
IBM27–82660
PowerPC to PCI Bridge and Memory

Controller User’s Manual

SC09-3026-00

60X CPU

DRAM

CPU Bus

PCI Bus

Boot ROM

PCI
Agents

ISA
Agents

SRAM
TagRAM

660

ISA
BridgeBoot ROM

ISA Bus

60X CPU

The IBM 660 Bridge

� Copyright International Business Machines Corporation 1996

Printed in the United States of America
1996

 All rights reserved

Note to US Government Users—Documentation related to restricted rights—Use, duplication,
or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

IBM and the IBM logo are registered trademarks of the IBM Corporation. The following terms are
trademarks or registered trademarks of the IBM Corporation: IBM Microelectronics, PowerPC,
PowerPC 601, PowerPC 603, PowerPC 604, PowerPC Architecture, MicroChannel, and Risc-
Watch. All other product and company names are trademarks or registered trademarks of their
respective holders.
This document is subject to change by IBM without notice. IBM assumes no responsibility or liabil-
ity for any use of the information contained herein. Nothing in this document shall operate as an
express or implied license or indemnity under the intellectual property rights of IBM or third parties.
The products described in this document are not intended for use in implantation or other direct
life support applications where malfunction may result in direct physical harm or injury to persons.
NO WARRANTIES OF ANY KIND, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE OF-
FERED IN THIS DOCUMENT.

The IBM 660 Bridge

iii

Overview

Pin Descriptions

DRAM

PCI Bus

L2 Cache

ROM

Exceptions: Resets, Interrupts, Errors, and Test

Endian Mode

Electrical and Mechanical

Timing

Pin Lists

CPU Bus

Bridge Control Registers

1

2

3

4

5

6

7

8

10

9

A

B

C

The IBM 660 Bridge

iv

The IBM27-82660 PowerPC � to PCI Bridge

Memory, L2, ROM, and System Controller

 IBM 660 Bridge Chip Set in a Typical System Configuration

60X CPU
Optional

CPU Bus Device

Control

Data (72)DRAM
System
Memory

Control

Address (32)

Data (72)

Control

PCI_AD[31:0]

60X CPU BUS

PCI BUS

System ROM
(Flash or EPROM)

System Control
and Status

ROM Control

PCI
DEVICES

PCI to ISA
Bridge

SRAM
Cache

Memory

Control

Address (12)

Tag RAM
Control

IBM27-82664

Controller
IBM27–82663

Buffer

System ROM
(Flash or EPROM)

ISA Bus

Minimum Cycle Times For Pipelined CPU to Memory Transfers at 66 MHz

Responding Device Read Write

L2 (9ns Synchronous SRAM) –2–1–1–1 Snarf

L2 (15ns Asynchronous SRAM) –3–2–2–2 Snarf

Page DRAM (70ns) Pipelined –4–4–4–4 –3–3–4–4

EDO DRAM (60ns) Pipelined –5–3–3–3 –3–3–3–3

Typical PCI to Memory Performance at 66 MHz CPU Clock and 33MHz PCI Clock

Read 8-1-1-1 -1-1-1-1 7-1-1-1 -1-1-1-1 7-1-1-1 -1-1-1-1 ... 7-1-1-1 -1-1-1-1

Write 5-1-1-1 -3-1-1-1 3-1-1-1 -3-1-1-1 3-1-1-1 -3-1-1-1 ... 3-1-1-1 -3-1-1-1

The IBM 660 Bridge

v

Features

The IBM27-82660 PowerPC to PCI Bridge (the 660 Bridge) interfaces the PowerPC 60x bus to
the PCI bus, DRAM, and ROM, controls SRAM and tagRAM to form an L2 cache, and provides
the system central resource. The 660 Bridge is PowerPC Reference Platform compliant, and in-
cludes the IBM27-82663 data buffer, and the IBM27-82664 controller.

General

� PowerPC Reference Platform 1.0/1.1
� Extensive programmability
� Flexible & programmable error han-

dling
� Low cost plastic quad flat packs
� Dual split bus structure CPU–PCI
� Bi-Endian operation

CPU

� PowerPC 601, 603, 603e(v), 604, &
604e(v) families

� Up to 2 CPUs at 66MHz on the CPU
bus

� Address pipelining
� MCP# & TEA#/INT# error reporting
� No-DRTRY#/Fast-L2 mode support.

PCI

� PCI 2.0/2.1, 33MHz, 3.3v/5v
� Memory accesses snooped to L1 & L2
� ISA master support
� PCI resource locking
� Type 0 & type 1 configuration cycles.

DRAM

� ECC or parity DRAM error checking

� Page mode or EDO DRAM

� Up to 1G DRAM with 168-pin DIMMs

� Up to 1G DRAM with 72-pin SIMMs
� Up to 8 memory banks

� Extensive programmability & flexibility

� Onboard refresh timer/counter.

L2 Cache Controller

� Look aside, direct mapped, write
through

� 256k, 512k or 1M SRAM support

� Sync or asynch SRAM & tagRAM
� Can be disabled.

ROM

� Up to 2M of ROM

� Flash ROM read, write, and lock-out

� 8 to 64 bit conversion on reads
� Single-beat & burst reads.

The IBM 660 Bridge

vi

Table of Contents

viiThe IBM 660 Bridge

Table of Contents

Section 1 Overview 1.
1.1 Packaging and Technology 1.
1.2 Microprocessor Support 2.
1.3 L2 Cache Controller 2.
1.4 PCI Expansion Bus 2.
1.5 Memory Controller 3.
1.6 System ROM Controller 4.
1.7 The Bridge Control Register Set 4.
1.8 Interrupt and Exception Handler 4.
1.9 Part Identification, IBM27-82660 4.
1.10 Improvements Over 650 Bridge 5.
1.11 Chipset Changes From Prerelease Versions 5.
1.11.1 CPU_RDL_OPEN Resistor 5.
1.11.2 Parity Error Detection 5.
1.11.3 ECIWX/ECOWX With 603 5.
1.11.4 Error Simulation Registers 5.
1.11.5 DRAM Performance 6.
1.11.6 CAS# Pulse Width 6.
1.11.7 CPU:PCI Bus Ratio 6.
1.11.8 Parking the PCI Bus on the 660 6.
1.11.9 CPU Data Bus Parity With 64-Bit L2 7.
1.11.10 ECC Single-Bit Error Counter BCR(B8h) 7.
1.11.11 663 Pinout 7.
1.11.12 Added Signals 7.
1.11.13 Remote ROM 7.
1.11.14 Power Management 7.
1.11.15 VI Curves 7.
1.11.16 CPU Data Bus Resistors 7.

Section 2 Pin Descriptions 9.
2.1 Signal Description Table 9.
2.2 CPU_RDL_OPEN Resistor 20.

Section 3 CPU Bus 21.
3.1 Transfer Type Decoding 21.
3.2 CPU Bus Address Mapping 23.
3.3 CPU to Memory Transfers 24.

Table of Contents

viii The IBM 660 Bridge

3.4 CPU to PCI Transactions 24.
3.4.1 CPU to PCI Read 24.
3.4.2 CPU to PCI Write 25.
3.4.2.1 Eight-Byte Writes to the PCI (Memory and I/O) 25.
3.4.3 PCI Retry 25.
3.4.4 PCI FRAME# 25.
3.4.5 CPU to PCI Configuration 25.
3.4.5.1 PCI Type 0 Configuration Transaction (650 Compatible) 26.
3.4.5.2 PCI Type 0 Configuration Transaction (CFC/CF8) 26.
3.4.6 CPU to PCI Interrupt Acknowledge Transaction 26.
3.5 CPU to ROM 27.
3.6 CPU to BCR Transfers 27.
3.7 CPU to ISA I/O 27.
3.7.1 Contiguous I/O Mode Address Mapping 27.
3.7.2 Non-Contiguous I/O Mode Address Mapping 28.
3.7.3 Final I/O Address Formation 29.
3.8 CPU Bus Masters 30.
3.8.1 External L2 as a CPU Bus Master 30.
3.9 CPU Bus Targets 31.
3.10 CPU Bus Parity 31.
3.11 CPU Bus Arbitration 32.
3.11.1 Arbiter Rules 32.
3.12 Broadcast Snoop Details 34
3.12.1 Snoop Cycles From CPU Bus Idle 35
3.12.2 Pipelined Snoop Cycle Following a CPU Bus Transfer 36
3.12.3 Pipelined Snoop Cycle Following a Pipelined CPU Bus Transfer 36.
3.12.4 PCI Bus Snoop On Block Boundary During a PCI Burst Read 37.
3.12.5 PCI Bus Snoop On Block Boundary During a PCI Burst Write 37.
3.13 Related Bridge Control Registers 38.

Section 4 PCI Bus 39.
4.1 PCI Arbitration 39.
4.2 PCI Lock 39.
4.2.1 PCI Busmaster Locks 39.
4.2.2 CPU Bus Locking 40.
4.3 660 (Target) Response by PCI Bus Command 40.
4.4 660 (Target) Response by PCI Memory Address 41.
4.5 PCI Access to System Memory 42.
4.5.1 Memory Access Range and Limitations 42.
4.5.2 ISA Master Transactions 42.
4.5.3 Memory Access Sequence 42.
4.5.3.1 Snooping 42.
4.5.3.2 Writes 42.

Table of Contents

ixThe IBM 660 Bridge

4.5.3.3 Reads 43.
4.5.4 PCI to Memory Burst Transfers 43.
4.5.4.1 Detailed Read Burst Sequence Timing 43.
4.5.4.2 Detailed Write Burst Sequence Timing 45.
4.6 1:1 CPU:PCI Bus Ratio Operation 46.
4.6.1 1:1 PAL Connectivity 47.
4.6.2 1:1 PAL Equations 48.
4.7 Related Bridge Control Registers 50.

Section 5 DRAM 51.
5.1 Features and Supported Devices 51.
5.1.1 SIMM Nomenclature 52.
5.1.2 DRAM Timing 52.
5.1.3 DRAM Error Checking 52.
5.2 DRAM Performance 53.
5.2.1 Memory Timing Parameters 53.
5.2.1.1 Memory Timing Register 1 54.
5.2.1.2 Memory Timing Register 2 55.
5.2.1.3 RAS# Watchdog Timer BCR 55.
5.2.2 General Case DRAM Timing Calculations 56.
5.2.3 General Case DRAM Timing Examples 58.
5.2.3.1 70ns DRAM Calculations 58.
5.2.3.2 60ns DRAM Calculations 60.
5.2.3.3 50ns DRAM Calculations 61.
5.2.3.4 60ns EDO DRAM Calculations 62.
5.2.3.5 Aggressive Timing Summary 62.
5.2.3.6 Conservative Timing Summary 64.
5.2.4 Special Case Memory Controller Operation 64.
5.2.4.1 Required Conditions for Special Case Operation 65.
5.2.4.2 Avoiding The Special Case 65.
5.2.4.3 Special Case Option 1 – Disable Page Mode 66.
5.2.4.4 Special Case Option 2 – Change the DRAM Timing 66.
5.2.4.5 Special Case Option 3 – Performance Enhancement PAL 67. . . .
5.2.4.6 Performance Enhancement PAL Design 67.
5.2.5 Page Hit and Page Miss 71.
5.2.6 CPU to Memory Access Pipelining 71.
5.2.7 Extended Data Out (EDO) DRAM 71.
5.3 System Memory Addressing 72.
5.3.1 DRAM Logical Organization 72.
5.3.2 SIMM Topologies 73.
5.3.3 Row and Column Address Generation 74.
5.3.4 DRAM Pages 75.
5.3.5 Supported Transfer Sizes and Alignments 75.

Table of Contents

x The IBM 660 Bridge

5.3.6 Unpopulated Memory Locations 75.
5.3.7 Memory Bank Addressing Mode BCRs 75.
5.3.8 Memory Bank Starting Address BCRs 76.
5.3.9 Memory Bank Extended Starting Address BCRs 76.
5.3.10 Memory Bank Ending Address BCRs 77.
5.3.11 Memory Bank Extended Ending Address BCR 77.
5.3.12 Memory Bank Enable BCR 78.
5.3.13 Memory Bank Configuration Example 78.
5.3.13.1 Memory Bank Enable BCR 79.
5.3.13.2 Memory Bank Addressing Mode 79.
5.3.13.3 Starting and Ending Addresses 80.
5.4 Error Checking and Correction 81.
5.4.1 Memory Parity 81.
5.4.2 ECC Overview 81.
5.4.3 ECC Data Flows 82.
5.4.3.1 Memory Reads 82.
5.4.3.2 Eight-Byte Writes 83.
5.4.3.3 Less-Than Eight-Byte Writes 84.
5.4.4 Memory Performance In ECC Mode 84.
5.4.4.1 CPU to Memory Read in ECC Mode 84.
5.4.4.2 CPU to Memory Write in ECC Mode 85.
5.4.4.3 PCI to Memory Read in ECC Mode 85.
5.4.4.4 PCI to Memory Write in ECC Mode 85.
5.4.5 Check Bit Calculation 87.
5.4.6 Syndrome Decode 88.
5.5 DRAM Refresh 89.
5.5.1 Refresh Timer Divisor Register 90.
5.6 Atomic Memory Transfers 91.
5.6.1 Memory Locks and Reservations 91.
5.6.1.1 CPU Reservation 91.
5.6.1.2 PCI Lock 91.
5.6.1.3 PCI Lock Release 91.
5.7 DRAM Module Loading Considerations 92.
5.8 Related Bridge Control Registers 92.

Section 6 L2 Cache 93.
6.1 L2 Controller Features 93.
6.1.1 Cache Size 93.
6.1.2 Cache Responses 93.
6.1.3 Cache Configuration 93.
6.1.4 L2 Performance 93.
6.2 L2 Cache Responses to CPU Bus Operations 94.
6.3 L2 Cache Responses to PCI Bus Mastered Transactions 95.

Table of Contents

xiThe IBM 660 Bridge

6.4 Error Checking Support 95.
6.5 External L2 Cache Operation 96.
6.6 TagRAM 96.
6.6.1 TAG_MATCH 96.
6.7 SRAM 97.
6.7.1 Synchronous 97.
6.7.2 Asynchronous 97.
6.7.3 Dual (Sync and Async) Capable Systems 97.
6.8 SRAM and TagRAM Connections 97.
6.9 L2 Bridge Control Registers 104.
6.9.1 L2 Invalidate BCR 104.
6.9.2 L2 Error Status BCR 104.
6.9.3 L2 Parity Error Read and Clear BCR 105.
6.9.4 Cache Status Register 105.
6.9.5 Other L2-Related BCRs 106.

Section 7 ROM 107.
7.1 Direct-Attach ROM Mode 107.
7.1.1 ROM Reads 108.
7.1.1.1 ROM Read Sequence 108.
7.1.1.2 Address, Transfer Size, and Alignment 110.
7.1.1.3 Endian Mode Considerations 110.
7.1.1.4 4-Byte Reads 111.
7.1.2 ROM Writes 111.
7.1.2.1 ROM Write Sequence 111.
7.1.2.2 Write Protection 111.
7.1.2.3 Data Flow In Little-Endian Mode 112.
7.1.2.4 Data Flow In Big-Endian Mode 112.
7.2 Remote ROM Mode 113.
7.2.1 Remote ROM Reads 114.
7.2.1.1 Remote ROM Read Sequence 114.
7.2.1.2 Address, Transfer Size, and Alignment 117.
7.2.1.3 Burst Reads 117.
7.2.1.4 Endian Mode Considerations 117.
7.2.1.5 4-Byte Reads 118.
7.2.2 Remote ROM Writes 118.
7.2.2.1 Write Sequence 118.
7.2.2.2 Write Protection 118.
7.2.2.3 Address, Size, Alignment, and Endian Mode 118.
7.3 Related Bridge Control Registers 120.
7.3.1 ROM Write Bridge Control Register 120.
7.3.2 Direct-Attach ROM Lockout BCR 121.
7.3.3 Remote ROM Lockout Bit 121.

Table of Contents

xii The IBM 660 Bridge

7.3.4 Other Related BCRs 121.
7.4 Programming the ROM Boot For 601 Burst Reads 122.

Section 8 Exceptions: Resets, Interrupts, Errors, & Test 123.
8.1 Resets 123.
8.1.1 Reset Timing 123.
8.1.2 Reset State of 660 Pins 124.
8.1.3 Configuration Strapping 125.
8.1.4 Deterministic Operation (Lockstep Applications) 126.
8.2 Interrupts 127.
8.2.1 INT_REQ and INT_CPU# 127.
8.2.2 NMI_REQ 127.
8.2.3 Interrupt-Related Bridge Control Registers 127.
8.3 Error Handling Protocol 128.
8.3.1 NMI Errors 128.
8.3.1.1 Error Handling Protocol 128.
8.3.2 CPU Bus Related Errors 129.
8.3.2.1 Error Types 129.
8.3.2.2 Error Handling Protocol 129.
8.3.3 PCI Bus Related Errors 130.
8.3.3.1 Error Types 130.
8.3.3.2 Error Handling Protocol 130.
8.3.3.3 PCI Bus Data Parity Errors 130.
8.4 Error Reporting Protocol 131.
8.4.1 Error Reporting With MCP# 131.
8.4.2 Error Reporting With TEA# 131.
8.4.3 Error Reporting to 601 CPU 132.
8.4.4 Error Reporting With PCI_SERR# 132.
8.4.5 Error Reporting With PCI_PERR# 132.
8.5 Error Handling Details by Error Type 133.
8.5.1 CPU Bus Transfer Type or Size Error 133.
8.5.2 CPU Bus XATS# Asserted Error 134.
8.5.3 CPU Data Bus Parity Error 134.
8.5.4 CPU Bus Write to Locked Flash 134.
8.5.5 Memory Select Error 135.
8.5.6 System Memory Parity Error 135.
8.5.7 System Memory Single-Bit ECC Error 136.
8.5.8 System Memory Multi-Bit ECC Error 136.
8.5.9 L2 Cache Parity Error 137.
8.5.10 PCI Bus Data Parity Error While PCI Master 137.
8.5.11 PCI Target Abort Received While PCI Master 138.
8.5.12 PCI Master Abort Detected While PCI Master 138.
8.5.13 PCI Address Bus Parity Error While PCI Target 138.

Table of Contents

xiiiThe IBM 660 Bridge

8.5.14 PCI Bus Data Parity Error While PCI Target 139.
8.5.15 NMI_REQ Asserted Error 140.
8.5.16 Error-Related Bridge Control Registers 141.
8.6 Test Modes 142.
8.6.1 LSSD Test Mode 142.
8.6.2 MIO Test Mode 143.

Section 9 Endian Mode 145.
9.1 What the CPU Does 146.
9.1.1 The CPU Address Munge 146.
9.1.2 The CPU Data Shift 146.
9.2 What the 660 Does 146.
9.2.1 The 660 Address Unmunge 146.
9.2.2 The 660 Data Swapper 146.
9.3 Bit Ordering Within Bytes 148.
9.4 Byte Swap Instructions 148.
9.5 CPU Alignment Exceptions In LE Mode 148.
9.6 Endian Mode Examples 150.
9.6.1 One Byte Transfers 150.
9.6.2 Two Byte Transfers 152.
9.6.3 Four Byte Transfers 152.
9.6.4 Three byte Transfers 154.
9.6.5 Eight Byte Transfers 154.
9.7 Endian Mode Flow Oriented Examples 155.
9.7.1 1-Byte Example at Address xxxx xxx1 155.
9.7.2 2-Byte Example at Address xxxx xxx0 155.
9.7.3 4-Byte Example at Address xxxx xxx0 156.
9.7.4 8-Byte Example at Address xxxx xxx0 156.
9.8 Tabular Endian Mode Examples 157.
9.8.1 One-Byte CPU to Memory Transfer in BE Mode 157.
9.8.2 One-Byte CPU to Memory Transfer in LE Mode 157.
9.8.3 One-Byte CPU to PCI Transfer in BE Mode 158.
9.8.4 One-Byte CPU to PCI Transfer in LE Mode 158.
9.8.5 Two-Byte CPU to Memory or PCI Transfer 159.
9.8.6 Rearranged 2-Byte Transfer Information 159.
9.8.7 Four-Byte CPU to Memory or PCI Transfer 160.
9.8.8 Rearranged 4-Byte Transfer Information 160.
9.9 Changing BE/LE Mode 161.
9.9.1 Special Port 92 Mirror BCR 162.

Section 10 Bridge Control Registers 163.
10.1 Overview 164.
10.1.1 Direct-Access Bridge Control Registers 164.

Table of Contents

xiv The IBM 660 Bridge

10.1.2 Indexed Bridge Control Register Access 164.
10.1.3 Indexed Bridge Control Registers 164.
10.2 Direct-Access BCRs 165.
10.2.1 PCI BCR Transactions 166.
10.2.2 Direct-Access BCR Listing 168.
10.2.2.1 Special Port 92 Mirror BCR 168.
10.2.2.2 L2 Invalidate BCR 169.
10.2.2.3 System Control 81C BCR 170.
10.2.2.4 Memory Controller Miscellaneous BCR 171.
10.2.2.5 Memory Parity Error Status BCR 172.
10.2.2.6 L2 Error Status BCR 172.
10.2.2.7 L2 Parity Error Read and Clear BCR 173.
10.2.2.8 Unsupported Transfer Type Error BCR 173.
10.2.2.9 I/O Map Type BCR 174.
10.2.2.10 PCI/BCR Configuration Address BCR 174.
10.2.2.11 PCI/BCR Configuration Data BCR 174.
10.2.2.12 PCI Type 0 Configuration Addresses 175.
10.2.2.13 System Error Address BCR 175.
10.2.2.14 Interrupt Acknowledge BCR 175.
10.2.2.15 ROM Write Bridge Control BCR 176.
10.2.2.16 ROM Lockout BCR 176.
10.3 Indexed BCRs 177.
10.3.1 Indexed BCR Access 177.
10.3.1.1 PCI/BCR Configuration Address BCR 178.
10.3.1.2 PCI/BCR Configuration Data BCR 179.
10.3.2 Indexed BCR Summary 180.
10.3.3 PCI Vendor ID Register 183.
10.3.4 PCI Device ID Register 183.
10.3.5 PCI Command Register 184.
10.3.6 PCI Device Status Register 186.
10.3.7 Revision ID 187.
10.3.8 PCI Standard Programming Interface 188.
10.3.9 PCI Subclass Code 188.
10.3.10 PCI Class Code 188.
10.3.11 PCI Cache Line Size 188.
10.3.12 PCI Latency Timer 188.
10.3.13 PCI Header Type 189.
10.3.14 PCI Built-in Self-Test (BIST) Control 189.
10.3.15 PCI Interrupt Line 189.
10.3.16 PCI Interrupt Pin 189.
10.3.17 PCI MIN_GNT 189.
10.3.18 PCI MAX_LAT 190.
10.3.19 PCI Bus Number 190.

Table of Contents

xvThe IBM 660 Bridge

10.3.20 PCI Subordinate Bus Number 190.
10.3.21 PCI Disconnect Counter 190.
10.3.22 PCI Special Cycle Address Register 190.
10.3.23 Memory Bank Starting Address 191.
10.3.24 Memory Bank Extended Starting Address 191.
10.3.25 Memory Bank Ending Address 192.
10.3.26 Memory Bank Extended Ending Address 192.
10.3.27 Memory Bank Enable 193.
10.3.28 Memory Timing Register 1 194.
10.3.29 Memory Timing Register 2 195.
10.3.30 Memory Bank Addressing Mode Registers 196.
10.3.31 Cache Status Register 197.
10.3.32 RAS# Watchdog Timer Register 197.
10.3.33 Single-Bit Error Counter Register 198.
10.3.34 Single-Bit Error Trigger Level Register 198.
10.3.35 Bridge Chip Set Options 1 199.
10.3.36 Bridge Chip Set Options 2 200.
10.3.37 Error Enable 1 201.
10.3.38 Error Status 1 202.
10.3.39 CPU Bus Error Status 203.
10.3.40 Error Enable 2 203.
10.3.41 Error Status 2 204.
10.3.42 PCI Bus Error Status 205.
10.3.43 CPU/PCI Error Address 205.
10.3.44 Single-Bit ECC Error Address 206.
10.3.45 Refresh Timer Divisor Register 206.
10.3.46 Bridge Chip Set Options 3 Register 207.

Appendix A Timing 209.
A.1 Timing Conventions 209.
A.1.1 Board Delays 209.
A.1.2 Terms and Definitions 209.
A.1.3 Signal Switching Levels for Timing Analysis 209.
A.1.4 Input Setup Time 210.
A.1.5 Input Hold Time 210.
A.1.6 Output Hold Time 210.
A.1.7 Output Delay Time 210.
A.1.8 Output Enable Time 211.
A.1.9 Output Tristate Hold Time 211.
A.1.10 Output Tristate Delay Time 211.
A.2 Clock Considerations 213.
A.2.1 660 Bridge CPU_CLK Skew to the Processor SYSCLK 213.
A.2.2 663 Buffer CPU_CLK Skew to 664 Controller CPU_CLK 213.

Table of Contents

xvi The IBM 660 Bridge

A.2.3 CPU_CLK Duty Cycle 213.
A.2.4 CPU_CLK to PCI_CLK Skew 214.
A.3 Asynchronous Paths 214.
A.4 Power-On Considerations 214.
A.5 663 Buffer Timing By Signal 215.
A.6 664 Controller Timing By Signal 217.
A.7 Detailed Timing Diagrams 220.
A.7.1 CPU to Memory Write (Page DRAM) From Bus Idle 221.
A.7.2 CPU to Memory Write (Page DRAM) Followed by Write Hit 222.
A.7.3 CPU to Memory Write (Page DRAM) Followed by Write Page Miss and

Bank Miss 223.
A.7.4 CPU to Memory Write (Page DRAM) Followed by Read Hit 224.
A.7.5 CPU to Memory Write (Page DRAM) Read/Modify/Write

From Bus Idle 225.
A.7.6 CPU to Memory Read (Page DRAM) From Bus Idle 226.
A.7.7 CPU to Memory Read (Page DRAM) Followed by Read Hit 227.
A.7.8 CPU to Memory Read (Page DRAM) Followed by Read Miss and

Bank Miss 228.
A.7.9 CPU to Memory Read (Page DRAM) Followed by Write Hit 229.
A.7.10 CPU to Bridge Write of Bridge Control Register 230.
A.7.11 CPU to Bridge Read of ROM 231.
A.7.12 CPU to Bridge Read of Bridge Control Register 232.
A.7.13 CPU to Memory Read, L2 Cache w/Async SRAMS, Hit 233.
A.7.14 CPU to Memory Read, L2 Cache w/Burst SRAMs, Hit 234.
A.7.15 CPU to Memory Read (EDO DRAM) Cache Miss Followed by Read Hit

Cache Miss w/Async SRAMs 235.
A.7.16 CPU to Memory Read (EDO DRAM) Cache Miss Followed by Read Hit

Cache Miss w/Burst SRAMs 236.
A.7.17 CPU to Memory Read (EDO DRAM) Followed by Read Hit 237.

Appendix B Electrical and Mechanical 239.
B.1 Absolute Maximum Ratings 239.
B.2 Recommended Operating Conditions 240.
B.3 Power Dissipation and Thermal Characteristics 240.
B.3.1 Power Dissipation 240.
B.3.2 Thermal Characteristics 241.
B.4 Common Characteristics 241.
B.5 Package and Pin Electrical Characteristics Model 242.
B.6 663 DC Characteristics By Signal 243.
B.7 664 DC Characteristics By Signal 244.
B.8 Package Drawings 247.
B.8.1 663 Buffer Package Drawing 247.
B.8.2 664 Controller Package Drawing 248.

Appendix C Pin Lists 249.
C.1 663 Buffer Alphabetic Pin List 249.

Table of Contents

xviiThe IBM 660 Bridge

C.2 663 Buffer Numeric Pin List 252.
C.3 664 Controller Alphabetic Pin Lists 254.
C.4 664 Controller Numeric Pins 256.

Contacts 259.

Table of Contents

xviii The IBM 660 Bridge

Figures

Figure 1-1. IBM 660 Bridge Chip Set in a Typical System Configuration 1.
Figure 2-1. 660 Bridge Pin Connections 8.
Figure 3-1. Contiguous PCI I/O Address Translation 27.
Figure 3-2. Non-Contiguous PCI I/O Address Transformation 28.
Figure 3-3. Non-Contiguous PCI I/O Address Translation 29.
Figure 3-4. PCI Bus Snoops From CPU Bus Idle 35.
Figure 3-5. Pipelined PCI Bus Snoop Following a CPU Bus Transfer 36.
Figure 3-6. Pipelined PCI Bus Snoop Following a Pipelined CPU Bus Transfer 37.
Figure 3-7. PCI Bus Snoop On Block Boundary During a PCI Burst Read 37.
Figure 3-8. PCI Bus Snoop On Block Boundary During a PCI Burst Write 37.
Figure 4-1. PAL 47.
Figure 5-1. CPU to Memory Transfer Timing Parameters 53.
Figure 5-2. PAL 67.
Figure 5-3. DRAM Logical Implementation 72.
Figure 5-4. Example Memory Bank Configuration 79.
Figure 5-5. CPU Read Data Flow 82.
Figure 5-6. PCI Read Data Flow 83.
Figure 5-7. CPU 8-Byte Write Data Flow 83.
Figure 5-8. PCI 8-Byte Write Data Flow 83.
Figure 5-9. PCI or CPU Read-Modify-Write Data Flow 84.
Figure 5-10. DRAM Refresh Timing Diagram 89.
Figure 6-1. Synchronous SRAM, 256K L2 98.
Figure 6-2. Synchronous SRAM, 512K L2 98.
Figure 6-3. Preferred Synchronous SRAM, 1M L2 99.
Figure 6-4. Alternate Synchronous SRAM, 1M L2 99.
Figure 6-5. Asynchronous SRAM, 256K L2 100.
Figure 6-6. Asynchronous SRAM, 512K L2 100.
Figure 6-7. Asynchronous SRAM, 1M L2 101.
Figure 6-8. Synchronous TagRAM, 256K L2 102.
Figure 6-9. Synchronous TagRAM, 512K L2 102.
Figure 6-10. Synchronous TagRAM, 1M L2 102.
Figure 6-11. Asynchronous TagRAM, 256K L2 103.
Figure 6-12. Asynchronous TagRAM, 512K L2 103.
Figure 7-1. ROM Connections 108.
Figure 7-2. ROM Read Timing Diagram 109.
Figure 7-3. ROM Connections 111.
Figure 7-4. ROM Data and Address Flow In Little Endian Mode 112.
Figure 7-5. ROM Data and Address Flow In Big Endian Mode 113.

Table of Contents

xixThe IBM 660 Bridge

Figure 7-6. Remote ROM Connections 114.
Figure 7-7. Remote ROM Read – Initial Transactions 115.
Figure 7-8. Remote ROM Read – Final Transactions 116.
Figure 7-9. Remote ROM Write 119.
Figure 8-1. Conceptual Block Diagram of INT Logic 127.
Figure 9-1. Data Flow Location of 660 Byte Swapper 147
Figure 9-2. One Byte Transfer at Address xxxx xxx0 150.
Figure 9-3. One Byte Transfer at Address xxxx xxx2 151.
Figure 9-4. Two Byte Transfer at Address xxxx xxx0 152.
Figure 9-5. Four Byte Transfer at Address xxxx xxx4 153.
Figure 9-6. Eight Byte Transfer at Address xxxx xxx0 154.
Figure 10-1. BCR Configuration Information Flow 166.
Figure A-1. Switching Levels 210.
Figure A-2. Signal Timing Conventions 212.
Figure A-3. CPU_CLK to SYSCLK Skew 213.
Figure A-4. CPU_CLK Duty Cycle 213.
Figure A-5. CPU_CLK to PCI_CLK Skew 214.
Figure A-6. CPU to Memory Write (Page DRAM) From Bus Idle 221.
Figure A-7. CPU to Memory Write (Page DRAM) Followed by Write Hit 222.
Figure A-8. CPU to Memory Write (Page DRAM) Followed by Write Page Miss and

Bank Miss 223.
Figure A-9. CPU to Memory Write (Page DRAM) Followed by Read Hit 224.
Figure A-10. CPU to Memory Write (Pg. DRAM) Read/Modify/Write From Bus Idle 225. . . .
Figure A-11. CPU to Memory Read (Page DRAM) From Bus Idle 226.
Figure A-12. CPU to Memory Read (Page DRAM) Followed by Read Hit 227.
Figure A-13. CPU to Memory Read (Page DRAM) Followed by Read Miss and

Bank Miss 228.
Figure A-14. CPU to Memory Read (Page DRAM) Followed by Write Hit 229.
Figure A-15. CPU to Bridge Write of Bridge Control Register 230.
Figure A-16. CPU to Bridge Read of ROM 231.
Figure A-17. CPU to Bridge Read of Bridge Control Register 232.
Figure A-18. CPU to Memory Read, L2 Cache w/Async SRAMS, Hit 233.
Figure A-19. CPU to Memory Read, L2 Cache w/Burst SRAMs, Hit 234.
Figure A-20. CPU to Memory Read (EDO DRAM) Cache Miss Followed by Read Hit

Cache Miss w/Async SRAMs 235.
Figure A-21. CPU to Memory Read (EDO DRAM) Cache Miss Followed by Read Hit

Cache Miss w/Burst SRAMs 236.
Figure A-22. CPU to Memory Read (EDO DRAM) Followed by Read Hit 237.
Figure B-1. 653 Package/Pin Electrical Model 242.
Figure B-2. 663 Buffer Package Drawing 247.
Figure B-3. 664 Controller Package Drawing 248.

Table of Contents

xx The IBM 660 Bridge

Tables

Table 2-1. 660 Bridge Signal Descriptions 9.
Table 3-1. TT[0:3] (Transfer Type) Decoding by 660 Bridge 22.
Table 3-2. 660 Bridge Address Mapping of CPU Bus Transactions 23.
Table 3-3. PCI Configuration Addresses 26.
Table 3-4. Types of Snoop Cycles for PCI to Memory Operations 34.
Table 4-1. 660 Bridge Responses to PCI_C/BE[3:0] Bus Commands 40.
Table 4-2. 660 Bridge Mapping of PCI Memory Space 41.
Table 4-3. PCI to Memory Read Burst Sequence Timing 44.
Table 4-4. PCI to Memory Write Burst Sequence Timing 45.
Table 5-1. Memory Timing Parameters 53.
Table 5-2. General Case Aggressive DRAM Timing Summary 63.
Table 5-3. General Case Conservative DRAM Timing Summary 64.
Table 5-4. Special Case DRAM Timing Summary 66.
Table 5-5. Supported SIMM Topologies 73.
Table 5-6. Row Addressing (CPU Addressing) 74.
Table 5-7. Column Addressing (CPU Addressing) 74.
Table 5-8. Row Addressing (PCI Addressing) 74.
Table 5-9. Column Addressing (PCI Addressing) 74.
Table 5-10. Example Memory Bank Addressing Mode Configuration 78.
Table 5-11. Example Memory Bank Starting and Ending Address Configuration 80.
Table 5-12. Bridge Response to Various PCI Write Data Phases 85.
Table 5-13. Bridge Response to Best Case PCI Write Burst 86.
Table 5-14. Bridge Response to Case 2 PCI Write Burst 86.
Table 5-15. Bridge Response to Various PCI Write Bursts 86.
Table 5-16. Check Bit Calculation 87.
Table 5-17. Syndrome Decode 88.
Table 5-18. Typical DRAM Module Maximum Input Capacitance 92.
Table 6-1. L2 Cache Responses to CPU Bus Cycles 94.
Table 6-2. L2 Operations for PCI to Memory Transactions, Non-603 Mode 95.
Table 6-3. L2 Operations for PCI to Memory Transactions, 603 Mode 95.
Table 6-4. Index of SRAM and TagRAM Example Configurations 97.
Table 7-1. ROM Read Data and Address Flow 110.
Table 7-2. ROM Write Data Flow in Little-Endian Mode 112.
Table 7-3. ROM Write Data Flow in Big-Endian Mode 113.
Table 7-4. Remote ROM Read Sequence, CPU Address = FFFX XXX0 117.
Table 7-5. ROM Write BCR Contents 120.
Table 8-1. 664 Pin Reset State 124.
Table 8-2. 663 Pin Reset State 125.

Table of Contents

xxiThe IBM 660 Bridge

Table 8-3. Configuration Strapping Options 125.
Table 8-4. Invalid CPU Bus Operations 133.
Table 8-5. LSSD Test Mode Pin Definitions 142.
Table 9-1. Endian Mode Operations 145.
Table 9-2. CPU LE Mode Address Transform 146.
Table 9-3. 660 Endian Mode Byte Lane Steering 147.
Table 9-4. 660 Bit Transfer 149.
Table 10-1. Direct-Access BCRs With Section References 165.
Table 10-2. Indexed BCR Listing 180.
Table A-1. 663 Buffer Timing By Signal 215.
Table A-2. 664 Controller Timing By Signal 217.
Table B-1. Absolute Maximum Ratings, 660 Bridge 239.
Table B-2. Recommended Operating Conditions, 660 Bridge 240.
Table B-3. 660 Power Dissipation 240.
Table B-4. Typical Thermal Resistance, Junction to Ambient, No Heat Sink 241.
Table B-5. Common Characteristics 241.
Table B-6. Electrical Model Range of Values 242.
Table B-7. 663 DC Characteristics By Signal 243.
Table B-8. 664 DC Characteristics By Signal 244.

About This Book

xxii The IBM 660 Bridge

About This Book

Audience:
This book is designed for engineers who are familiar with the PowerPC family of processors and
the PCI bus.

Reference Material:
� PowerPC 604 User’s Manual, IBM document MPR604UMU-01.
� PowerPC 603 User’s Manual, IBM document MPR603UMU-01.
� PowerPC 603e User’s Manual, IBM document MPR603EUMU-01.
� PowerPC 601 User’s Manual, IBM document MPR601UMU-02.
� PCI Local Bus Specification, Revision 2.1, available from the PCI SIG.
� 32MB SIMM Engineering Specification, IBM document number MMDL02DSU-00.
� 8MB SIMM Engineering Specification, IBM document number MMDL01DSU-00.
� PowerPC Reference Platform Specification, Version 1.1, IBM document

MPRPRPPKG-02.
� The Power PC Architecture, second edition, Morgan Kaufmann Publishers

(800) 745–7323, IBM document MPRPPCARC–02.
� PowerPC System Architecture, Tom Shanley, Mindshare, Inc., Addison–Wesley

Publishing 1–800–822–6339 (Order # 0–201–40990–9).
� IBM PowerPC 603/604 Reference Design Technical Specification, IBM document

MPRH01TSU-02.
� PowerPC 604 SMP Reference Design Technical Specification, IBM document

MPRZAPTSU-04.
� Open Programmable Interrupt Controller (PIC) Register Interface Specification,

Revision 1.2.
� FAQ and application notes are available at

http://www.chips.ibm.com/products/ppc/apnote_files/index.html
The example implementation schematics have been replaced by the IBM PowerPC 603/604 Ref-
erence Design Technical Specification and the PowerPC 604 SMP Reference Design Technical
Specification.

Document Conventions:
Kilobytes, megabytes, and gigabytes are indicated by a single capital letter after the numeric val-
ue. For example, 4K means 4 kilobytes, 8M means 8 megabytes, and 4G means 4 gigabytes.

In this document a word is 32 bits, a double-word is 64 bits, and a half-word is 16 bits.

The term SIMM is often used to mean DRAM module.

Hexadecimal values are identified (where not clear from context) with a lower-case letter h at the
end of the value. For example, 001Fh means a hex value of 1F. Binary values are identified (where
not clear from context) with a lower-case letter b at the end of the value. For example, 0101b
means a 4-bit binary value of 0101.

About This Book

xxiiiThe IBM 660 Bridge

The range statement from 0 to 2M means from and including zero up to (but not including) two
megabytes. The hexadecimal value for the range from 0 to 64K is: 0000h to FFFFh.

The terms asserted and negated are used extensively. The term asserted indicates that a signal
is active (logically true), regardless of whether that level is represented by a high or low voltage.
The term negated means that a signal is not asserted. The # symbol at the end of a signal name
indicates that the active state of the signal occurs with a low voltage level.

Signal ranges are always shown with the most significant number first (SIGNAL[MSb:LSb]). Sig-
nals ranges that have the first number greater than the second number (PCI_AD[31:0]) are
shown in little-endian nomenclature. Those shown with the second number greater than the first
(TT[0:3] for example), are shown using big-endian nomenclature. Signal range names used with-
out an explicit range indication refer to the entire set of signals (PCI_AD means PCI_AD[31:0]).

Acronyms and Abbreviations:
The term 60X CPU and CPU refers to the PowerPC 601, 603, and 604 families of microproces-
sors, generally including ”e” versions.

The term I/O Bridge or I/O Bus Bridge refers to a PCI master that serves to connect the PCI bus
to a PC-standard bus like the ISA, EISA, or MicroChannel buses.

The term write-back means the same as copy-back in reference to a mode of cache operation.

The IBM 27-82660 is generally referred to as the Bridge, the 660 Bridge, or the 660; likewise, the
IBM27-82664 is generally called the 664 Controller or the 664. Also, the IBM27-82663 is generally
called the 663 Buffer or the 663.

Contributors:
This document was written and edited by Ben Drerup and Dale Elson, with substantial contribu-
tions by Robert Stevens, Sean Curry, and the Kauai-Lanai design, simulation, and testing team.

About This Book

xxiv The IBM 660 Bridge

Overview

1The IBM 660 Bridge

60X CPU
Optional

CPU Bus Device

Control

Data (72)DRAM
System
Memory

Control

Address (32)

Data (72)

Control

PCI_AD[31:0]

60X CPU BUS

PCI BUS

System ROM
(Flash or EPROM)

System Control
and Status

ROM Control

PCI
DEVICES

PCI to ISA
Bridge

SRAM
Cache

Memory

Control

Address (12)

Figure 1-1. IBM 660 Bridge Chip Set in a Typical System Configuration

Tag RAM
Control

IBM27-82664

Controller
IBM27–82663

Buffer

System ROM
(Flash or EPROM)

ISA Bus

Control

Section 1
Overview

This section summarizes the features of the 660 Bridge—including microprocessor support,
the memory controller, the PowerPC CPU bus, the PCI expansion bus, the L2 cache
controller, the system ROM controller, the bridge control register set, and the interrupt
and exception handler.

� Complies with the PowerPC Reference Platform specification, versions 1.0 & 1.1
� Complies with the PCI Revision 2.0 & 2.1 specification.

1.1 Packaging and Technology
� Designed in IBM YASU 3.3 to 3.6V CMOS4LP logic which allows I/Os that are com-

patible with 3.3V and 5.0V logic
� 208-pin (664) and 240-pin (663) low-cost plastic wire-bond flatpacks
� Operates from 3.0V to 3.78V, allowing either 3.3V or 3.6V power sources.

1

Overview

2 The IBM 660 Bridge

1.2 Microprocessor Support
� Supports PowerPC 601, 603, 603e(v), 604, and 604e(v) microprocessor families
� Supports CPU bus speeds up to 66Mhz. Internally, the CPU can run at a faster rate
� Directly supports two CPU bus masters
� Supports little-endian and big-endian operating modes
� 64 bit wide CPU data bus and 32 bit wide CPU address bus
� Utilizes address bus pipelining
� Dual bus structure between CPU bus and PCI bus
� Data path latches enhance effective bandwidth
� Supports all clock modes for CPUs (internal CPU clock to CPU bus)
� The MCP# signal on the 603 and 604 is supported for error reporting
� For reduced read latency, the no-DRTRY# mode of the 604 is supported
� The 603 no-DRTRY# mode is also supported except when the 603 is in 1:1 mode
� The 601 is always in DRTRY# mode
� Error reporting is by means of TEA# or MCP# on the 603 and 604
� Error reporting is by means of TEA# and INT_CPU# on the 601
� The 604 store multiple 8-byte transfer is supported to the PCI bus

1.3 L2 Cache Controller
� Controls external burst-mode or asynchronous SRAMs for cached data
� Controls external tag RAMs for tag information
� Look-aside, direct-mapped, and write-through protocols
� Supports all cache sizes
� Externally determined cache size
� Responds to snoop cycles for PCI reads and writes of system memory
� Option to check parity of data stored in L2 on read cycles
� L2 cache controller can be disabled if external L2 cache is used.

1.4 PCI Expansion Bus
� PCI bus frequency up to 33 MHz. CPU:PCI bus ratios of 1:1 and 2:1 supported.
� 32-bit multiplexed PCI address and data path
� Support for I/O bus bridge (ISA, EISA, MicroChannel�)
� PCI to DRAM access—with L1 and L2 cache snooping
� Support for memory mapping of 60X address space into PCI transactions
� Supports ISA bus master access to system memory with ISA bridge on the PCI bus
� Supports contiguous ISA I/O and non-contiguous ISA I/O mappings (non-contigu-

ous I/O so operating systems can memory-protect 32-byte blocks of ISA I/O space)
� Uses external PCI arbiter (usually from the I/O bridge chip)
� Support for PCI resource locking of system memory
� Supports type 0 and type 1 PCI configuration cycles.

1

Overview

3The IBM 660 Bridge

1.5 Memory Controller
� Supports memory operations for the PowerPC Architecture�
� Data bus path 72 bits wide—64 data bits and eight bits of optional ECC or parity data
� Supports Eight SIMM sockets, with empty SIMM sockets allowed at any position
� Eight RAS# outputs, eight CAS# outputs, and two write-enable outputs
� Supports industry-standard 8-byte (168-pin) SIMMs of 8M, 16M, 32M, 64M, and

128M that can be individually installed for a minimum of 8M and a maximum of 1G
� Supports industry-standard 4-byte (72-pin) SIMMs of 4M, 8M, 16M, 32M, 64M, and

128M that must be installed in pairs for a minimum of 8M and a maximum of 1G
� Programmable memory timings enable optimization of DRAM timings for a large va-

riety of CPU bus frequencies, DRAM speeds, and system topologies
� Mixed use of different size SIMMs, including mixed 4-byte and 8-byte SIMMs
� Support for parity, ECC, or neither

� Generates ECC or even parity, eight bits for eight bytes, on all memory writes
� Checks ECC or parity eight-bytes wide on all memory reads
� Detects and corrects all single-bit errors in ECC mode
� Detects all two-bit errors in ECC mode

� Page-mode access—fast page-mode is supported
� Support for extended-data-out (EDO) DRAM (hyper-page mode) for higher band-

width memory performance
� Provides row-address and column-address multiplexing for SIMMs requiring:

� 10 row by 10 column
� 11 row by 10 column
� 12 row by 10 column and 11 row by 11 column (supported simultaneously)
� 12 row by 11 column
� 12 row by 12 column

� Non-interleaved memory access operation
� Programmable DRAM refresh timer with low-power mode
� Memory refresh address counter
� Burst-mode memory address generation logic

� 32-byte CPU bursts to and from memory
� Variable length PCI burst to and from memory

� Little-endian and big-endian modes
� Supports ISA master to DRAM access

Minimum Cycle Times For Pipelined CPU to Memory Transfers at 66 MHz
Responding Device Read Write

L2 (9ns Synchronous SRAM) –2–1–1–1 Snarf

L2 (15ns Asynchronous SRAM) –3–2–2–2 Snarf

Page DRAM (70ns) Pipelined –4–4–4–4 –3–3–4–4

EDO DRAM (60ns) Pipelined –5–3–3–3 –3–3–3–3

Other minimum timings at 66MHz CPU and 33MHz PCI and 70ns page mode DRAM:

� PCI to memory read:
8-1-1-1 -1-1-1-1 7-1-1-1 -1-1-1-1 7-1-1-1 -1-1-1-1 ... 7-1-1-1 -1-1-1-1 (PCI clocks)

� PCI to memory write:
5-1-1-1 -3-1-1-1 3-1-1-1 -3-1-1-1 3-1-1-1 -3-1-1-1 ... 3-1-1-1 -3-1-1-1 (PCI clocks)

1

Overview

4 The IBM 660 Bridge

1.6 System ROM Controller
� Supports ROM attached to PCI_AD bus
� Supports 8-bit flash ROM

� Provides 8-bit to 64-bit conversion on reads
� 21-bit address support for up to 2M addressable ROM

� Flash ROM write cycles generated for in-system flash ROM writes
� Flash ROM write lock-out support
� Single-beat (one-byte to eight-byte) read cycle
� Single-beat (one-byte) write cycle
� Pseudo burst-mode (32-byte) read cycle.

1.7 The Bridge Control Register Set
� Implemented PCI register model
� Includes 650 Bridge-compatible registers
� Configuration through register 0CF8h and 0CFCh configuration method
� Chip set options are configured in the register set
� Allows extensive and flexible programming of the 660.

1.8 Interrupt and Exception Handler
� 603/604 error reporting by means of TEA# or MCP#
� 601 error reporting by means of TEA#, or INT_CPU# and TEA#
� Supports error address and control capture registers
� Reports the following types of errors:

� Memory parity or ECC error
� CPU illegal transfer
� PCI bus parity error
� CPU data bus parity error
� PCI cycle abort
� L2 cache parity error
� Write to locked flash ROM
� Memory access out of range

� Drives CPU data lines to all one-bits on out-of-range memory reads
� PCI configuration read cycles return all one-bits when no device responds.

1.9 Part Identification, IBM27-82660
The release version of the 660 is revision 2.2.

IBM27-82660 IBM27-82663 (663 Buffer) IBM27-82664 (664 Controller)

Chipset Revision Revision Package Mark-
ing

Revision Package Mark-
ing

1.0 1.0 94G0235 1.0 94G0232

1.1 1.0 94G0235 1.1 94G0176

2.0 2.0 94G0178 1.1 94G0176

2.2 2.0 94G0178 1.2 20H2842

1

Overview

5The IBM 660 Bridge

1.10 Improvements Over 650 Bridge
� Includes L2 cache controller that supports synchronous and asynchronous SRAMs
� System performance improvements:

� Programmable memory controller optimizes to memory speed and topology
� Support for high-bandwidth memory technology (extended-data-out DRAM)
� Up to 1G addressable DRAM
� Utilizes CPU bus address pipelining
� Dual bus structure between CPU bus and PCI bus
� Data path latches provide bandwidth improvements

� ECC memory support
� Supports 603 in 1-to-1 mode (60X internal clock vs. CPU bus)
� The 604 store multiple 8-byte transfer is supported to the PCI bus
� Low-cost packaging—a 208-pin and a 240-pin plastic quad flatpack
� Uses an external PCI bus arbiter
� Provides basic multi-processor support
� Supports type 1 PCI configuration cycles in addition to type 0
� Implements Expanded error control and reporting
� Provides a DRAM refresh timer
� Implements PCI-compatible configuration register set.

1.11 Chipset Changes From Prerelease Versions
This section describes changes that were made to the 660 bridge during development,
especially as reflected in the differences between this document (SC09-3026-00) and
A previous revision (MPR660UMU-01) of the 660 User’s Manual. Many of these items
were noted in The IBM27-82660 Revision 2.1 Product Update (MPR660ESU-04). At the
time of the printing of this document, there were no known errata associated with the
660.

1.11.1 CPU_RDL_OPEN Resistor
Add a 200� series resister to the CPU_RDL_OPEN net between the 664 and the 663.
See section 2.2.

1.11.2 Parity Error Detection
Parity errors on the CPU and memory data busses are only detected by the 663 if there
are an odd number of bit errors. All single bit errors are detected. See section 5.4.1.

1.11.3 ECIWX/ECOWX With 603
ECIWX and ECOWX are not supported for use in systems containing a 603 or 603e that
is running at a 1:1 or 3:2 CPU core:bus clock ratio. These instructions are supported
for systems featuring a 601, 604 or 604e CPU.

1.11.4 Error Simulation Registers
Error simulation BCRs 1 and 2 are not supported, and have been removed from the BCR
section.

1

Overview

6 The IBM 660 Bridge

1.11.5 DRAM Performance
The DRAM performance and memory controller programming guidelines in the DRAM
section have changed, as shown especially in section 5.2, DRAM Performance.

A special case has been identified which is described in section 5.2.4. Designers may
wish to avoid this case or to incorporate a performance enhancement strategy.

1.11.6 CAS# Pulse Width
Setting the CAS# pulse width to four CPU clocks is not supported. See the Memory Timing
Register 2 description (section 10.3.29).

1.11.7 CPU:PCI Bus Ratio
Operation of 660 systems at a CPU:PCI bus ratio of 2:1 is supported. Operation at 3:1
is not supported, and has been removed from the Introduction (section 1.4) and PCI Bus
(section 4) sections.

Operation at 1:1 is supported only with the use of external logic, and only while the PCI
arbiter is programmed to not park the PCI bus on the 660 (see section 4.6).

1.11.8 Parking the PCI Bus on the 660
If the CPU:PCI clock ratio is 2:1, and the PCI arbiter is programmed to park the PCI
bus on the 660 (see section 4.1), and the 660 is in one of the following configurations:

1. Configuration 1:
1.1 Possible 70ns timings (see section 5.2.1), of:

1.1.1 RAS# precharge (RP) = 4 (CPU clocks), and
1.1.2 RAS# to CAS# delay (RCD) = 3, and
1.1.3 CAS# pulse width (CPW) = 3. And

1.2 L2 type set to Asynchronous (see section), or
2. Configuration 2:

2.1 Possible 70ns timings (see section 5.2.1), of:
2.1.1 RAS# precharge (RP) = 4, and
2.1.2 RAS# to CAS# delay (RCD) = 3, and
2.1.3 CAS# pulse width (CPW) = 3. And

2.2 ECC memory checking enabled (see section), or
3. Configuration 3:

3.1 Possible 60ns timings (see section 5.2.1), of:
3.1.1 RAS# precharge (RP) = 3, and
3.1.2 RAS# to CAS# delay (RCD) = 3, and
3.1.3 CAS# pulse width (CPW) = 3. And

3.2 L2 type set to Asynchronous (see section), and
3.3 ECC memory checking enabled (see section),

then program the PCI arbiter to not park the PCI bus on the 660. This typically results
in adding two PCI clocks to the latency of CPU to PCI transactions, and typically reduces
the latency of PCI to memory accesses by one PCI clock.

1

Overview

7The IBM 660 Bridge

1.11.9 CPU Data Bus Parity With 64-Bit L2
When using 64-bit L2 SRAM, CPU bus parity error detection and L2 cache parity error
detection must be disabled. No changes to operation with 72-bit SRAM or no SRAM.
See section 6.4, L2 Error Checking Support.

1.11.10 ECC Single-Bit Error Counter BCR(B8h)
The bit ordering of this BCR is reversed. See section 10.3.33, Single-Bit Error Counter
Register.

1.11.11 663 Pinout
The pinout of the 663 was rearranged to reduce ground bounce effects by distributing simul-
taneously switched signals more evenly around the perimeter of the device.

1.11.12 Added Signals
DBG# was added to the 664 Controller to support a 604 in fast L2 mode. This change
is documented in the MPR660UMU-01 release of the 660 Bridge User’s Manual, and
is noted here for completeness.

PCI_TRDY# was connected to the 663 to improve performance.

1.11.13 Remote ROM
Remote ROM is supported as detailed in section 7. Information about remote ROM operation
was removed from the -02 version of this document. All references to remote ROM operation
have been restored to the documentation.

1.11.14 Power Management
Power management is not supported. Power management has been removed from the
Additional Information section. The description of the Bridge Chipset Options 2 BCR (sec-
tion10.3.36) has been changed. The Suspend Refresh Timer Register BCR(D3:D2) has
been removed.

1.11.15 VI Curves
VI curves for the output drivers are not supplied by IBM. SPICE model information is
available from IBM under Non-Disclosure Agreement. Contact your IBM technical represen-
tative for more information.

1.11.16 CPU Data Bus Resistors
To improve output signal quality, 33� series resistors were added to the 663 buffer connec-
tions to the CPU data bus lines CPU_DATA[0:63] and CPU_DPAR[0:8]. Each resister
is placed between the 663 pin and all other CPU bus agent(s) attached to the net. For
maximum benefit, place the series resistors as close to the 663 package as is feasible.

1

Overview

8 The IBM 660 Bridge

Figure 2-1. 660 Bridge Pin Connections

CPU_CLK
CPU_DATA[0:63]
CPU_DPAR[0:7]

PCI_AD[31:0]
PCI_IRDY#

MEM_CHECK[7:0]
MEM_DATA[63:0]

MIO_TEST
TEST#

AACK#
ARTRY#
CPU_ADDR[0:31]
CPU_BUS_CLAIM#
CPU_CLK
CPU_GNT1#
CPU_GNT2#
CPU_REQ1#
CPU_REQ2#
DBG#
DPE#
GBL#
INT_CPU#
MCP#
SHD#
TA#
TBST#
TEA#
TS#
TSIZ[0:2]
TT[0:4]
XATS#

CAS[7:0]#
MA[11:0]
RAS[7:0]#
WE[1:0]#

SRAM_ADS#
SRAM_ALE

SRAM_CNT_EN#
SRAM_OE#
SRAM_WE#
TAG_CLR#

TAG_MATCH
TAG_VALID
TAG_WE#

IGN_PCI_AD31
INT_REQ

MIO_TEST
NMI_REQ
RESET#

ROM_OE#
ROM_WE#

STOP_CLK_EN#
TEST#

6
6
3

B
U
F
F
E
R

6
6
4

C
O
N
T
R
O
L
L
E
R

CPU

PCI

DRAM

External
PCI

60X CPU

MISC

DRAM

L2 Cache

Interconnects
AOS_RR_MMRS
C2P_WRL_OPEN
CPU_DATA_OE#
CPU_PAR_ERR#
CPU_RDL_OPEN

CRS_C2PWXS
DUAL_CTRL_REF

ECC_LE_SEL
MEM_BE[3:0]

MEM_DATA_OE#
MEM_ERR#

MEM_RD_SMPL
MEM_WRL_OPEN

MWS_P2MRXS
PCI_AD_OE#
PCI_EXT_SEL
PCI_OL_OPEN
PCI_OUT_SEL

ROM_LOAD
SBE#

PCI_AD[31:0]
PCI_C/BE[3:0]#
PCI_CLK
PCI_DEVSEL#
PCI_FRAME#
PCI_GNT#
PCI_IRDY#
PCI_LOCK#
PCI_PAR
PCI_PERR#
PCI_REQ#
PCI_SERR#
PCI_STOP#
PCI_TRDY#

PCI_TRDY#

1

Pin Descriptions

9The IBM 660 Bridge

Section 2
Pin Descriptions

This section describes the connectivity of the 660 Bridge. See Figure 2-1.
The terms asserted and active indicate that a signal is logically true, regardless of the voltage
level. The terms negated, inactive, and deasserted mean that a signal is logically false.

The # symbol at the end of a signal name listed in Table 2-1 indicates that the active or as-
serted state of the signal occurs with a low voltage level. Otherwise the signal is active at a
high voltage level.

Pins which are marked s/t/s are sustained tri-state. This is an active low tri-state signal owned
and driven by one agent at a time. The agent that drives the s/t/s pin active low must actively
drive it high before letting it float. On the PowerPC bus, this is known as the restore function.
On the PCI bus, the agent must drive the signal high for one clock and then tristate it. A new
agent cannot drive the pin any sooner than one clock after the previous owner tri-states it.
An external pull-up is required to maintain the inactive state.
Appendix C contains numeric and alphabetic lists of the pins in the 663 Buffer and 664 Con-
troller. These lists include pin numbers.

2.1 Signal Description Table

Table 2-1. 660 Bridge Signal Descriptions

Signal Name 663 664 Description

CPU Bus Interface
AACK# — I/O

109
CPU address acknowledge. 660 asserts AACK# to signal the end of the cur-
rent address tenure.

AACK# is an input to the 664 when a CPU bus target claims the current
transaction by means of CPU_BUS_CLAIM#.

ARTRY# — I/O
110

Address retry. ARTRY# is asserted by a CPU bus device to signal that the
current address tenure needs to be rerun at a later time.

The 660 samples ARTRY# on the second clock after TS# is sampled active.

The 660 will only assert ARTRY# on the clock after it asserts AACK# (during
a PCI retry).

2

Pin Descriptions

The IBM 660 Bridge10

Table 2-1. 660 Bridge Signal Descriptions (Continued)

Signal Name Description664663

CPU Bus Interface
CPU_ADDR[0:31] — I/O

see
App
C

CPU address bus. Represents the physical address of the current transac-
tion. Is valid from the bus cycle in which TS# is asserted through the bus
clock in which AACK# is asserted.

CPU_ADDR is an input to the 664 on transactions initiated by a CPU bus
master. The the CPU bus target responds with AACK# when the addressmaster. The the CPU bus target responds with AACK# when the address
is no longer required, ending the address tenure.

CPU_ADDR is an output from the 664 on system memory transactions initi-
ated by a PCI bus master device. The 664 initiates an address tenure to
snoop the address requested by the PCI bus master.

CPU_BUS_CLAIM# — I
132

CPU bus claim. This signal is asserted by a CPU bus target to claim a CPU
bus memory transaction. It inhibits the 664 from driving AACK, TA#, TEA#,
and the CPU data bus lines.

This signal is sampled by the 664 on the second CPU_CLK after TS# is
sampled active. CPU bus targets can only map to system memory space
(0 to 2G) and only to memory space that is not cached by the L2. The L2
caches as much of the space from 0 to 2G as is populated by DRAM. So,
if 8M is installed starting at 0, the CPU_BUS_CLAIM# can be asserted from
8M to 2G. If the internal L2 is disabled, then the entire 0 to 2G memory space
can be claimed by CPU_BUS_CLAIM#.

CPU_CLK I
157

I
121

CPU bus clock. The 660 Bridge supports up to a 66Mhz CPU bus clock fre-
quency. The CPU_CLK frequency must be an integer multiple (1x, 2x, or 3x)
of PCI_CLK.

CPU_DATA[0:63] I/O — The 64-bit 60X CPU data bus. CPU_DATA[0] is the most-significant-bit.
CPU_DATA[0:31] connect to the 60X CPU signals DH[0:31].
CPU DATA[32:63] connect to the 60X CPU signals DL[0:31]. Connect a

see App C
CPU_DATA[32:63] connect to the 60X CPU signals DL[0:31]. Connect a
33� series resister to each CPU_DATA net between the 663 and all other
CPU bus agents. Place these resisters as close to the 663 as possible.

CPU_DPAR[0:7] I/O — 60X CPU data parity bus. The most-significant-bit is CPU_DPAR[0], the
least-significant-bit is CPU DPAR[7]

see App C
least-significant-bit is CPU_DPAR[7].

CPU_GNT1# — O
134

CPU bus grant. CPU_GNT1# is the grant line for the CPU_REQ1# request
line.

CPU_GNT2# — O
135

CPU bus grant. CPU_GNT2# is the grant line for CPU_REQ2#.

CPU_REQ1# — I
127

CPU bus request. CPU_REQ1# is the request line for the primary CPU on
the CPU bus.

CPU_REQ2# — I
128

CPU bus request. CPU_REQ2# is the request line for a secondary CPU bus
master, such as a secondary CPU or other device.

DBG# — O
140

CPU data bus grant. The 660 Bridge asserts DBG# (while ARTRY# is inac-
tive) to signal that the requesting CPU may take ownership of the CPU data
bus.
This signal must be connected to the CPU only in the case of a 604 using
fast L2 data streaming mode. Else this signal may be either connected to
the CPU or a no–connect at the 660 Bridge and pulled low at the CPU.

2

Pin Descriptions

11The IBM 660 Bridge

Table 2-1. 660 Bridge Signal Descriptions (Continued)

Signal Name Description664663

CPU Bus Interface
DPE# — I

133
Data parity error from CPU. The processor checks data parity and reports
any data beat with bad parity two CPU bus clocks after the TA# for that data
beat. CPU bus parity is one odd parity bit for every byte—eight data parity
bits total.

GBL# — O
t/s

120

Global. This signal is asserted during snoop operations to indicate that CPU
bus masters must snoop the transaction. The 660 Bridge does not monitor
GBL# (see Section 6.2).

INT_CPU# — O
139

CPU interrupt. The 664 asserts INT_CPU# to signal the processor to run an
interrupt cycle. The software is expected to run a read PCI interrupt ac-
knowledge transaction in response to INT_CPU# being asserted.

The 660 Bridge can assert INT_CPU# in response to an INT_REQ input.
In 601 error reporting mode, the 660 can assert INT_CPU# in response to
various error conditions.

MCP# — O
o/d
138

Machine check pin. When a 603 or 604 CPU is used with the 664. this pin
is driven to notify the CPU of a system error from a source not affiliated with
the current transaction. The 601 does not implement the MCP# pin, there-
fore the 664 drives an INT_CPU# to the CPU, and terminates the resulting
PCI interrupt acknowledge request with TEA#.

 The 664 asserts MCP# in the event of a catastrophic or unrecoverable sys-
tem error. This signal is asserted for two CPU bus cycles.

SHD# — O
t/s

141

Shared. The function of this pin is to restore the SHD# net to a high state
after it has been asserted (the same as ARTRY# restore). The restore is
enabled by means of bit 4 of the memory controller timing programming
register (8000 0821h).

TA# — I/O
111

CPU bus transfer acknowledge. TA# signals that a data transfer has oc-
curred. For every CPU clock that TA# is asserted, a data beat completes.
For a single-beat cycle, TA# is only one clock. For a four–beat burst, the data
tenure is complete on the fourth cycle in which TA# is asserted.

TBST# — I/O
144

Transfer burst. TBST# indicates a burst transfer of four 64-bit double-words
on the 60X CPU bus.

The 664 does not assert TBST# during PCI to memory snoop cycles.

TEA# — O
t/s

137

CPU bus transfer error acknowledge. Assertion of TEA# causes a machine
check exception in the CPU. Assertion of TEA# terminates the current data
tenure. The 664 asserts TEA# in the event of a catastrophic or unrecover-
able system error.

TEA# can be masked by setting the mask TEA# bit in the bridge control reg-
isters.

If XATS# is asserted for a PIO cycle, the 664 asserts TEA# regardless of
the condition of MASK_TEA#.

TS# — I/O
143

CPU bus transfer start. TS# is asserted low for one CPU bus clock to signal
a valid address on the CPU_ADDR lines to start a transaction.

TS# is an input to the 664 when a CPU bus master initiates a CPU bus trans-
action.

TS# is an output of the 664 when it initiates a snoop cycle on behalf of a PCI
bus master accessing system memory.

2

Pin Descriptions

The IBM 660 Bridge12

Table 2-1. 660 Bridge Signal Descriptions (Continued)

Signal Name Description664663

CPU Bus Interface
TSIZ[0:2] — I/O

145
146
147

CPU bus transfer size—number of bytes. The TSIZ lines are valid with the
CPU_ADDR lines.

The 660 ignores TSIZ[0:2] when TBST# is asserted for 32-byte bursts.

TT[0:4] — I/O

See

Transfer type. Indicates the type of transaction currently in progress. The
TT lines are valid with the CPU_ADDR lines.See

App
C

XATS# — I
129

Extended address transfer start. When asserted, this signal indicates that
the 60X CPU is performing I/O controller interface (PIO) operations. PIO129 the 60X CPU is performing I/O controller interface (PIO) operations. PIO
operations are not supported by the 660 Bridge.

If XATS# is asserted the 664 generates a TEA# error to the 60X CPUIf XATS# is asserted, the 664 generates a TEA# error to the 60X CPU
(regardless of the setting of MASK_TEA#).

PCI Bus Interface
PCI_AD[31:0] I/O I/O PCI address/data bus. Address and data are multiplexed on the same pins.

A PCI bus transaction consists of an address tenure followed by one or more
data tenures. The address tenure is defined as one PCI bus clock in duration
and is coincident with the clock in which PCI_FRAME# is first asserted. Af-

See App. C
and is coincident with the clock in which PCI_FRAME# is first asserted. Af
ter the first clock, the PCI_AD pins carry data.

The PCI_AD lines are driven by the initiation during the address phase, and
by the originator of the data during the data phases.

PCI_C/BE[3:0]# — I/O
t/s
3
4
5
6

C (bus command) and BE (byte enable) multiplexed lines. During a PCI
address phase this is a bus command. During a PCI data phase,
PCI_C/BE[3:0]# are active low byte enables—one bit for each of the four
bytes on the PCI bus.

During a PCI data tenure, PCI_C/BE[3]# applies to PCI_AD[31:24]—data
byte three. If no bus transaction is in progress, then the current PCI bus
master must drive the PCI_C/BE[3:0]# pins.

C/BE[3:0]# are always driven by the PCI bus master.

PCI_CLK — I
123

PCI bus clock. The PCI bus clock is required to be within PCI bus specifica-
tions. The frequency of the CPU bus clock must be either 1x or 2x the PCI
bus clock frequency. The 660 Bridge determines the CPU to PCI bus fre-
quency ratio following the rising edge of RESET#.

PCI_DEVSEL# — I/O
s/t/s
204

PCI device select. PCI_DEVSEL# is driven by a PCI target that has de-
coded an address and control bit encoding and claims the transaction.
When another PCI bus master initiates a PCI memory transaction, the 664
drives PCI_DEVSEL# as the target of the transaction whenever the address
is from 0 to 2G and within the range of physical memory (the installed DRAM
space).

PCI_FRAME# — I/O
s/t/s
200

PCI Frame. The current PCI bus master drives PCI_FRAME#.
PCI_FRAME# signals the beginning of the address tenure on the PCI bus
and the duration of the data tenure. PCI_FRAME# is deasserted to signal
the final data phase of the transaction.

PCI_GNT# — I
54

PCI bus grant. The PCI bus arbiter asserts PCI_GNT# in response to the
664 asserting PCI_REQ# to request the PCI bus.

2

Pin Descriptions

13The IBM 660 Bridge

Table 2-1. 660 Bridge Signal Descriptions (Continued)

Signal Name Description664663

PCI Bus Interface
PCI_IRDY# I

167
I/O
s/t/s
201

PCI initiator ready. PCI_IRDY# is driven by the current PCI bus master.
Assertion of PCI_IRDY# indicates that the PCI initiator is ready to complete
this data phase.

PCI_LOCK# — I
53

PCI lock. This signal is used to allow PCI masters to establish a resource
lock of one cache line of system memory. The 660 Bridge is never a locking
master, but it enforces PCI locks of system memory.

PCI_PAR — I/O
t/s
7

PCI parity. Even parity across PCI_AD[31:0] and the PCI_C/BE[3:0]# lines.
PCI_PAR is valid one PCI bus clock after either an address or data tenure.
The PCI device that drove the PCI_AD lines is responsible for driving the
PCI_PAR line on the next PCI bus clock. The 664 checks and drives PCI
parity.

PCI_PERR# — I/O
s/t/s
10

PCI parity error. PCI_PERR# is asserted by the PCI device receiving the
data. PCI_PERR# is sampled on the second PCI clock after the PCI_AD
lines are sampled.

PCI_REQ# — O
58

PCI bus request. The 664 asserts PCI_REQ# to the PCI bus arbiter to re-
quest the PCI bus for a transaction initiated by a CPU bus master.

PCI_SERR# — O
s/o/
d
71

PCI system error. PCI_SERR# is asserted for one PCI clock when a cata-
strophic failure is detected when the 660 Bridge is a PCI target. PCI_SERR#
is not monitored by the 660 Bridge. The 660 asserts PCI_SERR# for certain
PCI bus errors.

PCI_STOP# — I/O
s/t/s
203

PCI stop. The target of the current PCI transaction can assert PCI_STOP#
to indicate that the PCI target wants to end the current transaction. Data
transfer can still take place if the target also asserts PCI_TRDY#, but that
is the final data tenure.

PCI_TRDY# I
168

I/O
s/t/s
202

PCI target ready. The target of the current PCI transaction drives
PCI_TRDY# to indicate that the PCI target is ready. Data transfer occurs
when both PCI_TRDY# and PCI_IRDY# are asserted.

DRAM Interface
CAS[7:0]# — O Column address selects. CAS[0]# selects memory byte lane 0

(MEM_DATA[7:0]).

MA[11:0] — O Memory address. MA[11] is the most significant bit.

MEM_CHECK[7:0] I/O — Memory ECC/parity bus. MEM_CHECK[0] is always the memory check bit
for memory byte lane 0 (MEM_DATA[7:0]). ECC or even parity is

t d d itt it l ECC itSee App C

y y ([]) p y
generated and written on memory write cycles. ECC or even parity across
eight bytes is checked on memory read cycles when enabled.

2

Pin Descriptions

The IBM 660 Bridge14

Table 2-1. 660 Bridge Signal Descriptions (Continued)

Signal Name Description664663

DRAM Interface
MEM_DATA[63:0] I/O — Memory data bus. MEM_DATA[63:56] is always called memory byte lane

0 and is accessed using CAS[7]#. MEM_DATA[7,15,...63] are always the
most significant bit in their memory byte lane.

In BE mode, MEM_DATA[63:56] is steered to/from CPU_DATA[56:63]. In
LE mode, MEM_DATA[63:56] is steered to/from CPU_DATA[0:7].

Most Mem
MEM Signif. Byte Corresponding CPU Data [] in:
DATA Bit Lane CAS# BE mode LE mode

63:56 63 7 7 56:63 0:7
See App C 55:48 55 6 6 48:55 8:15

47:40 47 5 5 40:47 16:23

39:32 39 4 4 32:39 24:31

31:24 31 3 3 24:31 32:39

23:16 23 2 2 16:23 40:47

15:8 15 1 1 8:15 48:55

 7:0 7 0 0 0:7 56:63

RAS[7:0]# — O

See

Row address selects.

See
App
C

WE[1:0]# — O
175
176

DRAM write enables. WE[1]# and WE[0]# are the same and are used to
avoid the need for external buffers.

SRAM Interface
SRAM_ADS#/
ADDR0

— O
124

SRAM address strobe/address 0. Enables latching of new address for the
SRAMs when burst SRAMs are used. Least significant address bit when
asynchronous SRAMs are used.

SRAM_ALE — O
119

SRAM address latch enable. Enables latching of address for the SRAMs to
support address pipelining when asynchronous SRAMs are used. This sig-
nal is always high when burst SRAMs are used.

SRAM_CNT_EN#/
ADDR1

— O
125

SRAM count enable/address 1. Enables incrementing of burst address if
burst SRAMs are used. Next to least significant address bit when asynchro-
nous SRAMs are used.

SRAM_OE# — O
117

SRAM output enable.

SRAM_WE# — O
118

SRAM write enable.

TagRAM Interface
TAG_CLR# — O

116
Tag RAM clear. When asserted, all tags are forced to the invalid state. See
the L2 Invalidate BCR.

TAG_MATCH — I
142

Tag RAM match indication (cache hit). This signal is asserted for a cache
hit. It is usually an active high, open drain output of the tag RAM(s).

2

Pin Descriptions

15The IBM 660 Bridge

Table 2-1. 660 Bridge Signal Descriptions (Continued)

Signal Name Description664663

TagRAM Interface
TAG_VALID — O

115
Tag valid bit. The 660 asserts TAG_VALID to mark the current block valid
in the tag. It is negated during tag writes in response to PCI write hits, etc.
Connect to the ”valid” input of the tags.

TAG_WE# — O
114

Tag RAM write enable. Asserted to write to the Tag RAM.

Miscellaneous
IGN_PCI_AD31 — I

57
Ignore PCI_AD[31]. This signal is asserted when the Intel� SIO is the PCI
master. IGN_PCI_AD31 is used to allow ISA bus masters to access system
memory when the SIO is used as the ISA bridge. The 664 expects the
memory address to appear in the range of 0 to 16M (it actually works over
the entire 0-2G range) during the address phase when IGN_PCI_AD31 is
asserted and then maps the access to system memory at 0 to 16M. It is
usually generated by ANDing all of the active PCI bus grants (see note 1).
IGN_PCI_AD31 must be valid on the PCI clock before FRAME# is sampled
active.

INT_REQ — I
55

Interrupt request. This signal from the interrupt controller is synchronized
with the CPU bus clock and passed through to the CPU as an interrupt on
INT_CPU#.

MIO_TEST I
156

I
154

Chip level test. Deassert low for normal operation. Do not casually assert
this signal.

NMI_REQ — I
56

Non–maskable interrupt request. When detected active (normally from the
ISA bridge), an error is reported to the CPU.

RESET# — I
156

Power–On–Reset. When this pin is low, all latches in the 664 enter a pre–
defined state. Clocking mode is re-sampled, and ROM write lockout is
cleared.

ROM_OE# — O
47

ROM output enable. ROM_OE# enables direct-attached ROM. This signal
is always high during remote ROM operation.

ROM_WE# — O
60

ROM write enable. Write enable for flash ROM for direct-attach ROM. This
signal is always high during remote ROM operation.

STOP_CLK_EN# — I
151

Prepares the 660 for stopping the CPU_CLK during power management.
Tie this pin inactive (high).

TEST# I
155

I
155

Test mode. Pull to logic high during normal operation. Do not casually assert
this signal.

Note 1
GNT 0

.

.
GNT n

IGN_PCI_AD31

2

Pin Descriptions

The IBM 660 Bridge16

Table 2-1. 660 Bridge Signal Descriptions (Continued)

Signal Name 663 664 Description

Miscellaneous — Signals Supported for Intra-Chipset Use Only
AOS_RR_MMRS I

166
O
69

All Ones Select/ROM Remote/Mask MEM_RD_SMPL. This signal is used
to force the data bus to 64 one-bits when the CPU reads memory of PCI
space that is unoccupied. To force all ones, this signal must be asserted on
the CPU_CLK that the CPU read latch samples data.

While ROM_LOAD is asserted, this signal is used to determine the location
of the ROM. Since ROM_REMOTE is deasserted, it indicates that the ROM
is locally on the PCI bus. In this case, ROM data always arrives on
PCI_AD[31:24].

While ROM_REMOTE is asserted, the ROM is assumed to be on a tertiary
bus (such as the ISA bus). In this case, ROM data arrives like all other one-
byte PCI targets—first byte on PCI_AD[7:0], second byte on PCI_AD[15:8],
etc.

When the PCI is burst reading memory, MASK_MEM_RD_SMPL is as-
serted after the first MEM_RD_SMPL. It then stays asserted until the PCI–
to–MEM read latch is empty.

Note: On PCI burst reads of memory, the PCI–to–MEM read latch keeps
getting refilled as long as data from the memory is available before the PCI
uses it up.

C2P_WRL_OPEN I
154

O
61

CPU–to–PCI Write Latch Open. When asserted, the CPU–to–PCI write
latch accepts new data on each CPU_CLK. When deasserted, the CPU–to–
PCI write latch holds its current contents.

This signal is asserted when data is to be sampled from the CPU. It is held
deasserted until the data is written to the PCI.

CPU_DATA_OE# I
146

O
197

CPU Data Output Enable. When asserted, the 663 drives the CPU_DATA
bus on the next CPU_CLK.

The 663 automatically drives the OE for CPU_DATA with the same value
as it had on the previous CPU_CLK when an ECC correction occurs.

CPU_PAR_ERR# O
174

I
192

CPU Data Bus Parity Error. When asserted, this signal indicates a parity er-
ror on the CPU data bus during a write cycle. This signal is only valid one
CPU_CLK after the CPU data bus is valid (one clock delay).

CPU_RDL_OPEN I
148

O
50

CPU Read Latch Open. When asserted, the CPU read latch accepts new
data on each CPU_CLK. When deasserted, the CPU read latch holds its
current contents.

This signal is asserted when data is to be sampled from memory or the PCI.

When sampling data from memory, this signal is also active on the following
CPU_CLK to allow ECC corrections to occur if necessary. If no ECC correc-
tions occur, the same data is provided by the MEM read ECC correction
logic.

See Section 2.2, CPU_RDL_OPEN Resistor.

2

Pin Descriptions

17The IBM 660 Bridge

Table 2-1. 660 Bridge Signal Descriptions (Continued)

Signal Name Description664663

Miscellaneous — Signals Supported for Intra-Chipset Use Only
CRS_C2PWXS I

151
O
65

CPU Read Select/CPU-to-PCI Write Crossover Select. When the CPU read
latch is sampling data, this signal controls the CPU read multiplexer. When
asserted, the memory data bus is routed to the CPU read latch. When deas-
serted, PCI data is routed to the CPU read latch. This signal must be valid
on the CPU_CLK that the CPU read latch samples data.

When the CPU-to-PCI write latch is sampling data, this signal controls the
CPU-to-PCI write crossover. When asserted, the most-significant 32 bits
are driven to the CPU-to-PCI write latch. When deasserted, the least-signifi-
cant 32 bits are driven to the CPU-to-PCI write latch. This signal must be
valid on the CPU_CLK that the CPU-to-PCI write latch samples data.

DUAL_CTRL_REF I
170

O
205

Control Signal Multiplexer Select. For 663 inputs that have two functions
(MEM_BEs and ECC_LE_SEL) this signal indicates which function is cur-
rently active. This signal is generated by dividing CPU_CLK by two.

ECC_LE_SEL I
149

O
2

ECC Select/Little-Endian Select. This signal indicates use of ECC or byte
parity when DUAL_CTRL_REF is high and indicates use of little-endian or
big-endian mode when DUAL_CTRL_REF is low.

Asserting ECC_LE_SEL enables the generation and checking of ECC to
memory. Deassertion enables generation and checking of byte parity.

Asserting ECC_LE_SEL indicates little-endian mode. Deassertion indi-
cates big–endian mode.

MEM_BE[3:0] I
164
163
162
161

O
1

208
207
206

Memory Byte Enables. The eight BEs for read-modify-write memory cycles
are multiplexed on MEM_BE[3:0]. The first four BEs are asserted on
MEM_BE[3:0] when DUAL_CTRL_REF is high, and the second four are as-
serted on MEM_BE[3:0] when DUAL_CTRL_REF is low. When combined,
they form MEM_RMW_BE[7:0]#. An active byte enable indicates valid write
data from the CPU or PCI.

The MEM_RMW_BE[7:0]# signals are sampled on the same clock that
read-data is sampled by the MEM write latch; therefore, MEM_BE[3:0] must
be valid on the first and second clock before read data is sampled.

When not running a read-mod-write cycle MEM_BE[3:0] should indicate all
data lanes are enabled—MEM_RMW_BE[7:0]# all asserted low.

MEM_DATA_OE# I
145

O
196

Memory Data Output Enable. When asserted, the 663 drives the
MEM_DATA bus on the next CPU_CLK.

MEM_ERR# O
171

I
194

Memory Error. When asserted, indicates an uncorrectable multi-bit or parity
error has occurred during a memory read. This signal is only valid on the
third CPU_CLK after MEM_RD_SMPL is asserted.

MEM_RD_SMPL I
147

O
49

Memory Read Sample. This signal is asserted on the CPU_CLK that data
from the memory is sampled during a CPU or PCI read. MEM_RD_SMPL
is used by the ECC logic to determine when to sample ECC results.

This signal is also used by the PCI read extension latch and the PCI-to-MEM
read latch to load new data. See PCI_OL_OPEN for more details.

2

Pin Descriptions

The IBM 660 Bridge18

Table 2-1. 660 Bridge Signal Descriptions (Continued)

Signal Name Description664663

Miscellaneous — Signals Supported for Intra-Chipset Use Only
MEM_WRL_OPEN I

150
O
51

Memory Write Latch Open. When asserted, the MEM write latch accepts
new data on each CPU_CLK. When deasserted, the MEM write latch holds
its current contents.

This signal is asserted when data is to be sampled from the CPU or the PCI.
It is held deasserted until the data is written to memory.

When this signal is asserted on read-modify-write cycles, data is sampled
from the CPU and memory or from the PCI and memory. This signal is also
active on the following CPU_CLK to allow ECC corrections to occur if nec-
essary. If no ECC corrections occur, the same data is provided by the MEM
read ECC correction logic.

MWS_P2MRXS I
152

O
66

Memory write select/PCI-to-memory read crossover select. When the
memory write latch is sampling data, this signal controls the memory write
multiplexer. When MWS_P2MRXS is asserted, the CPU data bus is routed
to the memory write latch. When it is deasserted, the PCI data is routed to
the memory write latch. This signal must be valid on the CPU_CLK that the
memory write latch samples data.

When the PCI-to-MEM read latch is sampling data, this signal controls the
PCI-to-MEM read crossover. When the signal is asserted, the most-signifi-
cant 32 bits are driven to the PCI-to-MEM read latch. When it is deasserted,
the least-significant 32 bits are driven to the PCI-to-MEM read latch. This
signal must be valid on the CPU_CLK that the PCI-to-MEM read latch sam-
ples data.

PCI_AD_OE# I
144

O
195

PCI Data Output Enable. When asserted, the 663 drives the PCI_AD bus.
Note: This is an asynchronous input to the buffer chip—it is not clocked.

PCI_EXT_SEL I
153

O
67

PCI Read Extension Select/PCI Write Extension Select. When the PCI is
reading from memory, this signal controls the PCI read extension multiplex-
er. When the signal is asserted, data from the PCI read extension latch is
routed to the PCI-to-MEM read latch. When it is deasserted, data from the
memory is routed to the PCI-to-MEM read latch. This signal must be valid
when the PCI-to-MEM read latch samples data.

When the PCI is writing to memory, this signal controls the PCI write exten-
sion multiplexer. When the signal is asserted, data from the PCI write exten-
sion latch is routed to the MEM write latch. When it is deasserted, PCI data
is routed to the MEM write latch. This signal must be valid when the MEM
write latch samples data.

2

Pin Descriptions

19The IBM 660 Bridge

Table 2-1. 660 Bridge Signal Descriptions (Continued)

Signal Name Description664663

Miscellaneous — Signals Supported for Intra-Chipset Use Only
PCI_OL_OPEN I

165
O
64

PCI Other Latches Open. This signal controls the latch enables for the fol-
lowing three latches—the PCI-to-MEM read latch, the PCI read extension
latch, and the PCI write extension latch.

During PCI reads to memory, the PCI read extension latch and the PCI-to-
MEM read latch accept new data when PCI_OL_OPEN is asserted (and
when PCI_IRDY# is asserted) or when MEM_RD_SMPL is asserted (one
CPU_CLK after MEM_RD_SMPL when ECC is enabled). During the period
when enabling the latches is dependent on PCI_IRDY#, this signal must
only be active on CPU_CLKs when PCI_CLK rises, to guarantee sampling
PCI_IRDY# only on rising PCI_CLK.

Essentially, PCI_OL_OPEN on PCI reads to memory if !PCI_TRDY# &&
!PCI_CLK. This allows the 663 to advance to the next data as soon as the
current data is accepted by the PCI master.

This signal is also asserted during PCI writes to memory when data is
sampled from the PCI. It is held deasserted until the data is passed to the
MEM write latch.

PCI_OUT_SEL I
169

O
68

PCI Output Select. When asserted the memory data is routed to the PCI out-
put bus. When deasserted, CPU data is routed to the PCI output bus. This
must be valid the entire time that data is driven to the PCI bus. This signal
is asynchronous—not referenced to clock.

ROM_LOAD I
160

O
70

ROM Load. This signal is used to load data from a ROM one byte at a time
until eight bytes are received, then pass the eight bytes to the CPU. The
ROM data buffer receives the one-byte transfers and assembles them into
the eight-byte result.

When ROM_LOAD is deasserted for more than one CPU_CLK, the ROM
data buffer is reset. When ROM_LOAD is then asserted, it receives data into
its first byte. Each time ROM_LOAD is deasserted, the first byte is passed
to the second, the second is passed to the third, etc. ROM_LOAD should
not be deasserted for more than one CPU_CLK while assembling the eight
bytes to prevent resetting the buffer.

Also, the ROM data buffer is routed toward the CPU data read latch when
ROM_LOAD is asserted. It is expected that the CPU data read latch will
grab eight bytes of ROM Data on the eighth ROM_LOAD.

SBE# O
175

I
193

Single-Bit Error. When asserted, indicates a correctable single-bit error has
occurred on the memory data bus. This signal is valid only on the CPU_CLK
following the assertion of MEM_RD_SMPL.

If the memory is not in ECC mode, this signal is undefined.

2

Pin Descriptions

The IBM 660 Bridge20

2.2 CPU_RDL_OPEN Resistor
Add a 200� series resister to the CPU_RDL_OPEN net between the 664 and the 663.

During a CPU to memory read, if (at the 663) CPU_RDL_OPEN goes low before
MEM_RD_SMPL goes low, then the 663 may provide incorrect data to the CPU. The Table
shows the minimum required interval between the falling edge of MEM_RD_SMPL and the
falling edge of CPU_RDL_OPEN.

Table 2-2. Minimum Required Interval Between Low MEM_RDL_OPEN and Low
CPU_RDL_OPEN

Case Conditions 663 Requires 664 Provides

1 Worst Case Process, Temperature, & VDD > 1.8ns 1.3ns

2 Best Case Process, Worst Case Temp & VDD > 0.2ns 0.5ns

3 Best Case Process, Temperature, & VDD > 0.1ns 0.3ns

The worst practical case occurs while the 664 is at Case 2 (provides .5ns difference) and the
663 is at Case 1 (requires 1.8ns difference). This requires that a minimum delay of 1.3ns be
added to the CPU_RDL_OPEN signal. A delay of 2.4ns is recommended to allow a conserva-
tive margin of error. (Delay = RC = 200� * 12pf = 2.4ns). Note that this assumes the
CPU_RDL_OPEN and MEM_RD_SMPL nets are both about three inches long and that the
resister is close to the 664. A different resister value or an R-C combination may be required
if the length or capacitance of the two nets are significantly different, or if the resister
placement differs significantly.

2

CPU Bus

21The IBM 660 Bridge

Section 3
CPU Bus
The CPU bus connects the CPU(s) with the 660 Bridge, the L2 cache SRAM and tagRAM,
and possibly other CPU bus agents. All access to the rest of the system is provided to the
CPU by the 660 Bridge. The 660 supports CPU bus frequencies up to 66MHz.

3.1 Transfer Type Decoding
Table 3-1 shows the 660 decoding of CPU bus transfer types. Based on TT[0:3], the 660 re-
sponds to CPU bus master cycles by generating a read transaction, a write transaction, or
an address-only response. (The 660 ignores TT[4] when it evaluates the transfer type.)

The bridge decodes the target of the transaction based on the address range of the transfer
as shown in Table 3-2. The transfer type decoding shown in Table 3-1 combines with the tar-
get decoding to produce the following:

� System memory reads and writes
� PCI I/O reads and writes
� PCI configuration reads and writes
� PCI interrupt acknowledge reads
� PCI memory reads and writes
� System ROM reads and writes
� Various bridge control register (BCR) reads and writes.

Within Table 3-1, SBR means single-beat read, and SBW means single-beat write.

Transfer types in Table 3-1 that have the same response are handled identically by the
bridge. For example, if the address is the same, the bridge generates the same memory read
transaction for transfer types 0101, 0111, 1101, and 1111.

References in the remainder of this document to a CPU read, assume one of the transfer
types that produce the read response from the 660. Likewise, references to a CPU write refer
to those transfer types that produce the write response.

The 660 does not generate PCI or system memory transactions in response to address only
transfers. The bridge does drive all-ones onto the CPU bus and signals TA# during an eciwx
if no other CPU bus agent claims the transfer.

3

CPU Bus

22 The IBM 660 Bridge

Table 3-1. TT[0:3] (Transfer Type) Decoding by 660 Bridge

TT[0:3] CPU Operation
CPU Bus
Transaction

660 Operation For CPU to
Memory Transfers
(CPU Bus Addr 0 to 2G)

660 Operation For CPU to
PCI Transactions
(CPU Bus Addr over 2G)

0000 Clean block or lwarx Address only Asserts AACK#. No other response. No PCI transaction.

0001 Write with flush SBW or burst Memory write operation. PCI write transaction.

0010 Flush block or stwcx Address only Asserts AACK#. No other response. No PCI transaction.

0011 Write with kill SBW or burst Memory write operation. L2
invalidates addressed block.

PCI write transaction.

0100 sync or tlbsync Address only Asserts AACK#. No other response. No PCI transaction.

0101 Read or read with no
intent to cache

SBR or burst Memory read operation. PCI read transaction.

0110 Kill block or icbi Address only Asserts AACK#. L2
invalidates addressed block.

Asserts AACK#. No other
response.

0111 Read with intent to
modify

Burst Memory read operation. PCI read transaction.

1000 eieio Address only Asserts AACK#. No other response. No PCI transaction.

1001 Write with flush atomic,
stwcx

SBW Memory write operation. PCI write transaction.

1010 ecowx SBW Asserts AACK# and TA# if the transaction is not claimed by
another 60X bus device. No PCI transaction. No other
response.

1011 Reserved Asserts AACK#. No other response. No PCI transaction.

1100 TLB invalidate Address only Asserts AACK#. No other response. No PCI transaction.

1101 Read atomic, lwarx SBR or burst Memory read operation. PCI read transaction.

1110 External control in,
eciwx

Address only 660 asserts all ones on the CPU data bus. Asserts AACK#,
and TA# if the transaction is not claimed by another 60X bus
device. No PCI transaction. No other response.

1111 Read with intent to
modify atomic, stwcx

Burst Memory read operation. PCI read transaction.

3

CPU Bus

23The IBM 660 Bridge

3.2 CPU Bus Address Mapping
The bridge decodes the target of the transaction based on the address range of the transfer
as shown in Table 3-2.

Table 3-2. 660 Bridge Address Mapping of CPU Bus Transactions

CPU Bus Address
Other

Conditions Target Transaction Target Bus Address Notes

0 to 2G
0000 0000h to 7FFF FFFFh

System Memory 0 to 2G (DRAM)
0000 0000h to 7FFF FFFFh

(1)(2)

2G to 2G + 8M
8000 0000h to 807F FFFFh

Contiguous
Mode

PCI I/O Transaction,
BCR Transaction, or

PCI Configuration

0 to 8M (PCI I/O)
0000 0000h to 007F FFFFh

(3)

Non-Contigu-
ous

Mode

PCI Configuration
(Type 1) Transaction 0 to 64K (PCI I/O)

0000 0000h to 0000 FFFFh
(4)

2G + 8M to 2G + 16M
8080 0000h to 80FF FFFFh

PCI Configuration
(Type 0) Transaction

PCI Configuration Space
0080 0000h to 00FF FFFFh

2G + 16M to 3G – 8M
8100 0000h to BF7F FFFFh

PCI I/O Transaction 16M to 1G – 8M (PCI I/O)
0100 0000h to 3F7F FFFFh

3G – 8M to 3G
BF80 0000h to BFFF

FFFFh

BCR Transactions
and PCI Interrupt
Ack. Transactions

1G – 8M to 1G
3F80 0000h – 3FFF FFFFh

(3)(6)

3G to 4G – 2M
C000 0000h to FF7F FFFFh

PCI Memory
Transaction

0 to 1G – 2M (PCI Mem)
0000 0000h to 3FDF FFFFh

4G – 2M to 4G
FFE0 0000h to FFFF

FFFFh

Direct Attach
ROM Read,

Write, or Write
Lockout

BCR Transaction 0 to 2M (PCI ROM)
0000 0000h to 001F FFFFh

(ROM Address Space)

(2)

Remote ROM PCI Memory Transac-
tion to I/O Bus Bridge

1G – 2M to 1G (ISA ROM)
3FE0 0000h to 3FFF FFFFh

(2)

Notes for Table 3-2:
1) System memory can be cached. Addresses from 2G to 4G are not cacheable.
2) Memory does not occupy the entire address space.
3) Registers do not occupy the entire address space.
4) Each 4K page in this 8M CPU bus address range maps to 32 bytes in PCI I/O space.
5) Registers and memory do not occupy the entire address space. Accesses to unoccupied

addresses result in all one-bits on reads and no-ops on writes.
6) A memory read of BFFF FFF0h generates an interrupt acknowledge transaction on the

PCI bus.

3

CPU Bus

24 The IBM 660 Bridge

3.3 CPU to Memory Transfers
The system memory address space is from 0 to 2G. Physical memory does not occupy the
entire address space. When the CPU reads an unpopulated location, the Bridge returns all-
ones and completes the transfer normally. When the CPU writes to an unpopulated location,
the Bridge signals normal transfer completion to the CPU but does not write the data to
memory. The memory select error bit in the error status 1 register (bit 5 in index C1h) is set
in both cases.

All CPU to memory writes are posted and can be pipelined. The 660 supports all CPU to
memory bursts, and all single-beat transfer sizes and alignments that do not cross an 8-byte
boundary, which includes all memory transfers initiated by the 604 CPU.

The bridge supports all transfer sizes and alignments that the CPU can create in LE mode;
however, all loads or stores must be at natural alignments in LE mode (or the PowerPC 604
will take an alignment exception). Also, load/store multiple word and load/store string word
instructions may not be supported in the CPU in LE mode.

3.4 CPU to PCI Transactions
CPU accesses to addresses within the 2G to 4G range produce the various PCI transactions.
When the 660 decodes a CPU access as targeted for the PCI, the 660 requests the PCI bus.
Once the PCI bus arbiter grants the PCI bus to the 660, the bridge initiates the PCI cycle and
(in general) releases the CPU bus. All addresses from 2G to 4G (including ROM space) must
be marked non-cacheable. See the PowerPC Reference Platform Specification.

The 660 supports all CPU to PCI transfer sizes that do not cross a 4-byte boundary, and, to
support the 604 store multiple instruction, the bridge supports 8-byte CPU to PCI writes that
are aligned on an 8-byte boundary. The 660 does not support CPU bursts to the PCI bus.

In compliance with the PCI specification, the 660 master aborts all PCI I/O transactions that
are not claimed by a PCI agent.

Since all CPU to PCI transactions are CPU memory mapped, software must, in general, uti-
lize the EIEIO instruction which enforces in-order execution, particularly on PCI I/O and con-
figuration transactions. Some PCI memory operations can also be sensitive to order of ac-
cess also.

3.4.1 CPU to PCI Read
If the CPU to PCI cycle is a read, a PCI read cycle is run. If the PCI read cycle completes,
the data is passed to the CPU and the CPU cycle is ended. If the PCI cycle is retried, the
CPU cycle is retried. If a PCI master access to system memory is detected before the PCI
read cycle is run then the CPU cycle is retried (and no PCI cycle is generated).

Minimum read time from the PCI is two CPU_CLKs plus three PCI_CLKs plus one
CPU_CLK. If the PCI is run at 33MHz and the CPU bus is at 66MHz, the minimum PCI read
cycle is nine CPU clocks. This assumes that the clock period that TS# goes active is the first
clock counted and the clock period that TA# goes active is the last clock counted. The maxi-
mum throughput is four bytes of data every 10 CPU clocks (every five PCI clocks).

3

CPU Bus

25The IBM 660 Bridge

3.4.2 CPU to PCI Write
If the CPU to PCI cycle is a write, a PCI write cycle is run. CPU to PCI I/O writes are not
posted, as per the PCI Local Bus Specification version 2.1. If the PCI transaction is retried,
the Bridge retries the CPU.

Four byte CPU to PCI memory writes are posted, so the CPU write cycle is ended as soon
as the data is latched. Eight byte writes are posted as soon as the first PCI data phase com-
pletes. If the PCI cycle is retried, the Bridge retries the cycle until it completes.

Minimum write time to the PCI is six CPU clocks. When the PCI write cycle occurs, it takes
a minimum of three PCI clocks. The maximum throughput is four bytes of data every eight
CPU clocks (every four PCI clocks).

3.4.2.1 Eight-Byte Writes to the PCI (Memory and I/O)
The 660 supports 1-byte, 2-byte, 3-byte, and 4-byte transfers to and from the PCI. The 660
also supports 8-byte memory and I/O writes (writes only, not reads) to the PCI bus. This en-
ables the use of the 604 store multiple instruction to PCI devices.

When an 8-byte write to the PCI is detected, it is not posted initially. Instead the CPU waits
until the first 4-byte write occurs, then the second 4-byte write is posted. If the PCI retries
on the first four byte transfer or a PCI master access to system memory is detected before
the first 4-byte transfer then the CPU is retried. If the PCI retries on the second 4-byte transfer
then the 660 retries the PCI write.

Minimum write time is eight bytes for every 12 CPU clocks (six PCI clocks).

Eight-byte transactions are not supported to PCI configuration space.

3.4.3 PCI Retry
CPU to PCI transactions that the PCI target retries, cause the 660 to deassert its PCI_REQ#
(the Bridge follows the PCI retry protocol). The Bridge stays off of the PCI bus for two PCI
clocks before reasserting PCI_REQ# (or FRAME#, if the PCI bus is idle and the PCI_GNT#
to the Bridge is active).

3.4.4 PCI FRAME#
During CPU to PCI transfers, the 664 typically asserts FRAME# for 1 or 2 PCI clocks before
asserting IRDY#; however, under certain conditions, the 664 may assert FRAME# for up to
8 PCI clocks. IRDY# is asserted in the correct relationship to FRAME#.

3.4.5 CPU to PCI Configuration
The 660 allows access to PCI configuration space via two different mechanisms.

CPU accesses to addresses from 2G + 8M to 2G + 16M or from 8000 0CFCh to 8000 0CFFh
(the configuration data register) when the configuration address indicates a device number
greater than zero generate a PCI type 0 configuration cycle. (See Section 10.2 and 10.3.)

Type 1 configuration transactions can also be initiated via the PCI/BCR configuration ad-
dress and data BCRs.

3

CPU Bus

26 The IBM 660 Bridge

3.4.5.1 PCI Type 0 Configuration Transaction (650 Compatible)
CPU accesses to the address range 2G+8M to 2G+16M (see Table 3-2) cause the 660 to
arbitrate for the PCI bus and then to run a type 0 PCI configuration transaction as described
in the PowerPC Reference Platform Specification and implemented by the IBM27–82650
PowerPC to PCI Bridge. Eight-byte PCI configuration transactions are not supported. Using
this method with addresses other than the ones shown in Table 3-3 is not supported, and may
lead to hardware damage due to having more than one IDSEL asserted at the same time.

Table 3-3. PCI Configuration Addresses

Bridge Control Register
CPU Bus
Address R/W Bytes Cycle and IDSEL

PCI Slot 0 Configuration Space 8080 08xx R/W 4 PCI Config, IDSEL = PCI_AD[11]

PCI Slot 1 Configuration Space 8080 10xx R/W 4 PCI Config, IDSEL = PCI_AD[12]

PCI Slot 2 Configuration Space 8080 20xx R/W 4 PCI Config, IDSEL = PCI_AD[13]

PCI Slot 3 Configuration Space 8080 40xx R/W 4 PCI Config, IDSEL = PCI_AD[14]

PCI Slot 4 Configuration Space 8080 80xx R/W 4 PCI Config, IDSEL = PCI_AD[15]

PCI Slot 5 Configuration Space 8081 00xx R/W 4 PCI Config, IDSEL = PCI_AD[16]

PCI Slot 6 Configuration Space 8082 00xx R/W 4 PCI Config, IDSEL = PCI_AD[17]

PCI Slot 7 Configuration Space 8084 00xx R/W 4 PCI Config, IDSEL = PCI_AD[18]

PCI Slot 8 Configuration Space 8088 00xx R/W 4 PCI Config, IDSEL = PCI_AD[19]

PCI Slot 9 Configuration Space 8090 00xx R/W 4 PCI Config, IDSEL = PCI_AD[20]

PCI Slot 10 Configuration Space 80A0 00xx R/W 4 PCI Config, IDSEL = PCI_AD[21]

PCI Slot 11 Configuration Space 80C0 00xx R/W 4 PCI Config, IDSEL = PCI_AD[22]

When the PCI bus is acquired, the address is driven for one PCI clock before PCI_FRAME#
is asserted. This allows the IDSELs to be resistively connected to the PCI_AD[31:0] bus at
the system level. This method of accessing PCI configuration space does not allow access
to the PCI configuration registers in the bridge chip and it should not be used unless required
to maintain 650 compatibility.

3.4.5.2 PCI Type 0 Configuration Transaction (CFC/CF8)
PCI configuration space can be accessed via the CFC/CF8 register pair as described in sec-
tion 10.3. Eight-byte PCI configuration transactions are not supported.

3.4.6 CPU to PCI Interrupt Acknowledge Transaction
When the CPU initiates a single-byte read of the interrupt acknowledge address (BFFF
FFF0h), the bridge arbitrates for the PCI bus and then executes a standard PCI interrupt ac-
knowledge transaction. The system interrupt controller claims the transaction and supplies
the 1-byte interrupt vector. There is no physical interrupt vector BCR in the bridge. Other PCI
bus masters can initiate interrupt acknowledge transactions. This operation is unaffected by
the Endian mode of the system; in both little- and big-endian modes, BE[0]# is asserted.

3

CPU Bus

27The IBM 660 Bridge

3.5 CPU to ROM
The system ROM address space is from 4G – 2M to 4G. If the size of the installed ROM is
less than 2M, it is mirrored throughout the ROM space. When the CPU writes to any ROM
location while the ROM is locked out, the bridge signals normal transfer completion to the
CPU but does not write the data to the ROM. The CPU bus write to the locked flash bit in the
error status 2 register (bit 0 in index C5h) is set.

3.6 CPU to BCR Transfers
The bridge control registers (BCRs) do not occupy the entire address space assigned to
them in the memory map. If the transaction is not claimed by the Bridge, other PCI agents
can claim it. If the transaction is not claimed (including subtractively), the bridge master
aborts the transaction.

Do not configure any PCI agents to have I/O locations that overlap the BCR locations.

3.7 CPU to ISA I/O
CPU accesses in the 2G to 2G + 8M range are mapped to the PCI bus as I/O transactions
in the 0 to 8M range (contiguous I/O) or 0 to 64K range (non-contiguous I/O). These transac-
tions are to be claimed by the ISA bus bridge and forwarded to the ISA bus as I/O cycles.

3.7.1 Contiguous I/O Mode Address Mapping
In contiguous I/O mode (CONTIG_IO asserted), CPU addresses from 2G to 2G + 8M gener-
ate a PCI I/O cycle on the PCI bus with PCI_AD[29:00] unchanged. The low 64K of PCI I/O
addresses are forwarded to the ISA bus unless claimed by a PCI agent.

Memory page protection attributes can only be assigned by 4K groups of ports, rather than
by 32-port groups as in the non-contiguous mode. This is the power-on default mode.

Figure 3-1 shows an example of the mapping from the CPU bus to the ISA I/O address in
contiguous I/O mode.

ISA I/O CPU Address

0000 8000 0000
0001 8000 0001
0002 8000 0002

. .

. .

. .
001E 8000 001E
001F 8000 001F

Contiguous 604

 addresses (no gaps)
0020 8000 0020
0021 8000 0021

. .

. .

. .

. .
FFFE 8000 FFFE
FFFF 8000 FFFF

Figure 3-1. Contiguous PCI I/O Address Translation

3

CPU Bus

28 The IBM 660 Bridge

3.7.2 Non-Contiguous I/O Mode Address Mapping
Figure 3-2 shows the address mapping that the 660 performs in non-contiguous mode. The
I/O map type register (address 8000 0850h) and the bridge chip set options 1 register (index
BAh) control the selection of contiguous and non-contiguous I/O. In non-contiguous mode,
the 8M address space of the bus is compressed into 64K of PCI address space, and the CPU
cannot create PCI I/O addresses from 64K to 8M.

If little-endian mode is selected, CPU_ADDR[29:31] are unmunged before they reach
PCI_AD[2:0]. In little-endian mode, CPU_ADDR[29:31] are munged by the CPU before the
address is driven to the CPU bus. The 660 unmunges the three low-order address bits as
part of the process of handling little-endian memory formatting. See the PowerPC 601 User’s
Manual.

In non-contiguous I/O mode, the 660 partitions the address space so that each 4K page is
remapped into a 32-byte section of the 0 to 64K ISA port address space, so that CPU protec-
tion attributes can be assigned to any of the 4K pages. This provides a flexible mechanism
to lock the I/O address space from change by user-state code. This partitioning spreads the
ISA I/O address locations over 8M of CPU address space.

Figure 3-2. Non-Contiguous PCI I/O Address Transformation

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
09
08
07
06
05
04
03
02
01
00

Discarded

Forced to zero

6
0
X

C
P
U

A
d
d
r
e
s
s

B
u
s

P
C
I

I
/
O

A
d
d
r
e
s
s

The three least-significant address bits are unmunged during the transformation if little-endian mode is se-
lected.

=
=
=
=
=
=
=
=
=

1
0
0
0
0
0
0
0
0

LSB

MSB

LSB

MSB

3

CPU Bus

29The IBM 660 Bridge

In non-contiguous mode, the first 32 bytes of a 4K page are mapped to a 32-byte space in
the PCI address space. The remainder of the addresses in the 4K page are mirrors into the
the same 32-byte PCI space. Each of the 32 contiguous port addresses in each 4K page has
the same protection attributes in the CPU.

For example, in Figure 3-3 CPU, addresses 8000 0000h to 8000 001Fh are converted to PCI
I/O port 0000h through 001Fh. PCI I/O port 0020h starts in the next 4K page at CPU address
8000 1000h.

ISA I/O CPU Address

0000 8000 0000
0001 8000 0001
0002
 .
 .

8000 0002
4K Page .

.

.
001E 8000 001E
001F 8000 001F 60X addresses

 8000 0020 to 8000 0FFF
are wrapped and should

0020 8000 1000 not be used.
0021
 .
 .

8000 1001
4K Page .

.

Figure 3-3. Non-Contiguous PCI I/O Address Translation

3.7.3 Final I/O Address Formation
The 660 maps CPU bus addresses from 2G to 4G as PCI transactions, error address register
reads, or ROM reads and writes. The 660 manipulates CPU bus addresses from 2G to 4G
to generate PCI addresses as follows:

� PCI_AD[31:30] are set to zero.
� PCI_AD[2:0] are unmunged if little-endian mode is selected.
� After unmunging, PCI_AD[1:0] are set to 00b except for PCI I/O cycles.

3

CPU Bus

30 The IBM 660 Bridge

3.8 CPU Bus Masters
Typical system configurations using the 660 have two masters on the CPU bus—the CPU
and the 660. The 660 is the master on the CPU bus when it runs snoop cycles in response
to PCI master access to system memory. The CPU is the master at all other times.

The 660 can support a second external master on the CPU bus, which is usually an external
L2 cache or a second CPU. To support a second external master, the 660 includes the follow-
ing:

� A second set of bus request and bus grant signals.
� Sampling of ARTRY# on the third CPU_CLK (fourth clock for the 603 in 1:1

mode) following the falling edge of TS# for all accesses to system memory.
This allows cache coherency protocols to function properly. Note that the L2
cache controller may already be asserting TA# on this cycle.

� The First_Read# bit, BCR(8000 081C) bit 0, which can be read by the CPUs
at Power-on to resolve who is CPU0.

Each bus master must provide both of the following functions:

� Support at least one level of address pipelining, so that address tenure(n)
can end and address tenure(n+1) can begin before data tenure n ends. Note
that this requirement must be met even if there is only a single bus master.
The CPUs meet this requirement.

� Support the data bus busy protocol, driving DBB# while it is the data bus
master, and monitoring DBB# to correctly determine the end of a data tenure
mastered by another CPU bus agent. The CPUs meet this requirement ex-
cept in no–DRTRY# mode; therefore, when a second CPU bus master is
installed, any CPUs on the bus must have DRTRY# enabled.

This is the extent to which the 660 supports multiple processors. This may be sufficient for
many special purpose multi-processor systems, but general-purpose symmetric-multi-pro-
cessor systems require additional support such as multi-interrupt controllers and error han-
dlers (see the Open Programmable Interrupt Controller (PIC) Register Interface Specifica-
tion, Revision 1.2).

3.8.1 External L2 as a CPU Bus Master
An external L2 cache that is look-aside with write-back capability can act as the second CPU
bus master. To attach an external L2 controlled by the L2 invalidate register (8000 0814h),
the system control register (8000 081Ch), and the I/O map-type register (8000 0850h), use
the following setup:

4. Disable the internal L2 by setting bit 1 of the cache status register (index B1) to zero.
5. Enable external register support mode by setting bit 5 of the bridge chip set options

3 register (BCR(D4) bit 5) to one.

3

CPU Bus

31The IBM 660 Bridge

3.9 CPU Bus Targets
The 660 supports target devices attached to the CPU bus. By default, the bridge acts as the
target for all CPU bus cycles; however, a mechanism has been provided for other CPU bus
agents to claim a cycle and respond as the target of that cycle.

CPU bus targets can only claim memory cycles initiated by a CPU bus master other than the
660. For example, they cannot claim snoop cycles or PIO cycles.

CPU bus targets can only claim cycles from the 0 to 2G system memory address space.
These cycles must not be cached by the internal L2 cache controller. But the internal L2
caches all memory space which is occupied by DRAM. For example, if the L2 is enabled and
1G of memory is installed, then only the space from 1G to 2G can be claimed. However, if
the internal L2 is disabled, the entire address space from 0 to 2G can be claimed regardless
of the installed memory.

A CPU bus target claims a cycle by asserting CPU_BUS_CLAIM# on the CPU_CLK after it
samples TS# active. The 660 samples this signal two clocks after it samples TS# active.

If a CPU bus target claims a cycle, it is responsible for terminating both the address and data
tenures associated with the cycle, including driving AACK#, TA#, and TEA#. The claiming
CPU bus agent must drive AACK# even if the bus operation is retried (ARTRY# asserted).
CPU bus targets may not assert DRTRY#. The CPU bus target is also responsible for detect-
ing and reporting any errors that occur during the claimed cycle.

CPU bus targets must not drive AACK#, TA#, TEA#, or CPU_DATA until the listed number
of clocks following the assertion of TS#:

1. First clock, if the internal L2 is disabled (second clock for 603 in 1:1 mode).
2. Third clock, if the internal L2 is enabled (fourth clock for 603 in 1:1 mode). This is

necessary because the internal L2 drives these signals until it determines that the
cycle is not a cache hit.

3. In compliance with the CPU bus spec, TA#, TEA#, and CPU_DATA also must not
be driven until one clock after the previous data bus tenure has ended. These signals
must not be driven until the data bus tenure for the claimed cycle has begun.

The CPU bus target must restore and tristate AACK#, TA#, and TEA# following their asser-
tion at the end of the associated bus tenure.

The CPU bus target must have some means (e.g., DBG#) for determining when it may begin
a data tenure.

The CPU bus target must not assert AACK# until the previous data bus tenure has ended.
This is necessary to meet the 660 requirement of one level of pipelining.

3.10 CPU Bus Parity
The 660 can generate parity and check for parity errors on the CPU data bus
(CPU_DATA[0:63]). Whenever a CPU bus master performs a write cycle, the 660 checks the
parity. Whenever a CPU bus master performs a read cycle, the 660 drives the data parity bits.
If desired, the data SRAMs for the L2 cache can store and read the parity data to provide an
extra measure of error checking.

The 660 does not generate or check CPU data bus parity on cycles claimed by other CPU
bus targets (see Section 8, Exceptions).

3

CPU Bus

32 The IBM 660 Bridge

3.11 CPU Bus Arbitration
The 660 arbiter coordinates the activities of the three CPU bus agents, CPU1, CPU2, and
the snoop engine. The snoop engine of the bridge is a conceptual set of logic inside the
Bridge which broadcasts snoop cycles to the CPU bus in response to PCI to memory transac-
tions (see section 4.5).

Each CPU bus agent has an address bus request line and an address bus grant line. CPU1
is the default for the CPU. CPU may be an additional CPU, an external (to the Bridge) L2,
or other well behaved CPU bus agent. The request and grant lines of the snoop engine are
internal to the Bridge.

The 660 supports pipelined split-bus transactions, which feature an address tenure and a
subsequent data tenure (see the PowerPC 604 User’s Manual, especially section 8.2). The
initial business of the Bridge arbiter is with the address tenure, which may or may not be fol-
lowed by a data tenure.

3.11.1 Arbiter Rules
The following rules describe the operation of the arbiter:

1. There are three CPU bus masters that can generate CPU address bus requests: CPU1,
CPU2, and the snoop engine. The priority of the agents is

� CPU1 (the highest priority)

� CPU2

� Snoop engine (the lowest priority).
If more than one bus request is sampled active at the same time, the address bus is
granted to the highest priority requesting BM.

2. When no bus master is requesting the CPU address bus, the Bridge parks the bus on
the CPU that most recently owned it. This behavior supports multiprocessing applica-
tions.

3. The Bridge supports CPU bus masters which conform to the bus arbitration protocol
described in Chapter 8 of the PowerPC 604 User’s Manual. In general, the CPU bus
master will deassert BR# for one CPU clock cycle following the assertion of TS#.

4. The Bridge arbiter recognizes an active CPU address bus request from the snoop engine
from the time that the Bridge decodes a PCI bus transaction to system memory
(FRAME# initially sampled active), until the termination of the PCI bus transaction. The
bus request is considered to be negated during PCI bus idle (turn-around) cycles. Note
that this bus request always goes inactive between consecutive PCI transactions.

3

CPU Bus

33The IBM 660 Bridge

5. The system arbiter (external to and independently of the Bridge) selects the current PCI
bus master, who is in general allowed to initiate PCI transactions independently of the
state of the CPU bus. Thus a PCI bus master can begin a PCI to memory transaction
while a CPU has control of the CPU address bus. In this case:

5.1 The current CPU bus master is allowed to complete the current transfer:

5.1.1 The address tenure completes, followed by two CPU clocks during which the
CPU address bus is rearbited. Then the snoop is broadcast onto the CPU
address bus.

5.1.2 The data tenure of the CPU transfer completes normally.

5.2 The Bridge asserts DEVSEL# as usual. It is not delayed by the current CPU address
or data bus activity.

5.3 At the end of the CPU to memory data tenure, there is an idle CPU clock, and then
the memory controller begins the PCI to memory transaction.

5.3.1 On reads, TRDY# is delayed until the first data phase is valid on the PCI bus.
In general, pipelined PCI read bursts require 2 fewer PCI clocks to deliver the
first beat than are required for bursts that start from a CPU bus idle
(non–pipelined bursts).

5.3.2 On writes, TRDY# is asserted 1 or 2 PCI clocks after the completion of the data
phase of the CPU to memory transfer. The posted write buffers in the Bridge will
accept the first four 4–byte data phases as 1/2–1–1–1. Subsequent data phases
are accepted one at a time as the buffer writes each 4–byte to memory. Write
times are affected by various factors, as discussed in section 4.5.

5.4 If the snoop cycle (see step 5.1.1) is retried by either CPU, the Bridge retries the PCI
bus master and grants the CPU bus to the CPU bus agent that retried the cycle
(assuming that it is requesting the bus). If both CPUs retry the cycle, the bus is
granted first to CPU1.

6. Fairness is enforced by the Bridge arbiter, which will not re–grant the CPU bus to a
previous owner before granting it to a new requester. This assures that each of the three
agents gets a fair chance to own the bus. No agent is held off of the bus for more cycles
than it takes for each of the other two agents to run one transaction (worst case).

6.1 An apparent exception to this (which does not violate fairness) is that if CPU1, CPU2,
or the snoop engine is retried during a cycle, the arbiter will next grant the CPU bus
to the bus agent that retried the cycle (assuming that it is requesting the bus). If both
of the other agents retry the cycle, the CPU bus is granted first to the one with the
highest priority, and then to the other agent. Then the bus is returned to the original
owner. The worst case hold-off in this case is three CPU bus transactions.

3

CPU Bus

34 The IBM 660 Bridge

7. When a CPU begins a CPU to PCI transaction (single-beat only):
7.1 If the Bridge has the PCI_GNT# (and the PCI bus is idle), the Bridge initiates the PCI

transaction.
7.2 If the Bridge does not have the PCI_GNT#, then:

7.2.1 If there is currently a PCI to system memory transaction in progress, the Bridge
will retry the CPU.

7.2.2 If there is not a PCI to memory transaction in progress (there is a PCI to PCI
transaction in progress or the PCI bus is idle and not parked on the Bridge), then
the Bridge arbitrates for the PCI bus and begins the transaction.

7.2.2.1 On CPU writes, the first transaction is posted even before the PCI bus is
granted to the bridge. Completion of any second transaction depends on
completion of the first transaction.

7.2.2.2 On CPU reads, the CPU transfer will not complete until data is returned from
the PCI bus.

8. When a CPU begins a CPU to memory transfer, there is no collision with a PCI broadcast
snoop cycle, because the CPU bus is granted to the snoop engine throughout the PCI
to memory transaction.

3.12 Broadcast Snoop Details
PCI to memory transactions begin with the Bridge decoding and recognizing the transaction,
arbiting for the CPU bus, and in the case of writes, completing a broadcast snoop cycle to
the CPU bus. The memory-controller-active part of a PCI to memory transaction is delayed
by the time it takes to arbitrate for the CPU address bus on writes (waiting for the snoop cycle
to complete), if the transaction starts from a CPU bus idle condition. Pipelined PCI to memory
transactions (which start while a previous CPU bus transaction is still running), do not suffer
this initial delay, but they do have to wait for the completion of the data tenure of the previous
transfer in order to begin. Pipelined transactions begin as soon as the memory controller is
available: they do not have to wait for the snoop to complete, because it has already
completed.

Another CPU address tenure is allowed to begin several CPU clocks before the end of the
PCI transaction, as soon as the arbiter knows that it will not be broadcasting another snoop
immediately (e.g., on the last beat of a PCI burst).

Table 3-4 shows the TT[0:3] (transfer type) of snoop operations generated to the CPU bus
when a PCI master accesses system memory.

Table 3-4. Types of Snoop Cycles for PCI to Memory Operations

PCI Bus Cycle CPU Bus Snoop, non 603 CPU Bus Snoop, 603

Operation TT[0:4] Operation TT[0:4]

Memory Read Clean 00000 Single-Beat Read 01010

Memory Write Flush Sector 00100 Single-Beat Write
with Flush

00010

Initiate Lock (Read) Single-Beat Write
with Flush

00010 Single-Beat Write
with Flush

00010

3

CPU Bus

35The IBM 660 Bridge

The following discussion includes three figures (Figure 3-4, Figure 3-5, and Figure 3-6) that
show PCI to memory transactions and the associated broadcast snoop operations. These
figures show the following:

� CPU and PCI clocks that are for reference only
� CPU address bus tenures from TS# to AACK# (no retries considered)
� CPU data bus tenures (these are approximate only – their duration is not to

scale nor to clock)
� PCI bus tenures (same caveats).

3.12.1 Snoop Cycles From CPU Bus Idle
Figure 3-4 shows a CPU to memory transfer, followed by at least one CPU bus idle cycle,
followed by a PCI bus master transaction to memory, and followed by another CPU bus
address tenure. Since the PCI transaction begins during a CPU bus idle, as soon as the 660
recognizes the PCI transaction, it grants the CPU bus to itself (the snoop engine), which
requires at most 1 PCI clock, and then it broadcasts a snoop cycle on the CPU bus. This
snoop cycle is very similar to the address tenures of non-pipelined CPU to memory transfers.

Figure 3-4. PCI Bus Snoops From CPU Bus Idle

n PCI clocksn PCI clocks

m PCI clocksm PCI clocks

n CPU clocks

TS# AACK#

A D

PCI Read

PCI to Memory READ

PCI to Memory WRITE

PCI Write

snoopmemory

memory

memory

memory
TS# AACK# TS#

cpu_clk

CPU Addr Bus

CPU Data Bus

mem_con busy

PCI Bus

mem_con_busy

pci_clk

If the PCI transaction is a read, the memory controller begins the memory read immediately
(if there is a CPU bus retry, the memory controller can stop a read without corrupting the
memory). The snoop operation requires 3 CPU clocks to complete, which is less time than
is required for the memory controller to access the first 8 bytes of DRAM, so no time is lost
to the PCI transaction because of the snoop. From the assertion of FRAME#, it will take t to
9 PCI clocks until the bridge places the first 4–byte on the PCI bus and the PCI bus master
can sample TRDY# active. Subsequent data phases of the read are serviced at basically
-1-1-1, so the first 4 beats take 8-1-1-1 to complete. Also see Section 4.5.

3

CPU Bus

36 The IBM 660 Bridge

If the PCI transaction is a write, the memory controller is delayed 2 PCI clocks (3 CPU clocks)
for the snoop to complete before beginning the memory access; however, some overhead
functions are occurring during this time, so the net effective snoop delay is usually 1 PCI
clock. Following successful completion of the snoop, the PCI to memory write data phases
are posted, and once the 1 to 2 PCI clock snoop delay is over, the subsequent 3 PCI data
beats are accepted at -1-1-1. Thus the write pattern is 5-1-1-1.

In both the read and write cases, another CPU address tenure is allowed to begin several
CPU clocks before the end of the PCI transaction (as soon as the arbiter knows that it will
not be broadcasting another snoop immediately—e.g., on the last beat of a PCI burst).

3.12.2 Pipelined Snoop Cycle Following a CPU Bus Transfer
Figure 3-5 shows a PCI to memory transaction pipelined after a CPU to memory transfer. In
this case, the 660 recognizes the initiation of a PCI to memory transaction during the address
tenure of a CPU to memory transfer. At the close of the CPU to memory address tenure, up
to 2 CPU clocks of CPU address bus are idle for arbitration and internal overhead. Then the
bridge broadcasts the PCI snoop on the CPU address bus. The snoop cycle is completed
before the end of the CPU to memory transfer, so it imposes no delay on either the CPU
transfer or the PCI transaction.

Figure 3-5. Pipelined PCI Bus Snoop Following a CPU Bus Transfer

n PCI clocks

n CPU clocks

TS# AACK#

A D

snoopmemory

memory

memory PCI

memory

cpu_clk

CPU Addr Bus

CPU Data Bus

mem_con busy

PCI Bus

pci_clk

3.12.3 Pipelined Snoop Cycle Following a Pipelined CPU Bus Transfer
Figure 3-6 shows an initial CPU to memory transfer, followed by a pipelined CPU to memory
transfer, and followed by a PCI to memory transfer. The pipelined PCI transaction executes
as it did in Figure 3-5. Note that snoop cycles continue to have little to no effect on CPU bus
performance during pipelined transactions. In this case, the Bridge recognizes a PCI to
memory transaction initiation sometime during the address phase of the second CPU to
memory transfer. Note that the Bridge will not complete the CPU address tenure for transfer
2 until the data tenure for tenure 2 begins (1 clock after the end of the data tenure of transfer
1). The third transaction (the pipelined PCI snoop) has no effect on the timing of the two CPU
transfers.

3

CPU Bus

37The IBM 660 Bridge

Figure 3-6. Pipelined PCI Bus Snoop Following a Pipelined CPU Bus Transfer

12 ish CPU clocks12 ish CPU clocks

n PCI clocks

n CPU clocks

TS# AACK#

A D

snoopmemory 1

memory 1

memory 1 PCI

memory 2

memory 2 (pipelined) –3–3–3–3

memory 2

cpu_clk

CPU Addr Bus

CPU Data Bus

mem_con busy

PCI Bus

pci_clk

3.12.4 PCI Bus Snoop On Block Boundary During a PCI Burst Read
Figure 3-7 shows a PCI snoop that is incurred by a PCI burst crossing over a cache block
32-byte boundary during a PCI to memory read. See section 4.5.4.1 for a discussion of timing
variable M.

Figure 3-7. PCI Bus Snoop On Block Boundary During a PCI Burst Read

TS# AACK#

A D

PCI Read

snoop

cpu_clk

CPU Addr Bus

mem_con busy

PCI Bus

Cache Block
Boundary

snoop

M

PCI Read

D

3.12.5 PCI Bus Snoop On Block Boundary During a PCI Burst Write
Figure 3-8 shows a PCI snoop incurred by a PCI burst crossing over a cache block boundary
during a PCI to memory write. See section 4.5.4.2 for a discussion of timing variable X.

Figure 3-8. PCI Bus Snoop On Block Boundary During a PCI Burst Write

TS# AACK#

A D

snoop

cpu_clk

CPU Addr Bus

mem_con busy

PCI Bus

Cache Block
Boundary

snoop

D

PCI WritePCI Write

X

3

CPU Bus

38 The IBM 660 Bridge

3.13 Related Bridge Control Registers
Bridge Control Register Index R/W Bytes See

Bridge Options 1 Index BA R/W 1 10.3.35

Bridge Options 2 Index BB R/W 1 10.3.36

CPU Bus Error Status Index C3 R 1 10.3.39

Error Enable 2 Index C4 R/W 1 10.3.40

Error Status 2 Index C5 R/W 1 10.3.41

PCI Bus Error Status Index C7 R/W 1 10.3.42

CPU/PCI Error Address Index C8 – CB R/W 4 10.3.43

Bridge Chip Set Options 3 Index D4 R/W 1 10.3.46

Memory Controller Misc 8000 0821 R/W 1 10.2.2.4

I/O Map Type 8000 0850 R/W 1 10.2.2.9

PCI/BCR Configuration Address 8000 0CF8 R/W 4 10.3.1.1

PCI/BCR Configuration Data 8000 0CFC R/W 4 10.3.1.2

PCI Type 0 Configuration Addresses
IBM27–82650 Compatible

8080 08xx
8080 10xx
8080 20xx
8080 40xx
8080 80xx
8081 00xx
8082 00xx
8084 00xx
8088 00xx
8090 00xx
80A0 00xx
80C0 00xx

R/W 4 3.4.5.1

3

PCI Bus

39The IBM 660 Bridge

Section 4
PCI Bus

The 660 Bridge supports a 32-bit PCI expansion bus at frequencies up to 33MHz. The PCI
bus is compatible with the PCI Specification, revisions 2.0 and 2.1.

The PCI bus can be run at one-half or the same frequency as the CPU bus. CPU:PCI bus
operation at 3:1 is not supported. For 1:1 operation, see section 4.6. The 664 automatically
detects the frequency ratio.

4.1 PCI Arbitration
The 660 requires an external PCI arbiter such as may be supplied in the ISA bridge. The 660
sends a CPU/660 bus request to the ISA bus arbiter to request ownership of the PCI. The
660 receives a PCI bus grant from the PCI bus arbiter. The 660 follows the PCI specification
for host bridges. The PCI arbiter typically parks the PCI bus on the 660, but see section 1.11.8
for exceptions.

4.2 PCI Lock
The 660 does not set PCI locks, but does honor them. Also see Section 5.6.

4.2.1 PCI Busmaster Locks
The PCI_LOCK# signal is an input-only to the 660. The 660 provides resource locking of one
32-byte cache sector (block) of system memory. Once a PCI busmaster sets a lock on a
32-byte block of system memory, the 660 saves the block address. Subsequent accesses
to that block from other PCI bus masters or from the CPU bus are retried until the lock is re-
leased.

The bridge generates a write-with-flush snoop cycle on the CPU bus when a PCI bus master
sets the PCI lock. The write-with-flush snoop cycle causes the L1 and L2 caches to invalidate
the locked block, which prevents cache hits on accesses to locked blocks. If the L1 contains
modified data (as indicated by a CPU retry), the PCI cycle is retried and the modified data
is pushed out to memory.

4

PCI Bus

40 The IBM 660 Bridge

4.2.2 CPU Bus Locking
The 660 does not set PCI locks when acting as the PCI master.

The 60X processors do not have bus-locking functions. Instead, they use the load reserve
and store conditional instructions (lwarx and stwcx) to implement exclusive access by setting
a reservation on a memory block. To work with the lwarx and stwcx instructions, the 660
snoops all PCI accesses to system memory, which allows the CPU that is holding the reser-
vation to detect a violation of the reservation. In addition, the 660 generates a write-with-flush
operation on the CPU bus in response to the PCI read that begins a PCI lock.

4.3 660 (Target) Response by PCI Bus Command
Table 4-1 shows the response of the 660 (and the allowed response of other PCI agents) to
various PCI bus transactions initiated by a PCI busmaster. The 660 ignores (No response)
all PCI bus transactions except PCI memory read and write transactions, which it decodes
as possible system memory accesses.

Table 4-1. 660 Bridge Responses to PCI_C/BE[3:0] Bus Commands
C

[3:0]
PCI Bus Command Can a PCI Bus

Master Initiate
this Transac-
tion?

660 Response to
the Transaction

Can Another PCI Target
Claim the Transaction?

0000 Interrupt Acknowledge No. Only the 660 is
allowed to initiate.

No response Yes. The ISA bridge is
intended to be the target.

0001 Special Cycle Yes No response Yes

0010 I/O Read Yes No response Yes

0011 I/O Write Yes No response Yes

0100 Reserved No. Reserved No response n/a

0101 Reserved No. Reserved No response n/a

0110 Memory Read Yes System memory read Yes, if no address conflict.

0111 Memory Write Yes System memory write Yes, if no address conflict.

1000 Reserved No. Reserved No response n/a

1001 Reserved No. Reserved No response n/a

1010 Configuration Read No. Only the 660. No response Yes

1011 Configuration Write No. Only the 660. No response Yes

1100 Memory Read Multiple Yes System memory read Yes, if no address conflict.

1101 Dual Address Cycle Yes No response Yes

1110 Memory Read Line Yes System memory read Yes, if no address conflict.

1111 Memory Write and Invalidate Yes System memory write Yes, if no address conflict.

4

PCI Bus

41The IBM 660 Bridge

4.4 660 (Target) Response by PCI Memory Address
Table 4-2 shows the mapping of PCI memory accesses to system memory. This is the re-
sponse of the 660 bridge as a PCI target when a PCI busmaster initiates a PCI memory trans-
action.

Table 4-2. 660 Bridge Mapping of PCI Memory Space
PCI Bus Address Other Conditions Target Cycle Decoded Target Ad-

dress
Notes

0 to 2G IGN_PCI_AD31
Deasserted

Not Decoded N/A Ignored by 660.

IGN_PCI_AD31
Asserted

System Memory * 0 to 2G Snooped by caches.
The 660 broadcasts a
snoop onto the CPU

bus.

2G to 4G System Memory * 0 to 2G Snooped by caches.

*Memory does not occupy this entire address space. Accesses to unoccupied space are not decoded.

For PCI memory transactions from 0 to 2G:

� While IGN_PCI_AD31 is negated, PCI busmaster memory accesses in the
0 to 2G address range are ignored by the 660.

� While IGN_PCI_AD31 is asserted, the 660 maps PCI busmaster memory
accesses from 0 to 16M directly to system memory at 0 to 16M in order to
support ISA busmaster accesses to system memory. (The 660 actually
maps the entire 0 to 2G range to system memory while IGN_PCI_AD31 is
asserted.)

The 660 maps PCI busmaster memory accesses from 2G to 4G as system memory from
0 to 2G. All PCI master accesses to system memory are snooped by the caches.

Note that the CPU can generate PCI memory accesses with PCI addresses from 0 to 1G –
2M. However, the range of addresses in which to locate PCI memory so that it can be ad-
dressed by both PCI busmaster and the CPU, is from 0 to 1G – 2M.

4

PCI Bus

42 The IBM 660 Bridge

4.5 PCI Access to System Memory
4.5.1 Memory Access Range and Limitations
PCI memory reads and writes by PCI bus masters are decoded by the 660 to determine if
they access system memory. PCI memory reads and writes to addresses from 2G to 4G on
the PCI bus are mapped by the 660 as system memory reads and writes from 0G to 2G.
These PCI to memory transactions are checked against the top_of_memory variable to de-
termine is a given access is to a populated bank. The logic of the 660 does not recognize
unpopulated holes in the memory banks. PCI accesses to unpopulated locations below the
top_of_memory are undefined.

PCI accesses to system memory are not limited to 32 bytes. PCI burst-mode accesses are
limited only by the size of memory, PCI bus latency restrictions, and the PCI disconnect
counter.

4.5.2 ISA Master Transactions
The 660 samples IGN_PCI_AD31 during PCI busmaster memory transactions from 0 to 2G.
If IGN_PCI_AD31 is negated, the 660 ignores the transaction, and if IGN_PCI_AD31 is as-
serted, the 660 forwards the transaction to system memory. In theory, the IGN_PCI_AD31
signal can be used by any PCI agent for this purpose, but to ensure PR–P compliance, this
signal should be asserted only while the ISA bridge is initiating a PCI to memory transaction
on behalf of an ISA master. One way to generate IGN_PCI_AD31 is to AND together the
PCI_GNT# signals of all of the PCI agents except the ISA bridge and the 660. This will assert
IGN_PCI_AD31 (during a PCI transaction) only while either the 660 or the ISA bridge is the
initiator (and the 660 knows when it is the initiator).

The required connectivity of IGN_PCI_AD31 prevents the ISA bridge from initiating peer to
peer PCI memory transactions in the 0 to 2G range. The ISA bridge is allowed to initiate PCI
memory transactions from 2G to 4G, and other PCI transaction types (I/O &etc.).

4.5.3 Memory Access Sequence
When a PCI access is decoded as a system memory read or write, the memory and CPU
bus are requested and, when granted, a snoop cycle to the CPU bus and a memory cycle
to system memory are generated. If the processor indicates a snoop hit in the L1 cache
(ARTRY# asserted), then the memory cycle is abandoned and the PCI cycle is retried. The
CPU then does a snoop push. The L2 cache does not need to do a snoop push because it
is write-through, and, therefore, system memory always contains the result of all write cycles.

4.5.3.1 Snooping
Section 3.12 contains a detailed description of the snoop process.

4.5.3.2 Writes
If the PCI access is a memory burst write access, the 660 PCI interface performs data gather-
ing before initiating the cycle to the memory controller. The data gathering involves combin-
ing two PCI write cycles into one memory write cycle if the address of the first write cycle is
even.

Minimum initial write access time to 70ns DRAM when the CPU bus is 66MHz and the PCI
bus is 33MHz is 5-1-1-1 -3-1-1-1 PCI clocks for 4-4-4-4 -4-4-4-4 bytes of data (14 PCI clocks
for 32 bytes of data). Subsequent data phases of the same burst are generally serviced at
-3-1-1-1 -3-1-1-1 (12 PCI clocks for 32 bytes of data). See Section 4.5.4.2.

4

PCI Bus

43The IBM 660 Bridge

4.5.3.3 Reads
If the PCI access is a memory burst read access, the 664 PCI interface performs memory
pre-fetching when it initiates cycles to the memory controller. The pre-fetching involves load-
ing or pre-loading 32 bytes from the memory for eight 4-byte PCI read cycles. Pre-fetching
is only done within the same cache line.

Minimum initial read access time from 70ns DRAM when the CPU bus is 66MHz and the PCI
bus is 33MHz, is 8-1-1-1 -1-1-1-1 PCI clocks for 4-4-4-4 -4-4-4-4 bytes of data (15 PCI clocks
for 32 bytes of data). Subsequent data phases of the same burst are generally serviced at
-7-1-1-1 -1-1-1-1 (14 PCI clocks for 32 bytes of data). See Section 4.5.4.1.

4.5.4 PCI to Memory Burst Transfers
PCI to memory burst transfers continue to normal completion unless one of the following
occurs:

1. The initiating PCI bus master disconnects. The 660 handles all master disconnects
correctly.

2. The 660 target disconnects on a 1 M boundary. The Bridge disconnects on all 1M
boundaries.

3. The 660 target disconnects because the PCI disconnect timer has timed out. See
section 10.3.21.

4. The CPU retries the snoop cycle that the 660 broadcast on the CPU bus. In this
case, the 660 target retries the PCI bus master. (Note that L2 hits do not affect the
PCI to memory transaction. Read hits have no effect, and write hits cause the internal
L2 to invalidate the block.)

5. The 660 will target disconnect the PCI bus master if the refresh timer (see section
10.3.45) times out. In this case, the 660 will disconnect at the end of the current data
phase for writes, or at the end of the current cache block, for reads.

4.5.4.1 Detailed Read Burst Sequence Timing
The basic PCI to memory read sequence with 70ns DRAM is 8-1-1-1 -1-1-1-1 -7-1-1-1
-1-1-1-1 -7..., giving a peak burst read rate of 32 bytes in 14 PCI clocks, or about 73MBps
with a 33MHz PCI clock. This scenario holds while the RAS# timer (10us typical) does not
time out and no refresh is requested (15us typ).

The actual detailed read sequence is affected by several factors, such as the speed of the
DRAM, refresh requests, memory arbitration delays, page and/or bank misses, and cache
boundary alignment. Table 4-3 shows the details of the various sequences that a PCI to
memory burst read will experience, depending on the address (relative to a cache block
boundary) of the first data phase of the transaction. The starting address of the numbering
sequence shown on the top row was arbitrarily chosen as xx00, and could be any 32–byte
aligned boundary. The times shown in Table 4-3 are in PCI clock cycles, and do not include
any cycles that the PCI master spends acquiring the PCI bus from the PCI bus arbiter. The
initial data phase is timed from the assertion of FRAME# to the PCI clock at which the PCI
master samples TRDY# active. Subsequent data phase times are from the PCI clock at
which the previous TRDY# was sampled active to the PCI clock at which the current TRDY#
is sampled active.

4

PCI Bus

44 The IBM 660 Bridge

All the numbers shown in Table 4-3 are for parity (or none) operation. These numbers are
also correct for ECC mode operation.

Table 4-3. PCI to Memory Read Burst Sequence Timing

 S S
00 04 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C 40 ...
 N 1 1 1 1 1 1 1 M 1 1 1 1 1 1 1 M ...
 N 1 1 1 1 1 1 M 1 1 1 1 1 1 1 M ...
 N 1 1 1 1 1 M 1 1 1 1 1 1 1 M ...
 N 1 1 1 1 M 1 1 1 1 1 1 1 M ...
 N 1 1 1 M 1 1 1 1 1 1 1 M ...
 N 1 1 M 1 1 1 1 1 1 1 M ...
 N 1 M 1 1 1 1 1 1 1 M ...
 N M 1 1 1 1 1 1 1 M ...
 N 1 1 1 1 1 1 1 M ...

S indicates a cache block boundary at 0 mod 32. Snoops are broadcast to the CPU bus
when a PCI burst crosses one of these boundaries.

N is the number of PCI clocks required from the assertion of FRAME# until the master
samples the first TRDY# (from the 660) active, and is a function of snoop and memory
arbitration delays. If the CPU is accessing memory when the PCI agent begins the
memory read burst, the 660 waits until the CPU completes the current CPU access
before allowing the PCI to memory read to proceed. If the RAS# watchdog timer has
timed out, the memory controller will precharge the RAS# lines, and if the refresh timer
has timed out, the memory controller will do a refresh operation.

N (min) = 5 This occurs when the memory controller is idle and no refresh or
RAS# timeout occurs, and the access produces a page hit.

N (typ) = 8 or 9 This occurs if the memory controller is in the middle (beat 3 of 4) of
serving a CPU burst transfer when the PCI burst starts, and no
refresh or RAS# timeout occurs.

N (max) = 26 This occurs when CPU1 is just starting a burst transfer to memory,
followed by CPU2 starting a burst transfer to memory, after which a
refresh happens to be required.

M is a function of a 2-clock snoop delay and other delays caused by bridge overhead
functions. Whenever the memory access crosses a cache block boundary, the Bridge
broadcasts a snoop cycle on the CPU bus.

M (typ) = 6 or 7 Unless a refresh or RAS# timeout occurs.
M (typ) = 7 or 8 This occurs for a refresh or RAS# timeout.

The memory controller, running at its own speed, requests up to 4, 8-byte memory reads (into
8, 4-byte buffers in the 663) while the PCI target engine of the 660 is servicing the memory
read transaction. Under worst case conditions (slow memory, etc.), the memory controller
just keeps up with the PCI bus, and N goes up. Under better conditions, the memory control-
ler gets ahead of the PCI read process, and N decreases.

4

PCI Bus

45The IBM 660 Bridge

4.5.4.2 Detailed Write Burst Sequence Timing
The basic PCI to memory write sequence to 70ns DRAM is 5-1-1-1 -3-1-1-1 -3-1-1-1 -3-1-1-1
-3..., giving a peak burst write rate of 32 bytes in 12 PCI clocks, or about 85MBps with a
33MHz PCI clock. This scenario holds while the RAS# timer (10us typical) does not time out,
the burst remains within the same 4K memory page, and no refresh is requested (15us typ).

The actual detailed write sequence is affected by several factors, such as the speed of the
DRAM, refresh requests, memory arbitration delays, page and/or bank misses, and cache
boundary alignment. Table 4-4 shows the details of the various sequences that a PCI to
memory burst write will experience, depending on the address (relative to a cache block
boundary) of the first data phase of the transaction. The starting address of the numbering
sequence shown on the top row was arbitrarily chosen as xx00, and could be any 32–byte
aligned boundary. The times shown in Table 4-4 are in PCI clock cycles, and do not include
any cycles that the PCI master spends acquiring the PCI bus from the PCI bus arbiter. The
initial data phase is timed from the assertion of FRAME# to the PCI clock at which the PCI
master samples TRDY# active. Subsequent data phase times are from the PCI clock at
which the previous TRDY# was sampled active to the PCI clock at which the current TRDY#
is sampled active.

All the numbers shown in Table 4-4 are for parity (or none) operation. The numbers are also
correct for ECC mode operation as long as all the writes are gather-store pairs. Incurring a
RMW operation costs 3 PCI_CLKs.

Table 4-4. PCI to Memory Write Burst Sequence Timing

 S S
00 04 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C 40 ...
 W 1 1 1 Y 1 Z 1 X 1 Z 1 Z 1 Z 1 X ...
 W 1 1 Y 1 Z 1 X 1 Z 1 Z 1 Z 1 X ...
 W 1 1 1 Y 1 X 1 Z 1 Z 1 Z 1 X ...
 W 1 1 Y 1 X 1 Z 1 Z 1 Z 1 X ...
 W 1 1 1 G 1 Z 1 Z 1 Z 1 X ...
 W 1 1 G 1 Z 1 Z 1 Z 1 X ...
 W 1 G 1 Z 1 Z 1 Z 1 X ...
 W G 1 Z 1 Z 1 Z 1 X ...
 W 1 1 1 Y 1 Z 1 X ...

S indicates a cache block boundary at 0 mod 32. Snoops are broadcast to the CPU bus
when a PCI burst crosses one of these boundaries.

W is a function of a 1.5 PCI clock snoop delay and memory arbitration delays. If the CPU
is accessing memory when the PCI agent begins the memory write burst, the 660 waits
until the CPU completes the current CPU access before allowing the PCI to memory
write to proceed. If the RAS# watchdog timer has timed out, the memory controller will
precharge the RAS# lines, and if the refresh timer has timed out, the memory controller
will do a refresh operation.

4

PCI Bus

46 The IBM 660 Bridge

W (min) = 5 This occurs when the memory controller is idle and no refresh or
RAS# timeout occurs.

W (typ) = 6 or 7 This occurs if the memory controller is in the middle (beat 3 of 4) of
serving a CPU burst transfer when the PCI burst starts, and no
refresh or RAS# timeout occurs.

W (max) = 23 This occurs when CPU1 is just starting a burst transfer to memory,
followed by CPU2 starting a burst transfer to memory, after which a
refresh happens to be required.

X is a function of snoop delays only. Whenever the memory access crosses a cache
block boundary, the Bridge broadcasts a snoop cycle on the CPU bus. (Due to the
posted write buffer structure, delays incurred by crossing a page boundary here do not
show up until later in the sequence.)

X= 3 Always. (The only benefit to disabling PCI snooping or enabling pre–snooping
is to reduce this delay to 1. Otherwise neither function increases performance.)

Y is a function of memory latency. This page and/or bank miss delay can only be incurred
at a page boundary, but shows up here due to the posted write buffer structure. The
Bridge has a 4 x 4 posted PCI write buffer, which allows it to accept data phases from
the PCI bus while the memory controller is busy servicing page misses. This minimizes
the transfer delays caused by these memory overhead functions.

Y (typ) = 1 This occurs for a page hit with no refresh. This is also the minimum.
Y (mid) = 2 This occurs for a page miss with no refresh.
Y (max) = 4 This occurs for a refresh (which also forces a page miss).

Z is a function of a subset of the W factors (RAS# timeouts and refresh operations). This
delay is only incurred due to a RAS# timeout or refresh request that has occurred since
the last W, Y, Z, or G.

Z (typ) = 2 to 3 This occurs for no refresh and no RAS# timeout.
Z (max) = 3 to 4 This occurs for either a RAS# timeout or a refresh operation.

G is the combination of X and Y, and is equal to the longer of X and Y.

4.6 1:1 CPU:PCI Bus Ratio Operation
When using the 660 with a CPU:PCI bus ratio of 1:1, the PCI arbiter must be programmed
to not park the PCI bus on the 660.

Operation of the 660 with a CPU:PCI bus ratio of 1:1 is supported only with the use of external
logic. The logic deasserts PCI_GNT# to the 664 from the beginning of the address phase of
a CPU to PCI access, until the CPU bus is no longer pipelined (DBB# deasserts for a clock).

4

PCI Bus

47The IBM 660 Bridge

4.6.1 1:1 PAL Connectivity
This section shows one possible implementation of the 1:1 bus ratio external logic in a 16V8
PAL. See Figure 4-1.

1. PAL clock is CPU_CLK or PCI_CLK, since they will be at the same speed.

2. PAL inputs (just add this connection to the current nets): TS#, CPU_A[0], and DBB#.

3. Cut PCI_GNT# between the 664 and the PCI arbiter. Connect PCI_GNT# from the
arbiter to the PCI_GNT_IN# input of the PAL. Connect the PCI_GNT_OUT# output
of the PAL to the PCI_GNT# input of the 664.

Figure 4-1. PAL

CPU_CLK

PCI_GNT_IN#

664CPU
 Bus

TS#

CPU_A[0]

DBB#

PCI Bus
 Arbiter

PCI_GNT_OUT#

1:1 Bus
 Ratio
 PAL

PAL 16V8

4

PCI Bus

48 The IBM 660 Bridge

4.6.2 1:1 PAL Equations

TITLE 1_to_1.pds
PATTERN none
REVISION 1.0
COMPANY IBM
DATE 02/14/96
CHIP _1_to_1 PALCE16V8

;––––––––––––––––––––––––– PIN Declarations ––––––––––––––––––––
;
; Predefined
;
;PIN 1 CPU_CLK ; CLOCK
;PIN 10 GND ; GROUND
;PIN 11 REG_OE# ; OUTPUT ENABLE FOR REGISTERED OUTPUTS
;PIN 20 VCC ; VCC
;
; Inputs
;

PIN 2 TS_
PIN 3 A0
PIN 4 DBB_
PIN 5 PCI_GNT_IN_
;PIN 6
;PIN 7
;PIN 8
;PIN 9
;
; outputs
;
;
; Registered outputs
;
;PIN 12 REG
;PIN 13 REG
;PIN 14 REG
;PIN 15 REG
;PIN 16 REG
;PIN 17 REG
PIN 18 MASK_PCI_GNT REG
PIN 19 PCI_GNT_OUT_ COMB

;

4

PCI Bus

49The IBM 660 Bridge

;–––––––––––––––––– Boolean Equation Segment –––––––––––––––––
;
EQUATIONS

MASK_PCI_GNT = /TS_ * A0 * /DBB_
 + MASK_PCI_GNT * /DBB_

PCI_GNT_OUT_ = PCI_GNT_IN_
 + MASK_PCI_GNT

;–––––––––––––––––––––– END OF FILE ––––––––––––––––––––––––––––

4

PCI Bus

50 The IBM 660 Bridge

4.7 Related Bridge Control Registers
Bridge Control Register Index R/W Bytes See

Memory Controller Misc 8000 0821 R/W 1 10.2.2.4

PCI/BCR Configuration Address 8000 0CF8 R/W 4 10.3.1.1

PCI/BCR Configuration Data 8000 0CFC R/W 4 10.3.1.2

PCI Type 0 Configuration Addresses
IBM27–82650 Compatible

8080 08xx
thru

80C0 00xx

R/W 4 3.4.5.1

PCI Vendor ID Index 00 – 01 R 2 10.3.3

PCI Device ID Index 02 – 03 R 2 10.3.4

PCI Command Index 04 – 05 R/W 2 10.3.5

PCI Device Status Index 06 – 07 R/W 2 10.3.6

Revision ID Index 08 R 1 10.3.7

PCI Standard Programming Interface Index 09 R 1 10.3.8

PCI Subclass Code Index 0A R 1 10.3.9

PCI Class Code Index 0B R 1 10.3.10

PCI Cache Line Size Index 0C R 1 10.3.11

PCI Latency Timer Index 0D R 1 10.3.12

PCI Header Type Index 0E R 1 10.3.13

PCI Built-in Self-Test (BIST) Control Index 0F R 1 10.3.14

PCI Interrupt Line Index 3C R 1 10.3.15

PCI Interrupt Pin Index 3D R 1 10.3.16

PCI MIN_GNT Index 3E R 1 10.3.17

PCI MAX_LAT Index 3F R 1 10.3.18

PCI Bus Number Index 40 R 1 10.3.19

PCI Subordinate Bus Number Index 41 R 1 10.3.20

PCI Disconnect Counter Index 42 R/W 1 10.3.21

PCI Special Cycle Address BCR Index 44 –45 R 2 10.3.22

Error Enable 1 Index C0 R/W 1 10.3.37

Error Status 1 Index C1 R/W 1 10.3.38

Error Enable 2 Index C4 R/W 1 10.3.40

Error Status 2 Index C5 R/W 1 10.3.41

PCI Bus Error Status Index C7 R/W 1 10.3.42

CPU/PCI Error Address Index C8 – CB R/W 4 10.3.43

4

DRAM

51The IBM 660 Bridge

Section 5
DRAM
The memory controller in the 660 controls the system memory DRAM. The system memory
can be accessed from both the CPU bus and the PCI bus.

5.1 Features and Supported Devices
� Supports memory operations for the PowerPC Architecture�
� Data bus path 72 bits wide—64 data bits and eight bits of optional ECC or parity data
� Eight SIMM sockets supported, with empty SIMM sockets allowed at any position
� Eight RAS# outputs, eight CAS# outputs, and two write-enable outputs
� Supports industry-standard 8-byte (168-pin) SIMMs of 8M, 16M, 32M, 64M, and

128M that can be individually installed for a minimum of 8M and a maximum of 1G
� Supports industry-standard 4-byte (72-pin) SIMMs of 4M, 8M, 16M, 32M, 64M, and

128M that must be installed in pairs for a minimum of 8M and a maximum of 1G
� Mixed use of different size SIMMs, including mixed 4-byte and 8-byte SIMMs
� Full refresh support, including refresh address counter and programmable DRAM

refresh timer with low-power mode
� Burst-mode memory address generation logic
� 32-byte CPU bursts to memory
� Variable length PCI burst to memory

� Little-endian and big-endian addressing and byte swapping modes
� Provides row and column address multiplexing for DRAM SIMMs requiring the

following addressing:

SIMM type SIMM size Addressing

72-pin 4 Meg 10 x 10

8 Meg 10 x 10

16 Meg 11 x 11

32 Meg 11 x 11

64 Meg 12 x 12

168-pin 8 Meg 10 x 10

16 Meg 11 x 10

32 Meg 12 x 10 or 11 x 11

64 Meg 12 x 11

128 Meg 12 x 12

5

DRAM

52 The IBM 660 Bridge

5.1.1 SIMM Nomenclature
The term SIMM is used extensively to mean DRAM memory module, without implying the
physical implementation of the module, which can be a SIMM, DIMM, or other package.

5.1.2 DRAM Timing
The memory controller timing parameters are programmable to allow optimization of timings
based on speed of DRAM, clock frequency, and layout topology. Timing must be pro-
grammed based on the slowest DRAM installed.

� Support for fast page-mode DRAMs
� Support for extended-data-out (EDO) DRAM (hyper-page mode)
� If 70ns DRAM is used in a system with the CPU bus at 66MHz, the minimum access

times for initial (not pipelined) CPU to memory transfers with page mode and EDO
DRAM are as follows:

Transfer EDO DRAM Page Mode DRAM Note

Initial Read Burst 10–3–3–3 11–4–4–4 CPU clocks for 32 bytes

Initial Write Burst 5–3–3–3 5–4–4–4 CPU clocks for 32 bytes

� In the same system, the times for a pipelined burst following a read are as follows:

Transfer EDO DRAM Page Mode DRAM Note

Page Hit Read –5–3–3–3 –5–4–4–4 CPU clocks for 32 bytes

Page Hit Write –3–3–3–3 –3–3–4–4 CPU clocks for 32 bytes

� In the same system, the times for a pipelined burst following a write are as follows:

Transfer EDO DRAM Page Mode DRAM Note

Page Hit Read –9–3–3–3 –11–4–4–4 CPU clocks for 32 bytes

Page Hit Write –5–3–3–3 –6–3–4–4 CPU clocks for 32 bytes

� Other minimum memory timings are as follows:
� PCI to memory read at 66MHz CPU and 33MHz PCI

8-1-1-1 -1-1-1-1 7-1-1-1 -1-1-1-1 7-1-1-1 -1-1-1-1 ... 7-1-1-1 -1-1-1-1
� PCI to memory write at 66MHz CPU and 33MHz PCI

5-1-1-1 -3-1-1-1 3-1-1-1 -3-1-1-1 3-1-1-1 -3-1-1-1 ... 3-1-1-1 -3-1-1-1

5.1.3 DRAM Error Checking
The 660 supports either no parity or one bit per byte parity DRAM SIMMs, in which one parity
bit is associated and accessed with each byte. The 660 is BCR programmable to support
either no parity, even parity, or ECC data error detection and correction. ECC is implemented
using standard parity SIMMs. All installed SIMMs must support the selected error checking
protocol.

Systems without error checking cost the least. Parity checking mode allows a standard level
of error protection with no performance impact. ECC mode allows detection and correction
of all single-bit errors and detection of all two-bit errors. ECC mode adds one CPU clock to
the latency of CPU to memory reads, and does not effect the timing of 8-byte and 32- byte
writes

5

DRAM

53The IBM 660 Bridge

5.2 DRAM Performance
5.2.1 Memory Timing Parameters
Most memory controller timing parameters can be adjusted to maximize the performance of
the system with the available resources. This adjustment is done by programming various
memory controller BCRs. Figure 5-1 shows the various programmable memory timing vari-
ables. These variables control the number of CPU_CLKs between various events. The actu-
al amount of time between the events shown will also be affected by various other factors
such as clock to output delays. The CPU_CLK signal shown is not meant to be contiguous,
as the number of clocks between various events is programmable.

Figure 5-1. CPU to Memory Transfer Timing Parameters

RPW

CP CP

RP

RCD

ASC

CPW

ASC

CPW

Row Column ColumnColumnMA(11:0)

RASn#

CASm#

CPU_CLK

RAH

Table 5-1 shows the function, location, and section references for the variables shown in
Figure 5-1.

Table 5-1. Memory Timing Parameters

Variable Function BCR Section

ASC Column Address Setup (min) Memory Timing Register 2 5.2.1.2

CP CAS# Precharge Memory Timing Register 2 5.2.1.2

CPW CAS# Pulse Width (Read &
Write)

Memory Timing Register 2 5.2.1.2

RAH Row Address Hold (min) Memory Timing Register 1 5.2.1.1

RCD RAS# to CAS# Delay (min) Memory Timing Register 2 5.2.1.2

RP RAS# Precharge Memory Timing Register 1 5.2.1.1

RPW RAS# Pulse Width Memory Timing Register 1 5.2.1.1

Note that ASC, RAH, and RCD are minimums. if RAH + ASC does not equal RCD, then the
larger value will be used such that:

� If RCD < RAH + ASC, then the actual RCD will be stretched to equal RAH + ASC.
� If RCD > RAH + ASC, then the actual RAH will be stretched to equal RCD – ASC.

5

DRAM

54 The IBM 660 Bridge

5.2.1.1 Memory Timing Register 1

Index A1 Read/Write Reset to 3Fh

This BCR determines the timing of RAS# signal assertion for memory cycles. RAS# timing
must support the worst-case timing for the slowest DRAM installed in the system. See Sec-
tion 5.2.1.

Bits 1:0 These bits control the number of CPU clocks for RAS# precharge.
Bits 4:2 These bits control the minimum allowed RAS# pulse width except on re-

fresh. For refresh, the RAS# pulse width is hard-coded to three PCI clocks.
Bit 5 This bit controls the number of CPU clocks that the row address is held fol-

lowing the assertion of RAS#.

D0D1D2D3D4D5D6D7A1h

Row Address Hold Time (RAH)

RAS precharge (RP)
00 = 2 CLK
01 = 3 CLK
10 = 4 CLK
11 = 5 CLK

RAS pulse width min (RPW)

0 = 1 CLK

RESERVED

000 = reserved 100 = 5 CLK
001 = reserved 101 = 6 CLK
010 = reserved 110 = 7 CLK
011 = 4 CLK 111 = 8 CLK

1 = 2 CLK

5

DRAM

55The IBM 660 Bridge

5.2.1.2 Memory Timing Register 2

Index A2 Read/Write Reset to AEh

This BCR determines the timing of CAS# signal assertion for memory cycles. CAS# timing
must support the worst-case timing for the slowest DRAM installed in the system. See Sec-
tion 5.2.1.

When using the 660 with a 603 or 604 family CPU, and the CPU:PCI bus frequency ratio is
1:1, then CP plus CPW must be set less than or equal to 3.

D0D1D2D3D4D5D6D7A2h

CAS Pulse Width Write (CPWW)

00 = reserved
01 = 2 CLK
10 = 3 CLK
11 = reserved

CAS Pulse Width Reads/Write (CPW)
00 = 1 CLK
01 = 2 CLK
10 = 3 CLK
11 = Reserved

reserved

00 = 1 CLK
01 = 2 CLK
10 = reserved
11 = reserved

0 = 1 CLK
1 = 2 CLK

RAS to CAS Delay (RCD)

CAS Precharge (CP)

Column Address Setup (ASC)

5.2.1.3 RAS# Watchdog Timer BCR

Index B6 Read/Write Reset to 53h

This BCR limits the maximum RAS# active pulse width. The value of this BCR represents
the maximum amount of time that any RAS# can remain active in units of eight CPU bus
clocks. The timer (down-counter) associated with this BCR is reloaded on the assertion of
any RAS# line. On expiration of the timer, the 660 drops out of page mode to deassert the
RAS# lines.

In response to the RESET# signal, this register is reset to 53h. This value results in a maxi-
mum RAS# active time of just under 10us at 66MHz. This is the value required by most 4-byte
and 8-byte SIMMs. The value of the BCR must be reprogrammed if the CPU bus frequency
is not 66MHz or a different RAS# pulse width is required.

5

DRAM

56 The IBM 660 Bridge

5.2.2 General Case DRAM Timing Calculations
The memory controller of the 660 features programmable DRAM access timing. DRAM tim-
ing is programmed into Memory Timing Register 1 (MTR1) and Memory Timing Register 2
(MTR2). See section 5.2.1 for an explanation of the format of these BCRs. All memory con-
troller outputs are switched on the rising edge of the CPU clock, with the exception of signal
assertion during refresh operations, which is timed from the PCI clock. The RAS# Watchdog
Timer Register, the Refresh Timer Divisor Register and the Bridge Chipset Options 3 (BCO3)
BCRs also have an effect on DRAM timing.

The values programmed into these registers are a function of the clock frequencies, the
timing requirements of the memory, the amount of memory installed (capacitive loading), the
mode of operation (EDO vs. standard & special vs. general case), the timing requirements
of the 660, the type and arrangement of buffering for the MA (memory address) signals, the
clock skew between the 663 and the 664, and the net lengths of the signals to/from the
memory (flight time). The calculations below ignore the factors of clock skew and flight time.

This section discusses the timing calculations that are appropriate to 660 memory controller
design. Except as noted in section 5.2.4, the timing recommendations in this section apply
to all 660 configurations.

Each of the nine equations below lists a register or register bits that governs a memory timing
parameter. An equation is then provided for calculating the required value based on the
timing requirements of the memory and the 660. MTR1[1:0] refers to Memory Timing
Register 1 bits 1:0. See Figure 5-1 and Table 5-1.

1. MTR1[1:0] – RAS# precharge (RP). The critical path that determines the RAS#
precharge requirement is RAS# rising to RAS# falling. The minimum RAS# prechar-
ge time supplied by the 660 must exceed the minimum precharge time required by
the DRAM. Make:

RAS# precharge (RP) > Trp min * DRAM min RAS# precharge.

2. MTR1[4:2] – RAS# pulse width (RPW). The critical path that determines the RAS#
pulse width requirement is RAS# falling to RAS# rising. The minimum RAS# pulse
width supplied by the 660 must exceed the minimum RAS# pulse width required by
the DRAM plus 5ns. Make:

RAS# pulse width (RPW) > Tras min * DRAM min RAS# pulse width.
+ 5ns * pulse width shrinks (note 1).

3. MTR2[6:5] – CAS# precharge (CP). The critical path that determines the CAS#
precharge requirement is CAS# rising to CAS# falling. The minimum CAS# prechar-
ge time supplied by the 660 must exceed the minimum precharge time required by
the DRAM. Make:

CAS# precharge (CP) > Tcp min * DRAM min CAS# precharge.

5

DRAM

57The IBM 660 Bridge

4. MTR2[3:2] – CAS# pulse width (CPW). The critical path that determines the CAS#
pulse width requirement is the data access time from CAS# plus the setup time into
the 663. Thus the minimum CAS# pulse width provided by the 660 must exceed the
minimum CAS# pulse width required by the DRAM, plus these factors. Note that the
663 samples memory data on the clock that CAS# is deasserted for standard DRAM
and on the clock after CAS# is deasserted for EDO DRAM. Make:

CAS# pulse width (CPW) > T CAS# fall max * CAS# active out if 664. . .
(+ 1 CLK if EDO) + Tcac * DRAM data access from CAS#.

+ MD setup max * MEM_DATA setup into 663. . .
The factor (+ 1 CLK if EDO) is included in the equation only if EDO DRAM is used.
Note that CPW must be set to 3 or fewer clocks.

5. MTR2[7] – Column Address Setup (ASC). There are two critical paths that determine
the Col addr setup requirement. The minimum column address setup time supplied
by the 660 must exceed both constraints. The first is Tasc of the memory. Make:

 a) Col Addr Setup (ASC) > Tasc min * DRAM min col addr setup time.
+ T MA max * MA[11:0] valid out of 664. .
+ T 244 max * Buffer delay. .
– T CAS# max * CAS# active out of 664

The second critical path is the data access time from MA plus the setup time into the
663. Make:

b) Col addr setup (ASC)
 + CAS# pulse width (CPW) > T MA max * MA[11:0] valid out of 664.
 (+ 1 CLK if EDO) + T 244 max * Buffer delay. . .

+ Taa min * DRAM data valid from col addr.
valid

+ MD setup max * MEM_DATA setup into 663

6. MTR2[1:0] – RAS# to CAS# delay. The minimum RAS# to CAS# delay provided by
the 660 must exceed the timing of the critical path that determines the RAS# to CAS#
delay, which is the data access time from RAS# plus the setup time into the 663.
Make:

RAS# to CAS# delay (RCD)
+ CAS# pulse width (CPW) > T RAS# fall max * max 660 RAS# fall time (note 1).
(+ 1 CLK if EDO) + Trac min * DRAM data access from RAS#.

+ MD setup max/ * MEM_DATA setup into 663+

5

DRAM

58 The IBM 660 Bridge

7. MTR1[5] – Row address hold time. The row address hold time must be set to the
RAS#–to–CAS# delay minus the Column address setup. The timing for the row
address hold time can also be calculated as follows. Make:

Row addr hold (RAH) > Trah min * DRAM min row addr hold. .
+ T244 min * Buffer delay.
+ T MA max * MA[11:0] valid out of 664.
– T RAS# fall max * max 660 RAS# fall time (note 1).

Note 1: The 664 drivers that drive the RAS# and CAS# signals are slower falling than
rising. This causes active high pulse widths to grow by 0 to 5ns and active low pulse
widths to shrink by 0 to 5ns.

8. Refresh Timer Divisor. The refresh timing divisor is clocked by the PCI clock. The
required value is calculated as follows:

Refresh rate = period(Tref) / period(PCI clock)

9. RAS# watchdog timer. The RAS# watchdog timer must be set to limit the max RAS#
pulse width:

RAS# watchdog timer = Tras max / [period(CPU clock) * 8].

5.2.3 General Case DRAM Timing Examples
This section presents example DRAM timing calculations based on the equations found in
Section 5.2.2. Except as noted in Section 5.2.4, the timing recommendations in this section
apply to all 660 configurations.

In the equations below, first the capactive loads are calculated based on the quantity and
types of SIMMs and the buffers used. Next, the timing characteristics are calculated based
on the capacitive loads. Finally, the timing requirements and register values are caculated.

5.2.3.1 70ns DRAM Calculations
Ex 1: Assume 70ns standard DRAM memory, four 72–pin DRAM SIMMs, a CPU bus cycle
time of 15ns (66.7Mhz), and MA[11:0] buffered by an FCT244 (four SIMMs per driver).

Capacitive loads:

 RAS# = 2*62pf + 30pf = 154pf
 CAS# = 2*62pf + 30pf = 154pf
 MA (to buffer) = 30pf
 MA (to memory) = 4*161pf + 40pf = 684pf

5

DRAM

59The IBM 660 Bridge

Timing Characteristics:

 RAS# = 13.2ns + .025*(154pf–50pf) = 16ns
 CAS# = 13.3ns + .025*(154pf–50pf) = 16ns
 MA to buffer = 13.6ns + .025*(30pf–50pf) = 13ns
 MA to memory = 4.6ns + .007(684pf–50pf) = 9ns
 663 memory data input setup = 6ns

664 Output timings are at 50pf. For loads greater than 50pf, 0.025ns/pF are added.

Timing Requirements and register value calculations:

1. 4 CLK * 15ns > 50ns
60ns > 50ns MTR1[1:0]=10.

2. 5 CLK * 15ns > 70ns + 5ns
 75ns > 75ns MTR1[4:2]=100.

3. 1 CLK * 15ns > 10ns
15ns > 10ns MTR2[6:5]=00.

4. 3 CLK * 15ns > 16ns + 20ns + 6ns
45ns > 42ns MTR2[3:2]=10.

5. a. 1 CLK * 15ns > 0ns + 13ns + 9ns – 16ns
15ns > 6ns

 b. (1 + 3)CLK * 15ns > 13ns + 9ns + 35ns + 6ns
 60ns > 63ns MTR2[7]=0 (see Note 2).

6. (3 + 3)CLK * 15ns > 16ns + 70ns + 6ns
90ns > 92ns MTR2[1:0]=10 (see Note 2).

7. 2 CLK * 15ns > 10ns + 4ns + 13ns – 16ns
30ns > 11ns MTR1[5]=1.

Results: Memory Timing Register 1 (index A1h) = 32h
Memory Timing Register 2 (index A2h) = 0Ah

Note 2: The timing analysis above includes two timing violations (path #5b is
violated by 5% and path #6 is violated by 2%). More conservate system designers
may wish to use the values MTR1=32h, MTR2=0Eh to ensure all timing
requirements are met under all worst–case conditions.

8. Refresh rate = 15.6us/30ns = 520d = 208h

Refresh Timer Divisor (index D1h,D0h) = 0208h

9. RAS# watchdog timer = 10,000ns / (15ns*8) = 83d = 53h

RAS# watchdog timer register (index B6h) = 53h (default value).

5

DRAM

60 The IBM 660 Bridge

5.2.3.2 60ns DRAM Calculations
Ex 2: Same assumptions as above, but with 60ns DRAM

1. 3 CLK * 15ns > 40ns
45ns > 40ns MTR1[1:0]=01.

2. 5 CLK * 15ns > 60ns + 5ns
75ns > 65ns MTR1[4:2]=100.

3. 1 CLK * 15ns > 10ns
15ns > 10ns MTR2[6:5]=00.

4. 3 CLK * 15ns > 16ns + 15ns + 6ns
45ns > 37ns MTR2[3:2]=10.

5. a. 1 CLK * 15ns > 0ns + 13ns + 9ns – 16ns
15ns > 6ns

b. (1 + 3)CLK * 15ns > 13ns + 9ns + 30ns + 6ns
60ns > 58ns MTR2[7]=0.

6. (2 + 3)CLK * 15ns > 16ns + 60ns + 6ns
75ns > 82ns MTR2[1:0]=01 (see Note 3).

7. 1 CLK * 15ns > 10ns + 4ns + 13ns – 16ns
15ns > 11ns MTR1[5]=0.

Results: Memory Timing Register 1 (index A1h) = 11h
Memory Timing Register 2 (index A2h) = 09h

Note 3: The timing analysis above includes one timing violation (path #6 is violated
by 9%). More conservate system designers may wish to use the values MTR1=31h
MTR2=0Ah to ensure all timing requirements are met under complete worst–case
conditions.

8. Refresh rate = 15.6us/30ns = 520d = 208h

Refresh Timer Divisor (index D1h,D0h) = 0208h

9. RAS# watchdog timer = 10,000ns / (15ns*8) = 83d = 53h

RAS# watchdog timer register (index B6h) = 53h (default value).

5

DRAM

61The IBM 660 Bridge

5.2.3.3 50ns DRAM Calculations
Ex 3: Same assumptions as above, but with 50ns DRAM

1. 2 CLK * 15ns > 30ns
30ns > 30ns MTR1[1:0]=00.

2. 4 CLK * 15ns > 50ns + 5ns
60ns > 55ns MTR1[4:2]=011.

3. 1 CLK * 15ns > 10ns
15ns > 10ns MTR2[6:5]=00.

4. 2 CLK * 15ns > 16ns + 13ns + 6ns
30ns > 35ns MTR2[3:2]=01 (see note 4).

5. a. 1 CLK * 15ns > 0ns + 13ns + 9ns – 16ns
 15ns > 6ns

b. (1 + 2)CLK * 15ns > 13ns + 9ns + 25ns + 6ns
45ns > 53ns MTR2[7]=0 (see note 4).

6. (3 + 2)CLK * 15ns > 16ns + 50ns + 6ns
 75ns > 72ns MTR2[1:0]=10.

7. 2 CLK * 15ns > 10ns + 4ns + 13ns – 16ns
30ns > 11ns MTR1[5]=1.

Results: Memory Timing Register 1 (index A1h) = 2Ch
Memory Timing Register 2 (index A2h) = 06h

Note 4: The timing analysis above includes two timing violations (path #4 is violated
by 14% and path #5b is violated by 15%). More conservate system designers may
wish to use the values MTR1=0Ch, MTR2=09h to ensure all timing requirements are
met under complete worst–case conditions.

8. Refresh rate = 15.6us/30ns = 520d = 208h

Refresh Timer Divisor (index D1h,D0h) = 0208h

9. RAS# watchdog timer = 10,000ns / (15ns*8) = 83d = 53h

RAS# watchdog timer register (index B6h) = 53h (default value).

5

DRAM

62 The IBM 660 Bridge

5.2.3.4 60ns EDO DRAM Calculations
Ex 4: Same assumptions as above, except using 60ns EDO DRAM

1. 3 CLK * 15ns > 40ns
45ns > 40ns MTR1[1:0]=01.

2. 5 CLK * 15ns > 60ns + 5ns
75ns > 65ns MTR1[4:2]=100.

3. 1 CLK * 15ns > 10ns
15ns > 10ns MTR2[6:5]=00.

4. (2 + 1)CLK * 15ns > 16ns + 15ns + 6ns
 45ns > 37ns MTR2[3:2]=01.

5. a. 1 CLK * 15ns > 0ns + 13ns + 9ns – 16ns
15ns > 6ns

b. (1 + 2 + 1)CLK * 15ns > 13ns + 9ns + 30ns + 6ns
 60ns > 58ns MTR2[7]=0.

6. (2 + 2 + 1)CLK * 15ns > 16ns + 60ns + 6ns
75ns > 82ns MTR2[1:0]=01 (see Note 5).

7. 1 CLK * 15ns > 10ns + 4ns + 13ns – 16ns
15ns > 11ns MTR1[5]=0.

Results: Memory Timing Register 1 (index A1h) = 11h
Memory Timing Register 2 (index A2h) = 05h

Note 5: The timing analysis above includes one timing violation (path #6 is violated
by 9%). More conservate system designers may wish to use the values MTR1=31h,
MTR2=06h to ensure all timing requirements are met under complete worst–case
conditions.

8. Refresh rate = 15.6us/30ns = 520d = 208h

Refresh Timer Divisor (index D1h,D0h) = 0208h

9. RAS# watchdog timer = 10,000ns / (15ns*8) = 83d = 53h

RAS# watchdog timer register (index B6h) = 53h (default value).

5.2.3.5 Aggressive Timing Summary
Table 5-2 contains a summary of recommended general case aggressive DRAM timing. The
table also shows the resulting performance of the memory controller. Aggressive timings
may generate slight violations of certain worst case timing constraints. In many cases, these
violations are of only theoretical interest, since the conditions required to produce the viola-
tions are of such low probability.

The first section of Table 5-2 shows the settings of the memory controller BCRs. The second
section of the table shows access times from the memory controller idle state, which it enters
when it is not servicing a read or write request. The other two sections of the table show ac-

5

DRAM

63The IBM 660 Bridge

cess times during back to back burst transfers. The middle section of the table shows access
times for the second of any pair of back to back transfers where the first transfer is a read.
The lower section of the table shows access times for the second of any pair of back to back
transfers where the first transfer is a write.

Table 5-2. General Case Aggressive DRAM Timing Summary

Transfer 70ns
Aggressive

60ns
Aggressive

50ns
Aggressive

60ns EDO
Aggressive

Note

Memory Timing Register 1 (MTR1) 32 11 2C 11

Memory Timing Register 2 (MTR2) 0A 09 06 05

Bridge Chipset Options 3 (BCO3) 08 08 08 0C

Initial Read Burst 11-4-4-4 10-4-4-4 10-3-3-3 10-3-3-3 (3)

Initial Write Burst 5-4-4-4 5-3-4-4 5-4-3-3 5-3-3-3

For a pipelined burst transfer immediately following a read:

Page Hit Read -4-4-4-4 -4-4-4-4 -4-3-3-3 -5-3-3-3 (3)

Page Hit Write -3-3-4-4 -3-3-4-4 -3-3-3-3 -3-3-3-3

Page Miss and Bank Miss Read -8-4-4-4 -7-4-4-4 -7-3-3-3 -7-3-3-3 (1,3)

Page Miss and Bank Hit Read -10-4-4-4 -8-4-4-4 -7-3-3-3 -8-3-3-3 (2,3)

Page Miss and Bank Miss Write -3-3-4-4 -3-3-4-4 -3-3-3-3 -3-3-3-3 (1)

Page Miss and Bank Hit Write -3-5-4-4 -3-3-4-4 -3-3-3-3 -3-3-3-3 (2)

For a pipelined burst transfer immediately following a write:

Page Hit Read -11-4-4-4 -10-4-4-4 -8-3-3-3 -9-3-3-3 (3)

Page Hit Write -6-3-4-4 -5-3-4-4 -4-3-3-3 -5-3-3-3

Page Miss and Bank Miss Read -14-4-4-4 -13-4-4-4 -11-3-3-3 -11-3-3-3 (1,3)

Page Miss and Bank Hit Read -16-4-4-4 -14-4-4-4 -11-3-3-3 -12-3-3-3 (2,3)

Page Miss and Bank Miss Write -6-6-4-4 -6-5-4-4 -5-5-3-3 -5-4-3-3 (1)

Page Miss and Bank Hit Write -6-8-4-4 -6-6-4-4 -6-5-3-3 -5-5-3-3 (2)

1) The RAS# of the new bank is high and has been high (precharging) for the minimum RAS#
high time. The bridge places the address on the address lines and asserts RAS#.

2) The access is a page miss, but within the same bank, so the RAS# line must be sent high
for at least the minimum RAS# high (precharge) time. The bridge also places the new ad-
dress on the address lines and asserts RAS#.

3) If asynchronous SRAMs are used with the internal L2 controller, an additional clock cycle
is added to the fourth beat of any CPU to memory read burst that causes a cache miss.
For example, following a read—a pipelined page hit, cache miss, burst read with EDO
DRAM, requires –3–3–3–3 CPU clocks when the L2 uses burst SRAMs and –3–3–3–4
CPU clocks when the L2 uses asynchronous SRAMs. This extra beat is caused by de-
laying the final TA# by one CPU_CLK to allow the asynchronous SRAM sufficient data hold
time for the fourth beat.

4) Refresh Rate set to 0208h. RAS# watchdog timer BCR set to 53h.

5

DRAM

64 The IBM 660 Bridge

5.2.3.6 Conservative Timing Summary
Table 5-2 contains a summary of recommended general case conservative DRAM timing.
The table also shows the resulting performance of the memory controller. These conserva-
tive timings may be too conservative for many applications. These timings meet all of the
worst case timing constraints for the systems described in the examples sections above.

Table 5-3. General Case Conservative DRAM Timing Summary

Transfer 70ns
Conser-
vative

60ns
Conser-
vative

50ns
Conser-
vative

60ns EDO
Conser-
vative

Note

Memory Timing Register 1 (MTR1) 32 31 0C 31

Memory Timing Register 2 (MTR2) 0E 0A 09 06

Bridge Chipset Options 3 (BCO3) 08 08 08 0C

Initial Read Burst 12-5-5-5 11-4-4-4 10-4-4-4 (3)

Initial Write Burst 5-4-5-5 5-4-4-4 5-3-4-4

For a pipelined burst transfer immediately following a read:

Page Hit Read -5-5-5-5 -4-4-4-4 -4-4-4-4 (3)

Page Hit Write -3-3-5-5 -3-3-4-4 -3-3-4-4

Page Miss and Bank Miss Read -9-5-5-5 -8-4-4-4 -7-4-4-4 (1,3)

Page Miss and Bank Hit Read -11-5-5-5 -9-4-4-4 -7-4-4-4 (2,3)

Page Miss and Bank Miss Write -3-3-5-5 -3-3-4-4 -3-3-4-4 (1)

Page Miss and Bank Hit Write -3-5-5-5 -3-4-4-4 -3-3-4-4 (2)

For a pipelined burst transfer immediately following a write:

Page Hit Read -15-5-5-5 -11-4-4-4 -11-4-4-4 (3)

Page Hit Write -6-3-5-5 -6-3-4-4 -5-3-4-4

Page Miss and Bank Miss Read -17-5-5-5 -14-4-4-4 -13-4-4-4 (1,3)

Page Miss and Bank Hit Read -19-5-5-5 -15-4-4-4 -13-4-4-4 (2,3)

Page Miss and Bank Miss Write -6-6-5-5 -6-6-4-4 -6-5-4-4 (1)

Page Miss and Bank Hit Write -6-9-5-5 -6-7-4-4 -6-5-4-4 (2)

 See Table 5-2 for notes 1, 2, and 3. Refresh Rate set to 0208h. RAS# watchdog timer BCR
set to 53h.

5.2.4 Special Case Memory Controller Operation
The memory controller special case occurs for a specific set of 660 configurations. Memory
controller special case operation is generally slower than general case operation. There are
several recommended options for avoiding special case operation.

The special case applies to a specific hardware configuration that can lead to the 660 execut-
ing a series of operations that can under certain conditions require the 660 to switch all of
the CPU data bus outputs on the clock before the CPU samples the data. This operation can

5

DRAM

65The IBM 660 Bridge

in rare cases cause a simultaneous switching fault (incorrect data returned to the CPU bus)
unless the memory timing register settings are slowed to compensate.

The user has the choice of either avoiding the special case (see section 5.2.4.2) or exercising
one of the options for special case operation (slowing memory controller operation with faster
DRAM, disabling page hits, or using performance enhancement logic).

5.2.4.1 Required Conditions for Special Case Operation
Special case memory controller operation occurs only while all of the following conditions are
true (if any of the conditions are not true, the memory controller operates in the general case):

1. Memory is set to parity (not ECC) error checking. Note that disabling memory error
checking does not avoid special case operation.

2. Memory is set to standard (not EDO) DRAM.

3. The 660 L2 is present/enabled (and set to async).

4. The L2 cache type bit is set to sync SRAM (not sync).

5. CAS# pulse–width + Column address setup time is set to 4 or less clocks.

6. The CPU bus clock frequency is above 50Mhz.

7. The CPU runs two back–to–back memory reads.

8. Both memory reads are in the same memory page (page–hit).

9. The second memory read starts exactly two clocks before the first read’s data tenure
ends (2nd read’s TS# is two clocks before 1st read’s last TA#).

5.2.4.2 Avoiding The Special Case
Special case operation can be avoided by changing the system configuration in at least one
of the following ways:

1. Change memory error checking from parity (or none) to ECC using Bridge Chip Set
Options 3 BCR (index D4h) bit 1. This avoids condition 1 by increasing the memory
access timing from that used in parity to that used in ECC mode. Note that the timing
changes even if ECC error checking is turned off.

2. Change DRAM from page-mode to EDO, and set Bridge Chip Set Options 3 BCR
(index D4h) bit 0 to 1. This avoids condition 2.

3. Disable and/or remove the 660 onboard L2 (and set SRAM type to async). This
avoids conditions 3 and 4.

4. Change from asynchronous SRAM to synchronous SRAM (leave the 660 onboard
L2 enabled) using Bridge Chip Set Options 3 BCR (index D4h) bit 3. This avoids
condition 4.

5. Limit the CPU bus frequency to 50MHz or less. This avoids condition 6 by moving
the sampling window to a clear region.

5

DRAM

66 The IBM 660 Bridge

5.2.4.3 Special Case Option 1 – Disable Page Mode
Special case operation can be avoided by changing the setting of the Timer Register (index
B6h) to zero. This prevents the memory controller from running page hits, which avoids
condition 8. This option may provide the best memory performance for software which
causes a low percentage of page hits.

5.2.4.4 Special Case Option 2 – Change the DRAM Timing
Special case operation can be avoided by changing the memory timing registers (see
Table 5-4) to avoid condition 5.

Table 5-4. Special Case DRAM Timing Summary

Transfer 70ns
Special
Conser
vative

70ns
Special

Aggressive

60ns
Special

50ns
Special

Note

Memory Timing Register 1 (MTR1) 32 12 11 0C

Memory Timing Register 2 (MTR2) 0E 8A 8A 8A

Bridge Chipset Options 3 (BCO3) 08 08 08 08

Initial Read Burst 12-5-5-5 11-4-4-4 11-4-4-4 11-4-4-4 (3)

Initial Write Burst 5-4-5-5 5-4-4-4 5-4-4-4 5-4-4-4

For a pipelined burst transfer immediately following a read:

Page Hit Read -5-5-5-5 -5-4-4-4 -5-4-4-4 -5-4-4-4 (3)

Page Hit Write -3-3-5-5 -3-3-4-4 -3-3-4-4 -3-3-4-4

Page Miss and Bank Miss Read -9-5-5-5 -8-4-4-4 -8-4-4-4 -8-4-4-4 (1,3)

Page Miss and Bank Hit Read -11-5-5-5 -10-4-4-4 -9-4-4-4 -8-4-4-4 (2,3)

Page Miss and Bank Miss Write -3-3-5-5 -3-3-4-4 -3-3-4-4 -3-3-4-4 (1)

Page Miss and Bank Hit Write -3-5-5-5 -3-5-4-4 -3-4-4-4 -3-3-4-4 (2)

For a pipelined burst transfer immediately following a write:

Page Hit Read -15-5-5-5 -12-4-4-4 -12-4-4-4 -12-4-4-4 (3)

Page Hit Write -6-3-5-5 -6-3-4-4 -6-3-4-4 -6-3-4-4

Page Miss and Bank Miss Read -17-5-5-5 -14-4-4-4 -14-4-4-4 -14-4-4-4 (1,3)

Page Miss and Bank Hit Read -19-5-5-5 -16-4-4-4 -15-4-4-4 -14-4-4-4 (2,3)

Page Miss and Bank Miss Write -6-6-5-5 -6-6-4-4 -6-6-4-4 -6-6-4-4 (1)

Page Miss and Bank Hit Write -6-9-5-5 -6-8-4-4 -6-7-4-4 -6-6-4-4 (2)

See Table 5-2 for notes 1 , 2, and 3. Refresh Rate set to 0208h. RAS# watchdog timer BCR
set to 53h.

5

DRAM

67The IBM 660 Bridge

5.2.4.5 Special Case Option 3 – Performance Enhancement PAL
If special case operation is unavoidable, and disabling page hits or slowing the faster DRAM
access timing (as shown in Table 5-4) is undesirable, then a performance enhancement PAL
can be installed. The PAL moves the 660 out of special case operation by addressing condi-
tion 9 (Deassert BG1# (and BG2#) on the third clock before the current data tenure ends):

The PAL forces BG1# (and BG2#) deasserted:

1. From the beginning of each data tenure until the first TA# (this covers single beat
reads), and

2. On the third clock after the second TA# of a burst (this covers burst reads with two
clock CAS# pulse width), and

3. On the clock after the third TA# of a burst (this covers burst reads with three clock
CAS# pulse width).

This option may effect the maximum operating frequency of the CPU bus due to the
additional delay through the PAL in the BG1# (and BG2#) path.

� The memory timing effect of the performance enhancement PAL is to speed
up special case DRAM accesses to the same speed as general case ac-
cesses.

5.2.4.6 Performance Enhancement PAL Design
This implementation of the PAL equations uses a single 16V8. It was developed for a Release
3.0 IBM PowerPC 604 SMP Reference Design, and it requires the addition of one wire to the
board, as well as populating and unpopulating some configuration resistors.

1. PAL clock is CPU_CLK.

2. PAL inputs (no trace cuts): DBB#, SRAM_OE#, TA#.

3. Cut BG1 (and BG2# if MP) between the 664 and the CPU, and run them
through the PAL as shown in Figure 5-2.

Figure 5-2. PAL

PAL
16V8

CPU_CLK
DBB#

SRAM_OE#

TA#

BG1_IN#
BG2_IN#

BG1_OUT#
BG2_OUT#

5

DRAM

68 The IBM 660 Bridge

PAL Equations
–––

;–––
;
; File Name: K12_FIX1.PDS
; For: Kauai 1.2
; PAL Type: PAL16V8–5, 20–pin
; PAL Equation Format: PALASM
;
;––––––––––––––––––––––––––––– Declaration Segment ––––––––––––––––––––––––
TITLE K12_FIX1.pds
PATTERN none
REVISION 1.0
COMPANY IBM
DATE 01/12/96

CHIP _K12_FIX1 PALCE16V8

;–––––––––––––––––––––––––––––––– PIN Declarations ––––––––––––––––––––––––
;
; Predefined
;
;PIN 1 CPU_CLK ; CLOCK
;PIN 10 GND ; GROUND
;PIN 11 REG_OE# ; OUTPUT ENABLE FOR REGISTERED OUTPUTS
;PIN 20 VCC ; VCC

;
; Inputs
;

PIN 2 DBB_
PIN 3 TA_
PIN 4 SRAM_OE_
PIN 5 BG1_IN_
PIN 6 BG2_IN_
;PIN 7
;PIN 8
;PIN 9

;
; outputs
;
PIN 18 BG2_OUT_ COMB

5

DRAM

69The IBM 660 Bridge

PIN 19 BG1_OUT_ COMB
;
; Registered outputs
;
PIN 12 TA_CNT1 REG
PIN 13 TA_CNT2 REG
PIN 14 TA_CNT3 REG
PIN 15 D_TA_CNT2 REG
PIN 16 DD_TA_CNT2 REG
PIN 17 MASK_BG REG

;
;––––––––––––––––––––––––– Boolean Equation Segment –––––––––––––––––––––––
;
EQUATIONS
;
; Output enables for Comb logic (Reg OE’s controllered by pin 11)
;

; NONE – always enabled

;
; Equations for registers
;

TA_CNT1 = /TA_ * /TA_CNT1 * /TA_CNT2 * /TA_CNT3 + TA_CNT1 * TA_ * /DBB_

TA_CNT2 = /TA_ * TA_CNT1 * /TA_CNT2 * /TA_CNT3 + TA_CNT2 * TA_ * /DBB_

TA_CNT3 = /TA_ * /TA_CNT1 * TA_CNT2 * /TA_CNT3 + TA_CNT3 * TA_ * /DBB_

D_TA_CNT2 = TA_CNT2

DD_TA_CNT2 = D_TA_CNT2

;**
; MASK_BG comments:
; 1st term – deassert BG from beginning of data tenure til 1st TA#.
; This covers single–beat memory accesses.
; 2nd term – deassert BG on 2nd CLK after 2nd TA#. This covers
; burst accesses with two clk CAS# pulse width
; 3rd term – deassert BG on 1st CLK after 3nd TA#. This covers
; burst accesses with three clk CAS# pulse width

5

DRAM

70 The IBM 660 Bridge

;**

MASK_BG = /TA_CNT1 * /TA_CNT2 * /TA_CNT3 * TA_ * /DBB_ * SRAM_OE_ +
D_TA_CNT2 * /DD_TA_CNT2 * SRAM_OE_ + TA_CNT2 * /TA_ * /MASK_BG * SRAM_OE_

BG1_OUT_ = BG1_IN_ + MASK_BG

BG2_OUT_ = BG2_IN_ + MASK_BG

;––––––––––––––––––––––––––––– END OF FILE ––––––––––––––––––––––––––––––

5

DRAM

71The IBM 660 Bridge

5.2.5 Page Hit and Page Miss
PowerPC CPU bus memory transfers have the following characteristic behavior. When a
CPU issues a memory access followed immediately by another memory access, the second
access is typically from the same page of memory. On the other hand, if the second memory
access does not immediately follow the first one (so that the CPU bus goes idle) then the
second memory access is typically a page miss. Thus the majority of memory accesses fol-
lowing a bus idle condition are page misses. 660 memory performance is optimized by as-
suming that a CPU to memory transfer from bus idle will be a page miss.

When neither the CPU or the PCI is accessing memory, the memory controller goes to the
idle state, and all RAS# lines are precharged (deasserted). Deasserting the RAS# lines at
idle begins to satisfy the minimum RAS# precharge time requirement. Assuming that the first
access out of idle will be a page miss, this technique allows the memory controller to reduce
the time required for the initial beat of the burst DRAM read or write access by three CPU
clocks. If the initial access is a page hit, this technique results in an increase in access time
of two CPU clocks. A net gain is realized whenever the system is experiencing more page
misses from bus idle than page hits from bus idle.

For the first beat of pipelined transactions, the memory controller checks the MA[11:0]
memory address for a page hit. If the address is within the same 8K memory page as the
previous memory access it is a page hit, the row address currently latched into the DRAM
is considered valid, and the bridge accesses the DRAM using CAS# cycles. On page misses,
the bridge latches the new row address into the DRAMs before it accesses the DRAM using
CAS# cycles.

On CPU to memory bursts, only the address of the first beat of the burst is checked for page
hits, because the following three beats are always within the same memory page.

On PCI to memory bursts, the address of each data phase of the burst is checked for page
hits.

5.2.6 CPU to Memory Access Pipelining
CPU to memory accesses are pipelined, with the result that during a series of back-to-back
CPU to memory accesses, all transfers following the initial transfer are faster. The informa-
tion from the address tenure of the subsequent transfers is processed by the bridge while
the data tenure of the preceding transfer is still active.

Considering a series of CPU to memory read transfers using 60ns EDO DRAM, the initial
burst requires 10-3-3-3 CPU clocks. If this transfer is followed immediately (back-to-back)
by another CPU to memory transfer, the required cycle time is -5-3-3-3. As long as the trans-
fers are back-to-back, they are pipelined, and can be retired at this pipelined rate.

5.2.7 Extended Data Out (EDO) DRAM
The 660 is designed to support hyper-page-mode DRAM, sometimes called extended data
out (EDO) DRAM. Information about the operation of the 660 with EDODRAM is distributed
throughout this section.

5

DRAM

72 The IBM 660 Bridge

5.3 System Memory Addressing

5.3.1 DRAM Logical Organization
The DRAM system implemented by the 660 is logically arranged as shown in Figure 5-3.
Each block shown in Figure 5-3 is a 9 bit DRAM composed of 8 data bits and 1 parity (or
check) bit that is accessed whenever the 8 data bits are accessed. The RAS# lines strobe
in the row address. The CAS# lines strobe in the column address. For a block to activate
(from idle) for either a read or a write, both the RAS# and CAS# line to it must be activated
in the proper sequence. After the initial access, the device can deliver data in fast page mode
with only CAS# strobes.

The CAS# lines can be thought of as byte enables, and the RAS# lines as bank enables.

The WE# signal goes to all (each of) the devices in the memory array. The OE# of each
DRAM device is tied active. This signal is not required to be deasserted at any time, since
the DRAMs only enable their output drivers when so instructed by the RAS#/CAS# protocol.

Figure 5-3. DRAM Logical Implementation

RAS0#

RAS1#

RAS2#

RAS7#

CAS#
0

CAS#
1

CAS#
2

CAS#
3

CAS#
4

CAS#
5

CAS#
6

CAS#
7

Mem
Data
Byte

Mem
Data
Byte

Mem
Data
Byte

Mem
Data
Byte

Mem
Data
Byte

Mem
Data
Byte

Mem
Data
Byte

Mem
Data
Byte

....

0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 &
Parity
bit 0

Parity Parity
bit 2

Parity
bit 3

Parity
bit 4

Parity
bit 5

Parity
bit 6

Parity
bit 7bit 1

5

DRAM

73The IBM 660 Bridge

5.3.2 SIMM Topologies
Table 5-5 shows the various memory module (SIMM) topologies that the 660 supports. Each
memory bank can be populated with any supported SIMM.

Table 5-5. Supported SIMM Topologies

SIMM type Size Depth Width Banks Addressing Addressing
Mode (1)

4-Byte Wide
(72 pin)

4 Meg 1M 4 bytes 1 + 1 empty 10 x 10 2
(72-pin) 8 Meg 1M 4 bytes 2 10 x 10 2

16 Meg 4M 4 bytes 1 + 1 empty 11 x 11 2

32 Meg 4M 4 bytes 2 11 x 11 2

64 Meg 16M 4 bytes 1 + 1 empty 12 x 12 3

8-Byte Wide
(168 pin)

8 Meg 1M 8 bytes 1 10 x 10 2
(168-pin) 16 Meg 2M 8 bytes 1 11 x 10 2

32 Meg 4M 8 bytes 1 11 x 11 or
12 x 10

2

64 Meg 8M 8 bytes 1 12 x 11 3

128
Meg

16M 8 bytes 1 12 x 12 3

Note for Table 5-5:

(1) See BCR(A4 to A7) in Section 5.3.7.

The 660 supports the 168-pin 8-byte SIMMs shown in Table 5-5, which are each arranged
as a single bank of 8-byte-wide DRAM. Each SIMM requires a single RAS# line. These
SIMMs do not have to be installed in pairs.

The bridge also supports the 72-pin 4-byte SIMMs shown in Table 5-5, which are each ar-
ranged as two banks of 4-byte-wide DRAM, only one bank of which may be accessed at a
given time. Each bank requires a RAS# line, and each bank is addressed by the same ad-
dress lines. These SIMMs must be installed in pairs (of identical devices), since it is neces-
sary to use two (72-pin) 4-byte SIMMs to construct an 8-byte-wide memory array. Since each
72-pin 4-byte SIMM consists of two banks, this pair of SIMMs also requires two RAS# lines.
The 660 addresses a given SIMM based on the value of the associated memory bank ad-
dressing mode BCR.

5

DRAM

74 The IBM 660 Bridge

5.3.3 Row and Column Address Generation
The 660 formats the row and column addresses presented to the DRAM based on the orga-
nization of the DRAM. In memory bank addressing mode 2, the bridge is configured to ad-
dress devices that require 12x10, 11x11, 11x10, or 10x10 bit (row x column) addressing. In
memory bank addressing mode 3, the bridge is configured to address devices that require
12x12 or 12x11 bit (row x column) addressing (no other addressing modes are currently
available).

Table 5-6 and Table 5-7 show which CPU address bits are driven onto the memory address
bus during CPU to memory transfers. Table 5-8 and Table 5-9 show which PCI_AD address
bits are driven onto the memory address bus during PCI to memory transfers. These address
line assignments are not affected by the endian mode of the system. The addressing mode
is selected using the memory bank addressing mode BCRs (see Section 5.3.7). The addres-
sing mode of each bank of memory is individually configurable.

Table 5-6. Row Addressing (CPU Addressing)

Memory Bank
Addressing Mode

Addressing
Mode BCR

MA
11

MA
10

MA
9

MA
8

MA
7

MA
6

MA
5

MA
4

MA
3

MA
2

MA
1

MA
0

12x10, 11x10, 10x10,
11x11

010
(Mode 2)

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

A
18

12x12, 12x11 011
(Mode 3)

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

A
16

A
17

A
18

Table 5-7. Column Addressing (CPU Addressing)

Memory Bank
Addressing Mode

Addressing
Mode BCR

MA
11

MA
10

MA
9

MA
8

MA
7

MA
6

MA
5

MA
4

MA
3

MA
2

MA
1

MA
0

12x10, 11x10, 10x10,
11x11

010 A
5

A
7

A
19

A
20

A
21

A
22

A
23

A
24

A
25

A
26

A
27

A
28

12x12, 12x11 011 A
5

A
6

A
19

A
20

A
21

A
22

A
23

A
24

A
25

A
26

A
27

A
28

Table 5-8. Row Addressing (PCI Addressing)

Memory Bank
Addressing Mode

Addressing
Mode BCR

MA
11

MA
10

MA
9

MA
8

MA
7

MA
6

MA
5

MA
4

MA
3

MA
2

MA
1

MA
0

12x10, 11x10, 10x10,
11x11

010 AD
24

AD
23

AD
22

AD
21

AD
20

AD
19

AD
18

AD
17

AD
16

AD
15

AD
14

AD
13

12x12, 12x11 011 AD
24

AD
23

AD
22

AD
21

AD
20

AD
19

AD
18

AD
17

AD
16

AD
15

AD
14

AD
13

Table 5-9. Column Addressing (PCI Addressing)

Memory Bank
Addressing Mode

Addressing
Mode BCR

MA
11

MA
10

MA
9

MA
8

MA
7

MA
6

MA
5

MA
4

MA
3

MA
2

MA
1

MA
0

12x10, 11x10, 10x10,
11x11

010 AD
26

AD
24

AD
12

AD
11

AD
10

AD
9

AD
8

AD
7

AD
6

AD
5

AD
4

AD
3

12x12, 12x11 011 AD
26

AD
25

AD
12

AD
11

AD
10

AD
9

AD
8

AD
7

AD
6

AD
5

AD
4

AD
3

5

DRAM

75The IBM 660 Bridge

In the case of 10x10 addressing, MA[9:0] are connected to the DRAM modules. In the case
of 11x10 or 11x11, connect MA[10:0], and in the case of 12x11 or 12x12, connect MA[11:0]
to the DRAM modules.

5.3.4 DRAM Pages
The 660 uses an 8K page size for DRAM page-mode determination.

5.3.5 Supported Transfer Sizes and Alignments
The 660 supports all CPU to memory transfer sizes and alignments that do not cross an
8-byte boundary.

5.3.6 Unpopulated Memory Locations
Physical memory does not occupy the entire address space assigned to system memory in
the memory map. When the CPU reads an unpopulated location, the bridge returns all-ones,
and completes the transfer normally. When the CPU writes to an unpopulated location, the
bridge signals normal transfer completion to the CPU, but does not write the data to memory.
The memory select error bit in the error status 1 register (index C1h) is set in both cases.
Gaps are not allowed in the DRAM memory space, but empty (size=0) memory banks are
allowed.

5.3.7 Memory Bank Addressing Mode BCRs

Index A4 to A7 Read/Write Reset to 44h (each BCR)

This array of four 8-bit, read/write BCRs defines the format of the row and column addressing
of each DRAM memory bank.

D0D1D2D3D4D5D6D7

Reserved

1xx = reserved

Reserved

011 = 12x11, 12x12
1xx = reserved

011 = 12x11, 12x12

12x10, 11x10, 10x10, 11x11010 =

010 =12x10, 11x10, 10x10, 11x11

Even Bank Addressing Mode

Odd Bank Addressing Mode

Mode 2
Mode 3

Mode 2
Mode 3

00x =reserved

00x =reserved

Register Bits Memory Bank Bits Memory Bank

A4h 3:0 0 7:4 1

A5h 3:0 2 7:4 3

A6h 3:0 4 7:4 5

A7h 3:0 6 7:4 7

5

DRAM

76 The IBM 660 Bridge

5.3.8 Memory Bank Starting Address BCRs

Index 80 to 87h Read/Write Reset to 00h (each BCR)

This array of eight BCRs (along with the eight extended starting address registers) contains
the starting address for each memory bank. Each pair of registers maps to the corresponding
RAS# decode. For example, RAS[4]# corresponds to the BCRs at index 84h and 8Ch. The
eight least-significant bits of the bank starting address are contained in the starting address
register, and the most-significant bits come from the corresponding extended starting ad-
dress register. The starting address of the bank is entered with the least significant 20 bits
truncated. These BCRs must be programmed in conjunction with the ending address and
extended ending address registers.

Program the banks in ascending order, such that (for n = 0 to 6) the starting address of bank
n+1 is higher than the starting address of bank n. Each bank must be located in the 0 to 1G
address range. See section 5.3.13.

D0D1D2D3D4D5D6D7

A27 of start address (128MB+)

A26 of start address (64MB+)

A25 of start address (32MB+)

A23 of start address (8MB+)

A24 of start address (16MB+)

A22 of start address (4MB+)

A21 of start address (2MB+)

A20 of start address (1MB+)

5.3.9 Memory Bank Extended Starting Address BCRs

Index 88 to 8F Read/Write Reset to 00h (each BCR)

This array of eight BCRs (along with the eight starting address registers) contains the starting
address for each memory bank. These BCRs contain the most-significant address bits of the
starting address of the corresponding bank.

D0D1D2D3D4D5D6D7

A28 of start address (256MB+)

Reserved

A29 of start address (512MB+)

5

DRAM

77The IBM 660 Bridge

5.3.10 Memory Bank Ending Address BCRs

Index 90 to 97h Read/Write Reset to 00h (each BCR)

This array of eight BCRs (along with the eight extended starting address registers) contains
the ending address for each memory bank. Each pair of registers maps to the corresponding
RAS# decode. For example, RAS[4]# corresponds to the BCRs at index 94h and 9Ch. The
eight least-significant bits of the bank ending address are contained in the ending address
register, and the most-significant bits come from the corresponding extended ending ad-
dress register. The ending address of the bank is entered as the address of the next highest
memory location minus 1, with the least significant 20 bits truncated. Each bank must be lo-
cated in the 0 to 1G address range. These BCRs must be programmed in conjunction with
the ending address and extended ending address registers. See section 5.3.13.

D0D1D2D3D4D5D6D7

A27 of end address (128MB+)

A26 of end address (64MB+)

A25 of end address (32MB+)

A23 of end address (8MB+)

A24 of end address (16MB+)

A22 of end address (4MB+)

A21 of end address (2MB+)

A20 of end address (1MB+)

5.3.11 Memory Bank Extended Ending Address BCR

Index 98 to 9F Read/Write Reset to 00 (each BCR)

This array of eight 8-bit, read/write registers (along with the eight ending address registers)
contains the ending address for each memory bank. These BCRs contain the most-signifi-
cant address bits of the ending address of its bank.

D0D1D2D3D4D5D6D7

A28 of end address (256MB+)

Reserved

A29 of end address (512MB+)

5

DRAM

78 The IBM 660 Bridge

5.3.12 Memory Bank Enable BCR

Index A0 Read/Write Reset to 00h

This BCR contains a control enable for each bank of memory. Each bank of memory must
be enabled for proper refreshing. For each bit, a 0 disables that bank of memory and a 1 en-
ables it.

This register must be programmed in conjunction with the starting address and ending ad-
dress registers. If a bank is disabled by this register, the corresponding starting and ending
address register entries become don’t cares.

D0D1D2D3D4D5D6D7A0h

Enable Bank 7

Enable Bank 6

Enable Bank 5

Enable Bank 4

Enable Bank 3

Enable Bank 2

Enable Bank 1

Enable Bank 0

5.3.13 Memory Bank Configuration Example
In the example memory bank configuration shown in Figure 5-4, the eight memory banks are
populated by different size and organization devices. For convenience, this example shows
the bridge configured to address each memory bank in order with no gaps in the populated
address range but this is not required. Any bank can be placed in any (1MB aligned) non-pop-
ulated address range from 0 to 1G.

Table 5-10. Example Memory Bank Addressing Mode Configuration

Bank SIMM
Type

SIMM
Depth

SIMMs
Per Bank

SIMM Bank
Topology

SIMM
Size

Row x
Col

BCR
()

Bits
()

Mode

0 8-Byte 1M 1 8B x 1M x 1 bank 8M 10 x 10 A4 3:1 2

1 4-Byte 4M 2 4B x 4M x 2 bank 32M 11 x 11 A4 7:5 2

2 4-Byte 4M 2 4B x 4M x 2 bank 32M 11 x 11 A5 3:1 2

3 8-Byte 8M 1 8B x 8M x 1 bank 64M 12 x 11 A5 7:5 3

4 none — — — 0M — A6 3:1 —

5 4-Byte 4M 2 4B x 4M x 2 bank 32M 11 x 11 A6 7:5 2

6 8-Byte 16M 1 8B x 16M x 1 bank 128M 12 x 12 A7 3:1 3

7 8-Byte 4M 1 8B x 4M x 1 bank 32M 11 x 11
12 x 10

A7 7:5 2

5

DRAM

79The IBM 660 Bridge

5.3.13.1 Memory Bank Enable BCR
Program indexed BCR A0h (memory bank enable) to EFh to enable all banks except # 4.

5.3.13.2 Memory Bank Addressing Mode
As shown in Table 5-10, memory bank 0 (connected to RAS0#) contains an 8-byte x 1M
SIMM (8M) with one bank (one RAS# line). It is addressed with 10 row and 10 column bits.
Program bits 3:1 of indexed BCR A4h with 010b (mode 2).

Figure 5-4. Example Memory Bank Configuration

5

DRAM

80 The IBM 660 Bridge

5.3.13.3 Starting and Ending Addresses
 As shown in Table 5-11, program indexed BCR 80h with 00h to configure address bits 27:20
of the bank 0 starting address. Program indexed BCR 88h with 00h to configure address bits
29:28. Also program indexed BCR 90h with 00h to configure address bits 27:20 of the bank
0 ending address, and program indexed BCR 98h with 07h to configure address bits 29:28.

The next two physical SIMM units are 4-byte x 4M x 2 bank (16M x 2 bank = 32M) SIMMs,
used side by side to achieve 8-byte width. They form banks 1 and 2, each of which is 8-byte
x 4M (32M). Note that bank 7 is also 32M, populated by an 8-byte x 8M (32M) SIMM. Using
the same configuration, banks 1 and 2 could also be implemented using two 8-byte x 4M
(32M) SIMMs. Bank 3 is configured to the same size as bank 1 plus bank 2 and is implement-
ed using a single 8-byte x 8M (64M) SIMM.

Bank 4 is not populated, so set memory bank enable BCR bit D4 to 0. The data in the starting,
extended starting, ending, and extended ending address BCRs for bank 4 is ignored. Note
that empty memory banks are allowed, but that gaps in the DRAM space are not allowed.

For proper operation, program the bridge to execute memory accesses at the speed of the
slowest device. If ECC or parity is selected, all devices must support the capability. And if the
bridge is programmed to utilize hyper-page mode, all devices must support extended-data
out transfers.

Table 5-11. Example Memory Bank Starting and Ending Address Configuration

SIMM Starting Extended Base Ending Extended Base

Bank Size Address BCR Data BCR Data Address BCR Data BCR Data

0 8M 0000 0000 88 00 80 00 007F FFFF 98 00 90 07

1 32M 0080 0000 89 00 81 08 027F FFFF 99 00 91 27

2 32M 0280 0000 8A 00 82 28 047F FFFF 9A 00 92 47

3 64M 0480 0000 8B 00 83 48 087F FFFF 9B 00 93 87

4 0M Don’t Care 8C xx 84 xx Don’t Care 9C xx 94 xx

5 32M 0880 0000 8D 00 85 88 0A7F FFFF 9D 00 95 A7

6 128M 0A80 0000 8E 00 86 A8 127F FFFF 9E 01 96 27

7 32M 1280 0000 8F 01 87 28 147F FFFF 9F 01 97 47

5

DRAM

81The IBM 660 Bridge

5.4 Error Checking and Correction
The 660 provides three levels of memory error checking—no checking, parity checking, and
error checking and correction (ECC). If no memory checking is enabled, the system can be
configured to use lower-cost, non-parity DRAM.

While the system is configured for parity checking, the 660 performs as follows:

� Uses odd parity checking
� Detects all single bit errors
� Allows full-speed memory accesses

While the system is configured for ECC, the 660 performs as follows:

� Uses an H–matrix and syndrome ECC protocol
� Uses the same memory devices and connectivity as for parity checking
� Detects and corrects all single-bit errors
� Detects all two-bit errors
� The first beat of CPU to memory reads requires one additional CPU clock cycle
� CPU to memory burst writes and 8-byte single-beat writes are full-speed
� CPU to memory single-beat writes of less than eight bytes are implemented

as read-modify-write (RMW) cycles
� PCI to memory reads are full-speed
� PCI to memory writes are full-speed while data can be gathered into 8-byte

groups before being written to memory. Single beat or ungatherable writes
require a read-modify-write cycle

5.4.1 Memory Parity
While the 660 memory controller is configured for memory parity checking, the bridge imple-
ments an odd parity generation and checking protocol, generating parity on memory writes
and checking parity on memory reads. One parity bit is associated with each data byte and
is accessed with it. When a parity error is detected during CPU to memory reads, the error
is reported by means of TEA# or MCP#. When a parity error is detected during PCI to memory
reads, the error is reported by means of PCI_SERR#.

The 660 detects all single-bit parity errors, but may not detect multi-bit parity errors. Also, an
even number of parity errors will not be detected. For example, an event which causes a par-
ity error in bytes 0, 1, 2, 3, 4, and 5 will not be detected.

5.4.2 ECC Overview
While ECC is enabled, the 660 uses the ECC logic to detect and correct errors in the trans-
mission and storage of system memory data. The bridge implements the ECC protocol using
the same connectivity and memory devices as parity checking.

While neither parity or ECC is enabled, the bridge executes memory writes of less than eight
bytes in response to bus master requests to write less than eight bytes of data. The bridge
always (whether parity, ECC or neither is enabled) reads data from memory in 8-byte groups,
even if the bus master is requesting less than eight bytes.

While parity is enabled, the bridge also executes memory writes of less than eight bytes in
response to bus master requests to write less than eight bytes of data, since writing a byte
to memory also updates the associated parity bit. During memory writes, the bridge gener-

5

DRAM

82 The IBM 660 Bridge

ates one parity bit for each byte of data and stores it with that byte of data. This parity bit is
a function only of the data byte with which it is associated. During memory reads, the integrity
of the data is parity checked by comparing each data byte with its associated parity bit.

However, when ECC is enabled the bridge reads from and writes to system memory only in
9-byte groups (as a 72-bit entity), even though the bus master may be executing a less-
than-8-byte read or write. There is one byte of ECC check byte information for eight bytes
of data. During memory writes, the eight check bits are generated as a function of the 64 data
bits as a whole, and the check bits are stored with the data bits as a 72-bit entity. During
memory reads, all 72 bits are read, and the eight check bits are compared with the 64 data
bits as a whole to determine the integrity of the entire 72-bit entity.

In ECC mode, single-bit errors are corrected. When a multi-bit error is detected during CPU
to memory reads, the error is reported by means of TEA# or MCP#. When a multi-bit ECC
error is detected during PCI to memory reads, the error is reported by means of PCI_SERR#.
Note that the DRTRY# function of the CPU is not used, even when the 660 is in ECC mode
(the Bridge will not assert DRTRY#).

Only the data returned to the CPU (or PCI) is corrected for single-bit errors. The corrected
data is not written into the DRAM location.

5.4.3 ECC Data Flows
While ECC is enabled, the 660 always reads eight data bytes and one check byte from
memory during CPU and PCI reads. During bus master 8-byte writes to memory, the bridge
writes eight data bytes and one check byte to memory. When the bus master writes less than
eight data bytes to memory, it is possible for each check bit to change due to a write to any
one of the eight data bytes. The Bridge then executes a read-modify-write (RMW) cycle—
reading all eight data bytes from memory, modifying the appropriate bytes with the new data,
recalculating all of the check bits, and writing the new data and check bits to memory.

5.4.3.1 Memory Reads
Figure 5-5 shows a simplified data flow in a 660 system during CPU to memory read trans-
fers. Figure 5-6 shows the simplified data flow during PCI to memory reads. The data and
check bits flow from system memory into the bridge where the checking logic combines the
data with the check bits to generate the syndrome. If there is a single-bit error in the data,
the correction logic corrects the data and supplies it to the requesting agent. If there is a multi-
ple-bit error in the data, the bridge signals an error to the requesting agent.

Note that the structure of the bridge as shown in Figure 5-5 through Figure 5-9 is consider-
ably simplified and does not show the posted write buffers and other internal details.

Figure 5-5. CPU Read Data Flow

CPU

660 Bridge

System
Memory Correct

Check/ TEA# or MCP#

Data(64)

Check(8)

Data(64)

5

DRAM

83The IBM 660 Bridge

Figure 5-6. PCI Read Data Flow

660 Bridge

System
Memory Correct

Check/ PCI

Data(64)

Check(8)

Data(32)

PCI_AD_PAR
PCI_SERR#,

5.4.3.2 Eight-Byte Writes
Figure 5-7 shows the simplified data flow in a 660 system during 8-byte CPU to memory
writes. The data flows from the CPU into the bridge and out onto the memory data bus. The
bridge generates the check bits based on the eight bytes of data, and stores them in memory
with the data.

Figure 5-7. CPU 8-Byte Write Data Flow

CPU Check
Bit

Generator

660 Bridge

System
Memory

Data(64)

Check(8)

Data(64)

Figure 5-8 shows the simplified data flow in a 660 based system during gathered PCI to
memory 8-byte writes. During the first of the two gathered data phases (A), the data flows
from the PCI bus into a 4-byte hold latch in the bridge. On the next data phase (B), the next
4–bytes of PCI data flows into the bridge, where it is combined with the data from the previous
data phase. The 8-byte data then flows onto the memory data bus. The bridge generates the
check bits based on the 8-byte data, and stores them in memory with the data.

Figure 5-8. PCI 8-Byte Write Data Flow

660 Bridge

Check
Bit

Generator

660 Bridge

System
Memory

A

B

PCI

Data(64)

Check(8)

PCI

Data(32)

Latch

4–Byte
PCI Data

Latch

4–Byte
PCI Data

Data(32)

(32)

5

DRAM

84 The IBM 660 Bridge

Note that if either or both of the two gathered PCI data phases is a write of less than 4 bytes,
the two data phases will still be gathered, and then the bridge will execute a RMW cycle, filling
in the unwritten bytes (in the group of 8 bytes) with data from those locations in memory. The
same write case while ECC is disabled does not cause a RMW cycle; the bridge merely writes
only the indicated bytes, leaving the write enables of the unaccessed bytes deasserted.

Figure 5-9. PCI or CPU Read-Modify-Write Data Flow

660 Bridge

System
Memory Correct

Check/

Check
Bit

Generator

660 Bridge

System
Memory

A

B

Bridge
Register

Bridge
Register

CPU or
PCI

n

64–n

Data(64)

Check(8) Data(64)

Data(64)

Check(8)

5.4.3.3 Less-Than Eight-Byte Writes
Figure 5-9 shows the simplified data flow during a CPU or PCI bus master to memory write
of less than eight bytes, during which the bridge executes a RMW cycle. In Figure 5-9(A),
the bridge reads in the data and check bits from the addressed memory locations and places
this data (corrected as necessary) in a register. In Figure 5-9(B), this data is modified by the
bridge, which replaces the appropriate memory data bytes with write data from the bus mas-
ter. The bridge then recomputes all of the check bits and writes the new data and check bits
to memory.

5.4.4 Memory Performance In ECC Mode
Enabling ECC mode on the 660 affects memory performance in various ways, depending
on the transaction type. The effect is the same for both EDO and page mode DRAMs.

5.4.4.1 CPU to Memory Read in ECC Mode
ECC mode adds one CPU_CLK to single–beat CPU to memory read transfers and to the first
beat of CPU to memory burst read transfers. The other beats of the burst are unaffected.
During the extra CPU_CLK, the 663 holds the data while checking (and if necessary,
correcting) it.

The 660 does not use the DRTRY# function, even while in ECC mode. In no–DRTRY# mode,
during memory reads the 604 uses the data bus data internally as soon as it samples TA#
active. The 660 supports this mode by presenting correct(ed) data to the before driving TA#
valid. The Bridge does not speculatively present data to the CPU (using TA#) and then assert
DRTRY# if there is a data error.

5

DRAM

85The IBM 660 Bridge

By allowing the 604 to run in no–DRTRY# node, the 660 enables the 604 to use data from
the L2 cache at the full speed of the L2 cache, without requiring the 604 to insert an additional
(internal to the 604) one CPU clock delay on reads.

In DRTRY# mode, during memory reads the 604 holds the data internally for one CPU clock
after sampling TA# active. This delay is inserted by the 604 to allow DRTRY# to be sampled
before the data is used. Thus during CPU to memory reads in ECC mode while a 604 is in
DRTRY# mode, the 660 inserts a one CPU clock delay to check/correct the data, and then
the 604 adds a one CPU clock delay to check for DRTRY#. Thus two CPU clocks are added
to single–beat CPU to memory read transfers and to the first beat of CPU to memory burst
read transfers.

5.4.4.2 CPU to Memory Write in ECC Mode
ECC mode adds no additional clock cycles to 8-byte CPU to memory write transfers. Note
that all CPU bursts are composed of 8-byte beats. CPU to memory writes of less than eight
bytes are handled as RMW cycles, which usually require four additional CPU clocks as
compared to 8-byte writes.

5.4.4.3 PCI to Memory Read in ECC Mode
ECC mode adds no additional clock cycles to PCI to memory read transactions.

5.4.4.4 PCI to Memory Write in ECC Mode
ECC mode has a complex effect on PCI to memory writes. During PCI to memory writes, the
bridge attempts to gather adjacent 4-byte data phases into 8-byte memory writes. In re-
sponse to conditions during a given data phase, the bridge either gathers, writes 8 bytes, or
read-modify-writes, as shown in Table 5-12. Gather and 8-byte write operations incur no per-
formance penalties, but RMW cycles add from two to four (usually three) PCI clock cycles
to the transaction time. The consequences of ECC mode delays on PCI to memory write
bursts are minor and are best understood from a few examples. The following examples as-
sume page hits and no snoop hits.

Table 5-12. Bridge Response to Various PCI Write Data Phases

Bridge
Operation

Conditions Description of Operation

Gather This data phase is not the last data phase, and
This is a 4-byte transfer (BE[3:0]#=0000), and
This data phase is to the lower 4-byte word.

The bridge latches the four bytes
from this data phase into the low four
bytes of a hold register.

Eight-
Byte
Write

The previous data phase caused a gather, and
This is a 4-byte transfer, and
This data phase is to the upper 4-byte word.

The bridge combines the (high) four
bytes from this data phase with the
(low) four bytes from the previous
data phase, and writes all eight by-
tes to memory.

Read-
Modify-
Write

This is a single phase transaction, or
This is the first data phase and is to the upper 4-byte word,
or
This is the last data phase and is to the lower 4-byte word, or
This is a less-than-4-byte transfer.

The bridge Reads eight bytes from
memory, modifies the data by re-
placing the appropriate four bytes
with the data from this data phase,
and then writes all eight bytes to
memory.

5

DRAM

86 The IBM 660 Bridge

Best case (see Table 5-13) is a burst starting on a low word (memory address is 0 mod 8),
composed of an even number of data phases, in which all data phases transfer four bytes
of data. Notice that the first data phase is gathered and the second data phase causes an
8-byte memory write. The following pairs of data beats follow the same pattern. No page mis-
ses, snoop hits, or data beats of less than 4 bytes are encountered. This case adds no PCI
clock cycles to the best-case transaction time.

Table 5-13. Bridge Response to Best Case PCI Write Burst

Data
Phase

Word Bridge
Operation

Special Conditions Performance Impact

n (last) High 8-byte Write None None

n –1 Low Gather None None

...

4 High 8-byte Write None None

3 Low Gather None None

2 High 8-byte Write None None

1 (first) Low Setup + Gather None None

Table 5-14 shows a case where the first data phase is to a high word (memory address is
4 mod 8), and is composed of an odd number of data phases in which all data phases transfer
four bytes of data. Here the total effect is to add three PCI clocks to the transaction time,
which is shown during the first data phase in Table 5-14.

Table 5-14. Bridge Response to Case 2 PCI Write Burst

Data
Phase

Word Bridge
Operation

Special Conditions Performance Impact

n (last) High 8-byte Write None None

n –1 Low Gather None None

...

3 High 8-byte Write None None

2 Low Gather None None

1 (first) High Setup + RMW None Add 3 PCI clocks

Table 5-15. Bridge Response to Various PCI Write Bursts

Row Data
Phase

Word Bridge
Operation

Special Conditions Performance Impact

12 n (last) Low RMW None Add 3 PCI clocks

11 n – 1 High 8-byte Write None None

10 n – 2 Low Gather None None

9 None

5

DRAM

87The IBM 660 Bridge

Table 5-15. Bridge Response to Various PCI Write Bursts (Continued)

8 4 High RMW None Add 3 PCI clocks

7 3 Low RMW Less than 4-byte transfer Add 3 PCI clocks

6 None

5 10 High RMW Less than 4-byte transfer Add 3 PCI clocks

4 9 Low Gather None None

3 None

2 2 High 8-byte Write None None

1 1 (first) Low Setup + Gather None None

Table 5-15 shows the effect of several conditions on the transaction time. Rows 1 through
6 show the effects of a less-than-4-byte transfer at the high word location that occurs during
a burst. The term None in the column titled Performance Impact in row 6 indicates that there
are no residual performance penalties due to the events of rows 1 through 5.

Rows 7 through 9 show the effect of a less-than-4-byte transfer at the low word location that
occurs during a burst. The term None in the column titled Performance Impact in row 9 indi-
cates that there are no residual performance penalties due to the events of rows 7 and 8.

Rows 10 through 12 show the effect of a burst that ends at a low word location. The total per-
formance impact from this burst is to add 12 PCI clocks to the transaction time.

Note that the performance penalty for single data phase PCI writes is three additional PCI
clocks, whether the destination is the high word or the low word.

5.4.5 Check Bit Calculation
The 660 generates the check bits based on Table 5-16 (which is shown using little-endian
bit numbering).

Table 5-16. Check Bit Calculation

CB
(x)

Data Bits. CB(x) = XOR of Data Bits (0 is LSb)

0 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,33,34,35,39,41,42,43,47,49,50,51,55,57,58,59,63

1 8,9,10,11,12,13,14,15,24,25,26,27,28,29,30,31,32,34,35,38,40,42,43,46,48,50,51,54,56,58,59,62

2 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,35,37,40,41,43,45,48,49,51,53,56,57,59,61

3 0,1,2,3,4,5,6,7,16,17,18,19,20,21,22,23,32,33,34,36,40,41,42,44,48,49,50,52,56,57,58,60

4 1,2,3,7,9,10,11,15,17,18,19,23,25,26,27,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47

5 0,2,3,6,8,10,11,14,16,18,19,22,24,26,27,30,40,41,42,43,44,45,46,47,56,57,58,59,60,61,62,63

6 0,1,3,5,8,9,11,13,16,17,19,21,24,25,27,29,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63

7 0,1,2,4,8,9,10,12,16,17,18,20,24,25,26,28,32,33,34,35,36,37,38,39,48,49,50,51,52,53,54,55

5

DRAM

88 The IBM 660 Bridge

5.4.6 Syndrome Decode
The syndrome consists of an 8-bit quantity which is generated by the 660 as it is comparing
the 8 data bytes to the check byte. This syndrome contains the results of the comparison,
as shown in Table 5-17, where:

� ne means that no error has been detected.
� cbx means that check bit x is inverted (a single-bit error).
� dx means that data bit x is inverted (a single-bit error).
� blank means that a multiple bit error has occurred.

Based on the information in the syndrome, the 660 corrects all single-bit errors and signals
an error to the requesting agent on multiple-bit errors.

Table 5-17. Syndrome Decode

S0
S1
S2
S3

S7 S6 S5 S4

0
0
0
0

1
0
0
0

0
1
0
0

1
1
0
0

0
0
1
0

1
0
1
0

0
1
1
0

1
1
1
0

0
0
0
1

1
0
0
1

0
1
0
1

1
1
0
1

0
0
1
1

1
0
1
1

0
1
1
1

1
1
1
1

0 0 0 0 ne cb0 cb1 cb2 cb3

0 0 0 1 cb
4

d8 d24 d0 d16

0 0 1 0 cb
5

d9 d25 d1 d17

0 0 1 1 d40 d41 d42 d44 d43 d45 d46 d47

0 1 0 0 cb
6

d10 d26 d2 d18

0 1 0 1

0 1 1 0 d56 d57 d58 d60 d59 d61 d62 d63

0 1 1 1 d12 d28 d4 d20

1 0 0 0 cb
7

d11 d27 d3 d19

1 0 0 1 d32 d33 d34 d36 d35 d37 d38 d39

1 0 1 0

1 0 1 1 d13 d29 d5 d21

1 1 0 0 d48 d49 d50 d52 d51 d53 d54 d55

1 1 0 1 d14 d30 d6 d22

1 1 1 0 d15 d31 d7 d23

1 1 1 1

5

DRAM

89The IBM 660 Bridge

5.5 DRAM Refresh
The memory controller provides DRAM refresh logic for system memory. The memory con-
troller supports CAS#-before-RAS# refresh only, which provides lower power consumption
and lower noise generation than RAS#-only refresh. In this refresh mode, MA[11:0] are not
required. Refresh of the odd banks of memory is staggered from the refresh of the even
banks of memory to further reduce noise (see Figure 5-10).

During refresh,

� WE[1:0] are driven high.
� MEM_DATA[63:0] are tri-stated.
� MA[11:0] continue to be driven to their previous state.

Figure 5-10. DRAM Refresh Timing Diagram

PCI_CLK

CAS[7:0]#

RAS[6,4,20]#

RAS[7,5,3,1]#

Refresh requests are generated internally by dividing down the PCI_CLK. The divisor value
is programmed in the refresh timer divisor register. This register is initialized to 504, a value
that provides a refresh rate of 15.1us when PCI_CLK rate is 33MHz. For other PCI_CLK fre-
quencies, the refresh rate register must be properly configured before accessing system
memory.

Refresh continues to occur even if CPU_CLK is stopped.

5

DRAM

90 The IBM 660 Bridge

5.5.1 Refresh Timer Divisor Register

Index D0 to D1 Read/Write Reset to F8 (D0) and 01 (D1)

The refresh timer register is a 16-bit BCR that determines the memory refresh rate. Typical
refresh rates are 15.1 to 15.5 microseconds. If all DRAM in the system supports extended
(slow) refresh, the refresh rate can be slower. The refresh timer is clocked by the PCI clock
input to the 664 Controller. The reset value of 01F8h provides a refresh rate of 15.1 microse-
conds while the PCI clock is 33MHz. (01F8h equals 504 times 30ns equals 15.12us.) Bits
3–11 of the timer allow timer values from 8 to 4096.

D0D1D2D3D4D5D6D7D0h

Hardcoded to 0

Refresh Timer Value LSBs.

Bits 7:3 Refresh timer (7:3) : These are the five least-significant bits of the refresh timer
value.

D8D9D10D11D12D13D14D15D1h

Refresh Timer Value MSBs.

Hardcoded to 0

Bits 11:8 Refresh timer (11:8) : These are the four most-significant bits of the refresh timer
value.

5

DRAM

91The IBM 660 Bridge

5.6 Atomic Memory Transfers
The 660 supports atomic memory transfers by supporting the CPU reservation protocol and
the PCI lock protocol.

5.6.1 Memory Locks and Reservations
The 660 supports the lwarx and stwcx atomic memory update protocol by broadcasting
snoop cycles to the CPU bus during PCI to memory transactions. The bridge does not other-
wise take any action, nor does it enforce an external locking protocol for CPU bus masters.
See Section 5.6.1.1.

PCI bus masters can lock and unlock a 32-byte block of system memory in compliance with
the PCI specification. This block can be located anywhere within the populated system
memory space, aligned on a 32-byte boundary. Only a single lock may be in existence at any
given time. The bridge does not implement complete bus locking. See Section 5.6.1.2.

5.6.1.1 CPU Reservation
The CPU indicates a reservation request by executing a memory read atomic
(TT[0:3]=1101). If there is no PCI lock on the addressed block of memory, the bridge allows
the transfer, but takes no other action. If there is a PCI lock on that block, the bridge termi-
nates the CPU transfer with ARTRY#, does not access the memory location, and takes no
other action.

The CPU removes a reservation by executing a memory read with intent to modify atomic
(TT[0:3]=1111) or a memory write with flush atomic (TT[0:3]=1001). The bridge treats these
accesses as a normal memory transfers.

5.6.1.2 PCI Lock
The bridge responds to the PCI lock request protocol in compliance with the PCI specifica-
tion. If an agent requests a lock, and no PCI lock is in effect, the lock is granted. Once a PCI
lock is granted, no other PCI locks are granted until the current lock is released.

The 660 prevents CPU bus masters and other PCI bus masters from reading or writing within
a block of memory which is locked by a PCI bus master. CPU bus master accesses to a
locked block are retried with ARTRY#. PCI bus master accesses to a locked block are retried
with the PCI bus retry protocol. PCI and CPU bus master accesses to other areas of system
memory are unrestricted.

PCI to memory transactions cause the bridge to broadcast a snoop cycle to the CPU bus.
When a PCI agent is granted a memory block lock, the bridge broadcasts a write with flush
(TT[0:3]=0001) cycle on the CPU bus, which causes the L1 and L2 caches to invalidate that
sector (if there is an address match). This insures that there will not be a cache hit during a
CPU bus accesses to a memory block which is locked by a PCI agent.

5.6.1.3 PCI Lock Release
The bridge responds to the PCI lock release protocol in compliance with the PCI Specifica-
tion. If an agent releases the lock that it owned, the bridge releases the lock. The bridge gen-
erates a normal snoop cycle on the CPU bus.

5

DRAM

92 The IBM 660 Bridge

5.7 DRAM Module Loading Considerations
The 660 directly drives up to eight 168 pin DRAM modules, which typically exhibit an input
capacitance of less than 20pf. Table 5-18 shows some maximum input capacitance numbers
that are typical of the various DRAM modules on the market. System designers may wish
to buffer MA[11:0] (and perhaps WE#) if the system design requires the use of more than two
banks of 72 pin SIMMs (more than one pair of 2-sided 72 pin SIMMs).

Table 5-18. Typical DRAM Module Maximum Input Capacitance

SIMM Type SIMM Size Maximum Input Capacitance

Address WE#

72-pin 4 Meg 50pf 50pf

8 Meg 90pf 95pf

16 Meg 80pf 95pf

32 Meg 160pf 190pf

168-pin 8M, 16M,
32M,128M

13pf 13pf

64M 18pf 18pf

5.8 Related Bridge Control Registers
Bridge Control Register Index R/W Bytes See

Memory Parity Error Status 8000 0840 R 1 10.2.2.5

Single-Bit Error Counter Index B8 R/W 1 10.3.33

Single-Bit Error Trigger Level Index B9 R/W 1 10.3.34

Bridge Options 2 Index BB R/W 1 10.3.36

Error Enable 1 Index C0 R/W 1 10.3.37

Error Status 1 Index C1 R/W 1 10.3.38

Single-Bit ECC Error Address Indx CC – CF R/W 4 10.3.44

Bridge Chip Set Options 3 Index D4 R/W 1 10.3.46

5

L2

93The IBM 660 Bridge

Section 6
L2 Cache
The L2 cache controller in the 660 controls external tag RAM and data SRAMs for a second
level cache. The L2 caches as much of the system memory space from 0 to 2G as is marked
as populated by DRAM. The cache architecture is direct-mapped, look-aside, and write-
through. Both synchronous (burst mode) SRAMs or asynchronous SRAMs are supported for
a choice of best performance or lowest cost.

6.1 L2 Controller Features
6.1.1 Cache Size
The cache size is determined externally by the tagRAM and data SRAM sizes and how they
are attached. The L2 cache controller supports all cache sizes. Loading constraints limit
practical cache size to the 256K to 1M range for 66MHz operation.

6.1.2 Cache Responses
On memory reads, the L2 cache only responds to bursts from CPU bus agents. Single-beat
reads are ignored. Table 6-1 shows the actions taken by the L2 cache based on transfer type
and single-beat or burst mode.
Note: The CPU cache inhibit (CI#) signal is not used because cache-inhibited bus operations
are always single-beat.

6.1.3 Cache Configuration
The L2 controller does not have any configuration bits for the size or organization of the tag
and data SRAMs. The connections to the CPU address bus determine the size of the tag
RAM and data SRAMs. There is a configuration bit that identifies the SRAM type as burst
or asynchronous.
Since the L2 cache only caches addresses that are present in system memory, it does not
have any configuration bits for cacheable address space.

6.1.4 L2 Performance

Typical Pipelined CPU to Memory Performance at 66 MHz

Responding Device Read Write

L2 (9ns Synchronous SRAM) 3-1-1-1-2-1-1-1...-2-1-1-1 Snarf

L2 (15ns Asynchronous SRAM) 3-2-2-2-3-2-2-2...-3-2-2-2 Snarf

6

L2

The IBM 660 Bridge94

6.2 L2 Cache Responses to CPU Bus Operations

The L2 caches data for the CPU bus masters. It supplies data on read hits, and it snarfs data
on read misses and all writes. Table 6-1 details the operation of the L2 cache for various
transfer type codes issued by a CPU bus master. The 660 does not use TT[4].

Table 6-1. L2 Cache Responses to CPU Bus Cycles

TT[0:3] Type CPU Bus Cycle Cache Hit Action Cache Miss Action

0000 Clean sector Ignore Ignore

0001 Single Write with flush Invalidate Ignore

Burst Write with flush Update as data is
written to memory

Update as data is
written to memory

0010 Flush sector Invalidate Ignore

0011 Single Write with kill Invalidate Ignore

Burst Write with kill Update as data is
written to memory

Update as data is
written to memory

0101 Single Read Ignore Ignore

Burst Read Claim cycle and sup-
ply data to CPU bus

Update as data is read
from memory

0110 Kill sector Invalidate Ignore

0111 Always
Burst

Read with intent to
modify

Claim cycle and sup-
ply data to CPU bus

Ignore

1000 Reserved Ignore Ignore

1001 Always
Single

Write with flush atomic Invalidate Ignore

1010 External control out Ignore Ignore

1011 Reserved Ignore Ignore

1100 TLB invalidate Ignore Ignore

1101 Single Read atomic Ignore Ignore

Burst Read atomic Claim cycle and sup-
ply data to CPU bus

Update as data is read
from memory

1110 External control in Ignore Ignore

1111 Always
Burst

Read with intent to
modify atomic

Claim cycle and sup-
ply data to CPU bus

Ignore

Accesses to populated memory are snooped by L2, regardless of the state of GBL#. The 660
Bridge only uses GBL# as an output.

6

L2

95The IBM 660 Bridge

6.3 L2 Cache Responses to PCI Bus Mastered Transactions
The 660 maintains L2 coherency during PCI to memory transactions as shown in Table 6-2
for non-603 operation, and in Table 6-3 for 603 operation. The L2 does not supply data direct-
ly to the PCI bus. The L2 is not updated during a PCI transaction.

Table 6-2. L2 Operations for PCI to Memory Transactions, Non-603 Mode

PCI Bus
Transaction

CPU Bus Broadcast Snoop Cycle L2 Operation
Transact ion

Operation TT[0:4] L2 Hit L2 Miss

Memory Read Clean 00000 Ignore Ignore

Memory Write Flush Sector 00100 Invalidate Block Ignore

Initiate Lock (Read) Single-Beat Write with Flush 00010 Invalidate Block Ignore

Table 6-3. L2 Operations for PCI to Memory Transactions, 603 Mode

PCI Bus
Transaction

CPU Bus Broadcast Snoop Cycle L2 Operation
Transact ion

Operation TT[0:4] L2 Hit L2 Miss

Memory Read Single-Beat Read 01010 Ignore Ignore

Memory Write Single-Beat Write with Flush 00010 Invalidate Block Ignore

Initiate Lock (Read) Single-Beat Write with Flush 00010 Invalidate Block Ignore

6.4 Error Checking Support
The 660 L2 cache can be configured as none, 64, or 72 bits wide.
When no L2 is installed, CPU bus error detection can be enabled by setting BCR[C4] bit 2
to 1, and L2 parity error detection (BCR[C4] bit 3) becomes a don’t_care.
The 64-bit configuration offers decreased cost but does not offer L2 or CPU bus data parity
error checking. There are two options for using 64-bit SRAM:
� Disable L2 parity error detection (BCR[C4] bit 3), and disable CPU bus data

parity error detection (BCR[C4] bit 2), or
� Disconnect DPE# between the CPU and the 664, and pull up the DPE# pin

of the 664. This allows CPU bus error detection to be enabled. Parity will be
checked on writes, but not on reads.

The 72-bit mode supports parity bit storage and checking. In 72-bit mode, CPU bus error
detection can be enabled by setting BCR[C4] bit 2 to 1, and L2 parity error detection can be
enabled by setting BCR[C4] bit 3 to 1. While enabled, parity bits are stored in the SRAM when
an L2 entry is updated. Parity checking is done when data is supplied from the SRAM.
If a CPU data bus parity error occurs on a read sourced by the L2 SRAM, both the L2 and
CPU bus parity error bits will be set. If the data is sourced by the DRAM, then the CPU data
bus parity error bit will be set, but the L2 parity error bit will not be set.
ECC mode operation does not affect SRAM error checking because ECC mode operations
are confined to the 660 to DRAM interface. The SRAM is a CPU bus device which is not con-
nected to the DRAM subsystem.

6

L2

The IBM 660 Bridge96

6.5 External L2 Cache Operation
The onboard L2 cache controller can be disabled to incorporate an external L2. The only
constraints that the 660 imposes on such an external L2 are those imposed on all CPU bus
agents (see Section 3.8). The internal L2 cache controller can be disabled to accommodate
an external L2 cache with greater associativity, write-back capability, or other improved capa-
bilities.

6.6 TagRAM
The L2 controller requires external tagRAM. The following tagRAM parts are known to be
supported by the 660: IDT71B74S10 (asynchronous), and IDT71215S10 and IDT71216S10
(both synchronous). These are 10ns parts, but tagRAM speed should be determined based
on total system considerations. Typical systems will operate with 12ns tagRAMs at 66MHz.

Connectivity of the 660 with an IDT71216 16k x 15 TagRAM is illustrated by the IBM PowerPC
603/604 Reference Design Technical Specification and the IBM PowerPC 604 SMP Refer-
ence Design Technical Specification.

6.6.1 TAG_MATCH
While used with the IDT parts, the TAG_MATCH input to the 660 is driven by the MATCH
output of the tags. This is an active high, open collector output, which must be pulled up with
a low value resistor in order to work properly.

In Figure 6-10, TAG_MATCH is tied to the MATCH output of both tagRAMs. In this case,
CPU_ADDR[12] is tied to the CS input of one tagRAM, and to the CS# input of the other.
Thus, one of the tags is disabled for any given access, and the MATCH output of that tagRAM
will tristate. leaving the other tagRAM active. This stacks the tags on top of each other, so
that one holds the tags for the upper half of the pages, and the other holds the tags for the
lower half of the pages.

In contrast, in Figure 6-11, the tagRAMs are used in parallel, with half of the tag stored in each
RAM. Both halves of the tag must hit (and the VALID bit be set) for the tag to MATCH. Both
MATCH outputs must go active high (tristate) for the TAG_MATCH input to go high.

6

L2

97The IBM 660 Bridge

6.7 SRAM
The 660 L2 controller requires external SRAM, which can be either synchronous or asynch-
ronous. Synchronous vs. asynchronous SRAM is selected via the Bridge Chipset Options
3 BCR (see section 10.3.46).

6.7.1 Synchronous
Synchronous SRAM must be capable of linear burst ordering (00–01–10–11–00–...). When
synchronous SRAM is used, the SRAM_ALE output is unused (and driven high) because the
synchronous SRAMs contain an address latch.
The speed of the SRAM should be determined based on total system considerations. How-
ever, typical systems will operate with 9ns devices at 66MHz.

6.7.2 Asynchronous
While asynchronous SRAM is in use, the SRAM_ALE signal controls an external address
latch (74F373, for example).
The speed of the SRAM should be determined based on total system considerations. How-
ever, typical systems will operate with 15ns devices at 66MHz.

6.7.3 Dual (Sync and Async) Capable Systems
Asynchronous SRAM uses the SRAM_ADS#/ADDR0 and SRAM_CNT_EN#/ADDR1 sig-
nals as the two least significant address bits, while synchronous SRAM uses them as control
signals. Synchronous SRAMs internally latch in the initial value of the two least significant
address bits from the CPU address bus. Systems designed to support either type of SRAM
must use either jumpers or (fast) external logic to provide the necessary signal routing.

6.8 SRAM and TagRAM Connections
Figure 6-1 through Figure 6-12 show a detailed example of the connections between the
660, the SRAM, and the TagRAM. The information in these figures is presented in block dia-
gram form and illustrates several different combinations of synchronous and asynchronous
SRAM and tagRAM that can be used to create different sizes of L2. Table 6-4 is a guide to
the configuration illustrations. For example, to use synchronous SRAM and asynchronous
tagRAM to implement a 512K L2, see Figure 6-2 for an SRAM connection example, and
Figure 6-12 for a tagRAM connection example.

Table 6-4. Index of SRAM and TagRAM Example Configurations

SRAM Tag
RAM

256K L2 512K L2 1M L2
RAM

SRAM TagRAM SRAM TagRAM SRAM TagRAM

Sync Sync Figure 6-1 Figure 6-8 Figure 6-2 Figure 6-9 Figure 6-3,
Figure 6-4

Figure 6-10

Sync Async Figure 6-1 Figure 6-11 Figure 6-2 Figure 6-12 — —

Async Sync Figure 6-5 Figure 6-8 Figure 6-6 Figure 6-9 Figure 6-7 Figure 6-10

Async Async Figure 6-5 Figure 6-11 Figure 6-6 Figure 6-12 — —

SRAM configurations that present more than 4 SRAM device loads may not meet worst case
timing specifications at 66MHz on the WE# nets. The loading effect of the SRAM configura-

6

L2

The IBM 660 Bridge98

tion on CPU bus operation should also be considered.

Figure 6-1. Synchronous SRAM, 256K L2

CPU_ADDR[14:28]

CPU_DATA[0:63]

CPU_DPAR[0:7]

CS

Data

Address

CS

CS

CS

32k x 18
SRAM

Data

CPU_ADDR[14:28]

CPU_DATA[0:63]

CPU_DPAR[0:7]

CS

Data

Address

CS

64k x 36
SRAM

Data

or

Figure 6-2. Synchronous SRAM, 512K L2

CPU_DATA[0:63]

CPU_DPAR[0:7]

CS

Data

Address

CS

CS

CS

SRAM

Data

64k x 18

CPU_ADDR[13:28]

6

L2

99The IBM 660 Bridge

Figure 6-3. Preferred Synchronous SRAM, 1M L2

CPU_DATA[0:63]

CPU_DPAR[0:7]

CS

Data

Address

CS

CS

CS

SRAM

Data

CPU_ADDR[13:28]

128K x 18

CPU_ADDR[12]

Figure 6-4. Alternate Synchronous SRAM, 1M L2

CPU_DATA[0:63]

CPU_DPAR[0:7]

CS

Data

Address

CS

CS

CS

SRAM

Data

CPU_ADDR[13:28]

CS

Data

Address

CS

CS

CS

SRAM

Data

64k x 18 64k x 18

CPU_ADDR[12]

6

L2

The IBM 660 Bridge100

Figure 6-5. Asynchronous SRAM, 256K L2

CPU_ADDR[14:28]

CPU_DATA[0:63]
CPU_DPAR[0:7]

CS

Data
Address

CS

CS

CS

SRAM

Data

CS

CS

CS

CS

32k x 9

Figure 6-6. Asynchronous SRAM, 512K L2

CPU_DATA[0:63]

CPU_DPAR[0:7]

CS

Data

Address

CS

CS

CS

SRAM

Data

CPU_ADDR[13:28]

64k x 18

6

L2

101The IBM 660 Bridge

Figure 6-7. Asynchronous SRAM, 1M L2

CPU_DATA[0:63]

CPU_DPAR[0:7]

CS

Data

Address

CS

CS

CS

SRAM

Data

CS

CS

CS

CS

CPU_ADDR[12:28]

128k x 9

6

L2

The IBM 660 Bridge102

Figure 6-8. Synchronous TagRAM, 256K L2

CS

Data

AddressCPU_ADDR[14:26]

CPU_ADDR[2:13]

TAG_VALID Valid Match TAG_MATCH

16k x 15
TagRAM

VDD

Figure 6-9. Synchronous TagRAM, 512K L2

CS

Data

Address

TAG_VALID Valid Match TAG_MATCH

16k x 15
TagRAM

CPU_ADDR[13:26]

CPU_ADDR[2:12]

VDD

Figure 6-10. Synchronous TagRAM, 1M L2

CS

Data

Address

TAG_VALID Valid

Match TAG_MATCH

16k x 15
TagRAM

CPU_ADDR[13:26]

CS

CPU_ADDR[12]

CPU_ADDR[2:11]

Match

VDD

6

L2

103The IBM 660 Bridge

Figure 6-11. Asynchronous TagRAM, 256K L2

CS
Data

Address

Match TAG_MATCH

TagRAM

CS Match

8k x 8

CPU_ADDR[14:26]

CPU_ADDR[2:13],
TAG_VALID

Data

6

7

VDD

Figure 6-12. Asynchronous TagRAM, 512K L2

CS
Data

Address

Match TAG_MATCH

TagRAM

CS Match

8k x 8

CPU_ADDR[14:26]

TAG_VALID

Data

6

VDD

CS Match
Data

CS Match
Data

CPU_ADDR[13]

CPU_ADDR[2:12]

6

6

L2

The IBM 660 Bridge104

6.9 L2 Bridge Control Registers
The following BCRs control the operation of the L2.

6.9.1 L2 Invalidate BCR

Direct Access 8000 0814 Write Only Reset: Undefined

A write to this BCR causes all contents of the internal L2 cache to be invalidated (by pulsing
TAG_CLR# active for several CPU clocks). The internal L2 cache does not have to be dis-
abled during this operation. Reads to this register are undefined and do not cause an L2 in-
validate.

This register can be put into external register support mode so that writes to this register are
latched into this register and are also forwarded to the PCI. In this mode, reads to this register
are always forwarded to the PCI, which allows functions to be added to the reserved bit loca-
tions of this register.

D0D1D2D3D4D5D6D70814h

Any Value

Bits 7:0 Writing any value to this register causes the L2 invalidate operation.

6.9.2 L2 Error Status BCR

Direct Access 8000 0842 Read Only Reset to 01h

This 8-bit, read-only register indicates if a parity error has been detected during a CPU read
from the L2 cache. This bit is deactivated by reading the L2 cache parity error read and clear
register (port 8000 0843h). This bit may also be accessed via the error status 2 register (in-
dex C5h, section 10.3.41). Note that L2 parity errors also cause the CPU bus data parity error
bit to be set.

D0D1D2D3D4D5D6D70842h

L2 Cache Parity Error#

Reserved

Bit 0 L2 Cache Parity Error#:
0 = Error Detected
1 = No Error Detected.

6

L2

105The IBM 660 Bridge

6.9.3 L2 Parity Error Read and Clear BCR

Direct Access 8000 0843 Read Only Reset to 01h

This 8-bit, read-only register indicates if a parity error has been detect during a CPU read
from the L2 cache and clears the error if it is active. This bit may also be accessed via the
error status 2 register (index C5h, section 10.3.41), but that access will not automatically
clear the bit. Note that L2 parity errors also cause the CPU bus data parity error bit to be set.

D0D1D2D3D4D5D6D70843h

Reserved

L2 Cache Parity Error#

Bit 0 L2 Cache Parity Error#:
0 = Error Detected
1 = No Error Detected.

6.9.4 Cache Status Register

Index B1h Read/Write Reset to 43h

This 8-bit, read/write BCR shows the status of the L1 and L2 caches.

D0D1D2D3D4D5D6D7B1h

Reserved

Internal L2 Enable

Reserved

Bit 0 Reserved. Hardcoded to a 1.

Bit 1 Internal L2 Enable: This bit is used with the L2 Cache Enable bit (bit 6 of the sys-
tem control 81C BCR, section 10.2.2.3) to enable the internal L2 cache. The in-
ternal L2 is enabled only when both bits are set to 1.
0 : Internal L2 disabled.
1 : Internal L2 enabled (iff L2 Cache Enable bit is set).

Bit 2:7 Reserved

6

L2

The IBM 660 Bridge106

6.9.5 Other L2-Related BCRs
Also see the following sections for information on related BCRs:

Bridge Control Register Index R/W Bytes See

Error Enable 2 Index C4 R/W 1 10.3.40

Error Status 2 Index C5 R/W 1 10.3.41

Bridge Chip Set Options 3 Index D4 R/W 1 10.3.46

System Control 81C 8000 081C R/W 1 10.2.2.3

6

ROM

The IBM 660 Bridge 107

Section 7
ROM

The 660 Bridge implements a 2M ROM space from 4G–2M to 4G. The 660 provides
two boot ROM device access methods which minimize pin and package count while still
allowing a byte-wide Flash� ROM device to source 8-byte wide data.

One ROM access method used by the 660 (referred to as the direct-attach ROM mode),
attaches the ROM directly to the 660 using the PCI_AD lines. This mode is compatible
with that used by the 650 Bridge, and is required when using the Intel� SIO ISA bridge
because the SIO does not support mapping of the ROM to the ISA bus. The direct-attach
mode also supports ROM device writes and write-protect commands.

The other ROM access method (remote ROM mode – see section 7.2) attaches the ROM
device to an external PCI agent which supports the PowerPC Reference Platform ROM
space map and access protocol. CPU bus master transfers to ROM space are forwarded
to the PCI bus and claimed by the PCI agent, which supplies the ROM device data. This
PCI device is typically a PCI to ISA bridge. The ROM device attaches to the ISA bridge
through the ISA bus lines, thereby saving a PCI bus load. The 660 supplies write-protect
capability in this mode.

The ROM mode is indicated to the 660 on the strapping pin configuration bits during
power-on-reset (POR). See section 8.1.3.

7.1 Direct-Attach ROM Mode
The ROM device attaches to the 660 by means of control lines and the PCI_AD[31:0]
lines. When a CPU bus master reads from the ROM, the 660 masters a BCR transaction,
during which it reads the ROM and returns the data to the CPU. CPU writes to the ROM
and ROM write-protection operations are also forwarded to the ROM device.

ROM accesses flow from the CPU bus to the 660. As shown in Figure 7-1, the data and
address flow from the 660 to the ROM over the PCI_AD lines. ROM control flows from
the 660 to the ROM over control lines that are not a part of the PCI bus.

Although connected to the PCI_AD lines, the direct-attach ROM is not a PCI agent. The
ROM and the PCI agents do not interfere with each other because the ROM is under

7

ROM

The IBM 660 Bridge108

660 control, and the 660 does not enable the ROM except during ROM cycles. The 660
accesses the ROM by means of BCR transactions. Other PCI devices cannot read or
write the ROM because they cannot generate BCR transactions.

Figure 7-1. ROM Connections

ROM

Address
Data
Control

System

660
Bridge

60X
CPU

60X
Bus

PCI_AD
Lines

ROM_OE#, ROM_WE#

[23:0]
[31:24]

7.1.1 ROM Reads
When a CPU bus master reads from memory addresses mapped to ROM space, the
660 arbitrates for the PCI bus and then masters a BCR transaction on the PCI bus. During
this transaction, the 660 reads the ROM eight times, accumulates the data, and returns
the double-word to the CPU. The 660 then completes the PCI transaction and releases
the PCI bus.

The 664 drives the address of the required byte over PCI_AD[23:0] to the ROM address
pins. The ROM drives back the data on PCI_AD[31:24], where it is received by the 663.

This ROM read discussion assumes that the system is in big-endian mode. For the effects
of little-endian mode operation on ROM reads, see Section 7.1.1.3.

7.1.1.1 ROM Read Sequence
Figure 7-2 is a timing diagram of a CPU to ROM read transaction. This case assumes
that the PCI bus is parked on the CPU, so that the 660 has a valid PCI bus grant when
the CPU starts the CPU bus transfer.

Initially, the CPU drives the address and address attributes onto the CPU bus and asserts
TS#. The 660 decodes the CPU transfer as a ROM read transaction. It is possible for
TS# to be asserted across either a rising or falling edge of PCI_CLK. The 660 must only
assert (and negate) PCI bus signals on the rising edge of PCI_CLK, so if TS# is asserted
across a rising edge of PCI_CLK, the 660 waits one CPU_CLK to synchronize to the
PCI bus.

The 660 initiates a BCR transaction by asserting PCI_FRAME# on the rising edge of
PCI_CLK. Note that the 660 is driving PCI_AD[23:0] with the ROM address of byte 0
of the 8-byte aligned double-word. The 660 leaves PCI_AD[31:24] tri-stated, and asserts
ROM_OE# to enable the ROM to drive the data onto these bits. On the next PCI_CLK,
the 660 negates PCI_FRAME# and asserts PCI_IRDY#.

The ROM drives the requested data onto its data pins, across PCI_AD[31:24], and into
the 660. Seven PCI_CLKs after the 660 asserts PCI_FRAME#, it sends ROM_LOAD
low. On the next clock, the 660 latches in the ROM data on PCI_AD[31:24], sends
ROM_LOAD# high, and increments the ROM address on PCI_AD[23:0]. The byte from
the ROM is latched into a byte shift register, which accumulates the bytes in an 8-byte
double-word. The contents of the shift register move through the 660 and onto the CPU
data bus.

7

ROM

The IBM 660 Bridge 109

Figure 7-2. ROM Read Timing Diagram

7
P

C
I C

lo
ck

s,
 T

yp
ic

al
 E

ac
h

C
yc

le
7

P
C

I C
lo

ck
s,

 T
yp

ic
al

 E
ac

h
C

yc
le

S
B

yt
e

0
A

dd
re

ss

S
S

S
S

S
S

S

by
te

 0
by

te
 1

A
dd

r1

by
te

 2
by

te
 3

by
te

 4
by

te
 5

by
te

 6
by

te
 7

A
dd

r2
A

dd
r3

A
dd

r4
A

dd
r5

A
dd

r6
A

dd
r7

hg
fe

dc
b

C
P

U
_C

LK

C
P

U
_A

D
D

R

T
S

#

A
A

C
K

#

TA
#

C
P

U
_D

A
TA

P
C

I_
C

LK

F
R

A
M

E
#

IR
D

Y
#

R
O

M
_L

O
A

D

C
/B

E
[3

:0
]#

P
C

I_
A

D
[3

1:
24

]

R
O

M
_O

E
#

P
C

I_
A

D
[2

3:
0]

 [6
64

]

The ROM then drives the next data byte onto PCI_AD[31:24]. Seven PCI_CLKs after
it negated ROM_LOAD for the previous byte, the 660 again negates ROM_LOAD, and
also shifts the previous byte of ROM data to the next position. On the next PCI_CLK,
the 660 sends ROM_LOAD high and increments the ROM address on PCI_AD[23:0].
This pattern is repeated until all eight bytes have been loaded into the shift register.

7

ROM

The IBM 660 Bridge110

After the last byte has been latched into the 660 by the falling edge of ROM_LOAD, the
660 completes the PCI transaction by deasserting PCI_IRDY#. It also negates ROM_OE#
to clear the PCI bus. After the last byte of data has had time to propagate through onto
the CPU data bus, the 660 signals TA# to the CPU. Table 7-1 shows the data and address
flow during the transaction.

On a single-beat transfer, the CPU asserts and negates AACK# concurrently with TA#.
For a burst transfer, the 660 asserts TA# for four CPU_CLKs to return four identical double-
words to the CPU. This is the only difference between single-beat and burst ROM reads.

Also note that PCI_DEVSEL#, PCI_TRDY#, PCI_STOP#, and ROM_WE# are negated
throughout the transaction.

Table 7-1. ROM Read Data and Address Flow
ROM

Access
#

ROM Data Byte ROM Address
PCI_AD[23:0]

ROM Data
PCI_AD[31:24]

CPU_DATA[0:63]
After Shift
(BE Mode)

CPU_DATA[0:63]
After Shift
(LE Mode)

1 Byte 0 XX XXX0h a — —

2 Byte 1 XX XXX1h b — —

3 Byte 2 XX XXX2h c — —

4 Byte 3 XX XXX3h d — —

5 Byte 4 XX XXX4h e — —

6 Byte 5 XX XXX5h f — —

7 Byte 6 XX XXX6h g — —

8 Byte 7 XX XXX7h h abcd efgh hgfe dcba

7.1.1.2 Address, Transfer Size, and Alignment
During ROM reads, system ROM is linear-mapped to CPU memory space from 4G –
2M to 4G (FFE0 0000h to FFFF FFFFh). This address range is translated onto PCI_AD[23:0]
as 0 to 2M (0000 0000h to 001F FFFFh). Since the CPU begins fetching instructions
at FFF0 0100h after a reset, the most convenient way to use a 512K device as system
ROM with the CPU is to use it from 4G – 512K to 4G. Connecting PCI_AD[18:0] to
ROM_A[18:0] with no translation implements this. With this connection, the system ROM
is aligned with 4G – 2M, but with alias addresses every 512K up to 4G. Other size devices
can also be implemented this way.

The CPU read address need not be aligned on an 8-byte boundary. A CPU read from
any ROM address of any length that does not cross an 8–byte boundary, returns all eight
bytes of that double-word from the ROM. For example, the operations shown in Table 7-1
could have been caused by a CPU memory read to FF80 0100h, FF80 0101h, or FF80
0105h.

7.1.1.3 Endian Mode Considerations
In little-endian mode, the address munging done by the CPU has no effect because
PCI_AD[2:0] are forced to 000 during the address phase by the 660 at the beginning

7

ROM

The IBM 660 Bridge 111

of the transaction. However, in little-endian mode the byte swapper is enabled, so the
bytes of ROM data returned to the CPU are swapped as shown in the last column of
Table 7-1.

7.1.1.4 4-Byte Reads
The 660 handles 4-byte ROM reads (and all ROM reads of less than 8 bytes) as if they
were 8-byte reads. All 8 bytes are gathered by the 660, and all 8 bytes are driven onto
the CPU data bus.

7.1.2 ROM Writes
The 660 decodes a CPU store word instruction to CPU address FFFF FFF0h as a ROM
write cycle. (Note that the 660 treats any access from FFE0 0000h to FFFF FFFE, with
CPU_A[31]=0, as an access to FFFF FFF0.) The three low-order bytes of the CPU data
word are driven onto the ROM address lines, and the high-order byte is driven onto the
ROM data lines. For example, a store word instruction with data = 0012 3456h writes
56h to ROM location 00 1234h. Only single-beat, four-byte write transfers (store word)
are supported. A ROM write is considered to be a BCR operation. The ROM write BCR
is detailed in Section 7.3.1.

The ROM write discussion assumes that the system is in big-endian mode. For the effects
of little-endian mode operation on ROM reads, see Section 7.1.2.3. In direct-attach mode,
the ROM is attached to the 660 as shown in Figure 7-3.

Figure 7-3. ROM Connections

ROM

Address
Data
Control

System

660
Bridge

60X
CPU

60X
Bus

PCI_AD
Lines

ROM_OE#, ROM_WE#

[23:0]
[31:24]

7.1.2.1 ROM Write Sequence
This case assumes that the PCI bus is parked on the CPU. Initially, the CPU drives the
address and address attributes onto the CPU bus and asserts TS#. The 660 decodes
the CPU transfer as a ROM write transaction, which is a BCR transaction.

The 660 initiates a BCR transaction by asserting PCI_FRAME# on the rising edge of
PCI_CLK. Note that the 660 is driving PCI_AD[23:0] with the ROM address and
PCI_AD[31:24] with the ROM data. On the next PCI_CLK, the 660 negates PCI_FRAME#
and asserts IRDY#. Four PCI_CLKs after the 660 asserts PCI_FRAME#, it asserts
ROM_WE# for two PCI_CLKs.

The 660 completes the PCI transaction by deasserting PCI_IRDY#. The 660 signals TA#
and AACK# to the CPU to signal transfer completion to the CPU. Also note that PCI_DEV-
SEL#, PCI_TRDY#, PCI_STOP#, and ROM_OE# are negated throughout the transaction.

7.1.2.2 Write Protection
Write protection for direct-attach ROM is provided through the ROM lockout BCR (see
Section 7.3.2). ROM write-lockout operations are compatible with the 650 bridge.

7

ROM

The IBM 660 Bridge112

When a CPU bus master writes any data to memory address FFFF FFF1h, the 660 locks
out all subsequent ROM writes until the 660 is reset. In addition, flash ROM devices can
have the means to permanently lock out sectors by writing control sequences. Flash ROM
specifications contain details. Note that the 660 treats any access from FFE0 0001 to
FFFF FFFF, with CPU_A[31]=1, as an access to FFFF FFF1.

7.1.2.3 Data Flow In Little-Endian Mode
Figure 7-4 and Table 7-2 show the flow of CPU Data through the 660 to the ROM while
the system is in little-endian mode. Note that the CPU Data bus is labeled in big-endian
order, the PCI bus is labeled in little-endian order, and the 660 is labeled to match (and
the bit significance within the bytes is maintained).

Figure 7-4. ROM Data and Address Flow In Little Endian Mode

60X CPU

PCI

660 Bridge

Bus

0
7
8

15
16
23
24
31

ROM

Data

A
dd

re
ss

D0
D7

A16
A23

A8
A15

A0
A7

32
39
40
47
48
55
56
63

CPU Register

32
39
40
47
48
55
56
63
CPU PCI

MSB

LSB
CPU
Data
Bus Data bytes swapped.

Address munged.
CPU_A[29]=1 selects
CPU data bytes 4:7.

Addr
Data

high med low
Addr Addr

4

5

6

7

Byte
Lane

2

1

0

3

Byte
Lane

When the CPU executes a store word instruction to FFFF FFF0h, the contents of the
source register appear on CPU_DATA[32:63]. CPU_ADDR[29] is 1 (after the CPU munges
the address), so the 660 selects CPU data byte lanes 4 through 7 as the source of the
data. The system is in little-endian mode, so the buffer swaps the data bytes. If the register
data is AB012345h, then ABh is written to address 012345h of the ROM. Only single-beat,
four-byte write transfers (store word) are supported.

Table 7-2. ROM Write Data Flow in Little-Endian Mode

CPU Register CPU
DATA[0:63]

Content PCI_AD[31:0] ROM Signal

MSB 32:39 ROM Data 31:24 D[7:0]

40:47 ROM Address high byte 23:16 A[23:16]

48:55 ROM Address mid byte 15:8 A[15:8]

LSB 56:63 ROM Address low byte 7:0 A[7:0]

7.1.2.4 Data Flow In Big-Endian Mode
Figure 7-5 and Table 7-3 show the flow of CPU Data through the 660 to the ROM while
the system is in big-endian mode. Note that the CPU Data bus is labeled in big-endian

7

ROM

The IBM 660 Bridge 113

order, the PCI bus is labeled in little-endian order, and the 660 is labeled to match (and
the bit significance within the bytes is maintained).

Figure 7-5. ROM Data and Address Flow In Big Endian Mode

60X CPU

PCI

660 Bridge

Bus

0
7
8

15
16
23
24
31

ROM

Data

A
dd

re
ss

D0
D7

A16
A23

A8
A15

A0
A7

CPU Register

CPU PCI

MSB

LSB

CPU
Data
Bus

8
15

16
23

24
31

0
7

8
15

16
23

24
31

0
7

Address not munged.
Data bytes not swapped.
CPU_A[29]=0 selects
CPU data bytes 0:3.

Addr
Data

highmedlow
AddrAddr Byte

Lane

2

1

0

3

2

1

0

3

Byte
Lane

When the CPU executes a store word instruction to FFFF FFF0h, the contents of the
source register appear on CPU_DATA[0:31]. CPU_ADDR[29]=0, so the 660 selects CPU
data byte lanes 0 through 3 as the source of the data. The system is in big-endian mode,
so the buffer does not swap the data bytes. If the register data is 452301ABh, then ABh
is written to address 012345h of the ROM. Only single-beat, four-byte write transfers (store
word) are supported.

Table 7-3. ROM Write Data Flow in Big-Endian Mode

CPU Register CPU
DATA[0:63]

Content PCI_AD[31:0] ROM Signal

MSB 0:7 ROM Address low byte 7:0 A[7:0]

8:15 ROM Address mid byte 15:8 A[15:8]

16:23 ROM Address high byte 23:16 A[23:16]

LSB 24:31 ROM Data 31:24 D[7:0]

7.2 Remote ROM Mode
In a system that uses the remote ROM mode, the ROM device attaches to a PCI agent.
When a CPU bus master reads from memory addresses mapped to ROM space, the
660 arbitrates for the PCI bus and then masters a memory read transaction on the PCI

7

ROM

The IBM 660 Bridge114

bus. The PCI agent claims the transaction and supplies the ROM device data. CPU writes
to the ROM and ROM write-protection operations are also forwarded to the PCI agent.

As shown in Figure 7-6, the ROM access flows from the CPU to the 660 over the CPU
bus, from the 660 to the PCI agent over the PCI bus, and from the PCI agent to the
ROM device. The ROM device attaches to the PCI agent, not to the PCI_AD lines, so
a PCI bus load is saved by the remote ROM method.

Figure 7-6. Remote ROM Connections

ROM

Address

Data
Control

System

660
Bridge

60X
CPU

60X
Bus

PCI
Bus

PCI
Agent

7.2.1 Remote ROM Reads
For remote ROM reads, the 660 arbitrates for the PCI bus, initiates eight single-byte PCI
accesses, releases the PCI bus, and completes the CPU transfer. The eight single bytes
of ROM data are assembled into a double-word in the 663 and passed to the CPU. Figure 7-7
shows the beginning of the operation, including the first two PCI transactions. Figure 7-8
shows the last part of the operation, including the last two PCI transactions.

During and following reset, compliant PCI agents are logically disconnected from the PCI
bus except for the ability to respond to configuration transactions. These agents have
not yet been configured with necessary operational parameters. PCI agents capable of
the remote ROM access protocol reset with the ability to respond to remote ROM accesses
before being fully configured. The CPU begins reading instructions at FFF0 0100h before
it can configure the PCI devices.

The ROM read discussion assumes that the system is in big-endian mode.

7.2.1.1 Remote ROM Read Sequence
In response to a CPU bus read in the 4G – 2M to 4G address range, the 660 requests
the PCI bus from the PCI arbiter. When the PCI bus is granted (or if the bus is already
parked on the CPU), the 660 initiates a series of PCI memory-read transactions as shown
in Table 7-4 for a CPU read from FFE0 0000h to FFFF FFFF. Note that the last column
in Table 7-4 shows the effect of little-endian mode operation. See Section 7.2.1.4.

The address of the first transaction is the low-order byte of the double-word pointed to
by the CPU address (see Section 7.2.1.2). The 660 expects the low-order byte of ROM
data in the 8-byte double-word to be returned on PCI byte lane 0, PCI_AD[7:0]. As shown
in The 660 then masters seven more PCI read transactions, each time receiving back
one byte of ROM data and driving it onto the CPU data bus as shown in Table 7-4. Note
that the byte enables are incrementing within each 4-byte word pointed to by the PCI
address.

7

ROM

The IBM 660 Bridge 115

Figure 7-7. Remote ROM Read – Initial Transactions

n
P

C
I_

C
LK

S
 (

1)

n
P

C
I_

C
LK

s
(4

)
n

P
C

I_
C

LK
s

(4
)

S

A
dd

 a

C
m

d
B

yt
e

E
na

bl
es

D
at

a
a

(5
)

S
T

O
P

no

t
as

se
rt

ed
 d

ur
in

g
th

e
tr

an
sa

ct
io

n

(1
)

T
hi

s
de

la
y

is
 c

on
tr

ol
le

d
by

 t
he

 s
ys

te
m

 a
rb

ite
r.

S

(4
)

T
hi

s
de

la
y

is
 p

ac
ed

 b
y

th
e

re
m

ot
e

R
O

M
 c

on
tr

ol
le

r.

S

(2
)

a

A
dd

 b

D
at

a
b

b
b

b
a

a

a

b

b
aS

b

a
a

(3
)

(3
)

(3
)

IR
D

Y

is
 a

lw
ay

s
as

se
rt

ed
 a

s
sh

ow
n.

 IR
D

Y

is
 d

ea
ss

er
te

d
on

 th
e

cl
oc

k
th

at
 T

R
D

Y

is
 s

am
pl

ed
 a

ct
iv

e.

C
P

U
_C

LK

C
P

U
_A

D
D

R

T
S

#

A
A

C
K

#

TA
#

C
P

U
_D

A
TA

P
C

I_
C

LK

P
C

I_
R

E
Q

#

P
C

I_
G

N
T

#

P
C

I_
A

D
 [

66
4]

P
C

I_
A

D
 [

P
C

I]

C
/B

E
[3

:0
]#

 [
66

4]

D
E

V
S

E
L#

F
R

A
M

E
#

IR
D

Y
#

T
R

D
Y

 T

he
 P

C
I a

ge
nt

 m
ay

 a
ss

er
t T

R
D

Y

as
 s

oo
n

as
 it

 s
am

pl
es

 F
R

A
M

E

ac
tiv

e.

A
ss

um
es

 t
ha

t
P

C
I

bu
s

no
w

 s
ta

ys
 p

ar
ke

d
on

 6
60

/C
P

U
.

(2
)

P
C

I b
us

 n
ot

 p
ar

ke
d

on
 6

60
/C

P
U

. I
f t

he
 P

C
I b

us
 is

 p

ar
ke

d
on

 th
e

C
P

U
, t

he
n

F
R

A
M

E

w
ill

 b
e

as
se

rt
ed

 h
er

e.

At the completion of the eighth PCI read, the 660 drives the assembled double-word onto
the CPU data bus. The 660 then signals completion of the transfer to the CPU.

7

ROM

The IBM 660 Bridge116

Figure 7-8. Remote ROM Read – Final Transactions

n
P

C
I_

C
LK

s
(3

)
n

P
C

I_
C

LK
s

(3
)

S

A
dd

 g

C
m

d
B

yt
e

E
na

bl
es

D
at

a
g

S
T

O
P

no

t
as

se
rt

ed
 d

ur
in

g
th

e
tr

an
sa

ct
io

n.
(1

) A
ss

um
es

 P
C

I
bu

s
pa

rk
ed

 o
n

66
0/

C
P

U
.

(3
)

T
hi

s
de

la
y

is
 c

on
tr

ol
le

d
by

 t
he

 r
em

ot
e

R
O

M
 c

on
tr

ol
le

r.

 T
he

 P
C

I a
ge

nt
 m

ay
 a

ss
er

t T
R

D
Y

as

 s
oo

n
as

 it
 s

am
pl

es

A
dd

 h

D
at

a
h

h
h

h
g

g

g

h

h
gS

h

g
g

(1
)

(1
)

S

(2
)

IR
D

Y

is
 a

lw
ay

s
as

se
rt

ed
 a

s
sh

ow
n.

 IR
D

Y

is
 d

ea
ss

er
te

d
on

 th
e

cl
oc

k
th

at
 T

R
D

Y

is
 s

am
pl

ed
 a

ct
iv

e.

C
P

U
_C

LK

C
P

U
_A

D
D

R

T
S

#

A
A

C
K

#

TA
#

C
P

U
_D

A
TA

P
C

I_
C

LK

P
C

I_
R

E
Q

#

P
C

I_
G

N
T

#

P
C

I_
A

D
 [

66
4]

P
C

I_
A

D
 [

P
C

I]

C
/B

E
[3

:0
]#

 [
66

4]

D
E

V
S

E
L#

F
R

A
M

E
#

IR
D

Y
#

T
R

D
Y

#

F

R
A

M
E

ac

tiv
e.

Remote ROM reads are not pipelined. The 660 does not assert AACK# to the CPU until
the end of the remote ROM read sequence. The 660 asserts PCI_REQ# throughout the
entire remote ROM read sequence.

7

ROM

The IBM 660 Bridge 117

Table 7-4. Remote ROM Read Sequence, CPU Address = FFFX XXX0
PCI

Access
#

PCI Bus Read
Memory Address

PCI_AD[31:0]
Byte Enables

PCI_C/BE[3:0]#
ROM
Addr

ROM
Data

Big Endian
CPU_DATA

[0:63]

Little Endian
CPU_DATA

[0:63]

1 FFFX XXX0h 1110 0 a — —

2 FFFX XXX0h 1101 1 b — —

3 FFFX XXX0h 1011 2 c — —

4 FFFX XXX0h 0111 3 d — —

5 FFFX XXX4h 1110 4 e — —

6 FFFX XXX4h 1101 5 f — —

7 FFFX XXX4h 1011 6 g — —

8 FFFX XXX4h 0111 7 h abcd efgh hgfe dcba

7.2.1.2 Address, Transfer Size, and Alignment
The initial PCI address generated during the remote ROM read sequence is formed by
copying the high-order 29 bits of the CPU address, and forcing the three low order bits
PCI_AD[2:0] to 000b. This generates a base address that is aligned on an 8-byte boundary.
While reading the lower 4 bytes, the 660 indicates which byte it is requesting using the
PCI byte enables C/BE[3:0]#. After the first four bytes of ROM data are read, the 660
increments the address on the PCI_AD lines by 4 before executing the second four PCI
reads.

The CPU read address need not be aligned on an 8-byte boundary. A CPU read from
any address (in ROM space) of any length that does not cross an 8–byte boundary within
a double-word returns all eight bytes of that double-word data from the ROM. For example,
the operations shown in Table 7-4 could have been caused by a CPU memory read to
FFF0 0100h, FFF0 0101h, or FFF0 0105h.

Errors occurring during remote ROM reads are handled as usual for the error type. No
special rules are in effect.

7.2.1.3 Burst Reads
The 660 supports burst reads in remote ROM mode. The 660 supports a pseudo burst
mode, which supplies the same eight bytes of data (from the ROM) to the CPU on each
beat of a 4-beat CPU burst.

A burst ROM read begins with the 660 executing a single-beat ROM read operation, which
assembles eight bytes of ROM data into a double-word on the CPU data bus. For a burst
ROM read, the 660 asserts TA# for four CPU_CLK cycles, with AACK# asserted on the
fourth cycle. The same data remains asserted on the CPU data bus for all four of the
data cycles.

For a single-beat read, the 660 asserts TA# and AACK# for one CPU_CLK cycle, and
the CPU completes the transfer.

7.2.1.4 Endian Mode Considerations
In little-endian mode, the address munging done by the CPU has no effect because
PCI_AD[2:0] are forced to 000 during the address phase by the 660 at the beginning

7

ROM

The IBM 660 Bridge118

of the transaction. However, in little-endian mode the byte swapper is enabled, so the
bytes of ROM data returned to the CPU are swapped as shown in the last column of
Table 7-4.

7.2.1.5 4-Byte Reads
The 660 handles 4-byte ROM reads (and all ROM reads of less than 8 bytes) as if they
were 8-byte reads. All 8 bytes are gathered by the 660, and all 8 bytes are driven onto
the CPU data bus.

7.2.2 Remote ROM Writes
While the 660 is configured for remote ROM operation, the 660 forwards all CPU to ROM
write transfers to the PCI bus as memory writes. The PCI agent that is controlling the
remote ROM acts as the PCI target during CPU to ROM write transfers, executes the
write cycle to the ROM, and may provide ROM write-protection.

7.2.2.1 Write Sequence
A CPU bus master begins a remote ROM write transaction by initiating a one-byte, single-
beat memory write transfer to CPU bus address range 4G – 2M to 4G (FF80 0000h to
FFFF FFFFh).

The 660 decodes the CPU transfer, arbitrates for the PCI bus, and initiates a memory
write PCI transaction to the same address in the 4G – 2M to 4G address range.

The PCI agent that is controlling the remote ROM (such as the PCI to ISA Bridge), claims
the transaction, manages the write cycle to the ROM device, and signals TRDY#.

The 660 then completes the PCI transaction, and signals AACK# and TA# to the CPU.
Note that remote ROM writes are neither posted or pipelined.

7.2.2.2 Write Protection
Write protection can be provided by the PCI agent that controls the ROM. In addition,
some flash ROM devices can have the means to permanently lock out sectors by writing
control sequences. The 660 also has a write lockout in the Bridge Chipset Options 2
register (bit 0 of index BBh).

7.2.2.3 Address, Size, Alignment, and Endian Mode
In remote ROM mode, CPU memory writes from 4G – 2M to 4G cause the 660 to generate
PCI bus memory write transactions to 4G – 2M to 4G. The 660 does not allow CPU
masters to access the rest of the PCI memory space from 2G to 4G.

In remote ROM mode, PCI bus master memory write transactions from 4G – 2M to 4G
are ignored by the 660. However, the PCI agent that controls the ROM responds to these
transactions. In contrast, in direct-attach ROM mode, the 660 forwards PCI bus master
memory transactions from 2G to 4G (to populated memory locations) to system memory
from 0 to 2G.

Remote ROM writes must be one-byte, single-beat transfers.

The endian mode of the system has no net effect on a ROM write because the transfer
size is one byte. The address is munged by the CPU and unmunged by the 660. The
data comes out of the CPU on the byte lane associated with the munged address, and
then is swapped by the 660 to the byte lane associated with the unmunged address.

7

ROM

The IBM 660 Bridge 119

Thus a ROM write in little-endian mode puts the data byte in the same ROM location
as does the same ROM write in big-endian mode.

Figure 7-9. Remote ROM Write

n PCI_CLKS (1)

n PCI_CLKs (4)

Add

Cmd Byte Enables

Data

STOP# not asserted during the transaction.

(1) This delay is controlled by the system arbiter.

S

S

(4) This delay is paced by the remote ROM controller.
 The PCI agent may assert TRDY# as soon as it samples FRAME# active.

(2)

(2) PCI Bus not parked on CPU. If the PCI bus is parked on the CPU, FRAME# is asserted here.

(3)

(3) IRDY# is always asserted as FRAME# is deasserted.
 IRDY# is deasserted on the clock that TRDY# is sampled active.

CPU_CLK

CPU_ADDR

TS#

AACK#

TA#

CPU_DATA

PCI_CLK

PCI_REQ#

PCI_GNT#

PCI_AD [664]

PCI_AD [663]

C/BE[3:0]#

DEVSEL#

FRAME#

IRDY#

TRDY#

7

ROM

The IBM 660 Bridge120

7.3 Related Bridge Control Registers
The two BCRs most closely related to the ROM system are the ROM write BCR and
the ROM lockout register. Writes to the ROM are accomplished through the ROM write
BCR. Write-protection is provided by means of the ROM lockout BCR.

7.3.1 ROM Write Bridge Control Register

Direct Access FFFF FFF0h Write Only Reset NA

This 32-bit, write-only register is used to program the ROM in direct-attach ROM systems
(see section 7.1.2). This register must be written by means of a 4-byte transfer. Bits are
shown with little-endian labels.

D24D25D26D27D28D29D30D31

D16D17D18D19D20D21D22D23

D8D9D10D11D12D13D14D15

D0D1D2D3D4D5D6D7

MSb LSb

Table 7-5

Table 7-5

Table 7-5

Table 7-5

Table 7-5. ROM Write BCR Contents

BCR Byte Content in Little-Endian System Content in Big-Endian System

MSB ROM Data ROM Address low byte

ROM Address high byte ROM Address mid byte

ROM Address mid byte ROM Address high byte

LSB ROM Address low byte ROM Data

7

ROM

The IBM 660 Bridge 121

7.3.2 Direct-Attach ROM Lockout BCR

Direct Access FFFF FFF1h Write Only Reset NA

After it has been written once, this 8-bit, write-only register prevents direct-attach ROM
writes.

D0D1D2D3D4D5D6D7FFFF FFF1h

Any Value

Bits 7:0 Writing any value to the register prevents all future writes to a ROM that is
connected directly to the 660 through the PCI_AD lines.

7.3.3 Remote ROM Lockout Bit
The ROM write-protect bit for remote ROM is in the Bridge Chipset Options 2 register
(index BBh). While enabled, writes to the remote ROM are forwarded to the PCI memory
space. While disabled, writes to the remote ROM are treated as no-ops and an error
is signalled. After the first time that the bit is set to 0, it cannot be set back to 1.

Index BBh Read/Write Reset to 4Fh

D0D1D2D3D4D5D6D7BBh

Flash Write enable
0 = Disabled
1 = Enabled

Other Functions

Bit 0 Flash write enable: When the ROM is remotely attached, this bit controls write
access to the flash ROM address space (4G – 2M to 4G). When enabled, writes
to this space are forwarded to the PCI memory space at the same address.
When disabled, writes to this space are treated as no-ops and an error is sig-
nalled. After the bit is set to 0 (disabled), it cannot be reset to 1 (enabled).

7.3.4 Other Related BCRs

Bridge Control Register Index R/W Bytes See

Error Enable 1 Index C0 R/W 1 10.3.37

Error Enable 2 Index C4 R/W 1 10.3.40

7

ROM

The IBM 660 Bridge122

7.4 Programming the ROM Boot For 601 Burst Reads
To construct the bootstrap portion of the code that is required for use with the 601 CPU
pseudo burst mode ROM reads described in Section 7.2.1.3, the first part of the system
ROM can be coded as follows:

Instruction 1
Branch to instruction 2
No–op
No–op
No–op
No–op
No–op
No–op
Instruction 2
Branch to instruction 3
6 no–ops
Instruction 3
Branch to instruction 4
...

The six no-op instructions serve as filler for the unexecuted phases of the burst reads
of the system ROM. The no-op codes are not transferred during the burst read, only
the first two instructions (64 bits) are read and then passed four times to the 601 CPU
during a startup burst read of system ROM.

When enough instructions have been executed, the bootstrap code can turn off the 601
cache, and the remaining ROM data can be read with single-beat reads.

7

Exceptions

The IBM 660 Bridge 123

Section 8
Exceptions: Resets, Interrupts, Errors, & Test

The 660 bridge provides exception handling support for the system. This section discusses
resets, interrupts, error handling, and test modes.

8.1 Resets

The RESET# pin of the 664 must be asserted to initialize the 660 before proper operation
commences. The 663 does not have a reset pin. Since the operation of the 663 is controlled
by the 664, the entire 660 bridge will be properly initialized by the proper assertion of
RESET#.

8.1.1 Reset Timing

The 660 is reset to the correct initial state by the proper assertion of the RESET# input
of the 664. The following rules must be followed to ensure correct operation:

1. RESET# must be asserted for at least eight CPU consecutive CPU clocks. This
is the minimum RESET# pulse width.

2. Both the CPU and PCI clocks must be running properly during the entire reset
interval.

3. Bus activity on the PCI bus must not begin until at least 4 CPU clocks after the
deassertion of RESET#.

4. Bus activity on the CPU bus also must not begin until at least 4 CPU clocks after
the deassertion of RESET#.

5. Assertion and deassertion of RESET# can be asynchronous for normal opera-
tion, but if deterministic operation is required, see section 8.1.4.

All 660 outputs reach their reset state by the second CPU clock after RESET# is first
sampled active. The rest of the minimum RESET# pulse width is used by the 660 to
initialize internal processes, including setting internal registers and determining the CPU
to PCI clock ratio.

Except as noted in section 8.1.2, all 660 outputs maintain their reset state until an external
stimulus (CPU bus activity) forces them to change.

8

Exceptions

The IBM 660 Bridge124

8.1.2 Reset State of 660 Pins

The following symbols are used in Table 8-1 and Table 8-2:

— means the signal is an input. The signal does not have a required state during
reset.

Z means that the pin is tristate (hi–Z) during reset,
U means the state of the pin during reset is undefined,
1 means that the pin is driven to a logic 1 state (hi)
0 means that the pin is driven to a logic 0 state (low)

Table 8-1. 664 Pin Reset State

664 Signal State

AACK# Z

AOS_RR_MMRS 1

ARTRY# Z

C2P_WRL_OPEN 1

CAS[7:0]# 1

CPU_ADDR[0:31] Z

CPU_BUS_CLAIM# —

CPU_CLK —

CPU_DATA_OE# 1

CPU_GNT1# 1

CPU_GNT2# 1

CPU_PAR_ERR# —

CPU_RDL_OPEN 1

CPU_REQ1# —

CPU_REQ2# —

CRS_C2PWXS Z

DBG# 0

DPE# —

DUAL_CTRL_REF 1

ECC_LE_SEL 1

GBL# Z

IGN_PCI_AD31 —

INT_CPU# INT_REQ#

INT_REQ —

MA[11:0] 1

MCP# Z

MEM_BE[3:0] 1

664 Signal State

MEM_DATA_OE# 1

MEM_ERR# —

MEM_RD_SMPL 1

MEM_WRL_OPEN 0

MIO_TEST 0

MWS_P2MRXS Z

NMI_REQ —

PCI_AD[31:0] Z

PCI_AD_OE# 1

PCI_C/BE[3:0]# Z

PCI_CLK —

PCI_DEVSEL# Z

PCI_EXT_SEL 1

PCI_FRAME# Z

PCI_GNT# —

PCI_IRDY# Z

PCI_LOCK# —

PCI_OL_OPEN 1

PCI_OUT_SEL 1

PCI_PAR Z

PCI_PERR# Z

PCI_REQ# 1

PCI_SERR# Z

PCI_STOP# Z

PCI_TRDY# Z

RAS[7:0]# 1

RESET# 0

664 Signal State

ROM_LOAD 0

ROM_OE# 1

ROM_WE# 1

SBE# —

SHD# Z

SRAM_ADS#/
ADDR0

0

SRAM_ALE 1

SRAM_CNT_EN#/
ADDR1

1

SRAM_OE# 1

SRAM_WE# 1

STOP_CLK_EN# —

TA# 1

TAG_CLR# 0

TAG_MATCH Z

TAG_VALID 1

TAG_WE# 1

TBST# Z

TEA# 1

TEST# 1

TS# Z

TSIZE[0:2] Z

TT[0:4] Z

WE[1:0]# 1

XATS# —

Notes : During reset, INT_CPU# is driven to the inverse of INT_REQ.
For correct operation, TEST# must always be driven high and MIO_TEST must always
be driven low.

8

Exceptions

The IBM 660 Bridge 125

Table 8-2. 663 Pin Reset State

663 Signal State

AOS_RR_MMRS —

C2P_WRL_OPEN —

CPU_CLK —

CPU_DATA[00:63] Z

CPU_DATA_OE# —

CPU_DPAR[0:7] Z

CPU_PAR_ERR# U

CPU_RDL_OPEN —

CRS_C2PWXS —

DUAL_CTRL_REF —

ECC_LE_SEL —

663 Signals State

MEM_BE[0:1] —

MEM_BE[2:3] —

MEM_CHECK[0:7] Z

MEM_DATA[63:0] Z

MEM_DATA_OE# —

MEM_ERR# U

MEM_RD_SMPL —

MEM_WRL_OPEN —

MIO_TEST 0

MWS_P2MRXS —

663 Signals State

PCI_AD[31:0] Z

PCI_AD_OE# —

PCI_EXT_SEL —

PCI_IRDY# —

PCI_OL_OPEN —

PCI_OUT_SEL —

PCI_TRDY# —

ROM_LOAD —

SBE# U

TEST# 1

Note: For correct operation, TEST# must always be driven high and MIO_TEST must
always be driven low.

8.1.3 Configuration Strapping

There are two strapping options for 660 system configuration information which is required
before the processor can execute (and which, therefore, cannot be programmed into the
660). Configuration strapping is accomplished by attaching a pullup or pulldown resister
to the specified 664 output pin. During reset, the 664 tri-states these outputs, allowing
them to assume the level to which they are strapped. When RESET# is deasserted, the
664 reads in the value from these pins.

Table 8-3 shows the strapping options and their associated pins. Pullup resistors should
be 10K ohms to 20K ohms. Pull down resistors should be 500 ohms to 2K ohms.

In Table 8-3, 603(e) refers to either a 603 or a 603e.

Table 8-3. Configuration Strapping Options

Function Pull Up/Down Pin

Location of ROM Up = Remote ROM — Down = Direct-Attach ROM CRS_C2PWXS

603(e) in 1:1 or 3:2
CPU core:bus mode

Down = 603(e) not in 1:1 or 3:2 mode, or 601 or 604.
Up = 603(e) in 1:1 or 3:2 CPU core:bus mode.

MWS_P2MRXS

8

Exceptions

The IBM 660 Bridge126

8.1.4 Deterministic Operation (Lockstep Applications)

If fully deterministic operation of the chipset following RESET# is required, then the following
items must be considered:

� When RESET# is deasserted, some outputs transition to a different but stable state. This
results in requirement #3 in Section 8.1.1, that neither CPU or PCI bus activity is allowed
to begin during the first four CPU clocks after the deassertion of RESET#.

� When RESET# is deasserted, the refresh counter begins (and continues) to run,
counting the interval between refresh cycles to the memory. There are two ways to start
the refresh timer deterministically:

1. Meet the following timing requirements for RESET#, so that the clock cycle upon
which RESET# is deasserted is known:

� Setup > 4.2ns relative to a rising PCI clock edge.

� Hold > 0ns relative to a rising PCI clock edge.

2. Write to the Refresh Timer Divisor Register (index D1–D0) and the Suspend
Refresh Timer Register (index D3–D2) to reset the refresh counters. If this is
done before any DRAM accesses occur, then no bus activity will have been
affected by the unknown state of the counters before this point.

� When RESET# is deasserted, the DUAL_CTRL_REF signal begins toggling. The phase
of this toggling never effects any bus operations, and therefore need not be known for
deterministic operation of the 660. However, if it is still desirable to control the phase of
DUAL_CTRL_REF, then the following timing requirements must be met for the
deassertion of RESET#:

� Setup > 4.4ns relative to a rising CPU clock edge.

� Hold > 0ns relative to a rising CPU clock edge.

8

Exceptions

The IBM 660 Bridge 127

8.2 Interrupts

The 660 features two interrupt inputs, INT_REQ and NMI_REQ. For information on interrupt
acknowledge transactions, see section 3.4.6.

8.2.1 INT_REQ and INT_CPU#

As shown in Figure 8-1, the 660 inverts INT_REQ and passes it thru to the CPU as
INT_CPU#, and in 601 error reporting mode, also uses INT_CPU# to report certain error
conditions.

The only reason that the 660 connects to INT_CPU# is to be able to use it in reporting
errors to the 601 CPU. When the bridge is not in 601 error reporting mode, the path
though the 660 from INT_REQ to INT_CPU# is functionally an inverting latch. The CPU
does not need the interrupt synchronized to the CPU clock, and typical interrupt controllers
feature programmable output polarity, so if the target system is not using a 601, then
the interrupt can be wired around the 660, without being connected to the 660. In this
case, tie the INT_REQ input inactive.

However, if the system CPU is a 601, then the 660 uses INT_CPU# to report CPU bus
related errors that cannot be reported with TEA# on the CPU transfer during which they
occur (see section 8.4.3). In this case, the 660 asserts INT_CPU# as an interrupt and
as a means of reporting errors.

Figure 8-1. Conceptual Block Diagram of INT Logic

Error
Logic

1=601
0=Other

D
Q

CPU_CLK

INT_REQ INT_CPU#

Error
Reporting
Type

CPU Bus
Error

Non–TEA#

+

8.2.2 NMI_REQ

The 660 considers the NMI_REQ input to be an error indicator. Note that in Figure 8-1,
there is no logical connection between NMI_REQ and INT_CPU, except through the error
handling logic. See section 8.5.15 for more information on NMI_REQ.

8.2.3 Interrupt-Related Bridge Control Registers
Bridge Control Register Index R/W Bytes See

Interrupt Acknowledge BFFF FFF0 R 1 3.4.6

8

Exceptions

The IBM 660 Bridge128

8.3 Error Handling Protocol

The 660 supports the detection and reporting of several types of errors. The errors are
reported to the CPU or the PCI and status information is saved in the 660 register set
so that error type determination can be done by the CPU.

All errors (except NMI) are related to either a transfer on the CPU bus or a transaction
on the PCI bus. Memory errors are related to the CPU bus when they occur as a result
of a CPU to memory transfer. Memory errors are related to the PCI bus when they occur
as a result of a PCI to memory transfer. Errors detected on the PCI bus when the 660
is the PCI busmaster are related to a CPU bus cycle. Therefore, the only errors related
to a PCI bus cycle are errors that are detected while the 660 is a PCI target (PCI to
system memory transactions).

Errors related to a CPU bus transfer are reported to the CPU by means of the MCP#
or the TEA# signal (and INT_CPU# for 601). Errors related to a PCI bus transaction are
reported to the PCI by means of the PCI_PERR# or the PCI_SERR# signals.

Each error that can be detected has an associated mask. If the error is masked, then
the detection of that error condition is disabled. There are also assertion masks for the
MCP#, TEA#, and PCI_SERR# signals that prevent reporting of any error by means of
that signal (these masks do not affect the detection of the error).

Once an error is detected and the appropriate status, address, and control information
is saved, the detection of all subsequent error detection is disabled until the current error
is reset.

8.3.1 NMI Errors

The assertion of NMI is controlled by external logic, and is treated as an error by the
660. This error is not related to either a CPU transfer or a PCI transaction.

8.3.1.1 Error Handling Protocol

Report error to the CPU by means of MCP#.

Logic external to the 660 typically provides mask and status bits for NMI.

Also see section 8.5.15.

8

Exceptions

The IBM 660 Bridge 129

8.3.2 CPU Bus Related Errors

8.3.2.1 Error Types

� Errors Reported With TEA# (cycle still active)

� CPU bus unsupported transfer type

� CPU bus unsupported transfer size

� CPU bus XATS# asserted

� Errors Reported With MCP# (cycle has ended)

� CPU data bus parity error

� CPU bus write to locked flash

� CPU bus memory select error

� Memory parity error during CPU to memory transfer

� Memory single-bit ECC error trigger exceeded during CPU to memory transfer

� Memory multi-bit ECC error during CPU to memory transfer

� L2 cache parity error

� PCI bus data parity error (660 is PCI busmaster) during CPU to PCI transaction

� PCI target abort received (660 is PCI busmaster) during CPU to PCI transaction

� PCI master abort generated (660 is PCI busmaster) during CPU to PCI transaction.

8.3.2.2 Error Handling Protocol

If the error is masked, do not detect the error.

If the error is detected, perform the following steps:

1. Set status bit indicating error type.

2. Set status bit indicating error during CPU cycle.

3. Save CPU address and control bus values.

4. Report error to the CPU. (Reported by means of TEA# if the CPU cycle is still
active or by means of MCP# if the CPU cycle has ended.)

PCI bus data parity errors also cause PCI_PERR# to be asserted.

There is a status bit (PCI Status Register bit 15) that is set whenever any type of PCI
bus parity error is detected. The setting of this status bit is not maskable.

8

Exceptions

The IBM 660 Bridge130

8.3.3 PCI Bus Related Errors

8.3.3.1 Error Types

During a PCI to memory transaction (in which the 660 is the PCI target):

� PCI bus address parity error
� PCI bus data parity error
� PCI memory select error
� Memory parity error
� Memory single–bit ECC error trigger exceeded
� Memory multi-bit ECC error

8.3.3.2 Error Handling Protocol

If the error is masked, the 660 does not detect the error. If the error is detected, perform
the following steps.

1. Set status bit indicating error type.

2. Set status bit indicating error during PCI cycle.

3. Save PCI address and control bus values.

4. Report error to the PCI. If the error is a PCI bus data parity error then report by
means of PCI_PERR#. If the error is not a data parity error then report by means
of PCI_SERR#.

5. If the PCI cycle is still active (not the last data phase), then target abort the cycle.

The 660 can be enabled to report PCI bus data parity errors with PCI_SERR#. This method
should only used if it is determined that PCI_PERR# is not supported by some (or all)
of the PCI masters in the system.

8.3.3.3 PCI Bus Data Parity Errors

While the 660 is the PCI busmaster (during CPU to PCI transactions):

� During reads, the 660 monitors the PCI_AD (and C/BE# and PCI_PAR) lines to detect
data parity errors during the data phases. If an error is detected, the 660 asserts
PCI_PERR#. Unless masked, the 660 will report the error to the CPU bus using MCP#.
This error does not cause the 660 to alter the PCI transaction in any way.

� During writes, the 660 monitors PCI_PERR# to detect data parity errors that are detected
by the target. Unless masked, the 660 will report the error to the CPU bus using MCP#.
This error does not cause the 660 to alter the PCI transaction in any way.

While the 660 is the PCI target (during PCI to memory transactions):

� During reads, the 660 does not monitor PCI_PERR#, and so will not detect a data parity
error.

� During writes, the 660 monitors the PCI_AD (and C/BE# and PCI_PAR) lines to detect
data parity errors during the data phases. If an error is detected, the 660 asserts
PCI_PERR#. The 660 will not report the error to the CPU bus. This error does not cause
the 660 to alter the PCI transaction in any way.

8

Exceptions

The IBM 660 Bridge 131

8.4 Error Reporting Protocol

In general, when the 660 recognizes an error condition, it sets various status BCRs, saves
address and control information (for bus related errors), disables further error recognition
(until the current error is cleared), and reports the error to either the CPU or PCI bus.

Unless otherwise noted, the 660 takes no further error handling action, but relies on the
CPU/software or PCI agent to take the next step in the error handling procedure. The
660 continues to react appropriately to CPU and PCI bus traffic, the state of the memory
controller is unchanged, current and pipelined CPU and PCI transactions are unaffected,
and the behavior and state of the 660 is unaffected.

For example, if a memory parity error is reported to the CPU using MCP#, and the CPU
does not respond to the MCP#, then the 660 will in all ways continue to behave as if
the MCP# had not been asserted. However, various BCRs will contain the error status
and address information, and further error recognition will be disabled until the CPU resets
the error in the 660 BCRs.

8.4.1 Error Reporting With MCP#

The following errors are reported to the CPU using MCP#:

� NMI errors,

� Errors that occur because of a CPU transfer but which are detected too late to be re-
ported using TEA#, and

� Errors that are not a direct result of the current CPU transfer.

The 660 reports an error with MCP# by asserting MCP# to the CPU bus for 2 CPU clocks.
The 660 does not itself take any other action. All current and pipelined CPU and PCI
bus transactions are unaffected. The state of the memory controller is unaffected. The
assertion of MCP# does not cause any change in the behavior or state of the 660.

8.4.2 Error Reporting With TEA#

CPU bus related errors that are detected while the CPU is running a cycle that can be
terminated immediately are reported using TEA#. Errors reported in this way are a direct
result of the CPU transfer that is currently in progress. For example, when the 660 detects
a transfer size error, it terminates the CPU transfer with TEA# instead of with TA#.

The 660 reports an error with TEA# by asserting TEA# to the CPU in accordance with
the PowerPC bus protocol. The data beat on which TEA# is asserted becomes the final
data beat. The 660 does not itself take any other action. All other current and pipelined
CPU and PCI bus transactions are unaffected. The state of the memory controller is unaf-
fected. The assertion of TEA# does not cause any other change in the behavior or state
of the 660.

8

Exceptions

The IBM 660 Bridge132

8.4.3 Error Reporting to 601 CPU

The 601 CPU does not have an MCP# pin. In cases where MCP# would be asserted,
the 660 does the following:

1. Asserts INT_CPU#.

2. On the next PCI interrupt acknowledge from the CPU, no interrupt acknowledge
is generated to the PCI. Instead, the CPU cycle is ended by asserting TEA# (and
returning a value of FFh).

The 660 must be set up to operate in this manner when the CPU is a 601. 601 error
reporting mode is enabled by bit 4 in the Bridge Chipset Options 3 BCR (index D4h).

8.4.4 Error Reporting With PCI_SERR#

The 660 asserts PCI_SERR# for one PCI clock when a non-data-parity error (system
error) is detected and the 660 is a PCI target. As is the case with the other error reporting
signals, the 660 may perform various operations in response to a detected error condition,
but it does not automatically perform further actions just because it asserts PCI_SERR#

The 660 does not monitor PCI_SERR# as driven by other PCI agents. PCI_SERR# is
not an input to the 660.

8.4.5 Error Reporting With PCI_PERR#

The 660 asserts PCI_PERR# for one PCI clock to report PCI bus data parity errors that
occur while the 660 is receiving data; during PCI to memory writes and CPU to PCI reads.
The 660 asserts PCI_PERR# in conformance to the PCI specification.

8

Exceptions

The IBM 660 Bridge 133

8.5 Error Handling Details by Error Type

8.5.1 CPU Bus Transfer Type or Size Error

This error is generated when the CPU generates a bus operation that is not supported
by the 660 (see Table 8-4). An error is not generated if the cycle is claimed by another
CPU device (CPU_BUS_CLAIM# asserted).

Table 8-4. Invalid CPU Bus Operations
TT[0:4] Operation

1000x Reserved

1011x Reserved

Only the following transfer sizes are supported. Other transfer sizes are not supported.

� 1-byte to 8-byte single-beat reads or writes to memory within a double-word boundary

� Burst reads or writes to memory (32 bytes, aligned to double-word)

� 1-byte to 4-byte single-beat reads or writes to the PCI bus that do not cross a 4-byte
boundary

� 8-byte single-beat writes to the PCI bus within an 8-byte boundary

� All accesses not to memory or PCI with sizes of 1 to 4 bytes within a 4-byte boundary

� ROM reads support the same sizes as memory.

Transfer type and size errors can be controlled by the indexed register set. The mask
is at register C0h bit 0. If an error is detected, status bits at register C1h bits 1:0 are
set to 10. Register C7h bit 4 is cleared to indicate an error on a CPU cycle. The CPU
address is saved in register C8h. The CPU control is saved in register C3h and the CPU
number is saved in register C7h bit 5. Transfer type and size errors are reset by writing
a 1 to register C1h bit 0 or register C1h bit 1. The indexed register set uses the same
mask and error reset bits for XATS# that it uses for unsupported transfer types.

Transfer type and size errors can also be controlled by the 650-compatible register set.
The mask cannot be controlled by means of this register set. If an error is detected, the
status bit at 8000 0844h bit 0 is cleared. The address is saved at BFFF EFF0h. This
error can be reset by reading BFFF EFF0h. Note that the 650-compatible register set
does not differentiate between XATS# errors and unsupported transfer type errors.

8

Exceptions

The IBM 660 Bridge134

8.5.2 CPU Bus XATS# Asserted Error

This error is generated when the CPU asserts the XATS# signal.

The XATS# error can be controlled by the indexed register set. The mask is at register
C0h bit 0. If an error is detected, the status bits at register C1h bits 1:0 are set to 01.
Register C7h bit 4 is cleared to indicate an error on a CPU cycle. The CPU address
is saved in register C8h. The CPU control is saved in register C3h and the CPU number
is saved in register C7h bit 5. This error can be reset by writing a 1 to register C1h bit
0 or register C1h bit 1. The indexed register set uses the same mask and error reset
bits for XATS# and for unsupported transfer types.

This error can also be controlled by the 650-compatible register set. The mask cannot
be controlled by means of this register set. If an error is detected, the status bit at 8000 0844h
bit 0 is cleared. The address is saved at BFFF EFF0h. This error can be reset by reading
BFFF EFF0h. The 650-compatible register set does not differentiate between XATS# errors
and unsupported transfer type errors.

8.5.3 CPU Data Bus Parity Error

This error is generated when a parity error on the CPU data bus is detected during a
transfer between the CPU and the 660. The full CPU data bus is always checked for
parity regardless of which bytes lanes actually carry valid data. The parity is odd, which
means that an odd number of bits, including the parity bit, are driven high. The 660 directly
checks the parity during CPU write cycles. The 660 detects CPU bus parity errors by
sampling the DPE# signal from the CPU during CPU read cycles.

This error is also generated when an L2 cache data parity error (see section 8.5.9) is
detected.

CPU_DPAR[0] indicates the parity for CPU_DATA[0:7]. CPU_DPAR[1] indicates the parity
for CPU_DATA[8:15] and so on.

This error can be controlled by the indexed register set. The mask is at register C4h
bit 2. If an error is detected, the status bit at register C5h bit 2 is set. Register C7h bit
4 is cleared to indicate an error on a CPU cycle. The CPU address is saved in register
C8h, the CPU control is saved in register C3h, and the CPU number is saved in register
C7h bit 5. This error can be reset by writing a 1 to register C5h bit 2.

This error cannot be controlled by means of the 650-compatible register set.

8.5.4 CPU Bus Write to Locked Flash

This error is generated when the CPU attempts to write to flash memory when write to
flash ROM has been disabled (locked out). If the flash ROM is directly attached to the
660 (see configuration strapping), CPU writes to FFFF FFF0h are detected as an error
if writing has been locked out by means of 660 compatible register FFFF FFF1h (see
note in Sections 7.1.2 and 7.1.2.2). If the flash is remotely attached then CPU writes

8

Exceptions

The IBM 660 Bridge 135

to the 4G – 2M to 4G address space are detected as an error if writing has been locked
out by means of register BBh bit 0.

This error can be controlled by the indexed register set. The mask is at register C4h
bit 0. If an error is detected, the status bit at register C5h bit 0 is set. Register C7h bit
4 is cleared to indicate error on a CPU cycle. The CPU address is saved in register C8h.
The CPU control is saved in register C3h and the CPU number is saved in register C7h
bit 5. This error can be reset by writing a 1 to register C5h bit 0.

This error cannot be controlled by means of the 650-compatible register set.

8.5.5 Memory Select Error

This error is generated if a device addresses the system memory space (CPU addresses
from 0 to 2G and PCI addresses from 2G to 4G) when memory is not present at that
address. The 660 only claims PCI accesses by asserting PCI_DEVSEL# when the access
is to an address where memory is present.

The 660 disconnects PCI burst cycles at 1M boundaries. This ensures that a PCI master
cannot begin a transfer at an address where memory is present and then burst (incrementing
the address) to an address where memory is not present; therefore, the memory select
error is never generated on PCI accesses to system memory.

The memory select error can be controlled by the indexed register set. The mask is at
register C0h bit 5. If an error is detected, the status bit at register C1h bit 5 is set. Register
C7h bit 4 is cleared to indicate an error on a CPU cycle. The CPU address is saved
in register C8h. The CPU control is saved in register C3h and the CPU number is saved
in register C7h bit 5. This error can be reset by writing a 1 to register C1h bit 5.

This error cannot be controlled by means of the 650-compatible register set.

8.5.6 System Memory Parity Error

When memory is being operated in parity mode, this error is generated if a parity error
is detected during a read from system memory. Memory parity is odd, which means that
an odd number of bits including the parity bit are driven high.

MEM_CHECK[0] indicates the parity for MEM_DATA[7:0]. MEM_CHECK[1] indicates the
parity for MEM_DATA[15:8] and so on.

The system memory parity error can be controlled by the indexed register set. The mask
is at register C0h bit 2. If an error is detected, the status bit at register C1h bit 2 is set.

If the parity error occurred while the CPU was accessing memory, then register C7h bit
4 is cleared to indicate the error occurred during a CPU cycle. The CPU address is saved
in register C8h. The CPU control is saved in register C3h and the CPU number is saved
in register C7h bit 5.

If the parity error occurred while the PCI was accessing memory, then register C7h bit
4 is set to indicate the error occurred during a PCI cycle. The PCI address is saved in
register C8h. The PCI control is saved in register C7h.

8

Exceptions

The IBM 660 Bridge136

This error can be reset by writing a 1 to register C1h bit 2. Note that register locations
listed above are used to indicate single-bit ECC errors if the memory is being operated
in ECC mode.

This error can also be controlled by means of the register in the 650-compatible register
set. The mask cannot be controlled by means of this register set. If an error is detected,
the status bit at 8000 0840h bit 0 is cleared. The address is saved at BFFF EFF0h. This
error can be reset by reading BFFF EFF0h.

8.5.7 System Memory Single-Bit ECC Error

When memory is being operated in ECC mode, single-bit errors are detected and corrected.
Since single-bit errors are corrected, generally no error reporting is necessary. But when
a single-bit error is detected, the single–bit error counter register (register B8h) is increm-
ented and the system memory address is saved in the single-bit ECC error address register
(register CCh). If the count in the single-bit error counter register exceeds the value in
the single-bit error trigger level register (B9h), the 660 generates a single–bit ECC trigger
exceeded error.

The trigger exceeded error can be controlled by the indexed register set. The mask is
at register C0h bit 2. If an error is detected, the status bit at register C1h bit 2 is set.

If the error occurs while the CPU is accessing memory, register C7h bit 4 is cleared
to indicate the error occurred during a CPU cycle. The CPU address is saved in register
C8h. The CPU control is saved in register C3h and the CPU number is save in register
C7h bit 5.

If the error occurs while the PCI is accessing memory, register C7h bit 4 is set to indicate
the error occurred during a PCI cycle. The PCI address is saved in register C8h. The
PCI control is saved in register C7h.

This error can be reset by writing a 1 to register C1h bit 2. Note that register locations
listed above are used to indicate memory parity errors if the memory is being operated
in parity mode.

This error cannot be controlled by means of the 650-compatible register set.

8.5.8 System Memory Multi-Bit ECC Error

When memory is being operated in ECC mode, this error is generated if a multi-bit ECC
error (uncorrectable) is detected during a read from system memory.

The multi-bit ECC error can be controlled by the indexed register set. The mask is at
register C0h bit 3. If an error is detected, the status bit at register C1h bit 3 is set.

If the error occurs while the CPU is accessing memory, then register C7h bit 4 is cleared
to indicate the error occurred during a CPU cycle. The CPU bus address is saved in
register C8h. The CPU control is saved in register C3h, and the CPU number is saved
in bit 7 of register C7h.

8

Exceptions

The IBM 660 Bridge 137

If the error occurs while the PCI is accessing memory, then register C7h bit 4 is set to
indicate the error occurred during a PCI cycle. The PCI address is saved in register C8h.
The PCI control is saved in register C7h.

This error can be reset by writing a 1 to register C1h bit 3.

This error cannot be controlled by means of the 650-compatible register set.

8.5.9 L2 Cache Parity Error

This error is generated when a parity error is detected during a CPU read from the L2
cache. The parity is checked by the CPU which drives DPE# to the 660. When this error
is detected, the 660 indicates both this error and a CPU bus data parity error.

This error can be controlled by the indexed register set. The mask is at register C4h
bit 3. If an error is detected, the status bit at register C5h bit 3 is set. Register C7h bit
4 is cleared to indicate error on a CPU cycle. The CPU address is saved in register C8h.
The CPU control is saved in register C3h and the CPU number is saved in register C7h
bit 5. This error can be reset by writing a 1 to register C5h bit 3.

This error can also be controlled by means of a register in the 650-compatible register
set. The mask cannot be controlled by means of this register set. If an error is detected,
the status bits at 8000 0842h bit 0 and 8000 0843h bit 0 is cleared. The address is not
saved in a 650-compatible register (register BFFF EFF0h is undefined). This error can
be reset by reading 8000 0843h.

8.5.10 PCI Bus Data Parity Error While PCI Master

This error is generated when a PCI bus data parity error is detected during a CPU to
PCI transaction. The 660 checks parity during read cycles and samples PCI_PERR# during
write cycles. The bridge asserts PCI_PERR# if a parity error is detected on a read cycle.
The PCI bus uses even parity, which means that an even number of bits including the
parity bit are driven high.

This error can be controlled by the indexed register set. The mask is at register 04h bit
6. If an error is detected, the status bit at register 06h bit 8 is set. Register C7h bit 4
is cleared to indicate an error on a CPU cycle. The CPU address is saved in register
C8h. The CPU control is saved in register C3h and the CPU number is saved in register
C7h bit 5. This error can be reset by writing a 1 to register 06h bit 8.

When this error is detected, the status bit at register 06h bit 15h is set, regardless of
the state of the mask at register 04h bit 6. The status bit at register 06h bit 15 is set
by all types of PCI bus parity errors. This bit is cleared by writing a 1 to register 06h
bit 15.

This error cannot be controlled by means of the 650-compatible register set.

Unless masked, the 660 will report this error to the CPU as a PCI bus data parity error
while PCI master, using MCP#.

8

Exceptions

The IBM 660 Bridge138

8.5.11 PCI Target Abort Received While PCI Master

This error is generated when a target abort is received on the PCI bus during a cycle
which is mastered by the 660 for CPU access to the PCI bus.

This error can be controlled by the indexed register set. The mask is at register C0h
bit 7. If an error is detected, the status bit at register 06h bit 12 is set. Register C7h
bit 4 is cleared to indicate an error on a CPU cycle. The CPU address is saved in register
C8h. The CPU control is saved in register C3h and the CPU number is save in register
C7h bit 5. This error can be reset by writing a 1 to register 06h bit 12.

This error cannot be controlled by means of the 650-compatible register set.

8.5.12 PCI Master Abort Detected While PCI Master

This error is generated when a master abort is detected on the PCI bus during a cycle
which is mastered by the 660 for CPU access to the PCI bus. Master aborts occur when
no target claims a PCI memory or I/O cycle—PCI_DEVSEL# is never asserted.

Note that some operating systems intentionally access unused addresses to determine
what devices are located on the PCI bus. These operating systems do not expect an
error to be generated by these accesses. When using such an operating system it is
necessary to leave this error masked.

This error can be controlled by the indexed register set. The mask is at register C4h
bit 4. If an error is detected, the status bit at register 06h bit 13 is set. Register C7h
bit 4 is cleared to indicate an error on a CPU cycle. The CPU address is saved in register
C8h. The CPU control is saved in register C3h and the CPU number is saved in register
C7h bit 5. This error can be reset by writing a 1 to register 06h bit 13.

This error cannot be controlled by means of the 650-compatible register set.

8.5.13 PCI Address Bus Parity Error While PCI Target

This error is generated when a parity error is detected during the address phase of a
PCI access where the 660 is the PCI target of a PCI access to system memory.

This error can be controlled by the indexed register set. The mask is at register 04h bit
6. This error does not have an explicit status bit to indicate its occurrence. However, the
following status bits are set:

1. Register 06h bit 14 is set to indicate that PCI_SERR# has been asserted. This bit
is cleared by writing a 1 to register 06h bit 14. (BCR04 b8 must be 1 to enable
SERR# assertion due to PCI bus address parity errors.)

2. Register 06h bit 11 is set to indicate signalled target abort if the cycle was target
aborted. This bit is cleared by writing a 1 to register 06h bit 11.

3. Register 06h bit 15 is set to indicate a PCI bus parity error regardless of the state
of the mask at register 04h bit 6. Note that this bit is set by all types of PCI bus
parity errors. This bit is cleared by writing a 1 to register 06h bit 15.

8

Exceptions

The IBM 660 Bridge 139

Register C7h bit 4 is set to indicate an error on a PCI cycle. The PCI address is saved
in register C8h. The PCI control is saved in register C7h.

This error cannot be controlled by means of the 650-compatible register set.

8.5.14 PCI Bus Data Parity Error While PCI Target

This error is generated when a PCI bus data parity error is detected during a PCI to
memory write transaction. The PCI bus uses even parity, which means that an even number
of bits including the parity bit are driven high.

This error can be controlled by means of the registers in the indexed register set. The
mask is at register 04h bit 6. This error does not have an explicit status bit to indicate
its occurrence. However, the following status bits are set:

1. Register 06h bit 11 is set to indicate signalled target abort if the cycle was target
aborted. This bit is cleared by writing a 1 to register 06h bit 11.

2. Register 06h bit 15 is set to indicate a PCI bus parity error regardless of the state
of the mask at register 04h bit 6. Note that this bit is set by all types of PCI bus
parity errors. This bit is cleared by writing a 1 to register 06h bit 15.

3. Register 06h bit 14, which indicates PCI_SERR#, is set if the mask at register
C0h bit 6 is disabled (cleared). Note that the mask at register C0h bit 6 allows the
660 to signal PCI_SERR# in addition to PCI_PERR# for this error. This bit is
cleared by writing a 1 to register 06h bit 14.

Register C7h bit 4 is set to indicate an error on a PCI cycle. The PCI address is saved
in register C8h. The PCI control is saved in register C7h.

This error cannot be controlled by means of the 650-compatible register set.

During PCI to memory reads, the 660 does not monitor PCI_PERR# to detect data parity
errors. Therefore this error is never generated during PCI to memory reads.

This error is not reported to the CPU.

8

Exceptions

The IBM 660 Bridge140

8.5.15 NMI_REQ Asserted Error

This error is generated when the NMI input is sampled asserted by the 660. External
logic can assert this signal for any type of catastrophic error it detects. The external logic
should also assert this signal if it detects PCI_SERR# asserted. The 660 does not treat
NMI_REQ as an interrupt, but as an error indicator.

NMI is handled somewhat differently from the bus related error sources.

� There are no 660 BCRs associated with NMI_REQ. The external logic that asserted NMI
to the 660 provides mask and status information.

� The NMI_REQ input contains no edge detection logic. The 660 has no memory of any
previous state of NMI_REQ.

� In general, the assertion of NMI_REQ has no effect on any other processes in the 660.

� MCP# is generally asserted continuously while NMI_REQ is sampled valid, however:

� If an error was detected before the NMI_REQ was detected, then the error handling
logic will not sample the NMI_REQ input (and thus will not detect it) until the previous
error is cleared using the appropriate BCRs.

� If the NMI_REQ is deasserted before the previous error is cleared, the
NMI_REQ will be lost.

� If NMI_REQ is still asserted when the previous error is cleared, then the
NMI_REQ will be sampled asserted, and MCP# will begin to be asserted.

� The 660 will not assert MCP# while NMI_REQ is active unless MCP# assertion is en-
abled in BCR(BA) bit 0. As before, if NMI_REQ is active when MCP# assertion is en-
abled, then MCP# will be asserted.

� Unlike with the bus related error sources, when the 660 samples NMI_REQ valid, it
does not disable further error detection. Thus PCI and CPU bus related errors will still
be detected and handled in the normal fashion. However, if the detected bus related
error causes MCP# to be asserted (for 2 CPU clocks) then at the end of the second
CPU clock, MCP# will be and remain deasserted until the current error is cleared using
the appropriate BCRs, even if NMI_REQ is still asserted.

8

Exceptions

The IBM 660 Bridge 141

8.5.16 Error-Related Bridge Control Registers
Bridge Control Register Index R/W Bytes See

System Control 81C 8000 081C R/W 1 10.2.2.3

Memory Parity Error Status 8000 0840 R 1 10.2.2.5

L2 Error Status 8000 0842 R 1 10.2.2.6

L2 Parity Error Read and Clear 8000 0843 R 1 10.2.2.7

Unsupported Transfer Type Error 8000 0844 R 1 10.2.2.8

System Error Address BFFF EFF0 R 4 10.2.2.13

PCI Command Index 04 – 05 R/W 2 10.3.5

PCI Device Status Index 06 – 07 R/W 2 10.3.6

Single-Bit Error Counter Index B8 R/W 1 10.3.33

Single-Bit Error Trigger Level Index B9 R/W 1 10.3.34

Bridge Options 1 Index BA R/W 1 10.3.35

Error Enable 1 Index C0 R/W 1 10.3.37

Error Status 1 Index C1 R/W 1 10.3.38

CPU Bus Error Status Index C3 R 1 10.3.39

Error Enable 2 Index C4 R/W 1 10.3.40

Error Status 2 Index C5 R/W 1 10.3.41

PCI Bus Error Status Index C7 R/W 1 10.3.42

CPU/PCI Error Address Index C8 – CB R/W 4 10.3.43

Single-Bit ECC Error Address Indx CC – CF R/W 4 10.3.44

Bridge Chip Set Options 3 Index D4 R/W 1 10.3.46

8

Exceptions

The IBM 660 Bridge142

8.6 Test Modes

The TEST# and MIO_TEST pins of the 663 and 664 are intended for use by the IBM
manufacturing process only. The inclusion of the following information in this section is
the total extent to which IBM supports the use of these pins by external customers.

8.6.1 LSSD Test Mode

Tie the TEST# input of both the 663 and the 664 high during normal operation. Do not
allow these signals to be casually asserted. Caution is advised in the use of LSSD test
mode.

LSSD test mode is enabled on the 663 (asynchronously) by asserting TEST# to the 663.
In the same way, LSSD test mode is enabled on the 664 (asynchronously) by asserting
TEST# to the 664. In LSSD test mode, the 663 and 664 pins shown in Table 8-5 are
redefined to become LSSD test mode pins. These pins have LSSD functions only while
the 663 (or 664) is in LSSD test mode. Otherwise the pins perform normally. IBM uses
LSSD test mode to verify the logical operation of the 663 and the 664.

Table 8-5. LSSD Test Mode Pin Definitions

Test Pin Name 664 Pin 664 Pin Normal Name 663 Pin 663 Pin Normal Name

TEST_ACLK# 194 MEM_ERR# 149 ECC_LE_SEL

TEST_BCLK# 129 XATS# 170 DUAL_CTRL_REF

TEST_CCLK# 133 DPE# 163 MEM_BE[2]

SCAN_IN 192 CPU_PAR_ERR# 145 MEM_DATA_OE#

SCAN_OUT 47 ROM_OE# 174 CPU_PAR_ERR#

RI# 56 NMI_REQ 161 MEM_BE[0]

DI# 151 STOP_CLK_EN# 162 MEM_BE[1]

In LSSD test mode, never assert more than one of TEST_ACLK#, TEST_BCLK#,
TEST_CCLK#, and RESET# at the same time, as this may damage the device by provoking
excessive internal current flows.

In LSSD test mode, the DI# pin controls the drivers of the 663 (and the 664). Assertion
of the DI# pin asynchronously causes all of the 663 (or 664) output drivers (push–pull,
tri–state, open–driver, or bi–directional) to be tristated.

In LSSD test mode, the RI# pin controls the receivers of the 663 (and the 664). Assertion
of RI# causes all of the 663 (or 664) inputs to report a certain pattern to the internal
logic. This has no effect on the external operation of the device that can be used by
an external customer.

The 660 must be reset properly after leaving LSSD test mode in order to assure correct
normal mode operation.

8

Exceptions

The IBM 660 Bridge 143

8.6.2 MIO Test Mode

Tie the MIO_TEST input of both the 663 and the 664 low during normal operation. Do
not allow these signals to be casually asserted. IBM does not support any use of MIO
test mode by external customers.

MIO test mode is enabled on the 663 (asynchronously) by asserting MIO_TEST to the
663. In the same way, MIO test mode is enabled on the 664 (asynchronously) by asserting
MIO_TEST to the 664. IBM uses LSSD test mode to verify the voltage switching levels
of the inputs of the 663 and the 664.

8

Exceptions

The IBM 660 Bridge144

8

Endians

The IBM 660 Bridge 145

Section 9
Endian Mode
Data represented in memory or media storage is said to be in big endian (BE) order when
the most significant byte is stored at the lowest numbered address, and less significant
bytes are at successively higher numbered addresses.
Data is stored in little endian (LE) order when it is stored with the order of bytes reversed
from that of BE order. In other words, the most significant byte is stored at the highest
numbered address. The endian ordering of data never extends past an 8-byte group of
storage.
PowerPC systems normally operate with big endian (BE) byte significance, which is the
native mode of the PowerPC CPU. Internally, the CPU always operates with big endian
addresses, data, and instructions, which is ideal for operating systems such as AIX�,
which store data in memory and on media in big endian byte significance. In BE mode,
neither the CPU nor the 660 perform address or data byte lane manipulations that are
due to the endian mode. Addresses and data pass ”straight through” the CPU bus interface
and the 660.
The CPU also features a mode of operation designed to efficiently process code and operat-
ing systems such as WindowsNT�, which store data in memory and on media in LE byte
significance. The 660 also supports this mode of operation.
When the 660 is in little endian mode, data is stored in memory with LE ordering. The
660 has hardware to select the proper bytes in the memory and on the PCI bus (via address
transforms), and to steer the data to the correct CPU data lane (via a data byte lane swapper).
Table 9-1 summarizes the operation of the PowerPC system in the two different modes.

Table 9-1. Endian Mode Operations
Mode What the CPU Does What the 660 Does

Big Endian (BE) No munge, no shift No unmunge, no swap

Little Endian (LE) Address Munged & Data Shifted Address Unmunged & Data Swapped

In BE mode, the CPU emits the address unchanged, and does not shift the data. The
660 passes the address and data through to the target without any changes (that are
due to endian mode).

9

Endians

The IBM 660 Bridge146

In LE mode, the CPU transforms (munges) the three least significant address bits, and
shifts the data on the byte lanes to match the munged address. In LE mode, the 660
unmunges the address and swaps the data on the byte lanes.

9.1 What the CPU Does

9.1.1 The CPU Address Munge
The CPU assumes that the significance of memory is BE. When it operates in LE mode,
it internally generates the same effective address as the LE code would generate. Since
it assumes that the memory is stored with BE significance, it transforms (munges) the
three low order addresses when it activates the address pins. For example, in the 1-byte
transfer case, address 7 is munged to 0, 6 to 1, 5 to 2, and so on. Table 9-2 shows the
address transform rules for the allowed LE mode transfer sizes.

Table 9-2. CPU LE Mode Address Transform
Transfer Size Address Transform

8 None

4 Physical Address[29:31] XOR 100 => A[29:31]

2 Physical Address[29:31] XOR 110 => A[29:31]

1 Physical Address[29:31] XOR 111 => A[29:31]

9.1.2 The CPU Data Shift
The data transfer occurs on the byte lanes identified by the address pins and transfer
size (TSIZ) pins in either BE or LE mode. In LE mode, the CPU shifts the data from the
byte lanes pointed to by the unmunged address, over to the byte lanes pointed to by
the munged address. This shift is linear in that it does not rotate or alter the order of
the bytes, which are now in the proper set of byte lanes. Note that the individual bytes
are still in BE order.

9.2 What the 660 Does
While the reference design is operating properly, data is stored in system memory in the
same endian mode as the mode in which the CPU operates. That is, the byte significance
in memory is BE in BE mode and it is LE in LE mode. Because of this, hardware is included
in the 660 that (in LE mode) will swap the data bytes to the correct byte lanes, and that
will transform (or un-munge) the address coming from the CPU.

9.2.1 The 660 Address Unmunge
In LE mode, the 660 unmunges address lines A[29:31]. This unmunge merely applies
the same XOR transformation to the three low-order address lines as did the CPU. This
effectively reverses the effect of the munge that occurs within the CPU. For example,
if the CPU executes a one-byte load coded to access byte 0 of memory in LE mode,
it will munge its internal address and emit address A[29:31] = 7h. The 660 will then unmunge
the 7 on A[29:31] back to 0, and use this address to access memory.

9.2.2 The 660 Data Swapper
The 660 contains a byte swapper. As shown in Figure 9-1, the byte swapper is placed
between the CPU data bus and the memory and PCI data busses. This allows the byte

9

Endians

The IBM 660 Bridge 147

lanes to be swapped between the CPU bus and the PCI bus, or between the CPU bus
and memory, but not between the PCI bus and memory. Thus, when a PCI busmaster
accesses memory, the 660 does not change either the address or the data location to
adjust for endian mode. In either mode, data is stored or fetched from memory at the
address presented on the PCI bus.

Figure 9-1. Data Flow Location of 660 Byte Swapper

Byte Swap
and

UnmungeCPU

Memory

PCI Bus

Address

Data

In BE mode, the 660 byte swapper is off, and data passes through it with no changes.
In LE mode, the byte swapper is on, and the order of the byte lanes is rotated (swapped)
about the center. As shown in Table 9-3, the data on CPU byte lane 0 is steered to memory
byte lane 7, the data on CPU byte lane 1 is steered to memory byte lane 6, and so on.
During reads, the data flows in the opposite direction over the same paths. Notice that
the swapping pattern is always the same, and is not affected by the transfer size, as is
the munge operation and the data shift inside the CPU.

Table 9-3. 660 Endian Mode Byte Lane Steering
CPU Byte Lane BE Mode Connection LE Mode Connection

Memory Byte
Lane

PCI Byte
Lane

Memory Byte
Lane

PCI Byte
Lane

0 CPU_DATA[0:7] 0 MEM_DATA[7:0] 0 PCI_AD[7:0] 7 MEM_DATA[63:56] 7* PCI_AD[31:24]

1 CPU_DATA[8:15] 1 MEM_DATA[15:8] 1 PCI_AD[15:8] 6 MEM_DATA[55:48] 6* PCI_AD[23:16]

2 CPU_DATA[16:23] 2 MEM_DATA[23:16] 2 PCI_AD[23:16] 5 MEM_DATA[47:40] 5* PCI_AD[15:8]

3 CPU_DATA[24:31] 3 MEM_DATA[31:24] 3 PCI_AD[31:24] 4 MEM_DATA[39:32] 4* PCI_AD[7:0]

4 CPU_DATA[32:39] 4 MEM_DATA[39:32] 4* PCI_AD[7:0] 3 MEM_DATA[31:24] 3 PCI_AD[31:24]

5 CPU_DATA[40:47] 5 MEM_DATA[47:40] 5* PCI_AD[15:8] 2 MEM_DATA[23:16] 2 PCI_AD[23:16]

6 CPU_DATA[48:55] 6 MEM_DATA[55:48] 6* PCI_AD[23:16] 1 MEM_DATA[15:8] 1 PCI_AD[15:8]

7 CPU_DATA[56:63] 7 MEM_DATA[63:56] 7* PCI_AD[31:24] 0 MEM_DATA[7:0] 0 PCI_AD[7:0]

* In this table, PCI byte lanes 3:0 refer to the data bytes associated with PCI_C/BE[3:0]#
when the third least significant bit of the target PCI address (PCI_AD[29]) is 0. PCI byte
lanes [7:4] refer to the data bytes associated with PCI_C/BE[3:0]# when PCI_AD[29]
is 1.

9

Endians

The IBM 660 Bridge148

9.3 Bit Ordering Within Bytes
The LE convention of numbering bits is followed for the memory and PCI busses, and
the CPU busses are labeled in BE nomenclature. The various busses are connected to
the 660 with their (traditional) native significance maintained (BE for CPU, and LE for
PCI and memory), so that MSb connects to MSb and so on. The bit paths between the
CPU and memory data busses are shown in Table 9-4 for both BE and LE mode operation.

Except for the three least significant bits, the address busses are not affected by endian
mode, because the effect of endian mode never extends past an 8-byte group of data.

The various nets are not renamed depending on the endian mode of the system.
CPU_DATA[37] remains CPU_DATA[37], in both BE and LE modes.

The effects of endian mode do not extend below the data byte level. The bits within a
byte are never rearranged due to endian mode. Note that the various busses are connected
so as to preserve the significance of the bus, not the nomenclature. Thus Table 9-4 shows
that in BE mode, CPU_DATA[0:7] connects to MEM_DATA[7:0], and in LE mode,
CPU_DATA[0:7] connects to MEM_DATA[63:56]. In each mode, the MSb of the CPU data
byte, CPU_DATA[0], connects to the MSb of the memory data byte (either MEM_DATA[63]
or MEM_DATA[7], depending on endian mode).

9.4 Byte Swap Instructions
The Power PC architecture defines both word and halfword load/store instructions that
have byte swapping capability. Programmers will find these instructions valuable for dealing
with the BE nature of this architecture. For example, if a 32-bit configuration register of
a typical LE PCI device is read in BE mode, the bytes will appear out of order unless
the ”load word with byte swap” instruction is used. The byte swap instructions are:

� lhbrx (load half word byte-reverse indexed)

� lwbrx (load word byte-reverse indexed)

� sthbrx (store half word byte-reverse indexed)

� stwbrx (store word byte-reverse indexed)

The byte-reverse instructions should be used in BE mode to access LE devices and in
LE mode to access BE devices. Also use these instructions in BE mode to access the
BCRs.

9.5 CPU Alignment Exceptions In LE Mode
PowerPC CPUs do not support certain instructions and data alignments in the LE mode.
When the CPU encounters an unsupportable situation, it takes an internal alignment excep-
tion (machine check) and does not produce an external bus cycle. See the latest CPU
documentation for details. Examples include:

� LMW instruction

� STMW instruction

� Move assist instructions (LSWI, LSWX, STSWI, STWX)

� Unaligned loads and stores.

9

Endians

The IBM 660 Bridge 149

Table 9-4. 660 Bit Transfer
CPU_DATA[] MEM_DATA[] CPU_DATA[] MEM_DATA[]

BE Mode LE Mode BE Mode LE Mode

0 7 63 32 39 31

1 6 62 33 38 30

2 5 61 34 37 29

3 4 60 35 36 28

4 3 59 36 35 27

5 2 58 37 34 26

6 1 57 38 33 25

7 0 56 39 32 24

8 15 55 40 47 23

9 14 54 41 46 22

10 13 53 42 45 21

11 12 52 43 44 20

12 11 51 44 43 19

13 10 50 45 42 18

14 9 49 46 41 17

15 8 48 47 40 16

16 23 47 48 55 15

17 22 46 49 54 14

18 21 45 50 53 13

19 20 44 51 52 12

20 19 43 52 51 11

21 18 42 53 50 10

22 17 41 54 49 9

23 16 40 55 48 8

24 31 39 56 63 7

25 30 38 57 62 6

26 29 37 58 61 5

27 28 36 59 60 4

28 27 35 60 59 3

29 26 34 61 58 2

30 25 33 62 57 1

31 24 32 63 56 0

9

Endians

The IBM 660 Bridge150

9.6 Endian Mode Examples
Many designers feel that mastering endian mode operations is quite challenging. This
section presents examples of endian mode operations.

9.6.1 One Byte Transfers
Figure 9-2 is an example of a 1-byte write of data a to address xxxx xxx0. The BE case
shows data a leaving the CPU bus interface on CPU byte lane 0, with a corresponding
CPU bus address of xxxx xxx0. The 660 does not swap the data bytes, and does not
munge the address, so if system memory is the target of the transaction, then data a
flows through to the memory data bus on byte lane 0. If the target of the transaction is
the PCI bus (memory transaction), then data a is driven onto PCI byte lane 0, and
PCI_AD[2:0] will be 000.
In the LE case of Figure 9-2, the CPU bus interface shifts data a from byte lane 0 to
byte lane 7, and munges the address from 0 to 7. The 660 bridge swaps the data byte
lanes to put data a on memory byte lane 0. The 660 unmunges the address back to 0,
and drives xxxx xxx0 onto the memory address bus. If the target of the transaction is
the PCI bus (memory transaction), then data a is driven onto PCI byte lane 0, and
PCI_AD[2:0] will be 000.

Figure 9-2. One Byte Transfer at Address xxxx xxx0

7
6
5
4
3
2
1
0

data
lane

3 low
addr
bits

7
6
5
4
3
2
1
0

PCI

LSB

MSB

LSB
604 Swap Off Memory

MSB

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0++++a

Unmunge

Off

addr
0

OR

A/D 2 3 2 1 0

0 a

0

1

7
6
5
4
3
2
1
0

data
lane

3 low
addr
bits

7
6
5
4
3
2
1
0

PCI

LSB

MSB

604 Swap On Memory

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

a

Unmunge

On

addr
0

OR

A/D 2 3 2 1 0

0 a

7

1

Big Endian Little Endian

a a

T size T size

9

Endians

The IBM 660 Bridge 151

Figure 9-3 is an example of a 1-byte write of data a to address xxxx xxx2. The BE case
shows data a leaving the CPU bus interface on CPU byte lane 2, with a corresponding
CPU bus address of xxxx xxx2. The 660 does not swap the data bytes, and does not
munge the address, so if system memory is the target of the transaction, then data a
flows through to the memory data bus on byte lane 2. If the target of the transaction is
the PCI bus (memory transaction), then data a is driven onto PCI byte lane 2, and
PCI_AD[2:0] will be 010.

In the LE case of Figure 9-3, the CPU bus interface has shifted data a from byte lane
2 to byte lane 5, and munged the address from 2 to 5. The 660 bridge swaps the data
byte lanes to put data a on memory byte lane 2. The 660 unmunges the address back
to 2, and drives xxxx xxx2 onto the memory address bus. If the target of the transaction
is the PCI bus (memory transaction), then data a is driven onto PCI byte lane 2, and
PCI_AD[2:0] will be 010.

Figure 9-3. One Byte Transfer at Address xxxx xxx2

7
6
5
4
3
2
1
0

data
lane

3 low
addr
bits

7
6
5
4
3
2
1
0

PCI

LSB

MSB

LSB
604 Swap Off Memory

MSB

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

++++a

Unmunge

Off

addr
2

OR

A/D 2 3 2 1 0

0 a

2

1

7
6
5
4
3
2
1
0

data
lane

3 low
addr
bits

7
6
5
4
3
2
1
0

PCI

LSB

MSB

604 Swap
On

Memory

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

a

Unmunge

On

addr
2

OR

A/D 2 3 2 1 0

0 a

5

1

Big Endian Little Endian

T size T size

a a

9

Endians

The IBM 660 Bridge152

9.6.2 Two Byte Transfers
Figure 9-4 is an example of a 2-byte write of data ab to address xxxx xxx0. The BE case
shows data ab leaving the CPU bus interface on CPU byte lanes 0:1, with a corresponding
CPU bus address of xxxx xxx0. The 660 does not swap the data bytes, and does not
munge the address, so if system memory is the target of the transaction, then data ab
flows through to the memory data bus on byte lanes 0:1. If the target of the transaction
is the PCI bus (memory transaction), then data ab is driven onto PCI byte lanes 0:1, and
PCI_AD[2:0] will be 000.

In the LE case of Figure 9-4, the CPU bus interface shifts data ab from byte lanes 0:1
to byte lanes 6:7, and munges the address from 0 to 6. The 660 bridge swaps the data
byte lanes to put data ab on memory byte lanes 1:0. The 660 unmunges the address
back to 0, and drives xxxx xxx0 onto the memory address bus. If the target of the transaction
is the PCI bus (memory transaction), then data ab will be driven onto PCI byte lane 1:0,
and PCI_AD[2:0] will be 000.

7
6
5
4
3
2
1
0

data
lane

3 low
addr
bits

7
6
5
4
3
2
1
0

PCI

LSB

MSB

LSB
604 Swap Off Memory

MSB

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

b

Unmunge

Off

addr
0

OR

A/D 2 3 2 1 0

0 a

0

2

7
6
5
4
3
2
1
0

data
lane

3 low
addr
bits

7
6
5
4
3
2
1
0

PCI

LSB

MSB

604 Swap On Memory

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

a

Unmunge

On

addr
0

OR

A/D 2 3 2 1 0

0 a

6

2

Big Endian Little Endian

a

b

b

b

++++
++++

T sizeT size

ab
a b

Figure 9-4. Two Byte Transfer at Address xxxx xxx0

9.6.3 Four Byte Transfers
Figure 9-5 is an example of a 4-byte write of data abcd to address xxxx xxx4. The BE
case shows data abcd leaving the CPU bus interface on CPU byte lanes 4:7, with a corre-
sponding CPU bus address of xxxx xxx4. The 660 does not swap the data bytes, and
does not munge the address, so if system memory is the target of the transaction, then
data abcd flows through to the memory data bus on byte lanes 4:7. If the target of the

9

Endians

The IBM 660 Bridge 153

transaction is the PCI bus (memory transaction), then data abcd is driven onto PCI byte
lanes 0:3, and PCI_AD[2:0] will be 100.

In the LE case of Figure 9-5, the CPU bus interface shifts data abcd from byte lanes 4:7
to byte lanes 0:3, and munges the address from 4 to 0. The 660 bridge swaps the data
byte lanes to put data abcd on memory byte lanes 7:4. The 660 unmunges the address
back to 4, and drives xxxx xxx4 onto the memory address bus. If the target of the transaction
is the PCI bus (memory transaction), then data abcd is driven onto PCI byte lane 3:0,
and PCI_AD[2:0] will be 100.

b
a

c
d

Figure 9-5. Four Byte Transfer at Address xxxx xxx4

7
6
5
4
3
2
1
0

data
lane

3 low
addr
bits

7
6
5
4
3
2
1
0

PCI

LSB

MSB

LSB
604 Swap Off Memory

MSB

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

Unmunge

Off

addr
4

OR

A/D 2

3 2 1 01

4

4

7
6
5
4
3
2
1
0

data
lane

3 low
addr
bits

7
6
5
4
3
2
1
0

PCI

LSB

MSB

604 Swap On Memory

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

Unmunge

On

addr
4

OR

A/D 2

3 2 1 01

4

Big Endian Little Endian

0 0 0 0 1 0 1 0

0 0 0 0 1 0 1 1

0 0 0 0 1 1 0 0

data

A/D31 A/D24

0 0 0 0 1 0 1 0

0 0 0 0 1 1 0 0

0 0 0 0 1 1 0 1

0 0 0 0 1 0 1 1

0 0 0 0 1 1 0 1

23 16

15 8

7 0

data

+++
+++
+++
+++

0

T sizeT size

b
a

c
d

b
a

c
d

a

c
b

d

a

c

b

d

d

c

b

a

A/D31 A/D24

23 16

15 8

7 0

9

Endians

The IBM 660 Bridge154

9.6.4 Three byte Transfers
There are no explicit Load/Store three-byte instructions; however, three-byte transfers occur
as a result of unaligned four-byte loads and stores as well as a result of move multiple
and string instructions.

The TSIZ=3 transfers with address pins = 0, 1, 2, 3, 4, or 5 may occur in BE. All of the
other TSIZ and address combinations produced by move multiple and string operations
are the same as those produced by aligned or unaligned word and half-word loads and
stores.

Since move multiples, strings, and unaligned transfers cause machine checks in LE mode,
they are not of concern in the BE design.

9.6.5 Eight Byte Transfers
Most instruction fetching is with cache on. In this case, instructions are fetched in eight-byte
doublewords. Figure 9-6 shows the instruction alignment. I1=abcd, I2=efgh at address
xxxx xxx0

Figure 9-6. Eight Byte Transfer at Address xxxx xxx0

7
6
5
4
3
2
1
0

data
lane

3 low
addr
bits

7
6
5
4
3
2
1
0

LSB
604 Swap Off Memory

MSB

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

b

Unmunge

Off

addr
00

7
6
5
4
3
2
1
0

data
lane

3 low
addr
bits

7
6
5
4
3
2
1
0

604 Swap On Memory

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0a

Unmunge
no effect

addr
00

Big Endian Little Endian

a a
b

c
d
e
f
g
h h

b
c
d
e
f
g

I2

I1

I2

I1

e
f
g
h

c
d

T size8T size
8

b
c
d
e
f
g
h

a

Figure 9-6 is an example of an 8-byte write of data abcdefgh to address xxxx xxx0. The
BE case shows data abcdefgh leaving the CPU bus interface on CPU byte lanes 0:7,
with a corresponding CPU bus address of xxxx xxx0. The 660 does not swap the data
bytes, and does not munge the address, so if system memory is the target of the transaction,
then data abcdefgh flows through to the memory data bus on byte lanes 0:7.

In the LE case of Figure 9-6, the CPU bus interface shifts the data 0 lanes (no shift),
and munges the address from 0 to 0. The 660 bridge swaps the data byte lanes to put
data abcdefgh on memory byte lanes 7:0. The 660 unmunges the address back to 0,
and drives xxxx xxx0 onto the memory address bus.

9

Endians

The IBM 660 Bridge 155

9.7 Endian Mode Flow Oriented Examples
This section contains examples of endian mode data flows in a different format

9.7.1 1-Byte Example at Address xxxx xxx1

1 Byte Big Endian Little Endian
 MSB MSB
CPU Bus 0 1 2 3 4 5 6 7 – byte lane – 0 1 2 3 4 5 6 7 A=1 *
 A=1 b – data – b
 off | | | | | | | | – swapper – \/\/\/\/\/\/\/\/ ON
 b – data – b
memory 0 1 2 3 4 5 6 7 – byte lane – 0 1 2 3 4 5 6 7 A=6 **
 A=1 MSB MSB
 \ \ \ \ / / / /
 b b
PCI Bus 0 1 2 3 – 1st data beat – 0 1 2 3
 AD[2:0]=000 MSB MSB AD[2:0]=100 **

 * This address has been munged by the CPU.
** This address has been munged by the CPU and unmunged by the 660.

9.7.2 2-Byte Example at Address xxxx xxx0

2 Byte Big Endian Little Endian
 MSB MSB
CPU Bus 0 1 2 3 4 5 6 7 – byte lane – 0 1 2 3 4 5 6 7 A=0 *
 A=0 a b – data – a b
 off | | | | | | | | – swapper – \/\/\/\/\/\/\/\/ ON
 a b – data – b a
memory 0 1 2 3 4 5 6 7 – byte lane – 0 1 2 3 4 5 6 7 A=6 **
 A=0 MSB MSB
 \ \ \ \ / / / /
 a b b a
PCI Bus 0 1 2 3 – 1st data beat – 0 1 2 3
 AD[2:0]=000 MSB MSB AD[2:0]=100 **

 * This address has been munged by the CPU.
** This address has been munged by the CPU and unmunged by the 660.

9

Endians

The IBM 660 Bridge156

9.7.3 4-Byte Example at Address xxxx xxx0

4 Byte Big Endian Little Endian
 MSB MSB
CPU Bus 0 1 2 3 4 5 6 7 – byte lane – 0 1 2 3 4 5 6 7 A=0 *
 A=0 a b c d – data – a b c d
 off | | | | | | | | – swapper – \/\/\/\/\/\/\/\/ ON
 a b c d – data – d c b a
memory 0 1 2 3 4 5 6 7 – byte lane – 0 1 2 3 4 5 6 7 A=4 **
 A=0 MSB MSB
 \ \ \ \ / / / /
 a b c d d c b a
PCI Bus 0 1 2 3 – 1st data beat – 0 1 2 3
 AD[2:0]=000 MSB MSB AD[2:0]=100 **

 * This address has been munged by the CPU.
** This address has been munged by the CPU and unmunged by the 660.

9.7.4 8-Byte Example at Address xxxx xxx0

8 Byte Big Endian Little Endian
 MSB MSB
CPU Bus 0 1 2 3 4 5 6 7 – byte lane – 0 1 2 3 4 5 6 7
 a b c d e f g h – data – a b c d e f g h
 off | | | | | | | | – swapper – \/\/\/\/\/\/\/\/ ON
 a b c d e f g h – data – h g f e d c b a
memory 0 1 2 3 4 5 6 7 – byte lane – 0 1 2 3 4 5 6 7
 MSB MSB
 \ \ \ \ | | | |
 a b c d d c b a
PCI Bus AD2=0 0 1 2 3 – 1st data beat – AD2=0 0 1 2 3
 MSB MSB
 / / / / \ \ \ \
 e f g h h g f e
 AD2=1 0 1 2 3 – 2nd data beat – AD2=1 0 1 2 3
 MSB MSB

9

Endians

The IBM 660 Bridge 157

9.8 Tabular Endian Mode Examples
The following tables illustrate CPU to memory and CPU to PCI transfers of various sizes
in both BE and LE modes. Each table illustrates a subset of the following information:
� The CPU bus address and byte lanes
� The 660 byte lane, memory byte lanes, and active CAS#
� The PCI address and byte lanes

9.8.1 One-Byte CPU to Memory Transfer in BE Mode
 CPU CPU BYTE 663 BYTE MEM BYTE CAS#

A31 30 29 add LANE LANE* LANE ACTIVE

 0 0 0 0 0 MSB 0 0 0

 1 0 0 1 1 1 1 1

 0 1 0 2 2 2 2 2

 1 1 0 3 3 3 3 3

 0 0 1 4 4 4 4 4

 1 0 1 5 5 5 5 5

 0 1 1 6 6 6 6 6

 1 1 1 7 7 LSB 7 7 7

 NOT MUNGED SWAP NOT UNMUNGED
 OFF

*At the CPU side.

9.8.2 One-Byte CPU to Memory Transfer in LE Mode

 CPU CPU CPU BYTE 663 BYTE MEM BYTE CAS#

A31 30 29 add LANE LANE* LANE ACTIVE

 0 0 0 0 0 MSB 0 7 7

 1 0 0 1 1 1 6 6

 0 1 0 2 2 2 5 5

 1 1 0 3 3 3 4 4

 0 0 1 4 4 4 3 3

 1 0 1 5 5 5 2 2

 0 1 1 6 6 6 1 1

 1 1 1 7 7 LSB 7 0 0

 MUNGED SWAP UNMUNGED
 ON

*At the CPU side.

9

Endians

The IBM 660 Bridge158

9.8.3 One-Byte CPU to PCI Transfer in BE Mode

 CPU CPU BYTE 663 BYTE PCI BYTE A/D** BE#

A31 30 29 add LANE LANE LANE 2 1 0 3 2 1 0

 (0=active byte
 enable)

 0 0 0 0 0 MSB 0 0 0 0 0 1 1 1 0

 1 0 0 1 1 1 1 0 0 1 1 1 0 1

 0 1 0 2 2 2 2 0 1 0 1 0 1 1

 1 1 0 3 3 3 3 0 1 1 0 1 1 1

 0 0 1 4 4 4 0 1 0 0 1 1 1 0

 1 0 1 5 5 5 1 1 0 1 1 1 0 1

 0 1 1 6 6 6 2 1 1 0 1 0 1 1

 1 1 1 7 7 LSB 7 3 1 1 1 0 1 1 1

 NOT MUNGED SWAP NOT UNMUNGED
 OFF

**AD[0:1] set to 00 for all PCI transactions except I/O cycles.

9.8.4 One-Byte CPU to PCI Transfer in LE Mode

 663*

 604 604 BYTE BYTE PCI BYTE A/D ** BE#

A31 30 29 add LANE LANE LANE 2 1 0 3 2 1 0

 (0=active byte
 enable)

 0 0 0 0 0 MSB 0 3 1 1 1 0 1 1 1

 1 0 0 1 1 1 2 1 1 0 1 0 1 1

 0 1 0 2 2 2 1 1 0 1 1 1 0 1

 1 1 0 3 3 3 0 1 0 0 1 1 1 0

 0 0 1 4 4 4 3 0 1 1 0 1 1 1

 1 0 1 5 5 5 2 0 1 0 1 0 1 1

 0 1 1 6 6 6 1 0 0 1 1 1 0 1

 1 1 1 7 7 LSB 7 0 0 0 0 1 1 1 0

 MUNGED SWAP UNMUNGED
 ON

*At the CPU side. **AD[0:1] set to 00 for all PCI transactions except I/O cycles.

9

Endians

The IBM 660 Bridge 159

9.8.5 Two-Byte CPU to Memory or PCI Transfer

PROG BE MODE LE MODE BE OR LE BE OR LE BE OR LE

TARG 604 BE (x or w 110) Target CAS# 0:7 PCI CBE#

ADDR add a29:31 Add a29:31 bytes 0 7 AD2 3210

 0 0 000 6 110 0–1 0011 1111 0 1100

 1 1 001 7 E 111 1–2 E 1001 1111 0 E 1001

 2 2 010 4 100 2–3 1100 1111 0 0011

 3 3 011 5 E 101 3–4 E 1110 0111 1 E PPPP

 4 4 100 2 010 4–5 1111 0011 1 1100

 5 5 101 3 E 011 5–6 E 1111 1001 1 E 1001

 6 6 110 0 000 6–7 1111 1100 1 0011

 7 N NNN 1 E 001 NNN E NNNN NNNN N E NNNN

N= not emitted by 60X because it crosses 8 bytes (transforms to 2 singles in BE, machine
 CH in LE)
P= not allowed on PCI (crosses 4 bytes)
E= causes exception (does not come out on 604 bus) in LE mode

9.8.6 Rearranged 2-Byte Transfer Information
This table contains the same information as found in section 9.8.5, but is arranged to
show the CAS# and PCI byte enables that activate as a function of the address presented
at the pins of the CPU and as a function of BE/LE mode.

2 BYTE XFERS BE BE LE LE

60X ADDRESS PINS CAS#0:7 PCI CBE# CAS#0:7 PCI CBE#

 0 7 A2 3210 0 7 AD2 3210

0 000 0011 1111 0 1100 1111 1100 1 0011

1 001 1001 1111 0 1001 E NNNN NNNN N E NNNN

2 010 1100 1111 0 0011 1111 0011 1 1100

3 011 1110 0111 0 PPPP E 1111 1001 1 E 1001

4 100 1111 0011 1 1100 1100 1111 0 0011

5 101 1111 1001 1 1001 E 1110 0111E 0 E PPPP

6 110 1111 1100 1 0011 0011 1111 0 1100

7 111 NNNN NNNN N NNNN E 1001 1111E 0 E 1001

N= not emitted by 60X because it crosses 8 bytes (transforms to 2 singles in BE, machine
CH in LE)
P= not allowed on PCI (crosses 4 bytes)
E= causes exception (does not come out on 604 bus) in LE mode

9

Endians

The IBM 660 Bridge160

9.8.7 Four-Byte CPU to Memory or PCI Transfer

PROG BE MODE LE MODE BE OR LE BE OR LE BE OR LE

TARG 604 BE (x or w 100) Target CAS# 0:7 PCI CBE #

ADDR add a29:31 add a29:31 bytes 0 7 AD2 3210

 0 0 000 4 100 0–3 0000 1111 0 0000

 1 1 001 5 E 101 1–4 E 1000 0111 0 E PPPP

 2 2 010 6 E 110 2–5 E 1100 0011 0 E PPPP

 3 3 011 7 E 111 3–6 E 1110 0001 1 E PPPP

 4 4 100 0 000 4–7 1111 0000 1 0000

 5 5 NNN 1 E NNN N–N NNNN NNNN 1 E NNNN

 6 6 NNN 2 E NNN N–N NNNN NNNN 1 E NNNN

 7 7 NNN 3 E NNN N–N NNNN NNNN 1 E NNNN

N= not emitted by 60X because it crosses 8 bytes (transformed into 2 bus cycles)
P= not allowed on PCI (crosses 4 bytes)
E= causes exception (does not come out on 604 bus) in LE mode

9.8.8 Rearranged 4-Byte Transfer Information
This table contains the same information as found in section 9.8.7, but it is arranged to
show the CAS# and PCI byte enables that activate as a function of the address presented
at the pins of the CPU and as a function of BE/LE mode.

 4 BYTE XFERS BE BE LE LE

60X ADDRESS PINS CAS#0:7 PCI CBE# CAS#0:7 PCI CBE#

 0 7 A2 3210 0 7 AD2 3210

 0 000 0000 1111 0 0000 1111 0000 0 0000

 1 001 1000 0111 0 PPPP E NNNN NNNN 0 E NNNN

 2 010 1100 0011 0 PPPP E NNNN NNNN 0 E NNNN

 3 011 1110 0001 0 PPPP E NNNN NNNN E NNNN

 4 100 1111 0000 1 0000 0000 1111 1 0000

 5 101 NNNN NNNN 1 NNNN E 1000 0111 1 E PPPP

 6 110 NNNN NNNN 1 NNNN E 1100 0011 1 E PPPP

 7 111 NNNN NNNN 1 NNNN E 1110 0001 1 E PPPP

N= not emitted by 60X because it crosses 8 bytes (transformed into 2 bus cycles)
P= not allowed on PCI (crosses 4 bytes)
E= causes exception (does not come out on 604 bus) in LE mode
X= not supported in memory controller (crosses 4-byte boundary

9

Endians

The IBM 660 Bridge 161

9.9 Changing BE/LE Mode
There are two BE/LE mode controls. One is inside the CPU and the other is a register
bit on the motherboard. The CPU interior mode is not visible to the system hardware.
The BE mode bit is a bit in I/O space which is memory mapped just like other I/O registers.
It defaults to BE mode.

The 604 CPU always powers up in BE mode and begins fetching code. Thus the first
of the ROM code must be BE code. Care must be taken when switching endian mode
in order to synchronize the internal and external modes, to flush all caches, and to avoid
executing extraneous code.

The following process switches the system from BE to LE mode:

1. Disable L1 caching. Disable L2 caching.
2. Flush all system caches.
3. Turn off interrupts immediately after servicing all outstanding interrupts.
4. Mask all interrupts.
5. Set the CPU state and the LE bit to LE. Note that CPU is now in LE mode. All

instructions must be in LE order.
6. Put interrupt handlers and CPU data structures in LE format.
7. Enable caches.
8. Enable Interrupts.
9. Start the LE operating system initialization.

9

Endians

The IBM 660 Bridge162

9.9.1 Special Port 92 Mirror BCR

Direct Access 8000 0092 Read/Write Reset to 00

CPU reads of this register always cause the bridge to arbitrate for the PCI bus and then to
execute a single-byte PCI I/O read of location 8000 0092 (the data returned is sourced by
a PCI agent). CPU writes to this register are latched into the bridge BCR and also forwarded
to the PCI bus as a single-byte PCI I/O write to location 8000 0092. This allows the 660 Bridge
to implement the function associated with this register without running wires from an external
register into the 664 Controller and also allows systems to support other functions in bits 7:2
and 0 of special port 92. This transaction is usually subtractively decoded by the I/O bus
bridge for access to an external logic register.

The port 92 register is a PCI target device external to the Bridge. It either actively or
subtractively decodes and responds to a PCI I/O read or write of PCI address 8000_0092
with DEVSEL# and TRDY#, according to correct PCI protocol. Regardless of whether the
Bridge is in internal or external register mode, reads and writes of this register are forwarded
to the PCI bus. Reads always return the data which is sourced by the PCI device (the
contents of the internal BCR are used during the operation of the Bridge). The Bridge always
drives the data lines during writes, and the data is also latched into the internal BCR. If the
PCI target does not respond to the transaction (during either a read or a write and in both
internal and external modes) an error is generated and correct operation does not occur.

CPU writes to this register are not posted or pipelined to ensure that the results take effect
before the CPU begins any other bus operations. Other PCI bus masters are able to access
the external register, but during writes the data is not latched into the 660 Bridge.

D0D1D2D3D4D5D6D792h

Reserved

Endian Mode Select
0 = big-endian
1 = little-endian

Reserved

Bit 1 Endian mode select: If the value of this bit is changed, the endian mode is
switched immediately following completion of the CPU write to the register.

9

Registers

The IBM 660 Bridge 163

Section 10
Bridge Control Registers

The Bridge Control Registers (BCRs) allow the designer a high degree of control over system
operations. CPU bus masters access BCRs to configure the operation of the 660 Bridge, to
generate PCI configuration transactions, and to access various system components. Some
BCR accesses are to real registers, either internal or external to the 660 Bridge. Some BCR
accesses do not address real registers, per se, but cause the Bridge to initiate various other
sequences, such as PCI configuration transactions or ROM writes.

Accesses to the 660 Bridge BCR set allow the CPU to:

� Configure, monitor, and control the 660 bridge,
� Perform PCI type 0 and type 1 configuration transactions,
� Perform PCI I/O transactions to external logic,
� Execute PCI interrupt acknowledge transactions, and
� Write to and lockout the ROM.

All BCR information is presented in little-endian notation. All BCR addresses are given for
contiguous mode. When accessing the BCRs in BE mode, use byte-swap instructions.

CPU writes to the register set are never posted or pipelined. This ensures that an operation
changed by the write takes effect before any other CPU bus operation is executed. Unless
otherwise noted, all changes to the BCRs take effect immediately. Thus a BCR write that
changes error checking from parity to ECC mode will take effect before the next memory ac-
cess.

10

Registers

164 The IBM 660 Bridge

10.1 Overview
BCRs may be grouped as direct-access BCRs (which are accessed using a single CPU
transfer) and indexed BCRs (which are accessed through the PCI/BCR configuration ad-
dress and PCI/BCR configuration data registers using two CPU transfers).

10.1.1 Direct-Access Bridge Control Registers
A CPU bus master reads or writes a direct-access BCR by initiating a memory read or write
to an address listed in Table 10-1. In response, the 660 Bridge requests the PCI bus from
the PCI arbiter. Upon being granted the PCI bus (or if the bus is already parked on the CPU),
the Bridge initiates one of the following transactions:

� A PCI BCR transaction to access a 650 Bridge compatible BCR
� A PCI BCR transaction to access an indexed BCR
� A PCI I/O transaction to access an external logic register
� A type 0 PCI configuration transaction to a PCI agent
� A PCI interrupt acknowledge transaction
� A direct-connect flash ROM write or ROM write lockout transaction.

The 650 compatible direct access BCRs are provided to ease software migration from the
IBM27–82650 Bridge chipset to the 660 Bridge chipset. These BCRs are especially useful
during system and software development.

The 660 Bridge is a much more programmable device than the 650 Bridge, but using the 650
compatible direct access BCRs tends to limit the programmability of the 660 Bridge to that
of the 650 Bridge. Thus whenever possible, the designer should use the 660 Bridge (in-
dexed) BCR set rather than the 650 compatible direct access BCR set.

10.1.2 Indexed Bridge Control Register Access
The indexed BCRs shown in Table 10-2 are accessed by means of the PCI/BCR configura-
tion address BCR (address 8000 0CF8h, section 10.3.1.1) and the PCI/BCR configuration
data BCR (address 8000 0CFCh, section 10.3.1.2). This method of access is described by
the PCI Local Bus Specification (Rev. 2.0), and is therein defined as Configuration Mecha-
nism #1. Note that these two registers are direct access BCRs.

The sequence of events that the Bridge generates to access the BCRs is called a PCI BCR
transaction. This transaction is very similar to a PCI configuration transaction.

10.1.3 Indexed Bridge Control Registers
The 660 Bridge features a large indexed BCR set, which allows extensive programmability
of the Bridge and the system. Indexed BCR operations allow CPU bus masters to perform
the following operations:

� Access the 660 Bridge internal indexed BCRs
� Initiate PCI type 0 configuration transactions
� Initiate PCI type 1 configuration transactions

The target registers of PCI agents that claim the PCI configuration transactions appear to the
CPU to be virtual indexed BCRs.

10

Registers

The IBM 660 Bridge 165

10.2 Direct-Access BCRs
A CPU bus master reads or writes a direct-access BCR by initiating a memory read or write
to an address listed in Table 10-1.

Table 10-1. Direct-Access BCRs With Section References

Bridge Control Register
CPU Bus
Address R/W Bytes

Resultant Bus Transac-
tion (See Section)

See
Section

Special Port 92 Mirror 8000 0092 R/W 1 PCI I/O to 0000 0092 10.2.2.1

L2 Invalidate 8000 0814 W 1 PCI BCR (10.2.1) or
PCI I/O to 0000 0814

10.2.2.2

System Control 81C 8000 081C R/W 1 PCI BCR (10.2.1) or
 PCI I/O to 0000 081C

10.2.2.3

Memory Controller Misc 8000 0821 R/W 1 PCI BCR (10.2.1) 10.2.2.4

Memory Parity Error Status 8000 0840 R 1 PCI BCR (10.2.1) 10.2.2.5

L2 Error Status 8000 0842 R 1 PCI BCR (10.2.1) 10.2.2.6

L2 Parity Error Read and Clear 8000 0843 R 1 PCI BCR (10.2.1) 10.2.2.7

Unsupported Transfer Type Error 8000 0844 R 1 PCI BCR (10.2.1) 10.2.2.8

I/O Map Type 8000 0850 R/W 1 PCI BCR (10.2.1) or
 PCI I/O to 0000 0850

10.2.2.9

PCI/BCR Configuration Address 8000 0CF8 R/W 4 PCI BCR (10.2.1) 10.3.1.1

PCI/BCR Configuration Data 8000 0CFC R/W 4 PCI BCR (10.2.1) or
PCI Configuration

10.3.1.2

PCI Type 0 Configuration
Addresses
IBM27–82650 Compatible

8080 08xx
8080 10xx
8080 20xx
8080 40xx
8080 80xx
8081 00xx
8082 00xx
8084 00xx
8088 00xx
8090 00xx
80A0 00xx
80C0 00xx

R/W 4 PCI Configuration 3.4.5.1

System Error Address BFFF EFF0 R 4 PCI BCR (10.2.1) 10.2.2.13

Interrupt Acknowledge BFFF FFF0 R 1 PCI Interrupt Acknowledge 3.4.6

ROM Write FFFF FFF0 W 4 PCI BCR (ROM) 7.1.2

ROM Lockout FFFF FFF1 W 1 PCI BCR (ROM) 7.1.2.2

In response, the 660 Bridge requests the PCI bus from the PCI arbiter. Upon being granted
the PCI bus (or if the bus is already parked on the CPU), the bridge initiates one of the follow-
ing transactions:

� A PCI BCR transaction to access a 650 Bridge compatible BCR
� A PCI BCR transaction to access an indexed BCR
� A PCI I/O transaction to access an external logic register

10

Registers

166 The IBM 660 Bridge

� A type 0 PCI configuration transaction to a PCI agent
� A PCI interrupt acknowledge transaction
� A direct-connect flash ROM write or ROM write lockout transaction

10.2.1 PCI BCR Transactions
A PCI BCR transaction is the result of a CPU transfer to a CPU address location shown in
Table 10-1. Figure 10-1 shows the information flows in the system and Figure A-17 shows
the basic read timing. During writes, the data flows from the CPU to the 663 over the CPU
data lines and from the buffer to the controller over the PCI_AD lines. During reads, the data
flows from the 664 to the buffer over the PCI_AD lines and from the buffer to the CPU over
the CPU data bus. This allows data to be passed on the PCI_AD lines from the 663 chip,
which attaches to the CPU data bus, to the 664 chip, which contains the physical registers.

Only the CPU is capable of causing PCI BCR transactions. Attempts by PCI bus masters to
access the BCRs are not claimed by the bridge.

Figure 10-1. BCR Configuration Information Flow

CPU

Data

Address
664

Controller
663

Buffer
AD

Address
Phase

Reads Writes

Control

AD

PCI_AD Lines Reads

Writes

Writes

Reads

The CPU initiates the PCI BCR transaction by beginning a memory transfer with TS#. The
controller decodes the transfer as a BCR access. On the next rising edge of PCI_CLK, the
controller asserts PCI_REQ#. Some number of PCI_CLK cycles later, the PCI arbiter grants
the PCI bus to the CPU by asserting PCI_GNT#. On the next PCI_CLK (clock 1), the bridge
asserts PCI_FRAME# to start the PCI transaction.

During the address phase, the controller drives Bh onto the PCI_C/BE# lines (during reads
and writes) to signal a configuration transaction, and drives all zeros onto the PCI_AD lines
for the address phase. Since the address is 0000 0000h, none of the IDSEL#s are activated.

During the data phase, the controller drives 0000b onto the PCI_C/BE# lines, and asserts
PCI_IRDY#.

During read transactions, the controller drives the data from the selected register onto the
PCI_AD lines during the data phase. The data travels over the PCI_AD lines to the buffer and
then over the CPU data lines to the CPU.

During write transactions, the controller disables its drivers, and after a turn-around cycle,
the buffer drives the data from the CPU bus onto the PCI_AD lines. The controller then
latches the required data into the BCR.

10

Registers

The IBM 660 Bridge 167

At the end of the data phase, the controller signals TA# and AACK# to the CPU to terminate
the CPU bus transfer. The controller deasserts PCI_IRDY# and PCI_FRAME#, ending the
PCI transaction and allowing another PCI bus master to begin a transaction. Note that
PCI_DEVSEL#, PCI_STOP#, IRDY#, and all IDSEL#s remain high during the entire transac-
tion. The 660 Bridge does not drive them high. It tractates them, and they stay high because
nothing drives them low. Other PCI agents monitoring the bus see a configuration transaction
which is master aborted.

The 660 Bridge deasserts PCI_REQ# on PCI_CLK two. The arbiter can deassert PCI_GNT#
to the bridge on or after PCI_CLK one, because PCI_FRAME# remains asserted throughout
the transaction, preventing a bus idle state.

10

Registers

168 The IBM 660 Bridge

10.2.2 Direct-Access BCR Listing
This section contains detailed listings of the direct-access BCR set. All addresses provided
are in the contiguous address mode. The non-contiguous address is different. All registers
are described in little-endian fashion with the highest numbered bit (usually D7) as the most-
significant bit and D0 as the least-significant bit. In big-endian mode, the bit ordering is the
same, with the left-most bit still as the most-significant bit, but typically referred to as D0. Byte
addresses are specified so that (for a single byte transaction) the address is the same regard-
less of the endian mode.

10.2.2.1 Special Port 92 Mirror BCR

Direct Access 8000 0092 Read/Write Reset to 00

CPU reads of this register always cause the bridge to arbitrate for the PCI bus and then to
execute a single-byte PCI I/O read of location 8000 0092 (the data returned is sourced by
a PCI agent). CPU writes to this register are latched into the bridge BCR and also forwarded
to the PCI bus as a single-byte PCI I/O write to location 8000 0092. This allows the 660 Bridge
to implement the function associated with this register without running wires from an external
register into the 664 Controller and also allows systems to support other functions in bits 7:2
and 0 of special port 92. This transaction is usually subtractively decoded by the I/O bus
bridge for access to an external logic register.

The port 92 register is a PCI target device external to the Bridge. It either actively or
subtractively decodes and responds to a PCI I/O read or write of PCI address 8000_0092
with DEVSEL# and TRDY#, according to correct PCI protocol. Regardless of whether the
Bridge is in internal or external register mode, reads and writes of this register are forwarded
to the PCI bus. Reads always return the data which is sourced by the PCI device (the
contents of the internal BCR are used during the operation of the Bridge). The Bridge always
drives the data lines during writes, and the data is also latched into the internal BCR. If the
PCI target does not respond to the transaction (during either a read or a write and in both
internal and external modes) an error is generated and correct operation does not occur.

CPU writes to this register are not posted or pipelined to ensure that the results take effect
before the CPU begins any other bus operations. Other PCI bus masters are able to access
the external register, but during writes the data is not latched into the 660 Bridge.

D0D1D2D3D4D5D6D792h

Reserved

Endian Mode Select
0 = big-endian
1 = little-endian

Reserved

Bit 1 Endian mode select: If the value of this bit is changed, the endian mode is
switched immediately following completion of the CPU write to the register.

10

Registers

The IBM 660 Bridge 169

10.2.2.2 L2 Invalidate BCR

Direct Access 8000 0814 Write Only Reset: Undefined

A write to this 8-bit, write-only register causes all contents of the internal L2 cache to be invali-
dated (by pulsing TAG_CLR# active for several CPU clocks). The internal L2 cache does not
have to be disabled during this operation. Reads to this register are undefined and do not
cause an L2 invalidate.

This register can be put into external register support mode so that writes to this register are
latched into this register and are also forwarded to the PCI. In this mode, reads to this register
are always forwarded to the PCI, which allows functions to be added to the reserved bit loca-
tions of this register.

D0D1D2D3D4D5D6D70814h

Any Value

Bits 7:0 Writing any value to this register causes the L2 invalidate operation.

10

Registers

170 The IBM 660 Bridge

10.2.2.3 System Control 81C BCR

Direct Access 8000 081C Read/Write Reset to 00

This BCR controls the L2 cache, the TEA# mask, and other functions.

This 8-bit, read/write BCR can be put into external register mode so that CPU writes to this
BCR are latched into the bridge BCR and are also forwarded to the PCI bus as a PCI I/O write
to location 0000 081C (the bridge arbitrates for the PCI bus and then executes a single byte,
single data phase PCI I/O write). In this mode, reads to this BCR are always forwarded to
the PCI as I/O reads to location 0000 081C, which allows the system to use these bits exter-
nally (the external logic must provide the proper read value of all bits including bits 7:5).

D0D1D2D3D4D5D6D7081Ch

Reserved

L2 Cache Enable

L2 Cache Miss Inhibit

TEA# Assertion Enable

First Read#

(was Mask TEA# Assertion)

Bit 0 First_Read#. This bit is 0 the first time this BCR is read after reset. Subsequent
reads of this BCR return 1 for this bit. This bit cannot be written by software.
Writes to this BCR do not affect the state of this bit (including writes before the
initial read).

Bits 4:1 Reserved. May be used externally in external register support mode.
Bit 5 TEA# assertion enable. When enabled, the 664 will assert TEA# when an error

condition is detected. Some error conditions can cause a bus hang (for example,
XATS# assertion) so the 664 still terminates such cycles with TEA#, even if this
bit is set to 0. This bit can also be accessed via the bridge chipset options 1 BCR
(index BAh, see section 10.3.35). This bit may be used externally in external reg-
ister support mode.
0 : TEA# assertion disabled.
1 : TEA# assertion enabled.

Bit 6 L2 Cache Enable: When disabled, the L2 cache does not respond to any cycles
(and does not maintain coherence or update the tags). Disabling the L2 cache
does not cause its contents to be invalidated. This bit only enables the internal
L2 if the internal L2 controller is enabled by bit 1 of the cache status register (in-
dex B1h, section 10.3.31). This bit may be used in external register mode to en-
able/disable an external L2.
0 = L2 cache disabled or not present.
1 = L2 cache enabled.

Bit 7 L2 Cache Miss Inhibit: This prevents L2 cache misses from updating the L2
cache. This allows the L2 cache to retain its contents during memory accesses
and remain coherent (snooping and tag updates continue to occur).
0 = Prevent updates
1 = Normal operation (allow updates)

10

Registers

The IBM 660 Bridge 171

10.2.2.4 Memory Controller Miscellaneous BCR

Direct Access 8000 0821 Read/Write Reset to 14h

This 8-bit, read/write register controls miscellaneous functions. The control of memory con-
troller timings from this register is not supported. Instead, this is done by means of the 80h
to A7h registers in the 660 Bridge primary register space.

D0D1D2D3D4D5D6D70821h

Reserved

PCI Target Watchdog Timer Enable
0 = disable
1 = enable

Reserved

Reserved

0 = disable
1 = enable

ARTRY#/SHD# Restore Enable

Bit 2 PCI Target Watchdog Timer Enable: This bit controls the enable of the PCI target
watchdog timer. When enabled, this timer is cleared and begins counting when
a PCI target activates PCI_DEVSEL#. The timer stops when the PCI cycle termi-
nates. If the PCI cycle has not terminated when the timer count reaches 2000
PCI clocks, the cycle is master aborted.

Note: The PCI specification places no limitation on the response time of PCI tar-
gets; therefore, this timer needs to be disabled if slow PCI devices are used. Dis-
abling this timer allows the system to lock up if a PCI target hangs after asserting
PCI_DEVSEL#.

Bit 4 ARTRY#/SHD# Restore Enable: This bit controls the enable of the ARTRY# and
SHD# restore logic in the 664. When enabled, the 664 restores ARTRY# and
SHD# regardless of what device drove the signal active. This mode can only be
used if ARTRY# and SHD# restore is disabled on all other CPU bus devices (for
601, if HID0[29] = 1, and for 603/604, if HID0[7] = 1).

When bit 4 is disabled, the 664 only restores ARTRY# and SHD# if it drove it
active.

10

Registers

172 The IBM 660 Bridge

10.2.2.5 Memory Parity Error Status BCR

Direct Access 8000 0840 Read Only Reset to 01h

This 8-bit, read-only register indicates the status of memory parity or multi-bit ECC errors.
This bit is deactivated by reading the system error address register (port BFFF EFF0h). Bit
0 may also be accessed via the error status 1 register (index C1h, section 10.3.38). Note that
L2 parity errors also cause the CPU bus data parity error bit to be set.

D0D1D2D3D4D5D6D70840h

Memory Parity Error

Reserved

Bit 0 Memory Parity Error:
0 = Error Detected
1 = No Error Detected.

10.2.2.6 L2 Error Status BCR

Direct Access 8000 0842 Read Only Reset to 01h

This 8-bit, read-only register indicates if a parity error has been detected during a CPU read
from the L2 cache. This bit is deactivated by reading the L2 cache parity error read and clear
register (port 8000 0843h). This bit may also be accessed via the error status 2 register (in-
dex C5h, section 10.3.41). Note that L2 parity errors also cause the CPU bus data parity error
bit to be set.

D0D1D2D3D4D5D6D70842h

L2 Cache Parity Error

Reserved

Bit 0 L2 Cache Parity Error:
0 = Error Detected
1 = No Error Detected.

10

Registers

The IBM 660 Bridge 173

10.2.2.7 L2 Parity Error Read and Clear BCR

Direct Access 8000 0843 Read Only Reset to 01h

This 8-bit, read-only register indicates if a parity error has been detect during a CPU read
from the L2 cache and clears the error if it is active. This bit may also be accessed via the
error status 2 register (index C5h, section 10.3.41), but that access will not automatically
clear the bit. Note that L2 parity errors also cause the CPU bus data parity error bit to be set.

D0D1D2D3D4D5D6D70843h

Reserved

L2 Cache Parity Error#

Bit 0 L2 Cache Parity Error:
0 = Error Detected
1 = No Error Detected.

10.2.2.8 Unsupported Transfer Type Error BCR

Direct Access 8000 0844 Read Only Reset to 01h

This is an 8-bit, read-only register that indicates the status of unsupported transfer type errors
or XATS# asserted from the CPU. This bit is cleared (to 1) by reading the system error ad-
dress register (port BFFF EFF0h). Transfer type error status is also available via the error
status 2 register (index C1h, section 10.3.38).

D0D1D2D3D4D5D6D70844h

Unsupported Transfer Type Error#

Reserved
Bit 0 Unsupported Transfer Type Error:

0 = Error Detected
1 = No Error Detected.

10

Registers

174 The IBM 660 Bridge

10.2.2.9 I/O Map Type BCR

Direct Access 8000 0850 Read/Write Reset to 01h

This 8-bit, read/write register determines if the I/O mapping is contiguous or non–contiguous.

This register can be put into external register support mode so that CPU writes to this register
are latched into the bridge BCR and are also forwarded to the PCI bus as a PCI I/O write to
location 0000 0850h (the bridge arbitrates for the PCI bus and then executes a single byte,
single data phase PCI I/O write). In this mode, reads to this register are always forwarded
to the PCI (in the same manner), as I/O reads to location 0000 0850h, which allows system
designers to externally add function to the reserved bit locations of this register. However,
if this mode is used, the external logic must provide the proper read value of all bits including
bit 0.

CPU writes to this register are not posted or pipelined to ensure that the results take effect
before the CPU begins any other bus operations. This transaction is typically subtractively
decoded by the I/O bus bridge for access to an external logic register. Other PCI bus masters
are able to access the external registers, but during writes the data will not be latched into
the 660 Bridge.

D0D1D2D3D4D5D6D70850h

I/O Map Type

Reserved

Bit 0 I/O Map Type: This bit can also be written by means of the bridge chip set options
1 register (indexed BAh, section 10.3.35)
0 = Non–Contiguous
1 = Contiguous.

10.2.2.10 PCI/BCR Configuration Address BCR

Direct Access 8000 0CF8 Read/Write Reset to 0000 0000

This BCR is one of a pair of BCRs that are used to access the indexed BCRs and PCI configu-
ration space, as discussed in section 10.3.1. This BCR is described in section 10.3.1.1.

10.2.2.11 PCI/BCR Configuration Data BCR

Direct Access 8000 0CFC to CFF Read/Write Reset: Undefined

This BCR is one of a pair of BCRs that are used to access the indexed BCRs and PCI configu-
ration space, as discussed in section 10.3.1. This BCR is described in section 10.3.1.2.

10

Registers

The IBM 660 Bridge 175

10.2.2.12 PCI Type 0 Configuration Addresses

Direct Access 8080 08xx to 808C 00xx Read/Write Reset: Undefined

Accesses to these 650 Bridge compatible addresses cause the Bridge to run type 0 PCI con-
figuration transactions. PCI configuration accesses can be 1-, 2-, or 4-byte only. Eight byte
PCI configuration register accesses are not supported.

10.2.2.13 System Error Address BCR

Direct Access BFFF EFF0 Read Only Reset: Undefined

This 32-bit, read-only register indicates the address at which a parity or multi-bit ECC error
or an illegal transfer error occurred. This register must be accessed by means of a 4-byte
transfer.

Reading this register deasserts the memory parity error indicator (which can be read by
means of the memory parity error status register port 8000 0840h and primary register C1h)
and the illegal transfer error indicator (which can be read by means of the illegal transfer error
register port 8000 0844 and primary register C1h).

10.2.2.14 Interrupt Acknowledge BCR

Direct Access BFFF FFF0 Read Only Reset: Undefined

CPU accesses mapped to this virtual BCR cause the 660 Bridge to execute a PCI interrupt
acknowledge transaction. The interrupt vector, which is supplied by the responding PCI
agent, is forwarded to the CPU bus as the data read from the BCR. See section 3.4.6.

10

Registers

176 The IBM 660 Bridge

10.2.2.15 ROM Write Bridge Control BCR

Direct Access FFFF FFF0h Write Only Reset NA

This 32-bit, write-only register is used to program the ROM in direct-attach ROM systems
(see section 7.1.2). This register must be written by means of a 4-byte transfer. Bits are
shown with little-endian labels.

D24D25D26D27D28D29D30D31

D16D17D18D19D20D21D22D23

D8D9D10D11D12D13D14D15

D0D1D2D3D4D5D6D7

MSb LSb

Table 7-5

Table 7-5

Table 7-5

Table 7-5

BCR Byte Content in Little-Endian System Content in Big-Endian System

MSB ROM Data ROM Address low byte

ROM Address high byte ROM Address mid byte

ROM Address mid byte ROM Address high byte

LSB ROM Address low byte ROM Data

10.2.2.16 ROM Lockout BCR

Direct Access FFFF FFF1h Write Only Reset NA

After it has been written once, this 8-bit, write-only register prevents ROM writes. This regis-
ter is only used in direct-attach ROM systems.

D0D1D2D3D4D5D6D7FFFF FFF1h

Any Value

Bits 7:0 Writing any value to the register prevents all future writes to a ROM that is
connected directly to the 660 through the PCI_AD lines.

10

Registers

The IBM 660 Bridge 177

10.3 Indexed BCRs
The 660 Bridge features a large indexed BCR set, which allows extensive programmability
of the Bridge and the system. Indexed BCR operations allow CPU bus masters to perform
the following operations:

� Access the 660 Bridge internal indexed BCRs
� Initiate PCI type 0 configuration transactions
� Initiate PCI type 1 configuration transactions

The target registers of PCI agents that claim the PCI configuration transactions appear to the
CPU to be virtual indexed BCRs.

10.3.1 Indexed BCR Access
The indexed BCRs shown in Table 10-2 are accessed by means of pairs of direct-access
BCR accesses. The method of accessing them follows that described by the PCI Local Bus
Specification (Revision 2.0), defined as Configuration Mechanism #1.

The first access of the pair, a direct-access BCR access (see Section 10.2.1) to the PCI/BCR
configuration address BCR (8000 0CF8h), defines the destination of the transaction.

The second access of the pair, to the PCI/BCR configuration data BCR (8000 0CFCh), reads
or writes the data and initiates the bus sequence. There is no physical PCI/BCR configuration
data BCR. When the CPU accesses this BCR address, the bridge arbitrates for the PCI bus.
After being granted the bus (or if the bus is parked on the CPU) the bridge executes either
a PCI BCR transaction to an indexed BCR or a PCI configuration transaction to a PCI agent,
depending on the contents of the bus and device fields of the PCI/BCR configuration address
BCR.

Data written to the data BCR is forwarded to the actual target device or BCR over the PCI_AD
lines during the data phase of the transaction. During reads, data supplied by the target de-
vice or BCR as sampled from the PCI_AD lines during the data phase of the transaction is
returned to the CPU.

The 660 Bridge indexed BCRs should only be accessed individually during a PCI BCR trans-
action. For example, the 660 Bridge PCI command BCR (index 04h to 05h) can be accessed
as a 2-byte object at index 04h, but the 660 Bridge revision ID BCR (1-byte) and the 660
Bridge PCI standard programming interface (1-byte) BCR should not be read together as a
2-byte object.

PCI configuration transactions can also be generated using these two BCRs and the ap-
propriate configuration address information. Note that the 660 Bridge places no transfer size
or alignment restrictions on PCI configuration transactions, other that they do not cross a
4-byte boundary.

10

Registers

178 The IBM 660 Bridge

10.3.1.1 PCI/BCR Configuration Address BCR

Direct Access 8000 0CF8 Read/Write Reset to 0000 0000

This 32-bit read/write register is used as a pointer to PCI configuration registers during PCI
configuration transactions and as a pointer to the selected indexed BCR during indexed BCR
configuration transactions. The CPU must perform 4-byte transfers when accessing this
BCR. Transfers of less than 4 bytes are mapped to PCI I/O space instead of this BCR.

00

Register #

Function #

Device #

Bus #

Enable

1 027810111516232431

8000 0CF8h

30

Reserved

Bits 1:0 Reserved, always 00b. The 664 drives 00b onto PCI_AD[1:0] during type 0 PCI
configuration transactions, and drives 01b onto PCI_AD[1:0] during type 1 PCI
configuration transactions.

Bits 7:2 Register Number: During PCI configuration transactions, these bits form the up-
per six bits (doubleword address) of the PCI register number, which specifies
which of the 256 possible bytes within the PCI configuration space of a selected
device is addressed. The least significant two bits of the BCR number are deter-
mined by the two least significant bits of the address of the accessed PCI/BCR
configuration data BCR:

PCI/BCR Configuration Data BCR Bits 3 and 2 of PCI/BCR Configuration Address BCR

BCR Address Bits 1:0 of
Address

00 01 10 11

8000 0CFC 00 0000 B0 0100 B4 1000 B8 1100 BC

8000 0CFD 01 0001 B1 0101 B5 1001 B9 1101 BD

8000 0CFE 10 0010 B2 0110 B6 1010 BA 1110 BE

8000 0CFF 11 0011 B3 0111 B7 1011 BB 1111 BF

 For example, if bits [7:2] of the configuration address BCR are 1011 00b, and
the configuration data BCR is 8000 0CFEh (...10b), then indexed register B2
(1011 0010) is accessed. During indexed BCR accesses, the BCR index is also
determined in this manner.

Bits 10:8 Function Number: During PCI configuration transactions, these bits specify
which of eight functions within the PCI configuration space of a selected device

10

Registers

The IBM 660 Bridge 179

is to be addressed. These bits are not used (don’t cares) during indexed BCR
accesses.

Bits 15:11 Device Number: During PCI configuration transactions, these bits specify which
of 21 devices (or slots) is selected. As shown in the table, only one of the
PCI_AD[31:11] bits is asserted for each valid value of bits 15:11. These bits are
not used during indexed BCR accesses.

Bits
15:11

Asserted
PCI_AD[]

Bits
15:11

Asserted
PCI_AD[]

Bits
15:11

Asserted
PCI_AD[]

Bits
15:11

Asserted
PCI_AD[]

00000 none 00110 [16] 01100 [22] 10010 [28]

00001 [11] 00111 [17] 01101 [23] 10011 [29]

00010 [12] 01000 [18] 01110 [24] 10100 [30]

00011 [13] 01001 [19] 01111 [25] 10101 [31]

00100 [14] 01010 [20] 10000 [26] other none

00101 [15] 01011 [21] 10001 [27]

Bits 23:16 Bus Number: During PCI configuration transactions, these bits specify which of
256 buses is selected. The PCI bus attached to the 660 Bridge is bus number
0.
If bus = 0 and device = 0, the bridge executes a BCR access to one of the in-
dexed BCRs when the PCI/BCR configuration data BCR is accessed.
If bus = 0 and device > 0, the bridge masters a standard PCI type 0 configuration
transaction when the PCI/BCR configuration data BCR is accessed.
If bus > 0, the bridge masters a standard PCI type 1 configuration transaction
when the PCI/BCR configuration data BCR is accessed.

Bit 31 Enable: This bit must be a 1 to enable accesses to either the the PCI configura-
tion registers or the indexed BCRs.

10.3.1.2 PCI/BCR Configuration Data BCR

Direct Access 8000 0CFC Read/Write Reset: Undefined

031

8000 0CFCh

This 32-bit read/write virtual register is used to access the register pointed to by the PCI/BCR
configuration address BCR. When the CPU accesses this BCR, the bridge arbitrates for the
PCI bus. After being granted the bus (or if the bus is parked on the CPU) the bridge executes
either a BCR access or a PCI configuration transaction, depending on the contents of the bus
and device fields of the PCI/BCR Configuration Address BCR.

During write transactions, the data written to this BCR is driven onto the PCI_AD lines during
the data phase. During read transactions, the data that the CPU receives from this BCR is
the data sampled during the data phase of the bus transaction. There is no physical PCI/BCR
configuration data BCR. This BCR is accessed as a 1-, 2-, or 4-byte BCR. The least signifi-
cant 2 bits of the address of the Configuration Data BCR accessed become the 2 LSBs of
the accessed PCI or BCR configuration register.

10

Registers

180 The IBM 660 Bridge

10.3.2 Indexed BCR Summary
Table 10-2 contains a summary listing of the indexed BCRs. Accesses to these registers are
described in sections 10.2.1 and 10.3.1. There are BCRs in the 660 other than the ones
listed. These BCRs are not supported for customer use. Do not access indexed BCRs other
than the ones listed in Table 10-2.

Table 10-2. Indexed BCR Listing
Bridge Control Register Index R/W Bytes See

PCI Vendor ID Index 00 – 01 R 2 10.3.3

PCI Device ID Index 02 – 03 R 2 10.3.4

PCI Command Index 04 – 05 R/W 2 10.3.5

PCI Device Status Index 06 – 07 R/W 2 10.3.6

Revision ID Index 08 R 1 10.3.7

PCI Standard Programming Interface Index 09 R 1 10.3.8

PCI Subclass Code Index 0A R 1 10.3.9

PCI Class Code Index 0B R 1 10.3.10

PCI Cache Line Size Index 0C R 1 10.3.11

PCI Latency Timer Index 0D R 1 10.3.12

PCI Header Type Index 0E R 1 10.3.13

PCI Built-in Self-Test (BIST) Control Index 0F R 1 10.3.14

PCI Interrupt Line Index 3C R 1 10.3.15

PCI Interrupt Pin Index 3D R 1 10.3.16

PCI MIN_GNT Index 3E R 1 10.3.17

PCI MAX_LAT Index 3F R 1 10.3.18

PCI Bus Number Index 40 R 1 10.3.19

PCI Subordinate Bus Number Index 41 R 1 10.3.20

PCI Disconnect Counter Index 42 R/W 1 10.3.21

PCI Special Cycle Address BCR Index 44 –45 R 2 10.3.22

Memory Bank 0 Starting Address Index 80 R/W 1 10.3.23

Memory Bank 1 Starting Address Index 81 R/W 1 10.3.23

Memory Bank 2 Starting Address Index 82 R/W 1 10.3.23

Memory Bank 3 Starting Address Index 83 R/W 1 10.3.23

Memory Bank 4 Starting Address Index 84 R/W 1 10.3.23

Memory Bank 5 Starting Address Index 85 R/W 1 10.3.23

Memory Bank 6 Starting Address Index 86 R/W 1 10.3.23

Memory Bank 7 Starting Address Index 87 R/W 1 10.3.23

Memory Bank 0 Extended Starting Address Index 88 R/W 1 10.3.24

10

Registers

The IBM 660 Bridge 181

Table 10-2. Indexed BCR Listing (Continued)
Bridge Control Register SeeBytesR/WIndex

Memory Bank 1 Ext Starting Address Index 89 R/W 1 10.3.24

Memory Bank 2 Ext Starting Address Index 8A R/W 1 10.3.24

Memory Bank 3 Ext Starting Address Index 8B R/W 1 10.3.24

Memory Bank 4 Ext Starting Address Index 8C R/W 1 10.3.24

Memory Bank 5 Ext Starting Address Index 8D R/W 1 10.3.24

Memory Bank 6 Ext Starting Address Index 8E R/W 1 10.3.24

Memory Bank 7 Ext Starting Address Index 8F R/W 1 10.3.24

Memory Bank 0 Ending Address Index 90 R/W 1 10.3.25

Memory Bank 1 Ending Address Index 91 R/W 1 10.3.25

Memory Bank 2 Ending Address Index 92 R/W 1 10.3.25

Memory Bank 3 Ending Address Index 93 R/W 1 10.3.25

Memory Bank 4 Ending Address Index 94 R/W 1 10.3.25

Memory Bank 5 Ending Address Index 95 R/W 1 10.3.25

Memory Bank 6 Ending Address Index 96 R/W 1 10.3.25

Memory Bank 7 Ending Address Index 97 R/W 1 10.3.25

Memory Bank 0 Extended Ending Address Index 98 R/W 1 10.3.26

Memory Bank 1 Ext Ending Address Index 99 R/W 1 10.3.26

Memory Bank 2 Ext Ending Address Index 9A R/W 1 10.3.26

Memory Bank 3 Ext Ending Address Index 9B R/W 1 10.3.26

Memory Bank 4 Ext Ending Address Index 9C R/W 1 10.3.26

Memory Bank 5 Ext Ending Address Index 9D R/W 1 10.3.26

Memory Bank 6 Ext Ending Address Index 9E R/W 1 10.3.26

Memory Bank 7 Ext Ending Address Index 9F R/W 1 10.3.26

Memory Bank Enable Index A0 R/W 1 10.3.27

Memory Timing 1 Index A1 R/W 1 10.3.28

Memory Timing 2 Index A2 R/W 1 10.3.29

Memory Bank 0 & 1 Addressing Mode Index A4 R/W 1 10.3.30

Memory Bank 2 & 3 Addressing Mode Index A5 R/W 1 10.3.30

Memory Bank 4 & 5 Addressing Mode Index A6 R/W 1 10.3.30

Memory Bank 6 & 7 Addressing Mode Index A7 R/W 1 10.3.30

Cache Status Index B1 R/W 1 10.3.31

RAS# Watchdog Timer Index B6 R/W 1 10.3.32

Single-Bit Error Counter Index B8 R/W 1 10.3.33

10

Registers

182 The IBM 660 Bridge

Table 10-2. Indexed BCR Listing (Continued)
Bridge Control Register SeeBytesR/WIndex

Single-Bit Error Trigger Level Index B9 R/W 1 10.3.34

Bridge Options 1 Index BA R/W 1 10.3.35

Bridge Options 2 Index BB R/W 1 10.3.36

Error Enable 1 Index C0 R/W 1 10.3.37

Error Status 1 Index C1 R/W 1 10.3.38

CPU Bus Error Status Index C3 R 1 10.3.39

Error Enable 2 Index C4 R/W 1 10.3.40

Error Status 2 Index C5 R/W 1 10.3.41

PCI Bus Error Status Index C7 R/W 1 10.3.42

CPU/PCI Error Address Index C8 – CB R/W 4 10.3.43

Single-Bit ECC Error Address Indx CC – CF R/W 4 10.3.44

Refresh Timer Divisor Index D0 – D1 R/W 2 10.3.45

Bridge Chip Set Options 3 Index D4 R/W 1 10.3.46

10

Registers

The IBM 660 Bridge 183

10.3.3 PCI Vendor ID Register

Index 00 to 01h Read Only Reset to 1014h

The vendor ID register is a 16-bit, read-only BCR used to identify the manufacturer of the 660
Bridge. Reading this register always returns 1014h (index 00h = 14h, index 01h = 10h). This
is the vendor ID assigned for all IBM–produced PCI devices.

10.3.4 PCI Device ID Register

Index 02 to 03h Read Only Reset to 0037h

The device ID register is a 16-bit, read-only BCR used to identify the 660 Bridge. Reading
this register always returns 0037h (index 02h = 37h, index 03h = 00h).

10

Registers

184 The IBM 660 Bridge

10.3.5 PCI Command Register

Index 04 to 05 Read/Write Reset to 0006h

The PCI command register is a 16-bit, read/write BCR used to control the operation of the
664 on the PCI bus.

D0D1D2D3D4D5D6D7

I/O Space

Memory Space

Bus Master

Special Cycles

Memory WR & Invalidate Enable

VGA Palette Snoop

Parity Error Response

Wait Cycle Control

D8D9D10D11D12D13D14D15

SERR# Enable

Fast Back–to–Back Enable

Reserved

04h

05h

0 = Disabled
1 = Enabled

0 = Disabled
1 = Enabled

Bit 0 Controls the response of the 660 Bridge to I/O space accesses. The 660 Bridge
does not respond to the I/O address space; therefore, this bit is read-only and
always returns 0 when read.

Bit 1 Controls the response of the 660 Bridge to memory space accesses. The 660
Bridge always responds to the memory address space. This bit is read-only.

Bit 2 Enables the 660 Bridge to master cycles on the PCI bus. The 660 Bridge is al-
ways enabled as a PCI bus master; therefore, this bit is read-only and returns
1 when read.

Bit 3 Enable special cycle operations. The 660 Bridge does not respond to special
cycle operations; therefore, this bit is read-only and returns 0 when read.

10

Registers

The IBM 660 Bridge 185

Bit 4 Enable memory write and invalidate command support. The 660 Bridge does
not support caching on the PCI bus; therefore, this bit is read-only and returns
0 when read.

Bit 5 Enable special palette snooping. The 660 Bridge is not a VGA device; therefore,
this bit is read-only and returns 0 when read.

Bit 6 Parity error response. This bit is enabled for all types of PCI bus parity errors,
including the following:
1) PCI data bus parity errors while PCI master
2) PCI data bus parity errors while PCI target
3) PCI address bus parity errors

When parity error response is disabled (set to 0) detection of these errors is
masked.

Bit 7 Address stepping wait states. The 660 Bridge does not require the use of AD
stepping; therefore, this bit is read-only and returns 0 when read.

Bit 8 Enable PCI_SERR#. Enables driving PCI_SERR# when PCI bus address parity
error is detected. PCI command register bit 6 must also be enabled.

Bit 9 Fast back-to-back write enable. The 660 Bridge does not support fast back-to-
back write cycles to different devices on the PCI bus; therefore, this bit is read-
only and returns 0 when read.

Bits 15:10 Reserved, returns 000000b when read.

10

Registers

186 The IBM 660 Bridge

10.3.6 PCI Device Status Register

Index 06 to 07h Read/Bit reset Reset to 0200h

This 16-bit, read/bit–reset BCR records status information for PCI-related events. Bits in this
register can only be set as a result of a specific event occurring on the PCI bus, and they can
only be reset by the CPU. To reset any bit, a 1 is written to the specific bit location. A 0 written
to a specific bit location leaves that bit unaltered.

D0D1D2D3D4D5D6D7

Reserved

Fast back–to–back capable

D8D9D10D11D12D13D14D15

Data Parity Error Detected

DEVSEL Timing

06h

07h

 01 – Medium (Default)

Signalled Target Abort

Received Target Abort

Signalled Master Abort

Signalled System Error

Detected Parity Error

Bits 6:0 Reserved, returns 0000000b when read.

Bit 7 Fast back-to-back capable. This bit is read-only and is a 0 to indicate that fast
back-to-back cycles are not supported when the 660 Bridge is the PCI target.
For example, when a PCI master accesses system memory.

Bit 8 Data parity error detected. This bit is set if both of the following conditions are
true:
1. The 660 Bridge is the master when a data bus parity error is detected during
a PCI read cycle, or the 660 Bridge is the master when PCI_PERR# is sampled
active during a PCI write cycle.
2. PCI command register bit 6 is set to 1.

If this bit is set, a TEA#/MCP# to the processor is generated if enabled. Writing
a 1 to this bit clears this bit to 0.

10

Registers

The IBM 660 Bridge 187

Bits 10:9 PCI_DEVSEL# response timing. The 660 Bridge asserts PCI_DEVSEL# in the
second clock following a PCI_FRAME# generated by a PCI bus master attempt-
ing to access memory. These bits always return 01. These bits are read-only.

Bit 11 This bit is set whenever the 660 Bridge terminates a PCI cycle for which it is the
target with target abort.

Bit 12 This bit is set whenever a PCI cycle for which the 660 Bridge is the master is
terminated with target abort.

 Writing a 1 to this bit clears this bit to 0.

Bit 13 This bit is set whenever the 660 Bridge terminates a PCI cycle for which it is the
master with master abort during a PCI memory or I/O cycle.

 Writing a 1 to this bit clears this bit to 0.

Bit 14 Signalled system error. If this bit is set, the 660 Bridge asserts PCI_SERR#. This
bit is set if both of the following conditions are true:
1) The PCI_SERR# enable bit is set (PCI command register bit 8).
2) Certain errors are detected during a PCI transaction while the Bridge is the
PCI target. Not all errors cause this bit to be set.

 Writing a 1 to this bit clears this bit to 0.

Bit 15 Detected parity error. This bit is set whenever the 660 Bridge detects a PCI bus
parity error. This bit is not maskable—if an error is detected, this bit is set regard-
less of any control bits. The following events set this bit:
1) PCI address bus parity error detected when an external PCI master accesses
system memory.
2) PCI data bus parity error detected when an external PCI master writes to sys-
tem memory.
3) PCI data bus parity error detected when the 660 bridge masters a PCI read
cycle.

Writing a 1 to this bit clears this bit to 0.

10.3.7 Revision ID

Index 08h Read Only Reset to 02h

The revision ID register is an 8-bit, read-only BCR used to hold the current incremental revi-
sion number of the 664. For revision 1.2 of the 664 (used in revision 2.2 of the 660) this regis-
ter returns 02h.

10

Registers

188 The IBM 660 Bridge

10.3.8 PCI Standard Programming Interface

Index 09h Read Only Reset to 00h

The PCI standard programming interface register is an 8-bit, read-only BCR used to hold pro-
graming interface information. Since the 660 Bridge does not support a programming inter-
face, this register returns 00h.

10.3.9 PCI Subclass Code

Index 0Ah Read Only Reset to 00h

The PCI subclass code register is an 8-bit, read-only BCR used to hold device class informa-
tion. This register returns 00h, indicating that the 660 Bridge is a host bridge.

10.3.10 PCI Class Code

Index 0Bh Read Only Reset to 06h

The PCI class code register is an 8-bit, read-only BCR used to hold device class information.
This register returns 06h, indicating that the 660 Bridge is a bridge between the PCI bus and
the 60X CPU bus.

10.3.11 PCI Cache Line Size

Index 0Ch Read Only Reset to 00h

The PCI cache line size register is an 8-bit, read-only BCR used to hold the size of a PCI
cache line. Since the 660 Bridge does not support a PCI cache, this register returns 00h.

10.3.12 PCI Latency Timer

Index 0Dh Read Only Reset to 00h

The PCI latency timer register is an 8-bit, read-only BCR used to hold the value of the PCI
latency timer. Because the 660 Bridge can only burst two PCI cycles as master (only with the
604 store multiple instruction), this timer is not implemented and this register returns 00h.

10

Registers

The IBM 660 Bridge 189

10.3.13 PCI Header Type

Index 0Eh Read Only Reset to 00h

The PCI header type register is an 8-bit, read-only BCR used to describe the header region
of PCI configuration space. The 660 Bridge implements a standard PCI header and this reg-
ister returns 00h.

10.3.14 PCI Built-in Self-Test (BIST) Control

Index 0Fh Read Only Reset to 00h

The PCI built–in self-test control register is an 8-bit, read-only BCR used for control and sta-
tus of BIST. The 660 Bridge does not implement BIST and this register returns 00h.

10.3.15 PCI Interrupt Line

Index 3Ch Read Only Reset to 00h

The PCI interrupt line register is an 8-bit, read-only BCR used for PCI interrupt routing in-
formation. The 660 Bridge does not implement this feature and this register returns 00h.

10.3.16 PCI Interrupt Pin

Index 3Dh Read Only Reset to 00h

The PCI interrupt pin register is an 8-bit, read-only BCR used to indicate the PCI interrupt
pin to be used. The 660 Bridge does not generate PCI interrupts and this register returns 00h.

10.3.17 PCI MIN_GNT

Index 3Eh Read Only Reset to 00h

The PCI MIN_GNT register is an 8-bit, read-only BCR used to specify the minimum setting
for the PCI latency timer. The 660 Bridge does not implement the PCI latency timer and this
register returns 00h.

10

Registers

190 The IBM 660 Bridge

10.3.18 PCI MAX_LAT

Index 3Fh Read Only Reset to 00h

The PCI MAX_LAT register is an 8-bit, read-only BCR used to specify the maximum setting
for the PCI latency timer. The 660 Bridge does not implement the PCI latency timer and this
register returns 00h.

10.3.19 PCI Bus Number

Index 40h Read Only Reset to 00h

The PCI bus number register is an 8-bit, read-only BCR used to identify the number of the
bus controlled by the 660 Bridge. This register returns 00h indicating that the 660 Bridge con-
trols PCI bus number 0. Peer bridges are not supported (for example, a second 60X to PCI
bridge on the 60X CPU bus); therefore, this register value is read-only. All CPU accesses to
CONFIG_DATA when CONFIG_ADDRESS specifies the bus number as 0 result in the 660
Bridge running a type 0 configuration cycle on its PCI bus.

10.3.20 PCI Subordinate Bus Number

Index 41h Read Only Reset to 00h

The PCI subordinate bus number register is an 8-bit, read-only BCR. Since the 660 Bridge
does not support peer PCI bridges (only hierarchical), this register is unused. All CPU ac-
cesses to CONFIG_DATA when the CONFIG_ADDRESS specifies a bus number other than
0 cause the 660 Bridge to run a type 1 configuration cycle on its PCI bus.

10.3.21 PCI Disconnect Counter

Index 42h Read/Write Reset to 00

This BCR determines the maximum number of PCI clocks (from 1 to 255) that a PCI master
can burst access system memory before a target disconnect is initiated. Loading the counter
with 00 disables it. The counter begins to count down when FRAME# is sampled active, and
is reloaded between PCI to memory accesses. If the counter reaches 0, the 660 Bridge target
disconnects the PCI bus master.

10.3.22 PCI Special Cycle Address Register

Index 44 to 45h Read Only Reset to 0000h

The PCI special cycle address register is a 16-bit, read-only BCR. It is not implemented and
returns 0000h.

10

Registers

The IBM 660 Bridge 191

10.3.23 Memory Bank Starting Address

Index 80 to 87h Read/Write Reset to 00h (each BCR)

This array of eight BCRs (along with the eight extended starting address registers) contains
the starting address for each memory bank. Each pair of registers maps to the corresponding
RAS# decode. For example, RAS[4]# corresponds to the BCRs at index 84h and 8Ch. The
eight least-significant bits of the bank starting address are contained in the starting address
register, and the most-significant bits come from the corresponding extended starting ad-
dress register. The starting address of the bank is entered with the least significant 20 bits
truncated. These BCRs must be programmed in conjunction with the ending address and
extended ending address registers.

Program the banks in ascending order, such that (for n = 0 to 6) the starting address of bank
n+1 is higher than the starting address of bank n. Each bank must be located in the 0 to 1G
address range (see section 5.3.13).

D0D1D2D3D4D5D6D7

A27 of start address (128MB+)

A26 of start address (64MB+)

A25 of start address (32MB+)

A23 of start address (8MB+)

A24 of start address (16MB+)

A22 of start address (4MB+)

A21 of start address (2MB+)

A20 of start address (1MB+)

10.3.24 Memory Bank Extended Starting Address

Index 88 to 8Fh Read/Write Reset to 00h (each BCR)

This array of eight BCRs (along with the eight starting address registers) contains the starting
address for each memory bank. These BCRs contain the most-significant address bits of the
starting address of the corresponding bank.

D0D1D2D3D4D5D6D7

A28 of start address (256MB+)

Reserved

A29 of start address (512MB+)

10

Registers

192 The IBM 660 Bridge

10.3.25 Memory Bank Ending Address

Index 90 to 97h Read/Write Reset to 00h (each BCR)

This array of eight BCRs (along with the eight extended starting address registers) contains
the ending address for each memory bank. Each pair of registers maps to the corresponding
RAS# decode. For example, RAS[4]# corresponds to the BCRs at index 94h and 9Ch. The
eight least-significant bits of the bank ending address are contained in the ending address
register, and the most-significant bits come from the corresponding extended ending ad-
dress register. The ending address of the bank is entered as the address of the next highest
memory location minus 1, with the least significant 20 bits truncated. Each bank must be lo-
cated in the 0 to 1G address range. These BCRs must be programmed in conjunction with
the ending address and extended ending address registers. See section 5.3.13.

D0D1D2D3D4D5D6D7

A27 of end address (128MB+)

A26 of end address (64MB+)

A25 of end address (32MB+)

A23 of end address (8MB+)

A24 of end address (16MB+)

A22 of end address (4MB+)

A21 of end address (2MB+)

A20 of end address (1MB+)

10.3.26 Memory Bank Extended Ending Address

Index 98 to 9Fh Read/Write Reset to 00 (each BCR)

This array of eight 8-bit, read/write registers (along with the eight ending address registers)
contains the ending address for each memory bank. These BCRs contain the most-signifi-
cant address bits of the ending address of its bank.

D0D1D2D3D4D5D6D7

A28 of end address (256MB+)

Reserved

A29 of end address (512MB+)

10

Registers

The IBM 660 Bridge 193

10.3.27 Memory Bank Enable

Index A0h Read/Write Reset to 00h

This BCR contains a control enable for each bank of memory. Each bank of memory must
be enabled for proper refreshing. For each bit, a 0 disables that bank of memory and a 1 en-
ables it.

This register must be programmed in conjunction with the starting address and ending ad-
dress registers. If a bank is disabled by this register, the corresponding starting and ending
address register entries become don’t cares.

D0D1D2D3D4D5D6D7A0h

Enable Bank 7

Enable Bank 6

Enable Bank 5

Enable Bank 4

Enable Bank 3

Enable Bank 2

Enable Bank 1

Enable Bank 0

10

Registers

194 The IBM 660 Bridge

10.3.28 Memory Timing Register 1

Index A1h Read/Write Reset to 3Fh

This BCR determines the timing of RAS# signal assertion for memory cycles. RAS# timing
must support the worst-case timing for the slowest SIMM installed in the system. See Section
5.2.1.

Bits 1:0 These bits control the number of CPU clocks for RAS# precharge.

Bits 4:2 These bits control RAS# pulse width except on refresh. For refresh, the
RAS# pulse width is hard-coded to three PCI clocks.

Bit 5 This bit controls the number of CPU clocks that the row address is held fol-
lowing the assertion of RAS#.

D0D1D2D3D4D5D6D7A1h

Row Address Hold Time (RAH)

RAS precharge (RP)
00 = 2 CLK
01 = 3 CLK
10 = 4 CLK
11 = 5 CLK

RAS pulse width (RPW)

0 = 1 CLK

RESERVED

000 = reserved 100 = 5 CLK
001 = reserved 101 = 6 CLK
010 = reserved 110 = 7 CLK
011 = 4 CLK 111 = 8 CLK

1 = 2 CLK
10

Registers

The IBM 660 Bridge 195

10.3.29 Memory Timing Register 2

Index A2h Read/Write Reset to AEh

This BCR determines the timing of CAS# signal assertion for memory cycles. CAS# timing
must support the worst-case timing for the slowest DRAM installed in the system. See Sec-
tion 5.2.1.

When using the 660 with a CPU:PCI bus frequency ratio of 1:1, then CP plus CPW must be
set less than or equal to 3.

D0D1D2D3D4D5D6D7A2h

CAS Pulse Width Write (CPWW)

00 = reserved
01 = 2 CLK
10 = 3 CLK
11 = reserved

CAS Pulse Width Reads/Write (CPW)
00 = 1 CLK
01 = 2 CLK
10 = 3 CLK
11 = Reserved

reserved

00 = 1 CLK
01 = 2 CLK
10 = reserved
11 = reserved

0 = 1 CLK
1 = 2 CLK

RAS to CAS Delay (RCD)

CAS Precharge (CP)

Column Address Setup (ASC) 10

Registers

196 The IBM 660 Bridge

10.3.30 Memory Bank Addressing Mode Registers

Index A4 to A7h Read/Write Reset to 44h (each BCR)

This array of four 8-bit, read/write BCRs defines the format of the row and column addressing
of each DRAM memory bank.

D0D1D2D3D4D5D6D7

Reserved

1xx = reserved

Reserved

011 = 12x11, 12x12
1xx = reserved

011 = 12x11, 12x12

12x10, 11x10, 10x10, 11x11010 =

010 =12x10, 11x10, 10x10, 11x11

Even Bank Addressing Mode

Odd Bank Addressing Mode

Mode 2
Mode 3

Mode 2
Mode 3

00x =reserved

00x =reserved

Register Bits Memory Bank Bits Memory Bank

A4h 3:0 0 7:4 1

A5h 3:0 2 7:4 3

A6h 3:0 4 7:4 5

A7h 3:0 6 7:4 710

Registers

The IBM 660 Bridge 197

10.3.31 Cache Status Register

Index B1h Read/Write Reset to 43h

This 8-bit, read/write BCR describes the status of the level one (L1) and level two (L2) caches
and other features.

D0D1D2D3D4D5D6D7B1h

L1 enabled (snoop enable)

Reserved

Internal L2 Enable

Bit 0 L1 enabled: Snooping is always enabled and this bit is hardcoded to a 1.
0 : L1 disabled
1 : L1 enabled

Bit 1 Internal L2 Enable: This bit is used with the L2 Cache Enable bit (bit 6 of the sys-
tem control 81C BCR, section 10.2.2.3) to enable the internal L2 cache. The in-
ternal L2 is enabled only when both bits are set to 1.
0 : Internal L2 disabled.
1 : Internal L2 enabled (iff L2 Cache Enable bit is set).

Bit 2:7 Reserved

10.3.32 RAS# Watchdog Timer Register

Index B6h Read/Write Reset to 53h

This BCR limits the maximum RAS# active pulse width. The value of this BCR represents
the maximum amount of time that any RAS# can remain active in units of eight CPU bus
clocks. The timer (down-counter) associated with this BCR is reloaded on the assertion of
any RAS# line. On expiration of the timer, the 660 Bridge drops out of page mode to deassert
the RAS# lines.

In response to the RESET# signal, this register is reset to 53h. This value results in a maxi-
mum RAS# active time of just under 10us at 66MHz. This is the value required by most 4-byte
and 8-byte SIMMs. The value of the BCR must be reprogrammed if the CPU bus frequency
is not 66MHz or a different RAS# pulse width is required.

10

Registers

198 The IBM 660 Bridge

10.3.33 Single-Bit Error Counter Register

Index B8h Read/Write Reset to 00h

This 8-bit, read/write BCR contains the count of the number of ECC single-bit errors that have
occurred. This register can be written by the CPU to set or clear the counter value. If a value
greater than the trigger level register (see Section 10.3.34) is written, the TEA# or MCP# er-
ror is asserted.

The bits of this register are in reversed significance.

D0D1D2D3D4D5D6D7

MSBLSB

The order of the bits should be reversed before interpreting the byte as a number.

D7D6D5D4D3D2D1D0

MSB LSB

10.3.34 Single-Bit Error Trigger Level Register

Index B9h Read/Write Reset to 00h

This 8-bit, read/write BCR contains the threshold value for generating an error to the CPU
on ECC single-bit errors. When the single-bit error counter register value equals the value
in this register, a single-bit ECC error (trigger exceeded) is generated to the CPU.

If the single-bit error trigger level register is set to 00h, no error is ever generated to the CPU.

If, during DRAM read, a single-bit error is detected, the 660 corrects the data supplied to the
reading agent, and increments the single-bit error counter BCR. The 660 does not write the
corrected data back to the DRAM. Repeated reads of a location that has a single-bit error
will eventually cause an MCP# when the single-bit error trigger level is exceeded, even
though the data is corrected before being supplied to the requestor. Therefore some applica-
tions may wish to set the error trigger level BCR to 0 to prevent this scenario.

The bit significance of this BCR is not reversed as is BCR(B8), but uses the same bit signifi-
cance as the other BCRs.

10

Registers

The IBM 660 Bridge 199

10.3.35 Bridge Chip Set Options 1

Index BAh Read/Write Reset to 04h

This 8-bit, read/write BCR controls various operating parameters of the 660 Bridge.

D0D1D2D3D4D5D6D7BAh

PCI / ISA I/O Mapping
0 = Non-contiguous
1 = Contiguous

Reserved

MCP# assertion enable

TEA# assertion enable

Bit 0 MCP# assertion enabled: When set, the 664 will assert the machine check pin
to the 603/604 CPU or drive an interrupt to the 601 CPU with intent to error termi-
nate. The state of this bit does not affect the operation of the error detection and
handling logic in any other way.

0 : MCP# assertion disabled: In response to a system error, the 664 will neither
assert MCP# (603/604) nor generate an interrupt (601) with the intent to error
terminate.

1 : MCP# assertion enabled: In response to a system error, the 664 will assert
MCP# (603/604) or generate an interrupt (601) with the intent to error terminate.

Bit 1 TEA# assertion enabled: When enabled, the 664 will assert TEA# when an error
condition is detected.
XATS# assertion will cause a bus hang if the cycle is not terminated so the 664
will still terminate an XATS# cycle with TEA# to prevent a bus hang condition,
even if this bit is set to 0. Note that this bit can also be written by means of the
system control 8000 081Ch BCR.

1 : TEA# assertion enabled.

Bit 2 PCI/ISA I/O mapping. This bit can also be written by means of the I/O map type
register (address 8000 0850h).
0 : Non–contiguous PCI / ISA address mapping is used. CPU addresses from
2G to 2G + 8M are translated where each 4K of CPU address space is mapped
to 32 bytes. The 8M address space is compressed into 64K.

1 : Contiguous PCI/ISA address mapping is used. CPU addresses from 2G to
2G + 8M are not remapped.

Note that the state of bits 0 and 1 do not control MCP# mode. These bits merely enable or
disable the assertion of particular outputs. For more information on MCP mode, see section
10.3.46 Bridge Chipset Options 3.

10

Registers

200 The IBM 660 Bridge

10.3.36 Bridge Chip Set Options 2

Index BBh Read/Write Reset to 4Fh

D0D1D2D3D4D5D6D7BBh

Flash Write enable

Power management enable

RAS Watchdog Timer enable

Snoop AACK# Timing (R/O)
0 = 1 CLK
1 = 2 CLK

0 = Disabled (set this bit to 0)
1 = Enabled

0 = Disabled
1 = Enabled

Reserved

Reserved

Bit 0 Flash write enable: When the ROM is remotely attached, this bit controls write
access to the flash ROM address space (4G – 2M to 4G). When enabled, writes
to this space are forwarded to the PCI memory space at the same address.
When disabled, writes to this space are treated as no-ops and an error is sig-
nalled. After the bit is set to 0 (disabled), it cannot be reset to 1 (enabled).

Bit 1 Power management enable: Power management is not supported. Set this bit
to 0.

Bit 2 Reserved. This bit is hardcoded to a 1.

Bit 3 RAS# watchdog timer enable: The RAS# max pulse width is always checked
and this bit is hardcoded to 1.

Bit 4 AACK# timing: Controls the minimum number of cycles between assertion of
TS# (transfer start) and assertion of AACK# (address acknowledge) by the 660
Bridge for any cycle. The implementation of a 603 processor with its internal log-
ic clocked at the same rate as the 60X CPU bus (1:1) requires this bit to be set.
This bit is read-only and is set to the value defined by the configuration strapping
options. (Reset value is determined by strapping pin.)

Bit 5 Reserved.

Bit 6 Reserved. This bit is hardcoded to a 1.

Bit 7 Reserved.

10

Registers

The IBM 660 Bridge 201

10.3.37 Error Enable 1

Index C0h Read/Write Reset to 01h

The error report enable 1 register is an 8-bit read/write BCR that selects the system error
conditions to which the 660 Bridge responds. A bit set in this register enables the associated
error condition to be detected.

D0D1D2D3D4D5D6D7 C0h

Reserved

Refresh Timeout Error enable

Memory parity or single–bit ECC trigger exceeded

Memory Select Error enable

PCI target–abort received

PCI data bus parity error received, PCI_SERR# signall

CPU transfer type error

Memory Multi–Bit ECC Error enable

Bit 0 CPU transfer type error enable: This bit enables the detection of unsupported
transfer types and XATS# assertion.
0 : Disabled
1 : Enabled

Bit 2 Memory parity or single-bit ECC error trigger exceeded enable:
0 : Disabled
1 : Enabled

Bit 3 Memory multi-bit ECC error enable:
0 : Disabled
1 : Enabled

Bit 4 Refresh timeout error enable: The 660 Bridge does not allow refresh timeout er-
rors to occur and this bit is hardcoded as a 0.

Bit 5 Memory select error enable:
0 : Disabled
1 : Enabled

Bit 6 PCI data bus parity error received, PCI_SERR# signalled. This bit enables the
660 Bridge to drive PCI_SERR# in addition to PCI_PERR# when a PCI data bus
parity error is detect when the PCI target (PCI write to system memory).
0 : Disabled
1 : Enabled

Bit 7 PCI target abort received. This bit enables detection of target aborts that occur
while the 660 Bridge is the PCI master (CPU accesses to PCI).
0 : Disabled
1 : Enabled

10

Registers

202 The IBM 660 Bridge

10.3.38 Error Status 1

Index C1h Read/Write Reset to 00h

The error status 1 register is an 8-bit read/write BCR that contains status on error conditions
that have been detected. Bits in this register can only be set to 1 as a result of a system error
occurring. To reset any bit, the CPU can write a 1 to that bit location. Writing a 0 to a specific
bit location leaves that bit unaltered. (Writing a 1 to bit 0 or bit 1 clears bit 0 and bit 1.) Bits
cannot be reset if the error condition persists.

D0D1D2D3D4D5D6D7 C1h

CPU transfer error

Refresh Timeout Error (never active)

Memory parity or single–bit ECC trigger exceeded

Memory Select Error

Reserved (see PCI Status Register for target–abort

Memory multi–bit ECC error

PCI data bus parity error received, PCI_SERR# signall

00 = No error detected

10 = Unsupported Transfer type
01 = XATS# asserted

11 = reserved

 received status)

Bits 1:0 CPU transfer error:
00 : No error detected
01 : XATS# sampled asserted.
10 : Illegal transfer attribute encoding detected on the CPU bus.
11 : Reserved
Note: These bits can also be reset by means of the unsupported transfer type
read and clear register.

Bit 2 If parity memory is implemented, this bit is set on a parity error. If ECC memory
has been implemented, this bit is set in response to exceeding the single-bit
ECC error trigger threshold. This bit can also be reset by means of the memory
parity error status BCR (8000 0840h).

Bit 3 If ECC memory has been implemented, this bit is set in response to the detection
of a multi–bit ECC error.

Bit 4 Refresh timeout errors never occur; therefore, hardcoded 0.
Bit 5 Memory select error: The CPU has run a memory cycle from 0 to 2G, but no

memory is populated at that address.
Bit 6 PCI_SERR# has been asserted is response to the detection of a data bus parity

error during a PCI master write to system memory.

10

Registers

The IBM 660 Bridge 203

10.3.39 CPU Bus Error Status

Index C3h Read Only Reset: Undefined

The CPU bus error status BCR contains information regarding the CPU bus when an error
is detected during a CPU cycle. This register is only valid if register C7 bit 4 is cleared.

D0D1D2D3D4D5D6D7C3h

TSIZE[0:2]

TT[0:4]

Bits 2:0 TSIZ[0:2]: These bits hold the value of TSIZ when the system error occurred.
Bits 7:3 TT[0:4]: These bits hold the value of TT when the system error occurred.

10.3.40 Error Enable 2

Index C4h Read/Write Reset to 00h

The error report enable 2 BCR selects which additional system error conditions get reported.
A bit set in this register allows errors in the error status 2 register to generate TEA# or MCP#.

D0D1D2D3D4D5D6D7C4h

FLASH ROM Write Error enable

Reserved

Reserved

CPU Data Bus Parity Error enable

Master–Abort Enable

L2 Parity Error Enable

Bit 0 Flash/ROM write error enable: When this bit is set, attempts to write to the flash/
ROM when it is locked result in an error.

Bit 2 CPU data bus parity error enable: When this bit is set, parity errors on the CPU
data bus are detected. See sections 1.11.9 and 6.4.

Bit 3 L2 cache parity error enable: When this bit is set, parity errors during CPU reads
from the L2 cache are detected. If the L2 is not present or does not implement
parity, this bit should not be enabled. See sections 1.11.9 and 6.4.

Bit 4 Master Abort Enable: When this bit is set, PCI master aborts that occur while the
660 is the PCI master for CPU to PCI access are detected as errors. Note that
this bit should not be enabled when running an operating system that does not
consider master aborts to be errors.

10

Registers

204 The IBM 660 Bridge

10.3.41 Error Status 2

Index C5h Read/Write Reset to 00h

The error status 2 register is an 8-bit read/write BCR that contains additional error conditions
status information. Bits in this register can only be set to 1 as a result of a system error occur-
ring. A 1 written to a specific bit location resets the bit to 0. A 0 written to a specific bit location
leaves that bit unaltered.

D0D1D2D3D4D5D6D7 C5h

FLASH ROM Write Error

Reserved

Reserved

CPU Data Bus Parity Error

L2 Parity Error

Reserved (see PCI Status Register for Master–abort
 status).

Bit 0 Flash ROM write error: When set, the 664 has detected an attempt to write to
the flash/ROM after the flash/ROM write lock–out bit has been set.

Bit 1 Reserved

Bit 2 CPU data bus parity error: When set, a parity error on the CPU data bus has
been detected during a transfer between the CPU and the 660 Bridge. Note that
L2 parity errors also cause the CPU bus data parity error bit to be set.

Bit 3 L2 cache parity error: This bit is set if a parity error is detected on a CPU read
from the L2 cache. Note that this bit can also be reset by means of the L2 cache
parity error read and clear register.

Bit 7:4 Reserved

10

Registers

The IBM 660 Bridge 205

10.3.42 PCI Bus Error Status

Index C7h Read Only Reset: Undefined

The PCI bus error status register is an 8-bit read-only BCR that contains information regard-
ing the status of the PCI bus and other status information when an error is detected.

D0D1D2D3D4D5D6D7C7h

C/BE[3:0] (Bus Command)

Reserved

Error Type

CPU number

Bits 3:0 PCI_C/BE#[3:0] : These bits hold the value of the PCI_C/BE#[3:0] bits during
the address tenure (bus command) of the transaction that caused a PCI bus er-
ror. These bits are only valid if an error occurred during a PCI to memory transac-
tion (BCR(C7) bit 4 = 1)

Bit 4 Error Type: This bit is set if an error occurred while the 660 is the PCI target.
This bit is cleared if an error occurred during a CPU cycle.

Bit 5 CPU Number: This bit is 0 if CPU #1 (the parked CPU) is the CPU bus master
when an error occurs. This bit is 1 if CPU #2 is the CPU bus master when an
error occurs. This bit is only valid if the error occurred during a CPU to PCI trans-
action (BCR(C7) bit 4 = 0).

10.3.43 CPU/PCI Error Address

Index C8 to CBh Read Only Reset: Undefined (each BCR)

The CPU/PCI bus error address registers are four 8-bit read/write BCRs that contain the ad-
dress of the CPU or PCI transaction that generated an error. Once an address has been
latched, it remains in these registers until the corresponding error detect bit(s) in the error
status 1 register (C1h) or the PCI device status registers (06h, 07h) have been reset.

C8h CPU_ADDR[24:31] or PCI_AD[7:0]

C9h CPU_ADDR[16:23] or PCI_AD[15:8]

CAh CPU_ADDR[8:15] or PCI_AD[23:16]

CBh CPU_ADDR[0:7] or PCI_AD[31:24]

10

Registers

206 The IBM 660 Bridge

10.3.44 Single-Bit ECC Error Address

Index CC to CFh Read Only Reset: Undefined (each BCR)

The single-bit ECC error address registers are four 8-bit read/write BCRs that contain the
address of the memory transaction that generated a single-bit ECC error. This register is up-
dated each time a single–bit ECC error is detected.

The value stored in this register is the offset into system memory. This means that if the error
occurred during a CPU access, then the CPU address is saved. If the error occurred during
a PCI access, then the PCI address minus 2G is saved.

CCh Most-significant byte of address

CDh Second-most-significant byte of address

CEh Third-most-significant byte of address

CFh Least-significant byte of address

10.3.45 Refresh Timer Divisor Register

Index D0 to D1 Read/Write Reset to F8 (D0) and 01 (D1)

The refresh timer register is a 16-bit BCR that determines the memory refresh rate. Typical
refresh rates are 15.1 to 15.5 microseconds. If all DRAM in the system supports extended
(slow) refresh, the refresh rate can be slower. The refresh timer is clocked by the PCI clock
input to the 664. The reset value of 01F8h provides a refresh rate of 15.1 microseconds while
the PCI clock is 33MHz. (01F8h equals 504 times 30ns equals 15.12us.) Bits 3–11 of the tim-
er allow timer values from 8 to 4096.

D0D1D2D3D4D5D6D7D0h

Hardcoded to 0

Refresh Timer Value LSBs.

Bits 7:3 Refresh timer (7:3) : These are the five least-significant bits of the refresh timer
value.

D8D9D10D11D12D13D14D15D1h

Refresh Timer Value MSBs.

Hardcoded to 0

Bits 11:8 Refresh timer (11:8) : These are the four most-significant bits of the refresh timer
value.

10

Registers

The IBM 660 Bridge 207

10.3.46 Bridge Chip Set Options 3 Register
Index D4h Read/Write Reset to 00h

This 8-bit read/write BCR controls various 660 Bridge functions.

D0D1D2D3D4D5D6D7D4h

Memory Error Checking Type

Memory DRAM Type

L2 SRAM Type

Reserved

Broadcast Snoop Transfer Type

MCP# Mode

External Register Support Mode

ROM Location Strap Value

Bit 0 Memory error checking type.
0 = parity mode (does not enable or disable error checking)
1 = ECC mode (setting this bit changes the access timing, even if ECC

 is disabled)
Bit 1 Reserved
Bit 2 DRAM memory type

0 = standard page mode DRAM
1 = hyper page mode (extended data out EDO) DRAM

Bit 3 Data SRAM type
0 = asynchronous
1 = synchronous

Bit 4 MCP# mode. This bit selects either the 604/603 MCP# error reporting mode or
the 601 TEA# and interrupt error reporting mode. This is the mode select, not
the output enable bit for the signal. See section 10.3.35.
0 = MCP# mode selected. Use with 603/604.
1 = MCP# mode deselected. Errors are reported using the 601 protocol.

Bit 5 External register support mode.
1 = External register mode enabled. Reads to 8000 0814h, 8000 081Ch, and
 8000 0850h are forwarded to the PCI bus and ignored by the internal BCRs.
 Writes are forwarded to the PCI bus and also written to the internal BCRs.
0 = External register mode disabled. Accesses to these three registers go only
 to the internal BCRs, and are not forwarded to the PCI bus.

Bit 6 Value of the ROM location strapping pin (read–only)
0 = Direct (PCI based). This is the correct value.
1 = Remote. This value is unsupported.

Bit 7 Broadcast snoop transfer type. To maintain memory coherence, set this bit cor-
rectly before allowing PCI to memory accesses. See section 4.5.
0 = 601/604 transfer type encodings used for broadcasting PCI to memory
 accesses to the CPU bus.
1 = 603 transfer type encodings used.

10

Registers

208 The IBM 660 Bridge

10

Timing

The IBM 660 Bridge 209

Appendix A
Timing

A.1 Timing Conventions
Unless otherwise noted, all timing information is given for 660 Bridge operation within the
envelope defined by the Recommended Operating Conditions.

Unless otherwise noted, all specifications in this section apply equally to the 663 and the 664.

A.1.1 Board Delays
Unless otherwise indicated, all timing specifications refer to events at the pins of the chip un-
der discussion. In systems operating at speeds typical of the 60X family, propagation delays
from point to point on a circuit board can be significant. The timing diagrams make no as-
sumptions about board delays. No board or system propagation delays have been included
in the timing diagrams or in the timing charts. Allow for delays between components while
constructing timing diagrams for the design of an actual system.

A.1.2 Terms and Definitions
Signal range names used without range indicators refer to the entire group of signals. For
example, CPU_DATA refers to the 663 signals CPU_DATA[0:63]. Ranges are expressed as
[most-significant bit : least-significant bit].

Some sets of signals are referred to in a group in the timing diagrams. For example,
CPU_ADDR generally refers to 60X address and address transfer attribute signals. Particu-
lar signals in the group may be shown separately for emphasis (TBST#, for example).

Valid refers to a voltage level above VH(min) or below VL(max). Valid does not imply logically
true or false, asserted or negated.

A.1.3 Signal Switching Levels for Timing Analysis
Figure A-1 shows typical timing analysis signal switching levels, where VH and VL are the
valid logic levels used for all input and output signals except CPU_CLK. Unless otherwise
indicated, all input and output signal (not clock) switching specifications refer to the point in
time at which the signal crosses one of these levels. These levels are used for both inputs
and outputs for timing analysis only, and do not imply anything about the DC characteristics
of the device.

A

Timing

The IBM 660 Bridge210

Figure A-1. Switching Levels

Signal

Valid

VH = 2v

VL = .8v

Valid

Input or
Output

Not Valid

A.1.4 Input Setup Time
Input setup time is the amount of time that an input signal is required to be stable at a valid
logic level immediately prior to an event. Input setup time (TIS in Figure A-2) from a signal
to the clock is measured from the point in time at which the input becomes valid to the the
point in time at which the clock rising edge crosses the VM level. Input setup time from a sig-
nal to an input strobe is measured from the point in time at which the input becomes valid
to the the point in time at which the strobe becomes active (its active edge crosses the valid
logic level in the active going direction).

A.1.5 Input Hold Time
Input hold time is the amount of time that an input signal is required to remain stable at a valid
logic level immediately following an event. Input hold time (TIH in Figure A-2) from the clock
to an input signal is measured from the point in time at which the clock rising edge crosses
the VM level to the point in time at which the input goes invalid (crosses the valid logic level
in the invalid going direction). Input hold time from an input strobe to an input signal is mea-
sured from the point in time at which the strobe becomes active (its active edge crosses the
valid logic level in the active going direction) to the point in time at which the input goes invalid.

A.1.6 Output Hold Time
Output hold time is the amount of time that an output signal remains stable at a valid logic
level immediately following an event which may cause the output to change state. Output
hold time (TOH in Figure A-2) from the clock is measured from the point in time at which the
rising edge of the clock crosses the VM level to the point in time at which the output signal
becomes invalid (crosses the valid logic level in the invalid going direction). Output hold time
from an input strobe is measured from the point in time at which the strobe becomes active
(its active edge crosses the valid logic level in the active going direction) to the point in time
at which the output signal becomes invalid.

A.1.7 Output Delay Time
Output delay time is the amount of time required for an output signal to change to a stable
valid state following an event. Output delay time (TOD in Figure A-2) from the clock is mea-
sured from the point in time at which the rising edge of the clock crosses the VM level to the
point in time at which the output signal becomes valid (crosses the valid logic level in the valid
going direction). Output valid delay time from an input strobe is measured from the point in
time at which the strobe becomes active (its active edge crosses the valid logic level in the
active going direction) to the point in time at which the output signal becomes valid.

A

Timing

The IBM 660 Bridge 211

A.1.8 Output Enable Time
Output enable time is the amount of time required for an output signal driver to drive a tris-
tated line to a valid logic level. This time does not take into account the effects of possible
pullup resistors connected to the net. Such resistors may improve or degrade the actual time,
depending on the situation. Output enable time from the clock is measured from the point in
time at which the rising edge of the clock crosses the VM level to the point in time at which
the output signal becomes valid (crosses the valid logic level in the valid going direction).
There are no asynchronous output enables in the 660 Bridge.

A.1.9 Output Tristate Hold Time
Output tri-state hold time is the amount of time that an output signal remains driven to a valid
logic level immediately following an event which may cause the output to tri-state (go to a high
impedance state). Output tristate hold time (T3SH in Figure A-2) from the clock is measured
from the point in time at which the rising edge of the clock crosses the VM level to the point
in time at which the output signal is no longer guaranteed to be actively driven to a valid logic
level. Output hold time from an input strobe is measured from the point in time at which the
strobe becomes active (its active edge crosses the valid logic level in the active going direc-
tion) to the point in time at which the output signal is no longer guaranteed to be actively driv-
en to a valid logic level. Note that this specification deals with the time that the output driver
remains active following an event which may turn it off, and is computed from the minimum
output tristate delay time. The actual output signal may remain valid for some time after this,
depending on other conditions.

A.1.10 Output Tristate Delay Time
Output tristate delay time is the amount of time required for an output signal driver to turn off
(go to a high impedance state) following an event. Output tristate delay time (T3SD in
Figure A-2) from the clock is measured from the point in time at which the rising edge of the
clock crosses the VM level to the point in time at which the output signal driver turns off (is
no longer driving the output). Output valid delay time from an input strobe is measured from
the point in time at which the strobe becomes active (its active edge crosses the valid logic
level in the active going direction) to the point in time at which the output signal driver turns
off. Note that this specification deals with the time that it takes the output driver to stop driving
the output signal line following an event which may turn it off. The actual output signal may
remain valid for some time after this, depending on other conditions.

A

Timing

The IBM 660 Bridge212

Figure A-2. Signal Timing Conventions

Input
Strobe

Signal

Output

Valid

TIS TIH

TOH

TOD

T3SH

T3SD

High-Z

Input

CPU_CLK

Active

Valid

Valid

Valid

Valid

High-Z

Signal

Output
Signal

Output
Signal

Output
Signal

(and Valid)
VH

VL

VH

VL

VH

VL

VH

VL

VH

VL

VM = 1.5v

A

Timing

The IBM 660 Bridge 213

A.2 Clock Considerations
To maintain synchronization between the 660 Bridge and the CPU, certain constraints are
placed on the CPU_CLK signal. Unless otherwise noted, all references to CPU_CLK timing
refer to the point in time at which the CPU_CLK crosses the VM level, 1.5v.

In general, both the 663 and the 664 are synchronous machines. Inputs are sampled on the
rising edge of CPU_CLK, and outputs are updated on the rising edge of CPU_CLK.

A.2.1 660 Bridge CPU_CLK Skew to the Processor SYSCLK
As shown in Figure A-3, the allowed skew between the 664 CPU_CLK and the processor
SYSCLK is +/– 1ns. The allowed skew between the 663 CPU_CLK and the processor
SYSCLK is +/– 1ns.

Figure A-3. CPU_CLK to SYSCLK Skew

1ns 1ns

max max

CPU_CLK
at 660

SYSCLK
at 60X

A.2.2 663 Buffer CPU_CLK Skew to 664 Controller CPU_CLK
The allowed skew between the CPU_CLK at the input to the 664 and the CPU_CLK at the
input to the 663 is also +/– 1ns. Thus the skew between any two of the three devices (663,
664, and 60x) is a maximum of +/– 1ns.

A.2.3 CPU_CLK Duty Cycle
The CPU_CLK is shown (at the CPU_CLK pin of the 664) in Figure A-4, where TCH is the
time that CPU_CLK is high, and TCL is the time that CPU_CLK is low. The allowed duty cycle
of CPU_CLK is from 35% to 65%. If the period of CPU_CLK is 15ns, then TCH may range
from 5.25ns to 9.75ns.

Figure A-4. CPU_CLK Duty Cycle

CPU_CLK VM

TCH TCL
TCLK

VM VM

A

Timing

The IBM 660 Bridge214

A.2.4 CPU_CLK to PCI_CLK Skew
The allowed skew of the PCI_CLK at any point in the system to the CPU_CLK at the 660
Bridge is +/– 2ns, as shown in Figure A-5.

Figure A-5. CPU_CLK to PCI_CLK Skew

max max

CPU_CLK
at 660

at 60X

2ns 2ns

PCI_CLK

A.3 Asynchronous Paths
The 660 Bridge is in general a synchronous device. There are however some asynchronous
paths which are only active to speed up the assertion of particular signals. The paths specu-
latively assert certain signals. Once the clock edge latches in the correct input conditions and
the synchronous logic verifies the speculative assertion, the asynchronous path is deacti-
vated and no longer has any effect on the Bridge (until next time).

The even numbered CPU_DATA lines are driven synchronously by the 660. To improve sig-
nal quality by reducing simultaneous switching noise, the odd numbered CPU_DATA lines
are typically driven asynchronously, in advance of the clock, so that they will switch at a differ-
ent instant in time. When the clock arrives, the odd numbered CPU_DATA lines (as well as
the even numbered lines) are latched onto the 660 outputs.

A.4 Power-On Considerations
The 660 Bridge is designed to impose no additional power-on-reset or power supply behavior
constraints on a system that contains a 60X CPU and a PCI bus. The 660 works properly in
a system designed to correctly support the 60X CPU and the PCI bus.

The 660 Bridge requires RESET# to be asserted at power-on for a minimum of 1us past pow-
er-good, and for a minimum of 10 CPU_CLK cycles past the point in time at which CPU_CLK
is stable and within specification. The inputs to the Bridge are not required to be in any special
state during the reset period, but the Bridge will start to respond to control inputs immediately
following the deassertion of RESET#. This design fully supports a properly functioning 60X
CPU, L2 cache, and PCI agents.

A

Timing

The IBM 660 Bridge 215

A.5 663 Buffer Timing By Signal

Table A-1. 663 Buffer Timing By Signal

Signal Pin I/O Input (ns) Output (ns)

Setup
(min)

Hold
(min)

Valid
Delay
(Max)

Enable
Delay
(Max)

Hold
Time
(min)

Hold
(to 3S)
(min)

Tristate
Delay
(Max)

AOS_RR_MMRS 166 I * * — — — — —

C2P_WRL_OPEN 154 I * * — — — — —

CPU_DATA[00:63]1 App B I/O 5.4 0 8.7 10.1 4.7 2.7 8.5

CPU_DATA_OE# 146 I * * — — — — —

CPU_DPAR[0:7] App B I/O 5.4 0 8.7 10.1 4.7 2.7 8.5

CPU_PAR_ERR# 174 O — — * — * — —

CPU_RDL_OPEN 148 I * * — — — — —

CRS_C2PWXS 151 I * * — — — — —

DUAL_CTRL_REF 170 I * * — — — — —

ECC_LE_SEL 149 I * * — — — — —

MEM_BE[3:0] App B I * * — — — — —

MEM_CHECK[0:7] App B I/O 2.4 0.4 16.8 17.2 4.6 2.2 7.6

MEM_DATA[63:0] App B I/O 6.0 0.2 16.8 17.5 4.5 2.2 8.0

MEM_DATA_OE# 145 I * * — — — — —

MEM_ERR# 171 O — — * — * — —

MEM_RD_SMPL 147 I * * — — — — —

MEM_WRL_OPEN 150 I * * — — — — —

MWS_P2MRXS 152 I * * — — — — —

PCI_AD[31:0]2 App B I/O 7 0 11 13.9 2 2 28

PCI_AD_OE# 144 I * * — — — — —

PCI_EXT_SEL 153 I * * — — — — —

PCI_IRDY# 167 I 7 0 — — — — —

PCI_OL_OPEN 165 I * * — — — — —

PCI_OUT_SEL 169 I * * — — — — —

PCI_TRDY# 168 I 7 0 — — — — —

ROM_LOAD 160 I * * — — — — —

SBE# 175 O — — * — * — —

A

Timing

The IBM 660 Bridge216

Notes for Table A-1 :
* These signals interconnect the 663 and the 664. Keep these lines point to point and as short as possible to

maintain minimum flight time between the 663 and the 664.

— These timing specifications are not applicable to the signal.

1. The 663 samples CPU_DATA[0:63] on the second clock following their assertion by the CPU busmaster,
so the effective input setup time is 5.7ns–T [CPU clock]. The 663 enables the CPU_DATA output drivers
1 CPU clock before setting the outputs to the correct state, so the net effective output enable delay is
negative.

The even numbered CPU_DATA lines follow the times shown and are switched and enabled by the CPU
clock. The odd numbered CPU_DATA lines are switched asynchronously to improve the signal quality of the
system. The timing of the asynchronously switched signals will always be better than that shown for the syn-
chronously switched set.

2. The 663 enables the PCI_AD[0:31] output drivers one PCI clock before setting the outputs to the correct
state, so the effective output enable delay is 13.9–T [PCI clock].

Where required for timing purposes, the 663 enables the PCI_AD lines one PCI clock before
asserting them.

A

Timing

The IBM 660 Bridge 217

A.6 664 Controller Timing By Signal
Table A-2. 664 Controller Timing By Signal

Signal Pin I/O Input (ns) Output (ns)

Setup
(min)

Hold
(min)

Valid
Delay
(Max)

Enable
Delay
(Max)

Hold
Time
(min)

Hold
(to 3S)
(min)

Tristate
Delay
(Max)

AACK#1 109 I/O 2.9 0.07 8.5 9.7 2.3 2.9 8.9

AOS_RR_MMRS 69 O — — * — * — —

ARTRY#1 110 I/O 3.9 1.3 8.7 10.3 2.3 3.2 10.0

C2P_WRL_OPEN 61 O — — * — * — —

CAS[7:0]# — O — — 13.2 — 2.9 — —

CPU_ADDR[0:31]1,2 — I/O 1.8 2.4 12.9 19.5 3.6 4.1 17.2

CPU_BUS_CLAIM# 132 I 3.0 1.3 — — — — —

CPU_DATA_OE# 197 O — — * — * — —

CPU_GNT1# 134 O — — 9.0 — 2.5 — —

CPU_GNT2# 135 O — — 9.0 — 2.5 — —

CPU_PAR_ERR# 192 I * * — — — — —

CPU_RDL_OPEN 50 O — — * — * — —

CPU_REQ1# 127 I 3.1 0.6 — — — — —

CPU_REQ2# 128 I 3.0 0.6 — — — — —

CRS_C2PWXS 65 O — — * — * — —

DBG# 140 O — — 13.2 — 3.3 — —

DPE# 133 I 1.9 0 — — — — —

DUAL_CTRL_REF 205 O — — * — * — —

ECC_LE_SEL 2 O — — * — * — —

GBL#1,2 120 O — — 12.7 12.7 3.2 3.2 13.8

IGN_PCI_AD31 57 I 1.2 0.2 — — — — —

INT_CPU# 139 O — — 14.1 — 3.5 — —

INT_REQ 55 I 4.6 0 — — — — —

MA[11:0] — O — — 13.6 — 3.0 — —

MCP# 138 O — — 14.7 — 4.5 — —

MEM_BE[3:0] 206 O — — * — * — —

MEM_DATA_OE# 196 O — — * — * — —

MEM_ERR# 194 I * * — — — — —

MEM_RD_SMPL 49 O — — * — * — —

MEM_WRL_OPEN 51 O — — * — * — —

MWS_P2MRXS 66 O — — * — * — —

NMI_REQ 56 I 1.5 0.2 — — — — —

PCI_AD[31:0] I/O 7.0 0 11.0 11.0 3.4 2.9 8.8

PCI_AD_OE# 195 O — — * — * — —

PCI_C/BE[3:0]# — I/O 7.0 0 11.0 11.0 3.3 2.7 8.3

PCI_DEVSEL# 204 I/O 7.0 0 11.0 11.0 3.3 2.8 8.4

PCI_EXT_SEL 67 O — — * — * — —

A

Timing

The IBM 660 Bridge218

Table A-2. 664 Controller Timing By Signal (Continued)

Signal Output (ns)Input (ns)I/OPin
Tristate
Delay
(Max)

Hold
(to 3S)
(min)

Hold
Time
(min)

Enable
Delay
(Max)

Valid
Delay
(Max)

Hold
(min)

Setup
(min)

PCI_FRAME# 200 I/O 7.0 0 11.0 11.0 3.3 2.8 8.5

PCI_GNT# 54 I 7.0 0 — — — — —

PCI_IRDY# 201 I/O 7.0 0 11.0 11.0 3.3 2.8 8.6

PCI_LOCK# 53 I 7.0 0 — — — — —

PCI_OL_OPEN 64 O — — * — * — —

PCI_OUT_SEL 68 O — — * — * — —

PCI_PAR 7 I/O 7.0 0 11.0 11.0 3.3 2.8 8.6

PCI_PERR# 10 I/O 7.0 0 11.0 11.0 3.3 2.7 8.1

PCI_REQ# 58 O — — 11.9 — 3.4 — —

PCI_SERR# 71 O — — 11.0 11.0 2.0 2.9 8.8

PCI_STOP# 203 I/O 7.0 0 11.0 11.0 3.3 2.0 8.4

PCI_TRDY# 202 I/O 7.0 0 11.0 11.0 3.3 2.8 8.4

RAS[7:0]# — O — — 13.2 — 2.9 — —

RESET# 156 I 2.0 0 — — — — —

ROM_LOAD 70 O — — * — * — —

ROM_OE# 47 O — — 15.7 — 3.9 — —

ROM_WE# 60 O — — 16.2 — 3.9 — —

SBE# 193 I * * — — — — —

SHD#1 141 O — — 9.5 9.6 — 2.2 10.5

SRAM_ADS#/ADDR0 124 O — — 10.8 — 3.1 — —

SRAM_ALE 119 O — — 13.6 — 3.0 — —

SRAM_CNT_EN#/
ADDR1

125 O — — 10.8 — 3.1 — —

SRAM_OE#3 117 O — — 16.0 — 3.5 — —

SRAM_WE# 118 O — — 11.2 — 3.3 — —

STOP_CLK_EN# 151 I 1.9 0.5 — — — — —

TA#1 111 I/O 4.7 0.4 8.6 16.7 2.2 3.3 15.7

TAG_CLR# 116 O — — 14.2 — 4.4 — —

TAG_MATCH 142 I 2.3 0.7 — — — — —

TAG_VALID 115 O — — 12.7 — 3.5 — —

TAG_WE# 114 O — — 12.9 — 3.6 — —

TBST#1,2 144 I 2.0 0 — 13.7 — 2.6 11.8

TEA#1 137 O 2.4 1.4 0.8 16.7 2.2 3.3 15.7

TS#1 143 I/O 3.1 0 8.6 16.4 2.3 4.8 15.2

TSIZE[0:2]1,2 — I/O 2.4 0.3 13.8 19.2 2.5 4.0 16.9

TT[0:4]1,2 — I/O 3.9 0.15 14.5 19.2 4.0 4.0 16.9

A

Timing

The IBM 660 Bridge 219

Table A-2. 664 Controller Timing By Signal (Continued)

Signal Output (ns)Input (ns)I/OPin
Tristate
Delay
(Max)

Hold
(to 3S)
(min)

Hold
Time
(min)

Enable
Delay
(Max)

Valid
Delay
(Max)

Hold
(min)

Setup
(min)

WE[1:0]# — O — — 11.7 — 2.8 — —

XATS# 129 I 2.2 0 11.8 — 2.8 — —

Notes:

* These signals interconnect the 663 and the 664. Keep these lines point to point and
as short as possible to maintain minimum flight time between the 663 and the 664.

—These timing specifications are not applicable to the signal.

1. The 660 enables these signals at least one CPU clock before setting the outputs to
the correct state, so the net effective output enable delay is T(enable delay) –
T(CPU clock).

2. The 660 drives these signals to the correct state one CPU clock before asserting
TS#; thus, the net effective delay is T(enable delay) – T(CPU clock).

3. The 660 drives this signal to the correct state at least one CPU clock before it is
required.

Typically asynchronous signals, such as RESET#, INT_REQ, and NMI_REQ are metast-
able-hardened. If their assertion timing violates the input setup or hold times for a given clock
cycle, these signals will be recognized on a subsequent clock.

Transitions on the RAS[7:0]# and CAS[7:0]# lines are timed from the rising edge of the CPU
clock during CPU and PCI accesses to the DRAM, and are timed from the rising edge of
PCI_CLK during DRAM refresh cycles. The output timing in each case is the same. For ex-
ample, RAS# output valid delay is a maximum of 12.8ns from either the CPU or PCI clock,
whichever one provoked the transition.

A

Timing

The IBM 660 Bridge220

A.7 Detailed Timing Diagrams
The following timing diagrams in Figure A-6 through Figure A-22 illustrate some fundamen-
tal operations of the 660 Bridge.

In CPU to memory read burst-mode timing diagrams where asynchronous SRAMs are used
with the internal L2 controller, an additional clock cycle must be added to the fourth beat of
any CPU to memory read burst that causes a cache miss. For example after a read:

A pipelined page hit, cache miss, burst read with EDO DRAM requires –3–3–3–3
CPU clocks when the L2 uses burst SRAMs and –3–3–3–4 CPU clocks when the
L2 uses asynchronous SRAMs. The extra beat is caused by delaying the final TA#
by one CPU_CLK to allow the asynchronous SRAM sufficient data hold time for the
fourth beat.

A

Timing

The IBM 660 Bridge 221

A.7.1 CPU to Memory Write (Page DRAM) From Bus Idle

Figure A-6. CPU to Memory Write (Page DRAM) From Bus Idle

S
S

S
S

R
ow

C
0

C
1

C
2

C
3

(1
)

(1
)

(1
)

(1
)

T
he

se
 s

ig
na

ls
 a

re
 tr

is
ta

te
d

as
 s

ho
w

n
on

ly
 w

hi
le

 th
e

in
te

rn
al

 c
ac

he
 is

 d
is

ab
le

d.
 W

hi
le

 th
e

in
te

rn
al

 c
ac

he
 is

 e
na

bl
ed

, t
he

se
 s

ig
na

ls
 a

re
 a

lw
ay

s
dr

iv
en

 e
xc

ep
t i

n
 r

es
po

ns
e

to
 a

 C
P

U
_B

U
S

_C
LA

IM

fr
om

 a
 C

P
U

 b
us

 a
ge

nt
.

W
W

W
W

C
P

U
_C

LK

T
S

#

C
P

U
_B

U
S

_C
LA

IM
#

A
A

C
K

#

TA
#

M
A

[1
1:

0]

R
A

S
#

C
A

S
#

W
E

[1
:0

]#

C
P

U
_D

A
TA

M
E

M
_W

R
L_

O
P

E
N

M
E

M
_D

A
TA

A

Timing

The IBM 660 Bridge222

A.7.2 CPU to Memory Write (Page DRAM) Followed by Write Hit

Figure A-7. CPU to Memory Write (Page DRAM) Followed by Write Hit

S
S

S
S

R
ow

C
a0

C
a1

C
a2

C
a3

a
b

a
b

a
b

a
a

a
a

b
b

b
b

C
b0

C
b1

C
b2

C
b3

S
S

S
S

a0
a1

a2
a3

b0
b1

b2
b3

W
W

W
W

W
W

W
W

C
P

U
_C

LK

T
S

#

C
P

U
_B

U
S

_C
LA

IM
#

A
A

C
K

#

TA
#

M
A

[1
1:

0]

R
A

S
#

C
A

S
#

W
E

[1
:0

]#

C
P

U
_D

A
TA

M
E

M
_W

R
L_

O
P

E
N

M
E

M
_D

A
TA

A

Timing

The IBM 660 Bridge 223

A.7.3 CPU to Memory Write (Page DRAM) Followed by Write Page Miss and Bank
Miss

Figure A-8. CPU to Memory Write (Page DRAM) Followed by Write Page Miss and
Bank Miss

S
S

S
S

R
ow

a
C

a0
C

a1
C

a2
C

a3

a
b

a
b

a
b

a
a

a
a

b
b

b
b

C
b0

C
b1

C
b2

C
b3

S
S

S
S

a0
a1

a2
a3

b0
b1

b2
b3

W
W

W
W

W
W

W
W

R
ow

b

C
P

U
_C

LK

T
S

#

C
P

U
_B

U
S

_C
LA

IM
#

A
A

C
K

#

TA
#

M
A

[1
1:

0]

R
A

S
#a

R
A

S
#b

C
A

S
#

W
E

[1
:0

]#

C
P

U
_D

A
TA

M
E

M
_W

R
L_

O
P

E
N

M
E

M
_D

A
TA

A

Timing

The IBM 660 Bridge224

A.7.4 CPU to Memory Write (Page DRAM) Followed by Read Hit

Figure A-9. CPU to Memory Write (Page DRAM) Followed by Read Hit

S
S

S
S

R
ow

C
a0

C
a1

C
a2

C
a3

a
b

a
b

a
b

a
a

a
a

b
b

b
b

C
b0

C
b1

C
b2

C
b3

S
S

S
S

a0
a1

a2
a3

b0
b1

b2

W
W

W
W

S
S

S
S

b3

C
P

U
_C

LK

T
S

#

C
P

U
_B

U
S

_C
LA

IM
#

A
A

C
K

#

TA
#

M
A

[1
1:

0]

R
A

S
#

C
A

S
#

W
E

[1
:0

]#

C
P

U
_D

A
TA

M
E

M
_W

R
L_

O
P

E
N

M
E

M
_D

A
TA

A

Timing

The IBM 660 Bridge 225

A.7.5 CPU to Memory Write (Page DRAM) Read/Modify/Write From Bus Idle

Figure A-10. CPU to Memory Write (Pg. DRAM) Read/Modify/Write From Bus Idle

R
ow

C
ol

um
n

SS

W

R
ea

d
M

od
ify

W
rit

e

C
P

U
_C

LK

T
S

#

C
P

U
_B

U
S

_C
LA

IM
#

A
A

C
K

#

TA
#

M
A

[1
1:

0]

R
A

S
#

C
A

S
#

W
E

[1
:0

]#

C
P

U
_D

A
TA

M
E

M
_W

R
L_

O
P

E
N

M
E

M
_D

A
TA

A

Timing

The IBM 660 Bridge226

A.7.6 CPU to Memory Read (Page DRAM) From Bus Idle

Figure A-11. CPU to Memory Read (Page DRAM) From Bus Idle

S
S

S
S

S
S

S
S

R
ow

C
0

C
1

C
2

C
3

(1
)

(1
)

(1
)

C
P

U
_C

LK

T
S

#

C
P

U
_B

U
S

_C
LA

IM
#

A
A

C
K

#

TA
#

M
A

[1
1:

0]

R
A

S
#

C
A

S
#

W
E

[1
:0

]#

M
E

M
_D

A
TA

C
P

U
_D

A
TA

(1
)

T
he

se
 s

ig
na

ls
 a

re
 tr

is
ta

te
d

as
 s

ho
w

n
on

ly
 w

hi
le

 th
e

in
te

rn
al

 c
ac

he
 is

 d
is

ab
le

d.
 W

hi
le

 th
e

in
te

rn
al

 c
ac

he
 is

 e
na

bl
ed

, t
he

se
 s

ig
na

ls
 a

re
 a

lw
ay

s
dr

iv
en

 e
xc

ep
t i

n
 r

es
po

ns
e

to
 a

 C
P

U
_B

U
S

_C
LA

IM

fr
om

 a
 C

P
U

 b
us

 a
ge

nt
.

A

Timing

The IBM 660 Bridge 227

A.7.7 CPU to Memory Read (Page DRAM) Followed by Read Hit

Figure A-12. CPU to Memory Read (Page DRAM) Followed by Read Hit

S
S

S
S

S
S

S
S

R
ow

C
a0

C
a1

C
a2

C
a3

(1
)

a

a

a
a

a
a

a

b

b

b

b
b

b
b

S
S

S
S

S
S

S
S

C
b0

C
b1

C
b2

C
b3

a0
a1

a2
a3

b0
b1

b2
b3

(1
)

E
ar

lie
st

 th
at

 a
no

th
er

 T
S

co

ul
d

be
 is

su
ed

.

C
P

U
_C

LK

T
S

#

C
P

U
_B

U
S

_C
LA

IM
#

A
A

C
K

#

TA
#

M
A

[1
1:

0]

R
A

S
#

C
A

S
#

W
E

[1
:0

]#

M
E

M
_D

A
TA

C
P

U
_D

A
TA

A

Timing

The IBM 660 Bridge228

A.7.8 CPU to Memory Read (Page DRAM) Followed by Read Miss and Bank Miss

Figure A-13. CPU to Memory Read (Page DRAM) Followed by Read Miss and
Bank Miss

S
S

S
S

S
S

S
S

R
ow

a
C

a0
C

a1
C

a2
C

a3

a

a

a
a

a
a

a

b

b

b

b
b

b
b

C
b0

C
b1

C
b2

C
b3

a0
a1

a2
a3

R
ow

b

b0
b1

b2
b3

S
S

S
S

S
S

S
S

C
P

U
_C

LK

T
S

#

C
P

U
_B

U
S

_C
LA

IM
#

A
A

C
K

#

TA
#

M
A

[1
1:

0]

R
A

S
#a

R
A

S
#b

C
A

S
#

W
E

[1
:0

]#

M
E

M
_D

A
TA

C
P

U
_D

A
TA

R
D

W
R

A

Timing

The IBM 660 Bridge 229

A.7.9 CPU to Memory Read (Page DRAM) Followed by Write Hit

Figure A-14. CPU to Memory Read (Page DRAM) Followed by Write Hit

S
S

S
S

S
S

S
S

R
ow

C
a0

C
a1

C
a2

C
a3

a

a

a
a

a
a

a

b

b

b

b
b

b
b

S
S

S

C
b0

C
b1

C
b2

C
b3

a0
a1

a2
a3

b0
b1

b2
b3

S

W
W

W
W

C
P

U
_C

LK

T
S

#

C
P

U
_B

U
S

_C
LA

IM
#

A
A

C
K

#

TA
#

M
A

[1
1:

0]

R
A

S
#

C
A

S
#

W
E

[1
:0

]#

M
E

M
_D

A
TA

M
E

M
_W

R
L_

O
P

E
N

C
P

U
_D

A
TA

A

Timing

The IBM 660 Bridge230

A.7.10 CPU to Bridge Write of Bridge Control Register

Figure A-15. CPU to Bridge Write of Bridge Control Register

n
P

C
I_

C
LK

s
(1

)

1
2

3
4

5
6

S
0.

.0
h

0B
h

00
hTA

C
D

at
a

to
 B

C
R

D
E

V
S

E
L#

, I
D

S
E

L#
, T

R
D

Y
#,

 a
nd

 S
T

O
P

ar

e
no

t a
ss

er
te

d
du

rin
g

th
e

tr
an

sa
ct

io
n.

(1
)

T
hi

s
de

la
y

co
nt

ro
lle

d
by

 th
e

sy
st

em
 a

rb
ite

r.

C
P

U
_C

LK

C
P

U
_A

D
D

R
 [6

0X
]

T
S

[6

0X
]

A
A

C
K

[6

64
]

TA

[6
64

]

C
P

U
_D

A
TA

 [6
0X

]

P
C

I_
C

LK

P
C

I_
R

E
Q

[6

64
]

P
C

I_
G

N
T

[A

rb
]

P
C

I_
A

D
 [6

64
]

P
C

I_
A

D
 [6

63
]

C
/B

E
[3

:0
]#

 [6
64

]

F
R

A
M

E

[6
64

]

IR
D

Y

[6
64

]

N
ot

e
th

at
:

A

Timing

The IBM 660 Bridge 231

A.7.11 CPU to Bridge Read of ROM

Figure A-16. CPU to Bridge Read of ROM

7
P

C
I C

lo
ck

s,
 T

yp
ic

al
 E

ac
h

C
yc

le
7

P
C

I C
lo

ck
s,

 T
yp

ic
al

 E
ac

h
C

yc
le

S

0.
.0

h

0B
h

D
E

V
S

E
L#

, I
D

S
E

L#
, T

R
D

Y
#,

 S
T

O
P

#,
 a

nd
 R

O
M

_W
E

ar

e
no

t a
ss

er
te

d
du

rin
g

th
e

tr
an

sa
ct

io
n.

D
ia

gr
am

 a
ss

um
es

 th
at

 th
e

P
C

I b
us

 is
 p

ar
ke

d
on

 th
e

C
P

U
.

B
yt

e
0

A
dd

re
ss

S
S

S
S

S
S

S

by
te

 0

(1
)

sh
ift

 (
2)

 lo
ad

(1
)(2

)

by
te

 1

A
dd

re
ss

 1

by
te

 2
by

te
 3

by
te

 4
by

te
 5

by
te

 6
by

te
 7

A
dd

re
ss

 2
A

dd
re

ss
 3 A
dd

re
ss

 4

A
dd

re
ss

 5 A
dd

re
ss

 6A
dd

re
ss

 7hg
fe

dc
b

gf
ed

cb
a

fe
dc

ba

ed
cb

a

dc
ba

a
ba

cb
a

C
P

U
_C

LK

C
P

U
_A

D
D

R

T
S

#

A
A

C
K

#

TA
#

C
P

U
_D

A
TA

P
C

I_
C

LK

F
R

A
M

E
#

IR
D

Y
#

R
O

M
_L

O
A

D

C
/B

E
[3

:0
]#

P
C

I_
A

D
[2

3:
0]

 [6
64

]

P
C

I_
A

D
[3

1:
24

]

R
O

M
_O

E
#

N
ot

e
th

at
:

1 2

[R
O

M
]

A

Timing

The IBM 660 Bridge232

A.7.12 CPU to Bridge Read of Bridge Control Register

Figure A-17. CPU to Bridge Read of Bridge Control Register

n
P

C
I_

C
LK

s
(2

)

1
2

3
4

5
6

S

D
at

a
fr

om
 B

C
R

0.
.0

h

0B
h

00
h

D
E

V
S

E
L#

, I
D

S
E

L#
, T

R
D

Y
#,

 a
nd

 S
T

O
P

ar

e
no

t a
ss

er
te

d
du

rin
g

th
e

tr
an

sa
ct

io
n.

(1
)

(1
)

T
he

 B
rid

ge
 ta

ke
s

co
nt

ro
l o

f t
he

 P
C

I b
us

 a
t t

hi
s

po
in

t.
(2

)
T

hi
s

de
la

y
co

nt
ro

lle
d

by
 th

e
sy

st
em

 a
rb

ite
r.

C
P

U
_C

LK

C
P

U
_A

D
D

R
 [6

0X
]

T
S

[6

0X
]

A
A

C
K

[6

64
]

TA

[6
64

]

C
P

U
_D

A
TA

 [6
63

]

P
C

I_
C

LK

P
C

I_
R

E
Q

[6

64
]

P
C

I_
G

N
T

[A

rb
]

P
C

I_
A

D
 [6

64
]

C
/B

E
[3

:0
]#

 [6
64

]

F
R

A
M

E

[6
64

]

IR
D

Y

[6
64

]

N
ot

e
th

at
:

A

Timing

The IBM 660 Bridge 233

A.7.13 CPU to Memory Read, L2 Cache w/Async SRAMS, Hit

Figure A-18. CPU to Memory Read, L2 Cache w/Async SRAMS, Hit

1

S
S

a
b

a
b

a
b

a0
a1

a2
a3

b0
b1

b2
b3

(1
)

(1
)

O
n

ca
ch

ea
bl

e
C

P
U

 to
 m

em
or

y
re

ad
s,

 S
R

A
M

_O
E

is

 s
pe

cu
la

tiv
el

y
as

se
rt

ed
.

 If
 M

A
T

C
H

 is
 s

am
pl

ed
 d

ea
ss

er
te

d,
 S

R
A

M
_O

E

is
 d

ea
ss

er
te

d
at

 th
e

tic
k

m
ar

k.

(2
)

(2
)

S
R

A
M

_A
D

D
R

[n
:2

] a
re

 h
el

d
by

 a
 tr

an
sp

ar
en

t e
xt

er
na

l l
at

ch
 w

hi
le

 A
LE

 is
 lo

w
.

a
b

S
S

S
S

S
S

S
S

b
m

od
 4

b+
1

m
od

 4b+
2

m
od

 4 b+
3

m
od

 4

a
m

od
 4

 (
3) a+

1
m

od
 4a+

2
m

od
 4 a+

3
m

od
 4

(3
)

S
R

A
M

_A
[1

:0
] i

s
in

cr
em

en
te

d
in

 a
 c

irc
ul

ar
 m

an
ne

r
(0

0,
 0

1,
 1

0,
 1

1,
 0

0,
...

)
an

d
m

ay
 b

eg
in

 in
 a

ny
 s

ta

C
P

U
_C

LK

C
P

U
_A

D
D

R

T
S

#

M
A

T
C

H

A
A

C
K

#

TA
#

C
P

U
_D

A
TA

S
R

A
M

_O
E

#

S
R

A
M

_A
LE

S
R

A
M

_A
D

D
R

[n
:2

]

S
R

A
M

_A
D

D
R

[1
:0

]

A

Timing

The IBM 660 Bridge234

A.7.14 CPU to Memory Read, L2 Cache w/Burst SRAMs, Hit

Figure A-19. CPU to Memory Read, L2 Cache w/Burst SRAMs, Hit

1

S
S

a
b

a
b

a
b

a0
a1

a2
a3

b0
b1

b2
b3

(1
)

(1
)

O
n

ca
ch

ea
bl

e
C

P
U

 to
 m

em
or

y
re

ad
s,

 S
R

A
M

_O
E

is

 s
pe

cu
la

tiv
el

y
as

se
rt

ed
.

 If
 M

A
T

C
H

 is
 s

am
pl

ed
 d

ea
ss

er
te

d,
 S

R
A

M
_O

E

is
 d

ea
ss

er
te

d
at

 th
e

tic
k

m
ar

k.

S
S

S
S

S
S

S
S

C
P

U
_C

LK

C
P

U
_A

D
D

R

T
S

#

M
A

T
C

H

A
A

C
K

#

TA
#

C
P

U
_D

A
TA

S
R

A
M

_O
E

#

S
R

A
M

_C
N

T
_E

N
#

S
R

A
M

_A
D

S

A

Timing

The IBM 660 Bridge 235

A.7.15 CPU to Memory Read (EDO DRAM) Cache Miss Followed by Read Hit Cache
Miss w/Async SRAMs

Figure A-20. CPU to Memory Read (EDO DRAM) Cache Miss Followed by Read
Hit Cache Miss w/Async SRAMs

S
S

S
S

S
S

S
S

R
ow

C
a0

C
a1

C
a2

C
a3

a

a

a
a

a
a

a

b

b

b

b
b

b
b

S
S

S
S

S
S

S
S

C
b0

C
b1

C
b2

C
b3

a0
a1

a2
a3

b0
b1

b2
b3

a0
a2

a1
a3

b1
b3

b2
b0

a
b

S
S

a0
a1

a2
a3

b0
b1

b2
b3

b
b

m
od

 4

b+
1

m
od

 4b+
2

m
od

 4 b+
3

m
od

 4

a

a
m

od
 4

 (
1)

a+
1

m
od

 4a+
2

m
od

 4 a+
3

m
od

 4

(1
)

S
R

A
M

_A
[1

:0
] i

s
in

cr
em

en
te

d
in

 a
 c

irc
ul

ar
 m

an
ne

r
(0

0,
 0

1,
 1

0,
 1

1,
 0

0,
...

)
an

d
m

ay
 b

eg
in

 in
 a

ny
 s

ta
te

.

C
P

U
_C

LK

C
P

U
_A

D
D

R

T
S

#

C
P

U
_B

U
S

_C
LA

IM
#

A
A

C
K

#

TA
G

_W
E

#

TA
#

M
A

[1
1:

0]

R
A

S
#

C
A

S
#

W
E

[1
:0

]#

M
E

M
_D

A
TA

C
P

U
_D

A
TA

M
A

T
C

H

S
R

A
M

_O
E

#

S
R

A
M

_W
E

#

S
R

A
M

_A
LE

S
R

A
M

_A
D

D
R

[n
:2

]

S
R

A
M

_A
[1

:0
]

A

Timing

The IBM 660 Bridge236

A.7.16 CPU to Memory Read (EDO DRAM) Cache Miss Followed by Read Hit Cache
Miss w/Burst SRAMs

Figure A-21. CPU to Memory Read (EDO DRAM) Cache Miss Followed by Read
Hit Cache Miss w/Burst SRAMs

S
S

S
S

S
S

S
S

R
ow

C
a0

C
a1

C
a2

C
a3

a

a

a
a

a
a

a

b

b

b

b
b

b
b

S
S

S
S

S
S

S
S

C
b0

C
b1

C
b2

C
b3

a0
a1

a2
a3

b0
b1

b2
b3

a0
a2

a1
a3

b1
b3

b2
b0

a
b

S
S

a0
a1

a2
a3

b0
b1

b2
b3

C
P

U
_C

LK

C
P

U
_A

D
D

R

T
S

#

C
P

U
_B

U
S

_C
LA

IM
#

A
A

C
K

#

TA
G

_W
E

#

TA
#

M
A

[1
1:

0]

R
A

S
#

C
A

S
#

W
E

[1
:0

]#

M
E

M
_D

A
TA

C
P

U
_D

A
TA

M
A

T
C

H

S
R

A
M

_O
E

#

S
R

A
M

_W
E

#

S
R

A
M

_C
N

T
_E

N
#

S
R

A
M

_A
D

S
#

A

Timing

The IBM 660 Bridge 237

A.7.17 CPU to Memory Read (EDO DRAM) Followed by Read Hit

Figure A-22. CPU to Memory Read (EDO DRAM) Followed by Read Hit

S
S

S
S

S
S

S
S

R
ow

C
a0

C
a1

C
a2

C
a3

a

a

a
a

a
a

a

b

b

b

b
b

b
b

S
S

S
S

S
S

S
S

C
b0

C
b1

C
b2

C
b3

a0
a1

a2
a3

b0
b1

b2
b3

a0
a2

a1
a3

b1
b3

b2
b0

C
P

U
_C

LK

T
S

#

C
P

U
_B

U
S

_C
LA

IM
#

A
A

C
K

#

TA
#

M
A

[1
1:

0]

R
A

S
#

C
A

S
#

W
E

[1
:0

]#

M
E

M
_D

A
TA

C
P

U
_D

A
TA

A

Timing

The IBM 660 Bridge238

A

Electrical and Mechanical

The IBM 660 Bridge 239

Appendix B
Electrical and Mechanical

Unless otherwise noted, all specifications in this section apply to both the 663 and to the 664.

B.1 Absolute Maximum Ratings
Stresses in excess of those listed in Table B-1 may damage and/or decrease the reliability
of the 660 Bridge. Additionally, stressing the 660 Bridge in excess of the conditions listed as
Recommended Operating Conditions is neither intended nor supported. All voltages are ref-
erenced to ground (VSS).

Table B-1. Absolute Maximum Ratings, 660 Bridge

Symbol Parameter Min Max Units

Tjst Junction Temperature, Storage -40 125 deg C

Tjp Junction Temperature, Power Applied -25 100 deg C

VDD Supply Voltage 2.7 3.9 V

Vi DC Voltage Applied to Any Input –.5 5.5 V

Vo DC Voltage Applied to Any Output (Output Tri-
stated)

–.5 5.5 V

ESD Withstand 2.2 — kV

Latchup current 100 — mA

B

Electrical and Mechanical

The IBM 660 Bridge240

B.2 Recommended Operating Conditions
Table B-2 lists the conditions under which the 660 Bridge is intended to operate.

Table B-2. Recommended Operating Conditions, 660 Bridge

Symbol Parameter Min Max Units Notes

VDD Supply Voltage 3.0 3.8 v

VI DC Voltage Applied to Any Input Pin –.5 5.5 v (1)

VO DC Voltage Applied to Any Output Pin –.5 5.5 v (1)

Top Junction Temperature, Operating 10 85 deg C

Notes ForTable B-2 :
1) Allowed range of DC voltage applied to any I/O pin in input mode or to any input pin. The

pins shown as Type = PCI may conduct excess current if forced above VDD + 1.5v.

B.3 Power Dissipation and Thermal Characteristics

B.3.1 Power Dissipation
Table B-3 shows typical power dissipation numbers for the 663 and the 664. These values
were measured during heavy bus traffic periods, using devices with typical process vari-
ables.

Table B-3. 660 Power Dissipation

Parameter 663 664 Unit

Typical Power Dissipation,
Vdd = 3.3v, Heavy Bus Traffic

0.5 1.0 W

Typical Power Dissipation,
Vdd = 3.6v, Heavy Bus Traffic

0.6 1.3 W

B

Electrical and Mechanical

The IBM 660 Bridge 241

B.3.2 Thermal Characteristics
Table B-4 shows the typical thermal resistances associated with the 663 and the 664. Each
row shows data for a given air flow condition at the chip package. The row titled Convection
shows data for the chip package in free air with no forced air cooling, with the package
mounted horizontally on the upper surface of a PCB. The other rows show data for a variety
of forced air flow conditions. The values shown do not include a significant amount of heat
flow through the pins of the chip, either to or from the PCB.

Table B-4. Typical Thermal Resistance, Junction to Ambient, No Heat Sink

Airflow �j–a, 663 �j–a, 664 Units

Convection 43 52 deg C/W

.25 M/s (50fpm) 37 45 deg C/W

.5 M/s (100fpm) 34 42 deg C/W

1 M/s (200fpm) 31 38 deg C/W

Different cooling paths predominate at different heat flows. Typically:

TRj–c � � 10° C/W with a good heat sink, and
� 2° C/W without a heat sink

B.4 Common Characteristics
The specifications shown in Table B-5 are common to both the 663 and the 664, while within
the recommended operating conditions envelope.

Table B-5. Common Characteristics

Symbol Parameter Type Min Max Units Notes

VIL Input Low Voltage All — .8 v (2)

VIH Input High Voltage All 2.0 — v (2)

IIL Input Leakage Current All — 1 uA (2)

VOL Output Low Voltage TTL — .40 v (3)

PCI — .55 v (3)

VOH Output High Voltage TTL 2.4 — v (3)

PCI 2.4 — v (3)

IO3S Output Tri-state Leakage Current TTL — 10 uA (3)

PCI — 70 uA (3)

Notes for Table B-5:
1) Over Recommended Operating Conditions.
2) Values apply to each I/O pin in input mode and to each input pin.
3) Values apply to each output pin and to each I/O pin in output mode.

B

Electrical and Mechanical

The IBM 660 Bridge242

B.5 Package and Pin Electrical Characteristics Model
The electrical model of the effects of package and pin parasitic effects on the 660 Bridge is
shown in Figure B-1. The corresponding ranges of values shown in Table B-6 are nominal
only, are not guaranteed, and vary somewhat from pin to pin. The lower values are typical
of pins that are located on the side of the package and which are closest to the chip. The
higher values are typical of corner pins. Note that the C1 capacitance is the value shown for
DPC (Die Pad Capacitance) in Figure B-1 (which is due to the I/O book). C2 represents a
distributed capacitance, and L1 represents a lumped loop inductance which includes the ef-
fects of inductance from the driver book to the power supply pins.

Figure B-1. 653 Package/Pin Electrical Model

Die
Pad

C1

R1L1

C2

Chip
Pin

Die Pad
Capacitance

Table B-6. Electrical Model Range of Values

Symbol Condition 663 664 Unit

Inductance (L1) Shortest lead 12 11 nH

Longest lead 17 14 nH

Resistance (R1) Shortest lead .17 .13 �

Longest lead .21 .17 �

Capacitance (C2) Shortest lead 1.4 1.2 pf

Longest lead 2.4 1.9 pf
B

Electrical and Mechanical

The IBM 660 Bridge 243

B.6 663 DC Characteristics By Signal

Table B-7. 663 DC Characteristics By Signal (See Note 1)
Signal Pin I/O Book, Type P/L IOL IOH SPICE

C d (4)
DPC (5)

Pad (2) (3) (2) (mA) (mA) Card (4) Min Max
AOS RR MMRS 166 I CBJE, B0 TTL F — — cbjd a b0 .8 1.0AOS_RR_MMRS 166 I CBJE, B0 TTL F — — cbjd a b0 .8 1.0

C2P_WRL_OPEN 154 I CBJE, B0 TTL F — — cbjd a b0 .8 1.0

CPU_CLK 157 I CBB4, B0 TTL A — — cbb4 a b0 .8 1.0

CPU_DATA[00:63] — I/O CBUM, 10 PCI B 6 6 cbuk b 10 3.1 3.7

CPU_DATA_OE# 146 I CBJE, B0 TTL F — — cbjd a b0 .8 1.0

CPU_DPAR[0:7] App B I/O CBUM, 10 PCI B 6 6 cbuk b 10 3.1 3.7

CPU_PAR_ERR# 174 O CBNX, 16 TTL C 14 12 cbnw c 11 2.0 2.2

CPU_RDL_OPEN 148 I CBUM, 10 PCI B — — cbuk b 10 3.1 3.7

CRS_C2PWXS 151 I CBUM, 10 PCI B — — cbuk b 10 3.1 3.7

DUAL_CTRL_REF 170 I CBJE, B0 TTL F — — cbjd a b0 .8 1.0

ECC_LE_SEL 149 I CBJE, BO TTL F — — cbjd a b0 .8 1.0

MEM_BE[0:1] App B I CBSX, B0 TTL A — — cbsx a b0 .8 1.0

MEM_BE[2:3] App B I CBJE, B0 TTL F — — cbjd a b0 .8 1.0

MEM_CHECK[0:7] App B I/O CBNU, 10 TTL B 12 8 cbns b 10 3.7 4.3

MEM_DATA[63:0] App B I/O CBNU, 10 TTL B 12 8 cbns b 10 3.7 4.3

MEM_DATA_OE# 145 I CBJE, B0 TTL F — — cbjd a b0 .8 1.0

MEM_ERR# 171 O CBNX, 16 TTL C 14 12 cbnw c 11 2.0 2.2

MEM_RD_SMPL 147 I CBUM, 10 PCI B — — cbuk b 10 3.1 3.7

MEM_WRL_OPEN 150 I CBUM, 10 PCI B — — cbuk b 10 3.1 3.7

MIO_TEST 156 I CBJE, B0 TTL F — — cbjd a b0 .8 1.0

MWS_P2MRXS 152 I CBUM, 10 PCI B — — cbuk b 10 3.1 3.7

PCI_AD[31:0] App B I/O CBUM, 10 PCI A 6 6 cbuk a 10 3.1 3.7

PCI_AD_OE# 144 I CBJE, B0 TTL F — — cbjd a b0 .8 1.0

PCI_EXT_SEL 153 I CBUM, 10 PCI B — — cbuk b 10 3.1 3.7

PCI_IRDY# 167 I CBUM, 10 PCI B — — cbuk b 10 3.1 3.7

PCI_OL_OPEN 165 I CBJE, B0 TTL F — — cbjd a b0 .8 1.0

PCI_OUT_SEL 169 I CBJE, BO TTL F — — cbjd a b0 .8 1.0

PCI_TRDY# 168 I CBUM, 10 PCI B — — cbuk b 10 3.1 3.7

ROM_LOAD 160 I CBUM, 10 PCI B — — cbuk b 10 3.1 3.7

SBE# 175 O CBNX, 16 TTL C 14 12 cbnw c 11 2.0 2.2

TEST# 155 I CBSW, B3 TTL A — — cbsw a b3 .8 1.0

Notes:
1) Values apply over recommended operating conditions.

B

Electrical and Mechanical

The IBM 660 Bridge244

2) The Book, Pad, and P/L (performance level) define the I/O pin driver/receiver type, charac-
teristics, and speed. More information on these items is contained in the IBM CMOS4LP Log-
ic Products Databook (8/93), Document Number ADCC4LDBU–01.
3) See Section B.4, Common Characteristics.
4) Use this SPICE card to model this signal. The 660 SPICE model package is available from
IBM under Non-Disclosure Agreement. Contact your IBM technical representative for more
information.
5) Die Pad Capacitance. The equivalent capacitance to ground of the die pad attachment as
a function of the I/O book circuitry. To model the electrical path from the I/O book to the circuit
board pad, see Section B.5.

B.7 664 DC Characteristics By Signal

Table B-8. 664 DC Characteristics By Signal (See Note 1)
Signal Pin I/O Book, Type P/L IOL IOH SPICE

Card (4)
DPC (5)

Pad (2) (3) (2) (mA) (mA) Card (4) Min Max

AACK# 109 I/O CBUM, 10 PCI C 6 6 cbuk c 10 3.1 3.7

AOS_RR_MMRS 69 O CBNX, 16 TTL C 14 12 cbnw c 11 2.0 2.2

ARTRY# 110 I/O CBUM, 10 PCI C 6 6 cbuk c 10 3.1 3.7

C2P_WRL_OPEN 61 O CBNX, 16 TTL C 14 12 cbnw c 11 2.0 2.2

CAS[7:0]# — O CBNQ, 13 TTL C 12 8 cbno c 13 3.5 4.2

CPU_ADDR[0:31] — I/O CBNZ, 11 TTL B 14 12 cbnw b 11 2.0 2.2

CPU_BUS_CLAIM# 132 I CBUM, 10 PCI B — — cbuk b 10 3.5 3.7

CPU_CLK 121 I CBB4, B0 TTL A — — cbb4 a b0 .8 1.0

CPU_DATA_OE# 197 O CBNX, 16 TTL C 14 12 cbnw c 11 2.0 2.2

CPU_GNT1# 134 O CBUI, 13 PCI C 6 6 cbug c 10 2.8 3.5

CPU_GNT2# 135 O CBUI, 13 PCI C 6 6 cbug c 10 2.8 3.5

CPU_PAR_ERR# 192 I CBJE, BO TTL F — — cbjd a b0 .8 1.0

CPU_RDL_OPEN 50 O CBNX, 16 TTL C 14 12 cbnw c 11 2.0 2.2

CPU_REQ1# 127 I CBJE, B0 TTL F — — cbjd a b0 .8 1.0

CPU_REQ2# 128 I CBJE, B0 TTL F — — cbjd a b0 .8 1.0

CRS_C2PWXS 65 O CBNZ, 11 TTL C 14 12 cbnw c 11 2.0 2.2

DBG# 140 O CBNQ, 15 TTL C 4 4 cbno c 15 2.9 3.5

DPE# 133 I CBJE, B0 TTL F — — cbjd a b0 .8 1.0

DUAL_CTRL_REF 205 O CBNX, 16 TTL B 14 12 cbnw b 11 2.0 2.2

ECC_LE_SEL 2 O CBNX, 16 TTL C 14 12 cbnw c 11 2.0 2.2

GBL# 120 O CBNX, 11 TTL B 14 12 cbnw b 11 2.0 2.2

IGN_PCI_AD31 57 I CBJE, B0 TTL F — — cbjd a b0 .8 1.0

INT_CPU# 139 O CBNQ, 15 TTL C 4 4 cbno c 15 2.9 3.5

INT_REQ 55 I CBUM, 10 PCI B — — cbuk b 10 3.1 3.7

MA[11:0] — O CBNQ, 13 TTL C 12 8 cbno c 13 3.5 4.2

MCP# 138 O CBNX, 16 TTL C 14 12 cbnw c 11 2.0 2.2

MEM_BE[3:0] 206 O CBNX, 16 TTL C 14 12 cbnw c 11 2.0 2.2

MEM_DATA_OE# 196 O CBNX, 16 TTL C 14 12 cbnw c 11 2.0 2.2

B

Electrical and Mechanical

The IBM 660 Bridge 245

Table B-8. 664 DC Characteristics By Signal (See Note 1) (Continued)
Signal DPC (5) SPICE

Card (4)
IOHIOLP/LTypeBook,I/OPin

MaxMin

 SPICE
Card (4)(mA)(mA)(2)(3)Pad (2)

MEM_ERR# 194 I CBJE, B0 TTL F — — cbjd a b0 .8 1.0

MEM_RD_SMPL 49 O CBNX, 16 TTL C 14 12 cbnw c 11 2.0 2.2

MEM_WRL_OPEN 51 O CBNX, 16 TTL C 14 12 cbnw c 11 2.0 2.2

MIO_TEST 154 I CBJE, B0 TTL F — — cbjd a b0 .8 1.0

MWS_P2MRXS 66 O CBNZ, 11 TTL C 14 12 cbnw c 11 2.0 2.2

NMI_REQ 56 I CBSX, B0 TTL A — — cbsx a b0 .8 1.0

PCI_AD[31:0] I/O CBUM, 10 PCI B 6 6 cbuk b 10 3.1 3.7

PCI_AD_OE# 195 O CBNX, 16 TTL C 14 12 cbnw c 11 2.0 2.2

PCI_C/BE[3:0]# — I/O CBUM, 10 PCI B 6 6 cbuk b 10 3.1 3.7

PCI_CLK 123 I CBJE, B0 PCI F — — cbjd a b0 .8 1.0

PCI_DEVSEL# 204 I/O CBUM, 10 PCI B 6 6 cbuk b 10 3.1 3.7

PCI_EXT_SEL 67 O CBNX, 16 TTL C 14 12 cbnw c 11 2.0 2.2

PCI_FRAME# 200 I/O CBUM, 10 PCI B 6 6 cbuk b 10 3.1 3.7

PCI_GNT# 54 I CBUM, 10 PCI B — — cbuk b 10 3.1 3.7

PCI_IRDY# 201 I/O CBUM, 10 PCI B 6 6 cbuk b 10 3.1 3.7

PCI_LOCK# 53 I CBUM, 10 PCI B — — cbuk b 10 3.1 3.7

PCI_OL_OPEN 64 O CBNX, 16 TTL C 14 12 cbnw c 11 2.0 2.2

PCI_OUT_SEL 68 O CBNX, 16 TTL C 14 12 cbnw c 11 2.0 2.2

PCI_PAR 7 I/O CBUM, 10 PCI B 6 6 cbuk b 10 3.1 3.7

PCI_PERR# 10 I/O CBUM, 10 PCI B 6 6 cbuk b 10 3.1 3.7

PCI_REQ# 58 O CBUI, 13 PCI B 6 6 cbug b 10 2.8 3.5

PCI_SERR# 71 O CBUM, 10 PCI B 6 6 cbuk b 10 3.1 3.7

PCI_STOP# 203 I/O CBUM, 10 PCI B 6 6 cbuk b 10 3.1 3.7

PCI_TRDY# 202 I/O CBUM, 10 PCI B 6 6 cbuk b 10 3.1 3.7

RAS[7:0]# — O CBNQ, 13 TTL C 12 8 cbno c 13 3.5 4.1

RESET# 156 I CBJE, B0 TTL F — — cbjd a b0 .8 1.0

ROM_LOAD 70 O CBNX, 16 TTL C 14 12 cbnw c 11 2.0 2.2

ROM_OE# 47 O CBNQ, 15 TTL C 4 4 cbno c 15 2.9 3.5

ROM_WE# 60 O CBNQ, 15 TTL C 4 4 cbno c 15 2.9 3.5

SBE# 193 I CBJE, B0 TTL F — — cbjd a b0 .8 1.0

SHD# 141 O CBNX, 11 TTL B 14 12 cbnw b 11 2.0 2.2

SRAM_ADS#/
ADDR0

124 O CBNX, 16 TTL C 14 12 cbnw c 11 2.0 2.2

SRAM_ALE 119 O CBNX, 16 TTL C 14 12 cbnw c 11 2.0 2.2

SRAM_CNT_EN#/
ADDR1

125 O CBNX, 16 TTL C 14 12 cbnw c 11 2.0 2.2

SRAM_OE# 117 O CBNX, 16 TTL C 14 12 cbnw c 11 2.0 2.2

SRAM_WE# 118 O CBNX, 16 TTL C 14 12 cbnw c 11 2.0 2.2

STOP_CLK_EN# 151 I CBSZ, BO TTL — — cbsz a b0 .8 1.0

TA# 111 I/O CBUM, 10 PCI C 6 6 cbuk c 10 3.1 3.7

B

Electrical and Mechanical

The IBM 660 Bridge246

Table B-8. 664 DC Characteristics By Signal (See Note 1) (Continued)
Signal DPC (5) SPICE

Card (4)
IOHIOLP/LTypeBook,I/OPin

MaxMin

 SPICE
Card (4)(mA)(mA)(2)(3)Pad (2)

TAG_CLR# 116 O CBNX, 17 TTL C 12 10 cbnw c 12 1.6 1.8

TAG_MATCH 142 I CBUM, 10 PCI B — — cbuk b 10 3.1 3.7

TAG_VALID 115 O CBNX, 17 TTL C 12 10 cbnw c 12 1.6 1.8

TAG_WE# 114 O CBNX, 17 TTL C 12 10 cbnw c 12 1.6 1.8

TBST# 144 I/O CBNZ, 11 TTL B 14 12 cbnw b 11 2.0 2.2

TEA# 137 O CBUM, 10 PCI C 6 6 cbuk c 10 3.1 3.7

TEST# 155 I CBSW, B3 TTL A — — cbsw a b3 .8 1.0

TS# 143 I/O CBUM, 10 PCI C 6 6 cbuk c 10 3.1 3.7

TSIZE[0:2] — I/O CBNZ, 11 TTL B 14 12 cbnw b 11 2.0 2.2

TT[0:4] — I/O CBNZ, 11 TTL B 14 12 cbnw b 11 2.0 2.2

WE[1:0]# — O CBNQ, 13 TTL C 12 8 cbno c 13 3.5 4.1

XATS# 129 I CBJE, B0 TTL F — — cbjd a b0 .8 1.0

Notes:

1) Values apply over recommended operating conditions.
2) The Book, Pad, and P/L (performance level) define the I/O pin driver/receiver type, charac-
teristics, and speed. More information on these items is contained in the IBM CMOS4LP Log-
ic Products Databook (8/93), Document Number ADCC4LDBU–01.
3) See Section D.4, Common Characteristics.

4) Use this SPICE card to model this signal. The 660 SPICE model package is available from
IBM under Non-Disclosure Agreement. Contact your IBM technical representative for more
information.
5) Die Pad Capacitance. The equivalent capacitance to ground of the die pad attachment as
a function of the I/O book circuitry. To model the electrical path from the I/O book to the circuit
board pad, see Section B.5.

B

Electrical and Mechanical

The IBM 660 Bridge 247

B.8 Package Drawings

B.8.1 663 Buffer Package Drawing

Figure B-2. 663 Buffer Package Drawing

32
32

B

See section 1.9 for package marking.

B

Electrical and Mechanical

The IBM 660 Bridge248

B.8.2 664 Controller Package Drawing

Figure B-3. 664 Controller Package Drawing

28
28

B

See section 1.9 for package marking.

B

Pin Lists

The IBM 660 Bridge 249

Appendix C
Pin Lists

Appendix C contains alphabetic pin lists and numeric pin lists for the 663 and the 664.

C.1 663 Buffer Alphabetic Pin List
Pin 663 Signal Name

166 AOS_RR_MMRS

154 C2P_WRL_OPEN

157 CPU_CLK

176 CPU_DATA[00]

177 CPU_DATA[01]

178 CPU_DATA[02]

179 CPU_DATA[03]

185 CPU_DATA[04]

186 CPU_DATA[05]

187 CPU_DATA[06]

188 CPU_DATA[07]

197 CPU_DATA[08]

198 CPU_DATA[09]

199 CPU_DATA[10]

207 CPU_DATA[11]

208 CPU_DATA[12]

209 CPU_DATA[13]

210 CPU_DATA[14]

218 CPU_DATA[15]

220 CPU_DATA[16]

221 CPU_DATA[17]

226 CPU_DATA[18]

227 CPU_DATA[19]

228 CPU_DATA[20]

Pin 663 Signal Name

229 CPU_DATA[21]

1 CPU_DATA[22]

2 CPU_DATA[23]

4 CPU_DATA[24]

24 CPU_DATA[25]

25 CPU_DATA[26]

26 CPU_DATA[27]

27 CPU_DATA[28]

31 CPU_DATA[29]

32 CPU_DATA[30]

33 CPU_DATA[31]

54 CPU_DATA[32]

55 CPU_DATA[33]

56 CPU_DATA[34]

57 CPU_DATA[35]

67 CPU_DATA[36]

68 CPU_DATA[37]

69 CPU_DATA[38]

70 CPU_DATA[39]

78 CPU_DATA[40]

79 CPU_DATA[41]

80 CPU_DATA[42]

86 CPU_DATA[43]

87 CPU_DATA[44]

Pin 663 Signal Name

88 CPU_DATA[45]

89 CPU_DATA[46]

94 CPU_DATA[47]

98 CPU_DATA[48]

99 CPU_DATA[49]

104 CPU_DATA[50]

105 CPU_DATA[51]

106 CPU_DATA[52]

107 CPU_DATA[53]

114 CPU_DATA[54]

115 CPU_DATA[55]

117 CPU_DATA[56]

124 CPU_DATA[57]

125 CPU_DATA[58]

126 CPU_DATA[59]

127 CPU_DATA[60]

134 CPU_DATA[61]

135 CPU_DATA[62]

136 CPU_DATA[63]

146 CPU_DATA_OE#

196 CPU_DPAR[0]

219 CPU_DPAR[1]

3 CPU_DPAR[2]

34 CPU_DPAR[3]

C

Pin Lists

The IBM 660 Bridge250

663 Buffer Alphabetic Pin List (Continued)
Pin 663 Signal Name

77 CPU_DPAR[4]

95 CPU_DPAR[5]

116 CPU_DPAR[6]

137 CPU_DPAR[7]

174 CPU_PAR_ERR#

148 CPU_RDL_OPEN

151 CRS_C2PWXS

170 DUAL_CTRL_REF

149 ECC_LE_SEL

9 GND

23 GND

39 GND

53 GND

66 GND

71 GND

85 GND

97 GND

120 GND

129 GND

143 GND

159 GND

173 GND

191 GND

205 GND

217 GND

235 GND

240 GND

161 MEM_BE[0]

162 MEM_BE[1]

163 MEM_BE[2]

164 MEM_BE[3]

141 MEM_CHECK[0]

122 MEM_CHECK[1]

103 MEM_CHECK[2]

82 MEM_CHECK[3]

37 MEM_CHECK[4]

234 MEM_CHECK[5]

214 MEM_CHECK[6]

195 MEM_CHECK[7]

Pin 663 Signal Name

180 MEM_DATA[00]

182 MEM_DATA[01]

183 MEM_DATA[02]

184 MEM_DATA[03]

189 MEM_DATA[04]

190 MEM_DATA[05]

193 MEM_DATA[06]

194 MEM_DATA[07]

200 MEM_DATA[08]

201 MEM_DATA[09]

202 MEM_DATA[10]

203 MEM_DATA[11]

206 MEM_DATA[12]

211 MEM_DATA[13]

212 MEM_DATA[14]

213 MEM_DATA[15]

215 MEM_DATA[16]

222 MEM_DATA[17]

223 MEM_DATA[18]

224 MEM_DATA[19]

225 MEM_DATA[20]

231 MEM_DATA[21]

232 MEM_DATA[22]

233 MEM_DATA[23]

5 MEM_DATA[24]

6 MEM_DATA[25]

7 MEM_DATA[26]

28 MEM_DATA[27]

29 MEM_DATA[28]

30 MEM_DATA[29]

35 MEM_DATA[30]

36 MEM_DATA[31]

58 MEM_DATA[32]

59 MEM_DATA[33]

60 MEM_DATA[34]

73 MEM_DATA[35]

74 MEM_DATA[36]

75 MEM_DATA[37]

76 MEM_DATA[38]

Pin 663 Signal Name

81 MEM_DATA[39]

83 MEM_DATA[40]

90 MEM_DATA[41]

91 MEM_DATA[42]

92 MEM_DATA[43]

93 MEM_DATA[44]

100 MEM_DATA[45]

101 MEM_DATA[46]

102 MEM_DATA[47]

108 MEM_DATA[48]

109 MEM_DATA[49]

111 MEM_DATA[50]

112 MEM_DATA[51]

113 MEM_DATA[52]

118 MEM_DATA[53]

119 MEM_DATA[54]

121 MEM_DATA[55]

123 MEM_DATA[56]

130 MEM_DATA[57]

131 MEM_DATA[58]

132 MEM_DATA[59]

133 MEM_DATA[60]

138 MEM_DATA[61]

139 MEM_DATA[62]

140 MEM_DATA[63]

145 MEM_DATA_OE#

171 MEM_ERR#

147 MEM_RD_SMPL

150 MEM_WRL_OPEN

156 MIO_TEST

152 MWS_P2MRXS

236 PCI_AD[00]

237 PCI_AD[01]

238 PCI_AD[02]

239 PCI_AD[03]

10 PCI_AD[04]

11 PCI_AD[05]

12 PCI_AD[06]

13 PCI_AD[07]

C

Pin Lists

The IBM 660 Bridge 251

663 Buffer Alphabetic Pin List (Continued)
Pin 663 Signal Name

14 PCI_AD[08]

15 PCI_AD[09]

16 PCI_AD[10]

17 PCI_AD[11]

18 PCI_AD[12]

19 PCI_AD[13]

20 PCI_AD[14]

21 PCI_AD[15]

40 PCI_AD[16]

41 PCI_AD[17]

42 PCI_AD[18]

43 PCI_AD[19]

44 PCI_AD[20]

45 PCI_AD[21]

46 PCI_AD[22]

47 PCI_AD[23]

48 PCI_AD[24]

Pin 663 Signal Name

49 PCI_AD[25]

50 PCI_AD[26]

51 PCI_AD[27]

62 PCI_AD[28]

63 PCI_AD[29]

64 PCI_AD[30]

65 PCI_AD[31]

144 PCI_AD_OE#

153 PCI_EXT_SEL

167 PCI_IRDY#

165 PCI_OL_OPEN

169 PCI_OUT_SEL

168 PCI_TRDY#

160 ROM_LOAD

175 SBE#

155 TEST#

8 VDD

Pin 663 Signal Name

22 VDD

38 VDD

52 VDD

61 VDD

72 VDD

84 VDD

96 VDD

110 VDD

128 VDD

142 VDD

158 VDD

172 VDD

181 VDD

192 VDD

204 VDD

216 VDD

230 VDD

C

Pin Lists

The IBM 660 Bridge252

C.2 663 Buffer Numeric Pin List
Pin 663 Signal Name

1 CPU_DATA[22]

2 CPU_DATA[23]

3 CPU_DPAR[2]

4 CPU_DATA[24]

5 MEM_DATA[24]

6 MEM_DATA[25]

7 MEM_DATA[26]

8 VDD

9 GND

10 PCI_AD[04]

11 PCI_AD[05]

12 PCI_AD[06]

13 PCI_AD[07]

14 PCI_AD[08]

15 PCI_AD[09]

16 PCI_AD[10]

17 PCI_AD[11]

18 PCI_AD[12]

19 PCI_AD[13]

20 PCI_AD[14]

21 PCI_AD[15]

22 VDD

23 GND

24 CPU_DATA[25]

25 CPU_DATA[26]

26 CPU_DATA[27]

27 CPU_DATA[28]

28 MEM_DATA[27]

29 MEM_DATA[28]

30 MEM_DATA[29]

31 CPU_DATA[29]

32 CPU_DATA[30]

33 CPU_DATA[31]

34 CPU_DPAR[3]

35 MEM_DATA[30]

36 MEM_DATA[31]

37 MEM_CHECK[4]

38 VDD

39 GND

40 PCI_AD[16]

Pin 663 Signal Name

41 PCI_AD[17]

42 PCI_AD[18]

43 PCI_AD[19]

44 PCI_AD[20]

45 PCI_AD[21]

46 PCI_AD[22]

47 PCI_AD[23]

48 PCI_AD[24]

49 PCI_AD[25]

50 PCI_AD[26]

51 PCI_AD[27]

52 VDD

53 GND

54 CPU_DATA[32]

55 CPU_DATA[33]

56 CPU_DATA[34]

57 CPU_DATA[35]

58 MEM_DATA[32]

59 MEM_DATA[33]

60 MEM_DATA[34]

61 VDD

62 PCI_AD[28]

63 PCI_AD[29]

64 PCI_AD[30]

65 PCI_AD[31]

66 GND

67 CPU_DATA[36]

68 CPU_DATA[37]

69 CPU_DATA[38]

70 CPU_DATA[39]

71 GND

72 VDD

73 MEM_DATA[35]

74 MEM_DATA[36]

75 MEM_DATA[37]

76 MEM_DATA[38]

77 CPU_DPAR[4]

78 CPU_DATA[40]

79 CPU_DATA[41]

80 CPU_DATA[42]

Pin 663 Signal Name

81 MEM_DATA[39]

82 MEM_CHECK[3]

83 MEM_DATA[40]

84 VDD

85 GND

86 CPU_DATA[43]

87 CPU_DATA[44]

88 CPU_DATA[45]

89 CPU_DATA[46]

90 MEM_DATA[41]

91 MEM_DATA[42]

92 MEM_DATA[43]

93 MEM_DATA[44]

94 CPU_DATA[47]

95 CPU_DPAR[5]

96 VDD

97 GND

98 CPU_DATA[48]

99 CPU_DATA[49]

100 MEM_DATA[45]

101 MEM_DATA[46]

102 MEM_DATA[47]

103 MEM_CHECK[2]

104 CPU_DATA[50]

105 CPU_DATA[51]

106 CPU_DATA[52]

107 CPU_DATA[53]

108 MEM_DATA[48]

109 MEM_DATA[49]

110 VDD

111 MEM_DATA[50]

112 MEM_DATA[51]

113 MEM_DATA[52]

114 CPU_DATA[54]

115 CPU_DATA[55]

116 CPU_DPAR[6]

117 CPU_DATA[56]

118 MEM_DATA[53]

119 MEM_DATA[54]

120 GND

C

Pin Lists

The IBM 660 Bridge 253

663 Buffer Numeric Pin List (Continued)
Pin 663 Signal Name

121 MEM_DATA[55]

122 MEM_CHECK[1]

123 MEM_DATA[56]

124 CPU_DATA[57]

125 CPU_DATA[58]

126 CPU_DATA[59]

127 CPU_DATA[60]

128 VDD

129 GND

130 MEM_DATA[57]

131 MEM_DATA[58]

132 MEM_DATA[59]

133 MEM_DATA[60]

134 CPU_DATA[61]

135 CPU_DATA[62]

136 CPU_DATA[63]

137 CPU_DPAR[7]

138 MEM_DATA[61]

139 MEM_DATA[62]

140 MEM_DATA[63]

141 MEM_CHECK[0]

142 VDD

143 GND

144 PCI_AD_OE#

145 MEM_DATA_OE#

146 CPU_DATA_OE#

147 MEM_RD_SMPL

148 CPU_RDL_OPEN

149 ECC_LE_SEL

150 MEM_WRL_OPEN

151 CRS_C2PWXS

152 MWS_P2MRXS

153 PCI_EXT_SEL

154 C2P_WRL_OPEN

155 TEST#

156 MIO_TEST

157 CPU_CLK

158 VDD

159 GND

160 ROM_LOAD

Pin 663 Signal Name

161 MEM_BE[0]

162 MEM_BE[1]

163 MEM_BE[2]

164 MEM_BE[3]

165 PCI_OL_OPEN

166 AOS_RR_MMRS

167 PCI_IRDY#

168 PCI_TRDY#

169 PCI_OUT_SEL

170 DUAL_CTRL_REF

171 MEM_ERR#

172 VDD

173 GND

174 CPU_PAR_ERR#

175 SBE#

176 CPU_DATA[00]

177 CPU_DATA[01]

178 CPU_DATA[02]

179 CPU_DATA[03]

180 MEM_DATA[00]

181 VDD

182 MEM_DATA[01]

183 MEM_DATA[02]

184 MEM_DATA[03]

185 CPU_DATA[04]

186 CPU_DATA[05]

187 CPU_DATA[06]

188 CPU_DATA[07]

189 MEM_DATA[04]

190 MEM_DATA[05]

191 GND

192 VDD

193 MEM_DATA[06]

194 MEM_DATA[07]

195 MEM_CHECK[7]

196 CPU_DPAR[0]

197 CPU_DATA[08]

198 CPU_DATA[09]

199 CPU_DATA[10]

200 MEM_DATA[08]

Pin 663 Signal Name

201 MEM_DATA[09]

202 MEM_DATA[10]

203 MEM_DATA[11]

204 VDD

205 GND

206 MEM_DATA[12]

207 CPU_DATA[11]

208 CPU_DATA[12]

209 CPU_DATA[13]

210 CPU_DATA[14]

211 MEM_DATA[13]

212 MEM_DATA[14]

213 MEM_DATA[15]

214 MEM_CHECK[6]

215 MEM_DATA[16]

216 VDD

217 GND

218 CPU_DATA[15]

219 CPU_DPAR[1]

220 CPU_DATA[16]

221 CPU_DATA[17]

222 MEM_DATA[17]

223 MEM_DATA[18]

224 MEM_DATA[19]

225 MEM_DATA[20]

226 CPU_DATA[18]

227 CPU_DATA[19]

228 CPU_DATA[20]

229 CPU_DATA[21]

230 VDD

231 MEM_DATA[21]

232 MEM_DATA[22]

233 MEM_DATA[23]

234 MEM_CHECK[5]

235 GND

236 PCI_AD[00]

237 PCI_AD[01]

238 PCI_AD[02]

239 PCI_AD[03]

240 GND

C

Pin Lists

The IBM 660 Bridge254

C.3 664 Controller Alphabetic Pin Lists
664 Signal Name Pin

AACK# 109

ADDR[00] 72

ADDR[01] 73

ADDR[02] 74

ADDR[03] 75

ADDR[04] 76

ADDR[05] 77

ADDR[06] 80

ADDR[07] 81

ADDR[08] 82

ADDR[09] 83

ADDR[10] 84

ADDR[11] 85

ADDR[12] 86

ADDR[13] 87

ADDR[14] 89

ADDR[15] 90

ADDR[16] 91

ADDR[17] 92

ADDR[18] 93

ADDR[19] 96

ADDR[20] 97

ADDR[21] 98

ADDR[22] 99

ADDR[23] 100

ADDR[24] 101

ADDR[25] 102

ADDR[26] 103

ADDR[27] 104

ADDR[28] 105

ADDR[29] 106

ADDR[30] 107

ADDR[31] 108

AOS_RR_MMRS 69

ARTRY# 110

C2P_WRL_OPEN 61

CAS[0]# 174

CAS[1]# 173

CAS[2]# 172

CAS[3]# 171

664 Signal Name Pin

CAS[4]# 170

CAS[5]# 169

CAS[6]# 168

CAS[7]# 165

CPU_BUS_CLAIM# 132

CPU_CLK 121

CPU_DATA_OE# 197

CPU_GNT1# 134

CPU_GNT2# 135

CPU_PAR_ERR# 192

CPU_RDL_OPEN 50

CPU_REQ1# 127

CPU_REQ2# 128

CRS_C2PWXS 65

DBG# 140

DPE# 133

DUAL_CTRL_REF 205

ECC_LE_SEL 2

GBL# 120

GND[01] 9

GND[02] 17

GND[03] 27

GND[04] 45

GND[05] 52

GND[06] 63

GND[07] 79

GND[08] 88

GND[09] 95

GND[10] 113

GND[11] 131

GND[12] 149

GND[13] 167

GND[14] 183

GND[15] 199

IGN_PCI_AD31 57

INT_CPU# 139

INT_REQ 55

MA[00] 190

MA[01] 189

MA[02] 188

664 Signal Name Pin

MA[03] 187

MA[04] 186

MA[05] 185

MA[06] 184

MA[07] 181

MA[08] 180

MA[09] 179

MA[10] 178

MA[11] 177

MCP# 138

MEM_BE[0] 206

MEM_BE[1] 207

MEM_BE[2] 208

MEM_BE[3] 1

MEM_DATA_OE# 196

MEM_ERR# 194

MEM_RD_SMPL 49

MEM_WRL_OPEN 51

MIO_TEST 154

MWS_P2MRXS 66

NMI_REQ 56

PCI_AD[00] 48

PCI_AD[01] 59

PCI_AD[02] 46

PCI_AD[03] 43

PCI_AD[04] 42

PCI_AD[05] 41

PCI_AD[06] 40

PCI_AD[07] 39

PCI_AD[08] 38

PCI_AD[09] 37

PCI_AD[10] 36

PCI_AD[11] 35

PCI_AD[12] 34

PCI_AD[13] 33

PCI_AD[14] 32

PCI_AD[15] 31

PCI_AD[16] 30

PCI_AD[17] 29

PCI_AD[18] 28

C

Pin Lists

The IBM 660 Bridge 255

664 Controller Alphabetic Pin List (Continued)
664 Signal Name Pin

PCI_AD[19] 25

PCI_AD[20] 24

PCI_AD[21] 23

PCI_AD[22] 22

PCI_AD[23] 21

PCI_AD[24] 20

PCI_AD[25] 19

PCI_AD[26] 18

PCI_AD[27] 15

PCI_AD[28] 14

PCI_AD[29] 13

PCI_AD[30] 12

PCI_AD[31] 11

PCI_AD_OE# 195

PCI_C/BE[0]# 6

PCI_C/BE[1]# 5

PCI_C/BE[2]# 4

PCI_C/BE[3]# 3

PCI_CLK 123

PCI_DEVSEL# 204

PCI_EXT_SEL 67

PCI_FRAME# 200

PCI_GNT# 54

PCI_IRDY# 201

PCI_LOCK# 53

PCI_OL_OPEN 64

PCI_OUT_SEL 68

PCI_PAR 7

PCI_PERR# 10

PCI_REQ# 58

664 Signal Name Pin

PCI_SERR# 71

PCI_STOP# 203

PCI_TRDY# 202

RAS[0]# 164

RAS[1]# 163

RAS[2]# 162

RAS[3]# 161

RAS[4]# 160

RAS[5]# 159

RAS[6]# 158

RAS[7]# 157

RESET# 156

ROM_LOAD 70

ROM_OE# 47

ROM_WE# 60

SBE# 193

SHD# 141

SRAM_ADS#/ADDR0 124

SRAM_ALE 119

SRAM_CNT_EN#/ADDR1 125

SRAM_OE# 117

SRAM_WE# 118

STOP_CLK_EN# 151

TA# 111

TAG_CLR# 116

TAG_MATCH 142

TAG_VALID 115

TAG_WE# 114

TBST# 144

664 Signal Name Pin

TEA# 137

TEST# 155

TS# 143

TSIZE[0] 145

TSIZE[1] 146

TSIZE[2] 147

TT[0] 150

TT[1] 152

TT[2] 153

TT[3] 126

TT[4] 136

VDD[01] 8

VDD[02] 16

VDD[03] 26

VDD[04] 44

VDD[05] 62

VDD[06] 78

VDD[07] 94

VDD[08] 112

VDD[09] 122

VDD[10] 130

VDD[11] 148

VDD[12] 166

VDD[13] 182

VDD[14] 191

VDD[15] 198

WE[0]# 176

WE[1]# 175

XATS# 129

C

Pin Lists

The IBM 660 Bridge256

C.4 664 Controller Numeric Pins

Pin 664 Signal Name

1 MEM_BE[3]

2 ECC_LE_SEL

3 PCI_C/BE[3]#

4 PCI_C/BE[2]#

5 PCI_C/BE[1]#

6 PCI_C/BE[0]#

7 PCI_PAR

8 VDD[01]

9 GND[01]

10 PCI_PERR#

11 PCI_AD[31]

12 PCI_AD[30]

13 PCI_AD[29]

14 PCI_AD[28]

15 PCI_AD[27]

16 VDD[02]

17 GND[02]

18 PCI_AD[26]

19 PCI_AD[25]

20 PCI_AD[24]

21 PCI_AD[23]

22 PCI_AD[22]

23 PCI_AD[21]

24 PCI_AD[20]

25 PCI_AD[19]

26 VDD[03]

27 GND[03]

28 PCI_AD[18]

29 PCI_AD[17]

30 PCI_AD[16]

31 PCI_AD[15]

32 PCI_AD[14]

33 PCI_AD[13]

34 PCI_AD[12]

35 PCI_AD[11]

Pin 664 Signal Name

36 PCI_AD[10]

37 PCI_AD[09]

38 PCI_AD[08]

39 PCI_AD[07]

40 PCI_AD[06]

41 PCI_AD[05]

42 PCI_AD[04]

43 PCI_AD[03]

44 VDD[04]

45 GND[04]

46 PCI_AD[02]

47 ROM_OE#

48 PCI_AD[00]

49 MEM_RD_SMPL

50 CPU_RDL_OPEN

51 MEM_WRL_OPEN

52 GND[05]

53 PCI_LOCK#

54 PCI_GNT#

55 INT_REQ

56 NMI_REQ

57 IGN_PCI_AD31

58 PCI_REQ#

59 PCI_AD[01]

60 ROM_WE#

61 C2P_WRL_OPEN

62 VDD[05]

63 GND[06]

64 PCI_OL_OPEN

65 CRS_C2PWXS

66 MWS_P2MRXS

67 PCI_EXT_SEL

68 PCI_OUT_SEL

69 AOS_RR_MMRS

70 ROM_LOAD

Pin 664 Signal Name

71 PCI_SERR#

72 ADDR[00]

73 ADDR[01]

74 ADDR[02]

75 ADDR[03]

76 ADDR[04]

77 ADDR[05]

78 VDD[06]

79 GND[07]

80 ADDR[06]

81 ADDR[07]

82 ADDR[08]

83 ADDR[09]

84 ADDR[10]

85 ADDR[11]

86 ADDR[12]

87 ADDR[13]

88 GND[08]

89 ADDR[14]

90 ADDR[15]

91 ADDR[16]

92 ADDR[17]

93 ADDR[18]

94 VDD[07]

95 GND[09]

96 ADDR[19]

97 ADDR[20]

98 ADDR[21]

99 ADDR[22]

100 ADDR[23]

101 ADDR[24]

102 ADDR[25]

103 ADDR[26]

104 ADDR[27]

105 ADDR[28]

C

Pin Lists

The IBM 660 Bridge 257

664 Controller Numeric Pin List (Continued)

Pin 664 Signal Name

106 ADDR[29]

107 ADDR[30]

108 ADDR[31]

109 AACK#

110 ARTRY#

111 TA#

112 VDD[08]

113 GND[10]

114 TAG_WE#

115 TAG_VALID

116 TAG_CLR#

117 SRAM_OE#

118 SRAM_WE#

119 SRAM_ALE

120 GBL#

121 CPU_CLK

122 VDD[09]

123 PCI_CLK

124 SRAM_ADS#/ADDR0

125 SRAM_CNT_EN#/ADDR1

126 TT[3]

127 CPU_REQ1#

128 CPU_REQ2#

129 XATS#

130 VDD[10]

131 GND[11]

132 CPU_BUS_CLAIM#

133 DPE#

134 CPU_GNT1#

135 CPU_GNT2#

136 TT[4]

137 TEA_

138 MCP#

139 INT_CPU#

140 DBG#

Pin 664 Signal Name

141 SHD#

142 TAG_MATCH

143 TS#

144 TBST#

145 TSIZE[0]

146 TSIZE[1]

147 TSIZE[2]

148 VDD[11]

149 GND[12]

150 TT[0]

151 STOP_CLK_EN#

152 TT[1]

153 TT[2]

154 MIO_TEST

155 TEST#

156 RESET#

157 RAS[7]#

158 RAS[6]#

159 RAS[5]#

160 RAS[4]#

161 RAS[3]#

162 RAS[2]#

163 RAS[1]#

164 RAS[0]#

165 CAS[7]#

166 VDD[12]

167 GND[13]

168 CAS[6]#

169 CAS[5]#

170 CAS[4]#

171 CAS[3]#

172 CAS[2]#

173 CAS[1]#

174 CAS[0]#

Pin 664 Signal Name

175 WE[1]#

176 WE[0]#

177 MA[11]

178 MA[10]

179 MA[09]

180 MA[08]

181 MA[07]

182 VDD[13]

183 GND[14]

184 MA[06]

185 MA[05]

186 MA[04]

187 MA[03]

188 MA[02]

189 MA[01]

190 MA[00]

191 VDD[14]

192 CPU_PAR_ERR#

193 SBE#

194 MEM_ERR#

195 PCI_AD_OE#

196 MEM_DATA_OE#

197 CPU_DATA_OE#

198 VDD[15]

199 GND[15]

200 PCI_FRAME#

201 PCI_IRDY#

202 PCI_TRDY#

203 PCI_STOP#

204 PCI_DEVSEL#

205 DUAL_CTRL_REF

206 MEM_BE[0]

207 MEM_BE[1]

208 MEM_BE[2]

C

Pin Lists

The IBM 660 Bridge258

C

Contacts

259The IBM 660 Bridge

Contacts

USA and Canada:
IBM Microelectronics Division
1580 Route 52, Bldg. 504
Hopewell Junction, NY 12533-6531
Tel: (800) PowerPC
Fax: (800) PowerFax
http://www.chips.ibm.com
http://www.ibm.com
ftp://ftp.austin.ibm.com/pub/PPC_support

SC09-3026-00

260 The IBM 660 Bridge

Overview

CPU Bus

Pin Descriptions

Bridge Control Registers

DRAM

Electrical and Mechanical

Timing

Pin Lists

PCI Bus

L2 Cache

ROM

Endian Mode

Exceptions: Resets, Interrupts, Errors, and Test

10

1

2

3

4

5

6

7

8

9

A

B

C

