7 68 }

A-State-Change-Definition { 2 9 3 2 7 28 }

A-Stop-Time { 2 9 3 2 7 69 }

A-Supported-Features { 2 9 3 2 7 70 }

A-System-Id { 2 9 3 2 7 4 }

A-System-Title { 2 9 3 2 7 5 }

A-Threshold-Info { 2 9 3 2 7 29 }

A-Trend-Indication { 2 9 3 2 7 30 }

A-Unknown-Status { 2 9 3 2 7 38 }

A-Usage-State { 2 9 3 2 7 39 }

A-User-Object { 2 9 3 2 7 48 }

A-Week-Mask { 2 9 3 2 7 71 }

Object Identifiers for DMI Attribute Groups

Object Identifiers for DMI Notifications

Table 113. Object Identifiers for DMI Attribute Groups

Attribute Group Object Identifier

A-Relationships { 2 9 3 2 8 2 }

A-State { 2 9 3 2 8 1 }

Table 114. Object Identifiers for DMI Notifications

Notification Object Identifier

N-Attribute-Value-Change { 2 9 3 2 10 1 }

N-Communications-Alarm { 2 9 3 2 10 2 }

N-Environmental-Alarm { 2 9 3 2 10 3 }

N-Equipment-Alarm { 2 9 3 2 10 4 }

N-Integrity-Violation { 2 9 3 2 10 5 }

N-Object-Creation { 2 9 3 2 10 6 }

N-Object-Deletion { 2 9 3 2 10 7 }

N-Operational-Violation { 2 9 3 2 10 8 }

N-Physical-Violation { 2 9 3 2 10 9 }

N-Processing-Error-Alarm { 2 9 3 2 10 10 }

N-Qualityof-Service-Alarm { 2 9 3 2 10 11 }

N-Relationship-Change { 2 9 3 2 10 12 }

N-Security-Service-Or-Mechanism-Violation { 2 9 3 2 10 13 }

N-State-Change { 2 9 3 2 10 14 }

N-Time-Domain-Violation { 2 9 3 2 10 15 }

 Chapter 5. XMP API Management Contents Packages 1037

Object Identifiers for DMI Parameters

Object Identifiers for DMI Name Bindings

Object Identifiers for DMI Packages

Table 115. Object Identifiers for DMI Parameters

Parameter Object Identifier

S-Miscellaneous-Error { 2 9 3 2 5 1 }

Table 116. Object Identifiers for DMI Name Bindings

Name Binding Object Identifier

B-Discriminator-System { 2 9 3 2 6 1 }

B-Log-System { 2 9 3 2 6 2 }

B-Log-Record-Log { 2 9 3 2 6 3 }

Table 117 (Page 1 of 2). Object Identifiers for DMI Packages

Package Object Identifier

P-Additional-Information-Package { 2 9 3 2 4 18 }

P-Additional-Text-Package { 2 9 3 2 4 19 }

P-Administrative-State-Package { 2 9 3 2 4 14 }

P-Allomorphic-Package { 2 9 3 2 4 17 }

P-Attribute-Identifier-List-Package { 2 9 3 2 4 20 }

P-Attribute-List-Package { 2 9 3 2 4 21 }

P-Availability-Status-Package { 2 9 3 2 4 22 }

P-Back-Up-Destination-List-Package { 2 9 3 2 4 9 }

P-Back-Up-Object-Package { 2 9 3 2 4 3 }

P-Backed-Up-Status-Package { 2 9 3 2 4 2 }

P-Correlated-Notifications-Package { 2 9 3 2 4 23 }

P-Daily-Scheduling { 2 9 3 2 4 25 }

P-Duration { 2 9 3 2 4 26 }

P-Event-Time-Package { 2 9 3 2 4 11 }

P-External-Scheduler { 2 9 3 2 4 27 }

P-Finite-Log-Size-Package { 2 9 3 2 4 12 }

P-Log-Alarm-Package { 2 9 3 2 4 13 }

P-Mode-Package { 2 9 3 2 4 10 }

P-Monitored-Attributes-Package { 2 9 3 2 4 7 }

P-Notification-Identifier-Package { 2 9 3 2 4 24 }

P-Packages-Package { 2 9 3 2 4 16 }

P-Proposed-Repair-Actions-Package { 2 9 3 2 4 8 }

P-Source-Indicator-Package { 2 9 3 2 4 28 }

P-Specific-Problems-Package { 2 9 3 2 4 1 }

1038 Programmer's Reference

Table 117 (Page 2 of 2). Object Identifiers for DMI Packages

Package Object Identifier

P-State-Change-Definition-Package { 2 9 3 2 4 6 }

P-Supported-Features-Package { 2 9 3 2 4 15 }

P-Threshold-Info-Package { 2 9 3 2 4 5 }

P-Trend-Indication-Package { 2 9 3 2 4 4 }

P-Weekly-Scheduling { 2 9 3 2 4 29 }

Information Syntax Tables

This section contains DMI information syntax tables.

DMI Attribute Value Syntaxes

Table 118 (Page 1 of 3). DMI Attribute Value Syntaxes

Attribute Type Attribute Syntax

A-Active-Destination Object (Destination)

A-Additional-Information Object (Additional-Information)

A-Additional-Text String (Graphic-String)

A-Administrative-State Enum (Administrative-State)

A-Alarm-Status Object (Alarm-Status)

A-Allomorphs Object (Allomorphs)

A-Attribute-Identifier-List Object (Attribute-Identifier-List)

A-Attribute-List Object (Attribute-List)

A-Attribute-Value-Change-Definition Object (Setof-Attribute-Value-Change-Definition)

A-Availability-Status Object (Availability-Status)

A-Back-Up-Destination-List Object (Back-Up-Destination-List)

A-Back-Up-Object Object (Back-Up-Relationship-Object)

A-Backed-Up-Object Object (Back-Up-Relationship-Object)

A-Backed-Up-Status Boolean

A-Capacity-Alarm-Threshold Object (Capacity-Alarm-Threshold)

A-Confirmed-Mode Boolean

A-Control-Status Object (Control-Status)

A-Correlated-Notifications Object (Setof-Correlated-Notifications)

A-Counter Integer

A-Counter--Threshold Object (Setof-Counter-Threshold)

A-Current-Log-Size Integer

A-Destination Object (Destination)

A-Discriminator-Construct Object (CMISFilter)

A-Discriminator-Id Object (Simple-Name-Type)

A-Event-Time String (Generalized-Time)

A-Event-Type Object (Event-Type-Id)

 Chapter 5. XMP API Management Contents Packages 1039

Table 118 (Page 2 of 3). DMI Attribute Value Syntaxes

Attribute Type Attribute Syntax

A-Gauge Object (Observed-Value)

A-Gauge--Threshold Object (Setof-Gauge-Threshold)

A-Intervals-Of-Day Object (Setof-Intervals-Of-Day)

A-Log-Full-Action Enum (Log-Full-Action)

A-Log-Id Object (Simple-Name-Type)

A-Log-Record-Id Object (Simple-Name-Type)

A-Logging-Time String (Generalized-Time)

A-Managed-Object-Class Object (Object-Class)

A-Managed-Object-Instance Object (Object-Instance)

A-Max-Log-Size Integer

A-Member Object (Group-Objects)

A-Monitored-Attributes Object (Monitored-Attributes)

A-Name-Binding String (Object-Identifier)

A-Notification-Identifier Integer

A-Number-Of-Records Integer

A-Object-Class Object (Object-Class)

A-Operational-State Enum (Operational-State)

A-Owner Object (Group-Objects)

A-Packages Object (Packages)

A-Peer Object (Back-Up-Relationship-Object)

A-Perceived-Severity Enum (Perceived-Severity)

A-Primary Object (Setof-Prioritised-Object)

A-Probable-Cause Object (Probable-Cause)

A-Procedural-Status Object (Procedural-Status)

A-Proposed-Repair-Actions Object (Proposed-Repair-Actions)

A-Provider-Object Object (Setof-Prioritised-Object)

A-Relationship-Change-Definition Object (Setof-Attribute-Value-Change-Definition)

A-Scheduler-Name Object (Object-Instance)

A-Secondary Object (Setof-Prioritised-Object)

A-Security-Alarm-Cause String (Object-Identifier)

A-Security-Alarm-Detector Object (Security-Alarm-Detector)

A-Security-Alarm-Severity Enum (Perceived-Severity)

A-Service-Provider Object (Service-User)

A-Service-User Object (Service-User)

A-Source-Indicator Enum (Source-Indicator)

A-Specific-Problems Object (Specific-Problems)

A-Standby-Status Integer

A-Start-Time String (Generalized-Time)

1040 Programmer's Reference

Table 118 (Page 3 of 3). DMI Attribute Value Syntaxes

Attribute Type Attribute Syntax

A-State-Change-Definition Object (Setof-Attribute-Value-Change-Definition)

A-Stop-Time Object (Stop-Time)

A-Supported-Features Object (Setof-Supported-Features)

A-System-Id Object (System-Id)

A-System-Title Object (System-Title)

A-Threshold-Info Object (Threshold-Info)

A-Tide-Mark Object (Tide-Mark-Info)

A-Trend-Indication Enum (Trend-Indication)

A-Unknown-Status Boolean

A-Usage-State Enum (Usage-State)

A-User-Object Object (Setof-Prioritised-Object)

A-Week-Mask Object (Setof-Week-Mask)

DMI Notification Information Syntaxes

Table 119. DMI Notification Information Syntaxes

Notification Type Information Syntax Reply Syntax

N-Attribute-Value-Change Object (Attribute-Value-
Change-Info)

 -

N-Communications-Alarm Object (Alarm-Info) -

N-Environmental-Alarm Object (Alarm-Info) -

N-Equipment-Alarm Object (Alarm-Info) -

N-Integrity-Violation Object (Security-Alarm-Info) -

N-Object-Creation Object (Object-Info) -

N-Object-Deletion Object (Object-Info) -

N-Operational-Violation Object (Security-Alarm-Info) -

N-Physical-Violation Object (Security-Alarm-Info) -

N-Processing-Error-Alarm Object (Alarm-Info) -

N-Qualityof-Service-Alarm Object (Alarm-Info) -

N-Relationship-Change Object (Relationship-
Change-Info)

 -

N-Security-Service-Or-Mechanism-Violation Object (Security-Alarm-Info) -

N-State-Change Object (State-Change-Info) -

N-Time-Domain-Violation Object (Security-Alarm-Info) -

 Chapter 5. XMP API Management Contents Packages 1041

DMI Parameter Value Syntaxes

OM Attribute Tables

This section contains tables for OM attributes.

 Additional-Information

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Alarm-Info

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

Table 120. DMI Parameter Value Syntaxes

Parameter Type Parameter Syntax

S-Miscellaneous-Error Null

Table 121. OM Attributes of an Additional-Information

OM Attribute Value Syntax Value
Length

Value Number

management-Extension Object (Management-Extension) - 0 - more

Table 122. OM Attributes of an Alarm-Info

OM Attribute Value Syntax Value
Length

Value Number

probable-Cause Object (Probable-Cause) - 1

specific-Problems Object (Specific-Problems) - 0 - 1

perceived-Severity Enum (Perceived-Severity) - 1

backed-Up-Status Boolean - 0 - 1

back-Up-Object Object (Object-Instance) - 0 - 1

trend-Indication Enum (Trend-Indication) - 0 - 1

threshold-Info Object (Threshold-Info) - 0 - 1

notification-Identifier Integer - 0 - 1

correlated-Notifications Object (Setof-Correlated-
Notifications)

 - 0 - 1

state-Change-Definition Object (Setof-Attribute-Value-
Change-Definition)

 - 0 - 1

monitored-Attributes Object (Monitored-Attributes) - 0 - 1

proposed-Repair-Actions Object (Proposed-Repair-Actions
)

 - 0 - 1

additional-Text String (Graphic-String) - 0 - 1

additional-Information Object (Additional-Information) - 0 - 1

1042 Programmer's Reference

 Alarm-Status

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Allomorphs

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Attribute-Identifier-List

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Attribute-List

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Setof-Attribute-Value-Change-Definition

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

Table 123. OM Attributes of an Alarm-Status

OM Attribute Value Syntax Value Length Value Number

alarm-Status Integer - 0 - more

Table 124. OM Attributes of an Allomorphs

OM Attribute Value Syntax Value Length Value Number

object-Class Object (Object-Class) - 0 - more

Table 125. OM Attributes of an Attribute-Identifier-List

OM Attribute Value Syntax Value Length Value Number

attribute-Id Object (Attribute-Id) - 0 - more

Table 126. OM Attributes of an Attribute-List

OM Attribute Value Syntax Value Length Value Number

attribute Object (Attribute) - 0 - more

Table 127. OM Attributes of a Setof-Attribute-Value-Change-Definition

OM Attribute Value Syntax Value Length Value Number

attribute-Value-Change-
Definition

Object (Attribute-Value-
Change-Definition)

- 0 - more

 Chapter 5. XMP API Management Contents Packages 1043

 Attribute-Value-Change-Definition

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Attribute-Value-Change-Info

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Availability-Status

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Back-Up-Destination-List

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

Table 128. OM Attributes of an Attribute-Value-Change-Definition

OM Attribute Value Syntax Value Length Value Number

attribute-ID Object (Attribute-Id) - 1

old-Attribute-Value Any - 0 - 1

new-Attribute-Value Any - 1

Table 129. OM Attributes of an Attribute-Value-Change-Info

OM Attribute Value Syntax Value
Length

Value
Number

source-Indicator Enum (Source-Indicator) - 0 - 1

attribute-Identifier-List Object (Attribute-Identifier-List) - 0 - 1

attribute-Value-Change-
Definition

Object (Setof-Attribute-Value-
Change-Definition)

 - 1

notification-Identifier Integer - 0 - 1

correlated-Notifications Object (Setof-Correlated-
Notifications)

 - 0 - 1

additional-Text String (Graphic-String) - 0 - 1

additional-Information Object (Additional-Information) - 0 - 1

Table 130. OM Attributes of an Availability-Status

OM Attribute Value Syntax Value
Length

Value Number

availability-Status Integer - 0 - more

1044 Programmer's Reference

 Back-Up-Relationship-Object

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

Exactly one OM attribute is permitted in an instance of this OM class.

 Capacity-Alarm-Threshold

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Control-Status

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Setof-Correlated-Notifications

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

Table 131. OM Attributes of a Back-Up-Destination-List

OM Attribute Value Syntax Value Length Value Number

ae-Title Object (AE-Title) - 0 - more

Table 132. OM Attributes of a Back-Up-Relationship-Object

OM Attribute Value Syntax Value Length Value Number

object-Name Object (Object-Instance) - 0 - 1

no-Object Null - 0 - 1

Table 133. OM Attributes of a Capacity-Alarm-Threshold

OM Attribute Value Syntax Value Length Value Number

capacity-Alarm-Threshold Integer - 0 - more

Table 134. OM Attributes of a Control-Status

OM Attribute Value Syntax Value Length Value Number

control-Status Integer - 0 - more

Table 135. OM Attributes of a Setof-Correlated-Notifications

OM Attribute Value Syntax Value Length Value Number

correlated-Notifications Object (Correlated-
Notifications)

- 0 - more

 Chapter 5. XMP API Management Contents Packages 1045

 Correlated-Notifications

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Correlated-Notifications-1

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Setof-Counter-Threshold

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Counter-Threshold

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Destination

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

Exactly one OM attribute is permitted in an instance of this OM class.

Table 136. OM Attributes of a Correlated-Notifications

OM Attribute Value Syntax Value Length Value Number

correlated-Notifications Object (
Correlated-Notifications-1)

 - 1

source-Object-Inst Object (Object-Instance) - 0 - 1

Table 137. OM Attributes of a Correlated-Notifications-1

OM Attribute Value Syntax Value Length Value Number

notification-Identifier Integer - 0 - more

Table 138. OM Attributes of a Setof-Counter-Threshold

OM Attribute Value Syntax Value Length Value Number

counter-Threshold Object (Counter-Threshold) - 0 - more

Table 139. OM Attributes of a Counter-Threshold

OM Attribute Value Syntax Value Length Value Number

comparison-Level Integer - 1

offset-Value Integer - 1

notification-On-Off Boolean - 1

1046 Programmer's Reference

 Multiple

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Setof-Gauge-Threshold

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Gauge-Threshold

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Group-Objects

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Setof-Intervals-Of-Day

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

Table 140. OM Attributes of a Destination

OM Attribute Value Syntax Value Length Value Number

single Object (AE-Title) - 0 - 1

multiple Object (Multiple) - 0 - 1

Table 141. OM Attributes of a Multiple

OM Attribute Value Syntax Value Length Value Number

ae-Title Object (AE-Title) - 0 - more

Table 142. OM Attributes of a Setof-Gauge-Threshold

OM Attribute Value Syntax Value Length Value Number

gauge-Threshold Object (Gauge-Threshold) - 0 - more

Table 143. OM Attributes of a Gauge-Threshold

OM Attribute Value Syntax Value Length Value Number

notify-Low Object (Notify-Threshold) - 1

notify-High Object (Notify-Threshold) - 1

Table 144. OM Attributes of a Group-Objects

OM Attribute Value Syntax Value Length Value Number

object-Instance Object (Object-Instance) - 0 - more

 Chapter 5. XMP API Management Contents Packages 1047

 Intervals-Of-Day

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Management-Extension

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Monitored-Attributes

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Notify-Threshold

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

Table 145. OM Attributes of a Setof-Intervals-Of-Day

OM Attribute Value Syntax Value Length Value Number

intervals-Of-Day Object (Intervals-Of-Day) - 0 - more

Table 146. OM Attributes of a Intervals-Of-Day

OM Attribute Value Syntax Value Length Value Number

interval-Start Object (Time24) - 1

interval-End Object (Time24) - 1

Table 147. OM Attributes of a Management-Extension

OM Attribute Value Syntax Value Length Value Number

identifier String (Object-Identifier) - 1

significance Boolean - 1

information Any - 1

Table 148. OM Attributes of a Monitored-Attributes

OM Attribute Value Syntax Value Length Value Number

attribute Object (Attribute) - 0 - more

Table 149. OM Attributes of a Notify-Threshold

OM Attribute Value Syntax Value Length Value Number

threshold Object (Observed-Value) - 1

notify-On-Off Boolean - 1

1048 Programmer's Reference

 Object-Info

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Observed-Value

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

Exactly one OM attribute is permitted in an instance of this OM class.

 Packages

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Setof-Prioritised-Object

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

Table 150. OM Attributes of a Object-Info

OM Attribute Value Syntax Value Length Value Number

source-Indicator Enum (Source-Indicator) - 0 - 1

attribute-List Object (Attribute-List) - 0 - 1

notification-Identifier Integer - 0 - 1

correlated-Notifications Object (Setof-Correlated-
Notifications)

 - 0 - 1

additional-Text String (Graphic-String) - 0 - 1

additional-Information Object (Additional-Information) - 0 - 1

Table 151. OM Attributes of an Observed-Value

OM Attribute Value Syntax Value Length Value Number

integer Integer - 0 - 1

real Real - 0 - 1

Table 152. OM Attributes of a Packages

OM Attribute Value Syntax Value Length Value Number

packages String (Object-Identifier) - 0 - more

Table 153. OM Attributes of a Setof-Prioritised-Object

OM Attribute Value Syntax Value Length Value Number

prioritised-Object Object (Prioritised-Object) - 0 - more

 Chapter 5. XMP API Management Contents Packages 1049

 Prioritised-Object

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Probable-Cause

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

Exactly one OM attribute is permitted in an instance of this OM class.

 Procedural-Status

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Proposed-Repair-Actions

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Relationship-Change-Info

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

Table 154. OM Attributes of a Prioritised-Object

OM Attribute Value Syntax Value Length Value Number

object Object (Object-Instance) - 1

priority Integer - 1

Table 155. OM Attributes of a Probable-Cause

OM Attribute Value Syntax Value Length Value Number

global-Value String (Object-Identifier) - 0 - 1

local-Value Integer - 0 - 1

Table 156. OM Attributes of a Procedural-Status

OM Attribute Value Syntax Value Length Value Number

procedural-Status Integer - 0 - more

Table 157. OM Attributes of a Proposed-Repair-Actions

OM Attribute Value Syntax Value Length Value Number

specific-Identifier Object (Specific-Identifier) - 0 - more

1050 Programmer's Reference

 Security-Alarm-Detector

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

Exactly one OM attribute is permitted in an instance of this OM class.

 Security-Alarm-Info

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

Table 158. OM Attributes of a Relationship-Change-Info

OM Attribute Value Syntax Value Length Value Number

source-Indicator Enum (Source-Indicator) - 0 - 1

attribute-Identifier-List Object (Attribute-Identifier-List) - 0 - 1

relationship-Change-Definition Object (Setof-Attribute-Value-Change-
Definition)

 - 1

notification-Identifier Integer - 0 - 1

correlated-Notifications Object (Setof-Correlated-Notifications) - 0 - 1

additional-Text String (Graphic-String) - 0 - 1

additional-Information Object (Additional-Information) - 0 - 1

Table 159. OM Attributes of a Security-Alarm-Detector

OM Attribute Value Syntax Value Length Value Number

mechanism String (Object-Identifier) - 0 - 1

object Object (Object-Instance) - 0 - 1

application Object (AE-Title) - 0 - 1

Table 160. OM Attributes of a Security-Alarm-Info

OM Attribute Value Syntax Value Length Value Number

security-Alarm-Cause String (Object-Identifier) - 1

security-Alarm-Severity Enum (Perceived-Severity) - 1

security-Alarm-Detector Object (Security-Alarm-Detector) - 1

service-User Object (Service-User) - 1

service-Provider Object (Service-User) - 1

notification-Identifier Integer - 0 - 1

correlated-Notifications Object (Setof-Correlated-
Notifications)

 - 0 - 1

additional-Text String (Graphic-String) - 0 - 1

additional-Information Object (Additional-Information) - 0 - 1

 Chapter 5. XMP API Management Contents Packages 1051

 Service-User

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Simple-Name-Type

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

Exactly one OM attribute is permitted in an instance of this OM class.

 Specific-Identifier

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

Exactly one OM attribute is permitted in an instance of this OM class.

Table 161. OM Attributes of a Service-User

OM Attribute Value Syntax Value Length Value Number

identifier String (Object-Identifier) - 1

details Any - 1

Table 162. OM Attributes of a Simple-Name-Type

OM Attribute Value Syntax Value Length Value Number

number Integer - 0 - 1

string String (Graphic-String) - 0 - 1

Table 163. OM Attributes of a Specific-Identifier

OM Attribute Value Syntax Value
Length

Value
Number

specific-Identifier-OBJECT-IDENTIFIER-1 String (Object-Identifier) - 0 - 1

specific-Identifier-INTEGER-2 Integer - 0 - 1

 Specific-Problems

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 State-Change-Info

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

Table 164. OM Attributes of a Specific-Problems

OM Attribute Value Syntax Value Length Value Number

specific-Identifier Object (Specific-Identifier) - 0 - more

1052 Programmer's Reference

 Stop-Time

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

Exactly one OM attribute is permitted in an instance of this OM class.

 Setof-Supported-Features

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Supported-Features

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

Table 165. OM Attributes of a State-Change-Info

OM Attribute Value Syntax Value Length Value Number

source-Indicator Enum (Source-Indicator) - 0 - 1

attribute-Identifier-List Object (Attribute-Identifier-List) - 0 - 1

state-Change-Definition Object (Setof-Attribute-Value-Change-
Definition)

 - 1

notification-Identifier Integer - 0 - 1

correlated-Notifications Object (Setof-Correlated-Notifications) - 0 - 1

additional-Text String (Graphic-String) - 0 - 1

additional-Information Object (Additional-Information) - 0 - 1

Table 166. OM Attributes of a Stop-Time

OM Attribute Value Syntax Value Length Value Number

specific String (Generalized-Time) - 0 - 1

continual Null - 0 - 1

Table 167. OM Attributes of a Setof-Supported-Features

OM Attribute Value Syntax Value Length Value Number

supported-Features Object (Supported-Features) - 0 - more

Table 168. OM Attributes of a Supported-Features

OM Attribute Value Syntax Value Length Value Number

feature-Identifier String (Object-Identifier) - 1

feature-Info Any - 1

 Chapter 5. XMP API Management Contents Packages 1053

 System-Id

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

Exactly one OM attribute is permitted in an instance of this OM class.

 System-Title

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

Exactly one OM attribute is permitted in an instance of this OM class.

 Threshold-Info

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Threshold-Level-Ind

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

Exactly one OM attribute is permitted in an instance of this OM class.

Table 169. OM Attributes of a System-Id

OM Attribute Value Syntax Value Length Value Number

name String (Graphic-String) - 0 - 1

number Integer - 0 - 1

nothing Null - 0 - 1

Table 170. OM Attributes of a System-Title

OM Attribute Value Syntax Value Length Value Number

distinguished-Name Object (Distinguished-Name) - 0 - 1

oid String (Object-Identifier) - 0 - 1

nothing Null - 0 - 1

Table 171. OM Attributes of a Threshold-Info

OM Attribute Value Syntax Value Length Value Number

triggered-Threshold Object (Attribute-Id) - 1

observed-Value Object (Observed-Value) - 1

threshold-Level Object (Threshold-Level-Ind) - 0 - 1

arm-Time String (Generalized-Time) - 0 - 1

1054 Programmer's Reference

 Up

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Down

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Tide-Mark

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

Exactly one OM attribute is permitted in an instance of this OM class.

 Tide-Mark-Info

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

Table 172. OM Attributes of a Threshold-Level-Ind

OM Attribute Value Syntax Value Length Value Number

up Object (Up) - 0 - 1

down Object (Down) - 0 - 1

Table 173. OM Attributes of a Up

OM Attribute Value Syntax Value Length Value Number

high Object (Observed-Value) - 1

low Object (Observed-Value) - 0 - 1

Table 174. OM Attributes of a Down

OM Attribute Value Syntax Value Length Value Number

high Object (Observed-Value) - 1

low Object (Observed-Value) - 1

Table 175. OM Attributes of a Tide-Mark

OM Attribute Value Syntax Value Length Value Number

max-Tide-Mark Object (Observed-Value) - 0 - 1

min-Tide-Mark Object (Observed-Value) - 0 - 1

Table 176 (Page 1 of 2). OM Attributes of a Tide-Mark-Info

OM Attribute Value Syntax Value Length Value Number

current-Tide-Mark Object (Tide-Mark) - 1

previous-Tide-Mark Object (Tide-Mark) - 1

 Chapter 5. XMP API Management Contents Packages 1055

 Time24

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Setof-Week-Mask

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Week-Mask

An instance of this OM class has the OM attributes of its superclass - Object - and additionally the OM
attributes listed below.

 Value Lists

 Administrative-State

Value List for Administrative-State is one of the following:

locked (0)
unlocked (1)
shutting-Down (2)

Table 176 (Page 2 of 2). OM Attributes of a Tide-Mark-Info

OM Attribute Value Syntax Value Length Value Number

reset-Time String (Generalized-Time) - 1

Table 177. OM Attributes of a Time24

OM Attribute Value Syntax Value Length Value Number

hour Integer - 1

minute Integer - 1

Table 178. OM Attributes of a Setof-Week-Mask

OM Attribute Value Syntax Value Length Value Number

week-Mask Object (Week-Mask) - 0 - more

Table 179. OM Attributes of a Week-Mask

OM Attribute Value Syntax Value Length Value Number

days-Of-Week String (Bit-String) 7 1

intervals-Of-Day Object (Setof-Intervals-Of-Day) - 1

1056 Programmer's Reference

 Alarm-Status

Value List for Alarm-Status is one of the following:

under-Repair (0)
critical (1)
major (2)
minor (3)
alarm-Outstanding (4)

 Availability-Status

Value List for Availability-Status is one of the following:

in-Test (0)
failed (1)
power-Off (2)
off-Line (3)
off-Duty (4)
dependency (5)
degraded (6)
not-Installed (7)
log-Full (8)

 Control-Status

Value List for Control-Status is one of the following:

subject-To-Test (0)
part-Of-Services-Locked (1)
reserved-For-Test (2)
suspended (3)

 Log-Full-Action

Value List for Log-Full-Action. is one of the following:

wrap (0)
halt (1)

 Max-Log-Size

Value List for Max-Log-Size is one of the following:

unlimited (0)

 Operational-State

Value List for Operational-State is one of the following:

disabled (0)
enabled (1)

 Chapter 5. XMP API Management Contents Packages 1057

 Perceived-Severity

Value List for Perceived-Severity is one of the following:

indeterminate (0)
critical (1)
major (2)
minor (3)
warning (4)
cleared (5)

 Priority

Value List for Priority is one of the following:

lowest (0)
highest (127)

 Probable-Cause

Value List for Probable-Cause is one of the following:

adapter-Error ({ 2 9 3 2 0 0 1 })
application-Subsystem-Failure ({ 2 9 3 2 0 0 2 })
bandwidth-Reduced ({ 2 9 3 2 0 0 3 })
call-Establishment-Error ({ 2 9 3 2 0 0 4 })
communications-Protocol-Error ({ 2 9 3 2 0 0 5 })
communications-Subsystem-Failure ({ 2 9 3 2 0 0 6 })
configuration-Or-Customization-Error ({ 2 9 3 2 0 0 7 })
congestion ({ 2 9 3 2 0 0 8 })
corrupt-Data ({ 2 9 3 2 0 0 9 })
cpu-Cycles-Limit-Exceeded ({ 2 9 3 2 0 0 10 })
d-TE-DCE_Interface-Error ({ 2 9 3 2 0 0 13 })
data-Set-Or-Modem-Error ({ 2 9 3 2 0 0 11 })
degraded-Signal ({ 2 9 3 2 0 0 12 })
enclosure-Door-Open ({ 2 9 3 2 0 0 14 })
equipment-Malfunction ({ 2 9 3 2 0 0 15 })
excessive-Vibration ({ 2 9 3 2 0 0 16 })
file-Error ({ 2 9 3 2 0 0 17 })
fire-Detected ({ 2 9 3 2 0 0 18 })
flood-Detected ({ 2 9 3 2 0 0 19 })
framing-Error ({ 2 9 3 2 0 0 20 })
heating-Or-Ventilation-Or-Cooling-System-Problem ({ 2 9 3 2 0 0 21 })
humidity-Unacceptable ({ 2 9 3 2 0 0 22 })
input-Device-Error ({ 2 9 3 2 0 0 24 })
input-Output-Device-Error ({ 2 9 3 2 0 0 23 })
l-AN_Error ({ 2 9 3 2 0 0 25 })
leak-Detected ({ 2 9 3 2 0 0 26 })
local-Node-Transmission-Error ({ 2 9 3 2 0 0 27 })
loss-Of-Frame ({ 2 9 3 2 0 0 28 })
loss-Of-Signal ({ 2 9 3 2 0 0 29 })
material-Supply-Exhausted ({ 2 9 3 2 0 0 30 })
multiplexer-Problem ({ 2 9 3 2 0 0 31 })
output-Device-Error ({ 2 9 3 2 0 0 33 })
out-Of-Memory ({ 2 9 3 2 0 0 32 })

1058 Programmer's Reference

performance-Degraded ({ 2 9 3 2 0 0 34 })
power-Problem ({ 2 9 3 2 0 0 35 })
pressure-Unacceptable ({ 2 9 3 2 0 0 36 })
processor-Problem ({ 2 9 3 2 0 0 37 })
pump-Failure ({ 2 9 3 2 0 0 38 })
queue-Size-Exceeded ({ 2 9 3 2 0 0 39 })
receive-Failure ({ 2 9 3 2 0 0 40 })
receiver-Failure ({ 2 9 3 2 0 0 41 })
remote-Node-Transmission-Error ({ 2 9 3 2 0 0 42 })
resource-At-Or-Nearing-Capacity ({ 2 9 3 2 0 0 43 })
response-Time-Excessive ({ 2 9 3 2 0 0 44 })
retransmission-Rate-Excessive ({ 2 9 3 2 0 0 45 })
software-Error ({ 2 9 3 2 0 0 46 })
software-Program-Abnormally-Terminated ({ 2 9 3 2 0 0 47 })
software-Program-Error ({ 2 9 3 2 0 0 48 })
storage-Capacity-Problem ({ 2 9 3 2 0 0 49 })
temperature-Unacceptable ({ 2 9 3 2 0 0 50 })
threshold-Crossed ({ 2 9 3 2 0 0 51 })
timing-Problem ({ 2 9 3 2 0 0 52 })
toxic-Leak-Detected ({ 2 9 3 2 0 0 53 })
transmit-Failure ({ 2 9 3 2 0 0 54 })
transmitter-Failure ({ 2 9 3 2 0 0 55 })
underlying-Resource-Unavailable ({ 2 9 3 2 0 0 56 })
version-Mismatch ({ 2 9 3 2 0 0 57 })

 Procedural-Status

Value List for Procedural-Status is one of the following:

initialization-Required (0)
not-Initialized (1)
initializing (2)
reporting (3)
terminating (4)

 Security-Alarm-Cause

Value List for Security-Alarm-Cause is one of the following:

authentication-Failure ({ 2 9 3 2 0 1 1 })
breach-Of-Confidentiality ({ 2 9 3 2 0 1 2 })
cable-Tamper ({ 2 9 3 2 0 1 3 })
delayed-Information ({ 2 9 3 2 0 1 4 })
denial-Of-Service ({ 2 9 3 2 0 1 5 })
duplicate-Information ({ 2 9 3 2 0 1 6 })
information-Missing ({ 2 9 3 2 0 1 7 })
information-Modification-Detected ({ 2 9 3 2 0 1 8 })
information-Out-Of-Sequence ({ 2 9 3 2 0 1 9 })
intrusion-Detection ({ 2 9 3 2 0 1 10 })
key-Expired ({ 2 9 3 2 0 1 11 })
non-Repudiation-Failure ({ 2 9 3 2 0 1 12 })
out-Of-Hours-Activity ({ 2 9 3 2 0 1 13 })
out-Of-Service ({ 2 9 3 2 0 1 14 })
procedural-Error ({ 2 9 3 2 0 1 15 })
unauthorized-Access-Attempt ({ 2 9 3 2 0 1 16 })

 Chapter 5. XMP API Management Contents Packages 1059

unexpected-Information ({ 2 9 3 2 0 1 17 })
unspecified-Reason ({ 2 9 3 2 0 1 18 })

 Source-Indicator

Value List for Source-Indicator is one of the following:

resource-Operation (0)
management-Operation (1)
unknown (2)

 Standby-Status

Value List for Standby-Status is one of the following:

hot-Standby (0)
cold-Standby (1)
providing-Service (2)

 Trend-Indication

Value List for Trend-Indication is one of the following:

less-Severe (0)
no-Change (1)
more-Severe (2)

 Usage-State

Value List for Usage-State is one of the following:

idle (0)
active (1)
busy (2)

 Days-Of-Week

Value List for Days-Of-Week is one of the following:

sunday (0)
monday (1)
tuesday (2)
wednesday (3)
thursday (4)
friday (5)
saturday (6)

1060 Programmer's Reference

Chapter 6. Using NetView for AIX GTM Data Structures

The data strutures used by the GTM API are defined in the nvotTypes.h file.

The don't care values defined in the API are:

� NULL: for pointers

� -1: for integers

The string fields that are stored in the NetView for AIX object database will be truncated to 256 characters.
String fields in the GTM database can have unlimited length.

 Basic Structures

Structures are used to represent the GTM entities. The structures contain components of three types:

� table structures, which define relevant variables for each entity type
� type structures, which define low-level variables for use in basic structures and table structures
� standard C-language data types such as int and char

For each entity, a structure is defined to represent that entity, and a second structure is defined to repre-
sent a list.

 Vertex
typedef struct {
 nvotOperationType operation;
 nvotAttributeBitmapType validAttributes;
 nvotVertexAttrType vertexAttr;
} nvotVertex;

typedef struct {
 int count;
 nvotVertex \vertex;
} nvotVertexList;

 Graph
typedef struct {
 nvotOperationType operation;
 nvotAttributeBitmapType validAttributes;
 nvotGraphAttrType graphAttr;
} nvotGraph;

typedef struct {
 int count;
 nvotGraph \graph;
} nvotGraphList;

 Box
typedef struct {
 nvotOperationType operation;
 nvotAttributeBitmapType validAttributes;
 nvotGraphAttrType boxAttr;
} nvotBox;

 Copyright IBM Corp. 1992, 1995 1061

typedef struct {
 int count;
 nvotBox \box;
} nvotBoxList;

 Arc
typedef struct {
 nvotOperationType operation;
 nvotAttributeBitmapType validAttributes;
 nvotNameBindingType nameBinding;
 nvotArcAttrType arcAttr;
} nvotArc;

typedef struct {
 int count;
 nvotArc \arc;
} nvotArcList;

 Sap
typedef struct {
 nvotOperationType operation;
 nvotAttributeBitmapType validAttributes;
 nvotSapAttrType sapAttr;
} nvotSap;

typedef struct {
 int count;
 nvotSap \sap;
} nvotSapList;

 Simple Connection
typedef struct {
 nvotOperationType operation;
 nvotAttributeBitmapType validAttributes;
 nvotNameBindingType nameBinding;
 nvotScAttrType scAttr;
} nvotSimpleConnection;

typedef struct {
 int count;
 nvotSimpleConnection \simpleConnection;
} nvotSimpleConnectionList;

 Underlying Connection
typedef struct {
 nvotOperationType operation;
 nvotAttributeBitmapType validAttributes;
 nvotNameBindingType nameBinding;
 nvotUlcAttrType ulcAttr;
} nvotUnderlyingConnection;

typedef struct {
 int count;
 nvotUnderlyingConnection \underlyingConnection;
} nvotUnderlyingConnectionList;

1062 Programmer's Reference

 Underlying Arc
typedef struct {
 nvotOperationType operation;
 nvotAttributeBitmapType validAttributes;
 nvotNameBindingType nameBinding;
 nvotUlaAttrType ulaAttr;
} nvotUnderlyingArc;

typedef struct {
 int count;
 nvotUnderlyinfArc \underlyingArc;
} nvotUnderlyingArcList;

 Members
typedef struct {
 nvotOperationType operation;
 nvotAttributeBitmapType validAttributes;
 nvotNameBindingType nameBinding;
 nvotMembersAttrType membersAttr;
} nvotMembers;

typedef struct {
 int count;
 nvotMembers \member;
} nvotMembersList;

 Member Arcs
typedef struct {
 nvotOperationType operation;
 nvotAttributeBitmapType validAttributes;
 nvotNameBindingType nameBinding;
 nvotMaAttrType maAttr;
} nvotMemberArcs;

typedef struct {
 int count;
 nvotMemberArc \memberArc;
} nvotMemberArcsList;

 Attached Arcs
typedef struct {
 nvotOperationType operation;
 nvotAttributeBitmapType validAttributes;
 nvotNameBindingType nameBinding;
 nvotAaAttrType aaAttr;
} nvotAttachedArcs;

typedef struct {
 int count;
 nvotAttachedArcs \attachedArc;
} nvotAttachedArcsList;

 Chapter 6. Using NetView for AIX GTM Data Structures 1063

 Additional Members
typedef struct {
 nvotOperationType operation;
 nvotAttributeBitmapType validAttributes;
 nvotNameBindingType nameBinding;
 nvotAddMembersAttrType addMembersAttr;
} nvotAdditionalMembers;

typedef struct {
 int count;
 nvotAdditionalMembers \additionalMember;
} nvotAdditionalMembersList;

 Additional Graph
typedef struct {
 nvotOperationType operation;
 nvotAttributeBitmapType validAttributes;
 nvotAddGraphAttrType addGraphAttr;
} nvotAdditionalGraph;

typedef struct {
 int count;
 nvotAddGraph \additionalGraph;
} nvotAdditionalGraphList;

 Table Structures

A table structure is defined for use in each basic structure. There is no box table structure; the box basic
structure uses the graph table structure.

 nvotVertexAttrType
typedef struct {
 nvotVertexProtocolType vertexProtocol;
 char \ vertexName;
 nvotOwnerType vertexMine;
 char \ vertexLocation;
 nvotOctetString vertexManagementExtension;
 nvotOctetString vertexManagementAddr;
 nvotOperationalStateType vertexOperationalState;
 nvotUnknownStatusType vertexUnknownStatus;
 nvotAvailabilityStatusType vertexAvailabilityStatus;
 nvotAlarmStatusType vertexAlarmStatus;
 char \ vertexLabel;
 char \ vertexIcon;
} nvotVertexAttrType;

1064 Programmer's Reference

 nvotGraphAttrType
typedef struct {
 nvotGraphType graphType;
 nvotGraphProtocolType graphProtocol;
 char \ graphName;
 nvotLayoutType layoutAlgorithm;
 char \ userDefinedLayout;
 char \ graphLocation;
 char \ backgroundMap;
 nvotOctetString graphManagementExtension;
 nvotOctetString graphManagementAddr;
 nvotBooleanType isRoot;
 char \ graphLabel;
 char \ graphIcon;
} nvotGraphAttrType;

 nvotArcAttrType
typedef struct {
 nvotProtocolType aEnpointProtocol;
 char \ aEndpointName;
 nvotProtocolType zEndpointProtocol;
 char \ zEndpointName;
 int arcIndexId;
 int aDetailsIndexId;
 int zDetailsIndexId;
 nvotOctetString arcManagementExtension;
 nvotOctetString arcManagementAddr;
 nvotOperationalStateType arcOperationalState;
 nvotUnknownStatusType arcUnknownStatus;
 nvotAvailabilityStatusType arcAvailabilityStatus;
 nvotAlarmStatusType arcAlarmStatus;
} nvotArcAttrType;

 nvotSapAttrType
typedef struct {
 nvotProtocolType sapVertexProtocol;
 char \ sapVertexName;
 nvotServiceType sapServiceType;
 nvotProtocolType sapProtocol;
 char \ sapAddress;
} nvotSapAttrType;

 Chapter 6. Using NetView for AIX GTM Data Structures 1065

 nvotScAttrType
typedef struct {
 nvotProtocolType localEndpointProtocol;
 char \ localEndpointName;
 int simpleConnIndexId;
 char \ simpleConnName;
 nvotNameBindingType nameBinding;
 nvotProtocolType connectionPartnerProtocol;
 char \ connectionPartnerName;
 nvotOctetString simpleConnManagementExtension;
 nvotOctetString simpleConnManagementAddr;
 char \ simpleConnIcon;
 nvotOperationalStateType simpleConnOperationalState;
 nvotUnknownStatusType simpleConnUnknownStatus;
 nvotAvailabilityStatusType simpleConnAvailabilityStatus;
 nvotAlarmStatusType simpleConnAlarmStatus;
} nvotScAttrType;

 nvotUlcAttrType
typedef struct {
 nvotProtocolType ulcEndpointProtocol;
 char \ ulcEndpointName;
 int ulcEndpointId;
 nvotUnderlyingKindType underlyingConnectionKind;
 nvotNameBindingType nameBinding;
 nvotProtocolType uconnEndpointProtocol;
 char \ uconnEndpointName;
 int uconnSimpleConnId;
 nvotNameBindingType nextSerialNameBinding;
 nvotProtocolType nextSerialEndpointProtocol;
 char \ nextSerialEndpointName;
 int nextSerialSimpleConnId;
} nvotUlcAttrType;

 nvotUlaAttrType
typedef struct {
 nvotProtocolType ulaAendpointProtocol;
 char \ ulaAendpointName;
 nvotProtocolType ulaZendpointProtocol;
 char \ ulaZendpointName;
 int ulaArcIndexId;
 nvotUnderlyingKindType underlyingArcKind;
 nvotNameBindingType nameBinding;
 nvotProtocolType uconnAendpointProtocol;
 char \ uconnAendpointName;
 nvotProtocolType uconnZendpointProtocol;
 char \ uconnZendpointName;
 int uconnArcIndexId;
 nvotNameBindingType nextSerialNameBinding;
 nvotProtocolType nextSerialAendpointProtocol;
 char \ nextSerialAendpointName;
 nvotProtocolType nextSerialZendpointProtocol;
 char \ nextSerialZendpointName;
 int nextSerialArcIndexId;
} nvotUlaAttrType;

1066 Programmer's Reference

 nvotMembersAttrType
typedef struct {
 nvotProtocolType memberProtocol;
 char \ memberName;
 nvotNameBindingType nameBinding;
 nvotProtocolType memberComponentProtocol;
 char \ memberComponentName;
 char \ memberLabel;
 char \ memberIcon;
} nvotMembersAttrType;

 nvotMaAttrType
typedef struct {
 nvotProtocolType maGraphProtocol;
 char \ maGraphName;
 nvotNameBindingType nameBinding;
 nvotProtocolType maAendpointProtocol;
 char \ maAendpointName;
 nvotProtocolType maZendpointProtocol;
 char \ maZendpointName;
 int maArcIndexId;
 char \ maLabel;
 char \ maIcon;
} nvotMaAttrType;

 nvotAaAttrType
typedef struct {
 nvotProtocolType aaGraphProtocol;
 char \ aaGraphName;
 nvotNameBindingType nameBinding;
 nvotProtocolType aaAendpointProtocol;
 char \ aaAendpointName;
 nvotProtocolType aaZendpointProtocol;
 char \ aaZendpointName;
 int aaArcIndexId;
} nvotAaAttrType;

 nvotAddMembersAttrType
typedef struct {
 nvotProtocolType aMemberProtocol;
 char \ aMemberName;
 int aMemberIndexId;
 int xCoordinate;
 int yCoordinate;
 int xGrid;
 int yGrid;
} nvotAddMembersAttrType;

 Chapter 6. Using NetView for AIX GTM Data Structures 1067

 nvotAddGraphAttrType
typedef struct {
 nvotProtocolType addGraphProtocol;
 char \ addGraphName;
 int addGraphIndexId;
 nvotGraphProtocolType graphRootProtocol;
 char \ graphRootName;
 char \ graphDesc1;
 int graphDescrX;
 int graphDescrY;
 char \ rootGraphLabel;
 char \ rootGraphIcon;
} nvotAddGraphAttrType;

 Type Structures

These structures are the basic building blocks used to create basic structures and table structures.

 nvotVertexProtocolType

A new application could need a vertex protocol that is not defined in this enumeration. The GTM API
does not verify that a vertex protocol is one of those defined in this list. However, the GTM API verifies
that the protocol is a nonnegative number.

typedef enum {
 NONEXISTENT = ð,
 OTHER_PROTOCOL = 1,
 REGULAR1822 = 2,
 HDH1822 = 3,
 DDN_X25 = 4,
 RFC877_X25 = 5,
 ETHERNET_CSMACD = 6,
 ISO88ð23_CSMACD = 7,
 ISO88ð24_TOKENBUS = 8,
 ISO88ð25_TOKENRING = 9,
 ISO88ð26_MAN = 1ð,
 STARLAN = 11,
 PROTEON_1ðMBIT = 12,
 PROTEON_8ðMBIT = 13,
 HYPERCHANNEL = 14,
 FDDI = 15,
 LAPB = 16,
 SDLC = 17,
 DSL = 18,
 EL = 19,
 BASIC_ISDN = 2ð,
 PRIMARY_ISDN = 21,
 PROP_P_P_SERIAL = 22,
 PPP = 23,
 SW_LOOPBACK = 24,
 EON = 25,
 ETHERNET_3MBIT = 26,
 NSIP = 27,
 SLIP = 28,
 ULTRA = 29,

1068 Programmer's Reference

 DS3 = 3ð,
 SIP = 31,
 FRAME_RELAY = 32,
 BASE_STATION_8ð211 = 5ð,
 REMOTE_STATION_8ð211= 51,
 APPN_END_NODE = 52,
 APPN_NETWORK_NODE = 53,
 SNA_SESSION = 54,
 SNA_TG = 55,
 IP = 56,
 LANFDDI = 57,
 LANTR = 58,
 LAN = 59,
 BNS = 6ð,
 DATA_LINK_SWITCH = 65,
 HUB825ð = 7ð,
 HUB825ð_MODULE = 71,
 HUB825ð_PORT = 72,
 HUB825ð_TRUNK = 73,
 LMU6ððð = 74
} nvotVertexProtocolType;

 nvotGraphProtocolType
typedef char \ nvotGraphProtocolType;

 nvotProtocolType
typedef union {
 nvotVertexProtocolType vertexProtocol;
 nvotGraphProtocolType graphProtocol;
} nvotProtocolType;

 nvotTableType
typedef enum {
ALL_TABLE = 1, /\ used in get operation \/

 VERTEX_TABLE = 2,
 SIMPLE_CONNECTION_TABLE = 3,
UNDERLYING_CONNECTION_TABLE = 4,

 ARC_TABLE = 5,
 UNDERLYING_ARC_TABLE = 6,
 GRAPH_TABLE = 7,
 MEMBERS_TABLE = 8,
 MEMBER_ARC_TABLE = 9,
 ATTACHED_ARCS_TABLE = 1ð,
 ADDITIONAL_GRAPH_TABLE = 11,
 ADDITIONAL_MEMBERS_TABLE = 12,
 SAP_TABLE = 13
} nvotTableType;

 nvotAttributeBitmapType

 This is a bitmap structure (4 hexadecimal digits) that indicates which attributes are filled in the table
attributes variable.

typedef unsigned int nvotAttributeBitmapType;

 Chapter 6. Using NetView for AIX GTM Data Structures 1069

 Vertex
#define VERTEXPROTOCOL_ATTR SET_BIT(ð)
#define VERTEXNAME_ATTR SET_BIT(1)
#define reserved for future use SET_BIT(2)
#define VERTEXLABEL_ATTR SET_BIT(3)
#define VERTEXMINE_ATTR SET_BIT(4)
#define VERTEXLOCATION_ATTR SET_BIT(5)
#define VERTEXMANAGEMENTEXTENSION_ATTR SET_BIT(6)
#define VERTEXMANAGEMENTADDR_ATTR SET_BIT(7)
#define VERTEXICON_ATTR SET_BIT(8)
#define VERTEXOPERATIONALSTATE_ATTR SET_BIT(9)
#define VERTEXUNKNOWNSTATUS_ATTR SET_BIT(1ð)
#define VERTEXAVAILABILITYSTATUS_ATTR SET_BIT(11)
#define VERTEXALARMSTATUS_ATTR SET_BIT(12)

 Graph
#define GRAPHPROTOCOL_ATTR SET_BIT(ð)
#define GRAPHNAME_ATTR SET_BIT(1)
#define GRAPHTYPE_ATTR SET_BIT(2)
#define LAYOUTALGORITHM_ATTR SET_BIT(3)
#define USERDEFINEDLAYOUT_ATTR SET_BIT(4)
#define GRAPHLOCATION_ATTR SET_BIT(5)
#define BACKGROUNDMAP_ATTR SET_BIT(6)
#define GRAPHMANAGEMENTEXTENSION_ATTR SET_BIT(7)
#define GRAPHMANAGEMENTADDR_ATTR SET_BIT(8)
#define GRAPHICON_ATTR SET_BIT(9)
#define ISROOT_ATTR SET_BIT(1ð)
#define GRAPHLABEL_ATTR SET_BIT(11)

 Arc
#define AENDPOINTPROTOCOL_ATTR SET_BIT(ð)
#define ZENDPOINTPROTOCOL_ATTR SET_BIT(1)
#define AENDPOINTNAME_ATTR SET_BIT(2)
#define ZENDPOINTNAME_ATTR SET_BIT(3)
#define ARCINDEXID_ATTR SET_BIT(4)
#define reserved for future use SET_BIT(5)
#define reserved for future use SET_BIT(6)
#define ADETAILSINDEXID_ATTR SET_BIT(7)
#define ZDETAILSINDEXID_ATTR SET_BIT(8)
#define ARCMANAGEMENTEXTENSION_ATTR SET_BIT(9)
#define ARCMANAGEMENTADDR_ATTR SET_BIT(1ð)
#define reserved for future use SET_BIT(11)
#define ARCOPERATIONALSTATE_ATTR SET_BIT(12)
#define ARCUNKNOWNSTATUS_ATTR SET_BIT(13)
#define ARCAVAILABILITYSTATUS_ATTR SET_BIT(14)
#define ARCALARMSTATUS_ATTR SET_BIT(15)

1070 Programmer's Reference

 Sap
#define SAPVERTEXPROTOCOL_ATTR SET_BIT(ð)
#define SAPVERTEXNAME_ATTR SET_BIT(1)
#define reserved for future use SET_BIT(2)
#define SAPPROTOCOL_ATTR SET_BIT(3)
#define SAPADDRESS_ATTR SET_BIT(4)
#define SAPSERVICETYPE_ATTR SET_BIT(5)
#define SAPTYPE_ATTR SET_BIT(6)

 Simple Connection
#define LOCALENDPOINTPROTOCOL_ATTR SET_BIT(ð)
#define LOCALENDPOINTNAME_ATTR SET_BIT(1)
#define SIMPLECONNINDEXID_ATTR SET_BIT(2)
#define reserved for future use SET_BIT(3)
#define reserved for future use SET_BIT(4)
#define CONNECTIONNAMEBINDING_ATTR SET_BIT(5)
#define CONNECTIONPARTNERPROTOCOL_ATTR SET_BIT(6)
#define CONNECTIONPARTNERNAME_ATTR SET_BIT(7)
#define SIMPLECONNMANAGEMENTEXTENSION_ATTR SET_BIT(8)
#define SIMPLECONNMANAGEMENTADDR_ATTR SET_BIT(9)
#define reserved for future use SET_BIT(1ð)
#define SIMPLECONNOPERATIONALSTATE_ATTR SET_BIT(11)
#define SIMPLECONNUNKNOWNSTATUS_ATTR SET_BIT(12)
#define SIMPLECONNAVAILABILITYSTATUS_ATTR SET_BIT(13)
#define SIMPLECONNALARMSTATUS_ATTR SET_BIT(14)

 Underlying Connection
#define ULCENDPOINTPROTOCOL_ATTR SET_BIT(ð)
#define ULCENDPOINTNAME_ATTR SET_BIT(1)
#define ULCENDPOINTID_ATTR SET_BIT(2)
#define reserved for future use SET_BIT(3)
#define reserved for future use SET_BIT(4)
#define UNDERLYINGCONNECTIONKIND_ATTR SET_BIT(5)
#define UCONNSIMPLECONNNAMEBINDING_ATTR SET_BIT(6)
#define UCONNENDPOINTPROTOCOL_ATTR SET_BIT(7)
#define UCONNENDPOINTNAME_ATTR SET_BIT(8)
#define UCONNSIMPLECONNID_ATTR SET_BIT(9)
#define reserved for future use SET_BIT(1ð)
#define NEXTSERIALNAMEBINDING_ATTR SET_BIT(11)
#define NEXTSERIALENDPOINTPROTOCOL_ATTR SET_BIT(12)
#define NEXTSERIALENDPOINTNAME_ATTR SET_BIT(13)
#define NEXTSERIALSIMPLECONNID_ATTR SET_BIT(14)
#define ULCLABEL_ATTR SET_BIT(15)
#define ULCICON_ATTR SET_BIT(16)

 Chapter 6. Using NetView for AIX GTM Data Structures 1071

 Underlying Arc
#define ULAAENDPOINTPROTOCOL_ATTR SET_BIT(ð)
#define ULAZENDPOINTPROTOCOL_ATTR SET_BIT(1)
#define ULAAENDPOINTNAME_ATTR SET_BIT(2)
#define ULAZENDPOINTNAME_ATTR SET_BIT(3)
#define ULAARCINDEXID_ATTR SET_BIT(4)
#define reserved for future use SET_BIT(5)
#define UCONNARCNAMEBINDING_ATTR SET_BIT(6)
#define UCONNAENDPOINTPROTOCOL_ATTR SET_BIT(7)
#define UCONNZENDPOINTPROTOCOL_ATTR SET_BIT(8)
#define reserved for future use SET_BIT(9)
#define UNDERLYINGARCKIND_ATTR SET_BIT(1ð)
#define UCONNAENDPOINTNAME_ATTR SET_BIT(11)
#define UCONNZENDPOINTNAME_ATTR SET_BIT(12)
#define UCONNARCINDEXID_ATTR SET_BIT(13)
#define reserved for future use SET_BIT(14)
#define ARCNEXTSERIALNAMEBINDING_ATTR SET_BIT(15)
#define NEXTSERIALAENDPOINTPROTOCOL_ATTR SET_BIT(16)
#define NEXTSERIALAENDPOINTNAME_ATTR SET_BIT(17)
#define NEXTSERIALZENDPOINTPROTOCOL_ATTR SET_BIT(18)
#define NEXTSERIALZENDPOINTNAME_ATTR SET_BIT(19)
#define NEXTSERIALARCINDEXID_ATTR SET_BIT(2ð)
#define ULALABEL_ATTR SET_BIT(21)
#define ULAICON_ATTR SET_BIT(22)

 Members
#define MEMBERPROTOCOL_ATTR SET_BIT(ð)
#define MEMBERNAME_ATTR SET_BIT(1)
#define reserved for future use SET_BIT(2)
#define reserved for future use SET_BIT(3)
#define MEMBERNAMEBINDING_ATTR SET_BIT(4)
#define MEMBERCOMPONENTPROTOCOL_ATTR SET_BIT(5)
#define MEMBERCOMPONENTNAME_ATTR SET_BIT(6)
#define MEMBERLABEL_ATTR SET_BIT(7)
#define MEMBERICON_ATTR SET_BIT(8)

 Member Arcs
#define MAGRAPHPROTOCOL_ATTR SET_BIT(ð)
#define MAGRAPHNAME_ATTR SET_BIT(1)
#define reserved for future use SET_BIT(2)
#define reserved for future use SET_BIT(3)
#define MANAMEBINDING_ATTR SET_BIT(4)
#define MAAENDPOINTPROTOCOL_ATTR SET_BIT(5)
#define MAAENDPOINTNAME_ATTR SET_BIT(6)
#define MAZENDPOINTPROTOCOL_ATTR SET_BIT(7)
#define MAZENDPOINTNAME_ATTR SET_BIT(8)
#define MAARCINDEXID_ATTR SET_BIT(9)
#define MALABEL_ATTR SET_BIT(1ð)
#define MAICON_ATTR SET_BIT(11)

1072 Programmer's Reference

 Attached Arcs
#define AAGRAPHPROTOCOL_ATTR SET_BIT(ð)
#define AAGRAPHNAME_ATTR SET_BIT(1)
#define reserved for future use SET_BIT(2)
#define reserved for future use SET_BIT(3)
#define AANAMEBINDING_ATTR SET_BIT(4)
#define AAAENDPOINTPROTOCOL_ATTR SET_BIT(5)
#define AAAENDPOINTNAME_ATTR SET_BIT(6)
#define AAZENDPOINTPROTOCOL_ATTR SET_BIT(7)
#define AAZENDPOINTNAME_ATTR SET_BIT(8)
#define AAARCINDEXID_ATTR SET_BIT(9)

 Additional Members
#define AMEMBERPROTOCOL_ATTR SET_BIT(ð)
#define AMEMBERNAME_ATTR SET_BIT(1)
#define reserved for future use SET_BIT(2)
#define reserved for future use SET_BIT(3)
#define XCOORDINATE_ATTR SET_BIT(4)
#define YCOORDINATE_ATTR SET_BIT(5)
#define XGRID_ATTR SET_BIT(6)
#define YGRID_ATTR SET_BIT(7)
#define ACOMPONENTNAMEBINDING_ATTR SET_BIT(8)
#define ACOMPONENTMEMBERPROTOCOL_ATTR SET_BIT(9)
#define ACOMPONENTMEMBERNAME_ATTR SET_BIT(1ð)

 Additional Graph
#define ADDGRAPHPROTOCOL_ATTR SET_BIT(ð)
#define ADDGRAPHNAME_ATTR SET_BIT(1)
#define ADDGRAPHINDEXID_ATTR SET_BIT(2)
#define reserved for future use SET_BIT(3)
#define reserved for future use SET_BIT(4)
#define GRAPHDESC1_ATTR SET_BIT(5)
#define GRAPHDESCRX_ATTR SET_BIT(6)
#define GRAPHDESCRY_ATTR SET_BIT(7)
#define GRAPHROOTPROTOCOL_ATTR SET_BIT(8)
#define GRAPHROOTNAME_ATTR SET_BIT(9)
#define ROOTGRAPHLABEL_ATTR SET_BIT(1ð)
#define ROOTGRAPHICON_ATTR SET_BIT(11)

 Sample

To use a nvotVertex structure where the attributes vertexProtocol and vertexName are filled, we should
set validAttributes to 0003. (set bits 0 and 1).

 nvotOperationType
typedef enum {
CREATE_OPERATION = 1,
DELETE_OPERATION = 2,

 AVC_OPERATION = 3,
 SC_OPERATION = 4,
 GET_OPERATION = 6
} nvotOperationType;

 Chapter 6. Using NetView for AIX GTM Data Structures 1073

 nvotNameBindingType
typedef enum {
 GRAPH_NAME_BINDING = ð,
 VERTEX_NAME_BINDING = 1,
 SIMPLE_CONN_GRAPH_NAME_BINDING = 2,
SIMPLE_CONN_VERTEX_NAME_BINDING = 3,

 ARC_GRAPH_GRAPH_NAME_BINDING = 4,
 ARC_GRAPH_VERTEX_NAME_BINDING = 5,
 ARC_VERTEX_GRAPH_NAME_BINDING = 6,
 ARC_VERTEX_VERTEX_NAME_BINDING = 7,
 DONT_CARE_NAME_BINDING = 13
} nvotNameBindingType;

 nvotLayoutType
typedef enum {
 NONE_LAYOUT = 1,
 USER_DEFINED_LAYOUT = 2,
 POINT_TO_POINT_LAYOUT = 3,
 BUS_LAYOUT = 4,
 STAR_LAYOUT = 5,
 SPOKED_RING_LAYOUT = 6,
 ROWCOL_LAYOUT = 7,
POINT_TO_POINT_RING_LAYOUT = 8,

 TREE_LAYOUT = 9
} nvotLayoutType;

 nvotStatusType
typedef enum {
 STATUS_NORMAL = 1,
 STATUS_CRITICAL = 2,
 STATUS_UNKNOWN = 3,
 STATUS_MARGINAL = 4,
STATUS_UNMANAGED = 5

} nvotStatusType

 nvotGraphType
typedef enum {
 OTHER_GRAPH = 1,
INVALID_GRAPH = 2,

 GRAPH = 3,
 BOX = 4
} nvotGraphType;

 nvotBooleanType
typedef unsigned int nvotBooleanType; /\ FALSE = ð, TRUE = 1 \/

1074 Programmer's Reference

 nvotOctetString
typedef struct {
char \ octetString,

 int octetLength;
} nvotOctetString;

 nvotOperationalStateType
typedef enum {
DISABLED = 1,

 ENABLED = 2
} nvotOperationalStateType;

 nvotUnknownStatusType
typedef nvotBooleanType nvotUnknownStatusType;

 nvotAvailabilityStatusType
typedef enum {
EMPTY_SET_AVAI_ST = ð,

 IN_TEST = 1,
 FAILED = 2,
 POWER_OFF = 4,
 OFF_LINE = 8,
 OFF_DUTY = 16,
 DEPENDENCY = 32,
 DEGRADED = 64,
 NOT_INSTALLED = 128
} nvotAvailabilityStatusType;

 nvotAlarmStatusType
typedef enum {
EMPTY_SET_ALARM_ST = ð,

 UNDER_REPAIR = 1,
 CRITICAL = 2,
 MAJOR = 4,
 MINOR = 8,
 ALARM_OUTSTANDING = 16
} nvotAlarmStatusType;

 nvotOwnerType
typedef enum {
 MINE = 1,
NOT_MINE = 2

} nvotOwnerType;

 nvotUnderlyingKindType
typedef enum {
 SERIAL = 1,
PARALLEL = 2

} nvotUnderlyingKindType;

 Chapter 6. Using NetView for AIX GTM Data Structures 1075

 nvotServiceType
typedef enum {
 USING = 1,
PROVIDING = 2

} nvotServiceType;

 nvotPositionType
typedef struct {
 int xCoordinate;
 int yCoordinate;
 int xGrid;
 int yGrid;
} nvotPositionType;

 nvotReturnCode
typedef unsigned int nvotReturnCode;

1076 Programmer's Reference

Glossary and Bibliography

Glossary . 1079

Bibliography . 1107
NetView for AIX Publications . 1107
IBM RISC System/6000 Publications . 1107
NetView Publications . 1108
TCP/IP Publications for AIX (RS/6000, PS/2, RT, 370) 1108
AIX SNA Services/6000 Publications . 1108
Internet Request for Comments (RFCs) . 1108
Related Publications . 1109

AIX Trouble Ticket/6000 Publications . 1109
Service Point Publication . 1109
Other IBM TCP/IP Publications . 1109
SNMP Information . 1109
X Window System Publications . 1110
X/Open Specification . 1110
OSF/Motif Publications . 1110
ISO/IEC Standards . 1110

 Copyright IBM Corp. 1992, 1995 1077

1078 Programmer's Reference

 Glossary

This glossary includes terms and definitions from:

� The American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies may be purchased from the Amer-
ican National Standards Institute, 11 West 42nd
Street, New York, New York 10036. Definitions are
identified by the symbol (A) after the definition.

� The ANSI/EIA Standard—440-A, Fiber Optic Termi-
nology. Copies may be purchased from the Elec-
tronic Industries Association, 2001 Pennsylvania
Avenue, N.W., Washington, DC 20006. Definitions
are identified by the symbol (E) after the definition.

� The Information Technology Vocabulary, developed
by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1). Definitions of published parts
of this vocabulary are identified by the symbol (I)
after the definition; definitions taken from draft inter-
national standards, committee drafts, and working
papers being developed by ISO/IEC JTC1/SC1 are
identified by the symbol (T) after the definition, indi-
cating that final agreement has not yet been
reached among the participating National Bodies of
SC1.

� The Network Working Group Request for Com-
ments: 1208.

� The IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

� The Object-Oriented Interface Design: IBM
Common User Access Guidelines, Carmel, Indiana:
Que, 1992.

The following cross-references are used in this glos-
sary:

Contrast with: This refers to a term that has an
opposed or substantively different meaning.

Synonym for: This indicates that the term has the
same meaning as a preferred term, which is defined in
its proper place in the glossary.

Synonymous with: This is a backward reference from
a defined term to all other terms that have the same
meaning.

See: This refers the reader to multiple-word terms that
have the same last word.

See also: This refers the reader to terms that have a
related, but not synonymous, meaning.

Deprecated term for: This indicates that the term
should not be used. It refers to a preferred term, which
is defined in its proper place in the glossary.

A
abstract syntax . A data specification that includes all
distinctions that are needed in data transmissions, but
that omits (abstracts) other details such as those that
depend on specific computer architectures. See also
abstract syntax notation 1 (ASN.1) and basic encoding
rules (BER).

abstract syntax notation 1 (ASN.1) . The Open
Systems Interconnection (OSI) method for abstract
syntax specified in ISO 8824. See also basic encoding
rules (BER).

ACB name . (1) The label of an ACB macroinstruction
used to name the ACB. (2) A name specified either on
the VTAM APPL definition statement or on the VTAM
application program's ACB macroinstruction. Contrast
with network name.

accelerator . (1) In CUA architecture, a key or combi-
nation of keys that invokes an application-defined func-
tion. (2) In the AIXwindows Toolkit, a keyboard
alternative to a mouse button action; for example,
holding the <Shift> and <M> keys on the keyboard can
be made to post a menu in the same way that a mouse
button action does. Accelerators typically provide
increased input speed and greater convenience.

ACF/VTAM . Advanced Communications Function for
the Virtual Telecommunications Access Method.
Synonym for VTAM.

action . (1) An operation on a managed object, the
semantics of which are defined as part of the managed
object class definition. (2) In the AIX operating system,
a defined task that an application performs. An action
modifies the properties of an object or manipulates the
object in some way.

active . (1) The state of a resource when it has been
activated and is operational. (2) In the AIX operating
system, pertaining to the window pane in which the text
cursor is currently positioned. (3) Contrast with inactive
and inoperative.

adapter . A part that electrically or physically connects
a device to a computer or to another device.

address mask . For internet subnetworking, a 32-bit
mask used to identify the subnetwork address bits in
the host portion of an IP address. Synonymous with
subnet mask and subnetwork mask.

 Copyright IBM Corp. 1992, 1995 1079

Address Resolution Protocol (ARP) . (1) In the
Internet suite of protocols, the protocol that dynamically
maps an IP address to an address used by a sup-
porting metropolitan or local area network such as
Ethernet or token-ring. (2) See also Reverse Address
Resolution Protocol (RARP).

Administrative Domain . A collection of hosts and
routers, and the interconnecting networks, managed by
a single administrative authority.

Advanced Function Printing (AFP) . In the AS/400
system, the ability of programs to print all-points-
addressable text and images.

AFP. Advanced Function Printing.

agent . (1) In systems management, a user that, for a
particular interaction, has assumed an agent role.
(2) An entity that represents one or more managed
objects by (a) emitting notifications regarding the
objects and (b) handling requests from managers for
management operations to modify or query the objects.
(3) A system that assumes an agent role.

agent role . In systems management, a role assumed
by a user where the user is capable of performing man-
agement operations on managed objects and of emit-
ting notifications on behalf of managed objects.

aggregate . In programming languages, a structured
collection of data objects that form a data type. (I)

aggregate resource . In the NetView Graphic Monitor
Facility, an object that represents a collection of real
resources.

AIX. Advanced Interactive Executive.

AIX NetView Service Point . See NetView for AIX
Service Point.

AIX NetView/6000 . See NetView for AIX.

AIX operating system . IBM's implementation of the
UNIX operating system. The RISC System/6000
system, among others, runs the AIX operating system.

AIX SystemView NetView/6000 . See NetView for AIX.

AIXwindows Toolkit . An object-oriented collection of
C language data structures and subroutines that supple-
ment the Enhanced X-Windows Toolkit and simplify the
creation of interactive client application interfaces.

alert . (1) A message sent to a management services
focal point in a network to identify a problem or an
impending problem. (2) In SNA management services
(SNA/MS), a high priority event that warrants immediate
attention.

API. Application programming interface.

APPL . Application program.

application plane . In NetView for AIX, the submap
layer on which symbols of objects that are managed by
at least one network or systems management applica-
tion program are displayed. Symbols on the application
plane are displayed without shading, which makes them
appear directly against the background plane. See also
user plane.

application program . (1) A program written for or by
a user that applies to the user's work, such as a
program that does inventory control or payroll. (2) A
program used to connect and communicate with
stations in a network, enabling users to perform
application-oriented activities.

application program interface . See application pro-
gramming interface (API).

application programming interface (API) . The set of
programming language constructs or statements that
can be coded in an application program to obtain the
specific functions and services provided by an under-
lying operating system or service program.

application registration file . A file created to inte-
grate an application program into NetView for AIX by
defining (a) the application program's position in the
menu structure for NetView for AIX, (b) where help
information is found, (c) the number and types of
parameters allowed, (d) the command used to start the
application program, and (e) other characteristics of the
application program.

Apply . A push button that carries out the selected
choices in a window without closing the window.

arc . In graphs, a curve or line segment that links two
vertices.

ARP. Address Resolution Protocol.

ASCII (American National Standard Code for Infor-
mation Interchange) . The standard code, using a
coded character set consisting of 7-bit coded characters
(8 bits including parity check), that is used for informa-
tion interchange among data processing systems, data
communication systems, and associated equipment.
The ASCII set consists of control characters and
graphic characters. (A)

ASN.1. Abstract syntax notation 1.

attaching device . Any device that is physically con-
nected to a network and can communicate over the
network. See also station.

1080 Programmer's Reference

attribute . (1) A characteristic that identifies and
describes a managed object. The characteristic can be
determined, and possibly changed, through operations
on the managed object. (2) Information within a
managed object that is visible at the object boundary.
An attribute has a type, which indicates the range of
information given by the attribute, and a value, which is
within that range. (3) Variable data that is logically a
part of an object and that represents a property of the
object. For example, a serial number is an attribute of
an equipment object.

authentication . (1) In computer security, verification
of the identity of a user or the user's eligibility to access
an object. (2) In computer security, verification that a
message has not been altered or corrupted. (3) In
computer security, a process used to verify the user of
an information system or protected resources.

authentication entity . In the Simple Network Manage-
ment Protocol (SNMP), the network management agent
responsible for verifying that an entity is a member of
the community it claims to be in. This entity is also
responsible for encoding and decoding SNMP mes-
sages according to the authentication algorithm of a
given community.

authentication failure . In the Simple Network Man-
agement Protocol (SNMP), a trap that may be gener-
ated by an authentication entity when a requesting
client is not a member of the SNMP community.

authorization . (1) In computer security, the right
granted to a user to communicate with or make use of a
computer system. (T) (2) An access right. (3) The
process of granting a user either complete or restricted
access to an object, resource, or function.

AUTOEXEC.BAT file . In the DOS operating system, a
batch file that resides in the root directory of the boot
drive. AUTOEXEC.BAT contains commands that DOS
executes every time the PC is booted.

B
backend . In the AIX operating system, the program
that sends output to a particular device. Synonymous
with backend program.

backend program . Synonym for backend.

background picture . The diagram or image that is
displayed behind other symbols to show their context or
relations.

background plane . In NetView for AIX, the lowest
submap layer. The background plane provides the
background against which symbols are displayed. A
background picture can be placed in the background

plane to provide a context for viewing symbols. See
also application plane and user plane.

background process . (1) A process that does not
require operator intervention but can be run by the com-
puter while the workstation is used to do other work.
(2) In the AIX operating system, a mode of program
execution in which the shell does not wait for program
completion before prompting the user for another
command. (3) Contrast with foreground process.

base set . (1) The set of functions, including verbs,
parameters, return codes, and what-received indi-
cations, that is supported by all products that implement
a particular architecture. (2) Contrast with option set.

basic encoding rules (BER) . The rules specified in
ISO 8825 for encoding data units described in abstract
syntax notation 1 (ASN.1). The rules specify the
encoding technique, not the abstract syntax.

Basic Input/Output System (BIOS) . Code that con-
trols basic hardware operations, such as interactions
with diskette drives, hard disk drives, and the keyboard.

batch file . A file that contains a series of commands
to be processed sequentially.

behavior . (1) Ideally, a collection of assertions that
describe the allowed states that a managed object can
assume. An assertion can be a precondition, a
postcondition, or an invariant. In practice, the behavior
is often an informal description of the semantics of attri-
butes, operations, and notifications. (2) The way in
which managed objects, name bindings, attributes,
notifications, and operations interact with the actual
resources that they model and with each other.

BER. Basic encoding rules.

Berkeley Internet Name Domain (BIND) . The
Berkeley implementation of the Domain Name System
(DNS).

Berkeley Software Distribution (BSD) . Pertaining to
any of the series of UNIX specifications or implementa-
tions distributed by the University of California at
Berkeley. The mnemonic “BSD” is usually followed by
a number to specify the particular version of UNIX that
was distributed (for example, BSD 4.3). Many vendors
use BSD specifications as standards for their UNIX pro-
ducts.

bind . To relate an identifier to another object in a
program; for example, to relate an identifier to a value,
an address or another identifier, or to associate formal
parameters and actual parameters. (T)

BIND. Berkeley Internet Name Domain.

 Glossary 1081

BIOS. (1) Basic Input/Output System. (2) See also
NetBIOS.

bridge . (1) A functional unit that interconnects two
local area networks that use the same logical link
control protocol but may use different medium access
control protocols. (T) (2) A functional unit that intercon-
nects multiple LANs (locally or remotely) that use the
same logical link control protocol but that can use dif-
ferent medium access control protocols. A bridge for-
wards a frame to another bridge based on the medium
access control (MAC) address. (3) In the connection of
local loops, channels, or rings, the equipment and tech-
niques used to match circuits and to facilitate accurate
data transmission. (4) Contrast with gateway and
router.

broadcast . Simultaneous transmission of data to more
than one destination.

browse . To look at records in a file.

BSD. Berkeley Software Distribution.

buffer . (1) To allocate and schedule the use of
buffers. (A) (2) A portion of storage used to hold
input or output data temporarily.

bus . (1) A facility for transferring data between several
devices located between two end points, only one
device being able to transmit at a given moment. (T)
(2) A computer configuration in which processors are
interconnected in series.

bus network . (1) A local area network in which there
is only one path between any two data stations and in
which data transmitted by any station is concurrently
available to all other stations on the same transmission
medium. (2) A network configuration that provides a
bidirectional transmission facility to which all nodes are
attached. A sending node transmits in both directions
to the ends of the bus. All nodes in the path copy the
message as it passes.

Note: A bus network may be a linear network, a star
network, or a tree network. In the case of a tree
or star network, there is a data station at each
endpoint node. There is no data station at an
intermediate node; however, one or more
devices such as repeaters, connectors, ampli-
fiers, and splitters are located there. (T)

button . (1) A mechanism on a pointing device, such
as a mouse, used to request or initiate an action or a
process. (2) A graphical device that identifies a choice.
(3) A graphical mechanism that, when selected, per-
forms a visible action. For example, when a user clicks
on a list button, a list of choices appears. (4) See
mouse button, push button, radio button, and spin
button.

C
cache . (1) A special-purpose buffer storage, smaller
and faster than main storage, used to hold a copy of
instructions and data obtained from main storage and
likely to be needed next by the processor. (T) (2) A
buffer storage that contains frequently accessed
instructions and data; it is used to reduce access time.
(3) An optional part of the directory database in network
nodes where frequently used directory information may
be stored to speed directory searches. (4) To place,
hide, or store in a cache.

callback . In the AIX operating system, a procedure
that is called if and when certain specified conditions
are met.

callback registration . The identification and registra-
tion of a callback routine.

Cancel . A push button that removes a window without
applying any changes made in that window.

card . In NetView for AIX, see event card.

cardinality . In a relational database, the number of
tuples in a relation. (T) (A)

carrier sense . In a local area network, an ongoing
activity of a data station to detect whether another
station is transmitting. (T)

carrier sense multiple access with collision
detection (CSMA/CD) . A protocol that requires carrier
sense and in which a transmitting data station that
detects another signal while transmitting, stops sending,
sends a jam signal, and then waits for a variable time
before trying again. (T) (A)

catalog . (1) A directory of files and libraries, with ref-
erence to their locations. A catalog may contain other
information such as the types of devices in which the
files are stored, passwords, and blocking
factors. (I) (A) (2) To enter information about a file
or a library into a catalog. (I) (A)

CCITT. International Telegraph and Telephone
Consultative Committee. This was an organization of
the International Telecommunication Union (ITU). On 1
March 1993 the ITU was reorganized, and responsibil-
ities for standardization were placed in a subordinate
organization named the Telecommunication Standardi-
zation Sector of the International Telecommunication
Union (ITU-TS). “CCITT” continues to be used for
recommendations that were approved before the reor-
ganization.

channel-attached . Pertaining to devices attached to a
controlling unit by cables, rather than by telecommuni-
cation lines.

1082 Programmer's Reference

check box . A square box with associated text that
represents a choice. When a user selects the choice,
the check box is filled to indicate that the choice is
selected. The user can clear the check box by
selecting the choice again, thereby deselecting the
choice.

child process . In the AIX and OS/2 operating
systems, a process, started by a parent process, that
shares the resources of the parent process. See also
fork.

CID. Configuration, installation, and distribution. See
CID methodology.

CID methodology . An IBM-specified way to install and
configure products on, or remove products from, remote
workstations and hosts. Response files and redirected
installation and configuration may be used by a
CID-enabled product to eliminate or reduce user inter-
action with the CID-enabled product.

circuit . (1) One or more conductors through which an
electric current can flow. See physical circuit and virtual
circuit. (2) A logic device.

class . (1) In object-oriented design or programming, a
group of objects that share a common definition and
that therefore share common properties, operations,
and behavior. Members of the group are called
instances of the class. (2) In the AIX operating system,
pertaining to the I/O characteristics of a device. System
devices are classified as block or character devices.

class A network . In Internet communications, a
network in which the high-order (most significant) bit of
the IP address is set to 0 and the host ID occupies the
three low-order octets.

class B network . In Internet communications, a
network in which the two high-order (most significant
and next-to-most significant) bits of the IP address are
set to 1 and 0, respectively, and the host ID occupies
the two low-order octets.

class C network . In Internet communications, a
network in which the two high-order (most significant
and next-to-most significant) bits of the IP address are
both set to 1 and the next high-order bit is set to 0.
The host ID occupies the low-order octet.

click . To press and release a button on a pointing
device without moving the pointer off of the object or
choice.

client . (1) A functional unit that receives shared ser-
vices from a server. (T) (2) A user. (3) In an AIX
distributed file system environment, a system that is
dependent on a server to provide it with programs or
access to programs.

client/server . In communications, the model of inter-
action in distributed data processing in which a program
at one site sends a request to a program at another site
and awaits a response. The requesting program is
called a client; the answering program is called a
server.

Close . A choice that removes a window and all of the
windows associated with it from the workplace. For
example, if a user is performing a task in a window and
a message appears, or the user asks for help, both the
message and the help windows disappear when the
user closes the original window.

CMIP. Common Management Information Protocol.

CMIS. Common Management Information Service.

CMISE. Common Management Information Service
Element.

CMOT. Common Management Information Protocol
over TCP/IP.

code page . (1) An assignment of graphic characters
and control function meanings to all code points; for
example, assignment of characters and meanings to
256 code points for an 8-bit code, assignment of char-
acters and meanings to 128 code points for a 7-bit
code. (2) In the Print Management Facility, a font
library member that associates code points and char-
acter identifiers. A code page also identifies invalid
code points. (3) A particular assignment of
hexadecimal identifiers to graphic characters. (4) In
AFP support, a font file that associates code points and
graphic character identifiers.

code point . (1) A 1-byte code representing one of 256
potential characters. (2) In SNA management services
(SNA/MS), a 1- or 2-byte value that identifies a partic-
ular meaning to the receiver of an alert so that appro-
priate text can be displayed.

command . A request from a terminal for the perform-
ance of an operation or the execution of a particular
program.

command list . In the NetView program, a list of com-
mands and statements designed to perform a specific
function for the user. Command lists can be written in
REXX or in the NetView command list language.

Common Management Information Protocol (CMIP) .
The OSI standard protocol defined in ISO/IEC 9596-1
for the interaction between managers and agents that
use the Common Management Information Service
Element (CMISE).

Common Management Information Protocol over
TCP/IP (CMOT). An Internet Engineering Task Force

 Glossary 1083

(IETF) specification for the use of CMIP over a TCP/IP
protocol stack.

Common Management Information Service (CMIS) .
The set of services provided by the Common Manage-
ment Information Service Element.

Common Management Information Service Element
(CMISE). The particular application service element
defined in ISO/IEC 9595.

Common Programming Interface for Communi-
cations (CPI-C) . An evolving application programming
interface (API), embracing functions to meet the
growing demands from different application environ-
ments and to achieve openness as an industry standard
for communications programming. CPI-C provides
access to interprogram services such as (a) sending
and receiving data, (b) synchronizing processing
between programs, and (c) notifying a partner of errors
in the communication.

communication controller . A type of communication
control unit whose operations are controlled by one or
more programs stored and executed in the unit. It
manages the details of line control and the routing of
data through a network.

communications infrastructure . In the AIX operating
system, a framework of communication that consists of
a postmaster, an object registration service, a startup
file, communication protocols, and application program-
ming interfaces.

community . In the Simple Network Management Pro-
tocol (SNMP), an administrative relationship between
entities.

community name . In the Simple Network Manage-
ment Protocol (SNMP), a string of octets identifying a
community.

component . Hardware or software that is part of a
functional unit.

compression . (1) The process of eliminating gaps,
empty fields, redundancies, and unnecessary data to
shorten the length of records or blocks. (2) Any
encoding to reduce the number of bits used to repre-
sent a given message or record.

concentrator . (1) In data transmission, a functional
unit that permits a common transmission medium to
serve more data sources than there are channels cur-
rently available within the transmission medium. (T)
(2) Any device that combines incoming messages into
a single message (concentration) or extracts individual
messages from the data sent in a single transmission
sequence (deconcentration).

CONFIG.SYS file . In the OS/2 operating system, a file
used by the base operating system that describes the
devices, system parameters, and resource options of a
workstation. See also configuration file.

configuration . (1) The manner in which the hardware
and software of an information processing system are
organized and interconnected. (T) (2) The devices
and programs that make up a system, subsystem, or
network.

configuration file . A file that specifies the character-
istics of a system device or network.

connection . (1) In data communication, an associ-
ation established between functional units for conveying
information. (I) (A) (2) In Open Systems Intercon-
nection architecture, an association established by a
given layer between two or more entities of the next
higher layer for the purpose of data transfer. (T)
(3) In TCP/IP, the path between two protocol applica-
tions that provides reliable data stream delivery service.
In the Internet, a connection extends from a TCP appli-
cation on one system to a TCP application on another
system. (4) In system communications, a line over
which data can be passed between two systems or
between a system and a device. (5) Synonym for
physical connection.

connection-oriented service . A service that estab-
lishes a logical connection between two partners for the
duration that they want to communicate. Data transfer
takes place in a reliable, sequenced manner. Contrast
with connectionless service.

connectionless service . A network service that treats
each packet or datagram as a separate entity that con-
tains the source address and destination address and
for which no acknowledgment is returned to the origi-
nating source. Connectionless services are on a best-
effort basis and do not guarantee reliable or
in-sequence delivery. Contrast with connection-oriented
service.

connector class . In NetView for AIX, an object class
used for objects that connect different parts of the
network and that route or switch traffic between these
parts. This class includes gateways, repeaters
(including multiport repeaters), and bridges. Contrast
with network class.

container . A visual user-interface component whose
specific purpose is to hold objects.

control desk . In NetView for AIX, a component of the
graphical user interface (GUI) that enables the network
operator to group application program instances
together.

1084 Programmer's Reference

Copy . A choice that places a copy of a selected object
onto the clipboard.

Corrective Service Diskette . A diskette provided by
IBM to registered service coordinators for resolving
user-identified problems with previously installed soft-
ware. This diskette includes program updates designed
to resolve problems.

CPI-C. Common Programming Interface for Communi-
cations.

cron table . In the AIX operating system, a table used
to schedule application programs and processes.

Note: “Cron” is an abbreviation for “chronological.”

CSMA/CD. Carrier sense multiple access with collision
detection.

Cut . A choice that moves a selected object and places
it onto the clipboard. The space it occupied is usually
filled by the remaining object or objects in the window.

D
daemon . A program that runs unattended to perform a
standard service. Some daemons are triggered auto-
matically to perform their task; others operate period-
ically.

data . A representation of facts or instructions in a form
suitable for communication, interpretation, or processing
by human or automatic means. Data include constants,
variables, arrays, and character strings.

Note: Programmers make a distinction between
instructions and the data they operate on;
however, in the usual sense of the word, data
includes programs and program instructions.

data circuit . (1) A pair of associated transmit and
receive channels that provide a means of two-way data
communication. (I) (2) In SNA, synonym for link con-
nection. (3) See also physical circuit and virtual circuit.

Notes:

1. Between data switching exchanges, the data circuit
may include data circuit-terminating equipment
(DCE), depending on the type of interface used at
the data switching exchange.

2. Between a data station and a data switching
exchange or data concentrator, the data circuit
includes the data circuit-terminating equipment at
the data station end, and may include equipment
similar to a DCE at the data switching exchange or
data concentrator location.

data circuit-terminating equipment (DCE) . In a data
station, the equipment that provides the signal conver-

sion and coding between the data terminal equipment
(DTE) and the line. (I)

Notes:

1. The DCE may be separate equipment or an integral
part of the DTE or of the intermediate equipment.

2. A DCE may perform other functions that are usually
performed at the network end of the line.

data dictionary . A centralized repository of information
about data such as meaning, relationships to other
data, origin, usage, and format. It assists management,
database administrators, system analysts, and applica-
tion programmers in planning, controlling, and evalu-
ating the collection, storage, and use of data.

data link control (DLC) . A set of rules used by nodes
on a data link (such as an SDLC link or a token ring) to
accomplish an orderly exchange of information.

data set . Synonym for file.

data stream . (1) All information (data and control
commands) sent over a data link usually in a single
read or write operation. (2) A continuous stream of
data elements being transmitted, or intended for trans-
mission, in character or binary-digit form, using a
defined format.

data terminal equipment (DTE) . That part of a data
station that serves as a data source, data sink, or
both. (I) (A)

datagram . In TCP/IP, the basic unit of information
passed across the Internet environment. A datagram
contains a source and destination address along with
the data. An Internet Protocol (IP) datagram consists of
an IP header followed by the transport layer data.

DBCS. Double-byte character set.

DCE. (1) Data circuit-terminating equipment. (2) Dis-
tributed Computing Environment.

DCF. Document Composition Facility.

decompression . The inverse of compression.

default . Pertaining to an attribute, condition, value, or
option that is assumed when none is explicitly
specified. (I)

Delete . A choice that removes a selected object. The
space it occupied is usually filled by the remaining
object or objects in the window.

demand poll . In NetView for AIX, a polling operation
initiated by the user.

 Glossary 1085

destination . Any point or location, such as a node,
station, or a particular terminal, to which information is
to be sent.

device . A mechanical, electrical, or electronic
contrivance with a specific purpose.

device driver . (1) A file that contains the code needed
to use an attached device. (2) A program that enables
a computer to communicate with a specific peripheral
device; for example, a printer, a videodisc player, or a
CD drive.

dialog box . In OSF/Motif, a collection of data fields
and buttons for setting controls, selecting from lists,
choosing from mutually exclusive options, entering data,
and presenting the user with messages.

directory service (DS) . An application service element
that translates the symbolic names used by application
processes into the complete network addresses used in
an OSI environment. (T)

disable . To make nonfunctional.

discarded packet . A packet that is intentionally
destroyed.

discovery . In data communication, the automatic
detection of network topology changes (for example,
new and deleted nodes or new and deleted interfaces).

discriminator . An object that enables a system to
select operations and event reports relating to other
managed objects. See also event forwarding
discriminator (EFD).

disk operating system . An operating system for com-
puter systems that use disks and diskettes for auxiliary
storage of programs and data.

display . (1) A visual presentation of data. (I) (A)
(2) To present data visually. (I) (A) (3) Deprecated
term for panel.

display panel . In computer graphics, a predefined
display image that defines the locations and character-
istics of display fields on a display surface.

Distributed Computing Environment (DCE) . The
Open Software Foundation (OSF) specification (or a
product derived from this specification) that assists in
networking. DCE provides such functions as
authentication, directory service (DS), and remote pro-
cedure call (RPC).

distributed management environment (DME) . A
specification of the Open Software Foundation (OSF)
for managing “open” systems.

Distributed Protocol Interface (DPI) . An interface
between a Simple Network Management Protocol
(SNMP) agent and its subagents that is defined in
Request for Comments (RFC) 1592.

DLC. Data link control.

DME. Distributed management environment.

DNS. Domain Name System.

Document Composition Facility (DCF) . An IBM
licensed program used to format input to a printer.

domain . (1) That part of a computer network in which
the data processing resources are under common
control. (T) (2) In SNA, see end node domain, network
node domain, and system services control point (SSCP)
domain. (3) In Open Systems Interconnection (OSI), a
part of a distributed system or a set of managed objects
to which a common policy applies. (4) In a database,
all the possible values of an attribute or a data element.
(5) See Administrative Domain and domain name.

domain name . In the Internet suite of protocols, a
name of a host system. A domain name consists of a
sequence of subnames separated by a delimiter char-
acter. For example, if the fully qualified domain name
(FQDN) of a host system is ralvm7.vnet.ibm.com, each
of the following is a domain name:

 � ralvm7.vnet.ibm.com
 � vnet.ibm.com
 � ibm.com

Domain Name System (DNS) . In the Internet suite of
protocols, the distributed database system used to map
domain names to IP addresses.

domain operator . In a multiple-domain network, the
person or program that controls operation of resources
controlled by one system services control point (SSCP).
See also network operator.

DOS. Disk Operating System. See IBM Disk Oper-
ating System.

double-byte character set (DBCS) . A set of charac-
ters in which each character is represented by 2 bytes.
Languages such as Japanese, Chinese, and Korean,
which contain more symbols than can be represented
by 256 code points, require double-byte character sets.
Because each character requires 2 bytes, the typing,
display, and printing of DBCS characters requires hard-
ware and programs that support DBCS. Contrast with
single-byte character set (SBCS).

double-click . To press and release a button on a
pointing device twice while a pointer is within the limits
that the user has specified for the operating environ-
ment.

1086 Programmer's Reference

DPI. Distributed Protocol Interface.

drag . To use a pointing device to move an object. For
example, a user can drag a window border to make the
window larger.

drag and drop . To directly manipulate an object by
moving it and placing it somewhere else using a
pointing device.

DS. Directory service.

DTE. Data terminal equipment. (A)

dump . (1) To record, at a particular instant, the con-
tents of all or part of one storage device in another
storage device. Dumping is usually for the purpose of
debugging. (T) (2) Data that has been
dumped. (T) (3) To copy data in a readable format
from main or auxiliary storage onto an external medium
such as tape, diskette, or printer.

dynamic . (1) In programming languages, pertaining to
properties that can only be established during the exe-
cution of a program; for example, the length of a
variable-length data object is dynamic. (I) (2) Pertaining
to an operation that occurs at the time it is needed
rather than at a predetermined or fixed time. (3) Con-
trast with static.

E
e-mail . Electronic mail.

echo . (1) In computer graphics, the immediate notifi-
cation of the current values provided by an input device
to the operator at the display console. (I) (A) (2) In
data communication, a reflected signal on a communi-
cations channel. For example, on a communications
terminal, each signal is displayed twice, once when
entered at the local terminal and again when returned
over the communications link. This allows the signals
to be checked for accuracy.

echo check . (1) A check to determine the correctness
of the transmission of data in which the received data
are returned to the source for comparison with the ori-
ginally transmitted data. (T) (2) A method of checking
the accuracy of transmission of data in which the
received data are returned to the sending end for com-
parison with the original data. (A)

EFD. Event forwarding discriminator.

electronic mail (e-mail) . (1) Correspondence in the
form of messages transmitted between user terminals
over a computer network. (T) (2) The generation,
transmission, and display of correspondence and docu-
ments by electronic means. (A)

EMS. Event management services.

enable . To make functional.

end node domain . An end node control point, its
attached links, and its local LUs.

end user . A person, device, program, or computer
system that utilizes a computer network for the purpose
of data processing and information exchange. (T)

end-user interface (EUI) . In NetView for AIX,
synonym for graphical user interface (GUI).

Enhanced X-Windows Toolkit . (1) In the AIX oper-
ating system, a collection of basic functions for devel-
oping a variety of application environments. Toolkit
functions manage Toolkit initialization, widgets, memory,
events, geometry, input focus, selections, resources,
translation of events, graphics contexts, pixmaps, and
errors. (2) See also AIXwindows Toolkit and X Window
System.

entity . Any concrete or abstract thing of interest,
including associations among things; for example, a
person, object, event, or process that is of interest in
the context under consideration, and about which data
may be stored in a database. (T)

error . A discrepancy between a computed, observed,
or measured value or condition and the true, specified,
or theoretically correct value or condition. (I) (A)

error log . (1) A data set or file in a product or system
where error information is stored for later access. (2) A
form in a maintenance library that is used to record
error information about a product or system. (3) A
record of machine checks, device errors, and volume
statistical data.

error record template . In the AIX operating system, a
template that describes the error class, error type, error
description, probable causes, recommended actions,
and failure data for an error log entry.

Ethernet . A 10-Mbps baseband local area network
that allows multiple stations to access the transmission
medium at will without prior coordination, avoids con-
tention by using carrier sense and deference, and
resolves contention by using collision detection and
delayed retransmission. Ethernet uses carrier sense
multiple access with collision detection (CSMA/CD).

EUI. End-user interface.

event . (1) An occurrence of significance to a task; for
example, an SNMP trap, the opening of a window or a
submap, or the completion of an asynchronous opera-
tion. (2) In the NetView and NETCENTER programs, a
record indicating irregularities of operation in physical
elements of a network. (3) See also event report.

 Glossary 1087

event card . In NetView for AIX, a graphical represen-
tation, resembling a card, of the information contained
in an event sent by an agent to a manager reflecting a
change in the status of one of the agent's managed
nodes.

event filter . In NetView for AIX, a logical expression of
criteria that determine which events are forwarded to
the application program that registers the event filter
with the event sieve agent. A filter is referred to as
“simple” or “compound” depending on how it is handled
by the filter editor.

event forwarding discriminator (EFD) . A managed
object that describes and controls the criteria used to
select which event reports are sent and to whom they
are sent.

event management services (EMS) . In NetView for
AIX, a centralized method of generating, receiving,
routing, and logging network events.

event report . The unsolicited report that an event has
occurred. When a managed object emits a notification,
the agent uses one or more event forwarding
discriminators (EFDs) to find the destinations to which
the report is sent.

event sieve . In NetView for AIX, an object that is
managed by the “ovesmd” daemon, which is the event
sieve agent. The event sieve agent stores information
about the event sieve object in a database and reads
that information when the agent is started. See also
event filter and event forwarding discriminator (EFD).

exclusive submap . In NetView for AIX, a submap that
is created by an application program wanting the exclu-
sive right to control what happens in the application
plane of the submap. Contrast with shared submap.

exec . (1) In the AIX operating system, to overlay the
current process with another executable program.
(2) See also fork.

executable symbol . In NetView for AIX, a symbol
defined such that double-clicking on it causes an appli-
cation program to perform an action on a set of target
objects. Contrast with explodable symbol.

explodable symbol . In NetView for AIX, a symbol
defined such that double-clicking on it or dragging and
dropping it displays the child submap of the parent
object that the symbol represents. Contrast with exe-
cutable symbol.

F
fanout . A feature that allows several data terminal
equipment (DTEs) to share the same modem. Only
one DTE can transmit at a time.

FDDI. Fiber Distributed Data Interface.

feature . A part of an IBM product that may be ordered
separately by the customer.

Fiber Distributed Data Interface (FDDI) . An American
National Standards Institute (ANSI) standard for a
100-megabit-per-second LAN using optical fiber cables.

field . (1) An identifiable area in a window. Examples
of fields are: an entry field, into which a user can type
or place text, and a field of radio button choices, from
which a user can select one choice. (2) In NetView for
AIX, the building block of which objects are composed.
A field is characterized by a field name, a data type
(integer, Boolean, character string, or enumerated
value), and a set of flags that describe how the field is
treated by NetView for AIX. A field can contain data
only when it is associated with an object.

field registration file . In NetView for AIX, a file used
to define fields for use in the object database.

FIFO. First-in-first-out. (A)

file . A named set of records stored or processed as a
unit. (T) Synonymous with data set.

file transfer . The transfer of one or more files from
one system to another over a data link.

File Transfer Protocol (FTP) . In the Internet suite of
protocols, an application layer protocol that uses TCP
and Telnet services to transfer bulk-data files between
machines or hosts.

filter . (1) A device or program that separates data,
signals, or material in accordance with specified
criteria. (A) (2) In the NetView program, a function
that limits the data that is to be recorded on the data-
base and displayed at the terminal. (3) In the AIX
operating system, a command that reads standard input
data, modifies the data, and sends it to the display
screen. (4) See also recording filter and viewing filter.

filter editor . In NetView for AIX, a part of the graphical
user interface (GUI) that enables the user to define,
modify, and delete filtering rules for use by application
programs.

first-in-first-out (FIFO) . A queuing technique in which
the next item to be retrieved is the item that has been in
the queue for the longest time. (A)

1088 Programmer's Reference

flag . (1) To mark an information item for selection for
further processing. (T) (2) A character that signals
the occurrence of some condition, such as the end of a
word. (A)

flat file . (1) A one-dimensional or two-dimensional
array: a list or table of items. (2) In a relational data-
base, synonym for relation. (3) A file that has no
hierarchical structure.

flow control . In data communication, control of the
data transfer rate. (I)

focal point (FP) . In the NetView program, the focal
point domain is the central host domain. It is the
central control point for any management services
element containing control of the network management
data.

folder . A container used to organize objects.

font . A family of characters of a given size and style;
for example, 9-point Helvetica. (T)

foreground process . (1) In the AIX operating system,
a process that must run to completion before another
command is issued to the shell. The foreground
process is in the foreground process group, which is the
group that receives the signals generated by a terminal.
(2) Contrast with background process.

fork . In the AIX operating system, to create and start a
child process.

FP. Focal point.

FQDN. Fully qualified domain name.

FTP. File Transfer Protocol.

fully qualified domain name (FQDN) . In the Internet
suite of protocols, the name of a host system that
includes all of the subnames of the domain name. An
example of a fully qualified domain name is
ralvm7.vnet.ibm.com. See also host name.

fully qualified name . (1) In SNA, synonym for
network-qualified name. (2) In the Internet suite of pro-
tocols, see fully qualified domain name (FQDN).

G
gateway . (1) A functional unit that interconnects two
computer networks with different network architectures.
A gateway connects networks or systems of different
architectures. A bridge interconnects networks or
systems with the same or similar architectures. (T)

(2) In the AIX operating system, an entity that operates
above the link layer and translates, when required, the
interface and protocol used by one network into those
used by another distinct network. (3) In TCP/IP,
synonym for router.

general topology manager (GTM) . In NetView for
AIX, the component that accepts information about
resources that are accessed through protocols other
than the Internet Protocol (IP), stores this information in
a database, and displays it to the user.

generic alert . A product-independent method of
encoding alert data by means of both (a) code points
indexing short units of stored text and (b) textual data.

GIF. Graphical interchange format.

global character . Synonym for pattern-matching char-
acter.

glyph . An image, usually of a character, in a font.

GMFHS. Graphic Monitor Facility host subsystem.

graph . A set of vertices and the set of arcs that link
pairs of those vertices.

graphic monitor . The graphical user interface of the
NetView Graphic Monitor Facility.

Graphic Monitor Facility host subsystem (GMFHS) .
A NetView feature that manages configuration and
status updates for non-SNA resources.

graphical interchange format (GIF) . In NetView for
AIX, the format used for the background pictures of a
network topology map.

graphical user interface (GUI) . (1) A type of com-
puter interface consisting of a visual metaphor of a real-
world scene, often of a desktop. Within that scene are
icons, representing actual objects, that the user can
access and manipulate with a pointing device. (2) In
NetView for AIX, the integrating interface application
program that provides the means for displaying
submaps and for integrating network application pro-
grams. The graphical user interface is a single, con-
sistent interface that enables the user to interact with
multiple application programs. Synonymous with end-
user interface (EUI).

GTM. General topology manager.

GUI. Graphical user interface.

 Glossary 1089

H
hardcopy . (1) A permanent copy of a display image
generated on an output device such as a printer or
plotter, and which can be carried away. (T) (2) A
printed copy of machine output in a visually readable
form; for example, printed reports, listings, documents,
and summaries. (3) Contrast with softcopy.

Help . A choice that gives a user access to helpful
information about objects, choices, tasks, and products.
A Help choice can appear on a menu bar or as a push
button.

help panel . Information displayed by a system in
response to a help request from a user.

hierarchy . The resource types, display types, and data
types that make up the organization, or levels, in a
network.

highlighting . Emphasizing a display element or
segment by modifying its visual attributes. (I) (A)

home submap . In NetView for AIX, the first submap
that appears when a map is opened. Each map has a
home submap. When new maps are created, the home
submap is the root submap.

host . (1) In the Internet suite of protocols, an end
system. The end system can be any workstation; it
does not have to be a mainframe. (2) See host
processor.

host name . In the Internet suite of protocols, the name
given to a machine. Sometimes, “host name” is used to
mean fully qualified domain name (FQDN); other times,
it is used to mean the most specific subname of a fully
qualified domain name. For example, if
ralvm7.vnet.ibm.com is the fully qualified domain name,
either of the following may be considered the host
name:

 � ralvm7.vnet.ibm.com
 � ralvm7

host processor . (1) A processor that controls all or
part of a user application network. (T) (2) In a network,
the processing unit in which the data communication
access method resides.

hypertext . A way of presenting information online with
connections (called hypertext links) between one piece
of information and another.

I
I/O. Input/output.

IAB . Internet Architecture Board.

IBM Disk Operating System (DOS) . A disk operating
system based on MS-DOS that operates with all IBM
personal computers.

IBM Operating System/2 (OS/2) . An IBM licensed
program that can be used as the operating system for
personal computers. The OS/2 licensed program can
perform multiple tasks at the same time.

ICMP. Internet Control Message Protocol.

icon . (1) A graphic symbol, displayed on a screen,
that a user can point to with a device such as a mouse
in order to select a particular function or software appli-
cation. (T) (2) A graphical representation of an
object, consisting of an image, image background, and
a label.

ID. (1) Identifier. (2) Identification.

IEEE. Institute of Electrical and Electronics Engineers.

IETF. Internet Engineering Task Force.

inactive . (1) Not operational. (2) Pertaining to a node
or device not connected or not available for connection
to another node or device. (3) In the AIX operating
system, pertaining to a window that does not have an
input focus. (4) Contrast with active. (5) See also
inoperative.

Information/Management . A feature of the
Information/System licensed program that provides
interactive systems management applications for
problem, change, and configuration management.

Information/System . An interactive retrieval program
with related utilities designed to provide systems pro-
grammers with keyword access to selected technical
information contained in either of its companion pro-
ducts, Information/MVS or Information/VM-VSE.

initial program load (IPL) . (1) The initialization proce-
dure that causes an operating system to commence
operation. (2) The process by which a configuration
image is loaded into storage at the beginning of a work
day or after a system malfunction. (3) The process of
loading system programs and preparing a system to run
jobs.

inoperative . (1) The condition of a resource that has
been active but is not currently active. A resource may
be inoperative for reasons such as the following: (a) it
may have failed, (b) it may have received an INOP

1090 Programmer's Reference

request, or (c) it may be suspended while a reactivate
command is being processed. (2) See also inactive.

input/output (I/O) . (1) Pertaining to input, output, or
both. (A) (2) Pertaining to a device, process, or
channel involved in data input, data output, or both.

instance . In the AIX operating system, a concrete
realization of an abstract object class. An instance of a
widget or a gadget is a specific data structure that con-
tains detailed appearance and behavioral information
that is used to generate a specific graphical object on-
screen at run time.

instantiate . (1) To make an instance of; to replicate.
(2) In object-oriented programming, to represent a class
abstraction with a concrete instance of the class.

Institute of Electrical and Electronics Engineers
(IEEE). A professional society accredited by the Amer-
ican National Standards Institute (ANSI) to issue stand-
ards for the electronics industry.

interface . A shared boundary between two functional
units, defined by functional characteristics, signal char-
acteristics, or other characteristics, as appropriate. The
concept includes the specification of the connection of
two devices having different functions. (T)

International Organization for Standardization
(ISO). An organization of national standards bodies
from various countries established to promote develop-
ment of standards to facilitate international exchange of
goods and services, and develop cooperation in intellec-
tual, scientific, technological, and economic activity.

International Telecommunication Union (ITU) . The
specialized telecommunication agency of the United
Nations, established to provide standardized communi-
cation procedures and practices, including frequency
allocation and radio regulations worldwide.

internet . A collection of networks interconnected by a
set of routers that allow them to function as a single,
large network. See also Internet.

Internet . The internet administered by the Internet
Architecture Board (IAB), consisting of large national
backbone networks and many regional and campus net-
works all over the world. The Internet uses the Internet
suite of protocols.

Internet address . See IP address.

Internet Architecture Board (IAB) . The technical
body that oversees the development of the Internet
suite of protocols that are known as TCP/IP.

Internet Control Message Protocol (ICMP) . The pro-
tocol used to handle errors and control messages in the

Internet Protocol (IP) layer. Reports of problems and
incorrect datagram destinations are returned to the ori-
ginal datagram source. ICMP is part of the Internet
Protocol.

Internet Engineering Task Force (IETF) . The task
force of the Internet Architecture Board (IAB) that is
responsible for solving the short-term engineering needs
of the Internet.

internet object . In NetView for AIX, a node or a
network that can be addressed by the Internet Protocol
(IP).

Internet Protocol (IP) . A connectionless protocol that
routes data through a network or interconnected net-
works. IP acts as an intermediary between the higher
protocol layers and the physical network. However, this
protocol does not provide error recovery and flow
control and does not guarantee the reliability of the
physical network.

Internet router . A device that enables an internet host
to act as a gateway for routing data between separate
networks that use a specific adapter.

Internet suite of protocols . A set of protocols devel-
oped for use on the Internet and published as Requests
for Comments (RFCs).

Internetwork Packet Exchange (IPX) . The network
protocol used to connect Novell's servers, or any work-
station or router that implements IPX, with other work-
stations. Although similar to the Internet Protocol (IP),
IPX uses different packet formats and terminology.

interprocess communication (IPC) . (1) In the AIX
operating system, the process by which programs com-
municate data to each other and synchronize their activ-
ities. Semaphores, signals, and internal message
queues are common methods of interprocess communi-
cation. (2) In the Enhanced X-Windows Toolkit, a com-
munication path. See also client.

IP. Internet Protocol.

IP address . The 32-bit address defined by the Internet
Protocol, standard 5, Request for Comment (RFC) 791.
It is usually represented in dotted decimal notation.

IPC. Interprocess communication.

IPL. Initial program load.

IPX. Internetwork Packet Exchange.

ISO. International Organization for Standardization.

ITU. International Telecommunication Union.

ITU-T. See ITU-TS.

 Glossary 1091

ITU-TS. International Telecommunication Union - Tele-
communication Standardization Sector. The part of the
International Telecommunication Union (ITU) that is
responsible for developing recommendations for tele-
communications.

K
keyword . (1) In programming languages, a lexical unit
that, in certain contexts, characterizes some language
construct; for example, in some contexts, IF character-
izes an if-statement. A keyword normally has the form
of an identifier. (I) (2) One of the predefined words of
an artificial language. (A) (3) A name or symbol that
identifies a parameter. (4) The part of a command
operand that consists of a specific character string
(such as DSNAME=).

L
LAN . Local area network.

layout . See layout algorithm.

layout algorithm . A method of arranging displayed or
printed data.

link . The combination of the link connection (the trans-
mission medium) and two link stations, one at each end
of the link connection. A link connection can be shared
among multiple links in a multipoint or token-ring config-
uration.

list button . A button labeled with an underlined down-
arrow that presents a list of valid objects or choices that
can be selected for that field.

LLC . Logical link control.

load file generator . A Network Configuration
Application/MVS function that converts Network Config-
uration Application configuration data to RODM load
utility statements. These statements, when run through
the RODM load utility, can create, update, and delete
RODM objects that can be viewed through the NetView
Graphic Monitor Facility (NGMF).

local . (1) Pertaining to a device accessed directly
without use of a telecommunication line. (2) Contrast
with remote.

local address . In SNA, an address used in a periph-
eral node in place of a network address and trans-
formed to or from a network address by the boundary
function in a subarea node.

local area network (LAN) . (1) A computer network
located on a user's premises within a limited geograph-
ical area. Communication within a local area network is

not subject to external regulations; however, communi-
cation across the LAN boundary may be subject to
some form of regulation. (T) (2) A network in which a
set of devices are connected to one another for commu-
nication and that can be connected to a larger network.
(3) See also Ethernet and token ring. (4) Contrast with
metropolitan area network (MAN) and wide area
network (WAN).

local host . (1) In TCP/IP, the host on the network at
which a particular operator is working. (2) In an
internet, the host to which a user's terminal is con-
nected without using the internet.

local registration file (LRF) . In NetView for AIX, a file
that provides information about an agent or daemon,
such as the name, the location of the executable code,
the names of processes dependent on the agent or
daemon, and details about the objects that an agent
manages.

logical link control (LLC) . The data link control (DLC)
LAN sublayer that provides two types of DLC operation
for the orderly exchange of information. The first type is
connectionless service, which allows information to be
sent and received without establishing a link. The LLC
sublayer does not perform error recovery or flow control
for connectionless service. The second type is
connection-oriented service, which requires establishing
a link prior to the exchange of information. Connection-
oriented service provides sequenced information
transfer, flow control, and error recovery.

LRF. Local registration file.

LU. Logical unit.

M
MAC. Medium access control.

mainframe . A computer, usually in a computer center,
with extensive capabilities and resources to which other
computers may be connected so that they can share
facilities. (T)

MAN. Metropolitan area network.

managed node . In Internet communications, a work-
station, server, or router that contains a network man-
agement agent. In the Internet Protocol (IP), the
managed node usually contains a Simple Network Man-
agement Protocol (SNMP) agent.

managed object . (1) A component of a system that
can be managed by a management application.
(2) The systems management view of a resource that
can be managed through the use of systems manage-
ment protocols.

1092 Programmer's Reference

managed object class . An identified set of managed
objects sharing (a) the same identified sets of attributes,
notifications, and management operations (packages)
and (b) the same conditions for presence of those pack-
ages.

Management Information Base (MIB) . (1) A col-
lection of objects that can be accessed by means of a
network management protocol. (2) A definition for
management information that specifies the information
available from a host or gateway and the operations
allowed. (3) In OSI, the conceptual repository of man-
agement information within an open system.

management region . In NetView for AIX, the set of
managed objects on a particular map that defines the
extent of the network that is being actively managed.
The management region may vary across maps.

management services (MS) . (1) One of the types of
network services in control points (CPs) and physical
units (PUs). Management services are the services
provided to assist in the management of SNA networks,
such as problem management, performance and
accounting management, configuration management,
and change management. (2) Services that assist in
the management of systems and networks in areas
such as problem management, performance manage-
ment, business management, operations management,
configuration management, and change management.

management services focal point (MSFP) . For any
given management services discipline (for example,
problem determination or response time monitoring), the
control point that is responsible for that type of network
management data for a sphere of control. This respon-
sibility may include collecting, storing or displaying the
data or all of these. (For example, a problem determi-
nation focal point is a control point that collects, stores,
and displays problem determination data.)

manager . (1) In systems management, a user that, for
a particular interaction, has assumed a manager role.
(2) An entity that monitors or controls one or more
managed objects by (a) receiving notifications regarding
the objects and (b) requesting management operations
to modify or query the objects. (3) A system that
assumes a manager role.

manager role . In systems management, a role
assumed by a user where the user is capable of issuing
management operations and of receiving notifications.

map . In NetView for AIX, a database represented by a
set of related submaps that provide a graphical and
hierarchical presentation of a network and its systems.

mean time between failures (MTBF) . For a stated
period in the life of a functional unit, the mean value of

the lengths of time between consecutive failures under
stated conditions. (I) (A)

mean time to recovery (MTTR) . For a stated period
in the life of a functional unit, the average time required
for corrective maintenance. Synonymous with mean
time to repair. (T)

mean time to repair . Synonym for mean time to
recovery. (T)

medium . A physical material in or on which data may
be represented.

medium access control (MAC) . In LANs, the sub-
layer of the data link control layer that supports
medium-dependent functions and uses the services of
the physical layer to provide services to the logical link
control (LLC) sublayer. The MAC sublayer includes the
method of determining when a device has access to the
transmission medium.

menu . (1) A list of options displayed to the user by a
data processing system, from which the user can select
an action to be initiated. (T) (2) A list of choices that
can be applied to an object. A menu can contain
choices that are not available for selection in certain
contexts. Those choices are indicated by reduced con-
trast.

menu bar . (1) The area near the top of a window,
below the title bar and above the rest of the window,
that contains choices that provide access to other
menus. (2) In the AIX operating system, a rectangular
area at the top of the client area of a window that con-
tains the titles of the standard pull-down menus for that
application.

message . (1) An assembly of characters and some-
times control codes that is transferred as an entity from
an originator to one or more recipients. A message
consists of two parts: envelope and content. (T) (2) A
communication sent from a person or program to
another person or program.

message unit (MU) . In SNA, the unit of data proc-
essed by any layer; for example, a basic information
unit (BIU), a path information unit (PIU), or a
request/response unit (RU).

metropolitan area network (MAN) . A network formed
by the interconnection of two or more networks which
may operate at higher speed than those networks, may
cross administrative boundaries, and may use multiple
access methods. (T) Contrast with local area network
(LAN) and wide area network (WAN).

MIB. (1) MIB module. (2) Management Information
Base.

 Glossary 1093

MIB application program . A systems management
application program used to monitor network devices.

MIB module . In the Simple Network Management Pro-
tocol (SNMP), a collection of objects relating to a
common management area. See also Management
Information Base (MIB) and MIB variable.

MIB object . Synonym for MIB variable.

MIB tree . In the Simple Network Management Protocol
(SNMP), the structure of the Management Information
Base (MIB).

MIB variable . In the Simple Network Management
Protocol (SNMP), a specific instance of data defined in
a MIB module. Synonymous with MIB object.

MIB view . In the Simple Network Management Pro-
tocol (SNMP), the collection of managed objects, known
to the agent, that is visible to a particular community.

MIB walking . In the Simple Network Management Pro-
tocol (SNMP), a technique of looking for Management
Information Base (MIB) tree information when it is pre-
sented in a hierarchical format.

migration . The installation of a new version or release
of a program to replace an earlier version or release.

mnemonic . A single character of a menu item or a
button label, often the first letter, that represents a func-
tion and can be typed to select that menu item or
button. The mnemonic is usually shown as the under-
lined character.

modem (modulator/demodulator) . (1) A functional
unit that modulates and demodulates signals. One of
the functions of a modem is to enable digital data to be
transmitted over analog transmission facilities. (T) (A)
(2) A device that converts digital data from a computer
to an analog signal that can be transmitted on a tele-
communication line, and converts the analog signal
received to data for the computer.

module . A program unit that is discrete and identifi-
able with respect to compiling, combining with other
units, and loading; for example, the input to or output
from an assembler, compiler, linkage editor, or execu-
tive routine. (A)

monitor . (1) A device that observes and records
selected activities within a data processing system for
analysis. Possible uses are to indicate significant
departure from the norm, or to determine levels of utili-
zation of particular functional units. (T) (2) Software
or hardware that observes, supervises, controls, or veri-
fies operations of a system. (A)

Motif . See OSF/Motif.

mouse . A commonly used pointing device, containing
one or more buttons, with which a user can interact with
a product or the operating environment.

mouse button . A mechanism on a mouse pointing
device used to select objects or choices, initiate actions,
or directly manipulate objects; a user presses a mouse
button to interact with a computer system. The button
makes a “clicking” sound when pressed and released.

MS. Management services.

MSFP. Management services focal point.

MTBF. Mean time between failures. (I) (A)

MTTR. Mean time to repair. (I) (A)

MU. Message unit.

Multiple Virtual Storage (MVS) . See MVS.

multipoint connection . A connection established for
data transmission among more than two data
stations. (I) (A)

Note: The connection may include switching facilities.

multipoint line . (1) A telecommunication line or circuit
that connects two or more stations. (2) Contrast with
point-to-point line.

multipoint network . (1) A network in which there are
precisely two endpoint nodes, any number of interme-
diate nodes, and only one path between any two
nodes. (T) (2) In data communication, a configuration
in which more than two terminal installations are con-
nected. The network may include switching facilities.

multiport repeater . A repeater that contains multiple
ports, for example, ThinLAN hubs or EtherTwist hubs.

MVS. Multiple Virtual Storage. Implies MVS/370, the
MVS/XA product, and the MVS/ESA product.

MVS/ESA product . Multiple Virtual Storage/Enterprise
Systems Architecture.

MVS/XA product . Multiple Virtual Storage/Extended
Architecture, consisting of MVS/System Product Version
2 and the MVS/XA Data Facility Product, operating on a
System/370 processor in the System/370 extended
architecture mode. MVS/XA allows virtual storage
addressing to 2 gigabytes.

MVS/370. Multiple Virtual Storage/System Product
Version 1.

1094 Programmer's Reference

N
native network . The subnetwork whose network iden-
tifier a node uses for its own network-qualified resource
names.

NAU. (1) Network accessible unit. (2) Network
addressable unit.

navigate . In the NetView Graphic Monitor Facility, to
move between levels in the view hierarchy.

navigation tree . In NetView for AIX, a component of
the graphical user interface (GUI) that displays a hier-
archy of open submaps illustrating the parent-child
relationship. The navigation tree enables the network
operator to determine which submaps are currently
open and to close, restore, or raise the windows that
contain submaps.

NCP. Network Control Program.

NetBIOS . (1) Network Basic Input/Output System. A
standard interface to networks, IBM personal computers
(PCs), and compatible PCs, that is used on LANs to
provide message, print-server, and file-server functions.
Application programs that use NetBIOS do not need to
handle the details of LAN data link control (DLC) proto-
cols. (2) See also BIOS.

NETCENTER. A software product that assists the
network operator and other technical personnel at a
network control center in managing the network.

NetView Bridge . A set of application programming
interfaces that allow the NetView program to interact
with various types of databases in the MVS environ-
ment.

NetView command list language . An interpretive lan-
guage that is unique to the NetView program and that is
used to write NetView command lists in environments
where REXX is not supported.

NetView for AIX . (1) Formerly known as AIX
SystemView NetView/6000 (or its abbreviated name,
which is AIX NetView/6000). (2) An IBM licensed
program for systems management in the AIX environ-
ment. NetView for AIX can use the NetView for AIX
Service Point to communicate with the NetView and
NETCENTER programs.

NetView for AIX Service Point . (1) Formerly known
as the AIX NetView Service Point. (2) An IBM licensed
program that operates in the AIX and UNIX environ-
ments. It functions as a gateway in an unattended envi-
ronment.

NetView Graphic Monitor Facility (NGMF) . A func-
tion of the NetView program that provides the network

operator with a graphic topological presentation of a
network controlled by the NetView program and that
allows the operator to manage the network interactively.

NetView Performance Monitor (NPM) . An IBM
licensed program that collects, monitors, analyzes, and
displays data relevant to the performance of a VTAM
telecommunication network. It runs as an online VTAM
application program.

NetView program . An IBM licensed program used to
monitor and manage a network and to diagnose
network problems.

NetView/PC . A PC-based IBM licensed program
through which application programs can be used to
monitor, manage, and diagnose problems in IBM
Token-Ring networks, non-SNA communication devices,
and voice networks.

network . (1) An arrangement of nodes and connecting
branches. (T) (2) A configuration of data processing
devices and software connected for information inter-
change. (3) A group of nodes and the links intercon-
necting them.

network accessible unit (NAU) . A logical unit (LU),
physical unit (PU), control point (CP), or system ser-
vices control point (SSCP). It is the origin or the desti-
nation of information transmitted by the path control
network. Synonymous with network addressable unit.

network address . (1) An identifier for a node, station,
or unit of equipment in a network. (2) In a subarea
network, an address, consisting of subarea and element
fields, that identifies a link, link station, physical unit,
logical unit, or system services control point. Subarea
nodes use network addresses; peripheral nodes use
local addresses or local-form session identifiers
(LFSIDs). The boundary function in the subarea node
to which a peripheral node is attached transforms local
addresses or LFSIDs to network addresses and vice
versa. Contrast with network name.

network addressable unit (NAU) . Synonym for
network accessible unit.

network administrator . A person who manages the
use and maintenance of a network.

network analyzer . A network device that is pro-
grammed to monitor and analyze all traffic data that it
receives on a LAN.

network class . In NetView for AIX, an object class
used for symbols that represent compound objects that
may contain objects such as hosts and network
devices. Contrast with connector class.

Network Configuration Application/MVS . An IBM
program offering that allows users to define and store

 Glossary 1095

information about network and system resources. This
information is then converted to Resource Object Data
Manager (RODM) load utility statements. Network Con-
figuration Application/MVS runs in conjunction with
Information/Management. See also load file generator.

Network Control Program (NCP) . An IBM licensed
program that provides communication controller support
for single-domain, multiple-domain, and interconnected
network capability.

Network File System (NFS) . A protocol developed by
Sun Microsystems, Incorporated, that allows any host in
a network to mount another host's file directories. Once
mounted, the file directory appears to reside on the
local host.

network identifier . (1) In TCP/IP, that part of the IP
address that defines a network. The length of the
network ID depends on the type of network class (A, B,
or C). (2) A 1- to 8-byte customer-selected name or an
8-byte IBM-registered name that uniquely identifies a
specific subnetwork.

network management gateway (NMG) . A gateway
between the NetView program, which is the SNA
network management system, and the network manage-
ment function of one or more non-SNA networks.

network management vector transport (NMVT) . A
management services request/response unit (RU) that
flows over an active session between physical unit man-
agement services and control point management ser-
vices (SSCP-PU session).

network manager . A program or group of programs
that is used to monitor, manage, and diagnose the
problems of a network.

network name . (1) The symbolic identifier by which
end users refer to a network accessible unit, a link, or a
link station within a given subnetwork. In APPN net-
works, network names are also used for routing pur-
poses. Contrast with network address. (2) In a
multiple-domain network, the name of the APPL state-
ment defining a VTAM application program. The
network name must be unique across domains. Con-
trast with ACB name. See uninterpreted name.

network node domain . An APPN network-node
control point, its attached links, the network resources
for which it answers directory search requests (namely,
its local LUs and adjacent LEN end nodes), the adja-
cent APPN end nodes with which it exchanges directory
search requests and replies, and other resources (such
as a local storage device) associated with its own node
or an adjacent end node for which it provides manage-
ment services.

network operator . (1) A person who controls the
operation of all or part of a network. (2) In a multiple-

domain network, a person or program responsible for
controlling all domains. (3) See also domain operator.

network-qualified name . In SNA, a name that
uniquely identifies a specific resource (such as an LU or
a CP) within a specific network. It consists of a network
identifier and a resource name, each of which is a 1- to
8-byte symbol string. Synonymous with fully qualified
name.

NFS. Network File System.

NGMF. NetView Graphic Monitor Facility.

NMG. Network management gateway.

NMVT. Network management vector transport.

node . (1) In network topology, the point at an end of a
branch. (T) (2) The representation of a state or an
event by means of a point on a diagram. (A) (3) In a
tree structure, a point at which subordinate items of
data originate. (A) (4) An endpoint of a link or a junc-
tion common to two or more links in a network. Nodes
can be processors, communication controllers, cluster
controllers, or terminals. Nodes can vary in routing and
other functional capabilities.

notification . (1) An unscheduled, spontaneously gen-
erated report of an event that has occurred. (2) In
systems management, information emitted by a
managed object relating to an event that has occurred
within the managed object, such as a threshold violation
or a change in configuration status.

NPM. NetView Performance Monitor.

O
object . (1) In object-oriented design or programming,
an abstraction consisting of data and the operations
associated with that data. See also class. (2) An item
that a user can manipulate as a single unit to perform a
task. An object can appear as text, an icon, or both.

object identifier . An administratively assigned data
value of the type defined in abstract syntax notation 1
(ASN.1).

object registration service (ORS) . In NetView for
AIX, a component that creates and maintains a global
directory of object managers, their locations, and their
protocols. The postmaster daemon uses this directory
to route messages and provide location transparency
for managers and agents.

octet . A byte that consists of 8 bits. (T)

Off . A choice that appears in the cascaded menu from
the Refresh choice. It sets the refresh function to off.

1096 Programmer's Reference

OK. A push button that accepts the information in a
window and closes it. If the window contains changed
information, those changes are applied before the
window is closed.

On. A choice that appears in a cascaded menu from
the Refresh choice. It immediately refreshes the view in
a window.

online . (1) Pertaining to the operation of a functional
unit when under the direct control of the computer. (T)
(2) Pertaining to a user's ability to interact with a com-
puter. (A)

online information . Information stored in a computer
system that can be displayed, used, and modified in an
interactive manner without any need to obtain hardcopy.

Open . A choice that leads to a window in which users
can select the object they want to open.

Open Software Foundation (OSF) . A nonprofit
research and development organization whose goals
are (a) to develop specifications and software for use in
an open software environment and (b) to make the
specifications and software available to information
technology vendors under fair and equitable licensing
terms. For example, OSF developed the Distributed
Computing Environment (DCE).

Open Systems Interconnection (OSI) . The intercon-
nection of open systems in accordance with standards
of the International Organization for Standardization
(ISO) for the exchange of information. (T) (A)

Open Systems Interconnection (OSI) architecture .
Network architecture that adheres to that particular set
of ISO standards that relates to Open Systems Inter-
connection. (T)

Open Systems Interconnection (OSI) reference
model . A model that describes the general principles
of the Open Systems Interconnection, as well as the
purpose and the hierarchical arrangement of its seven
layers. (T)

operating system (OS) . Software that controls the
execution of programs and that may provide services
such as resource allocation, scheduling, input/output
control, and data management. Although operating
systems are predominantly software, partial hardware
implementations are possible. (T)

operation . In object-oriented design or programming,
a service that can be requested at the boundary of an
object. Operations include modifying an object or dis-
closing information about an object.

operator . (1) A person or program responsible for
managing activities controlled by a given piece of soft-
ware such as MVS, the NetView program, or IMS.

(2) A person who operates a device. (3) A person who
keeps a system running.

option set . (1) A set of functions that may be sup-
ported by products that implement a particular architec-
ture. A product may support any number of option sets
or none. For each option set supported, all functions in
that set are supported. (2) Contrast with base set.

ORS. Object registration service.

OS. Operating system.

OS/2 operating system . IBM Operating System/2.

OSF. Open Software Foundation.

OSF/Motif . A graphical interface that contains a toolkit,
a presentation description language, a window
manager, and a style guideline.

OSI. Open Systems Interconnection.

OSI management . (1) The facility to control, coordi-
nate, and monitor the resources that allow communi-
cations to take place in the OSI environment. (2) The
set of standards that are produced by ISO/IEC/CCITT
for managing OSI. (3) Facilities that use some of the
OSI management standards.

output . Pertaining to a device, process, or channel
involved in an output process, or to the associated data
or states. The word “output” may be used in place of
“output data,” “output signal,” “output process,” when
such a usage is clear in a given context. (T)

output device . Synonym for output unit.

output unit . A device in a data processing system by
which data can be received from the system. (I) (A)
Synonymous with output device.

P
packet . In data communication, a sequence of binary
digits, including data and control signals, that is trans-
mitted and switched as a composite whole. The data,
control signals, and, possibly, error control information
are arranged in a specific format. (I)

packet internet groper (PING) . (1) In Internet com-
munications, a program used in TCP/IP networks to test
the ability to reach destinations by sending the destina-
tions an Internet Control Message Protocol (ICMP) echo
request and waiting for a reply. (2) In communications,
a test of reachability.

packet switching . The process of routing and trans-
ferring data by means of addressed packets so that a
channel is occupied only during transmission of a

 Glossary 1097

packet. On completion of the transmission, the channel
is made available for transfer of other packets. (I)

page . (1) In a virtual storage system, a fixed-length
block that has a virtual address and is transferred as a
unit between real storage and auxiliary
storage. (I) (A) (2) The information displayed at the
same time on the screen of a display device.

panel . (1) See window. (2) A formatted display of
information that appears on a display screen. See help
panel and task panel. (3) In computer graphics, a
display image that defines the locations and character-
istics of display fields on a display surface.

parallel transmission groups . Multiple transmission
groups between adjacent nodes, with each group
having a distinct transmission group number.

parent process . In the AIX and OS/2 operating
systems, a process that creates other processes. Con-
trast with child process.

Paste . A choice that places the contents of the clip-
board at the current cursor position.

path . The route used to locate files; the storage
location of a file. A fully qualified path lists the drive
identifier, directory name, subdirectory name (if any),
and file name with the associated extension.

pattern-matching character . A special character such
as an asterisk (*) or a question mark (?) that can be
used to represent one or more characters. Any char-
acter or set of characters can replace a pattern-
matching character. Synonymous with global character
and wildcard character.

physical circuit . A circuit established without multi-
plexing. See also data circuit. Contrast with virtual
circuit.

physical connection . (1) A connection that estab-
lishes an electrical circuit. (2) A point-to-point or multi-
point connection. (3) Synonymous with connection.

PING. Packet internet groper.

ping command . The command that sends an Internet
Control Message Protocol (ICMP) echo-request packet
to a gateway, router, or host with the expectation of
receiving a reply.

point-to-point . Pertaining to data transmission
between two locations without the use of any interme-
diate display station or computer.

point-to-point connection . A connection established
between two data stations for data
transmission. (I) (A)

Note: The connection may include switching facilities.

point-to-point line . (1) A switched or nonswitched
telecommunication line that connects a single remote
station to a computer. (2) Contrast with multipoint line.

point-to-point network . A network arrangement made
up of point-to-point links.

pointer . (1) A data element that indicates the location
of another data element. (T) (2) An identifier that
indicates the location of an item of data. (A)

polling . (1) On a multipoint connection or a point-to-
point connection, the process whereby data stations are
invited, one at a time, to transmit. (I) (2) Interrogation
of devices for such purposes as to avoid contention, to
determine operational status, or to determine readiness
to send or receive data. (A)

pop-up menu . A menu that, when requested, appears
next to the object it is associated with.

port . (1) An access point for data entry or exit. (2) A
connector on a device to which cables for other devices
such as display stations and printers are attached.
(3) The representation of a physical connection to the
link hardware. A port is sometimes referred to as an
adapter; however, there can be more than one port on
an adapter. There may be one or more ports controlled
by a single DLC process. (4) In the Internet suite of
protocols, a 16-bit number used to communicate
between TCP or the User Datagram Protocol (UDP)
and a higher-level protocol or application. Some proto-
cols, such as File Transfer Protocol (FTP) and Simple
Mail Transfer Protocol (SMTP), use the same well-
known port number in all TCP/IP implementations.
(5) An abstraction used by transport protocols to distin-
guish among multiple destinations within a host
machine. (6) Synonymous with socket.

POSIX. Portable Operating System Interface For Com-
puter Environments. An IEEE standard for computer
operating systems.

postmaster . In NetView for AIX, a process (daemon)
that directs network management information between
multiple application programs and agents running con-
currently. The postmaster determines the route by
using specified addresses or a routing table that is con-
figured in the object registration service.

primary window . In OSF/Motif, the top-level window
in an application program that can be minimized or
represented by an icon. See also submap window.

problem determination . The process of determining
the source of a problem; for example, a program com-
ponent, machine failure, telecommunication facilities,
user or contractor-installed programs or equipment,

1098 Programmer's Reference

environmental failure such as a power loss, or user
error.

process identification number (process ID) . A
unique number assigned to a process by the operating
system. The number is used internally by processes to
communicate.

processor . In a computer, a functional unit that inter-
prets and executes instructions. A processor consists
of at least an instruction control unit and an arithmetic
and logic unit. (T)

program temporary fix (PTF) . A temporary solution or
bypass of a problem diagnosed by IBM in a current
unaltered release of the program.

program-to-program interface . In the NetView
program, a facility that allows user programs to send
data buffers to or receive data buffers from other user
programs. It also allows system and application pro-
grams to send alerts to the NetView hardware monitor.

protocol . (1) A set of semantic and syntactic rules
that determine the behavior of functional units in
achieving communication. (I) (2) In Open Systems
Interconnection architecture, a set of semantic and syn-
tactic rules that determine the behavior of entities in the
same layer in performing communication
functions. (T)

proxy agent . A process or entity that is both an agent
to its manager and a manager for one or more objects.
It satisfies requests from its manager by relaying those
requests and translating them for the objects that it
manages.

PTF. Program temporary fix.

public network . A network established and operated
by a telecommunication administration or by a Recog-
nized Private Operating Agency (RPOA) for the specific
purpose of providing circuit-switched, packet-switched,
and leased-circuit services to the public. Contrast with
user-application network.

pull-down menu . See menu.

push button . A button, labeled with text, graphics, or
both, that represents an action that will be initiated
when a user selects it.

Q
queue . (1) A list constructed and maintained so that
the next data element to be retrieved is the one stored
first. (T) (2) A line or list of items waiting to be proc-
essed; for example, work to be performed or messages
to be displayed. (3) To arrange in or form a queue.

R
radio button . A circle with text beside it. Radio
buttons are combined to show a user a fixed set of
choices from which the user can select one. The circle
becomes partially filled when a choice is selected.

RARP. Reverse Address Resolution Protocol.

read-only . A type of access to data that allows data to
be read but not copied, printed, or modified.

real resource . In the NetView Graphic Monitor Facility,
an object that represents one resource. Contrast with
aggregate resource.

real time . (1) In Open Systems Interconnection archi-
tecture, pertaining to the processing of data by a com-
puter in connection with another process outside the
computer according to time requirements imposed by
the outside process. This term is also used to describe
systems operating in conversational mode and proc-
esses that can be influenced by human intervention
while they are in progress. (I) (A) (2) In Open
Systems Interconnection architecture, pertaining to an
application such as a process control system or a
computer-assisted instruction system in which response
to input is fast enough to affect subsequent input.

Recognized Private Operating Agency (RPOA) . Any
individual, company, or corporation, other than a gov-
ernment department or service, that operates a tele-
communication service and is subject to the obligations
undertaken in the Convention of the International Tele-
communication Union and in the Regulations; for
example, a communication common carrier.

Recommendation X.25 . See X.25.

recommended action . Procedures suggested by the
NetView program that can be used to determine the
causes of network problems.

record . (1) In programming languages, an aggregate
that consists of data objects, possibly with different attri-
butes, that usually have identifiers attached to them. In
some programming languages, records are called struc-
tures. (I) (2) A set of data treated as a unit. (T)
(3) A set of one or more related data items grouped for
processing.

recording filter . In the NetView program, the function
that determines which events, statistics, and alerts are
stored on a database.

redirect . To define or use a logical device name as a
reference to another device or file that may be local or
remote.

 Glossary 1099

reduced instruction-set computer (RISC) . A com-
puter that uses a small, simplified set of frequently used
instructions for rapid execution.

Refresh . A cascading choice that gives a user access
to other choices (On and Off) that control whether
changes made to underlying data in a window are dis-
played immediately, not displayed at all, or displayed at
a later time.

Refresh now . A choice that shows changes made to
underlying data in a window immediately.

registration file . See application registration file, field
registration file, local registration file (LRF), and symbol
registration file.

relation . In a relational database, a set of entity occur-
rences that have the same attributes. (T)

relational database . A database in which the data are
organized and accessed according to relations. (T)

remote . (1) Pertaining to a system, program, or device
that is accessed through a telecommunication line.
(2) Contrast with local.

remote procedure call (RPC) . A facility that a client
uses to request the execution of a procedure call from a
server. This facility includes a library of procedures and
an external data representation.

repeater . A node of a local area network, a device that
regenerates signals in order to extend the range of
transmission between data stations or to interconnect
two branches. (T)

Request for Comments (RFC) . In Internet communi-
cations, the document series that describes a part of
the Internet suite of protocols and related experiments.
All Internet standards are documented as RFCs.

resource . Any facility of a computing system or oper-
ating system required by a job or task, and including
main storage, input/output devices, the processing unit,
data sets, and control or processing programs.

Resource Object Data Manager (RODM) . A compo-
nent of the NetView program that operates as a cache
manager and that supports automation applications.
RODM provides an in-memory cache for maintaining
real-time data in an address space that is accessible by
multiple applications.

response . (1) In data communication, a reply repres-
ented in the control field of a response frame. It
advises the primary or combined station of the action
taken by the secondary or other combined station to
one or more commands. (2) See also command.

response file . A file that contains a set of predefined
answers to questions asked by a program and that is
used in place of user dialog. See also CID method-
ology.

response time . For response time monitoring, the
time from the activation of a transaction until a response
is received, according to the response time definition
coded in the performance class.

response time monitor (RTM) . A feature available
with certain hardware devices to allow measurement of
response times, which may be collected and displayed
by the NetView program.

Reverse Address Resolution Protocol (RARP) .
(1) In the Internet suite of protocols, the protocol that
maps a hardware (MAC) address to an IP address.
RARP can be used to determine a port's IP address.
(2) See also Address Resolution Protocol (ARP).

RFC. Request for Comments.

ring . See ring network.

ring network . (1) A network in which every node has
exactly two branches connected to it and in which there
are exactly two paths between any two nodes. (T)
(2) A network configuration in which devices are con-
nected by unidirectional transmission links to form a
closed path.

RISC. Reduced instruction-set computer.

RODM. Resource Object Data Manager.

root user . See superuser authority.

route . (1) An ordered sequence of nodes and trans-
mission groups (TGs) that represent a path from an
origin node to a destination node traversed by the traffic
exchanged between them. (2) The path that network
traffic uses to get from source to destination.

router . (1) A computer that determines the path of
network traffic flow. The path selection is made from
several paths based on information obtained from spe-
cific protocols, algorithms that attempt to identify the
shortest or best path, and other criteria such as metrics
or protocol-specific destination addresses. (2) An
attaching device that connects two LAN segments,
which use similar or different architectures, at the refer-
ence model network layer. (3) In OSI terminology, a
function that determines a path by which an entity can
be reached. (4) In TCP/IP, synonymous with gateway.
(5) Contrast with bridge.

routine . A program, or part of a program, that may
have some general or frequent use. (T)

1100 Programmer's Reference

routing . (1) The process of determining the path to be
used for transmission of a message over a
network. (T) (2) The assignment of the path by which
a message is to reach its destination.

RPC. Remote procedure call.

RPOA. Recognized Private Operating Agency.

RTM. Response time monitor.

S
SAP. Service access point.

sash . In OSF/Motif, a small square on the boundary
between two components of a window, which are called
“panes.” The sash sets the boundary between these
panes.

SBCS. Single-byte character set.

screen . (1) The physical surface of a display device
upon which information is shown to users. (2) In the
AIX extended curses library, a window that is as large
as the display screen of the workstation. (3) Depre-
cated term for display panel.

scroll . To move a display image vertically or horizon-
tally to view data that otherwise cannot be observed
within the boundaries of the display screen.

scroll bar . A window component that shows a user
that more information is available in a particular direc-
tion and can be scrolled into view. Scroll bars can be
either horizontal or vertical.

seed file . In NetView for AIX, a file that contains a list
of nodes within an Administrative Domain, which the
automatic discovery function uses to accelerate the
generation of the network topology map.

segment . (1) A portion of a computer program that
may be executed without the entire computer program
being resident in main storage. (T) (2) A group of
display elements. (3) A section of cable between com-
ponents or devices. A segment may consist of a single
patch cable, several patch cables that are connected, or
a combination of building cable and patch cables that
are connected. (4) In the Enhanced X-Windows
Toolkit, one or more lines that are drawn but not neces-
sarily connected at the endpoints. (5) In LANs or
WANs, a subset of nodes in a network or subnet that
are connected by a common physical medium.

select . To explicitly identify one or more objects to
which a subsequent choice will apply.

selection . The process of explicitly identifying one or
more objects to which a subsequent choice will apply.

semaphore . (1) An indicator used to control access to
a file; for example, in a multiuser application, a flag that
prevents simultaneous access to a file. (2) An entity
used to control access to system resources. Processes
can be locked to a resource with semaphores if the
processes follow certain programming conventions.

server . (1) A functional unit that provides shared ser-
vices to workstations over a network; for example, a file
server, a print server, a mail server. (T) (2) In a
network, a data station that provides facilities to other
stations; for example, a file server, a print server, a mail
server. (A) (3) In the AIX operating system, an appli-
cation program that usually runs in the background and
is controlled by the system program controller. (4) In
the Enhanced X-Windows Toolkit, a program that pro-
vides the basic windowing mechanism. It handles inter-
process communication (IPC) connections from clients,
demultiplexes graphics requests onto screens, and mul-
tiplexes input back to clients.

service access point (SAP) . (1) In Open Systems
Interconnection (OSI) architecture, the point at which
the services of a layer are provided by an entity of that
layer to an entity of the next higher layer. (T) (2) A
logical point made available by an adapter where infor-
mation can be received and transmitted. A single
service access point can have many links terminating in
it. (3) A logical address that allows a system to route
data between a remote device and the appropriate com-
munications support. (4) The identification of the ser-
vices provided by a specific communication service
provider to one of its users. For example, the Internet
Protocol (IP) uses the services of a token-ring adapter.
The service access point, in this case, is the name by
which IP knows the adapter that is the token-ring
address.

service point (SP) . (1) An entry point that supports
applications that provide network management for
resources not under the direct control of itself as an
entry point. Each resource is either under the direct
control of another entry point or not under the direct
control of any entry point. A service point accessing
these resources is not required to use SNA sessions
(unlike a focal point). A service point is needed when
entry point support is not yet available for some network
management function. (2) In NetView for AIX, see
NetView for AIX Service Point.

shared . Pertaining to the availability of a resource for
more than one use at the same time.

shared application program . In NetView for AIX, an
application program that serves multiple action
requests; however, only one instance of the application
program can run in a given graphical user interface
(GUI).

 Glossary 1101

shared submap . In NetView for AIX, a submap on
which multiple application programs manage objects on
the application plane. Shared submaps allow applica-
tion programs to cooperatively contribute information to
the same submap. Contrast with exclusive submap.

shell procedure . In the AIX operating system, a series
of commands, combined in a file, that carry out a partic-
ular function when the file is run or when the file is
specified as a value to the SH command. Synonymous
with shell script.

shell script . Synonym for shell procedure.

shutdown . The process of ending operation of a
system or a subsystem, following a defined procedure.

simple connection . In NetView for AIX, the represen-
tation of connectivity as seen from one endpoint of a
connection.

Simple Network Management Protocol (SNMP) . In
the Internet suite of protocols, a network management
protocol that is used to monitor routers and attached
networks. SNMP is an application layer protocol. Infor-
mation on devices managed is defined and stored in the
application's Management Information Base (MIB).

single-byte character set (SBCS) . A character set in
which each character is represented by a one-byte
code. Contrast with double-byte character set (DBCS).

SMIT. System Management Interface Tool.

SMUX. SNMP multiplexer.

SNA. Systems Network Architecture.

SNA management services (SNA/MS) . The services
provided to assist in management of SNA networks.

SNA network . The part of a user-application network
that conforms to the formats and protocols of Systems
Network Architecture. It enables reliable transfer of
data among end users and provides protocols for con-
trolling the resources of various network configurations.
The SNA network consists of network accessible units
(NAUs), boundary function, gateway function, and inter-
mediate session routing function components; and the
transport network.

SNA/MS. SNA management services.

snapshot . In NetView for AIX, a copy of a map that
reflects the topology and status of the map's nodes and
links at a given moment in time.

SNMP. Simple Network Management Protocol.

SNMP multiplexer (SMUX) . A protocol that is used by
a subagent to provide local and remote system moni-

toring using the Simple Network Management Protocol
(SNMP).

socket . (1) An endpoint for communication between
processes or application programs. (2) Synonym for
port.

softcopy . (1) A nonpermanent copy of the contents of
storage in the form of a display image. (T) (2) One or
more files that can be electronically distributed, manipu-
lated, and printed by a user. (3) Contrast with hard-
copy.

SP. Service point.

spin button . A component used to display, in
sequence, a ring of related but mutually exclusive
choices. A user can accept the value displayed in the
entry field or can type a valid choice into the entry field.

SSCP. System services control point.

star network . A radial, or star-like, configuration of
nodes connected to a central controller or computer in
which each node exchanges data directly with the
central node.

static . (1) In programming languages, pertaining to
properties that can be established before execution of a
program; for example, the length of a fixed length vari-
able is static. (I) (2) Pertaining to an operation that
occurs at a predetermined or fixed time. (3) Contrast
with dynamic.

station . An input or output point of a system that uses
telecommunication facilities; for example, one or more
systems, computers, terminals, devices, and associated
programs at a particular location that can send or
receive data over a telecommunication line.

status . The condition or state of hardware or software,
usually represented by a status code.

subagent . In the Simple Network Management Pro-
tocol (SNMP), something that provides an extension to
the utility provided by the SNMP agent.

subarea . A portion of the SNA network consisting of a
subarea node, attached peripheral nodes, and associ-
ated resources. Within a subarea node, all network
accessible units (NAUs), links, and adjacent link
stations (in attached peripheral or subarea nodes) that
are addressable within the subarea share a common
subarea address and have distinct element addresses.

submap . In NetView for AIX, a particular view of some
aspect of a network that displays symbols representing
objects. The application program that creates a
submap determines what part of the network the
submap displays.

1102 Programmer's Reference

submap pane . The area of a submap window in which
the submap is displayed.

submap stack . In NetView for AIX, a component of
the graphical user interface shown on the left side of
each submap window. The submap stack represents
the navigational path used to reach the particular
submap, and it can be used to select a previously
viewed submap.

submap window . In NetView for AIX, the graphical
component that contains a menu bar, a submap viewing
area, a status line, and a button box. A user can
display multiple submap windows of an open map and
an open snapshot at any given time. See also primary
window.

subnet . (1) In TCP/IP, a part of a network that is iden-
tified by a portion of the IP address. (2) Synonym for
subnetwork.

subnet address . In Internet communications, an
extension to the basic IP addressing scheme where a
portion of the host address is interpreted as the local
network address.

subnet mask . Synonym for address mask.

subnetwork . (1) Any group of nodes that have a set
of common characteristics, such as the same network
ID. (2) In the AIX operating system, one of a group of
multiple logical network divisions of another network,
such as can be created by the Transmission Control
Protocol/Internet Protocol (TCP/IP) interface program.
(3) Synonymous with subnet.

subnetwork mask . Synonym for address mask.

subsystem . A secondary or subordinate system,
usually capable of operating independently of, or asyn-
chronously with, a controlling system. (T)

subvector . A subcomponent of the network manage-
ment vector transport (NMVT) major vector.

superuser authority . In the AIX operating system, the
unrestricted authority to access and modify any part of
the operating system, usually associated with the user
who manages the system.

symbol . In NetView for AIX, a picture or an icon on a
submap that represents an object (a network resource
or an application). Each symbol belongs to a class,
represented by the symbol's shape, and to a subclass,
represented by the design within the shape. The
symbol reflects characteristics of the object it repres-
ents, such as its status; it also has characteristics of its
own, such as behavior.

symbol registration file . In NetView for AIX, a file
used to define symbol classes and subclasses.

synchronous . (1) Pertaining to two or more proc-
esses that depend upon the occurrence of specific
events such as common timing signals. (T)
(2) Occurring with a regular or predictable time relation-
ship.

System Management Interface Tool (SMIT) . An inter-
face tool of the AIX operating system for installing,
maintaining, configuring, and diagnosing tasks.

system services control point (SSCP) . A component
within a subarea network for managing the configura-
tion, coordinating network operator and problem deter-
mination requests, and providing directory services and
other session services for end users of the network.
Multiple SSCPs, cooperating as peers with one another,
can divide the network into domains of control, with
each SSCP having a hierarchical control relationship to
the physical units and logical units within its own
domain.

system services control point (SSCP) domain . The
system services control point, the physical units (PUs),
the logical units (LUs), the links, the link stations, and
all the resources that the SSCP has the ability to control
by means of activation and deactivation requests.

Systems Network Architecture (SNA) . The
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
units through, and controlling the configuration and
operation of, networks. The layered structure of SNA
allows the ultimate origins and destinations of informa-
tion, that is, the end users, to be independent of and
unaffected by the specific SNA network services and
facilities used for information exchange.

T
TAF. Terminal access facility.

task . In a multiprogramming or multiprocessing envi-
ronment, one or more sequences of instructions treated
by a control program as an element of work to be
accomplished by a computer. (I) (A)

task panel . Online display from which you communi-
cate with the program in order to accomplish the pro-
gram's function, either by selecting an option provided
on the panel or by entering an explicit command. See
also help panel.

TCP. Transmission Control Protocol.

TCP/IP. Transmission Control Protocol/Internet Pro-
tocol.

Telnet . In the Internet suite of protocols, a protocol
that provides remote terminal connection service. It

 Glossary 1103

allows users of one host to log on to a remote host and
interact as directly attached terminal users of that host.

terminal . A device, usually equipped with a keyboard
and a display device, that is capable of sending and
receiving information.

terminal access facility (TAF) . In the NetView
program, a facility that allows a network operator to
control a number of subsystems. In a full-screen or
operator control session, operators can control any
combination of such subsystems simultaneously.

TG. Transmission group.

threshold . In NetView for AIX, a setting that specifies
the maximum value a statistic can reach before notifica-
tion that the limit was exceeded. For example, when a
monitored MIB value has exceeded the threshold, the
data collector generates a threshold event.

timeout . (1) An event that occurs at the end of a pre-
determined period of time that began at the occurrence
of another specified event. (I) (2) A time interval
allotted for certain operations to occur; for example,
response to polling or addressing before system opera-
tion is interrupted and must be restarted.

toggle . (1) Pertaining to any device having two stable
states. (A) (2) Pertaining to a switching device, such
as a toggle key on a keyboard, that allows a user to
switch between two types of operations.

toggle button . In the AIXwindows Toolkit and the
Enhanced X-Windows Toolkit, a graphical object that
simulates a toggle switch; it switches sequentially from
one optional state to another.

token . (1) In a local area network, the symbol of
authority passed successively from one data station to
another to indicate the station temporarily in control of
the transmission medium. Each data station has an
opportunity to acquire and use the token to control the
medium. A token is a particular message or bit pattern
that signifies permission to transmit. (T) (2) In LANs,
a sequence of bits passed from one device to another
along the transmission medium. When the token has
data appended to it, it becomes a frame.

token ring . (1) According to IEEE 802.5, network
technology that controls media access by passing a
token (special packet or frame) between media-attached
stations. (2) A FDDI or IEEE 802.5 network with a ring
topology that passes tokens from one attaching ring
station (node) to another. (3) See also local area
network (LAN).

tool palette . In NetView for AIX, a component of the
graphical user interface (GUI) that enables the network
operator to open application program instances by using

the mouse to drag-and-drop the icons that represent the
application program.

topology . In communications, the physical or logical
arrangement of nodes in a network, especially the
relationships among nodes and the links between them.

TP. Transaction program.

trace . A record of the execution of a computer
program. It exhibits the sequences in which the
instructions were executed. (A)

transaction program (TP) . (1) A program that proc-
esses transactions in an SNA network. There are two
kinds of transaction programs: application transaction
programs and service transaction programs. See also
conversation. (2) In VTAM, a program that performs
services related to the processing of a transaction. One
or more transaction programs may operate within a
VTAM application program that is using the VTAM
application program interface (API). In that situation,
the transaction program would request services from
the application program, using protocols defined by that
application program. The application program, in turn,
could request services from VTAM by issuing the
APPCCMD macroinstruction.

Transmission Control Protocol (TCP) . A communi-
cations protocol used in the Internet and in any network
that follows the U.S. Department of Defense standards
for internetwork protocol. TCP provides a reliable host-
to-host protocol between hosts in packet-switched com-
munications networks and in interconnected systems of
such networks. It uses the Internet Protocol (IP) as the
underlying protocol.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of communications protocols that
support peer-to-peer connectivity functions for both local
and wide area networks.

transmission group (TG) . (1) A connection between
adjacent nodes that is identified by a transmission
group number. (2) In a subarea network, a single link
or a group of links between adjacent nodes. When a
transmission group consists of a group of links, the links
are viewed as a single logical link, and the transmission
group is called a multilink transmission group (MLTG).
A mixed-media multilink transmission group (MMMLTG)
is one that contains links of different medium types (for
example, token-ring, switched SDLC, nonswitched
SDLC, and frame-relay links). (3) In an APPN network,
a single link between adjacent nodes. (4) See also
parallel transmission groups.

trap . In the Simple Network Management Protocol
(SNMP), a message sent by a managed node (agent
function) to a management station to report an excep-
tion condition.

1104 Programmer's Reference

tree network . A network in which there is exactly one
path between any two nodes. (T)

tree structure . A data structure that represents enti-
ties in nodes, with at most one parent node for each
node, and with only one root node. (T)

U
UDP. User Datagram Protocol.

underlying connection . In NetView for AIX, the repre-
sentation of lower-layer connectivity that is used by
higher-layer connectivity. For example, the physical
connection that transports data between two IP hosts is
an underlying connection.

uninterpreted name . In SNA, a character string that a
system services control point (SSCP) can convert into
the network name of a logical unit (LU). Typically, an
uninterpreted name is used in a logon or Initiate request
from a secondary logical unit (SLU) to identify the
primary logical unit (PLU) with which the session is
requested.

uninterruptible power supply (UPS) . A buffer
between utility power or other power source and a load
that requires uninterrupted, precise power.

UNIX operating system . An operating system devel-
oped by Bell Laboratories that features multiprogram-
ming in a multiuser environment. The UNIX operating
system was originally developed for use on minicom-
puters but has been adapted for mainframes and micro-
computers. The AIX operating system is IBM's
implementation of the UNIX operating system.

UPS. Uninterruptible power supply.

user . (1) Any person or any thing that may issue or
receive commands and messages to or from the infor-
mation processing system. (T) (2) Anyone who
requires the services of a computing system.

user-application network . A configuration of data
processing products, such as processors, controllers,
and terminals, established and operated by users for
the purpose of data processing or information
exchange, which may use services offered by communi-
cation common carriers or telecommunication Adminis-
trations. (T) Contrast with public network.

User Datagram Protocol (UDP) . In the Internet suite
of protocols, a protocol that provides unreliable,
connectionless datagram service. It enables an applica-
tion program on one machine or process to send a
datagram to an application program on another machine
or process. UDP uses the Internet Protocol (IP) to
deliver datagrams.

user exit . (1) A point in an IBM-supplied program at
which a user exit routine may be given control. (2) A
programming service provided by an IBM software
product that may be requested during the execution of
an application program for the service of transferring
control back to the application program upon the later
occurrence of a user-specified event.

user plane . In NetView for AIX, the submap layer on
which symbols of objects that are not managed by an
application program are displayed. Symbols on the
user plane are displayed with a shadow, which makes
them appear higher than symbols on the application
plane. See also background plane.

V
value . (1) A specific occurrence of an attribute; for
example, “blue” for the attribute “color.” (T) (2) A
quantity assigned to a constant, a variable, a param-
eter, or a symbol.

variable . (1) In programming languages, a language
object that may take different values, one at a time.
The values of a variable are usually restricted to a
certain data type. (I) (2) A quantity that can assume
any of a given set of values. (A) (3) A name used to
represent a data item whose value can be changed
while the program is running. (4) In the Simple
Network Management Protocol (SNMP), a match of an
object instance name with an associated value.

version . A separately licensed program that usually
has significant new code or new function.

vertex . In graphs, a point that may be the end of an
arc or the intersection of multiple arcs.

view preprocessor . The part of the NetView Graphic
Monitor Facility that creates unformatted views of SNA
resources from the VTAM definition library (VTAMLST).

viewing filter . In the NetView program, the function
that allows a user to select the alert data to be dis-
played on a terminal. All other stored data is blocked.

virtual circuit . In packet switching, the facilities pro-
vided by a network that give the appearance to the user
of an actual connection. (T) See also data circuit.
Contrast with physical circuit.

virtual machine (VM) . (1) A virtual data processing
system that appears to be at the exclusive disposal of a
particular user, but whose functions are accomplished
by sharing the resources of a real data processing
system. (T) (2) In VM/ESA, the virtual processors,
virtual storage, virtual devices, and virtual channel sub-
system allocated to a single user. A virtual machine
also includes any expanded storage dedicated to it.

 Glossary 1105

Virtual Machine/Enterprise Systems Architecture
(VM/ESA). An IBM licensed program that manages the
resources of a single computer so that multiple com-
puting systems appear to exist. Each virtual machine is
the functional equivalent of a real machine.

Virtual Telecommunications Access Method
(VTAM). An IBM licensed program that controls com-
munication and the flow of data in an SNA network. It
provides single-domain, multiple-domain, and intercon-
nected network capability.

VM. Virtual machine.

VM/ESA. Virtual Machine/Enterprise Systems Architec-
ture.

VTAM. (1) Virtual Telecommunications Access
Method. (2) Synonymous with ACF/VTAM.

W
WAN. Wide area network.

wide area network (WAN) . (1) A network that pro-
vides communication services to a geographic area
larger than that served by a local area network or a
metropolitan area network, and that may use or provide
public communication facilities. (T) (2) A data com-
munication network designed to serve an area of hun-
dreds or thousands of miles; for example, public and
private packet-switching networks, and national tele-
phone networks. (3) Contrast with local area network
(LAN) and metropolitan area network (MAN).

widget . (1) In the AIX operating system, a graphic
device that can receive input from the keyboard or
mouse and can communicate with an application or with
another widget by means of a callback. Every widget is
a member of only one class and always has a window
associated with it. (2) The fundamental data type of
the Enhanced X-Windows Toolkit. (3) An object that
provides a user-interface abstraction; for example, a
Scrollbar widget. It is the combination of an Enhanced
X-Windows window (or subwindow) and its associated
semantics. A widget implements procedures through its
widget class structure.

wildcard character . Synonym for pattern-matching
character.

window . (1) A portion of a display surface in which
display images pertaining to a particular application can

be presented. Different applications can be displayed
simultaneously in different windows. (A) (2) An area
with visible boundaries that presents a view of an object
or with which a user conducts a dialog with a computer
system.

work space . (1) That portion of main storage that is
used by a computer program for temporary storage of
data. (I) (A) (2) In NetView for AIX, a container for
a set of event cards that meet certain criteria. See also
event filter.

workstation . (1) A functional unit at which a user
works. A workstation often has some processing capa-
bility. (T) (2) One or more programmable or nonpro-
grammable devices that allow a user to do work. (3) A
terminal or microcomputer, usually one that is con-
nected to a mainframe or to a network, at which a user
can perform applications.

write access . In computer security, permission to write
to an object.

X
X Window System . A software system, developed by
the Massachusetts Institute of Technology, that allows
the user of a display to concurrently use multiple appli-
cation programs through different windows of the
display. The application programs may execute on dif-
ferent computers.

X.25. (1) An International Telegraph and Telephone
Consultative Committee (CCITT) recommendation for
the interface between data terminal equipment and
packet-switched data networks. (2) See also packet
switching.

X.25 interface . An interface consisting of a data ter-
minal equipment (DTE) and a data circuit-terminating
equipment (DCE) in communication over a link using
the procedures described in the CCITT Recommenda-
tion X.25.

Z
zoom . In CUA architecture, to progressively increase
or decrease the size of a part of an image on a screen
or in a window.

1106 Programmer's Reference

 Bibliography

NetView for AIX Publications

The following paragraphs briefly describe the publica-
tions for Version 4 of the NetView for AIX program:

NetView for AIX Concepts: A General Information
Manual (GC31-8160)

This book provides an overview of the NetView for AIX
program that business executives can use to evaluate
the product. System planners can also use this infor-
mation to learn how NetView for AIX manages heter-
ogeneous networks.

NetView for AIX Database Guide (SC31-8167)

This book provides information for system administra-
tors and database administrators to configure the
NetView for AIX program to work with the following rela-
tional database management systems: DB2/6000,
INFORMIX, INGRES, ORACLE, and SYBASE. This
book also describes how to transfer IP topology,
trapdlog, and snmpCollect data to the relational data-
base and how to manipulate the data.

NetView for AIX Installation and Configuration
(SC31-8163)

This book provides installation and configuration steps
for the system programmer who will install and con-
figure the NetView for AIX program.

NetView for AIX User's Guide for Beginners
(SC31-8158)

This book contains “how-to” information that provides
network operators the help they need to get acquainted
with NetView for AIX and accomplish some basic net-
working tasks. It is written for the user who is unfa-
miliar with the NetView for AIX program.

NetView for AIX Administrator's Guide (SC31-8168)

This book explains network management principles and
describes how the NetView for AIX program's compo-
nents work together. It is for the advanced user. Most
of the tasks require root authority. This book includes
tasks such as customizing the graphical interface, fil-
tering events, configuring events, and managing
network performance and configuration.

NetView for AIX Administrator's Reference (SC31-8169)

This book contains reference information for commands,
daemons, and files. It is used primarily when per-
forming administrative tasks.

NetView for AIX Diagnosis Guide (SC31-8162)

This book is intended to help you classify and resolve
problems related to the operation of the NetView for AIX
program.

NetView for AIX Application Interface Style Guide
(SC31-6240)

This book provides guidelines for system programmers
who develop applications that will be integrated with the
NetView for AIX program.

NetView for AIX Programmer's Guide (SC31-8164)

This book provides information for programmers about
creating network management applications. This book
also contains information about the NetView for AIX
program server, commands, function calls, and object
classes.

NetView for AIX Programmer's Reference (SC31-8165)

This book is intended for programmers and contains ref-
erence information about the NetView for AIX program
and its server, commands, function calls, and object
classes.

NetView for AIX and the Host Connection (SC31-8161)

This book provides information for System/390 and
NetView users who want to manage TCP/IP and SNA
networks.

Quick Reference Card (SX75-0113)

This summary provides a brief description of each
NetView for AIX daemon. The card also lists the menu
items and the submenu items below them.

In addition to these printed books, online documentation
of the NetView for AIX library is available. An online
Help Index is also available from the NetView for AIX
Help pull-down window. The Help Index provides dialog
box help and task help.

IBM RISC System/6000
Publications

In addition to the NetView for AIX documentation, the
following publications may also be helpful to users:

AIX Quick Reference (SC23-2401)

 Copyright IBM Corp. 1992, 1995 1107

Task Index and Glossary for IBM RISC System/6000
(GC23-2201)

IBM RISC System/6000 Problem Solving Guide
(SC23-2204)

AIX Communications Concepts and Procedures for IBM
RISC System/6000 (GC23-2203)

AIX Commands Reference for IBM RISC System/6000
(GC23-2366, GC23-2367, GC23-2376, GC23-2393)

AIX Files Reference for IBM RISC System/6000
(GC23-2200)

 NetView Publications

The following list contains selected NetView Version 2
Release 3 publications:

NetView Administration Reference (SC31-6128)

NetView At a Glance (GC31-7016)

NetView Automation Planning (SC31-6141)

NetView Customization Guide (SC31-6132)

NetView Installation and Administration Guide (MVS:
SC31-6125) (VM: SC31-6182) (VSE: SC31-6182)

NetView Operation (SC31-6127)

NetView Problem Determination and Diagnosis
(LY43-0014)

NetView Resource Alerts Reference (SC31-6136)

NetView Samples (MVS: SC31-6126) (VM: SC31-6183)
(VSE: SC31-6184)

The following list contains selected NetView Version 2
Release 4 publications:

NetView Administration Reference (SC31-7080)

NetView Automation Planning (SC31-7082)

NetView Customization Guide (SC31-7091)

NetView General Information (GC31-7098)

NetView Installation and Administration Facility/2 Guide
(SC31-7099)

NetView Installation and Administration Guide
(SC31-7084)

NetView Operation (SC31-7066)

NetView Problem Determination and Diagnosis
(LY43-0101)

NetView Resource Alerts Reference (SC31-7097)

TCP/IP Publications for AIX
(RS/6000, PS/2, RT, 370)

The following list shows the books available for TCP/IP
in the AIX Operating System library:

AIX Operating System TCP/IP User's Guide
(SC23-2309)

AIX PS/2 TCP/IP User's Guide (SC23-2047)

TCP/IP for IBM X-Windows on DOS (SC23-2349)

AIX SNA Services/6000
Publications

The following list of publications are for use with the AIX
Operating System:

AIX SNA Server/6000 User's Guide (SC31-7002)

AIX SNA Server/6000 Configuration Reference
(SC31-7014)

AIX SNA Server/6000 Transaction Program
(SC31-7003)

Internet Request for Comments
(RFCs)

The following documents describe Internet standards
supported by the NetView for AIX program. Copies of
these documents are shipped on the AIX SystemView
NetView/6000 product installation media. They are
installed in the /usr/OV/doc directory.

RFC 1095: The Common Management Services and
Protocol over TCP/IP (CMOT)

RFC 1155: Structure and Identification of Management
Information for TCP/IP-Based Internets

RFC 1157: Simple Network Management Protocol
(SNMP)

RFC 1187: Bulk Table Retrieval with the SNMP

RFC 1189: The Common Management Information
Services and Protocols for the Internet (CMOT and
CMIP)

1108 Programmer's Reference

RFC 1212: Concise MIB Definitions

RFC 1213: Management Information Base for Network
Management of TCP/IP-Based Internets: MIB-II

RFC 1215: Convention for Defining Traps for Use with
the SNMP

RFC 1229: Extensions to the Generic-Interface MIB

RFC 1230: IEEE 802.4 Token Bus MIB

RFC 1231: IEEE 802.5 Token Bus MIB

RFC 1232: Definitions of Managed Objects for the DS1
Interface Type

RFC 1233: Definitions of Managed Objects for the DS3
Interface Type

RFC 1239: Reassignment of Experimental MIBs to
Standard MIBs

RFC 1243: AppleTalk Management Information Base

RFC 1253: OSPF Version 2 Management Information
Base

RFC 1269: Definitions of Managed Objects for the
Border Gateway Protocol (Version 3)

RFC 1271: Remote Network Monitoring Management
Information Base

RFC 1284: Definitions of Managed Objects for the
Ethernet-like Interface Types

RFC 1285: FDDI Management Information Base

RFC 1286: Definitions of Managed Objects for Bridges

RFC 1289: DECnet Phase IV MIB Extensions

RFC 1304: Definition of Managed Objects for the SIP
Interface Type

RFC 1315: Management Information Base for Frame
Relay DTEs

RFC 1316: Definitions of Managed Objects for Char-
acter Stream Devices

RFC 1317: Definitions of Managed Objects for
RS-232-like Hardware Devices

RFC 1318: Definitions of Managed Objects for Parallel-
printer-like Hardware Devices

RFC 1450: Management Information Base for Version 2
of the Simple Network Management Protocol (SNMPv2)

RFC 1452: Coexistence between Version 1 and Version
2 of the Internet-Standard Network Management Frame-
work

 Related Publications

The following publications are closely related to or refer-
enced by the NetView for AIX Library:

AIX Trouble Ticket/6000
Publications

For information about the AIX Trouble Ticket/6000
program, consult the following publications:

AIX Trouble Ticket/6000 Brochure (GC31-7161)

AIX Trouble Ticket/6000 User's Guide (SC31-7162)

Service Point Publication

AIX NetView Service Point Installation, Operation, and
Programming Guide (SC31-6120)

Other IBM TCP/IP Publications

The following list shows other available IBM TCP/IP
publications:

Introducing IBM Transmission Control Protocol/Internet
Protocol Products for OS/2, VM, and MVS (GC31-6080)

IBM TCP/IP Version 2 for VM and MVS: Diagnosis
Guide (LY43-0013)

MVS/DFP Version 3 Release 3: Using the Network File
System Server (SC26-4732)

 SNMP Information

You can use the following sources for detailed SNMP
information:

The Simple Book, M.T. Rose, Prentice-Hall, 1991 (ISBN
0-13-812611-9)

The Windows SNMP Manager API Specification, the
WinSNMP/MIB API Specification, and other information
on Windows SNMP are available through anonymous
FTP from the host sunsite.unc.edu under the directory
path /pub/micro/pc-stuff/ms-windows/WinSNMP

These Internet standards provide SNMP information:

RFC 1901: Introduction to Community-based SNMPv2

 Bibliography 1109

RFC 1902: Structure of Management Information for
Version 2 of the Simple Network Management Protocol
(SNMPv2)

RFC 1903: Textual Conventions for Version 2 of the
Simple Network Management Protocol (SNMPv2)

RFC 1904: Conformance Statements for Version 2 of
the Simple Network Management Protocol (SNMPv2)

RFC 1905: Protocol Operation for Version 2 of the
Simple Network Management Protocol (SNMPv2)

RFC 1906: Transport Mapping for Version 2 of the
Simple Network Management Protocol (SNMPv2)

RFC 1907: Management Information Base for Version 2
of the Simple Network Management Protocol (SNMPv2)

RFC 1908: Coexistence between Version 1 and Version
2 of Internet-standard Network Management Framework

RFC 1909: An Administrative Infrastructure for SNMPv2
(SNMPv2USEC)

RFC 1910: User-based Security Model for SNMPv2
(SNMPv2USEC)

X Window System Publications

The following list shows selected X Window System
publications:

Introduction to the X Window System, Oliver Jones,
Prentice-Hall, 1988 (ISBN 0-13-499997)

X Window System Technical Reference, Steven Mikes,
Addison-Wesley, 1990 (ISBN 0-201-52370)

X Window System: Programming and Applications with
Xt, Douglas A. Young, Prentice-Hall, 1989 (ISBN
0-13-972167)

X Window System: Programming and Applications with
Xt, OSF/Motif Edition, Douglas A. Young, Prentice-Hall,
1990 (ISBN 0-13-497074)

 X/Open Specification

For information about the X/Open OSI-Abstract-Data
Manipulation (XOM) application programming interface
(API), consult the following X/Open documents:

X/Open OSI-Abstract-Data Manipulation (XOM) API,
CAE Specification

X/Open Preliminary Specification. Systems Manage-
ment: GDMO to XOM Translation Algorithm

 OSF/Motif Publications

The following list contains selected OSF/Motif publica-
tions:

OSF/Motif Series (5 volumes), Open Software Founda-
tion, Prentice Hall, Inc. 1990

OSF/Motif Application Environment Specifications,
(AES) (ISBN 0-13-640483-9)

OSF/Motif Programmer’s Guide (ISBN 0-13-640509-6)

OSF/Motif Programmer’s Reference,
(ISBN 0-13-640517-7)

OSF/Motif Style Guide (ISBN 0-13-640491-X)

OSF/Motif User’s Guide, (ISBN 0-13-640525-8)

 ISO/IEC Standards

For information about the ISO/IEC standards on which
the NetView for AIX program is based, refer to the fol-
lowing publications:

ISO IS 7498-4, Open Systems Interconnection–Basic
Reference Model–Part 4: Management Framework

ISO 8824, Open Systems Interconnection–Specification
of Abstract Syntax Notation One (ASN.1)

ISO 8825, Open Systems Interconnection– Specification
of Basic Encoding Rules for Abstract Syntax Notation
One (ASN.1)

ISO IS 9595, Common Management
Information–Service Definition

ISO IS 9596-1, Common Management
Information–Protocol Specification

ISO DIS 9899, Information Processing–Programming
Language C

ISO 10040, Systems Management Overview

The ISO/IEC standards can be obtained from the fol-
lowing address:

 OMNICOM
243 Church St. NW
Vienna, VA 22180-4434

 (800) OMNICOM
 (703) 281-1135

(703) 281-1505 (FAX)

1110 Programmer's Reference

Communicating Your Comments to IBM

NetView for AIX
Programmer's Reference
Version 4

Publication No. SC31-8165-00

If you especially like or dislike anything about this book, please use one of the methods listed below to send your
comments to IBM. Whichever method you choose, make sure you send your name, address, and telephone number
if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter, or completeness of this
book. However, the comments you send should pertain to only the information in this manual and the way in which
the information is presented. To request additional publications, or to ask questions or make comments about the
functions of IBM products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way
it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United States, you can give the RCF
to the local IBM branch office or IBM representative for postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

United States and Canada: 1-800-227-5088

� If you prefer to send comments electronically, use this network ID:

– IBM Mail Exchange: USIB2HPD at IBMMAIL
– IBMLink: CIBMORCF at RALVM13

 – Internet: USIB2HPD@VNET.IBM.COM

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies.

Help us help you!

NetView for AIX
Programmer's Reference
Version 4

Publication No. SC31-8165-00

We hope you find this publication useful, readable and technically accurate, but only you can tell us! Your
comments and suggestions will help us improve our technical publications. Please take a few minutes to
let us know what you think by completing this form.

Specific Comments or Problems:

Please tell us how we can improve this book:

Thank you for your response. When you send information to IBM, you grant IBM the right to use or
distribute the information without incurring any obligation to you. You of course retain the right to use the
information in any way you choose.

Your Internet Address:

Name Address

Company or Organization

Phone No.

Overall, how satisfied are you with the information in this book? Satisfied Dissatisfied

 Ø Ø

How satisfied are you that the information in this book is: Satisfied Dissatisfied

Accurate Ø Ø
Complete Ø Ø
Easy to find Ø Ø
Easy to understand Ø Ø
Well organized Ø Ø
Applicable to your task Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Help us help you!
SC31-8165-00

IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Information Development
Department CGMD
International Business Machines Corporation
PO BOX 12195
RESEARCH TRIANGLE PARK NC 27709-9990

Fold and Tape Please do not staple Fold and Tape

SC31-8165-00

IBM

Program Number: 5765-527

Printed in U.S.A.

SC31-8165-ðð

DSMKPO653E POSTSCRIPT FILE '@E@P@S' NOT FOUND.
DSMMOM395I '.EDFPO' LINE 70: .po @E@P@S
DSMMOM397I '.EDFPO' WAS IMBEDDED AT LINE 910 OF '.EDFAWRK'
DSMMOM397I '.EDFAWRK' WAS IMBEDDED AT LINE 2330 OF '.EDF#CV'
DSMMOM397I '.EDF#CV' WAS IMBEDDED AT LINE 190 OF '.EDF#FCV7'
DSMMOM397I '.EDF#FCV7' WAS IMBEDDED AT LINE 330 OF '.EDFCOVER'
DSMMOM397I '.EDFCOVER' WAS IMBEDDED AT LINE 57 OF 'LBWL0MST'
DSMKPO653E POSTSCRIPT FILE '@E@P@S' NOT FOUND.
DSMMOM395I '.EDFPO' LINE 70: .po @E@P@S
DSMMOM397I '.EDFPO' WAS IMBEDDED AT LINE 910 OF '.EDFAWRK'
DSMMOM397I '.EDFAWRK' WAS IMBEDDED AT LINE 2 OF 'LBWL0C2'
DSMMOM397I 'LBWL0C2' WAS IMBEDDED AT LINE 187 OF 'EDFPRF40'
DSMBEG323I STARTING PASS 2 OF 4.
DSMKPO653E POSTSCRIPT FILE '@E@P@S' NOT FOUND.
DSMMOM395I '.EDFPO' LINE 70: .po @E@P@S
DSMMOM397I '.EDFPO' WAS IMBEDDED AT LINE 910 OF '.EDFAWRK'
DSMMOM397I '.EDFAWRK' WAS IMBEDDED AT LINE 2330 OF '.EDF#CV'
DSMMOM397I '.EDF#CV' WAS IMBEDDED AT LINE 190 OF '.EDF#FCV7'
DSMMOM397I '.EDF#FCV7' WAS IMBEDDED AT LINE 330 OF '.EDFCOVER'
DSMMOM397I '.EDFCOVER' WAS IMBEDDED AT LINE 57 OF 'LBWL0MST'
DSMKPO653E POSTSCRIPT FILE '@E@P@S' NOT FOUND.
DSMMOM395I '.EDFPO' LINE 70: .po @E@P@S
DSMMOM397I '.EDFPO' WAS IMBEDDED AT LINE 910 OF '.EDFAWRK'
DSMMOM397I '.EDFAWRK' WAS IMBEDDED AT LINE 2 OF 'LBWL0C2'
DSMMOM397I 'LBWL0C2' WAS IMBEDDED AT LINE 187 OF 'EDFPRF40'
DSMBEG323I STARTING PASS 3 OF 4.
DSMKPO653E POSTSCRIPT FILE '@E@P@S' NOT FOUND.
DSMMOM395I '.EDFPO' LINE 70: .po @E@P@S
DSMMOM397I '.EDFPO' WAS IMBEDDED AT LINE 910 OF '.EDFAWRK'
DSMMOM397I '.EDFAWRK' WAS IMBEDDED AT LINE 2330 OF '.EDF#CV'
DSMMOM397I '.EDF#CV' WAS IMBEDDED AT LINE 190 OF '.EDF#FCV7'
DSMMOM397I '.EDF#FCV7' WAS IMBEDDED AT LINE 330 OF '.EDFCOVER'
DSMMOM397I '.EDFCOVER' WAS IMBEDDED AT LINE 57 OF 'LBWL0MST'
DSMKPO653E POSTSCRIPT FILE '@E@P@S' NOT FOUND.
DSMMOM395I '.EDFPO' LINE 70: .po @E@P@S
DSMMOM397I '.EDFPO' WAS IMBEDDED AT LINE 910 OF '.EDFAWRK'
DSMMOM397I '.EDFAWRK' WAS IMBEDDED AT LINE 2 OF 'LBWL0C2'
DSMMOM397I 'LBWL0C2' WAS IMBEDDED AT LINE 187 OF 'EDFPRF40'
DSMBEG323I STARTING PASS 4 OF 4.
DSMKPO653E POSTSCRIPT FILE '@E@P@S' NOT FOUND.
DSMMOM395I '.EDFPO' LINE 70: .po @E@P@S
DSMMOM397I '.EDFPO' WAS IMBEDDED AT LINE 910 OF '.EDFAWRK'
DSMMOM397I '.EDFAWRK' WAS IMBEDDED AT LINE 2330 OF '.EDF#CV'
DSMMOM397I '.EDF#CV' WAS IMBEDDED AT LINE 190 OF '.EDF#FCV7'
DSMMOM397I '.EDF#FCV7' WAS IMBEDDED AT LINE 330 OF '.EDFCOVER'
DSMMOM397I '.EDFCOVER' WAS IMBEDDED AT LINE 57 OF 'LBWL0MST'
DSMKPO653E POSTSCRIPT FILE '@E@P@S' NOT FOUND.
DSMMOM395I '.EDFPO' LINE 70: .po @E@P@S
DSMMOM397I '.EDFPO' WAS IMBEDDED AT LINE 910 OF '.EDFAWRK'
DSMMOM397I '.EDFAWRK' WAS IMBEDDED AT LINE 2 OF 'LBWL0C2'
DSMMOM397I 'LBWL0C2' WAS IMBEDDED AT LINE 187 OF 'EDFPRF40'

