PEN

1394
Open Host Controller Interface
Specification

Draft 0.91
Released: Monday, January 27, 1997
Modified: Monday, January 27, 1997

Copyright © 1996,1997 by the Promoters of the 1394 Open HCI.

1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Copyright © 1996,1997 All rights reserved. Page i

PREFACE 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

PREFACE

Intellectual Property

This specification may contain and sometimes even require the use of intellectual property owned by others.
Rights to such intellectual property are not conveyed except as provided by the 1394 Open HCI Developers agree-
ment and the 1394 Open HCI Adopters agreement.

Release 0.90 Notice

This specification has reached a level of maturity suitable for device development. The authors of this specification
do not believe that it is reasonable to expect that all problems can be discovered before implementations are
attempted. Implementors are encouraged to use the 1394 Open HCI reflector (1394ohci-I@austin.ibm.com) to ask
questions about portions of the specification that are not perfectly clear; to point out inconsistencies; and to

identify and propose fixes to errors.

Workshops will be scheduled as required to review the specification and to correct any deficiencies in function or inade-
quacies in specification of the 1394 OpenHCI.

Updates to the specification and notices about the specification will be maintained on an ftp site
(ftp:/lwww.austin.ibm.com/pub/chrptech/13940hci).

Copyright © 1996,1997 All rights reserved. Pageiii

PREFACE 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Promoters

The Promoters of record on Wednesday, January 22, 1997 , the date of publication of the 1394 Open Host Controller
Interface Specification, Draft 0.91, are:

Apple Computer, Inc.

Compaq Computer Corp.

Intel Corporation

Microsoft Corporation

National Semiconductor Corporation
Sun Microsystems, Inc.

Texas Instruments, Inc.

Contributors

This specification was developed using Apple Computegle design as a starting point. TRele contributors were Jim
Baldwin, Kevin Christiansen, Nikhil Jayaram, Michael Johas Teener and Rahoul Puri. The original Editor of the 1394
OpenHCI specification up through Draft 0.7, was Michael Johas Teener.

The following is a list of key contributors to the 1394 Open Host Controller Interface specification.

Lee Wilson, Chair
Diana Klashman, Editor

Eric W. Anderson
Richard Baker
Mike Eneboe

John Fuller
Rahoul Puri
Michael Johas Teener
Peter Teng
Scott Smyers
Erik Staats
David Wooten

The following is a list of other major participants (those who attended at least three meetings and/or conference calls).

Joe Bennett Carl Humphreys
Larry Blackledge Robert Macomber
Dmitriy L. Budko Yehuda Peled
Josh Collier Gerhard Ringel
Jerry Hauck Curtis Stevens

Copyright © 1996,1997 All rights reserved. Page iv

1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

L R = O =TSSP PPTRTR R PPPPPPPINt i
L1]| E=To (U F= U (o] oT=] o T OO PUTPT PRI ii
L L= RTS0[0 N[o = i
0] 010 1= P)
(o)1 1011 (o] RSP i
IS o) o 10 =Pt X
IS 0) 7= o] [P Xil
N 1 1 o o [T 1 o
I =T PN (= To [o To U =T) PSRN
O 1 =T Y T PPN :
1.2.1 ASYNCRIONOUS fUNCLIONS .. .cuiiicie e e e et e e e e e e e et e e e e et e e e e aaa e e eaaaneeensanaaeeens 1
A £ Tod o1 o Lo 10 TS0 18] T 1 0] o NS 1
1.2.3 MiISCEaN@OUS TUNCLIONSuiiiiiii e e e e e e e e e e e e e e et e e e e et e e e saan e eessaneeeasnnaaaeees 2
1.3 HArdWAIE ESCHIPLION ...ttt ittt e oottt e oo e e ettt e et e e e e e e ettt tbb e e e e e e eeeeabba e e e eeeaeenbbbn s aeaeaaaeenn :
O T R o 101 o TU F [1 = = o = PPN K

RS I B Y TS UU PP PPPPRR R PSUPPPPPPPIN: 4

1.3.2.1 Asynchronous tranSMIt DMA e e e e e e e e e e e e e et e e e e st e e e aaan s 4

1.3.2.2 ASyNChronOUS reCEIVE DIMA ... et e e e e e e e e e e e e e e et eeeeat e e e e et aaaees 4

1.3.2.3 1SOChron0oUS tranNSMILt DIMA i e et e e e e e e e r e e e e e e e et r e e e et s e eearanaas 5

1.3.2.4 1SOCHIrONOUS FECEIVE DIMA ... et e et e e et e e e et e e e et e e e et e e e eananaaaes 5

1.3.2.5 SElf-ID reCEIVE DIMA ettt e et e et e et ettt e e e et a e e ettt e e e et s e aeata s e eeetaaaaees 5

1.3.3 Global unique 1D (GUID) INTEITACE.......ciieiieeiieie e e et e e e e e e nrb e as 5
R | 1 TP UUUPPPPPTTPR E

1.3.4.1 Asynchronous tranSMIt FIFOScoouui i e e e e e et e e e et e e e eaaaeaees 6

1.3.4.2 1S0Chronous tranSMIt FIFQ ...t e e e e e e e et e e e e et e e e e et e e eesa e eeeenens 6
R J B B L= Yo = Y TN | 0 F PP 6
R T I | PSP TPPUPPPPPIIN 6
1.4 IEEE P1394A enhancements required for 1394 Open HClo e |
1.5 SOftWAIE INTEITACE OVEIVIEW.......cceeiiiiciiii et e e r e e e et e e e e et e e e e et e e e eaaa e e e eaaa e eeetan e eeesanaeeeannns 1
T =T 1] (= £ P '

1.5.2 DIMA OPEIALION ...ttt oottt e e e e e ettt ta koo e e e e et et eh b e e e e e e et et e baa e e e e e e e eraba e eeas 7
TG I [01 (=T U] o £ TP UPPPTI €

1.6 SYSIEIM REQUITEIMEINTS. ... ittt ettt ettt ettt oo e e ettt ettt oo e e ettt ea et ba oo e e e e e e e e ttb b e e e e e e e eeesbbb e e e eeeeeeesana e eeeeeas
A 1T [T 0= o | PN €
I R = 1 = = 1o 2 = 0 €

1.7.2 Memory structure and buffer alignment ... e 8

2. Conventions - NOTALION AN TEIMIS ... ciiui e e e e e e e e e e e et e et ettt e e e e et e e e et s e e e e ta s e e e st e e e eataeeeesaneeessnnaeeeesnnaaaes
22 R N[0 72 1 0 o P ¢

20 0 N[W T 0 0= T o) = o o PPN 9
0 A L= £ (= Vo) = U N C

A R R =T To ALY (SR (=T 1] (= PPN 9
A 1 =Y [0 I O oo T =T 1Y 1= S (
2.1.2.3 ReQISIEr RESEL VAIUEScouiiiiiii it e e e e e et e e e e e e e e e et e e e eeat e eaeaanaeaees 1
N =TT =T V=T I = Lo 1C
A R o =TT oY V= To I =T o] (] N 1(

A N S = L= To [1 (=T g 1= o N o) = Lo o S 10

A 1= 1 01 T PRSPPI 1

Copyright © 1996,1997 All rights reserved. Pagev

1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

3. DIMIA OVEIVIBW. ...ttt oottt e oo oot ettt e bk o442 e et ettt tba o 4o oo e et e et b b a oo oo e e e e e et b ba oo oo e e e e e e bbb oo e e e et e eetbaaa e e e eeeeeennaaan 13
G TR 0] 01 (=T =0 1= 1= PP 13
TN N R o]0 (= (OFo] g1 (o] N U | o [T SUP PP PP 15
3.1.2 CONtEXICONIIOIWEAKEottt e e e ettt et e e e e e ettt atba e e e e e eeeeeabb e e eeeaaeenne 16
3.1.3 CONtEXICONIIOLACTIVE ...t e ettt e e e e ettt et bbb e e e e et e e e abbb e e e e e e eeenbbba e e eeeas 16
3.1.4 CONEXICONTIOIAEAMt e e e ettt et e e e e e e et e ettt e e e e e e e e eeabbaa e e eeeas 17
T T B R = 1= Lo I - 1 U= OO TR UPPPPPINE 17
TN R 001111 =Yg (o | o | SO TSP UUPPPPPTTTR 17
R T2 I 1= 1Y = U= Vo = o =T o | PSPPI 18
3.2.1 SOMWAIE BERAVIOK ...ttt e ettt oo e e et e e et bbb e e e e e e e e e s bbb e e e e e e eeebnaa e eeas 18
3.2.1.1 ConteXt INITTANZALION.iieeeieeee et e et ettt e e e e e e eeabba e e eaaeees 18
3.2.1.2 Appending t0 RUNNING LIStot e et et e e e e e e et 18
3.2.1.3 STOPPING 8 CONEEXE ...ttt e ettt e e e e e e et ettt e e e e e e e e esabb e e e e e e eeenbbba e e aeeas 18
3.2.2 HAIAWAIE BENAVIOKttt e oottt et oo e e e e ettt bbb oo e e e e e e ee b bba s e e e e eeeestbba e e e eaaaaenes 18
3.3 ASYNCIIONOUS RECEIVEuuiiiiii ettt e e e e e e e e et ettt et e et e et ettt e e e e ta e e e e e ta e e e e st s eeeeta s eeeatanaeeeasnnaaaes 20
I 1Y NS T U] 0] = Y PP UPPRRUPTRPN 22
LT o LY (= = o [0 £ =17 T o 23
4.1 DMA Context NUMDEr ASSIGNMIENTSuu it ee e et e e e e e e e e e et e e e e et e e e eat e e eeata e eeetta e eeataaerestnaererenaaaaes 23
o |1 (=] g1 =Y o ISP PUPPPPPPPPIN 24
T T Y @ o 1T ol o [0 I = To [(= £ T OO PSSP 27
N R = To 1] =T g @0 01V 7=T 1o 1P 27
Y[€710 T =0 £ (= USSP 27
5.3 GUID ROM regiSter (OPTIONE)u ettt e ettt e e e e e et e e ttbb e e e e e e e et bbb e e e e e e aeeenbbannes 28
o Nl = (=TSR LT 013 = P 28
5.5 AULONOMOUS CSR RESOUITESuuiiiiii ittt e ettt e et ettt e et et e et et o e et et e et e et e et e ta e e e e et e e e eeba e eeesn e e eenaneeennanes 29
5.5.1 BUS ManagemMeNnt CSR REQISIEISiiiiiiiiiiiii ittt e e e et e e e e et e e e e et e e e eat e e e eann e eeeaaneas 29
LT T2 0] o110 I 2 (@ 11 I 1= Vo = PPN 31
5.5.3 BUS IdeNtifiCAtION FEOISTEIui i e e e e e e e e e e e e e et e et ettt e e e et r e e e et e e eearaas 31
5.5.4 BUS OPLIONS FEQISTE ...ttt e oottt e oo e e e ettt bt e e e e e et eeeta b e e e e eeeeesabaa e eaeeeeeennns 32
5.5.5 GlODAI UNIQUE TD ...t e ettt e e e e e et eeta e e e e e et eee bbb e e e e e e eeeeanennn s 32
5.5.6 Configuration ROM M@aPPINGg FEOISTENu ettt ettt e e e e et eetbb e e e e e e eeesbba e e e eeaeeennn 33
oI SRRV Lo (o g 1D =T £ 1= PSPPSR 34
5.7 HCCoNtrol registers (SEL and CIEAI)i i e e e e et e e e et e e e e et e e e aeaaeeaaannaeeens 34
5.8 LinKControl registers (SEt @and CIEAI)c.cuuuii i e e e e e e e e e e e e e e et e e e et e eeaaaaaeeees 36
5.9 Node identification and StAIUS FEQISIENciiui i e e e e e et e e e et e e e e et e e e aaaeeeeaaaeeeens 37
R KO I o D oo o B =T |13 = 37
5.11 1SOChron0US CYCIE TIMEI REQISTEui i eeeie et e e e e e e e et e et ettt e e e et s e ee et s e e estaneeresenaaaees 38
5.12 ASYNCHIoN0OUS REQUESTE FIILEISttt ettt e ettt e e e e e et et bbb e e e e e e e eeenbba e e eeaaeees 39
5.12.1 AsynchronousRequestFilter Registers (Set and Clear)oouuuuiiiii i 39
5.12.2 PhysicalRequestFilter Registers (Set and CIEAI)oi i 41
LOT (01 (=] 4 U] o] £ T RO UP PP PPPPPTI 43
8.1 OVEIVIBW ...ttt e ettt oottt e+ e+ o4 et ettt bt e o 4o e e 4otttk bh o442 e et e e et bbb oo 4o e et e et e bbb oo oo e e e e e et bbb e e e e e e e eeenbaa e e eeaaeee 43
O 01 (=T 0] o] = To | (=] £ TS OUPPPPPPTRR 43
LI A L (=A< T o | (ST= A= T T o3 == 1) L 43
B.2. 0.0 DUSRESEL ... ettt e e e et et b e e e e e e naaa s 45
(I 1\ = U S (Y= A= U o e (== T RPN 45
6.2.3 ISOCNTX INTEITUPL FEOISTEIS ... ittt e ettt e e e e e ettt bbb e e e e e e e eeabba e e e e e eeeeesanannnas 47

Copyright © 1996,1997 All rights reserved. Page vi

1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

6.2.3.1 iISOXMItINTEVENt (SEL AN CIEAI) iieii i e e e e et e e e e e e eanans 47
6.2.3.2 iISOXMItINIMASK (SEt aNd ClEAI)........cceeiei e e e e e e e e e e e enans 47
6.2.4 ISOCHRX INTEITUPL FEOISTEIS ...ttt ettt e e ettt ettt e e e e e et e et bbb e e e e e e eeebbba e e e eeeeeesnnnan 48
6.2.4.1 iISORECVINTEVENt (SEL AN CIEAI) ... ciiii e e e e e e e e 48
6.2.4.2 iISOReCVINtMASK (SEt @Nd ClEAI)........ccieei e e e e e e e e e aaas 48
A)Y e oL o T aTo YU E T =] L 91 4
7.1 Asynchronous transmit DMA CONTEXE PrOGIAIMSoiiiiiiiiiii e e et ettt e e et e eabb e e e e e e eeabbbaa e e e eaeeesbbaa s aaaaaaeenes 49
7.1.1 OUTPUT_MORE ESCIIPLOL ...ttt ettt ettt ettt e e et et e e b e e e e e e e et bbb e e e e e e eeennbaa e eas 50
7.1.2 OUTPUT_MORE_IMMEAIAtE AESCHIPLON ...ttt e e e e e ab b 51
7.1.3 OUTPUT _LAST AESCHIPLON «..eettttiiieeeee ettt ettt e e ettt e e e e e et et tab e e e e e e eeeabbb e e e e e e eeeenbbba e e eeeas 52
7.1.4 OUTPUT_LAST _IMMeEdIiate AeSCIIPION ... ittt e e ettt e e e e e e e e bbb e e e e e e eeaaneanas 53
7.1.5 AT COMMANA AESCIIPION USAQGE ..vvuunieeeiieiittii e e ettt eatb e et ettt bbb e e e e e e e eetbaa e e e e e e eeesbba e e e e e e eeesannaaeeeeeas 54
% = 70 R 0o 11 11 =1 [0 10U TTTTTRR T 54
7.1.5.2 COMMANA.XTEISTATUSottt ettt e e e ettt et e e e e e e e eee bbb e e e e e eeeennbeann s 54
7.1.5.3 COMMANAAIMESTAIMP ...ttt ettt e e e e e et ettt e e e e et e eeabbba e e e eeeeeenbbbanaaaeeaaaaenes 55
7.1.5.3.1 timeStamp value fOr REQUESTSoii i 55
7.1.5.3.2 timeStamp value fOr RESPONSESoi i e e e eenaeaan s 55
7.2 AT DIMA CONTEXE FEOISTEIS ..iiiiiiieeiiie e ettt e et e e et e e et e e e et e e e e ettt e e e et e e e e et e et ettt e e e e tat e e e et e e eestaaeeesaneeeeannnns 57
7.2.0 COMMANAPIE ... oot e ettt e oo e et et et et e e e e e e et eetb bt e e e e e eeeabbb e e e eeeeeenbbaa e e aeeas 57
7.2.2 ContextControl register (Set and CIEAI)ccveiiii e 58
T.2.2. 0 BUS RSB ...ttt e e et e ettt e et et e et et e e et e e e e ee e et e b e e tenb e e aera e aae 5¢
7.2.2.2 Writing status back to context command deSCrPLOrS........couuuuuiii i 59
FARC I A I RG] (ST TSP 5¢
A N I 101 =T] o TSP UP PP PPPPRT 5¢€
7.5 AT DALA FOIMIEALS ...ttt ettt e ettt oo ettt e e ettt e et e ek e e et e e bt e et e bh e e e e et e et ee bt e e e eeb s e e e eba s e eeenaes 5¢
7.5.1 ASynchronous TranSMIt REQUESTSui ittt ettt e e e e e eab b e e e e e e eetaba e e e eeeeenennnns 6(
7.5.1.1 NO-0ALA TrANSIMIT ...t e ettt e oo e e et e et bbb s et e e e e e e ebbba e r e e e e e e eeeaann e eeas 60
T A @ LU= Vo | = I = 1 1= 1 T SR 61
AT e B =] (o Tod Q=T g 71 | APPSO UPPTPT 62
7.5.1.4 PHY PACKEL IFABNSIMT.eeeiiii ettt e e e e et et b e e e e e e et et bb e e e e e e e eetbbaa e e eeeas 64
7.5.2 ASYyNChronous TranSMIt RESPONSESo ittt ettt e e e e et et e e e e e e eeeaba e e e e e eeeenanaannes 6
7.5.2.1 NO-0ALA TrANSIMIT ...ttt e ettt e e e e e et ettt b s e e e e e e e ee bbb s e e e e e e eeeabnna e eeas 64
AT A O LU T Vo | = I = 1 1= 1 T SRt 65
TR T B =] (o Tod 1qp =T g Y 1 1| APPSR PPP TP 66
8. ASYNCRIONOUS RECEIVE DIMA ...t e ettt e e e e e e e ettt e e e et e e e et e e e et e e e e et e e e eaaneeeeaaneeesasnnaeeeennns 6!
S I A R 0 01 (=3 (B (0T | =1 1 PSPPI 6¢
8.1.1 INPUT _IMORE OESCIIPION ... ieeeitiiie ettt ettt e ettt ettt o oo e e e et et bbb e e e e e e et e e bbb e e e e e e e eeeaanaa e eas 69
8.1.2 USINg AR COMMANA AESCIIPIONS ... e iieeeiite ettt e ettt r e e e e e e et ettt e e e e e e e eeaaba e e e eeeas 70
8.2 DUFEIFII MOME ...t e oottt oo e e et e et bbb e e e e e e e e e bbb e e e e e e eeeenana e eas 70
8.3 Asynchronous RECEIVE CONEXE REGISTEISuuiiiiiii et e e e e e e e e e e e e et e e e et e e e et s 7
8.3.1 AR DMA COmMMaNUPr FEQISTEI ...euuuiiiiiii it e et e e e e e e e e e et e e e et e e e et e e e eaaa e e e eananaeaeannns 71
8.3.2 AR ContextControl register (St and CIEAI)cceuiiii i e e e eaaas 72
8.4 AR DIMA CONIOIIY ... et e et ettt e oo e e ettt eba e oo e e e e e eetbb e e e e e e e eenabnn e e aeaeas 72
8.4.1 ASYNCNIoNOUS FiIlter REQISIEIS .. .ieiiiiiiiiii et e e e e e e et e e e e et e e e et e e e aaaeeeeananas 72
8.4.2 AR DMA CONrOllEr PrOCESSING ... ceieieuui e eeeeeeettte e ettt e e ettt ettt e e e et ettt bbb r e e e e e e e eetbba s e e e e eeeesnnnanns 73
8.4.2.1 AR DMA PACKEL TIAIIBK ...t e e e et e e e e eeneaaaas 74
S TR N = (o] g o = o | 11 oo P 74
8.4.2.3 BUS RESEE PACKEL ...ttt ettt e e e e e e e ettt e e e aaeees 7!
8.5 ASYNCNIoNOUS RECEIVE INTEITUPLS ...ttt ettt e e e e e et e e et e e e e e e e e e e tbbb e e e e eeeeeenbbann s 7!
8.6 ASyNChronous RECEIVE Data FOIMALS........cc.uuiiiiiiie e e e e e e e e e e e e e et e e e ettt e e e et e e e eata e e eeatnaeeeerenaaaees 7

Copyright © 1996,1997 All rights reserved. Page vii

1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

8.6.1 NO-UALA FECERIVE ...ttt e oo e ettt et b oo e e e et e e ettt oo e e e et e ee bbb e e e e eeeeeeabbbanaeaeaaaeee 76
TS TpZ @ TN T= Vo | [T A L= o T = S 77
8.6.3 BIOCK FECRIVE ...ttt oo et ettt o oo e e et ettt b b e e e e e e e et eetbba e e e e e e eeetenna e eas 79
8.6.4 PHY PACKEE FECEIVE ... et e et oo e e et ettt e e e e et e ettt e e e e e e eeeesbba e e e eeaeeennes 82
9. 1SOCHIONOUS TFAaNSIMIE DIMIA ...ttt ettt e ettt oo oo e et ettt ah e oo e e e ettt et b e e e e e e e eeeabbba e e e e e eeeeesbbbaaeeaaaaaeenes 83
0.1 IT DMA CONEEXE PrOGIaAmMS ...uiiiiiiieeiie ettt e et e e e e e et e et e et s e et s e et s e et s e e ta s e e tan e e tan e e taneetaneetnneeanneetnneeenan 83
9.1.1 IT DMA cOmMMAaNd AESCIPION OVEIVIEWvuuuieeiiiiiitit e e ettt e ettt bt r e e e e e e e e e bbb e e e e e e eeeeaan e e eeeeas 83
9.1.2 OUTPUT_MORE GESCIIPLOL ... ieeiiiiititte et e ettt ettt ettt e oo e ettt e et b e e e e e e e e ee bbb s e e e e e e eessbaa e e eeeeeeennnann 84
9.1.3 OUTPUT_MORE-IMMEdIAte AESCIIPION .. .ueeiiieiiiiiii ettt e e et et et e e e e e e e eabbb e e e e aaaeene 85
9.1.4 OUTPUT _LAST AESCHIPIONiieeettti ettt e e e et ettt e e e e e e et e ttaa e e e e e e eeeeaaba e e e e eeeeennbnannes 86
9.1.5 OUTPUT _LAST-IMMeEdiate AESCIIPLOLceiiiiiiiiiie ettt e et e e et e ee bbb e e e e e e eeenaeanns 87
9.1.6 STORE_VALUE GESCIIPION ... eiiteitttie e ettt e e ettt ettt e e e e e et ettt e e e e e e et eebbb e e e e e e eeeenbnnannes 88
9.1.7 IT DMA dESCIIPLOI USBOE ... eeeiiittii e ettt ettt ettt e e e e e et e et bbb oo e e e e e e eetbba e e e e e eeeeeatsb e e eeeeeeesannnnnaeas 88
L I I O 0T) (=3B =T 1S (= RSP 89
LS B R 0o] 111 =Yg (o | o | SO TS UUP PP TR 89
9.2.2 IT CONEXICONIIOI REQISTEI ... ciitii i et e e e e e e e e e e e et e e e et e e e e et s e e e et e e e eata e eeesaneeeenen 90
9.3 Isochronous tranSMit DIMA CONIOIIETo et e e e e e e ee bbb e e e 91
LS G T A I I 1Y AN o oY= 1] T o P 92
9.3.2 1SOChIroNOUS traNSMIL CYCIE 1OSS ... ivviiiciiii e e e e et e e e et e e e e et e e e e et e e eeaan e eeenans 93
9.3.3 Determining the number of implemented IT DMA CONEXIS.......oiiiiiiiiiiiiiiee e 94
L IR I I [1 =T A (U] o PP PP PPPPTT 95
0.5 1T DALA FOIMAL ...ttt ettt e ettt e ettt e e et et e et e et e et e et e e et e tb s e e e e ba s e e e et e et e e b s e e e eabneeeetaaeeennes 95
10. 1SOCHIONOUS RECEIVE DIMA ... ittt oo oo oot ettt et e oo e et ettt e b b oo e e e et et etbb e e e e e eeeesbbbaaaaeaaaaennes 97
O I A 0T 0] =) B = 0T = 0 L PSPPI 97
10.2 RECEIVE IMOAES ittt e ettt e oo oo et ettt bt oo oo e e et e et b ba e oo e e et e e et bbb e e e e e eeeesbbbanaaeeaaaeenes 98
10.2.1 BUFFEE Fll MOottt e e e e ettt et b e e e e e e e e e e bbb e e e e e e eeennnaann s 99
10.2.2 Packet-per-Buffer MOGE..........u. e et e e e e e e e n bt e e 100
10.2.2.1 Command.xferStatus and Command.resCount UPAAteS.........ccouiuiuuiiiiieriiiiiiiiiiee e 101
O B @0 g1 = (A L= 1S (= S 101
10.3.1 COMMEANAPL ..ottt e ettt ettt bt o oo e e et et tb b a e e e e e e e ee st ba e e e eeeeesbana e e eeeeeennnes 101
10.3.2 IRContextControl register (Set and CIEAI)oiciiiiiiee e e 102
10.3.3 Isochronous receive CONtEXIMALCN FEQISIENc.uu i e e e e e e e eanans 103
10.4 1S0chronous receive DIMA CONTIOIIBT ettt e e et et bbb e e e e e e e eeebeaan s 104
10.4.1 Isochronous receive Multi-Channel SUPPOIT......cooi i 104
10.4.1.1 IRMultiChanMask registers (Set and CIEAI)ccvuiiiiiiiiii e 104
10.4.2 Isochronous receive Single-Channel SUPPOIT........ouuuiu e 105
10.4.3 DUPHICALE CRANNEISottt e e et et et e e e e e e e ea bbb e e e e e eeennaanns 106
10.4.4 Determining the number of implemented IR DMA CONEEXESooiiiiiiiiiiiiiieee e 106
O | [T =T (0] o) T PP PP PP UPPPPINN 106
10.6 IR DAA FOIMALSciieiiieieii ettt ettt ettt e et e e et b e et e e bt e e e ea e e e e ea e e et ea e e e e eaa e e e enna e eeenbaneeeenanns 106
10.6.1 bufferFill MOAE FOIMALS ..ot ettt e e e e et e e s bbb e e e e e e e e e ebbba e e e e 107
10.6.1.1 IR With NEAEIIAIIET ... e ettt a e e e e eeeneaaas 107
10.6.1.2 IR WithOUt NEAAEITIIAIIRTeuueei e et e e e e eeeeaes 108
10.6.2 packet-per-buffer Mode fOIMALS.........ooo it e e s 108
10.6.2.1 IR With NEAEITIAIIET ... e e ettt e e e e eeeneaaas 108
10.6.3 IR WIthOUt NEAAEITAIIET ...t e e ettt e e e e e e e raa e as 109
L1, SEIF ID RECEIVE ...t e oottt o 4o oo o4 ettt kb b oo o2 e e et et e bbb oo oo e e e et et b b e e e e e e e eeebbb e e e e e e eeennnaann 111
11.1 Self ID BUfer POINIEI REQISTEL .. .cuii i e e e e e e et e e e et e e e e et e e e eaaa e e eeata e e eeatnaeeeennns 111

Copyright © 1996,1997 All rights reserved. Page viii

1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

ST 1 R @0 0T =T |] (= PSP 11:
L11.3 SEIF-ID FBCRIVE ...ttt ettt o e oo e et ettt b e e e e e ettt tba e e e e e e e e e et bbb e e e e e e e eeeaanna s 11¢

11.4 ENabling the SEIfID DIMAottt e et e et e e e e e et e e e e et e et ettt e et eta s e e e et a e e e et e eeenens 113

11.5 Interrupt Considerations for SEIfID DIMA et e e e e 113

11.6 SelflDs Received Outside of BUS INILIALIZATIONuuuei e e 113
12, PRYSICAI REOUESTS ...ttt e ettt oo oo ettt ettt oo oo ettt et bbb o oo e e e e e et b bbb oo e e e e e e e e bbb e e e e e e e e e enbbaa e e eeas 1
12.1 Filtering PRYSICAl REOQUESTSuiii ittt oottt e e e e et ettt e e e e e e et e e taa e e e e e e eeeenanannaes 11
12.2 Write Requests: ack_codes and hOSt DUS EITOIS... ..o 1!

R B o T (Lo MV A1 (oY Ao (o [TSR =T o |] (] =P 11
D T R TU 1= L= U] 11
12.4 Interrupt Considerations for PhySiCal REQUESTEScouuiuiiiiiiiiiei et eeeeeeaaas 11
12.5 PRYSICAI RESPONSESeeiiieeeeiiettiie ettt e ettt oo oo ettt et bbb oo e e et e e et bbb oo oo e e et e e ebeb e e e e e e e eesnbaa e e eeeeeensnnnan 1’
12.6 RESPONSE 10 BUS RESELttt ettt ettt e ettt e e et et e e et et e et eeb s e e e e be s e e e et e eeernanaaees 1’
RS o (o 1o = U o =l (o] £ PP P TP TSPPRTRPPPIN 12
13.1 CaUSES Of HOSE BUS EITOIS ...ttt ettt e oo e e ettt et e e e e e e e et tbbb e e e e e e e eenbbbn e e eeaas 12

13.2 Host Controller Actions When HOSt BUS EFTOr OCCUISuuuiiiieiieiiiiti ettt 121
13.2.1 DESCHPLOr REAM EFTOX ...ttt e e e et ettt e e e e e e e e e e bbb s e e e e e e eeesenanns 121

13.2.2 XTEISTAIUS W EFTOF ...ttt ettt r e e et e ettt b e e e e e e e e et bbb e e e e e e e eeeennanns 121
13.2.3 Transmit Data REAA EITOI........uuiiieeiieeie ettt e e e e e e e e e bbb e e e e e e e e entbba e eeas 121

13.2.4 I1sochronous Transmit Data WItE EFTOr i 122

13.2.5 Asynchronous ReceiVe Data WL EFTOr.......c...uuiiiiii e e et e e e e e e 122
13.2.6 Isochronous Receive Data WIE EFTOruuuuiieeiiiee et e e e 122
R T A o Y4 o3= LB == To N = 4 o] 12:
13.2.8 WItE REQUEST ETTOI ...ttt ettt e ettt e oo e e ettt bbb oo e e e et e ee bbb e e e e e e e eenbban e e eaeaeees 122
Annex A. P1394A enhancements required for 1394 OPEN HCI ... e 12
ANNEX B. PCIINTEITACEevtiiii ettt oottt oo oo ettt ettt e oo e ettt et bbb o e e e e e e e e ebbb e e e e e eeeeebbbaaaeeaeaaenes 12
B.1 PCI CONfIQUIALION SPACEceeiiiiiiii ettt oottt e e e et e ettt bba oo e e e e et e et bbb e e e e e e e e e et bbb e e e e e e eaeesbannnns 12!

B.2 BUSMASLEINNG REQUIFEIMENTS ...ttt ettt e ettt e oo e et ettt bbb e e e e e e e e e et bbb e e e e e e e e eebbba e e e e e eeeesnnaanns 12

B.3 PCI Configuration Space for 1394 OpenHCI With PCl Interface...........coouiiiiiiiiiiiiiii e 125

B.3.1 COMMAND REQISTEN ...ttt ettt ettt e e e e ettt bbb e e e e e et ettt ba e e e e e e e e ee e bbb e e e e e e eeeesannaeeas 126

B.3.2 CLASS CODE REQISIEI ...ttt eeitteeittte ettt ettt e et e ettt e e e e e e et bbb e e e e e e e eeesbbn e e e eeeeeennnnnn 127

ST B o oAV T o] N [N = To] (=] 127
B.3.4 BASE AUl 0 REOISTEI ... ittt iie i e et e e e et e e e e et e e et et e e e et e e e e a e e ea e e et e eea e raaaaa 127
2 o O I = (O I 0o (o] B =0] (= PPN 128

B.5 PCI Expansion ROM fOr 1394 OPENHCIooouiiiiiii ettt e e e e e e e e 128
Ol o O I S0 L =l o (o] £ PP PP T PPPPPTRPPPRY 12¢

Copyright © 1996,1997 All rights reserved. Page ix

1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Copyright © 1996,1997 All rights reserved. Page x

List of figures 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Listoffigures

Figure 1-1 — 1394 Open HCI conceptual bIOCK diagramoooiiiiiiiiiiiiiiii :
Figure 3-1 — ContextControl (set and clear) register FOIMEALuuuuuuuuuuiiiiiiiiiiieii bbb K
Figure 3-2 — CommandPtr regiSter FOIMALcooiiiiii oo bbbbbbeee 1!
Figure 3-3 — Flow Chart for proCessing @ AESCHPIOIccoiiiiiii e 1¢
FIQUIE 5-1 — VBISION TEOISTEI .oiiiiiiiiiiiiiii e 2
FIQUIE 5-2 — GUID ROM FEUISTENuuuuuttuttttittutittttttttetaeeeeetbbbeeee bbb e e e e e s e s e s s s s s 252 s 2555555555555 5 55552 s et s e e s e e e s e e e e e e e e e e e e eeeeeeeees 28
(o [o B e N I oY =T T o 1 L= S PP P P PP PP PPPPPPPPP 2
FIQUIE 5-4 — CSR UALA MEQISTEI ...ttt ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt et et e e e e e et e e e aaeaaaeaaaaens 3
Figure 5-5 — CSR COMPAIE FEOISIET ..ceiiiiiiiiiiiii i, 3
Figure 5-6 — CSR CONLIOI TEQISTETcooiiiiiiiiie e, 3
Figure 5-7 — CoONfig ROM NEAAET TEOISTEIuuuiiiiiiiiiiiiiiiiieie ettt ettt et et et e et e et e ettt et ettt e eeeeeeee ettt teteeeeeeaeeeeeeeeees 3!
(o [N Tt R ST R [N =T o [=] PP P PP PP PPPPPPPPPPPN 3!
FIgQure 5-9 — BUS OPLIONS FEOISIETo 3
Figure 5-10 — GlODAIUNIQUEIDHI FEOISTENuiiiieiiiiiiiiiiiiee ittt ettt ettt ettt ettt ettt ettt et ettt et et e et e et e e et e e e e e e e e e eeeees 32
Figure 5-11 — GIobalUnIQUEIDLO FEUISIETcoiiiiiiieeeeeeee e, 33
Figure 5-12 — Configuration ROM MaPPING FEQISTEIuuuuuuuttuuuuutttuttturutteeteteeeeeeee bbb eeeeeseeeseesssssssssssssssssessssssssseseeeeeeeeeeees 33
FIQUIE 5-13 — VENAOITD FEOISTET ...tttk ettt e e ettt f ettt ks 88888ttt ettt e e e e e s e e nnne 3¢
FIQUIE 5-14 — HCCONIIOI FEOISTETuuuuiiiiiiiitititttittbeebtbbb bbbt b e e ettt s ettt s st s et e e e e e e e e e e 3t
Figure 5-15 — LINKCONTIOI FEUISTEE ... 36
FIQUIE 5-16 —— NOUE D FOUISTEI ...uutututttttttttitittittttteteeeeteee et e e e e s s e s et s s st e e e e e e e et e ettt e e et e et e e et ettt et et eeeeeeeeeeeeeeeeeeees 3
Figure 5-17 — PHY CONIIOI FEUISIET .ooviiiiieiiiiiee e, 3¢
Figure 5-18 — 1SOChIroNOUS CYCIE tIM eI FROISIET ...t 3
Figure 5-19 — AsynchronousRequestFilterHi (Set and Clear) FEQISIEruuuuuuueeriiiiiiiiiiiiiei it eeeeees A(
Figure 5-20 — AsynchronousRequestFilterLo (set and clear) regiStercccccciiiiii 4
Figure 5-21 — PhysicalRequestFilterHi (set and Clear) regiSter ... 4
Figure 5-22 — PhysicalRequestFilterLo (Set and Clear) FEQISIENuii it 4
FIQUIE B-L —— I VNt TG S O it b bbb 4.
FIQUIE 6-2 — INtMASK FEQISTEI ...eeeiiiiiiiiiiiiiiiiie ettt e e 4¢
Figure 6-3 — iSOXMItINtEVENL (SEt @Nd ClEAI) TEOISTON ... ebeeeee 47
Figure 6-4 — isoRecVINtEvVENt (SEt and ClEAI) FEGISTEN i ittt b bbb bbb bebeneeeee 4
Figure 7-1 — OUTPUT_MORE d@SCIPLOr FOIMMALuuiiiiiiiiiiiiiiiiiiiiiiiiieieiieieiseeseeeeeee e e e e e e eeeeeeeeeeeeeeeeeeeeeeeeees 50
Figure 7-2 — OUTPUT_MORE-Immediate desSCriptor fONMALcceviiiiiiiiiiiiiii 51
Figure 7-3 — OUTPUT_LAST deSCrPtor FOIMALcooiiiiiiiiiii e 52
Figure 7-4 — OUTPUT_LAST-Immediate descriptor fOrMALooooiiiiiiii e 53
Figure 7-5 — timMeSTaMPD fOIMAL ...kt b bbb 5!
Figure 7-6 — CommandPtr regiSter FOIMALcooiiiiiiiii bbb bbb bbeee 5
Figure 7-7 — ContextControl (set and clear) register FOIMEALuuuuuuuuuiiiiiiiiiiiiiiiie bbb 5¢
Figure 7-8 — Quadlet read request tranSMIt FONMALooiiiiiiiiiiiiii et 6
Figure 7-9 — Quadlet write request tranSMIt FOMMEALuuuuuiiiiiiiiiiie bbb bbb ebbebeeeeeeeeennees 6’
Figure 7-10 — Block read request tranSMIt FOIMALooiiiiiiiiiiiiiiiiiii i 6!
Figure 7-11 — Write request tranSMIt FOMMIALuuiiiiiiiiiie ittt e e e e e e e e e e e e e et et e et e e e e e e e e e e e ee e e e e e eeeeeeeeeeeeeeees 62
Figure 7-12 — LOCK requeSt tranSMIt FOFMALuuuiiiiiiiiiiiiiitieeeb bbbttt bbb e e s eeneneneee 6:
Figure 7-13 — PHY packet transSmit fOrMALooooiiiiiiiiii 64
Figure 7-14 — Write reSPONSE traNSMIE FOMMIALuieiiiiiiiiiiiiiiiiiee ettt e e e e e e et et e e et et ettt e ettt ettt e et et et e e e e eaaaeeeeees 6
Figure 7-15 — Quadlet read response tranSMIit TONMMALoeiiiiiiiiiiiiiii 6
Figure 7-16 — Block read response tranSmit FONMALooiiiiiiiiiiiiiii 6!
Figure 7-17 — LocCk response tranSMIit TOIMMALooooiiiiii bbb ebeeene 6
Figure 8-1 — ASYNCNronouUS reCeIVE TESCIIPIOTcciiiiiiiiiiiiii i 6!
Figure 8-2 — DUFFEIFIll FECEIVE MOTEuiiiiiiiiiiiiiiee ittt ettt et ettt e e ettt e ettt ettt ettt ettt ettt et et e e et e et e e e e e e e eeeeeees 71
Figure 8-3 — CommandPtr regiSter FONMALccoiiiiiiiie ook bbbbbbeee 7
Figure 8-4 — AR ContextControl (set and clear) register FOrmMatoevvviiiiiiiiiii 72
Figure 8-5 — AR DMA PaCKet trailer TOMMALeeiiiiiiiiiiiiiiii ittt 74

Copyright © 1996,1997 All rights reserved. Page xi

List of figures 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Figure 8-6 — AR Request Context Bus Reset packet FOrMALoooi i 74
Figure 8-7 — Quadlet read reqUEeSE rECEIVE TOIMALuiiii et e et e e e e e e bbb e e e e e e ennaaanns 76
Figure 8-8 — WIrite reSpONSE rECEIVE TOMMALoiii ittt e ettt ettt e e e e e et e bbb e e e e e e e enbbb e as 77
Figure 8-9 — Quadlet write reqUESE FECEIVE TOIMALiii i et e e e e e et et e e e e e e eeenneaa s 77
Figure 8-10 — Quadlet read reSpONSe reCeIVE FOMMALccoiiiiiiii et e e e e e e e 78
Figure 8-11 — Block read request reCeIVEe FOIMIAL it e e e e ettt e e e e e eenaaaans 78
Figure 8-12 — Block write reqUeSt reCEIVE TOMMALoii ittt e e e e e e e e e e e e e e eerbnaan s 79
Figure 8-13 — LOCK reqUEeSE reCEIVE TOIMALoiiiiiiii et e e e ettt e e e e e et et bbb e e e e e e e eeebnaana s 80
Figure 8-14 — Block read resSponSe rECEIVE FOMMALii it e e e e et e e e e e e e e eeeaaaanaes 80
Figure 8-15 — LOCK reSPONSE r8CEIVE FOMMIALuuueiiii ettt e e e e e e e et e e e e e e e e rbb e e 81
Figure 8-16 — PHY paCKEet reCEIVE TOIMALuuiiiiiiei it e ettt e e e e e e et e ettt e e e e e e e e eabbba e e e eaaaeenes 82
Figure 9-1 — OUTPUT_MORE command desSCriptor FONMALcooiiiiuiiuiiieeei ittt e e e e 84
Figure 9-2 — OUTPUT_MORE-Immediate descCriptor FOIMALoooiiiiiiiiiii e 85
Figure 9-3 — OUTPUT_LAST command descCriptor FOIMALoouuuuiiii ettt eeeeeeees 86
Figure 9-4 — OUTPUT_LAST-Immediate command descriptor fOrMatuuuiiiiiiiiiiiiii e 87
Figure 9-5 — STORE_VALUE GESCIIPION ...ttt ettt ettt ettt e e e et ettt bbb oo e e et e e et bbb r e e e e e e e eetbbanaeeeaeaenes 88
Figure 9-6 — CommandPtr regiSter FOIMALcoouiiiii e e e et e e e e e e e e e e e e e et e e eeat e e eeaan e eeaetanaaaees 90
Figure 9-7 — IT DMA ContextControl (set and clear) register formatccoooiiii i 90
FIgUIe 9-8 — ITDIMA SUIMIMAIY ...iiitiieeiiti e ee et e e et e e et e e e e et e e e e et e e e e ata e e e e e ta e e eestaaeeeatn s aeeetanteeesta e eestnaeeestneeeetaneeesrnnsns 92
Figure 9-9 — Isochronous transmit CyCle 10SS EXaMPIE ... i i 94
Figure 9-10 — Isochronous transmit format with header/cycleNumber ..., 95
Figure 10-1 — ISOCNHIONOUS FECEIVE GESCIIPIONiieiiiieiiii e e ettt e e ettt e e e e e e ettt tab s e e e e e eeeeabbb e e e e e e eeeesbba e e e eeaaaennes 97
Figure 10-2 — IR BUFfEr Fill MOEiiiii et e e e e e e e e et e e e e et e e e e st e e e e et e e aeata e e eesan e eeeenans 99
Figure 10-3 — packet-per-buffer reCEIVE MOTEottt e e e e e ettt e e e aaeeees 100
Figure 10-4 — CommandPtr regiSter FOrMALoiiiiiii e et e e e e e e e e e et e e e e et e e e e et e e e eaaa s 101
Figure 10-5 — IR DMA ContextControl (set and clear) register formatoooiiiiiiii e 102
Figure 10-6 — IR DMA ContextMatch (set and clear) register formatcooiiiiiiii e 103
Figure 10-7 — IRMultiChanMaskHi (Set and CIEAr) FEUISIENccovui i e 105
Figure 10-8 — IRMultiChanMaskLo (set and ClIEar) FEQISIEIciivuii i e e e e e e e e e e e eeees 105
Figure 10-9 — Receive isochronous format in bufferFill mode with header/trailerccccooeeiiiii i, 107
Figure 10-10 — Receive isochronous format in bufferFill mode without header/trailercccooeiiiiiii i, 108
Figure 10-11 — Receive isochronous format in packet-per-buffer mode with header/trailercccccoiiiiiiiiiiinnnnn. 108
Figure 10-12 — Receive isochronous format in packet-per-buffer mode without header/trailercccccciiiniiiinnn, 109
Figure 11-1 — Self ID BUffer POINtEr FRQISIEE ...vuu it e e e et e e et e e e e et e e e eaa e e e aanneeasranaaaeens 111
Figure 11-2 — Self ID COUNT FEOISTET . .oouuiiiiiiii et e e e e e e e et e e e et e e e e et e e e e at e e e et e e e et e eeeaaaaeeennnnns 111
Figure 11-3 — Self-1D reCeIVE FOMMALiiiiiicee et e e e e e e e e e e e e e e et e e e et e e e e et s e e e st s e eeata e eeenens 113
Figure 12-1 — PoOStedWIite AdAreSSHI FEQISIET . .oovui i e et e e e e e e e e et e e e e et e e e ea e e e eat e e eeaan s 116
Figure 12-2 — POStedWIItEAAIrESSLO FEOISIEIuiiiiii i e e e e e e et e e e et e e e e et e e e aaaa e e e eaaaeeeasanaaeens 117
Figure 12-3 — PoSted WIte EITOr QUEUEciiiiiieeeiie et e et e e et e e e et e e e e et e e e e et e e e e et ee e ettt e e e e ta s e eeataaeeestnseeeesanaaaees 118
Figure B-1 — PCI CONfIQUIALION SPACEiiiiiiiiiiiiiie ettt oo et ettt o e e e e et et bbbt e e e et e e e e bbb s e e e e e e e eebbaa e eeas 125
Figure B-2 — Pointers to OHCI Resources in PCl Configuration SPACEuuuuiiiiiiiieiiiiiia e 126

Copyright © 1996,1997 All rights reserved. Page xii

List of tables 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Listoftables

Table 1-1 — DMA CONIOIIEIS ANA CONTEXESiiiiiiiiiiiiiiiiiiiiiieee ettt ettt ettt ettt ettt et et ettt ettt ettt ettt ettt ettt ettt ettt et ettt e e e e et e aaeeeees 4
Table 1-2 — Link generated aCKNOWIEUGESuiuiiiiiiiiiiiiiiiiieeeeeee et e e e e e e s e e e e s e e et e e e s s e s e s s e e e s e e e s e e e e s e e e s e e e e e e eeeeeeeeeeeeees

Table 2-1 — read/write register field ACCESS TAUScooviiiiiiiii e,
Table 2-2 — Set and Clear register field 8CCESS TAGS . ..iviiiiiiiiiiiiiiiiiii :
Table 2-3 — RegISter fIeld rESEL VAIUEBS oottt e e e et ettt e e e e e e e e e ettt e e e e e e e e eeatnaaeeeas 1
Table 3-1 — ContextControl (set and clear) regiSter dESCIPLIONuuiiiiiiiiiiiiii it 1
TADIE 3-2 —— PACKETL EVENT COUERS ...uuuutiitiitittitiiiitiiieteete et e ettt et e e e e e e e e et e e e e ettt e et ettt e e e e e ettt ettt e et e et e et ettt ettt e et e ettt et e eeeeeeeeeeeeeeeees :
Table 3-3 — CommandPtr register deSCHIPLIONoiiiiiiiiiiii 1
Table 3-4 — ComMMANUPLE FTEAU VAIUES ...k bbbttt bbb bbb bbb ne e 1
TADIE 3-5 —— DIMA SUMMABIY ..ceiiiiiiiiiiiitiieeee ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt et e ettt et e et e et et e e et e et e e e e e e e e e eeees 27
Table 4-1 — 1394 OPeNn HCI rE€QISEr SPACE M@ ...vrrrrrrrrurnnrnnnnreretneeeeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeteeteee et tettt ettt etattetttetateaeaaeaeeees 2
Table 4-2 — Asynchronous DMA Context NUMDbBEr @SSIGNMENTScoiiiiiiiiiiiiii 23
Table 4-3 — REQISIEN AUUIMNESSES .. .eeiiiiiii ettt e e e et e e ettt oo e e ettt e et bbb e o e e e e eeeetbba e e e e e aeeeeeeban e e eeeeeeessnnnnnaaeaaaaees :
Lz o] o R (=Y £ o] o I €= 11 (= ST PP P PP PP PPPPPPPPPPPPPN 2
TADIE 5-2 — GUID ROM FEQISTEIuuuiiuiuiiiiitititttttttateebeeebbb bbb bbb bbb bbb bbb et e s e e e e e 88 e 1818888888 8888888888888 8 st st s s st e e e s e e s e s s s s nnnn e 28
TADIE 5-3 —— AT RIS TGS O ..t 2
Table 5-4 — Serial BUS REJISIEISooiiiiiiiiiiiiiiiiiii 2
LI o) R T ol OS] o =T 1S (= = RS PTTR 3
Table 5-6 — Config ROM header regiSter fIEIUSuu ittt 3!
Table 5-7 — BUS ID regiSter fIRlUS ..o 3
Table 5-8 — BUS OPLIONS FEGISTEN FIEIASeeiiiiieiiiieiiiiie e 3
Table 5-9 — Configuration ROM Mapping FEOISTETccoiiiiiii i 34
TADIE 5-10 — VENAOI D TE0 IS O ...kttt sttt ettt b e e e e e e 3¢
Table 5-11 — HCCONIOl FEUISIEN 3t
Table 5-12 — LINKCONTIOI FEQISTETeeeiiiiiiiiiiiiiiiie ettt ettt ettt ettt ettt et ettt ettt ettt e et et ettt e e e e e e e e e e e e e e aes 36
TADIE 5-13 —— INOUE ID FEQISTEIuuuuutttttutitttittttttttttttetbe bbb bbb bbb bbb e e e e et e e s st s st et s st 22555t s 55522 s s s s e e e e s e e e e e e e e et e e e et e e e e eeeeeeeeeees 3
TADIE 5-14 — PHY CONIIOI FTEUISTEN ...ttt ettt ettt ettt ettt ettt ettt ettt ettt et e e e e e e e e e e e e eeaaaaaaeas 3¢
Table 5-15 — ISOChIoNOUS CYCIE tIMEI TRGISTEI ..o e 3
Table 6-1 — INtEVeNt regiSter dESCIPLION ..o 4
Table 6-2 — INtMASK regiSter AESCIPLIONeiiiiiiiiiiiiiiii ittt ettt e e et e e e e e e e e e e e e e e e e aeaeas 4¢
Table 7-1 — OUTPUT_MORE deSCriptor €1€MENt SUMIMATYuuuuuuieeeeeeieereeieeeeeeeeeeeeaeessseessseseeesssesseeeeeesseeeeeeeeeeeeeeeeeeees 50
Table 7-2 — OUTPUT_MORE-Immediate descriptor element SUMMATYcccccviiiiiiiiiiiiii e 51
Table 7-3 — OUTPUT_LAST descriptor €l€mMeNnt SUMMIAIYcooooei bbb bbbbebebeeeee 52
Table 7-4 — OUTPUT_LAST-Immediate descriptor €lement SUMMANYuuuuuuuuuuururriniieieerenreeeeeeeeeeeeereenreeeeeeneeeee 53
TaDIE 7-5 —— Z VAIUE ENCOTING ...etiiiiiiiiiiiieieie ettt ettt et ettt ettt ettt ettt ettt et ettt ettt ettt ettt ettt e et e et e e et e e e e e e e e e e eeeeeeees 5
Table 7-6 — timeStamp AESCHPLIONooiiiiiiiii 5!
Table 7-7 — Results of timeStamp.cycleSeconds - cycleTimer.cycleSeconds ..., 5
Table 7-8 — timeStamp.cycleCount-cycleTime.cycleCount EXample 1 ... 56
Table 7-9 — timeStamp.cycleCount-cycleTime.cycleCount EXample 2 ...t 56
Table 7-10 — timeStamp.cycleCount-cycleTime.cycleCount Example 3 ... 56
Table 7-11 — ContextControl (set and clear) regiSter deSCIPLIONiiiiiiiiiiiiiiii e 5
Table 7-12 — Quadlet read request transSMIt fIRlASooiviiiiiiii 6
Table 7-13 — Quadlet tranSMUL fIEIASoouu i e e e e e e e e e e e et e e e et e e e e et e e raaan e eeeaans 6.
Table 7-14 — BlOCK transSmit fIElOSoooiii oo bbb X
Table 7-15 — Write response tranSMIt fIEIUSouiiiiiiiiiiiii 6
Table 7-16 — Quadlet tranSMIt fIEIASo.unii i e e e e e e e e e et e e e et e e e e aaa e e rarteeeeeaans 6
Table 7-17 — BIOCK transSmit fIElOSoooiiiiii i bbb 67
Table 8-1 — Asynchronous receive descriptor €lemMENt SUMIMAIY bbb bbb eeeeeeeeernee 6
Table 8-2 — AR ContextControl (set and clear) register deSCHPLIONuuurureiieiiiiiiiieiieieeeeeeeeee e eeeeeeeeeeees 72
Table 8-3 — AR DIMA raIlEr fIEIAS ...kttt e bbb n e 74
Table 8-4 — AR Request Context Bus Reset packet deSCrPLIONcooiiiiiiiiiii e 7
Table 8-5 — ASYNCH FECEIVE TIEIAS ...ttt e e e ettt r e e e e e e e et ittt e e e e e e e e eeeeannnaeaeeeeeennnes 7'

Copyright © 1996,1997 All rights reserved. Page xiii

List of tables 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Table 9-1 — OUTPUT_MORE descriptor elemMent SUMIMATYi oottt e e e et e e e e e eeaeaa e e e e e eeeennnans 84
Table 9-2 — OUTPUT_MORE-Immediate descriptor element SUMMANYcoooiiiiiiiiiiiie et eeeneeans 85
Table 9-3 — OUTPUT_LAST descCriptor €lemMENT SUMIMAIYuuiii ittt e e e et et e e e e e eeeebbba e e e e eeeeeebnaan s 86
Table 9-4 — OUTPUT_LAST-Immediate descriptor element SUMMATYcooiiiiiiiiinieeieeiiii e 87
Table 9-5 — STORE_VALUE descriptor €l@mMeNnt SUMMIAIYii ittt e ettt e e e e e e e et e e e e e e e eenebaann s 88
R Lo (oIS R = 11U = =T o oo To [T o PN 88
Table 9-7 — IT DMA ContextControl (set and clear) register deSCrHPLIONccoiiiiiiiiiiie e 90
Table 9-8 — 1S0Chronous tranSMIL fIEIASeuei ettt e e e e e et e e e e e e eaneeaans 95
Table 10-1 — DeSCriptor €lEMENT SUMIMEIYcoiiiiiiiiii ettt e e e et et e e e e et e et b bt e e e e e et eebbbb e reeeaeeeabbba s e e e eeeeeenbbann e aeeas 97
I Lo (I RO AR = 1 (W3 =Y o oo To L] o [N 98
Table 10-3 — IR DMA ContextControl (set and clear) register deSCrptioNooooiiiiiiiiiiiiie e 102
Table 10-4 — IR DMA ContextMatch (set and clear) register descCriplionuiiiiiiiiiiiii e 104
Table 10-5 — I1SOChron0oUS reCEIVE fIEIUSouiieii e oo e ettt e e e e e e ee bbb eeeeeeeennes 106
Table 11-1 — Self ID BUfer POINIEr FEOISIEI ...vuiiiiii e e e e e et e e et e e e e et e e e eaa e eeernneeeenen 111
LI Lo (= e S B | I oW T =0] (=] P 112
Table 11-3 — Self-ID r@CRIVE FIEIUS ... et e e e e e ettt e e e e e et et bbaaa e e eeeaeees 113
Table B-1 — COMMAND REQISIETuiiiiiiieiie ettt e e e r e e e e e e et e e e e et e e e eata e e e eaaa e e e eaan e e eesanaeeeesanaeeeennns 126
Table B-2 — CLASS CODE REQISIEIiiiiiiieiiii ettt et et e e e e e e et e e e e at e e e e tt e e e e st e e e saan e e eesaneeeeasanaeeesnnnaeeees 127
L o (ol T Rl = 1 R Y AV | g O =T o] (] 127
Table B-4 — PCI_HCI_CONLIOl REQISTET . .ceeiiiiiiiii ettt e et e et e e et e et e e e e e et s e et e st e e e e etareeeataeeeeananaaaes 128

Copyright © 1996,1997 All rights reserved. Page xiv

Introduction 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

1. Introduction

1.1 Related documents

The following documents may be useful in understanding the terms and concepts used in this specification. The docu
ments are for general background purposes only and are not incorporated into and do not form a part of this specificatior

[A] IEEE 1394-1995 High Performance Serial Bus
IEEE, 1995

[B] ISO/IEC 13213:1994 Control and StatusgiRéer Architecture for Microcomputer Busses
International Standards Organization, 1994

All references in this document to 1394 refer to IEEE 1394-1995 ([A] above) unless otherwise specified.
Following IEEE conventions, the term “quadlet” is used throughout this document to specify a 32-bit word.

1.2 Overview

The 1394 Open Host Controller Interfag@pen HCI) is an implementation of the link layer protocol of the 1394 Serial
Bus, with additional features to support the transaction and bus management layers. The 1394 Open HCI also include
DMA engines for high-performance data transfer and a host bus interface.

IEEE 1394 (and the 1394 Open HCI) supports two types of data transfer: asynchronous and isochronous. Asynchronou
data transfer puts the emphasis on guaranteed delivery of data, with less emphasis on guaranteed timing. Isochronous d
transfer is the opposite, with the emphasis on the guaranteed timing of the data, and less emphasis on delivery.

1.2.1 Asynchronous functions

The 1394 Open HCI can transmit and receive all of the defined 1394 packet formats. Packets to be transmitted are ree
out of host memory and received packets are written into host memory, both using DMA. The 1394 Open HCI can also
be programmed to act as a bus bridge between host bus and 1394 by directly executing 1394 read and write requests
the first 4 GB of node offset addresses as reads and writes to host bus memory space.

1.2.2 Isochronous functions

The 1394 Open HCI is capable of performing the cycle master function as defined by 1394. This means it contains a cycl
timer and counter, and can queue the transmission of a special packet called a “cycle start” after every rising edge of th
8 kHz cycle clock. The 1394 Open HCI can either generate the cycle clock internally or use an external reference. Whel
not the cycle master, the 1394 Open HCI keeps its internal cycle timer synchronized with the cycle master node by
correcting its own cycle timer with the reload value from the cycle start packet.

The 1394 Open HCI supports one DMA controkaichfor isochronous transmit and isochronous receive, for a total of
two isochronous DMA controllers. Each DMA controller can be implemented to support up to 32 different contexts.

The isochronous transmit DMA controller can transmit from each context during each cycle. Each context can transmit
data for a single isochronous channel.

The isochronous receive DMA controller can receive data for each context during each cycle. Each context can be config
ured to receive data from a single isochronous channel. Additionally, one context can be configured to receive data fron
multiple isochronous channels.

Copyright © 1996,1997 All rights reserved. Pagel

Introduction 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

1.2.3 Miscellaneous functions

Upon detecting a bus reset, the 1394 Open HCI automatically flushes all packets queued for asynchronous transmission.
Asynchronous packet reception continues without interruption, and a token appears in the received request packet stream
to indicate the occurance of the bus reset. When the PHY provides the new local node ID, the 1394 Open HCI loads this
value into its Node ID register. Asynchronous packet transmit will not resume until directed to by software. Because
target node ID values may have changed during the bus reset, software will not generally be able to re-issue old asynchro-
nous requests until software has determined the new target node IDs.

Isochronous transmit and receive functions are not halted by a bus reset, instead they restart as soon as the bus initializa-
tion process is complete.

A number of management functions are also implemented by the 1394 Open HCI:

a) A global unique ID register of 64 bits which can only be written once. For full compliance with higher level
standards, this register must be written before the boot block is read. To make this implementation simpler, the
1394 Open HCI optionally has an interface to an external hardware global unique ID (GUID, also know as the
IEEE EUI-64). An example device is the Dallas Semiconductor DS2501-EUI-64.

b) Four registers that implement the compare-swap operation needed for isochronous resource management.

Copyright © 1996,1997 All rights reserved. Page 2

Introduction 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

1.3 Hardware description

Figure 1-1 provides a conceptual block diagram of the 1394 Open HCI, and its connections in the host system. The 139
Open HCI attaches to the host via the host bus. The host bus is assumed to be at least 32 bits wide with adequate perfi
mance to support the data rate of the particular implementation (L00Mbit/sec or higher plus overhead for DMA structures)
as well as bounded latency so that the FIFOs can have a reasonable size.

IT
P DMA

IT
FIFO .

AT Request

AT Request
™ Dma

FIFO .

AT Response
DMA

AT Response
FIFO -

p| Physical Re-
* sponse Unit [

AT Physical
Response FIFO

vr=for=ufus=0] [o>=u)

internal
H registers Phy|Read Req

Phys Read | o | Physical Read
L Request Rcv Request FIFO <

1394 bus
-

host bus
P

1394 Link
and PHY

(bus master)

Physical Write

Phys Write
Request FIFO <

Request Rcv

-

Host Bus Interface

Gen Request
Receive DMA

AR Request
FIFO <

Serial
ROM (Opt

AR Response

Gen Response
FIFO <

< Receive DMA

Parallel
ROM (Opt)| ™ - Dll\F/TA —

IR
FIFO o

Self-ID Receive
FIFO o

Self-1D
Receive DMA

TSO>S ur>Su>Sun [T>S0)

Figure 1-1 — 1394 Open HCI conceptual block diagram
1.3.1 Hostbus interface

This block acts both as a master and a slave on the host bus. As a slave, it decodes and responds to register access wi
the 1394 Open HCI. As a master, it acts on behalf of the 1394 Open HCI DMA units to generate transactions on the hos
bus. These transactions are used to move streams of data between system memory and the devices, as well as to read
write the DMA command lists.

Copyright © 1996,1997 All rights reserved. Page 3

Introduction 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

1.3.2 DMA

The 1394 Open HCI supports six independent programm2aM@ controllers Each DMA controller has reserved
register space and can support at least one distinct logical data stream referre®MAasantext

Table 1-1 — DMA controllers and contexts

DMA controller number of contexts
Asynchronous Transmit Request 1
Asynchronous Transmit Responsg 1
Asynchronous Receive 2
Isochronous Transmit 4 minimum, 32 maximpm
Isochronous Receive 4 minimum, 32 maximpym
Self-ID Receive 1
Physical Receive 1
Physical Response 1

Each asynchronous and isochronous context is comprised of a buffer descriptor list BAll&dcantext programstored

in main memory. Buffers are specified within the DMA context progranDlA descriptors Although there are some
differences from controller to controller as to how the DMA descriptors are used, all DMA descriptors use the same basic
format. The DMA controller sequences through its DMA context program(s) to find the necessary data buffers. This frees
the system from stringent interrupt response requirements after buffer completions. The mechanism for sequencing
through DMA contexts differs somewhat from one controller to the next and is described in detail for each controller in
their respective chapters.

The Self-ID receive controller does not utilize a DMA context program and consists instead of a pair of registers; one to
be configured by software, and one to be maintained by hardware.

The 1394 Open HCI also has physical request DMA controller that processes incoming requests that read directly from
host memory. This controller does not have a DMA context, it is instead controlled by dedicated registers.

1.3.2.1 Asynchronous transmit DMA

Asynchronous transmit DMA (ATDMA) consists of 3 DMA controllers: AT DMA request, AT DMA response, and the
Physical Response Unit. These three functions can share resources.

The AT DMA request controller and AT DMA response controller move transmit packets from buffers in memory to the
corresponding FIFO (request transmit FIFO - RQTF, or response transmit FIFO - RSTF). For each packet sent, it waits for
the acknowledge to be returned. If the acknowledge is busy, the DMA context will resend the packet up to a software-
configurable number of times.

When the receive DMA indicates that a physical read has been received, the Physical Response Unit takes over to send
the response packet. The Physical Response Unit can only interrupt the AT DMA response controller or AT DMA request
controller between packets.

The asynchronous transmit DMA only supports the single phase retry protocol (retry-X).

1.3.2.2 Asynchronous receive DMA

The asynchronous receive DMA (AR DMA), contains 2 DMA controllers: the Physical Request Unit and the AR DMA
controller.

Copyright © 1996,1997 All rights reserved. Page 4

Introduction 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

The Physical Request Unit takes control when a request with a physical address is received. There are three types
physical addresses: host memory addresses (corresponding to the 4Gbyte address of a typical 32-bit CPU), compare-sw
management addresses, and the bus_info_block. A “complete” acknowledge is sent to all accepted write requests handle
by the Physical Request Unit so no response packets are necessary.

The AR DMA controller handles all incoming asynchronous packets not handled by one of the other functions in the AR
DMA. It consists of two contexts, one for asynchronous response packets, and one for asynchronous request packet
Each packet is copied into the buffers described by the corresponding DMA program. Note that received lock requests nc
targeted to one of the four compare-swap management registers are always handled by the AR DMA request context.

1.3.2.3 Isochronous transmit DMA

The isochronous transmit DMA controller supports a minimum of four isochronous transmit DMA contexts and can be
implemented to support up to 32 isochronous transmit DMA contexts. Each context is used to transmit data for a single
isochronous channel. Data can be transmitted from each IT DMA context during each isochronous cycle.

1.3.2.4 Isochronous receive DMA

The isochronous receive DMA controller supports a minimum of four isochronous receive DMA contexts and can be

implemented to support up to 32 isochronous receive DMA contexts. All but one IR DMA context is used to receive

packets from a single isochronous stream (channel). One context, as selected by software, can be used to receive pack
from multiple isochronous streams (channels).

Isochronous packets in the receive FIFO are processed by the context configured to receive their respective isochrono
channel numbers. Each DMA context can be configured to strip packet headers or include the headers and trailers whe
moving the packets into the buffers. In addition, each DMA context can be configured to concatenate multiple packets
into its buffers (bufferFill mode) or to place just a single packet into each buffer (packet-per-buffer mode).

1.3.2.5 Self-ID receive DMA

Self-ID packets (received during the bus initialization self-ID phase) are automatically routed to a single designated host
memory buffer by 1394 Open HCI self-ID receive DMA. Each time bus initialization occurs, the new self-ID packets will
be written into the self-ID buffer from the beginning of the buffer, thereby overwriting the old self-ID packets.

1.3.3 Global unique ID (GUID) interface

The optional GUID (EUI-64) interface is intended to interface to an external ROM device from which the 1394 64-bit
"node_unique_ID" may be loaded. If this interface is provided and an external device is present, the serialROM bit in the
Version Register is set and the GUID will be automatically loaded from the external ROM device following a hardware
reset. This interface is required for Host Controllers that are intended to be used on add-in cards. The specifics of th
interface to the external ROM device are outside the scope of this specification.

1.3.4 FIFOs

Data entering or leaving the FIFOs is conditionally byte-swapped. The 1394 Open HCI is designed to run in both little-
endian environments (x86/PCl) and byte-swapped big-endian environments (PowerMac/PCI). Note, however, that the
1394 standard specifies that data is treated as big-endian, with the most significant byte of a doublet, quadlet, or octle
transmitted first. This means that the data coming through the FIFOs should be byte swapped if it is intended for a byte
swapped little-endian PCI like the PowerMac (two byte-swap operations leaves the data in the original big-endian 1394
format). Little-endian x86 systems may or may not want the data byte swapped, so there are two flags that individually
enable byte swapping for header and data portions of the 1394 packets.

Copyright © 1996,1997 All rights reserved. Page5

Introduction 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

1.3.4.1 Asynchronous transmit FIFOs

The asynchronous transmit FIFOs are temporary storage for non-isochronous packets that will be sent from the Host
Controller to devices on 1394. The asynchronous request FIFO is loaded by the asynchronous request DMA unit, the
asynchronous response FIFO is loaded by the asynchronous response DMA unit and the physical response FIFO is loaded
by the physical DMA response unit.

It is not required that these FIFOs be implemented as separate physical entities. A single FIFO can be used for all asyn-
chronous transmit packets as long as the implementation prevents pending asynchronous requests from blocking asyn-
chronous responses. For example, if a read request is being sent to a 1394 device that is returning ack_busy, this should
not prevent responses from either the physical DMA unit or the asynchronous response unit from being sent. Furthermore,
a busied response from the asynchronous response unit should not block responses from the physical DMA unit. Other
sections of this specification will provide implementation guidelines that will help ensure that the non-blocking require-
ments can be met with a single asynchronous transmit FIFO.

1.3.4.2 Isochronous transmit FIFO

The isochronous transmit FIFO (ITF), is temporary storage for the isochronous transmit data. The ITF is filled by the
ITDMA and is emptied by the transmitter.

1.3.4.3 Receive FIFOs

Conceptually there are several receive FIFOs for handling incoming asynchronous requests, asynchronous responses,
isochronous packets and self-ID packets. The FIFOs are used as a staging area for packets which will be routed to the
appropriate handler. There is no requirement on the number of hardware FIFOs that must be implemented to provide the
required functionality set forth in this document.

1.3.5 Link

The link module sends packets which appear at the transmit FIFO interfaces, and places correctly addressed packets into
the receive FIFO. It includes the following features:

« Transmits and receives correctly formatted 1394 serial bus packets

» Generates the appropriate acknowledge for all received asynch packets, including support for both the single and
dual phase retry protocol for received packets.

» Performs function of cycle master

» Generates and checks 32-bit CRC

» Detects missing cycle start packets.

* Interfaces to Open-HCI-compliant PHY (see section 1.4)

* Receives isoch packets at all times (does not ignore isoch packets received outside of the expected period between
cycle start and a subaction gap). This allows isoch data to be received even if there is a CRC error in a received cycle
start.

Copyright © 1996,1997 All rights reserved. Page 6

Introduction 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

The acknowledges generated by the link depend on the type of received packet, the address, and the state of the OpenF
FIFOs:

Table 1-2 — Link generated acknowledges

Acknowledge Condition
ack _complete a) Any response with good CRC in both the header and data block (if there is pne) that
can be fully loaded into the receive buffer.

b) A write request with the offset address between 48'h0 and 48'hFFFE_FFFFH FFFF
that can be fully loaded into the receive buffer.

ack _pending a) Any read request with good CRC in the header that can be fully loaded jnto the
receive buffer.
b) Any lock request with good CRC in both the header and data block that can Qe fully
loaded into the receive buffer.
c) A write request with the offset address between 48hFFFF_0000_000p and
48’'hFFFF_FFFF_FFFF (the top 4GB, which includes the register space) that|can be
fully loaded into the receive buffer.

ack busy_ X, Any received packet with a good CRC in both the header and data block (if there is ofe) that
ack busy A, cannot be fully loaded into the receive buffer. (The choice of _X, A, or _B depends op the

ack busy B choice of acknowledge algorithm and the particular “rt” value of the received packet.)
ack_data_error Any received packet with a good header CRC and a bad data CRC.

ack_type_error May be returned when the data_length for a block write request is larger than the size jndicated

in the max_rec field of the Bus_Info_Block of the Host Controller. Always returned if
data_length is larger than max_eewthe request is not handled by the physical responsg unit.

1.4 IEEE P1394A enhancements required for 1394 Open HCI

The 1394 Open HCI requires certain features proposed for the IEEE P1394A update. There are features proposed for tt
PHY layer, link layer and for the bus manager. See Annex A., “P1394A enhancements required for 1394 Open HCI,” for
the complete list.

1.5 Software interface overview

There are three basic means by which software communicates with the 1394 Open HCI - registers, DMA, and interrupts

1.5.1 Registers

The host architecture (PCI, for example) is responsible for mapping the 1394 Open HCI'’s registers into a portion of the
processor’s address space.

1.5.2 DMA operation

DMA transfers in the 1394 Open HCI are accomplished through one of two methods:

a) DMA. Memory resident data structures are used to describe lists of data buffers. The 1394 Open HCI
automatically sequences through this buffer descriptor list. This data structure also contains status information
regarding the transfers. Upon completion of each data transfer, the DMA controller conditionally updates the
corresponding DMA Context Command and conditionally interrupts the processor so it can observe the status of
the transaction. A set of registers within the 1394 Open HCI is used to initialize each DMA context, and to
perform control actions such as starting the transfer.

Copyright © 1996,1997 All rights reserved. Page7

Introduction 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

b) Physical response DMA. The 1394 Open HCI can be programmed to accept 1394 read and write transactions to
the first 4 GB of node-offset address and treat them as reads and writes to the 32-bit memory space. In this mode,
the 1394 Open HCI acts as a bus bridge from 1394 into host memaory.

The formats for the data sent and received in all these modes are specified in the applicable chapters.
1.5.3 Interrupts

When any DMA transfer completes (or aborts) an interrupt may be sent to the host system. In addition to the interrupt
sources which correspond to each DMA context completion, there is also a set of interrupts which correspond to other
1394 Open HCI functions/units. For example, one of these interrupts could be sent when a selfID packet stream has been
received.

The processor interrupt line is controlled by the IntEvent and IntMask registers. The IntEvent register indicates which
interrupt events have occurred, and the IntMask register is used to enable selected interrupts. Software writes to the
IntEventClear register to clear interrupt conditions in IntEvent.

In addition, there are registers used by the isochronous transmit and isochronous receive controllers to indicate interrupt
conditions for each context.

1.6 System Requirements

This Host Controller specification is intended to be largely independent of the type of system to which it is attached. The
intent is that Host Controller designs that follow this specification may be built for many different types of systems and
still adhere to the same programming model. The required system facilities are:

a) Host Controller must be able to initiate accesses of host system memory;

b) Host Controller must be able to modify system memory with byte granularity;

¢) Host Controller must be able to signal an exception/interrupt to the host CPU;

d) access of 32-bit entities in either system memory or on the Host Controller must be endian neutral and atomic.

1.7 Alignment
1.7.1 Data alignment

The 1394 Open HCI must perform these two alignment functions:

a) Translate between the byte alignments of the host-based data and the quadlet aligned FIFO. For instance, if a 5
byte 1394 data packet is to be stored at host bus address 6, then the first two bytes of the first data quadlet in the
FIFO must be stored at host bus address 6 and 7 using a single word write, then the next two bytes of the first
guadlet in the FIFO combined with the first byte of the next quadlet in the FIFO are written to host bus address 8,
9, and 10.

b) Stuff extra zero bytes into the transmit FIFO when the number of bytes to transmit is not an integral number of
quadlets

1.7.2 Memory structure and buffer alignment

Alignment requirements for host memory data structures and host memory buffers can be found in sections of this
document where those elements are described.

Copyright © 1996,1997 All rights reserved. Page 8

Conventions - Notation and Terms 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

2. Conventions-Notationand Terms

2.1 Notation
2.1.1 Numeric Notation

Unless otherwise specified, numbers will be represented in Verilog language style. In particular, numbers with a “h”
prefix are hexadecimal, “’b” are binary, and “’d” or those without a prefix are decimal. If a number precedes the “ '~
then it indicates the length of the number in bits. For example, 4'h8 is the binary number 'b1000.

2.1.2 Register Notation

2.1.2.1 Read/Write registers

All register field descriptions are tagged with one or more of the following:

Table 2-1 — read/write register field access tags

access tag

(rwu) name meaning

r read field may be read

w write field may be written from the host bus

u update field may be autonomously updated by Open HCI hardwarg

2.1.2.2 Setand Clear registers

Throughout this document there are Host Controller registers that are identiietl asd Clearegisters. These registers

have the property of having two addresses by which they may be referenced by the host. Unless otherwise stated in tf
description of the register, a host read of either address will return the current contents of the register. Host writes.
however, have different effects when addressing the different addresses.

When the host writes to thfeetaddress the value written is taken as a bit mask indicating which bits in the underlying
register are to be set to one. A one bit in the value written indicates that the corresponding bit in the register is to be se
to one, while a zero bit in the value written indicates that the corresponding bit in the register is not to be changed. Simi-
larly, host writes to th€lear address specify a value that is a bit mask of bits to clear to zero in the underlying register,
a one bit means to clear the corresponding bit while a zero bit means to leave the corresponding bit unchanged. It i
intended that writing zero bits to these addresses has no effect on the corresponding bits in the underlying registel
including transient effects that could affect the operation of the Host Controller.

There are several reasons to use this type of register:

* The host doesn’t need to do both a read and a write to affect only a single bit.

* The host doesn'’t risk the Host Controller modifying a bit while the host does a read-modify-write operation, thus
causing unintended effects.

» The host doesn’t have to serialize its access to frequently used registers in order to ensure that conflict with anothe
process doesn’t cause unintended effects.

Copyright © 1996,1997 All rights reserved. Page 9

Conventions - Notation and Terms 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Table 2-2 — Set and Clear register field access tags

access tag

(rscu) name meaning

r read field may be read

S set field may be set from the host bus

c clear field may be cleared from the host bus

u update field may be autonomously updated by Open HCI hardwarg

2.1.2.3 Register Reset Values

Register field descriptions may be tagged with one or more of the following reset values. This column indicates the value of
the field immediately following a software reset or hardware reset. Except where otherwise noted, the results from a software
reset and hardware reset are the same. Note that the reset column is for software and hardware resets only and does not
include bus reset values (those are discussed as needed in the applicable text).

Table 2-3 — Regjister field reset values

reset value | meaning

x'by or x’hy | Indicates the value (in binary or hexadecimal) of the field ugon
completion of a reset. For description of Verilog notation seq
section 2.1.1.

undef Following a reset, the value of this field is undefined and mgy
contain (any combination of) zero(s) or one(s).

N/A Not applicable. A reset does not have any affect on this field.

Unless otherwise specified, all fields will remain unchanged after a bus reset.
2.1.2.4 Reserved fields

All reserved fields (indicated by a hatched or grayed-out pattern) are read as zeros (but must be ignored) and must be
written as zeros.

2.1.2.5 Reserved registers

Addresses within the OpenHCI Register Address space that are marked as reserved must return zeros when read and must
ignore writes.

2.1.2.6 Register field notation

In descriptions which refer to specific register fields, the notation fiffwill be used where Rrrrr refers to the register
name andffff refers to the referenced field within that register.

Copyright © 1996,1997 All rights reserved. Page 10

Conventions - Notation and Terms 1394 Open Host Controller Interface Specification/Draft 0.91

Printed 1/27/97

2.2 Terms

The following terms and acronyms are used throughout this document.

AR DMA
AR DMA Request

AR DMA Response
AT DMA
AT DMA Request Unit

AT DMA Response Unit

big endian

bridge
channel
CSR architecture

DMA context

DMA context program
DMA controller

DMA descriptor
DMA descriptor block

EUI-64

Global Unique ID
GUID

hardware reset

HC

HCI

INPUT_*

IR DMA
isochronous channel

IT DMA
ITF

A synchronoufkeceiveDMA .

Refers to the asynchronous receive DMA context that handles all incoming request packets not
handled by th@hysical request unit

Refers to the asynchronous receive DMA context that handles all incoming response packets.

A synchronou§ransmitDMA .

Refers to the asynchronous transmit DMA subunit which moves transmit packets from buffers in
memory to the request transmit FIFO.

Refers to the asynchronous transmit DMA subunit which moves transmit packets from buffers in
memory to the response transmit FIFO.

A term used to describe the arithmetic significance of data-byte addresses. With big-endian, the
data byte with the largest address is the least significant.

A hardware adapter that forwards transactions between Buses.
Refers to anisochronous channelumber

ISO/IEC 13213: 1994 [ANSI/IEEE Std 1212, 1994 Editidnfprmation technology - Micropro-
cessor systems - Control and Status Registers (CSR) Architecture for microcomputeFlneises
CSR architecture supports the concept of bus bridges, which can transparently forward transac-

tions from one compliant bus to anotRer.

A distinct logical stream (not necessarily physical) through the Open HCI which can be described
by aDMA context progranand a minimum of two registers: ContextControl and CommandPtr.

A list of DMA descriptorswvhich identify buffers used for data transfer.

Refers to the mechanism used in support of a specific DMA function. Each controller utilizes and
maintains its own set of registers to perform its specified functionality.

A data structure used to describe buffers and buffer-list control.

A group of DMA descriptors that are contiguous in host memory and can therefore be prefetched
by the Host Controller. The last DMA descriptor in a block contains the address of the next block

as well as a count of the number of descriptors contained in the next block. This count is referred
to as the Z value.

Extended Unique Identifier. S&obal Unique IDbelow.

A 64-bit node unique identifier, comprised of a 24-bit node company ID and a 40-bit chip ID.
SeeGlobal UniquelD.

Refers to a host power reset.

HostController. The device who's interface is defined by this specification.

H ostControllerInterface. The interface defined by this specification.

Abbreviated notation for INPUT_MORE and INPUT_LAST DMA commands.

| sochronouRkeceiveDMA.

Within the packet header of an IEEE 1394 isochronous packet there is a 6 bit channel number.
Receivers “listen” for packets transmitted with particular channel number(s).

| sochronoud ransmitDMA.
| sochronougransmitFIFO.

Copyright © 1996,1997 All rights reserved.

Page 11

Conventions - Notation and Terms 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

link layer (LINK)

little endian

Node ID

OHCI
OUTPUT_*
PCI

PHY
physical layer

Physical Request Unit

Physical Response Unit
posted write

RQTF
RSTF

quadlet
RDMA

ROM

software reset

Z block

The layer, in a stack of three protocol layers defined for the Serial Bus, that provides the service
to the transaction layer of one-way data transfer with confirmation of reception. The link layer
also provides addressing, data checking, and data framing. The link layer also provides an isoch-

ronous data transfer service directly to the applicetion.

A term used to describe the arithmetic significance of data-byte addresses. With little-endian, the
data byte with the smallest address is the least significant.

This is a unique 16-bit number, which distinguishes the node from other nodes in the‘system.
O penHostControllerInterface.

Abbreviated notation for OUTPUT_MORE and OUTPUT_LAST DMA commands.

PeripheralComponent nterconnect. Specification that defines the PCI bus. This bus is intended
to define the interconnect and bus transfer protocol between highly-integrated peripheral adapters
thatjjreside on a common local bus on the system board (or add-in expansion cards on the PCI
busy.

Abbreviation for the physical layér.

The layer, in a stack of three protocol layers defined for the Serial Bus, that translates the logical
symbols used by the link layer into electrical signals on the different Serial Bus media. The
physical layer guarantees that only one node at a time is sending data and defines the mechanical

interfaces for the Serial Bis.

fysicalRequestUnit. Refers to the asynchronous receive DMA subunit that handles physical
requests.

Refers to the asynchronous transmit DMA subunit that handles physical responses.

A write request received by the Host Controller for which the Host Controller sends an
ack _complete before the data is actually written to system memory.

RequestTransmitFIFO. Refers to the FIFO used for asynchronous transmit requests.

ResponseTransmitFIFO. Refers to the FIFO used for asynchronous transmit responses. Used
for AT DMA responses and physical responses.

A 32-bit word.
R eceiveDMA .
ReadOnly Memory.

Refers to a Host Controller reset that is initiated by host software. See section 5.7, “HCControl
registers (set and clear).”

SeeDMA descriptor block

a. Information technology - Microprocessor systems - Control and Status Registers (CSR) Architecture for microcom-
puter busesISO/IEC 13213 [1994], The Institute of Electrical And Electronics Engineers, Inc., New York, NY.

b. Shanley, T. and Anderson, D. [February 199%}] System Architectur@dddison-Wesley, Reading, MA.
c. IEEE Standard for a High Performance Serial Bus, Std 1394-1995, The Institute of Electrical And Electronics Engi-
neers, Inc., New York, NY.

Copyright © 1996,1997 All rights reserved. Page 12

DMA overview 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

3. DMA overview

The 1394 Open HCI provides several types of DMA functionality:

a) General-purpose DMA handling asynchronous transmit and receive packets and isochronous transmit and receiv
packets.

b) An inbound bus bridge function that allows 1394 devices to directly access system memory called “physical
DMA.

c) A separate write buffer for the received self-ID packets.

d) A mapping between a 1K byte block in system memory and the first 1K of 1394 Configuration ROM.

This section will describe the common controller features and attributes.

3.1 Context Registers

A context provides the basic information to the Host Controller to allow it to fetch and process descriptors for one of the
several DMA controllers. All contexts (except for SelfID) minimally have a ContextControl Register and a CommandPtr
Register. The formats of the ContextControl Registers is DMA controller specific but all ContextControl registers mini-
mally have the bits as shown in figure 3-1 and described in table 3-1. The CommandPtr Registers for all controllers are
the same and follow the format shown in figure 3-2 and described in table 3-3.

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 16/15 14 13 1211 10 9 8|7 6 5 4;3 2 1 0
T T 1]
spd ack/err
code
| | | | | |
1
run |
active
dead
wake
Figure 3-1 — ContextControl (set and clear) register format
Table 3-1 — ContextControl (set and clear) register description
Field rscu |reset Description
run rscu 1'b0 The run bit is set by software to enable descriptor processing for a context gnd

cleared by software to stop descriptor processing. The Host Controller will orjly
change this bit on a hardware or software reset to set it to 0. See section 3.1{1 for
details.

wake rsu undef Software sets this bit to 1 to cause the Host Controller to continue or resumg descrip-
tor processing. The Host Controller will clear this bit on every descriptor fetch|. See
section 3.1.2 for details.

dead ru 1'b0 The Host Controller sets this bit when it encounters a fatal error. The Host coptroller
clears this bit when software clears the run bit. See section 3.1.4 for details.
active ru 1'b0 The Host Controller sets this bit to 1 when it is processing descriptors. See

section 3.1.3 for details.

Copyright © 1996,1997 All rights reserved. Page 13

DMA overview

1394

Open Host Controller Interface Specification/Draft 0.91

Table 3-1 — ContextControl (set and clear) register description

Printed 1/27/97

Field rscu |reset Description
spd ru undef This field indicates the speed at which the packet was received or transmitted. 3’'b000
= 100 Mbits/sec, 3'b001 = 200 Mbits/sec and 3'b010 = 400 Mbits/sec. All other
values are reserved. Spd only contains meaningful information for receive coptexts.
ack/err code ru undef | This field holds the acknowledge sent by the Link core for this packet, or af inter-
nally generated error code (evt_*) if the packet was not transferred successfujly. All
possible ack/err codes are shown in Table 3-2, “Packet event codes,” below.
Table 3-2 — Packet event codes
Code | Name DMA | Meaning
5’h00 | reserved
5'h01 | ack_complete AT,ARThe destination node has successfully accepted the packet. If the packet was a request sub-
IT,IR |action, the destination node has successfully completed the transaction and no r¢sponse
subaction shall follow.
The ack/err code for transmitted PHY, isochronous and broadcast packets, none df which
yields an ack code, will be set by hardware to ack_complete unless an evt_underyun or
evt_data_read occurs.
5'h02 | ack_pending AT,AR The destination node has successfully accepted the packet. If the packet was a r¢quest sub.
action, a response subaction will follow at a later time. This code is not returned fpr a
response subaction.
5'h03 | reserved
5'h04 | ack _busy X AT The packet could not be accepted after max ATRetries (see section 5.4) attempt$, and the
last ack received was ack_busy X.
5’h05 | ack_busy A AT The packet could not be accepted after max ATRetries (see section 5.4) attempt$, and the
last ack received was ack_busy A.
NOTE: The 1394 Open HCI does not support the dual phase retry protocol for trangmitted
packets, so this ack should not be received.
5'h06 | ack busy B AT The packet could not be accepted after max AT Retries (see section 5.4) attemptg, and the
last ack received was ack_busy B. (See note for “ack_busy_A”")
5'h07 - | reserved
5'h0oC
5'hOD | ack_data_error AT,IR The destination node could not accept the block packet because the data field fpiled the
CRC check, or because the length of the data block payload did not match the lenpgth con-
tained in the data_length field. This code is not returned for any packet that does rfot have
a data block payload.
5'hOE | ack _type error AT A field in the request packet header was set to an unsupported or incorrect valug, or an
invalid transaction was attempted (e.g., a write to a read-only address).
5'hOF | reserved
5'h10 | evt_tcode_err AT A bad tCode is associated with this packet. The packet was flushed.
5'h1l | evt_short_packet IR For IRaclet-perbuffer mode only. The received data length was less than the pagket’s
data_length.
5'h12 | evt_long_packet IR For IBaclet-perbuffer mode only. The received data length was greater than the
packet’s data_length.
5'h13 | evt_missing_ack AT A subaction gap was detected before an ack arrived.
5'h14 | evt_underrun AT Underrun on the corresponding FIFO. The packet was truncated. See Section 1B.2.3 for
further details.

Copyright © 1996,1997 All rights reserved.

Page 14

DMA overview

1394 Open Host Controller Interface Specification/Draft 0.91

Table 3-2 — Packet event codes (Continued)

Printed 1/27/97

Code | Name DMA | Meaning
5'h15 | evt_overrun IR A receive FIFO overflowed during the reception of an isochronous packet.
5'h16 | evt_descriptor_read AT,ARAN unrecoverable error occurred while the Host Controller was reading a descriptor
IT,IR | block.
5'h17 | evt_data_read AT,IT| An error occurred while the Host Controller was attempting to read from host mgmory it
the data stage of descriptor processing.
5'h18 | evt_data_ write AR,IR An error occurred while the Host Controller was attempting to write to host menjory in
the data stage of descriptor processing.
5'h19 | evt_bus_reset AR Identifies a PHY packet in the receive buffer as being the synthesized bus rese{ packe
(See section 8.4.2.3).
5'h1A | evt_timeout AT Indicates that the asynchronous transmit response packet expired and was not trgnsmitt
5'h1B- | reserved
5'hiD
5'h1E | evt_unknown AT,AR An error condition has occurred that cannot be represented by any other event cqdes
IT,IR |defined herein.
5'h1F | evt_flushed AT Sent by the link side of the output FIFO when asynchronous packets are being fluphed di
to a bus reset.
31 30 29 28, 27 26 25 24|23 22 21 20119 18 17 16|15 14 13 1211 10 9 8|7 6 5 4,3 2 1 O
rrrrrrrrrrrrrtrrrrrrrTTt 11T T T 1717171717711 "1
descriptorAddress [31:4] Z
I O o o o o [[Iy |
Figure 3-2 — CommandPtr register format
Table 3-3 — CommandPtr register description
Field rwu |reset Description
descriptorAddress rwu undef Contains the upper 28 bits of the address of a 16-byte aligned descriptor block| See
section 3.1.5 for details.
4 rwu undef Indicates the number of contiguous descriptors at the address pointed to by descfiptorA
dress. If Zis 0, itindicates that the descriptorAddress is not valid. See sections 3.1}4.1 ar
3.1.5 for details.

3.1.1 ContextControl.run

The ContextContralun bit is set by software when the Host Controller is to begin processing descriptors for the context.
Before software sets ContextContraoh, ContextControhctive must not be set, and the CommandPtr Register for the
context must contain a valid descriptor block address and a Z value that is appropriate for the descriptor block address.

Copyright © 1996,1997 All rights reserved. Page 15

DMA overview 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Software may stop the Host Controller from further processing of a context by clearing Context@ontféhen a
ContextControtun is cleared, the Host Controller will stop processing of the context in a manner that will not impact the
operation of any other context or DMA controller. The Host Controller may require a significant amount of time to safely
stop processing for a context but when the Host Controller does stop, it will clear Context@ainteollf software

clears a ContextControlin for an isochronous context while the Host Controller is processing a packet for the context,

the Host Controller will continue to receive or transmit the packet and update descriptor status. The Host Controller will,
however, stop at the conclusion of that packet. If ContextControls cleared for a non-isochronous context, the Host
Controller may stop processing at any convenient point as long as the context and descriptors end up in a consistent state
(e.g., status updated if a packet was sent and acknowledged).

Clearing ContextContralun may have other side effects that are DMA controller dependent. These effects are described
in the chapters that cover each of the DMA controllers.

When software clears ContextControh and the Host Controller has stopped, the Host Controller is not necessarily in a
state that can be restarted simply by setting ContextCamtnol. Software should always ensure that
CommandPtdescriptorAddresand CommandP#.are set to valid values before setting ContextComtnal.

3.1.2 ContextControl.wake

When software adds to a list of descriptors for a context, the Host Controller may have already read the descriptor that
was at the end of the list before it was updated. The value that the Host Controller read may contain a Z value of zero
indicating the end of the descriptor list. The ContextContate bit provides a simple semaphore to the hardware to
indicate that the list may be changed since the last time that Host Controller read a descriptor. Therefore, if the Host
Controller had fetched a descriptor and the indicated branch address had a Z value of zero, then the Host Controller
should reread the pointer value. If, on the reread, the Z value is still zero, then the end of the list has been reached and the
Host Controller should clear ContextContaative If, however, the Z value is now non-zero, the Host Controller will
continue processing.

In order to ensure that a wake condition is not missed, the Host Controller should clear Contexi@éstoeifore it
reads or rereads a descriptor.

ContextControlvakeis ignored when ContextContralin is zero.
3.1.3 ContextControl.active

ContextControkctiveis set and cleared only by the Host Controller. It is set when the Host Controller receives an indi-
cation from software that a valid descriptor is available for processing. This indication can come as a result of software
setting the ContextControlin or by software setting ContextContiakewhile ContextControtun is set. There are four

cases in which the Host Controller will clear ContextCorditive when a branch is indicated by a descriptor but the Z
value of the branch address is 0; when software clears ContextCamtrahd the Host Controller has reached a safe
stopping point; while ContextContrdeadis set; and after a hardware or software reset of the Host Controller. Addition-
ally, for the asynchronous transmit contexts (request and response), the Host Controller will clear Conteatfigatrol.
when a bus reset occurs.

When ContextContractiveis cleared and ContextContmlin is already clear, the Host Controller will set the IntEvent
bit for the context. This interrupt is the same interrupt that would have been generated by the context if a completed
descriptor had indicated that an interrupt should be generated.

Copyright © 1996,1997 All rights reserved. Page 16

DMA overview 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

3.1.4 ContextControl.dead

ContextControdeadis used to indicate a fatal error in processing a descriptor. When ContextClesatilas. set by the

Host Controller, ContextContraictive is cleared but ContextContrain remains set. In addition, setting ContextCon-
trol.dead causes an unrecoverableError interrupt event (see Table 6-1) and blocks a normal context event interrupt frorn
being set.

ContextControdeadis cleared when software clears ContextCormunnlor by either a hardware or software reset of the
Host Controller.

Software can determine the cause of a context going dead by checking the Contex&Chigrotode (table 3-2). The
defined reasons for the Host Controller to set ContextCouéadare described in section 3.1.4.1 and section 13., “Host
Bus Errors.”

3.1.4.1 Bad Z Value

When software sets ContextControh and CommandP#.contains an invalid value for the controller and context (e.g.,
not equal to 1 for asynchronous receive or set to 0), the Host Controller will set ContextGeati@hd not process any
descriptors in that context.

3.1.5 CommandPtr

Software initializes CommandRtescriptorAddresdo contain the address of the first descriptor block that the Host
Controller will access when software enables the context by setting ContextContr@oftware also initializes
CommandPtZ to indicate the number of descriptors in the first descriptor block. Software shall only write to this register
when both ContextControln and ContextContractiveare zero. The Host Controller is not required to enforce this rule
and its behavior when this rule is violated is undefined.

Since the Host Controller utilizes the CommandPtr register while processing a context, there is a set of guidelines by
which software may safely and deterministically read CommandPtr. These guidelines are based on the ContextControl bit
as follows (X='don’t care’):

Table 3-4 — CommandPtr read values

ContextControl fields

run | dead | active| wake| CommandPtr.descriptorAddres¥/alue

0 0 X X A descriptor block address. Either lafst
written or last executed

1 0 0 0 Refers to the descriptor block that c¢n-
tains the Z=0 that caused the Host Jon-
troller to set active to O.

Contents unspecified.

Contents unspecified.

Contents unspecified.

e
rlo|lo|o

X|kr|r|O
X|lk|o|r

Points to the descriptor block in whigh
a fatal error occurred.

If ContextControlrun is set and ContextContrdeadis not set, then the contents of CommandPtr are only specified if
both ContextControhctive and ContextControkake are clear. In this instance, CommandfetscriptorAddresswill

contain the address of a descriptor within the last descriptor block that was executed. If Context@oatrdlContext-
Controldeadare both set, then descriptorAddress points to a descriptor within the descriptor block in which an unrecov-
erable error occurred.

Copyright © 1996,1997 All rights reserved. Page 17

DMA overview 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Except for the case where software initializes CommandPtr, the value of CommandPtr.Z is undefined and Z may contain
a value that is implementation dependant.

The value of CommandPtr is undefined after a hardware or software reset of the Host Controller.

3.2 List Management

All contexts use an identical method for controlling the processing of descriptors associated with the context. This
presents a uniform interface to controlling software and allows reuse of hardware on the Host Controller.

3.2.1 Software Behavior

3.2.1.1 Context Initialization

Software initializes the context by first checking to see that ContextControContextControhctive and ContextCon-
trol.deadare all 0. Then, CommandRiescriptorAddresss written to point to a valid descriptor block and CommangaPtr.
is set to a value that is consistent with the descriptor block. Then ContextCGantoan be set.

3.2.1.2 Appending to Running List

Software may append to a list of descriptors at any time. Software may append either a single descriptor or a linked list
of descriptors. When the to-be-appended list is properly formatted, software updates the branch address and Z value of the
descriptor that was at the end of the list being processed by the Host Controller.

When software completes linking process it must set ContextCaveia for the context. This ensures that the Host
Controller will resume operation if it had previously reached the end of the list and gone inactive.

3.2.1.3 Stopping a Context

Software can stop a running context by clearing ContextCantnolThe context might not stop immediately. To ensure
that the context has stopped, software must wait for ContextCawctiokto be cleared by the Host Controller. This indi-
cates that the Host Controller has completed all processing associated with the context.

3.2.2 Hardware Behavior

The Host Controller has several DMA controllers each of which has one or more contexts. Each DMA controller is
expected to examine each of its contexts on a periodic basis and make operational decisions based on the context state as
contained in ContextControl. The flow-chart for how a DMA controller uses the ContextControl state to govern descriptor
processing is shown below. This process is executed once each time a context is ‘scheduled’. Scheduling of a context is
dependent on the DMA controller. For example, an isochronous transmit context will be scheduled once per cycle while
an asynchronous request transmit context will only be scheduled once per fairness interval.

Copyright © 1996,1997 All rights reserved. Page 18

DMA overview 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

dead=0? no set
active=0

b &

no set
active=0

process no set
dilscr:gior active=0
| oc

yes

set cmd=
branch addr

o
wake=0
Y

get branch
addr***
* **fetches and processes the descriptor
no block. yields the branch entry
(addr+2) of the next cmd descriptor
***refetch last known cmd’s
yes branch entry

set cmd=

branch addr

v

set
active=1

[0}
iso_context
?
yes

Figure 3-3 — Flow Chart for processing a descriptor

Copyright © 1996,1997 All rights reserved. Page 19

DMA overview 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

3.3 Asynchronous Receive
The Host Controller accepts 1394 transactions and groups them as follows:

1) physical read requests - physical read requests are handled directly by the Host Controller and are not made
visible to system software. DMA contexts and controllers that are used in a Host Controller for the physical
read request unit are implementation specific. This specification places no limits on the physical response
unit other than its effective address range and the requirement that the Host Controller may not block
processing of other transaction types while dealing with physical requests.

2) self-ID paclets - PHY packets with the selfID format can be received at any time. However, only those
packets that are received during the selflID phase of bus initialization which immediately follows a bus reset
are considered to be selfID packets. Others are considered simply to be PHY packets which are handled like
asynchronous requests. The Host Controller can be programmed to accept or ignore selfID packets. When
selfID packets are accepted, they are stored in a special memory buffer which has a dedicated controller and
context. Because of this special memory buffer, selfID packets can never get ‘stuck’ in a FIFO.

3) asynchronous responses - when the host system initiates a request through the asynchronous transmit request
context, the response will be handled by the asynchronous receive response context. The fact that host system
software initiates the process and the fact that the Host Controller has a separate context for responses allows
system software to budget for all responses which ensures that the Host Controller will always have a place
in system memory to store a response when it arrives. In the unlikely event that the Host Controller does not
have a place for the response it is allowed to drop the response when it arrives. This will cause a split-
transaction timeout which is an error condition with which the software is already able to deal.

4) asynchronous requests - a request may arrive at the Host Controller at any time. Additionally, a request can
be of any size up to the limits imposed by the max_rec field in the Bus_Info_Block. Because of the
unpredictable nature of this transaction type, it is impractical for the system software to ensure that there is
always sufficient buffer space defined in the asynchronous request receive buffers.

The limitations and requirements for handling each of the transaction types suggest some ways of simplifying the
hardware implementation so that a FIFO is not needed for each of the input transaction types. One simplification would
be to place asynchronous requests into a first FIFO and then send all other transaction types (except for physical reads)
through a second FIFO. This two FIFO scheme provides the necessary non-blocking behavior because the Host Controller
will always be able to remove transactions from the second FIFO whether or not buffer space exists for the transaction.
The selfID, isochronous and asynchronous response transactions will either have a buffer defined for the transaction or it
is permissible to discard the transaction if no buffer exists to receive it. This leaves requests to be sent to the first FIFO.
When that FIFO fills, additional requests will receive ack_busy until system software makes space available to the Host
Controller by adding descriptors to the context.

There is an alternative implementation which is to use a single physical FIFO but ensure that it provides the behavior of

the multiple FIFOs. This is a bit more complex than the dual FIFO case but may result in a net savings in hardware. The

issue with using a single physical FIFO for all incoming transactions is to make sure that no request is placed in the FIFO

unless there is a place for it in system memory. There are several way of accomplishing this with one given as an example
here.

On the link side of the input FIFO a counter is maintained. This counter is initialized to 0 when, for the AR request
context, ContextContraobin is not set. When the system side of the FIFO reads a request descriptor, the regLength value
from the descriptor is passed to the link side of the FIFO. The link side then adds this value to the current count value.
When the count value on the link side is greater than zero, the link can accept request data and place it into the FIFO.
After each request, other than a physical write request, quadlet is placed in the FIFO the link side decrements the counter.
When the counter reaches 1, the link checks to see if the end of packet has been reached. If it has, the link uses the last
entry for the footer value (cycleCount, speed and ackSent.) If the end of the packet has not been reached, the link places
an error value in the last quadlet to indicate that the packet was not totally received and then the link returns an ack_busy
to the requestor. The system side of the fifo can indicate that additional space has been made available by writing a new
value to the link side. The link side will add these values to the current count value.

Copyright © 1996,1997 All rights reserved. Page 20

DMA overview 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

The system side of the FIFO will send count values to the link side on two occasions. The first is when a descriptor is
initially fetched and the reqLength in the descriptor is sent to the link side. It is required that the Host Controller have a
look ahead of at least one descriptor (current plus next). If the Host Controller does not look ahead, the link side will not
be able to accept packets that cross descriptor boundaries.

The second instance when the system side of the input FIFO sends a count value to the link side is when the system si
sees a packet that has an error. Packets that contain errors (e.g., CRC) are always 'backed out' of the buffer when t
context is in buffer fill mode. The AR request context can only be in buffer fill mode so all bad packets must be 'backed
out'. When a packet is backed out, the space that was allocated for that packet is made available for other packets and t
link side of the FIFO must be informed of the amount of data that has been backed out. A simple implementation of this
is to maintain a counter on the system side of the FIFO that is reset at the beginning of each packet. As each quadlet
removed from the FIFO, the counter is incremented. At the end of the packet, the Host Controller checks the error code
If it indicates that there was an error, and the packet was a request, the count value is sent to the link side of the FIFO f
indicate the amount of space that has been 'reclaimed'.

The regLength field in a descriptor may indicate a size as large as 65,532 bytes (16,383 quadlets.) If quadlet counts al
maintained this means that 14 bits are required to indicate the maximum number of quadlets (Ox3FFF). To allow for look
ahead, the link side counter should be able to hold a value equal to two maximum sized buffers which is 32,766
(OX7FFFE) quadlets or 15 bits. Since the system software is required to allocate buffers that are sized to accept th
maximum sized packet (as described in max_rec of the Bus_Info_Block) the Host Controller need only do one level of
look ahead on the buffer descriptors to make sure that the maximum sized packet can be accepted.

If an unrecoverable error occurs when the Host Controller is writing to the AR request buffer, a fail indication is sent to
the link side of the FIFO. This indicates that the link side should set its count to zero which will busy further read
requests and write requests that are destined for the AR request buffer.

If the AR request context has an unrecoverable error, requests may be in the FIFO some of which may be posted write
The system side of the FIFO will continue to unload the FIFO even though the AR request context is dead. If a read
request is found, a response is returned with the response code set to resp_conflict_error which means that the request ¢
be retired. If a write request is found and that write request would have been sent to the AR request queue, the Hos
Controller saves the error information for the request (source node ID and offset address) and continues to unload th
FIFO, discarding all the write data. When the end of the packet is found, the ackSent code is inspected. If ack_pendin
was sent, then a response packet is sent with the response code set to resp_conflict_error. If ack_complete had been s
and the write was to physical memory space (below offset 48’h0001_0000_0000) then a posted write error is reported
Note that the host controller will hold the error information until a packet is successfully written so that if an error occurs

in the middle of writing a packet, the proper recovery can be made (send resp_conflict_error or generate posted writ
error as appropriate).

Copyright © 1996,1997 All rights reserved. Page 21

DMA overview

1394 Open Host Controller Interface Specification/Draft 0.91

Printed 1/27/97

3.4 DMA Summary

The table below is a summary of registers and features used by the OpenHCI DMA controllers. Each controller is fully

described later in this document.

Table 3-5 — DMA Summary

Per Context Per Context tcodes
DMA Contexts Registers Interrupts Receive mode DMA commands Z | (4hx)
Asynchronous ContextContro OUTPUT_MORE 0,1,4,
Transmit 1 Request CommandPtr reqTxComplete OUTPUT_MORE-Immediate , g |5, 9,
(section 7.0) C OUTPUT_LAST
| ContextContro - . 2,6,7,
1 ReSponS“CommandPtr respTxComplete OUTPUT_LAST-Immediate B
Asynchronous 1 Request ContextContro| ARRQ 0,1,4,
Rt?[icer:vgeo CommandPtr | RQPkt buffer-fill INPUT_MORE 1 159§
(section 8.0) " ResponskCONteXIControl ARRS 2.6,7,
"CommandPtr | RSPkt B
Isochronous OUTPUT_MORE
Transmit isochTx OUTPUT_MORE-Quadlet
(section 9.0)| 4-32 ggmfnxgﬁgggo isoXmitintEvenh OUTPUT_LAST 1-8| A
isoXmitIntMaskn OUTPUT_LAST-Quadlet
STORE_VALUE
Isochronous ContextContro| isochRx packet-per-buffer NP UT_MORE 1-8
Receive . INPUT_LAST as
(section 10.0 4-32 CommandPtr !soRechntEvem : recvd
ContextMatch | isoRecvIntMash buffer-fill INPUT_MORE 1
Self-ID SelfIDBuffer :
(section 11.0 1 SelfiDCount SelfIDComplete buffer-fill N/A
Copyright © 1996,1997 All rights reserved. Page 22

Register addressing 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

4. Registeraddressing

The 1394 Open HCI's registers occupy a 2048 byte address space. This 2048 byte space is allocated to control registel
common DMA controller registers and individual DMA context registers as indicated below. Writes to reserved addresses
of the 1394 Open HCI address space may have unexpected results and are disallowed. Reads of reserved addresse
undefined. Host processors may only access Host Controller registers with quadlet reads or writes on quadlet boundarie

All addresses within this 2K address space are reserved for OpenHCI and not for vendor defined registers.

Annex B. describes how this memory space is accessed from PCI.

Table 4-1 — 1394 Open HCI register space map

Offset (binary) Space
00R_RRRR_RRO0O control register space
(11'h000 to 11'h17C) R_RRRR_RR selects register
001_1ccR_RROO Asynchronous DMA context register space
(11°'h180 to 11'h1FC) cc= 2’h0-2'h3 selects DMA context
R_RR selects DMA context register
01t _tttt RROO Isochronous Transmit DMA context register space
(11°'h200 to 11'h3FC) t_tttt = 5'h00-5'h1F selects IT DMA context
RR selects DMA context register
1vww_vvwwR_RROO Isochronous Receive DMA context register space
(11'h400 to 11'7FC) w_vwv = 5'h00-5'h1F selects IR DMA context

R_RR selects DMA context register

4.1 DMA Context Number Assignments

The 1394 Open HCI contains up to 68 DMA contexts, 4 for asynchronous and from 8 up to 64 for isochronous. The
controller number assignments for asynchronous DMA are illustrated below. Note that these numbers correspond to th
“cc” DMA controller select values in the table above.

Table 4-2 — Asynchronous DMA Context number assignments

DMA Context
Number Context Name
2'h0 Asynchronous Transmit Request
2'hl Asynchronous Transmit Response
2’h2 Asynchronous Request Recieve
2'h3 Asynchronous Response Receive

For the isochronous transmit contextdftt represents IT contexts numbered 0-31.
For the isochronous receive contextg, vvv represents IR contexts numbered 0-31.

Copyright © 1996,1997 All rights reserved. Page 23

Register addressing 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

4.2 Register Map

Table 4-3 — Register addresses (Sheet 1 of 3)

Offset DMA Context Read value Write value See clause
11’'h000 Version - 5.2
11’h004 GUID_ROM GUID_ROM 5.3
11'h008 ATRetries ATRetries 54
11’ho0C CSRReadData CSRWriteData 55.1
11'h010 CSRCompareData CSRCompareData 5.5.1
11'h014 CSRControl CSRControl 5.5.1
11’h018 ConfigROMhdr ConfigROMhdr 55.2
11'h01C BusID - 5.5.3
11'h020 BusOptions BusOptions 554
11'h024 GUIDHi GUIDHI 5.5.5
11'h028 GUIDLo GUIDLo 5.5.5
11'h02C Reserved Reserved

11'h030 Reserved Reserved

11'h034 ConfigROMmap ConfigROMmap 5.5.6
11'h038 PostedWriteAddressLo PostedWriteAddressLo 12.3
11’'h03C PostedWriteAddressHi PostedWriteAddressHi

11'h040 Vendor ID - 5.6
11'h044 - Reserved Reserved

11'ho4C

11’h050 HCControl HCControlSet 5.7
11'h054 HCControlClear 5.7
11'h058 - Reserved Reserved

11’h05C

11'h060 | Self ID Reserved Reserved

11'h064 SelfIDBuffer SelfIDBuffer 111
11'h068 SelfIDCount 11.2
11'h06C Reserved Reserved

11'h070 IRChannelMaskHi IRChannelMaskHiSet 104.1.1
11'h074 IRChannelMaskHiClear

11'h078 IRChannelMaskLo IRChannelMaskLoSet

11'h07C IRChannelMaskLoClear

Copyright © 1996,1997 All rights reserved. Page 24

Register addressing

1394 Open Host Controller Interface Specification/Draft 0.91

Printed 1/27/97

Table 4-3 — Register addresses (Sheet 2 of 3)

Offset DMA Context Read value Write value See clause
11’'h080 IntEvent IntEventSet 6.2.1
11'h084 (IntEvent & IntMask) IntEventClear
11'h088 IntMask IntMaskSet 6.2.2
11’h08C - IntMaskClear
11'h090 IsoXmitIntEvent IsoXmitintEventSet 6.2.3.1
11'h094 IsoXmitintEventClear
11’'h098 IsoXmitintMask IsoXmitintMaskSet 6.2.3.2
11'h09C IsoXmitIntMaskClear
11’'h0AO IsoRecvIntEvent IsoRecvIntEventSet 6.2.4.1
11’'h0A4 IsoRecviIntEventClear
11'h0AS8 IsoRecvIntMask IsoRecvIntMaskSet 6.2.4.2
11'h0AC IsoRecvintMaskClear
11'h0BO- Reserved Reserved
11'hODC
11'hOEO LinkControl LinkControlSet 5.8
11'hOE4 LinkControlClear
11'hOES8 Node ID Node ID 5.9
11'hOEC Phy Control Phy Control 5.10
11'hOF0 Isochronous Cycle Timer Isochronous Cycle Timer 5.11
11’hOF4- Reserved Reserved
11’hOFC
11'h100 AsynchronousRequestFilterHi AsynchronousRequestFilterHiSet 5.12.1
11'h104 AsynchronousRequestFilterHiClear
11'h108 AsynchronousRequestFilterLo AsynchronousRequestFilterLoSet
11'hi10C AsynchronousRequestFilterLoClear
11’h110 PhysicalRequestFilterHi PhysicalRequestFilterHiSet 5.12.2
11'h114 PhysicalRequestFilterHiClear
11'h118 PhysicalRequestFilterLo PhysicalRequestFilterLoSet
11’h11C PhysicalRequestFilterLoClear
11'h120- Reserved Reserved
11’'h17C
11’'h180 | Async request | ContextControl ContextControlSet 3.1,7.2.2
11'h184 transmit ContextControlClear
11'h188 Reserved Reserved
11'h18C CommandPtr CommandPtr 3.1.5,7.2J]1
11’h190- Reserved Reserved
11'h19C

Copyright © 1996,1997 All rights reserved. Page 25

Register addressing

1394 Open Host Controller Interface Specification/Draft 0.91

Printed 1/27/97

Table 4-3 — Register addresses (Sheet 3 of 3)

Offset DMA Context Read value Write value See clause
11’h1A0 | Async response| ContextControl ContextControlSet 3.1,7.2.2
11’h1A4 transmit ContextControlClear

11'h1A8 Reserved Reserved

11'h1AC CommandPtr CommandPtr 3.15 7.211
11’h1BO- Reserved Reserved

11'h1BF

11’'h1CO | Async request | ContextControl ContextControlSet 3.1,8.3.2
11’h1c4 |receve ContextControlClear

11'h1C8 Reserved Reserved

11'h1CC CommandPtr CommandPtr 3.1.5, 8.3]1
11’h1DO0- Reserved Reserved

11’h1DF

11’h1EO Async response| ContextControl ContextControlSet 3.1,8.3.2
11’'h1E4 |'eceve ContextControlClear

11’h1E8 Reserved Reserved

11'h1EC CommandPtr CommandPtr 3.1.5, 8.3|]1
11’h1FO0- Reserved Reserved

11'h1FF

11’'h200 +| Isoch transmit n,| ContextControl ContextControlSet 3.1,9.2.2
16*n where “n” = 0 for

11'h204+ context 0, 1 for ContextControlClear

16n context 1, etc...

11'h208+ Reserved Reserved

16*n

11'h20C + CommandPtr CommandPtr 3.1.5,9.2411
16*n

11’'h400 +| Isoch Receive n,| ContextControl ContextControlSet 3.1, 10.3.]
32*n where “n” = 0 for

11'h404 + context 0, 1 for ContextControlClear

3% context 1, etc.

11'h408 + Reserved Reserved

32*n

11'h40C + CommandPtr CommandPtr 3.1.5,10.3.1
32*n

11’h410+ ContextMatch ContextMatch 10.3.3

32*n

11'h414+ Reserved Reserved

32*n

11’h418+ Reserved Reserved

32*n

11'h41C+ Reserved Reserved

32*n

Copyright © 1996,1997 All rights reserved.

Page 26

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

5. 1394 OpenHCIRegisters

5.1 Register Conventions

Unless otherwise specified, all register fields will initialize as zeros. For software, reads of reserved locations (indicated
by a hatched or grayed-out pattern) yield undefined results.

Similarly, unless otherwise specified, all fields will remain unchanged after a 1394 bus reset.

Refer to Section 2.1.2 for an explanation of register notation.

5.2 Version Register

This register contains a 32 bit value which indicates the version and capabilities of the interface. The register is expecte
to be used to indicate the level of functionality present in the 1394 Open HCI. This register is read only.

31 30 29 28) 27 26 25 24|23 22 21 2019 18 17 16|15 14 13 1211 10 9 8|7 6 5 4;3 2 1 0
T T T T

version revision

|
GUID_ROM
Figure 5-1 — Version register

Table 5-1 — Version register

field name rwu | reset | description
GUID_ROM r N/A | The bus_info_block will be automatically loaded on hardware reset.
version r N/A | Major version of the Open HCI. This field contains the bcd encoded vajue

representing the major version of the highest numbered 1394 OpenHC
specification with which this controller is compliant. For example, a Hog
Controller implemented to this specification (Draft 0.91) will have a verg
value of 8'h00 and a Host Controller implemented to version 2.25 of thi
specification will have a vaue of 8’'h02.

revision r N/A | Minor version of the Open HCI. This field contains the bcd encoded value
representing the minor version of the highest numbered 1394 OpenHC
specification with which this controller is compliant. For example, a Hog
Controller implemented to this specification (Draft 0.91) will have a revi
value of 8'h91 and a Host Controller implemented to version 2.25 of thi
specification will have a vaue of 8'h25.

— —+

on

"2

OT O,
o
=]

Copyright © 1996,1997 All rights reserved. Page 27

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

5.3 GUID ROM register (optional)

The GUID ROM register is used to access the GUID ROM, and is only present if the \@HIDNROM bit is set.

31 30 29 28,27 26 25 2423 22 21 20;19 18 17 1615 14 13 12,11 10 9 8|7 6 5 4;3 2 1 0

1T T T T T 1
rdData
| | | | | | |
1 1
addrReset dataReady
rdStart
Figure 5-2 — GUID ROM register
Table 5-2 — GUID ROM register
field name rwu | reset | description
addrReset rw | undgf This bit is set to one to reset the ROM address to zero. It must be clejared for
any reads.
rdStart rw | 1'b0 | A read of the currently addressed ROM byte is started on the transitionjof this
bit from a zero to a one.
dataReady ru | undef This bitis cleared when the rdStart bit goes from a zero to a one and isset when
the currently addressed byte is available in the rdData field. The ROM adldress
is then incremented to the next byte.
rdData ru | undef The data read from the ROM.

To initialize the GUID ROM read address, software sets GUIDRONMReseto 1 then subsequently sets it to 0. When
software reads a ROM byte - by setting GUIDR@Mtart, then reading this register until GUIDROd&taReadyis 1 -
the Host Controller automatically increments the ROM address to set up for the next read.

5.4 ATRetries Register

The AT retries register holds the number of times the 1394 Open HCI will attempt to do a retry for asynchronous DMA
request transmit and for asynchronous physical and DMA response transmit.

31 30 29 28,27 26 25 2423 22 21 20,19 18 17 16/15 14 13 12,11 10 9 8|7 6 5 4;3 2 1 0

maxPhysRespRetries maxATRespRetries maxATReqgRetries

Figure 5-3 — ATRetries register

Copyright © 1996,1997 All rights reserved. Page 28

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Table 5-3 — ATRetries register

field name rwu | reset | description

maxPhysRespRetries W undef The maxPhysRespRetries field tells the Physical Response Unit howy many
times to attempt to retry the transmit operation for the response packet When a
“busy” acknowledge is received from the target node. Note that this valjie is

used only for responses to physical requests.

maxATRespRetries rw| undef The maxATRespRetries field tells the Asynchronous Transmit ResporI:se Unit

how many times to attempt to retry the transmit operation for the respofise
packet when a “busy” acknowledge is received from the target node. Noje that
this value is used only for responses sent by software via the Asynchrohous
Transmit Response DMA context.

maxATReqRetries rw| undef The maxATRetries field tells the Asynchronous Transmit DMA Requept Unit
how many times to attempt to retry the transmit operation for a packet when a
“busy” acknowledge is received from the target node. Note that this valfie is
used only for requests sent by software via the Asynchronous Transmit
Request DMA context.

The Host Controller is required to wait for a fairness interval before retrying a response packet. Further, when one
response is retried all other responses are blocked.

5.5 Autonomous CSR Resources

The 1394 Open HCI implements a number of autonomous CSR resources. In particular the 1394 compare-swap bu
management registers are implemented in hardware, as is the config ROM header, the bus_info_block and access to t
first 1K bytes of the configuration ROM. The DMA units handle external 1394 bus requests to these resources automati
cally, and the following registers manage this function for the local host

5.5.1 Bus Management CSR Registers

1394 requires certain 1394 bus management resource registers be accessible only via "quadlet read and quadlet loc
(compare-and-swap) transactions. These special bus management resource registers are implemented internal to the 1:
Open Host Controller to allow atomic compare-and-swap access from either the host system or from the 1394 bus.

Table 5-4 — Serial Bus Registers

reset
(hardware reset or
CSR address csrSel description bus reset)
48'hFFFF_F000_021C 2'h0 Bus Manager ID 6'3F
48'hFFFF_F000_0220 2'hl BANDWIDTH_AVAILABLE 13'h1333
('d4915)
48'hFFFF_F000_0224 2'h2 CHANNELS_AVAILABLE_HI 32'hFFFF_FFFF
48'hFFFF_F000_0228 2'h3 CHANNELS_AVAILABLE_LO 32'hFFFF_FFFF

Copyright © 1996,1997 All rights reserved. Page 29

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

When these bus management resource registers are accessed from the 1394 bus, the atomic compare-and-swap transactior
is autonomous, without software intervention.:

31 30 29 28) 27 26 25 24|23 22 21 20;19 18 17 16|15 14 13 12911 10 9 8|7 6 5 4,3 2 1 0

Figure 5-4 — CSR data register

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 16|15 14 13 12)11 10 9 8|7 6 5 4,3 2 1 0
L N N I Y U I Y N I NN U I N N I N BN I Y N I N B IO B

csrCompare

Figure 5-5 — CSR compare register

31 30 29 28,27 26 25 2423 22 21 20;19 18 17 1615 14 13 12,11 10 9 8|7 6 5 4;3 2 1 0
!

csrSel

T
csrDone

Figure 5-6 — CSR control register

Table 5-5 — CSR registers

field name rwu | reset | description

csrData rwu| undef At start of operation, the data to be stored if the compare is successfi

csrCompare rw | undgf The data to be compared with the existing value of the CSR resourcq.

csrDone ru | 1’'bl| This bitis set when a compare-swap operation is completed. It is resgt when-
ever this register is written.

csrSel rw | undef This field selects the CSR resource:

2'h0 - BUS_MANAGER_ID

2'h1 - BANDWIDTH_AVAILABLE
2'h2 - CHANNELS_AVAILABLE_HI
2'h3 - CHANNELS_AVAILABLE_LO

To access these bus management resource registers from the host bus, first load the CSRData register with the new data
value to be loaded into the appropriate resource. Then load the CSRCompare register with the expected value. Finally,
write the CSRControl register with the selector value of the resource. A write to the CSRControl register initiates a
compare-and-swap operation on the selected resource. When the compare-and-swap operation is complete, the
CSRControl register csrDone bit will be set, and the CSRData register will contain the value of the selected resource prior
to the host initiated compare-and-swap operation.

Copyright © 1996,1997 All rights reserved. Page 30

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Note that an arbitrary update of these resources cannot be done. Only compare-and-swap operations can be used
modify the contents of these internal resource registers.

5.5.2 Config ROM header

The config ROM header register is a 32-bit number that externally maps to the 1st quadlet of the 1394 configuration ROM
(offset 48’'hFFFF_F000_0400). This register is written locally at the following register (the field names match the IEEE
1394 names):

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 16|15 14 13 12/11 10 9 8|7 6 5 4,3 2 1 0
| |

info_length rom_crc_value
N T T N N T [N T T N TN N N N A A e O

Figure 5-7 — Config ROM header register

Table 5-6 — Config ROM header register fields

field name rwu | reset | description
info_length rw | 8h04| IEEE 1394 bus management field. Must be set by firmware before the
HCControllinkEnablebit is set.
crc_length rw | 8h04| IEEE 1394 bus management field. Must be set by firmware before the
HCControllinkEnablebit is set.
rom_crc_value rw | GUID| IEEE 1394 bus management field. Must be set by firmware before thg
Rom | HCControllinkEnablebit is set.
Value*

*The reset value for rom_crc_value is undefined if no GUID ROM is present. If a GUID ROM is present, this field is
loaded from the GUID ROM.

5.5.3 Bus identification register

The bus identification register is a 32-bit number that externally maps to the first quadlet of the Bus_Info_Block. This
register is read locally at the following register:

31 30 29 28) 27 26 25 24|23 22 21 20;19 18 17 l6|15 14 13 12911 10 9 8|7 6 5 4,3 2 1 O
rrrrrrrrrrrrrrrrrrrTrrrrrr- 1Tt T T T 1T 1" T 1T 7T T T""T""T"1

buslID

Figure 5-8 — Bus ID register

Table 5-7 — Bus ID register fields

reset
N/A

field name rwu
busID r

description
Contains the constant 32’'h31333934, which is the ASCII value for “1394".

Copyright © 1996,1997 All rights reserved. Page 31

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

5.5.4 Bus options register

The bus options register is a 32-bit number that externally maps to the 2nd quadlet of the Bus_Info_Block. This register
is written locally at the following register (the field names match the IEEE 1394 names):

31 30 29 28,27 26 25 2423 22 21 20;19 18 17 1615 14 13 12,11 10 9 8|7 6 5 4;3 2 1 0
L I BN B B ol

cyc_clk_acc max_rec

bmc
isc
cmc
irmc
Figure 5-9 — Bus options register
Table 5-8 — Bus options register fields

field name rwu | reset | description

irmc, cmc, isc, bmc, rw | undef| IEEE 1394 bus management fields. Must be set by firmware before the

cyc_clk_acc HCControllinkEnablebit is set.

max_rec rw | undef IEEE 1394 bus management field. Must be set by firmware before the
HCControllinkEnablebit is set. Note that received block write request pagkets
with a length greater than max_rec may generate an ack _type_error (spe
table 1-2).

bits 0-11 and 24-27 rw| undef Currently reserved in 1394-1995.

5.5.5 Global Unique ID

The global unique ID (GUID) is a 64-bit number that externally maps to the third and fourth quadlets of the
Bus_Info_Block. These registers are written locally at the following registers (the field names match the IEEE 1394
names):

31 30 29 28, 27 26 25 24|23 22 21 20719 18 17 16|15 14 13 12911 10 9 8|7 6 5 4,3 2 1 0
rrrrrrrrrrrrrrrrrrrTrrrrr- 1Tt T T T 1T 1" 17 T T T T"1T""T"1

node_vendor_ID chip_ID_hi

Figure 5-10 — GlobalUniquelDHi register

Copyright © 1996,1997 All rights reserved. Page 32

1394 Open HCI Registers

1394 Open Host Controller Interface Specification/Draft 0.91

Printed 1/27/97

31 30 29 28; 27 26 25 24|23 22 21 20;19 18 17 16|15 14 13 12911 10 9 8|7 6 5 4,3 2 1 O

chip_ID_lo

Figure 5-11 — GlobalUniquelDLo register

field name rwu | reset description

**see
comments HCControllinkEnablebit is set.

node_vendor_ID, rw
chip_ID_hi, chip_ID_lo

IEEE 1394 bus management fields. Must be set by firmware before fhe

**The Global Unique ID (GUID) Registers are reset to 0 after a host power (hardware) reset. A value of 0 is an illegal
value. These registers are not affected by a software reset. These GUID registers shall be written only once after ho:

power reset, by either

1) an autonomous load operation from a loaakmodifiable resource (i.e. local serial ROM or local parallel

ROM) performed by the 1394 OHCI hardware, or

2) asingle host write to each register perforrmaty by firmware that is always executed on a hardware reset
which affects the Host Controller. This firmware, as well as the GUID value that is laadgdnot be

modifiable by any user action

After one of these load mechanisms has executed, the GUID registeeadenly.

5.5.6 Configuration ROM mapping register

The configuration ROM mapping register contains the start address within system bus space that will map to the star
address of the 1394 configuration ROM for this node. Only quadlet reads to the first 1K bytes of the configuration ROM
will map to system bus space, all other transactions to this space will be rejected with a 1394 “ack_type_error”. Since the
low order 10 bits of this address are reserved and assumed to be zero, the system address for the config ROM must st
on a 1K byte boundary. Note that the first five quadlets of the 1394 config ROM space are mapped to the config ROM
header and the bus_info_block, and so are handled directly by the 1394 Open HC as described in sections 5.5.2, 5.5.
5.5.4 and 5.5.5. This means that the first five quadlets addressed by the config ROM mapping register are not used.

This register must be set to a valid address before HCCdinkkBhableis set to one.

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 l6| 15 14 13 1211 10 9 8

7 6 5 4

3 2 1 0

rrrrrrrrtrrrr 17T T T T 1T 1 1T T T"T"I
configROMaddr

Figure 5-12 — Configuration ROM mapping register

Copyright © 1996,1997 All rights reserved.

Page 33

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Table 5-9 — Configuration ROM mapping register

field name rwu | reset | description
configROMaddr rw | undef If a quadlet read request to 1394 offset 48’'hFFFF_F000_0400 through offset
| 48’'FFFF_F000_O7FF is received, then the low order 10 bits of the offsgt are
added to this register to determine the host memory address of the retdrned
quadlet.

| 5.6 Vendor ID register

The vendor ID register holds the company ID of an organization that specified any vendor-unique registers.

31302923|2726252423222120|19181716|15141312|11109 8|7 6 5 4,3 2 1 0
T T T rrrrrrrrrrr-rrr-rTrrr T

VendorUnique VendorCompanyID

Figure 5-13 — VendorID register

Table 5-10 — VendorID register

field name rwu | reset | description

vendorCompanyID r N/A | The company ID of the organization that specified the particular set of fendor
unique registers and behaviors of this particular implementation of the 1394
Open HCI. If no additional features are implemented, this field shall be 24’h0.

vendorUnique r N/A | Vendor defined.

To obtain a company ID (also known as an Organizationally Unique Identifier, OUI), contact:

Registration Authority Committee

The Institute of Electrical and Electronic Engineers, Inc.
445 Hoes Lane

Piscataway, NJ 08855-1331

USA

(908) 562-3812

Your company need not obtain a company ID if it has been previously assigned am8H#EGIobally Assigned
Address Bloclor an IEEE-assigne®rganizationally Unique Identifier (OUljor use in network applications. However,

be aware that the (left through right) order of the bits within the company ID value is not the same as the (first through
last) network-transmission order of the bits within these other identifiers. Consult the IEEE Registration Authority for
clarifying documentation.

5.7 HCControl registers (set and clear)

This register provides flags for controlling the Host Controller. There are two addresses for this register: HCControlSet
and HCControlClear. On read, both addresses return the contents of the control register. For writes, the two addresses
have different behavior: a one bit written to HCControlSet causes the corresponding bit in the Control register to be set,

Copyright © 1996,1997 All rights reserved. Page 34

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

while a zero bit leaves the corresponding bit in the Control register unaffected. On the other hand, a one bit written to
HCControlClear causes the corresponding bit in the Control register to be cleared, while a zero bit leaves the corre
sponding bit in the HCControl register unaffected.

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 16/15 14 13 1291110 9 8|7 6 5 4,3 2 1 O

T
postedWriteEnable |

noByteSwapData linkEnable
softReset

Figure 5-14 — HCControl register

Table 5-11 — HCControl register

field name rscu| reset | description

noByteSwapData rsc, undef When clear, data quadlets are sent/received in little endian order. Wien set,
data quadlets are sent/received in big endian order. See the explanation{follow-
ing this table.

postedWriteEnable rs¢ undef This bit is used to enable or disable postedWrites. See Section 12., {Physical
Requests,” for information about posted writes.

linkEnable rsc | 1’'b0| This bitis cleared by a hardware reset or software reset. Software musy set this

bit when the system is ready to begin operation and then force a bus resgt. This
bit is necessary to keep other nodes from sending transactions before tije local
system is ready. When this bit is clear the Host Controller is logicallyangd
immediately disconnected from the 1394 bus, no packets will be receivgd or
processed nor will packets be transmitted.
Software should not set the linkEnable bit until the Configuration ROM map-
ping register is valid (see section 5.5.6).

softReset rsci 1'b0| When set, all Host Controller state is reset, all FIFOs are flushed and jall Host
Controller registers are set to their hardware reset values unless otheryise
specified. Registers outside of the OpenHCI realm, i.e. host attachmenf regis-
ters such as those for PCI, are not affected. This bit remains set to onglwhile
the softReset is in progress, and reverts back to 0 when the reset has ¢om-
pleted.

The 1394 bus is big endian. By convention, when quadlets are sent in big endian order, the leftmost byte (bits 31-24) o
a quadlet is sent first. When sent in little endian order, the right most byte (bits 7-0) is sent first with the leftmost bit of
each byte sent first.

When the Host Controller sends/receives a packet, the header information is always sent/received in big endian orde
(leftmost byte first). Since header information is composed of a sequence of quadlets which is invariant over big and little
endian system, software need not change the structure of header information.

When the HCContrahoByteSwapDatait is not set, data quadlets are sent/received in little endian order and when
HCControlnoByteSwapDat#s set, data quadlets are sent/received in big endian order. The data quadlets that are subjec
to swap are:

1) any data quadlet covered by data CRC (tcodes 4'hl, 4'h7, 4'h9, 4'hA an 4'hB)

2) the data quadlet in a quadlet write request (tcode 4'h0)
3) the data quadlet in a quadlet read response (tcode 4'h6)

Copyright © 1996,1997 All rights reserved. Page 35

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

The cycle_time_data in a cycle start packeids swapped regardless of the setting of the noByteSwapData bit. The data
in a PHY packet (identified internally with tcode 4'hE) is not byte swapped for send or receive.

5.8 LinkControl registers (set and clear)

This register provides the control flags that enable and configure the link core protocol portions of the 1394 Open HCI. It
contains controls for the receiver, and cycle timer. There are two addresses for this register: LinkControlSet and LinkCon-
trolClear. On read, both addresses return the contents of the control register. For writes, the two addresses have different
behavior: a one bit written to LinkControlSet causes the corresponding bit in the LinkControl register to be set, while a
zero bit leaves the corresponding bit in the LinkControl register unaffected. On the other hand, a one bit written to Link-
ControlClear causes the corresponding bit in the LinkControl register to be cleared, while a zero bit leaves the corre-
sponding bit in the LinkControl register unaffected.

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 16{15 14 13 12y11 10 9 8|7 6 5 4,3 2 1 O

I
rcvPhyPkt
rcvSelflD

cycleTimerEnable
cycleMaster
cycleSource
Figure 5-15 — LinkControl register

Table 5-12 — LinkControl register

field name rscu| reset| description

cycleSource rsc| undef When set, the cycle timer will use an external source to determine whén to roll
over the cycle timer. When cleared, the 1394 Open HCI will roll the cycle
timer over when the timer reaches 3072 cycles of the 24.576 MHz clock (i.e.
8 kHz).

cycleMaster rscu undef When set and the PHY has notified the 1394 Open HCI that it is root, the 1394
Open HCI will generate a cycle start packet every time the cycle timer folls
over, based on the setting of the cycleSource bit. When cleared, the 139§ Open
HCI will accept received cycle start packets to maintain synchronizationf with
the node which is sending them. This bit is automatically cleared when|the
IntEventcycleTooLongvent occurs and cannot be set until the
IntEventcycleTooLondit is cleared.

cycleTimerEnable rsc| undef When set, the cycle timer offset will count cycles of the 24.576 MHz cl¢ck and
roll over at the appropriate time based on the settings of the above bits.|When
cleared, the cycle timer offset will not count.

rcvPhyPkt rsc | undef When set, the receiver will accept incoming PHY packets into the AR fequest
context if the AR request context is enabled. This dasontrol receipt of
self-identification packets.

rcvSelfID rsc | undef When set, the receiver will accept incoming self-identification packets. Before
setting this bit, software must ensure that the self ID buffer pointer regigter
contains a valid address.

Copyright © 1996,1997 All rights reserved. Page 36

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

5.9 Node identification and status register

This register contains the CSR address for the node on which this chip resides. The 16-bit combination of busNumber an
nodeNumber is referred to as the node ID.

31 30 29 28,27 26 25 24/{23 22 21 20,19 18 17 16|15 14 13 12,11 10 9 8|7 6 5 4,3 2 1 0

root
iDValid
CPS
Figure 5-16 — Node ID register
Table 5-13 — Node ID register
field name rwu | reset description
iDValid ru |1'b0 This bit indicates whether or not the 1394 Open HCI has a valid node nymber.
It is cleared when the bus reset state is detected and set again when the 1394
Open HCI receives a new node number from the PHY.
root ru | 1'b0 This bit is set during the bus reset process if the attached PHY is root.
CPS ru | 1'b0 Set if the PHY is reporting that cable power status is OK (VP 8V).
busNumber rwu 10’h3FF This number is used to identify the specific 1394 bus this node belongs to
when multiple 1394-compatible busses are connected via a bridge.
nodeNumber ru | undef This number is the physical node number established by the PHY duting self-
identification. It is automatically set to the value received from the PHY pfter
the self-identification phase. If the PHY sets the nodeNumber to 63, all|link-
level transmits are disabled.

5.10 PHY control register

The PHY control register is used to read or write a PHY register. To read a register, the address of the register is writtel
to the regAddr field along with a 1 in the rdReg bit. When the read request has been sent to the PHY (through the PhyRe
pin), the read bit is cleared. When the PHY returns the register (through a status transfer), the rdDone bit is set. Th
address of the register received is placed in the rdAddr field and the contents in the rdData field. Note that the rdAddi
field should be compared to the value expected because the PHY can automatically send a register, such as the node
register, and thus replace the contents of the read before software can look at it.

To write to a PHY register, the address of the register is written to the regAddr field, the value to write to the wrData field,
and a 1 to the wrReg bit. The wrReg bit is cleared when the write request has been transferred to the PHY.

Copyright © 1996,1997 All rights reserved. Page 37

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Note that the PHY can autonomously send the contents of register O to the link. If there is a pending PHY register request,
the register 0 data is automatically written to both the NodelD register and the PHY control register. If there is no pending
PHY register request, then this data is automatically routed to the NodelD register and does affect the PHY control
register. If register O is explicitly read, the data is written to both the NodelD register and the PHY control register.

31 30 29 28) 27 26 25 24|23 22 21 2019 18 17 16|15 14 13 12;11 10 9 8|7 6 5 4;3 2 1 0
T T T T T 1T 1 T T T T T 1T 1

rdAddr rdData regAddr wrData

rdDone wrReg
rdReg

Figure 5-17 — PHY control register

Table 5-14 — PHY control register

field name rwu | reset | description

rdDone ru | undef This bitis cleared when rdReg is set. This bit is set when a register trgnsfer is
received from the PHY.

rdAddr ru | undef| This is the address of the register most recently received from the PH

rdData ru | undet This is the contents of a PHY register which has been read

rdReg rwu| 1'b0 | Set this bit to initiate a read request to a PHY register. This bit is cleare¢l when
the read request has been sent. The wrReg bit must not be set while th¢ rdReg
bit is set.

wrReg rwu| 1’'b0 | Set this bit to initiate a write request to a PHY register. This bit is cleared when
the write request has been sent. The rdReg bit must not be set while thejwrReg
bit is set.

regAddr rw | undefl This is the address of the PHY register to be written or read.

wrData rw | undef This is the contents to be written to a PHY register. Ignored for a read

5.11 Isochronous Cycle Timer Register

The isochronous cycle timer register is a read/write register that shows the current cycle number and offset. The cycle
timer register is split up into three fields. The lower order 12 bits are the cycle offset, the middle 13 bits are the cycle
number, and the upper order 7 bits count time in seconds. When the 1394 Open HCI is cycle master, this register is trans-

Copyright © 1996,1997 All rights reserved. Page 38

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

mitted with the cycle start message. When the 1394 Open HCI is not cycle master, this register is loaded with the dat:
field in an incoming cycle start. In the event that the cycle start message is not received, the fields continue incrementin
on their own (when cycleTimerEnable is set in the LinkControl register) to maintain a local time reference.

31302928|27262524|23222120|19181716|1514l31211109 8|7 6 5 4,3 2 1 0
rrrrrrrrrr7rrrrrrrrtrrTrrrrrr T [T 1T 1° T 1T T T T""T""T"1

cycleSeconds cycleCount cycleOffset

Figure 5-18 — Isochronous cycle timer register

Table 5-15 — Isochronous cycle timer register

field name rwu | reset | description

cycleSeconds rwd N/A| This field counts seconds (cycleCount rollovers) modulo 128

cycleCount rwu| N/A | This field counts cycles (cycleOffset rollovers) modulo 8000.

cycleOffset rwu| N/A | This field counts 24.576MHz clocks modulo 3072, i.e. 125 us. If an exfernal
8KHz clock configuration is being used, cycleOffset must be set to 0 atleach
tick of the external clock.

5.12 Asynchronous Request Filters

The 1394 OpenHCI allows for selective access to host memory and the Asynchronous Receive Request context so th
software can maintain host memory integrity. The selective access is provided by two sets of 64-bit registers:
PhysRequestFilter and AsynchRequestFilter. These registers allow access to physical memory and the AR Reque
context on a nodelD basis. The request filters are not applied to quadlet read requests directed at the Config RON
(including the ConfigROM header, BusID, Bus Options, and Global Unique ID registers) nor to accesses directed to the
isochronous resource management registers. When the link is enabled, access by any node to the first 1K of CSR conf
ROM is enabled(see section 5.5.6). The Asynchronous Request Bitact have any effeadn Asynchronous Response
packets.

5.12.1 AsynchronousRequestFilter Registers (set and clear)

When a request is received by the Host Controller from the 1394 bus and that request does not access the first 1K of CS
config ROM on the Host Controller, then the sourcelD is used to index into the AsynchronousRequestFilter. If the corre-
sponding bit in the AsynchronousRequestFilter is set to 0, then requests from that device are not enabled; there will be n
ack_sent, and the requests will be ignored by the Host Controller. If however, the bit is set to 1, the requests are accepte
and will be processed according to the address of the request and the setting of the PhysicalRequestFilter register.

Copyright © 1996,1997 All rights reserved. Page 39

1394 Open HCI Registers

1394 Open Host Controller Interface Specification/Draft 0.91

Printed 1/27/97

Requests to offsets above 48’'h0000_FFFF_FFFF are always sent to the Asynchronous Receive Request DMA context. If
the AR Request DMA context is not enabled, then the Host Controller will ignore the request.

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 16|15 14 13 12)11 10 9 8|7 6 5 4;3 2 1 0
1 1
| asynRegResource60 asynRegResource35 |
asynReqResource61 [] [] [] asynRegResource34
asynRegResource62 asynRegResource33
asynReqResourceAllBuses asynRegResource32

Figure 5-19 — AsynchronousRequestFilterHi (set and clear) register

31 30 29 28, 27 26 25 24|23 22 21 20y19 18 17 16|15 14 13 12)11 10 9 8|7 6 5 4;3 2 1 0
T T
| asynReqResource28 asynRegResource3 |
asynReqResource29 [J [J [J asynRegResource2
asynRegResource30 asynRegResourcel
asynRegResource31 asynRegResource0

Figure 5-20 — AsynchronousRequestFilterLo (set and clear) register

field name

rwu

reset

description

asynRegResourceN

'w

1'b(

If set to one for local bus node number N, asynchronous requests
by the Host Controller from that node will be accepted.

Feceived

asynReqResourceAllBuses

1’'bp

non-local bus nodes will be accepted.

If set to one, all asynchronous requests received by the Host ContrTIIer from

The AsynchronousRequestFilter bits are set by writing a one to the corresponding bit in the AsynchronousRequestFilter-
HiSet or AsynchronousRequestFilterLoSet address. They are cleared by writing a one to the corresponding bit in the
AsynchronousRequestFilterHiClear or AsynchronousRequestFilterLoClear address. If bit “asynReqResourceN” is set,
then requests with a sourcelD of either {10'h3FF, #n} or {busID, #n} will be accepted. If the asynReqResourceAllBuses
bit is set in AsynchronousRequestFilterHi, requests from any device on any other bus are accepted (bus number other than
10’h3FF and busID).

Reading the AsynchronousRequestFilter registers returns their current state. All bits in the AsynchronousRequestFilter
register are set to 0 on a 1394 bus reset.

Copyright © 1996,1997 All rights reserved.

Page 40

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

5.12.2 PhysicalRequestFilter Registers (set and clear)

If an asynchronous request is allowed from a node, and the offset is below 48’h0001_0000_0000, the sourcelD of the
request is used as an index into the PhysicalRequestFilter. If the corresponding bit in the PhysicalRequestFilter is set to
then the request is forwarded to the Asynchronous Receive Request DMA context. If however, the bit is set to 1, then the
request is sent to the physical response unit.:

31 30 29 28,27 26 25 24|23 22 21 20,19 18 17 16|15 14 13 12/11 10 9 8|7 6 5 4;3 2 1 0
T T
| physRegResource60 physReqgResource35 |
physReqgResource61 [] [] [] physReqResource34
physRegResource62 physReqResource33
physReqResourceAllBuses physReqResource32
Figure 5-21 — PhysicalRequestFilterHi (set and clear) register
31 30 29 28,27 26 25 24|23 22 21 20,19 18 17 16|15 14 13 12/11 10 9 8|7 6 5 4;3 2 1 0
T T
| physReqResource28 physReqResource3 |
physReqgResource29 [] [] [] physReqgResource2
physReqResource30 physReqResourcel
physReqgResource31 physReqResource0

Figure 5-22 — PhysicalRequestFilterLo (set and clear) register

field name reset

1'bC

rwu description

physReqResourceN rw If set to one for local bus node number N, then asynchronous phygical

requests received by the Host Controller from that node will be accepted.

physReqResourceAllBuses rw 1'bQ If set to one, all asynchronous physical requests received by the Host Con-

troller from non-local bus nodes will be accepted.

The PhysicalRequestFilter bits are set by writing a one to the corresponding bit in the PhysicalRequestFilterHiSet or
PhysicalRequestFilterLoSet address. They are cleared by writing a one to the corresponding bit in the
PhysicalRequestFilterHiClear or PhysicalRequestFilterLoClear address. If bit “physReqRe&s@usm, then requests

with a sourcelD of either {10'h3FF, #n} or {busID, #n} will be accepted. If the physReqResourceAllBuses bit is set in
PhysicalRequestFilterHi, physical requests from any device on any other bus are accepted (bus number other tha
10’h3FF and busID).

Physical requests that are rejected by the PhysicalRequestFilter are sent to the AR Request DMA context if the AF
Request DMA context is enabled. If it is disabled then the Host Controller ignores the requests.

Reading the PhysicalRequestFilter registers returns their current state. All bits in the PhysicalRequestFilter are set to 0 0
a 1394 bus reset.

Copyright © 1996,1997 All rights reserved. Page4l

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Copyright © 1996,1997 All rights reserved. Page 42

Interrupts 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

6. Interrupts

6.1 Overview

The 1394 Open HCI reports two classes of interrupts to the host: DMA interrupts and device interrupts. DMA interrupts
are generated when DMA transfers complete (or are aborted). Device interrupts come directly from the remaining 1394
Open HCI logic. For example, one of these interrupts could be sent in response to the asserting edge cycleStart, a sign
which indicates that a new isochronous cycle has started.

The 1394 Open HCI contains two primary 32-bit registers to report and control interrupts: IntEvent and IntMask. Both
registers have two addresses: a “Set” address and a “Clear” address. For a write to either register, a “one” bit written t
the “Set” address causes the corresponding bit in the register to be set, while a “one” bit written to the “Clear” address
causes the corresponding bit to be cleared. For both addresses, writing a “zero” bit has no effect on the corresponding
in the register.

The IntEvent register contains the actual interrupt request bits. Each of these bits corresponds to either a DMA completiol
event, or a transition on a device interrupt line. The IntMask register is ANDed with the IntEvent register to enable
selected bits to generate processor interrupts. Software writes to the IntEventClear register to clear interrupt condition:
reported in the IntEvent register.

A processor interrupt is generated when one or more unmasked bits are set in the IntEvent register. Low-level softwar:
responds to the interrupt by reading the IntEvent register, then writing the value read to the IntEventClear register. At this
point the interrupt request is deasserted (assuming no new interrupt bit has been set). Software can proceed to process
reported interrupts in whatever priority order it chooses, and is free to re-enable interrupts as soon as the IntEventClee
register is written.

In addition, the 1394 Open HCI contains four secondary 32-bit registers to report and control interrupts for isochronous
transmit and receive contexts. Each register has two addresses: a “Set” address and a “Clear” address.

6.2 Interrupt Registers

6.2.1 IntEvent (set and clear)

This register reflects the state of the various interrupt sources from the 1394 Open HCI. The interrupt bits are set by al
asserting edge of the corresponding interrupt signal, or by software by writing a one to the corresponding bit in the

IntEventSet address. They are cleared by writing a one to the corresponding bit in the IntEventClear address.

Reading the IntEventSet register returns the current state of the IntEvent register. Reading the IntEventClear registe
returns themaskedversion of the IntEvent registein{Event & IntMask.

Copyright © 1996,1997 All rights reserved. Page 43

Interrupts 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

On a hardware reset or soft reset, the values of all bits in this register are undefined.

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 16/15 14 13 121110 9 8|7 6 5 4;3 2 1 0

IphyRechvId F!hy Ibusgglsljefon;%g;[gdWriteErr | rleqTxCompIete
vendorSpecific cycleTooLong cycleSynch isochRX respTxComplete
unrecoverableError cycle64Seconds isochTx RRQ
cyclelnconsistent cycleLost RSPkt ARRS

RQPkt

Figure 6-1 — IntEvent register

Table 6-1 — IntEvent register description (Sheet 1 of 2)

Field Bit # | rscu | Description

reqTxComplete 0 rscii Asynchronous request transmit DMA interrupt. This bit is conditionally setjupon
completion of an AT DMA request command.

respTxComplete 1 rscu Asynchronous response transmit DMA interrupt. This bit is conditionally s¢t upon
completion of an AT DMA response command.

ARRQ 2 rscu| Asynchronous Receive Request DMA interrupt. This bit is conditionally setjupon
completion of an AR DMA Request context command descriptor.

ARRS 3 rscu| Asynchronous Receive Response DMA interrupt. This bit is conditionally set upon
completion of an AR DMA Response context command descriptor.

RQPkt 4 rscul Indicates that a packet was sent to an asynchronous receive request contgxt buffer.

RSPkt 5 rscu Indicates that a packet was sent to an asynchronous receive response confext buffer.

isochTx 6 ru | Isochronous Transmit DMA interrupt. Indicates that one or more isochronofis

transmit contexts have generated an interrupt. This is not a latched event, iffis the
OR’ing all bits in (isoXmitIntEvent & isoXmitIntMask). The isoXmitintEvent
register indicates which contexts have interrupted. See section 6.2.3.

isochRx 7 ru | Isochronous Receive DMA interrupt. Indicates that one or more isochronoys
receive contexts have generated an interrupt. This is not a latched event, it |s the
OR’ing all bits in (isoRecvintEvent & isoRecvIntMask). The isoRecvIntEven
register indicates which contexts have interrupted. See section 6.2.4.

postedWriteErr 8 rscu Indicates that a host bus error occurred while the Host Controller was trying|to write
a 1394 write request, which had already been given an ack_complete, into $ystem
memory. The 1394 destination offset and sourcelD are available in the
PostedWriteAddress registers described in section 12.3.

reserved 9-15

selfIDcomplete 16 | rscu A selfID packet stream has been received. Will be generated at the end of the bus
initialization process.

busReset 17| rscu Indicates that the PHY chip has entered bus reset mode. See section 6.2J1.1 below
for information on when to clear this interrupt.

reserved 18

phy 19 | rscu| Generated when the PHY requests an interrupt through a status transfer.

cycleSynch 20| rscu Indicates that a new isochronous cycle has started. Set when the low order}bit of the

cycle count toggles.

Copyright © 1996,1997 All rights reserved. Page 44

Interrupts 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Table 6-1 — IntEvent register description (Sheet 2 of 2)

Field Bit # | rscu | Description
cycle64Seconds 21l rsqu Indicates that the 7th bit of the cycle second counter has changed.
cycleLost 22 | rscy Indicates that an expected cycle start has not been received. This will be et when-

ever a cycle start is not received immediately after the first subaction gap after the
cycleSynch event, or if an arbitration reset gap is detected after a cycleSynch event
without an intervening cycle start.

cyclelnconsistent 23| rscu A cycle start was received that had a cycle count different from the value |n the
CycleTimer register.

unrecoverableErrgr 24| rscu This event occurs when the Host Controller encounters any error that forges it to
stop operations on any or all of its subunits. For example, when a DMA contekt sets

its contextControtleadbit.
While unrecoverableError is set, all normal interrupts for each causal context will
be blocked from being set.

cycleToolLong 25| rscuy If LinkContratycleMastelis set, this indicates that over 125 usec elapsed betiveen
the start of sending a cycle start packet and the end of a subaction gap. LinkCon-
trol.cycleMastelis cleared by this event.

phyRegRcvd 26| rscy The 1394 Open HCI has received a PHY register data byte which can be rpad from
the PHY control register (see 5.10).

reserved 27-29
vendorSpecific 30 Vendor defined.
reserved 31

6.2.1.1 busReset

When a bus reset occurs and the busReset interrupt is raised, software must wait for both asynchronous transmit conte»
(request and response) to have contextCoatitive = 0 before clearing the interrupt condition. This is to ensure that all
queued asynchronous packets (with potentially stale node numbers) are flushed. Once they are no longer active, softwa
may clear the busReset interrupt condition, and hardware will discontinue flushing of the asynchronous transmit FIFO(s).
See section 7.2.2.1 for further details.

6.2.2 IntMask (set and clear)

The bits in the IntMask register have the same format as the IntEvent register, with the addition of masterintEnable (bit
31). A one bit in the IntMask register enables the corresponding IntEvent register bit to generate a processor interrupt. /£
zero bit in IntMask disables the corresponding IntEvent register bit from generating a processor interrupt. A bit is set in
the IntMask register by writing a one to the corresponding bit in the IntMaskSet address and cleared by writing a one tc
the corresponding bit in the IntMaskClear address.

If masterintEnable is 0, all interrupts are disabled regardless of the values of all other bits in the IntMask register. The
value of masterintEnable has no effect on the value returned by reading the IntEventClear; even if masterintEnable is C
reading IntEventClear will return (IntEvent & IntMask) as described earlier in section 6.2.1.

Copyright © 1996,1997 All rights reserved. Page 45

Interrupts 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

On a reset, the IntMaskasterintEnabléit (31) is set to 0 and the values of all other bits is undefined.

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 16/15 14 13 1211 10 9 8|7 6 5 4;3 2 1 0

masterlntEnab’e IphyRechvId | ;I)hy Ibusbggl,sljefor%%gttgdwriteErlr !
vendorSpecific cycleTooLong cycleSynch isochRx respTxComplete
unrecoverableError cycle64Seconds isochTx ARRQ
cyclelnconsistent cycleLost RSPkt ARRS
RQPkt
Figure 6-2 — IntMask register

Table 6-2 — IntMask register description

Field Bit # | rscu | Description

reqTxComplete 0 rsc

respTxComplete 1 rsg

ARRQ 2 rsc

ARRS 3 rsc

RQPkt 4 rsc

RSPkt 5 rsc

isochTx 6 rsc

isochRx 7 rsc

postedWriteErr 8 rsc

reserved 9-15

selfiIDcomplete 16| rsc See Table 6-1.

busReset 17| rsaq

reserved 18

phy 19 rsc

cycleSynch 20 rsc

cycle64Seconds 21 rs¢

cycleLost 22 rsc

cyclelnconsistent 23 rsq

unrecoverableErrgr 24 rs¢

cycleToolLong 25 rsc

phyRegRcvd 26 rsc

reserved 27-29

vendorSpecific 30 Vendor defined.

masterintEnable 31 rs¢ If set, external interrupts will be generated in accordance with the IntMaskfegister.
If cl_ear, no external interrupts will be generated regardless of the IntMask rggister
settings.

Copyright © 1996,1997 All rights reserved. Page 46

Interrupts 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

6.2.3 IsochTx interrupt registers

There are two 32-bit registers to report isochronous transmit context interrupts: isoXmitintEvent and isoXmitintMask.
Both registers have two addresses: a “Set” address and a “Clear” address. For a write to either register, a “one” bit writte
to the “Set” address causes the corresponding bit in the register to be set, while a “one” bit written to the “Clear” addres:s
causes the corresponding bit to be cleared. For all four addresses, writing a “zero” bit has no effect on the correspondin
bit in the register.

The isoXmitIntEvent register contains the actual interrupt request bits. Each of these bits corresponds to a DMA
completion event for the indicated isochronous transmit context. The isoXmitintMask register is ANDed with the
isoXmitintEvent register to enable selected bits to generate processor interrupts. If (isoXmitintMask & isoXmitintEvent)
is not zero, then the IntEveisbchTxbit will be set to one, and if enabled via the IntMask register it will generate a
processor interrupt. A software write to the isoXmitIntEventSet register can therefore cause an interrupt (if not otherwise
masked). A software write to the isoXmitintEventClear register will clear interrupt conditions reported in the
isoXmitintEvent register.

Reading the isoXmitintEventSet register returns the current state of the isoXmitintEvent register. Reading the
isoXmitintEventClear register returns thmasked version of the isoXmitintEvent registeris¢XmitintEvent &
isoXmitIntMask.

6.2.3.1 isoXmitintEvent (set and clear)
This register reflects the interrupt state of the isochronous transmit contexts. An interrupt is generated on behalf of ar
isochronous transmit context if an OUTPUT_LAST DMA command completes andiits are set to 2'b11 (interrupt

always). Upon determining that the IntEvéstdchTxinterrupt has occurred, software can check the isoXmitintEvent
register to determine which context(s) caused the interrupt.

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 16/15 14 13 1211 10 9 8|7 6 5 4;3 2 1 0

| ilszmit28 iszmit:I% |
isoXmit29 [] [] [] isoXmit2
isoXmit30 isoXmitl
isoXmit31 isoXmit0

Figure 6-3 — isoXmitintEvent (set and clear) register

On a hardware reset or soft reset, values of all bits in this register are undefined.

6.2.3.2 isoXmitintMask (set and clear)

The bits in the isoXmitintMask register have the same format as the isoXmitintEvent register. Setting a bit in this register
enables the corresponding bit in the isoXmitintMaskSet address and cleared by writing a one to the corresponding bit ir

the isoXmitintMaskClear address.

Bits for all unimplemented contexts must read as 0’s. Software can use this register to determine which contexts ar
supported by writing to it with all 1's, then reading it back. Contexts with a 1 are implemented, and those with a O are not.

On a hardware reset or soft reset, values for all bits in this register are undefined.

Copyright © 1996,1997 All rights reserved. Page 47

Interrupts 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

6.2.4 IsochRx interrupt registers

There are two 32-bit registers to report isochronous receive context interrupts: isoRecvintEvent and isoRecvintMask.

Both registers have two addresses: a “Set” address and a “Clear” address. For a write to either register, a “one” bit written
to the “Set” address causes the corresponding bit in the register to be set, while a “one” bit written to the “Clear” address
causes the corresponding bit to be cleared. For all four addresses, writing a “zero” bit has no effect on the corresponding
bit in the register.

The isoRecvintEvent register contains the actual interrupt request bits. Each of these bits corresponds to a DMA comple-
tion event for the indicated isochronous receive context. The isoRecvIintMask register is ANDed with the isoRecvintEvent
register to enable selected bits to generate processor interrupts. If (isoRecvintMask & isoRecviIntEvent) is not zero, then
the IntEventisochRxbit will be set to one, and if enabled via the IntMask register it will generate a processor interrupt. A
software write to the isoRecvIintEventSet register can therefore cause an interrupt (if not otherwise masked). A software
write to the isoRecvintEventClear register will clear interrupt conditions reported in the isoRecvIntEvent register.

Reading the isoRecvintEventSet register returns the current state of the isoRecvintEvent register. Reading the
isoRecvIntEventClear register returns thaskedversion of the isoRecviIntEvent registesoRecvintEvent & isoRecvint-
MasR).

6.2.4.1 isoRecvintEvent (set and clear)
This register reflects the interrupt state of the isochronous receive contexts. An interrupt is generated on behalf of an
isochronous receive context if an INPUT_LAST DMA command completes aridbits are set to 2'bl1 (interrupt

always). Upon determining that the IntEvéstuchRxinterrupt has occurred, software can check the isoRecvintEvent
register to determine which context(s) caused the interrupt.

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 16/15 14 13 1211 10 9 8|7 6 5 4;3 2 1 0

ilsoRecv28 isoRecvé
isoRecv29 [] [] [] isoRecv2
isoRecv30 isoRecvl
isoRecv31 isoRecv0

Figure 6-4 — isoRecvIntEvent (set and clear) register
On a hardware reset or soft reset, values of all bits in this register are undefined.
6.2.4.2 isoRecvIntMask (set and clear)
The bits in the isoRecvIntMask register have the same format as the isoRecvIntEvent register. Setting a bit in this register
enables the corresponding bit in the isoRecvIintMaskSet address and cleared by writing a one to the corresponding bit in

the isoRecvintMaskClear address.

Bits for all unimplemented contexts must read as 0’s. Software can use this register to determine which contexts are
supported by writing to it with all 1's then reading it back. Contexts with a 1 are implemented, and those with a 0 are not.

On a hardware reset or soft reset, values of all bits in this register are undefined.

Copyright © 1996,1997 All rights reserved. Page 48

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

7. Asynchronous Transmit DMA

The 1394 OpenHCI divides the transmission of asynchronous packets into three categories: asynchronous requests, as)
chronous responses, and physical responses. This chapter describes how to use DMA to transmit asynchronous reque
and asynchronous responses. For information regarding physical responses, see section 12., “Physical Requests.”

There is one DMA controller for each transmit context: the Asynchronous Transmit (AT) Request Controller for the AT
request context, and the AT Response Controller for the AT response context. Although OpenHCI does not specify how
many FIFOs are required to support the AT DMA controllers, it is required that the re-transmission of request packets
never blocks the transmission of response packets.

The AT Request context is used by software to transmit read, write and lock request packets and the AT Response conte
is used to send response packets to read, write, and lock requests that have earlier been received into the asynchronq
receive request context buffers (see section 8., “Asynchronous Receive DMA,").

Each context consists of a context program and two registers. A context program is a list of commands for that contex
which direct the Host Controller on how to assemble packets for transmission. The DMA controller for that context
executes each command, inserting data into the appropriate FIFO and interrupting as requested.

The following sections describe how to set up and manage an AT DMA context program and describe the data formats fo
the various asynchronous request and response packet types.

7.1 Asynchronous transmit DMA context programs

Each asynchronous transmit packet, whether a request or response packet, shall be described by a contiguous list
command descriptors referred to adescriptor block A chain of descriptor blocks is referred to as a context program.
There are four different command descriptors that can be used within each descriptor block: OUTPUT_MORE,
OUTPUT_MORE-Immediate, OUTPUT_LAST and OUTPUT_LAST-Immediate. In the descriptions that follow,
OUTPUT_MORE* refers to both the OUTPUT_MORE and OUTPUT_MORE-Immediate commands, OUTPUT_LAST*
refers to both the OUTPUT_LAST and OUTPUT_LAST-Immediate commands and *-Immediate refers to both the
OUTPUT_MORE-Immediate and OUTPUT_LAST-Immediate commands.

Each packet shall be specified in one descriptor block. A descriptor block may have either one single OUTPUT_LAST-
Immediate descriptor, or may have one OUTPUT_MORE-Immediate descriptor followed by zero to five
OUTPUT_MORE descriptors, followed by one OUTPUT_LAST descriptor. This allows software to combine up to eight
fragments to specify a single packet. In addition, the first command descriptor in a descriptor block must be one of the *-
Immediate commands toansmit the full 1394 paekt header for the packet’s tcode type, wheaeket headeis defined

as all quadlets that appear before the 1394 packet header CRC quadlet and that are required by the respective pac
format (defined in section 7.5). Further, a descriptor block for a packet shall not exceed 128 bytes. The OUTPUT_MORE
and OUTPUT_LAST command descriptors are 16-bytes in length, and the *-Immediate descriptors are 32-bytes in length
All descriptors must be aligned on a 16-byte boundary.

In the sections below, the format for each command descriptor is shown. The shaded fields are reserved and should be :
to 0 by software. Fields with a hardcoded value must be set to that value by software. The values of all other fields are
described in each command’s descriptor element summary.

Copyright © 1996,1997 All rights reserved. Page 49

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

7.1.1 OUTPUT_MORE descriptor

The OUTPUT_MORE command descriptor is used to specify a host memory buffer from which the AT DMA controller
will insert bytes into the appropriate transmit FIFO. It has the following format.

cmd=0 |0 l\fﬁ{g

%8 reqCount

dataAddress

Figure 7-1 — OUTPUT_MORE descriptor format

Table 7-1 — OUTPUT_MORE descriptor element summary

Element Bits | Description
cmd 4 Set to 4'h0 for OUTPUT_MORE.
S Status control. Must be set to 0.

1
key 3 Set to 3'h0 for OUTPUT_MORE.
2

b Branch control. Software must set this field to 2'b00. Values of 2’b11, 2'b10, 2'bO1 will
result in unspecified behavior.

reqCount 16 Request Count: The number of transmit packet bytes starting at dataAddress.
dataAddress 32 Address of transmit data.

Copyright © 1996,1997 All rights reserved. Page 50

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

7.1.2 OUTPUT_MORE_Immediate descriptor

| The OUTPUT_MORE-Immediate command descriptor is used to four quadlets of packet header information to be
inserted into the appropriate transmit FIFO. It has the following format.

cmd=0 |0 lfﬁ{zz 68 reqCount=16

timeStamp

first quadlet

second quadlet

third quadlet

fourth quadlet

Figure 7-2 — OUTPUT_MORE-Immediate descriptor format

Table 7-2 — OUTPUT_MORE-Immediate descriptor element summary

Element Bits | Description
cmd 4 Set to 4’h0 for OUTPUT_MORE-Immediate
s Status control. Must be set to 0.

1
key 3 Set to 3'h2 for OUTPUT_MORE-Immediate.
2

b Branch control. Software must set this field to 2'b00. Values of 2’'b11, 2'b10, 2'b0} will
result in unspecified behavior.

reqCount 16 Request Count: The number of transmit packet bytes immediately following the 16th byte
of this descriptor. This value must be 16(four quadlets). Specifying any other valup will
result in unspecified behavior. This descriptor is always 32 bytes long.

timeStamp 16 Valid only in the Alesponse context. This field contains the three low order bits of
cycleSeconds and all 13 bits of cycleCount. See section 5.11, “Isochronous Cyclg Timer
Register,” for information about these fields.

For AT response packets, timeStamp indicates a time after which the packet should not be
transmitted. For further information on the use of this field, see section 7.1.5.3 bejow.

first, second, third, and128 | Data quadlets to be inserted into the applicable FIFO.
fourth quadlets

The OUTPUT_MORE-Immediate command shall only be used to specify the four quadlet 1394 transmit packet header
for a block payload or lock packet. All OUTPUT_MORE-Immediate command descriptors are 32-bytes in length.

Copyright © 1996,1997 All rights reserved. Page51

Asynchronous Transmit DMA

1394 Open Host Controller Interface Specification/Draft 0.91 Printed

1/27/97

7.1.3 OUTPUT_LAST descriptor

The OUTPUT_LAST command descriptor is used to specify a host memory buffer from which the AT DMA controller
will insert bytes into the appropriate transmit FIFO. This command indicates the end of a packet to the Host Controller. It
has the following format.

emd=t s/ S| | TIERLL L, L, readoumt
. fmeddes L
..., brenchaddess]2
o, ersaus || tmeSampprequsson)

Figure 7-3 — OUTPUT_LAST descriptor format

Table 7-3 — OUTPUT_LAST descriptor element summary

Element Bits | Description

cmd 4 Set to 4'h1 for OUTPUT_LAST.

S 1 Status control. Controls update of xferStatus and resCount after descriptor is professed
(update if s = 1).

key Set to 3'h0 for OUTPUT_LAST.

i Interrupt control. Options:
2'b11 - Always interrupt upon command completion.
2'b01 - Interrupt only if did not receive an ack_complete or ack_pending. See table 3-2
for a list of possible ack and evt values.
2'b00 - Never interrupt.
Specifying a value of 2’b10 will result in unspecified behavior.

b 2 Branch control. Software must set this field to 2'b11. Values of 2'b10, 2’'b01, and R'b00
will result in unspecified behavior.

reqCount 16 Request Count: The number of transmit packet bytes described by this descriptqr, begin-
ning at dataAddress.

dataAddress 32 Address of transferred data.

branchAddress 28 16-byte aligned address of the next descriptor. A valid host memory address myst be pro-
vided in this field unless the Z field is 0.

4 4 This field indicates the number of 16-byte command blocks that comprise the next packet.
If this is the last descriptor in the list, the Z value must be 0. Otherwise, valid valups are
2 to 8. Note that each *-Immediate command descriptor is counted as two 16-byte|blocks
and each non-immediate command is counted as one 16-byte block.

xferStatus 16 Written with ContextControl [15:0] after descriptor is processed (if s = 1).

timeStamp 16 This field contains the three low order bits of cycleSeconds and all 13 bits of cyclgCount.
See section 5.11, “Isochronous Cycle Timer Register,” for information about theselfields.
For AT request packets, timeStamp is a software read-only value written by hardware if
status is enabled (s=1) and indicates the transmission time of the packet.rEepéiisq
packets, timeStamp is not valid (it is only valid in the first descriptor of a response descrip-
tor block.) For further information on the use of the timeStamp field, see section 7.1.5.3.

Copyright © 1996,1997 All rights reserved.

Page 52

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

7.1.4 OUTPUT_LAST_Immediate descriptor

The OUTPUT_LAST-Immediate command descriptor is used to specify two to four quadlets of packet header information
to be inserted into the appropriate transmit FIFO. This command indicates the end of a packet to the Host Controller. I
has the following format.

o
3
o
1
[aRY
n

'é‘?%’; i ﬂ’ reqCount=8, 12 or 16

branclhédgress z

xferStatus timeStamp

first quadlet

second quadlet

third quadlet

fourth quadlet

Figure 7-4 — OUTPUT_LAST-Immediate descriptor format

Table 7-4 — OUTPUT_LAST-Immediate descriptor element summary

Element Bits | Description

cmd 4 Set to 4’h1 for OUTPUT_LAST-Immediate.

s 1 Status control. Controls update of xferStatus and resCount after descriptor is professed
(update if s = 1).

key 3 Set to 3'h2 for OUTPUT_LAST-Immediate.

i 2 Interrupt control. Options:

2'b11 - Always interrupt upon command completion.
2'b01 - Interrupt only if did not receive an ack_complete or ack_pending. See table 3-2
for a list of possible ack and evt values.
2’'b00 - Never interrupt.

Specifying a value of 2'b10 will result in unspecified behavior.

b 2 Branch control. Software must set this field to 2'b11. Values of 2'b10, 2'b01, and P'b00
will result in unspecified behavior.

reqCount 16 Request Count: The number of transmit packet bytes immediately following the 16th byte
of this descriptor. Valid values are 4 (one quadlet), 8(two quadlets) and 12(three qupdlets).
Specifying any other values will result in unspecified behavior. Regardless of the
reqCount value, this descriptor is always 32 bytes long.

branchAddress 28 16-byte aligned address of the next descriptor. A valid host memory address myst be pro-
vided in this field unless the Z field is 0.
z 4 This field indicates the number of 16-byte command blocks that comprise the next packet.

If this is the last descriptor in the list, the Z value must be 0. Otherwise, valid valups are
2 to 8. Note that each *-Immediate command descriptor is counted as two 16-byte|blocks
and each non-immediate command is counted as one 16-byte block.

xferStatus 16 Written with ContextControl [15:0] after descriptor is processed if s = 1.

Copyright © 1996,1997 All rights reserved. Page 53

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Table 7-4 — OUTPUT_LAST-Immediate descriptor element summary

Element Bits | Description

timeStamp 16 This field contains the three low order bits of cycleSeconds and all 13 bits of cyclgCount.
See section 5.11, “Isochronous Cycle Timer Register,” for information about thesq fields.
For AT response packets, timeStamp indicates a time after which the packet should not be
transmitted. For ATequest packets, timeStamp is a software read-only value writt¢n by
hardware if status is enabled (s = 1) and indicates the transmission time of the pgcket.
For further information on the use of the timeStamp field, see section 7.1.5.3 belgw.

first, second, third, and128 | Data quadlets to be inserted into the applicable FIFO.
fourth quadlets

The OUTPUT_LAST-Immediate command will be used to specify information that is protected by the header CRC or for
sending a PHY packet. OUTPUT_LAST-Immediate command descriptors are 32-bytes in length regardless of the value of
reqCount.

7.1.5 AT command descriptor usage

Fields in the command descriptor are further described below.

7.1.5.1 Command.Z

The Z value is used by the Host Controller to enable several descriptors to be fetched at once, for improved efficiency. Z

values must always be encoded correctly. The contiguous descriptors described by a Z value ardesaitgrdaa block
The following table summarizes all legal Z values:

Table 7-5 — Z value encoding

Z value Use
0 Indicates that the current descriptor is the last descriptor in the context program
1 reserved. (Since all descriptor blocks must start with a *-Immediate command, tey are

by definition a minimum of two 16-byte blocks in size.)

2-8 Indicates that two to eight 16-byte command descriptors starting at branchAddregss are
physically contiguous and specify a single packet. Note that the 32-byte *-Immefiate

command descriptors must be counted as two 16-byte command descriptors when cal-
culating the Z value.

9-15 reserved

A single packet that is to be transmitted must be entirely described by one descriptor block. This requirement permits the
Host Controller to prefetch all the descriptors for a packet, in order to avoid fetching additional descriptors during a

packet transfer. The branch address+Z allows the Host Controller to learn the Z value of the next block. Only the

OUTPUT_LAST* descriptor shall specify a branch address+Z for the next packet. BranchAddress+Z values are ignored
in all OUTPUT_MORE?* descriptors, and should not be specified.

All DMA context programs must use a Z = 0 command to indicate the end of the program. A program which ends in Z=0
can be appended to while the DMA runs, even if the DMA has already reached the end. The mechanism for doing this is
described in section 3.2.1.2.

7.1.5.2 Command.xferStatus
Upon the completion of an OUTPUT_LAST* descriptor, the 16 least significant bits of the current contents of the DMA

ContextControl register are written to the completed descriptor's Comgfiargtatudfield, if the Command.bit is one.
See section 7.2.2 for the contents of this field.

Copyright © 1996,1997 All rights reserved. Page 54

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

7.1.5.3 Command.timeStamp

The timeStamp field is encoded as follows:

15 14 13 12;11 10 9 8|7 6 5 4,3 2 1 0
| | | | | | | | | | | | | |

cycle
beconds
| | | .l /4 1 J /| | | | |

Figure 7-5 — timeStamp format

Table 7-6 — timeStamp description

Field Bits Description

cycleSeconds 3 Low order three bits of the seven-bit isochronous cycle timer second count.
Possible values are 0 to 7.

cycleCount 13 Full 13 bits of the 13-bit isochronous cycle timer cycle count.
Possible values are 0 to 7999.

7.1.5.3.1 timeStamp value for Requests

Asynchronous transmit request packets may initiate a transaction which should complete by a specific time. So that hos
software will know when the transaction began, the Host Controller will update the timeStamp value in all
OUTPUT_LAST* descriptors whose Commasdit is one at the time when the ack is received. TimeStamp is written in

the same bus operation in which xferStatus is written.

Note that a transmit request packet may sit in the transmit FIFO for some time before the PHY wins normal arbitration.
This delay is usually brief, but could be over 200 cycles (over 25 milliseconds) in the case of a bus with 80% isochronous
traffic and 63 nodes each sending maximum-size async packets as often as possible.

7.1.5.3.2 timeStamp value for Responses

Typically, asynchronous transmit response packets expire at a certain time, and should not be transmitted after that time
A timeStamp value can be placed in the first OUTPUT_* descriptor for such packets.

The timeStamp used for asynchronous transmit contains a 3-bit seconds field and a 13-bit cycle number which count
modulo 8000. Before an asynchronous response is put into the transmit FIFO, whether for the initial transmission attemp
or for a retry attempt, this timeStamp value is compared to the current cycleTimer. This comparison is used to determine
whether or not the packet will be sent or rejected as being too old.

The comparison is broken into two parts. The first compare is done on the seconds field of the timeStamp and the lov
order three bits of the seconds field in the cycleTimer. The low three bits of the cycleTime is subtracted from the
timeStampseconddield using three bit arithmetic. If the most significant bit of the subtraction is 1, then the timeStamp

is considered ‘late’ and the packet is rejected. If the most significant bit is O but the other two bits are not 0, then the
timeStamp is considered to be for some time in the ‘distant’ future and the packet can be sent. If the difference is 0, thel
the timeStamp and cycleTimer are referring to the same second so the cycle number portion of the timeStamp is compare
to the cycle number portion of the cycleTimer to determine if the cycle is early, late or matches. This comparison is done

Copyright © 1996,1997 All rights reserved. Page 55

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

by subtracting the cycleTimer cycle number from the timeStamp cycle number. If the result is negative, then the time for
the packet has passed and the packet is rejected. If the difference is positive and the timeout value is positive or zero, then
the packet can be sent. This subtraction is signed so a sign bit is assumed to be prepended to both cycle number values.

Table 7-7 — Results of timeStamp.cycleSeconds - cycleTimer.cycleSeconds

cycleTimer.seconds
timeStamp.secondg 000| 001 010 011 100 101 110 1p1
000 000/ 111|110{101{100| 011 010 00}
001 001 00Q111|110{101|100(011} 01d
010 010 001 00(111{110|101|100| 011
011 011} 010 001 00{111(110|101|100
100 100(011] 010 001 00|111{110|101
101 101(100| 011 010 001 00j111|110
110 110|101|100f 011} 010 001 00|111
111 111(110{101|100| 011 010 001 OOp

NOTE: Shaded entries denote ‘late’ values.

For those entries in the table above which are 000, the cycleGytleCount field is subtracted from the
timeStampcycleCountfield. If the result is positive or 0, it indicates that the packet can be sent. If the result is negative
the packet cannot be sent and the status error code is set to evt_timeout.

Table 7-8 — timeStamp.cycleCount-cycleTime.cycleCount Example 1

Table 7-9 — timeStamp.cycleCount-cycleTime.cycleCount Example 2

Table 7-10 — timeStamp.cycleCount-cycleTime.cycleCount Example 3

timeStamp.cycleCount cycleTime.cycleCount difference action
14’hOFAO 14’hOF9E 14’h0002 send packet
14’hOFAO 14’hOF9F 14’h0001 send packét
14’hOFAO 14'hOFAOQ 14'h0000 send packdt
14’hOFAO 14’h0OFAL 14'h3FFF reject packet

timeStamp.cycleCount cycleTime.cycleCount difference action
14’h1000 14’hOFFE 14’h0002 send packgt
14’h1000 14'hOFFF 14’h0001 send packgt
14’h1000 14’h1000 14’h0000 send packgt
14’h1000 14’h1001 14'h3FFF reject packgt

timeStamp.cycleCount cycleTime.cycleCount difference action
14’h0000 14’h0000 14’h0000 send packgt
14’h0000 14’h0001 14'h3FFF reject packgt
14’h0000 14’h1000 14’h3000 reject packgt
14’h0000 14’h1001 14'h2FFF reject packgt

Copyright © 1996,1997 All rights reserved.

Page 56

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Table 7-10 — timeStamp.cycleCount-cycleTime.cycleCount Example 3

timeStamp.cycleCounf cycleTime.cycleCount difference action
14’h0000 14'h1F3E 14'h20C2 reject packgt
14’h0000 14'h1F3F 14’h20C1 reject packet

After a transmit packet has passed the timeStamp check, it may sit in the transmit FIFO for some time before the PHY
wins normal arbitration. The Host Controller does not re-examine the timeStamp while the packet waits, even if the
descriptor is still active because only part of the packet fits into the FIFO. This delay is usually brief, but could be over
200 cycles (over 25 milliseconds) in the case of a bus with 80% isochronous traffic and 63 nodes each sending maximurr
size async packets as often as possible.

Software can compute the worst-case FIFO delay based on knowledge of the current node count and the current (c
maximum) isochronous load. Software can use this delay to compute an earlier expiration timeStamp to prevent late trans
mission due to FIFO delay. Using the maximum (not current) isochronous load is advisable, because additional isochro
nous reservations could be made while the packet is waiting in the transmit FIFO.

Because the Host Controller examines the timeStamp before the packet is loaded into the transmit FIFO, and because t
packet may remain in the FIFO for some period until the PHY attached to the Host Controller wins normal arbitration, it
is not possible to guarantee that the packet will not be transmitted after it expires. The maximum time the packet waits ir
the FIFO can be computed by software based on dynamic bus parameters, and this time can be factored into the packe
expiration timeStamp. (Note, this could be over 200 cycles, in unlikely case where 80% of the bus is isochronous, and 6:
nodes are each sending maximum-size async packets.)

7.2 AT DMA context registers

Each AT DMA context (request and response) has two registers: CommandPtr and ContextControl. CommandPtr is use
by software to tell the Host Controller where the DMA context program begins. ContextControl is used by software to
control the context’s behavior, and is used by hardware to indicate current status.

7.2.1 CommandPtr

The CommandPtr register specifies the address of the context program which will be executed when a DMA context is
started. All descriptors are 16-byte aligned, so the four least-significant bits of any descriptor address must be zero. Th
four least-significant bits of the CommandPtr register are used to encode a Z value that indicates how many physically
contiguous descriptors are pointed to by descriptorAddress.

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 l6|15 14 13 12911 10 9 8|7 6 5 4,3 2 1 O
rrrrrrrrrrrrrrrrrrrrTrrrrrrrr T T T 1T 1T T 1T T T 7" 1T T/

descriptorAddress [31:4] Z

Figure 7-6 — CommandPtr register format

Refer to Section 3.1.5 for a complete description of the CommandPtr register.

Copyright © 1996,1997 All rights reserved. Page 57

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

7.2.2 ContextControl register (set and clear)

The ContextControlSeaind ContextControlClearregisters contain bits that control options, operational state, and status
for a DMA context. Software can set selected bits by writing ones to the corresponding bitCiontagtControlSet
register. Software can clear selected bits by writing ones to the corresponding bit€onteetControlClearegister. It

is not possible for software to set some bits and clear others in an atomic operation. A read from either register will return
the same value.

31 30 29 28) 27 26 25 24|23 22 21 2019 18 17 16|15 14 13 12;11 10 9 8|7 6 5 4;3 2 1 0
L T T
spd ack/err
code
|| I |
1
run |
active
dead
wake
Figure 7-7 — ContextControl (set and clear) register format
Table 7-11 — ContextControl (set and clear) register description
Field rsci Description
run rscu Refer to section 3.1.1 for an explanation of the contextCaoutrdit.
wake rsu Refer to section 3.1.2 for an explanation of the contextCavakalbit.
dead ru Refer to section 3.1.4 for an explanation of the contextCaietdbit.
active ru Refer to section 3.1.3 for an explanation of the contextCautiok bit.
spd ru This field is not meaningful for asynchronous transmit contexts.
ack/err code ru Following an OUTPUT_LAST* command, the received ack_code or an “evt_" errgr code
is indicated in this field. Possible values are: ack_complete, ack_pending, ack_busy X,
ack _busy A, ack_busy B, ack_data_error, ack_type_error, evt_tcode_err,
evt_missing_ack, evt_underrun, evt_descriptor_read, evt_data_read ,evt_timeout
evt_flushed and evt_unknown.
See Table 3-2, “Packet event codes,” for descriptions and values for these codes.

7.2.2.1 Bus Reset

When a bus reset occurs, the Host Controller will flush the asynchronous transmit FIFO(s) until the busReset interrupt
condition is cleared. While packets are being flushed, the link side of the FIFO returns evt_flushed. Software must make
sure however that IntEvebtisReseifs not cleared until 1) software has cleared the ContextControl.run bits for both
Asynchronous Transmit contexts, and 2) both Asynchronous Transmit contexts have quiesced and both contextCon-
trol.activefields are zero. This is to ensure that all queued asynchronous packets (with potentially stale node numbers) are
flushed. Once the contexts are no longer active, software may clear the busReset interrupt condition, and hardware will
stop flushing the asynchronous transmit FIFO(s).

Copyright © 1996,1997 All rights reserved. Page 58

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

7.2.2.2 Writing status back to context command descriptors

Upon OUTPUT_LAST* completion, if the commandssbit is set to one, bits 15-8 of the contextControl register are
written to the command’sferStatusfield. When CommangferStatuss written to memory, the active bit is always one.

If software prepared the descriptor’s xferStadusve bit to be zero, this change indicates that the descriptor has been
executed, and the xferStatus and timeStamp fields have been updated.

7.3 AT Retries

The Host Controller will retry busied asynchronous transmit request and response packets based on the configuration c
the AT Retries register.

For the Asynchronous Transmit Response context, the initial transmission of a response packet is not required to wait fo
a fairness interval. However, if a response packet needs to be retried the Host Controller must wait for a fairness interve
and therefore all other response packets (including physical responses) are blocked. In addition, each time a respon:
packet is retried the descriptor block’s timestamp value must be checked to ensure that the packet has not expired.

For a detailed description of the ATRetries register see section 5.4.

7.4 AT Interrupts

Each asynchronous DMA controller/context has one interrupt indication bit in the intEvent register (section 6.2.1). For
requests, it is theeqTx bit and for responses it is thhespTxbit. This interrupt indication bit will be set to one if a
completed OUTPUT_LAST* command has thigeld set to 2'b11, or if thefield is set to 2’b01 and transmission of the
packet did not yield an ack_complete or an ack_pending.

7.5 AT Data Formats
There are four basic formats for asynchronous data to be transmitted:

a) no-data packets (used for quadlet read requests and all write responses)

b) quadlet packets (used for quadlet write requests, quadlet read responses and block read requests)

c) Dblock packets (used for lock requests and responses, block write requests and block read responses)
d) PHY packets

All formats are shown below in two sections, one for asynchronous request formats and one for asynchronous respons
formats.

Note that packets to go out over the 1394 wire are constructed from these Host Controller internal formats, and are nc
sent in the exact order as shown below. For example, destinationID is transmitted in the first quadlet, and source ID i
automatically provided and transmitted in the second quadlet.

Copyright © 1996,1997 All rights reserved. Page 59

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

7.5.1 Asynchronous Transmit Requests
7.5.1.1 No-data transmit

The no-data request transmit format is shown below. The first word contains packet control information. The second and
third words contain 16-bit destination ID and either the 48-bit, quadlet-aligned destination offset (for requests) or the
response code (for responses).

31 30 29 28§27 26 25 24023 22 21 20§19 18 17 16§15 14 13 128411 10 9 807 6 5 493 2 1 0
[a)]
E , 1394
é spd tLabel rt | tCode=4'n4] |eserved
&
destinationID destinationOffsetHigh
destinationOffsetLow
Figure 7-8 — Quadlet read request transmit format
Table 7-12 — Quadlet read request transmit fields
field name bits | description
srcBusID 1 | Source bus ID selector. If clear, the high order 10 bits of the source_ID field of the trans-

mitted packet will be 10'h3FF. If set, the high order 10 bits of the source_ID field of
the transmitted packet will be busNumb&rde_ID(see section 5.9).

spd 3 | This field indicates the speed at which this packet is to be sent. 000 = 100 Mbits/fsec,001
= 200 Mbits/sec, and 010 = 400 Mbits/sec, other values are reserved.

tLabel 6 | This field is the transaction label, which is used to pair up a response packet with its
corresponding request packet.

rt 2 | The retry code for this packet. Must be 2'h01 == retryX for the 1394 Open HCI

tCode 4 | The transaction code for this packet.

1394 reserved Required by IEEE 1394-1995 to be all zeros. OpenHCI will pass these bits aldqng as-is
and will not verify or modify them.

destinationID 16| This is the concatenation of the 10-bit bus number and the 6-bit node number|for the
destination of this packet.

destinationOffsetHigh, 16 | The concatenation of these two fields addresses a quadlet in the destination nqde’s

destinationOffsetLow 32 | address space. This address must be quadlet-aligned (modulo 4).

Copyright © 1996,1997 All rights reserved. Page 60

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

7.5.1.2 Quadlet Transmit

The quadlet request transmit formats are shown below. The first word contains packet control information. The seconc
and third words contain 16-bit destination ID and the 48-bit, quadlet-aligned destination offset. The fourth word is the
quadlet data for write quadlet requests, and is the data length and reserved for block read requests.

31 30 29 28§27 26 25 24823 22 21 20§19 18 17 16815 14 13 12911 10 9 807 6 5 4§33 2 1 0
2 1394
2]
% spd tLabel rt JtCode=4'n0} reserved
®
destinationID destinationOffsetHigh
destinationOffsetLow
guadlet data

Figure 7-9 — Quadlet write request transmit format

31 30 29 28327 26 25 24823 22 21 20319 18 17 16§15 14 13 1211 10 9 887 6 5 433 2 1 O

2 1394
%]
% spd tLabel rt JtCode=4'h5] [(eserved
@

destinationID destinationOffsetHigh

destinationOffsetLow
1394
datalLength reserved

Figure 7-10 — Block read request transmit format

Table 7-13 — Quadlet transmit fields
field name bits | description

srcBusID, spd, tLabel, rt, See Table 7-12.
tCode, 1394 reserved, dgs-
tinationlD, destinationOff-
setHigh,

destinationOffsetLow

Copyright © 1996,1997 All rights reserved. Page61

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Table 7-13 — Quadlet transmit fields (Continued)

field name

bits | description

quadlet data

transferred.

32| For quadlet write requests and quadlet read responses this field holds the dafa to be

dataLength

16| The number of bytes requested in a block read request.

7.5.1.3 Block transmit

The block request transmit formats are shown below. The first word contains packet control information. The second and
third words contain the 16-bit destination node ID and the 48-bit destination offset. The fourth word contains the length
of the data field and the extended transaction code (all zeros except for lock transactions). The block data, if any, follows

the extended code.

\\
\\\

3130292827262524'2322212019181716'15141312.1110 9 87 6 5 433 2 1 O
[a)]
% 1394
% spd tLabel rt JtCode=4'nl | |eserved
[
destinationID destinationOffsetHigh
destinationOffsetLow
dataLength extendedTcode
block data
-
-l
r---------------------
1
I padding (if needed)
]

Figure 7-11 — Write request transmit format

Copyright © 1996,1997 All

rights reserved. Page 62

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

31 30 29 28g27 26 25 24'23 22 21 20§19 18 17 l6|15 14 13 1211 10 9 87 6 5 433 2 1 O
o
§ spd tLabel rt jtCode=4'h9 résggrz\lled
destinationID destinationOffsetHigh
destinationOffsetLow
dataLength extendedTcode
- -
- -
—r block data (up to 4 quadlets) —r
Figure 7-12 — Lock request transmit format
Table 7-14 — Block transmit fields
field name bits| description
srcBusID, spd, tLabel, rt, See Table 7-12.
tCode, 1394 reserved, des-
tinationID, destinationOff;
setHigh,
destinationOffsetLow
dataLength 16| The number of bytes of data to be transmitted in this packet.
extendedTcode 16 If the tCode indicates a lock transaction, this specifies the actual lock action o be per-
formed with the data in this packet.
block data The data to be sent. If dataLength==0, no data should be written into the FIFO|for this
field. Regardless of the destination or source alignment of the data, the first byt¢ of the
block must appear in the high order byte of the first word.
padding If the dataLength mod 4 is not zero, then zero-value bytes are added onto the epd of the
packet to guarantee that a whole number of quadlets is sent.

Copyright © 1996,1997 All rights reserved. Page 63

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

7.5.1.4 PHY packet transmit

The PHY packet transmit format is shown below. The first quadlet contains packet control information. The remaining
two quadlets contain data that is transmitted without any formatting on the bus. No CRC is appended to the packet, nor is
any data in the first quadlet sent. This packet is used to send PHY configuration and Link-on packets.

31 30 29 28§27 26 25 24423 22 21 20519 18 17 16§15 14 13 12911 10 9 87 6.5 493 2 1 0

spd tcode=4'hE

phy packet quadlet 1

phy packet quadlet 2

Figure 7-13 — PHY packet transmit format

7.5.2 Asynchronous Transmit Responses

7.5.2.1 No-data transmit

The no-data transmit formats are shown below. The first word contains packet control information. The second and third

words contain 16-bit destination ID and either the 48-bit quadlet-aligned destination offset (for requests) or the response
code (for responses).

write response transmit format

31 30 29 28§27 26 25 24§23 22 21 20§19 18 17 16§15 14 13 12§11 10 9 807 6 5 433 2 1 0
a) 1394
[%2]
2 spd tLabel rt JtCode=4'h2] [(eserved
[$)
@
S 1394
destinationID rCode reserved
1394
reserved

Figure 7-14 — Write response transmit format

Copyright © 1996,1997 All rights reserved. Page 64

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Table 7-15 — Write response transmit fields

field name bits | description

srcBusID 1 | Source bus ID selector. If clear, the high order 10 bits of the source_ID field of the trans-
mitted packet will be 10'h3FF. If set, the high order 10 bits of the source_ID field of
the transmitted packet will be busNumb&rde_ID(see section 5.9).

spd 3 | Thisfield indicates the speed at which this packet is to be sent. 000 = 100 Mbits/sec,001
= 200 Mbits/sec, and 010 = 400 Mbits/sec, other values are reserved.

tLabel 6 | This field is the transaction label, which is used to pair up a response packet with its
corresponding request packet.

rt 2 | The retry code for this packet. Must be 2'h01 == retryX for the 1394 Open HCI

tCode 4 | The transaction code for this packet.

1394 reserved Required by IEEE 1394-1995 to be all zeros. OpenHCI will pass these bits aldng as-is
and will not verify them or modify them.

destinationID 16| This is the concatenation of the 10-bit bus number and the 6-bit node number|for the

destination of this packet.

rCode 4 | Response code for write response packet.

7.5.2.2 Quadlet Transmit

The quadlet read response transmit format is shown below. The first word contains packet control information. The

second and third words contain 16-bit destination ID and the 4-bit response code. The fourth word is the quadlet data fo
read responses.

31 30 29 28§27 26 25 24§23 22 21 20§19 18 17 16§15 14 13 12§11 10 9 807 6 5 433 2 1 0
a 1394
% spd tLabel rt JtCode=4'h6] reserved
[$)
@
S 1394
destinationID rCode reserved
1394
reserved
quadlet data

Figure 7-15 — Quadlet read response transmit format

Copyright © 1996,1997 All rights reserved. Page 65

Asynchronous Transmit DMA

1394 Open Host Controller Interface Specification/Draft 0.91

Printed 1/27/97

Table 7-16 — Quadlet transmit fields

field name

bits | description

srcBuslID, spd, tLabel, rt,
tCode, 1394 reserved, dgs-
tinationID, rCode

See Table 7-15.

quadlet data

transferred.

32 For quadlet write requests and quadlet read responses, this field holds the dalta to be

7.5.2.3 Block transmit

The block response transmit formats are shown below. The first word contains packet control information. The second and
third words contain the 16-bit destination node ID and the response code and reserved data. The fourth word contains the

length of the data field and the extended transaction code (all zeros except for lock transactions). The block data, if any,
follows the extended code.

31302928272625242322212019181716|1514l312|1110 9 87 6 5 4g3 2 1 O
Ja)
T 1394
a spd tLabel rt JtCode=4'h7} reserved
%
L 1394
destinationID rCode reserved
1394
reserved
1394
dataLength reserved
- : block data >~
-l ”
r---------------------
1 N
1 padding (if needed)
]

Figure 7-16 — Block read response transmit format

Copyright © 1996,1997 All rights reserved.

Page 66

Asynchronous Transmit DMA

1394 Open Host Controller Interface Specification/Draft 0.91

Printed 1/27/97

31 30 29 2827 26 25 24f23 22 21 20,19 18 17 16§15 14 13 12411 10 9 87 6 5 4g3 2 1 0
la)
2 1394
a spd tLabel rt | tCode=4'hB] reserved
2
destinationID rCode 1394
reserved
1394
reserved
dataLength extendedTcode
- -
- - block data (up to 2 quadlets) -
- -

Figure 7-17 — Lock response transmit format

Table 7-17 — Block transmit fields

field name

bits | description

srcBusID, spd, tLabel, rt,
tCode, 1394 reserved, de
tinationID, rCode

See Table 7-15.

packet to guarantee that a whole number of quadlets is sent.

dataLength 16| The number of bytes of data to be transmitted in this packet.

extendedTcode 16 If the tCode indicates a lock transaction, this specifies the actual lock action o be per-
formed with the data in this packet.

block data The data to be sent. If dataLength==0, no data should be written into the fifo fpr this
field. Regardless of the destination or source alignment of the data, the first byt¢ of the
block must appear in the high order byte of the first word.

padding If the dataLength mod 4 is not zero, then zero-value bytes are added onto the epd of the

Copyright © 1996,1997 All rights reserved.

Page 67

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Copyright © 1996,1997 All rights reserved. Page 68

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

8. Asynchronous Receive DMA

The Asynchronous Receive DMA controller performs the function of accepting packets for which there is no explicit
destination. This includes all packets which are accepted by the link module, but are not handled by any other receive
DMA function. There are two asynchronous receive (AR) contexts, an AR Request context and an AR Response contex
Each context uses a DMA context program to move such packets into memory to be interpreted by the host processc
software.

Since the collection of packets that must be handled by the AR contexts may be of widely varying lengths, each contex
operates irbuffer-fill mode in which multiple packets may be concatenated into the supplied buffers. Software is respon-
sible for parsing through these buffers and taking the appropriate action required for a packet, and hardware is required t
make these buffers parsable.

This chapter describes the AR context program components, how the AR contexts are managed and how the Asynchre
nous Receive controller operates.

8.1 AR Context Programs

The Asynchronous Receive DMA controller consists of two contexts for handling all asynchronous packets not handled
by the physical DMA controller. A context program is a list of DMA descriptors used to identify buffers in host memory
into which the Host Controller places received asynchronous packets.

The DMA descriptors are 16-bytes in length and must be aligned on a 16-byte boundary. There is one type of comman
descriptor used in an AR context program: INPUT_MORE.

8.1.1 INPUT_MORE descriptor

The INPUT_MORE command descriptor is used to specify a host memory buffer into which the AR controller will place
the received asynchronous packets from the Host Controller receive FIFO. It has the following format.

cmd= [s3 key= : ,
ahz 80| | J|ERf |, rewoumt
dataAddress
1 1
branchAddress Z
1 1
xferStatus resCount

Figure 8-1 — Asynchronous receive descriptor

Table 8-1 — Asynchronous receive descriptor element summary

Element Bits | Description

cmd 4 Software must set this field in all AR command descriptors to 4'h2 for INPUT_MQRE,
and hardware may assume that all AR descriptors are INPUT_MORE commands
This indicates to the AR controller that this descriptor contains a buffer address for gtoring
received asynchronous packets.

S 1 Status control. Software must set this field to 1. Hardware always writes status redardless
of the setting of this bit.
key 3 This field must be set to 3'b0.

Copyright © 1996,1997 All rights reserved. Page 69

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Table 8-1 — Asynchronous receive descriptor element summary

Element Bits | Description

i 2 Interrupt control. Valid values are 2'b11 to generate an AsynchRx interrupt when tfhe
descriptor is completed (see section 6.2.1), or 2'b00 for no interrupt. Behavior is ynspec-
ified if set to 2'b01 or 2'b10.

b 2 Branch control. Software must set this field to 2'b11. Values of 2'b10, 2'b01, and P’b00
will result in unspecified behavior.

reqCount 16 Request count: The size in bytes of the input buffer pointed to by dataAddress. RggCount
must be a multiple of 4 (representing a whole number of quadlets).

dataAddress 32 Host memory address of receive buffer. This address must be aligned on a quadlet bound-
ary.

branchAddress 28 16-byte aligned address of the next descriptor. A valid address must be providef in this
field unless the Z field is O.

4 4 Z may be set to 0 or 1. If this is the last descriptor in the context program, Z must]be set
to 0, otherwise it must be set to 1.

xferStatus 16 Written with ContextControl [15:0] whenever resCount is updated.

resCount 16 Residual count: while this descriptor is in-use by the Host Controller, resCount is jipdated
each time a packet is written to the receive buffer to indicate the number of bytes [out of
a max of reqCount) which have not been filled with received data.
For further information on resCount see section 8.4.2, “AR DMA Controller procegsing.”

Note that the CommandsCountand CommandaferStatusields are updated in an indivisible operation.
8.1.2 Using AR command descriptors

An asynchronous receive context program consists of a list of INPUT_MORE command descriptors. Each
INPUT_MORE is required to provide a branchAddress along with a Z value of 1 for the next block. Further, it must use
Z=0 to indicate the end of the context program. A program which ends in Z=0 can be appended to while the DMA runs,
even if the DMA has already reached the final descriptor. The exact mechanism for appending to a running list is the same
for all OpenHCI controllers and is described in section 3.2.1.2.

Software may only modify a descriptor that may have been prefetched if a) the descriptor’s current Z value is 0, and b)
only the branchAddress and Z fields of the descriptor are modified.

8.2 bufferFill mode

Received asynchronous packets can be either solicited responses or unsolicited requests. Since software must be prepared
to handle several packets of variable size, the Asynchronous Receive DMA contexts operate in bufferFill mode. In buffer-
Fill mode, all received packets are concatenated into a contiguous stream of data. This data is then metered out into

Copyright © 1996,1997 All rights reserved. Page 70

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

buffers described by a DMA context program, filling each buffer completely. Packets may straddle multiple buffers in this
mode (see packet 2 in the illustration below) In addition to the overall concept of bufferFill mode, there are several
nuances for Asynchronous receive which are described in detail below in section 8.4.2.

MORE|s|key:O| | i |b:3| | reqCount
dataAddress
. branchAddress Z=1 paCKEt 1 pack
11 1 1 1 1) N S N N N N I |) I N N N Y N I | 11 1 1 1 11 1
xferStatus | resCount=0
ORE|s|key=0| | i |b=3| | reqCount
1 1 1 1 1 1 1 1 1 11 1 1 1 1) N S N N N N I | 1
dataAddress
" branchAddress Z=1 et 2 paCket 3
xferStatus | resCount

Figure 8-2 — hufferFill receive mode

8.3 Asynchronous Receive Context Registers

The AR request context and AR response context each have a CommandPtr register and a ContextControl registe
CommandPtr is used by software to tell the Host Controller where the DMA context program begins. ContextControl is
used by software to control the context’s behavior, and is used by hardware to indicate current status.

8.3.1 AR DMA CommandPtr register

The CommandPtr register specifies the address of the context program which will be executed when a DMA context is
started. All descriptors are 16-byte aligned, so the four least-significant bits of any descriptor address must be zero. Th
least-significant bit of the CommandPtr register is used to encode a Z value. For each AR context (Request and Receive
Z may be either 1 to indicate that descriptorAddress points to a valid command descriptor, or 0 to indicate that there are
no descriptors in the context program.

Refer to section 3.1.5 for a full description of the CommandPtr register.

31 30 29 28 27 26 25 24|23 22 21 20,19 18 17 16|15 14 13 12911 10 9 8|7 6 5 4,3 2 1 O
rrrrrrrrrrrrrrrrrrrr-rrr-r T

descriptorAddress [31:4] 4

Figure 8-3 — CommandPtr register format

Copyright © 1996,1997 All rights reserved. Page71

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

8.3.2 AR ContextControl register (set and clear)

The ContextControlSeaind ContextControlClearregisters contain bits that control options, operational state, and status
for a DMA context. Software can set selected bits by writing ones to the corresponding bitCiontagtControlSet
register. Software can clear selected bits by writing ones to the corresponding bit€onteetControlClearegister. It

is not possible for software to set some bits and clear others in an atomic operation. A read from either register will return
the same value and is referred to asGoatextControlStatusegister.

31 30 29 28) 27 26 25 24|23 22 21 2019 18 17 16|15 14 13 12;11 10 9 8|7 6 5 4;3 2 1 0
L T T
spd ack/err
code
|| I |
1
run |
active
dead
wake
Figure 8-4 — AR ContextControl (set and clear) register format
Table 8-2 — AR ContextControl (set and clear) register description
Field RSC | Description
run rsc Refer to section 3.1.1 for an explanation of the contextContrdiit.
wake rs Refer to section 3.1.2 for an explanation of the contextCavafa@bit.
dead ru Refer to section 3.1.4 for an explanation of the contextCaietdbit.
active ru Refer to section 3.1.3 for an explanation of the contextCautiok bit.
spd ru This field indicates the speed at which the packet was received. 3'b000 = 100 MRits/sec,
3’b001 = 200 Mbits/sec and 3’b010 = 400 Mbits/sec. All other values are reserveq.
ack/err code ru Following an INPUT_MORE command, the received ack_code or an “evt_" errorfcode is
indicated in this field. Possible values are: ack_complete, ack_pending,
evt_descriptor_read, evt_data_write, evt_bus_reset and evt_unknown.
See Table 3-2, “Packet event codes,” for descriptions and values for these codes.

8.4 AR DMA Controller
8.4.1 Asynchronous Filter Registers

Software can control from which nodes it will recereguestpackets by utilizing the asynchronous filter registers. There

are two registers, one for filtering out all requests from a specified set of nodes (AsynchronousRequestFilter register) and
one for filtering out physical requests from a specified set of nodes (PhysicalRequestFilter register). The settings in both
registers have a direct impact on how the AR Request context is used, e.g. disabling only physical receives from a node
will cause all request packets from that node to be routed to the AR Request context buffer(s). The usage and interrela-

tionship between these registers is fully described in section 5.12, “Asynchronous Request Filters.” Asynchronous
responsepackets are never filtered.

Copyright © 1996,1997 All rights reserved. Page 72

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

8.4.2 AR DMA Controller processing

The AR DMA controller writes the entire packet, as described in the Asynchronous Receive Data Formats section, into
memory for software to process. This includes the packet header and packet reception status. Data chaining across conte
commands is supported.

For the AR request context, commardCountshould always be set to at least the maximum possible packet length for
an asynchronous packet as specified in the max_rec field of the bus_info ghlsckive quadlets for the header and
trailer (2*(max_rec+1) + 20 bytes). This means a single packet can cross at most one buffer boundary. This requiremer
also makes it easier for the Host Controller implementation to combine asynchronous receive FIFOs (see section 3.3).

When the host software transmits an asynchronous request, it must first ensure that there is enough buffer space allocat
in the AR response context's context program to receive the response packet including headers and timestamp. Failure
preallocate this space may result in the hardware discarding responses that arrive when the AR response context is out
descriptors even though ack_complete may have been sent to the source node.

Since the AR request context and AR response context buffers must always be parseable by software there are thre
essential requirements.

a) The Host Controller must write a packet into a buffer(s) by first writing the asynchronous packet header, followed
by the packet data, followed by a packet trailer.

b) Requests or responses with data-length errors, CRC errors, FIFO overrun errors or buffer overrun errors must no
be presented to the software. Although the host memory buffers may have been written in anticipation of a good
packet, the xferStatus and resCount will not be updated. This in effect “backs out” the packet.

c) After each packet is written into the buffer(s), hardware must update the resCount for the INPUT_MORE
descriptor(s) for the buffer(s), to accurately reflect the number of unused bytes remaining.

Software does not have to initialize resCount. Upon the first packet arrival into a buffer, the Host Controller must write
the appropriate residual count, based on (reqCount - (packetHeaderLen + dataLength + statusquadlet)). Note that neith
the header CRC nor data CRC quadlets are inserted into the buffer.

As depicted in figure 8-2 on page 71, it is possible for a received packet to straddle multiple buffers. For the AR Reques
context, the buffer size requirements (mentioned above) ensure that a packet can only straddle two buffers. However, th
AR Response context does not have a buffer size requirement and therefore AR response packets may straddle more th
two buffers. To ensure that the receive buffers for a context remain parsable, hardware must follow the procedure show
below. (First buffer refers to the buffer receiving the first byte of the packet or packet header, and final buffer refers to the
buffer receiving the last byte of the packet or packet trailer.)

1) After filling to the end of a buffer with a partial packet, advance to the next descriptor block and obtain the
next buffer (dataAddress), retaining all state for the first buffer as well as for the new buffer.

2) Continue writing packet bytes into the new buffer. If the end of the buffer is reached, advance to the next
buffer without updating xferStatus and without retaining state for it or any other interim buffers. Write the
remaining packet bytes into the final buffer (for the packet).

3) If there is no error: 1) write the trailer quadlet into the final buffer, 2) update xferStatus and resCount into the
final buffer's descriptor, and 3) update xferStatus and resCount into the first buffer's descriptor. At that point
the first buffer’s state is no longer needed.

4) If thereis an error, then the packet must be ‘backed-out’ by reverting back to the previous state of the first
buffer (as saved earlier). XferStatus and resCounhatreipdated for either descriptor.

By following these steps, the AR context buffers remain intact and can be parsed. Since interim buffers (those containing
an inner portion of one packet) for the AR Response context will not have their status updated, software must only use
resCount values when the corresponding xferStatus indicates the run bit is set to one. It follows from this that if the xfer-
Statustun bit is set in a descriptor, then all prior descriptors have been filled.

Copyright © 1996,1997 All rights reserved. Page 73

Asynchronous Receive DMA

1394 Open Host Controller Interface Specification/Draft 0.91

Printed 1/27/97

8.4.2.1 AR DMA Packet Trailer

The trailer quadlet written by the Host Controller at the end of each packet has the following format.

31 30 29 28, 27 26 25 24|23 22 21 2019 18 17 16}15 14 13 1211 10 9 8|7 6 5 4,3 2 1 0

xferStatus timeStamp

Figure 8-5 — AR DMA packet trailer format

Table 8-3 — AR DMA trailer fields

field name bits| description

xferStatus 16| Written with ContextControl[15:0].

timeStamp 16| The low order 3 bits of cycleTinsgcleSecondand the full 13 bits of
cycleTimercycleCouniat some time during receipt of the packet.

8.4.2.2 Error Handling

Packets resulting in an ack_data_error will, in effect, not go into an AR DMA buffer. Since an ack_data_error condition

is not known until all data (plus data CRC) has arrived, many “corrupted” data bytes may have been moved into an AR

DMA buffer by the time the error situation is discovered. In this circumstance, hardware is required to halt its writing of
the packet into the AR DMA buffer without updating the resCount field. By not advancing the residual count location, it
will appear as though the packet never was written into the AR DMA buffer at all.

8.4.2.3 Bus Reset Packet

To assist software in determining which asynchronous request packets arrived before and after a bus reset (necessary since
node numbers may have changed), the Host Controller inserts a synthesized PHY packet into the AR DMA Request

Context buffer as soon as a bus reset condition is detected. This packet has the following format.

31 30 29 28427 26 25 2423_2_1&19 18 17 lGIlS 14 13 12911 10 O 8% 7 6 o5 4g3 2 1 0

tcode=4'hE 4'h0

selfIDGeneration

3'h0 errCode=5'h19 timeStamp

Figure 8-6 — AR Request Context Bus Reset packet format

Copyright © 1996,1997 All rights reserved.

Page 74

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Table 8-4 — AR Request Context Bus Reset packet description

Field bits | Description

tcode 4 Set to 4’hE to indicate a PHY packet.

selfIDGeneration 8 The selfIDCountlfIDGeneratiorvalue at the time this packet is created.

errCode 5 A value of 5’h19 (evt_bus_reset) identifies this as a synthesized bus_reset packet.

timeStamp 16 | The low order 3 bits of cycleTinesgcleSecondand the full 13 bits of
cycleTimercycleCountwhen this packet was created.

Software can distinguish the bus-reset packet from authentic PHY packets based on the size (bus-reset packet is fol
quadlets, PHY is three). Bus-reset packets are further distinguished by the value of errCode which is set to evt_bus_rese
Software can further interpret and coordinate received asynchronous packets across multiple bus resets by using the se
IDGeneration number provided in the bus-reset packet. Since the bus-reset packet is fabricated when a bus reset
initially detected, the selfIDGeneration number is for the previous (not new) generation.

If the input FIFO is full when a bus reset occurs, the link side of the FIFO must later insert the bus-reset packet when
space becomes available.

8.5 Asynchronous Receive Interrupts

There are two interrupts for each context (request and response) that software can use to gauge the usage of the rece
buffers. If software needs to be informed of the arrival of each packet being sent to the context buffers, it can use the
RQPkt or RSPkt interrupts in the IntEvent register (see section 6.2.1). If software needs to be informed of the completior
of a buffer, it can set the context commaridld to 2'b11, which will trigger either the ARRQ or ARRS interrupt in the
IntEvent register.

8.6 Asynchronous Receive Data Formats
There are four basic formats for asynchronous data to be received:

a) no-data packets (used for quadlet read requests and all write responses)

b) quadlet packets (used for quadlet write requests, quadlet read responses, and block read requests)

c) block packets (used for lock requests and responses, block write requests, and block read responses)
d) PHY packets

The names and descriptions of the fields in the received data are given in table 8-5.

Table 8-5 — Asynch receive fields

field name bits | description

destinationID 16| This field is the concatenation of busNumber (or all ones for “local bus”) and rode-
Number (or all ones for broadcast) for this node.

tLabel 6 | This field is the transaction label, which is used to pair up a response packet with its
corresponding request packet.

rt 2 | The retry code for this packet. 00=retryl, O1=retryX, 10=retryA, 11=retryB

tCode 4 | The transaction code for this packet.

1394 reserved Required by IEEE 1394-1995 to be all zeros. OpenHCI will pass these bits aldqng as-is
and will not verify or modify them.

sourcelD 16| This is the node ID of the sender of this packet.

Copyright © 1996,1997 All rights reserved. Page 75

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Table 8-5 — Asynch receive fields (Continued)

field name bits | description

destinationOffsetHigh, 16 | The concatenation of these two fields addresses a quadlet in this node’s addregs space.
destinationOffsetLow 32 | This address must be quadlet-aligned (modulo 4).

rCode 4 | Response code for response packets.

quadlet data 32 For quadlet write requests and quadlet read responses, this field holds the dath received.
datalLength 16| The number of bytes of data to be received in a block packet.

extendedTcode 16 If the tCode indicates a lock transaction, this specifies the actual lock action fo be per-

formed with the data in this packet.

block data The data received. If dataLength==0, no data will be written into the fifo for thid field.
Regardless of the destination or source alignment of the data, the first byte of the block
will appear in the high order byte of the first word.

padding If the dataLength mod 4 is not zero, then bytes have been added onto the end]of the
packet by the transmitting node to guarantee that a whole number of quadlets is
received.

xferStatus 16| Written with ContextControl[15:0]. The ContextControl bits [7:0] written into thi

descriptor’s xferStatus pertain to no particular packet in the buffer and are likely|not to
be of any use to software.

timeStamp 16| The low order 3 bits ofcleSecondand the full 13 bits ofycleCounfrom the mosf|

recently received (or sent) cycle start packet. If there is no cycle master, a synthesized
value will be used from the cycleTimer register.

8.6.1 No-datareceive

The no-data receive formats are shown below. The first word contains the destination node ID and the rest of the packet
header. The second and third words contain 16-bit source ID and either the 48-bit, quadlet-aligned destination offset (for
requests) or the response code (for responses). The last word contains packet reception status.

31 .30 29 28927 26 25 2423 22,21 20310 18 17 ldlS 14 13 12911 10 O 8§ 7 6 o> 483 2 1 0

L 1394
destinationID tLabel rt JtCode=4'n4 § (eserved

sourcelD destinationOffsetHigh

destinationOffsetLow

xferStatus timeStamp

Figure 8-7 — Quadlet read request receive format

Copyright © 1996,1997 All rights reserved. Page 76

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

31 .30 29 28§27 26 25 24I23 22 21 20910 18 17 16|15 14 13 12911 10 O 8% 7 6 o> 433 2 1 0

destinationID tLabel rt JtCode=4'h2 ré?gr‘\‘,ed

sourcelD rCode rgggr‘\l/ed

1394
reserved

xferStatus timeStamp

Figure 8-8 — Write response receive format

8.6.2 Quadlet Receive

The quadlet receive formats are shown below. The first word contains the destination node ID and the rest of the packe
header. The second and third words contain 16-bit source ID and either the 48-bit, quadlet-aligned destination offset (fol
requests) or the response code (for responses). The fourth word is the quadlet data for read responses and write quac
requests, and is the data length and reserved for block read requests. The last word contains packet reception status.

31 .30 29 28§27 26 25 24I23 22 21 20910 18 17 16|15 14 13 12911 10 O 8% 7 6 o> 433 2 1 0

L 1394
destinationID tLabel rt JtCode=4'h0O] reserved

sourcelD destinationOffsetHigh

destinationOffsetLow

quadlet data

xferStatus timeStamp

Figure 8-9 — Quadlet write request receive format

Copyright © 1996,1997 All rights reserved. Page 77

Asynchronous Receive DMA

1394 Open Host Controller Interface Specification/Draft 0.91

Printed 1/27/97

3130 29 28327 26 25 24_t|23 22 21 20§19 18 17 16|15 14 13 12911 10 9 887 6 5 433 2 1 0
N 1394
destinationID tLabel rt JtCode=4'h6] raserved
1394
sourcelD rCode reserved
1394
reserved
quadlet data
xferStatus timeStamp
Figure 8-10 — Quadlet read response receive format
3130 29 28§27 26 25 2&'23 22 21 20§19 18 17 1§|15 14 13 12311 10 o 887 6 5 4p3 2 1 0
o 1394
destinationID tLabel rt JtCode=4’'h5 reserved

sourcelD destinationOffsetHigh
destinationOffsetLow
datalLength régé)r‘\lled
xferStatus timeStamp

Figure 8-11 — Block read request receive format

Copyright © 1996,1997 All rights reserved.

Page 78

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

8.6.3 Blockreceive

The block receive format is shown below. The first word contains the destination node ID and the rest of the packet
header. The second and third words contain 16-bit source ID and either the 48-bit destination offset (for requests) or th
response code and reserved data (for responses). The fourth word contains the length of the data field and the extend
transaction code (all zeros except for lock transactions). The block data, if any, follows the extended code. The last worc
contains packet reception status.

3130 29 28§27 26 25 24|23 22 21 20§19 18 17 l6|15 14 13 12911 10 9 887 6 5 433 2 1 0
1394
destinationID tLabel rt JtCode=4’'h1] reserved
sourcelD destinationOffsetHigh
destinationOffsetLow
dataLength extendedTcode
o o
- block data -
1 1
r N NN I I B B B B B B B B B BN B B B S - . .
1 L
I padding (if needed)
I
xferStatus timeStamp

Figure 8-12 — Block write request receive format

Copyright © 1996,1997 All rights reserved. Page 79

Asynchronous Receive DMA

1394 Open Host Controller Interface Specification/Draft 0.91

Printed 1/27/97

3130 29 28327 26 25 24_t|23 22 21 20§19 18 17 16|15 14 13 12911 10 9 887 6 5 493 2 1 0
1394
destinationID tLabel rt JtCode=4’'h9] reserved
sourcelD destinationOffsetHigh
destinationOffsetLow
dataLength extendedTcode
o o
- block data -
1 1
r---------------------
1
1 padding (if needed)
I
xferStatus timeStamp
Figure 8-13 — Lock request receive format
31 30 29 2827 26 25 24'23 22 21 20§19 18 17 16'15 14 13 12311 10 9 87 6 5 433 2 1 0
1394
destinationID tLabel rt JtCode=4'h7] reserved
1394
sourcelD rCode reserved
1394
reserved
dataLength extendedTcode
s s
- block data -
T T
r---------------------
1
I padding (if needed)
']
xferStatus timeStamp

Figure 8-14 — Block read response receive format

Copyright © 1996,1997 All rights reserved.

Page 80

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91

Printed 1/27/97

\\

31 30 29 28§27 26 25 24|23 22 21 20§19 18 17 16]15 14 13 12911 10 9 87 6 5 433 2 1 O
1394
destinationID tLabel rt JtCode=4'hB] reserved
1394
sourcelD rCode reserved
1394
reserved
datalength extendedTcode
-
- block data -
-] -]
r---------------------
1 L
1 padding (if needed)
']
xferStatus timeStamp

Figure 8-15 — Lock response receive format

Copyright © 1996,1997 All rights reserved.

Page 81

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

8.6.4 PHY packetreceive

The PHY packet receive format is shown below. The first word contains a synthesized packet header with a tCode of
4'hE. The second quadlet contains the PHY quadlet and the third quadlet contains the inverse of the first quadlet.
Software is required to verify the integrity of the second quadlet by checking it against the third quadlet. The final (fourth)

guadlet contains the packet trailer. Self-ID packets not arriving during the bus initialization self-ID phase are received as
PHY packets.

31 30 29 2827 26 25 24§23 22 21 20§19 18 17 16§15 14 13 12¢11 10 9 887 6 5 43 2 1 0

tcode=4'hE 4'h0

PHY packet first quadlet

PHY packet second quadlet

errCode timeStamp

Figure 8-16 — PHY packet receive format

Copyright © 1996,1997 All rights reserved. Page 82

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

9. Isochronous Transmit DMA

The Isochronous Transmit DMA (IT DMA) controller has a required minimum of four and an implementation maximum
of 32 isochronous transmit contexts. Each context is controlled by a DMA context program. Each IT DMA context will
transmit data for a single isochronous channel.

9.1 IT DMA Context Programs

For isochronous transmit DMA, a context program is a list of DMA command descriptors used to identify buffers in host
memory from which the Host Controller transmits packets onto the 1394 bus. The descriptors are 16 bytes in length ant
must be aligned on a 16-byte boundary. There are five kinds of DMA command descriptors that can be used:
OUTPUT_MORE, OUTPUT_MORE-Immediate, OUTPUT_LAST, OUTPUT_LAST-Immediate and STORE_VALUE.

9.1.1 IT DMA command descriptor overview

There are two components to a 1394 isochronous packet, the packet header and the packet data, and there are many w
in which software may need to organize this information in host memory. To accommodate the variety of packet organi-
zation, there are four IT DMA descriptor commands used to instruct the Host Controller on how to assemble the packets
and one descriptor command for writing a quadlet into host memory for software tracking purposes.

If a packet has two or more data fragments an OUTPUT_MORE-Immediate and possibly some OUTPUT_MORE
commands are used. The OUTPUT_MORE-Immediate command is used to specify the packet header, and eac
OUTPUT_MORE command allows for the specification of one packet fragment.

To indicate the end of a packet, either the OUTPUT_LAST or OUTPUT_LAST-Immediate command must be used. The
OUTPUT_LAST command allows for the specification of one data fragment, and the OUTPUT_LAST-Immediate is used

to specify a packet solely consisting of an isochronous packet header. Unlike the OUTPUT_MORE commands, the
OUTPUT_LAST commands indicate to the Host Controller that there is no more data to send for a packet.

The STORE_VALUE command descriptor provides a mechanism for software to monitor progress on a context without
using interrupts. This command will write a quadlet to a specified host memory location.

Copyright © 1996,1997 All rights reserved. Page 83

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

9.1.2 OUTPUT_MORE descriptor

cmd=0 kfgg 2'b0, reqCount

dataAddress

Figure 9-1 — OUTPUT_MORE command descriptor format

Table 9-1 — OUTPUT_MORE descriptor element summary

Element Bits | Description

cmd 4 Set to 4'h0 for OUTPUT_MORE.
Identifies one data (or header) fragment used to build the packet.

key 3 This field must be set to 3'b000.

b 2 Branch control. Must be set to 2’b00. Behavior is unspecified if set to 2'b01, 2'b1§ or
2'b11.

reqCount 16 Request count. The size of the specified buffer in bytes pointed to by dataAddregs.

dataAddress 32 Address of transmit buffer.

The OUTPUT_MORE descriptor is used to specify one data fragment for the packet. DataAddress has no alignment
restrictions.

Copyright © 1996,1997 All rights reserved. Page 84

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

9.1.3 OUTPUT_MORE-Immediate descriptor

cmd=0 | | ST 2’ reqCount = 16'h0008
I [L L L L | S S S I I Iy I N N |
S S S [I N [[[[[N [[[[[[y N [N — | L1 1
skipAddress z

| S S S I I [I N S | | N IS S I I S S N B | |

_|! | N S S S IS I N AN I | tl:lrslt guladlleti | [IS N U Y N N [NN N A |
| second quadlet

| e I S S S I I N N N N N S B | | IS S S N IS N N N N S N S |
| tthird quadlet

| [S S S I S N I S S S IS I I [N S S I A N N N S |
| fourth quadlet

Figure 9-2 — OUTPUT_MORE-Immediate descriptor format

Table 9-2 — OUTPUT_MORE-Immediate descriptor element summary

Element Bits | Description

cmd 4 Set to 4’h0 for OUTPUT_MORE-Immediate.

key 3 This field must be set to 3'b001.

b 2 Branch control. Must be set to 2’'b00. Behavior is unspecified if set to 2'b01, 2’'b1(or
2'bl1.

reqCount 16 Must be set to 8 to accomodate the IT packet header. Using any other value yieldp unspec-
ified results.

immediate data 32 Quadlet to be inserted into the isochronous transmit FIFO. Typically an isochronous

packet header.

skipAddress 28 16-byte aligned address of the next descriptor to be used if a missed cycle is detected.
Used only within the first command descriptor in a descriptor block. The first comfnand
must either have a valid skipAddress, or must set the Z field to 0.

Z 4 Used to indicate the number of descriptors needed fakipbdescriptor block. Z may bp
avalue from 0 to 8. A zero indicates there is no skipAddress, and the DMA for this qontext
stops. A value of 1 to 8 indicates that there are 1 to 8 descriptors used in the skip| packet.

quadlets 32*4| The first and second quadlets are used to specify the 2 quadlets required for thg isochro-
nous packet header. (See section 9.5).

The OUTPUT_MORE-Immediate descriptor must be used, and must only be used, to specify the isochronous header fo
a non-zero data length packet. This is an efficient way for software to provide the packet header information since the dat
is built into the descriptor and does not need to be fetched from a separate memory buffer.

OUTPUT_MORE-Immediate command descriptors are 32 bytes in length regardless of the value of reqCount.

Copyright © 1996,1997 All rights reserved. Page 85

Isochronous Transmit DMA

1394 Open Host Controller Interface Specification/Draft 0.91 Printed

1/27/97

9.1.4 OUTPUT_LAST descriptor

key= b=

emd=t|s| o] | P ey |, reaCount
., baweAddess L
o .S.kip qrclie:sclripltolr blranclh {\dldrleslsl o .%.
., festaws |, GmeStamp

Figure 9-3 — OUTPUT_LAST command descriptor format

Table 9-3 — OUTPUT_LAST descriptor element summary

Element Bits | Description

cmd 4 Set to 4'hl for OUTPUT _LAST.

Each command identifies one data (or header) fragment used to build the packet,
OUTPUT_LAST is used to signify the end of the isochronous packet to be transniitted.

s 1 Status control. If set to one, xferStatus and timeStamp will be updated upon desdriptor
completion. If set to zero, neither field is updated.

key This field must be set to 3'b000.

i Interrupt control. Valid values are 2'b11 to generate an IsochTx interrupt when thg
descriptor is completed (see section 6.2.1), or 2'b00 for no interrupt. Behavior is ynspec-
ified if set to 2’b01 or 2'b10.

b 2 Branch control. This field must be set to 2'b11 to branch to the location specified jn the
branchAddress field. Behavior is unspecified for all other values.

reqCount 16 Request count: The size of the buffer in bytes pointed to by dataAddress.

dataAddress 32 Address of transmit buffer.

branchAddress 28 16-byte aligned address of the next descriptor. Used only within OUTPUT_LAS] com-
mands.

skipAddress 16-byte aligned address of the next descriptor to be used if a missed cycle is dejected.
Used only within the first command descriptor in a descriptor block.

Z 4 Used in OUTPUT_LAST only to indicate the number of descriptors needed mexthe
descriptor block. Z may be a value from 0 to 8. A zero indicates this is the last dedqcriptor
in the list for this IT DMA context. A value of 1 to 8 indicates that there are 1 to 8
descriptors used in the next descriptor block.

xferStatus 16 Written with ContextControl [15:0] after the descriptor is processed if s = 1.

timeStamp 16 Contains the three low order bits of cycleSeconds and all 13 bits of cycleCount, pnd is
written when xferStatus is written. TimeStamp indicates the cycle for which the IT PMA
controller queued the transmission of this packet. See section section 5.11, “Isoctronous
Cycle Timer Register,” for information about cycle* fields.

Copyright © 1996,1997 All rights reserved.

Page 86

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

9.1.5 OUTPUT_LAST-Immediate descriptor

omd=t o] | i o], | reaCountzishooss

..., 'mmediatedata L,

o Islfiplapdldgs?ript(?r Pran(I:hIA(delre'lssl o .%.
xferStatus | timeStamp

1 1 1 1 1 1 1 1 1 1 1 Ti r$t guladlletl 1 1 1 1 1 1 1 1 1 1 1 1 1

second quadiet

tthird quadlet

fourth quadlet

Figure 9-4 — OUTPUT_LAST-Immediate command descriptor format

Table 9-4 — OUTPUT_LAST-Immediate descriptor element summary

Element Bits | Description

cmd, s Same as in Table 9-3.

key 3 This field must be set to 3'b001.

i,b Same as in Table 9-3.

reqCount 16 Must be set to 16’h0008 to accomodate the IT packet header. Using any other vallie yields
unspecified results.

branchAddress, Same as in Table 9-3.

skipAddress, Z,

xferStatus, timeStamp

quadlets 32*4| The first and second quadlets are used to specify the 2 quadlets required for thg isochro-
nous packet header. (See section 9.5).

The OUTPUT_LAST-Immediate descriptor must be used, and must only be used, to specify the isochronous header for
packet with zero data bytes. OUTPUT_LAST-Immediate command descriptors are 32-bytes in length regardless of the
value of reqCount.

Copyright © 1996,1997 All rights reserved. Page 87

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

9.1.6 STORE_VALUE descriptor

The STORE_VALUE command descriptor instructs the Host Controller to write a specified 32-bit value to a specified
host memory location. If used, STORE_VALUE must be the first command descriptor in a descriptor block, and only one
is permitted per descriptor block. It has the following format.

cmd=8 I:(BQBIG storeDoublet

dataAddress
skipAddress z

Figure 9-5 — STORE_VALUE descriptor

Table 9-5 — STORE_VALUE descriptor element summary

Element Bits | Description

cmd 4 Set to 4'h8 for STORE_VALUE.

key 3 This field must be set to 3'b6.

storeDoublet 16 16-bit value to be stored into the quadlet aligned dataAddress upon execution of fhis com-

mand. StoreDoublet is written as a 32 bit value, where bits 31:16 are 0’'s and bits 1%:0 con-
tain the storeDoublet value provided in the descriptor.

dataAddress 32 Quadlet aligned host memory address into which storeDoublet (padded to 32) RQits is
written.
skipAddress, Z 28 Same as in Table 9-1.

9.1.7 IT DMA descriptor usage

The Z value is used by the Host Controller to enable several descriptors to be fetched at once, for improved efficiency. Z
values must always be encoded correctly. The contiguous descriptors described by a Z value ardesaitgrdaa block
The following table summarizes all legal Z values:

Table 9-6 — Z value encoding

Z value Use

0 Indicates that the current descriptor is the last descriptor in the context program

1-8 Indicates that 1 to 8 descriptors starting at descriptorAddress are physically conjiguous.
9-15 reserved

Each isochronous transmit descriptor block for a packet shall be specified with the command descriptors according to the
following rules:

* A maximum of 8 command descriptors may be used.
* Only one STORE_VALUE may be used, and it must be the first descriptor in a descriptor block.

« If the packet dataLength is not zero, one OUTPUT_MORE-Immediate must be used, followed by zero to five
OUTPUT_MORE's, followed by one OUTPUT_LAST.

 If the packet dataLength is zero, one OUTPUT_LAST-Immediate must be used.

Copyright © 1996,1997 All rights reserved. Page 88

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

The isochronous packet header must be specified using a *-Immediate command. The OUTPUT_LAST* command mus
have a branch control value of 2’b11. All other commands must have a branch control value of 2'b00. Within a descriptor
block the sum of all descriptors’ reqCount values must be four or more. This is the minimum number of bytes needed to
describe an isochronous packet header. Depending on the aggregate number of bytes being transmitted for one descrip
block, hardware may assist with padding. If the sum of all reqCounts modulo 4 is 0, then padding is not necessary. If the
sum of all reqCounts module 4 is not 0, then hardware will insert padding up to a quadlet boundary.

To indicate the end of the context program, all IT DMA context programs must use an OUTPUT_LAST or
OUTPUT_LAST-Immediate command with a branch (b) value of 2’b11 (branch always) and a Z value of 0 to indicate the
end of the program. A program which ends can be appended to while the DMA runs, even if the DMA has already
reached the last descriptor.

The first command in an isochronous packet descriptor block must have a skipAddress which points to the descriptor tc
branch to if this packet cannot be transmitted (typically due to a lost cycle). The value of the Cdnfrelhéh that
descriptor does not affect a skip branch.

The use of many OUTPUT_MORE* commands to describe a single packet will generally cause extra fetch latencies, a:
the Host Controller fetches payload buffers from different parts of memory. These latencies may differ for each Host
Controller implementation, bus, and host memory architecture. Software is expected to construct IT DMA context
programs with a sufficiently low number of OUTPUT_MORE* commands so that the Host Controller can satisfy applica-
tion-specific latency requirements.

ITDMA context programs must contain exactly one descriptor block to be transmitted per cycle. Each descriptor block
must be identified with an accurate Z value, both when the program is started, and on each branch within the prograrr
Each descriptor block must end with an unconditional branch to the next descriptor block, even if the next block follows
immediately in consecutive memory. (The branch enables the ITDMA to learn the Z value for the next descriptor block).
Each descriptor block must begin with a command that contains a branch to the skipAddress (also with a Z code).

Some applications of isochronous transfer do not transfer a packet on every isochronous cycle. Therefore the ITDMA will
sometimes not transmit a packet for one or more channels. Within a context program, a non-transmit cycle is indicated b
a descriptor block whose only transfer command is an OUTPUT_LAST with a length of zero. (This is not a zero-length
packet, which would be sent with an OUTPUT_LAST-Immediate.)

9.2 IT Context Registers

Each isochronous transmit context consists of two registers: CommandPtr and IT ContextControl. CommandPtr is used b
software to tell the IT DMA controller where the DMA context program begins. IT ContextControl is used by software to
control the context’s behavior, and is used by hardware to indicate current status.

9.2.1 CommandPtr

The CommandPtr register specifies the address of the context program which will be executed when a DMA context is
started. All descriptors are 16-byte aligned, so the four least-significant bits of any descriptor address must be zero. Th
four least-significant bits of the CommandPtr register are used to encode a Z value that indicates how many physically
contiguous descriptors are pointed to by descriptorAddress.

Copyright © 1996,1997 All rights reserved. Page 89

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Refer to section 3.1.5 for a full description of the CommandPtr register.

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 1615 14 13 12,11 10 9 8|7 6 5 4,3 2 1 0
| |

descriptorAddress [31:4] 4

Figure 9-6 — CommandPtr register format
9.2.2 IT ContextControl Register

The IT ContextControket and clear registers contains bits that control options, operational state, and status for the isoch-
ronous transmit DMA contexts. Software can set selected bits by writing ones to the corresponding bi®oiretkte
ControlSetregister. Software can clear selected bits by writing ones to the corresponding bit€ant&eControlClear

register. It is not possible for software to set some bits and clear others in an atomic operation. A read from either register
will return the same value.

The context control register used for isochronous transmit DMA contexts is shown below. It includes several fields which
permit software to filter packets based on various combinations of fields within the isochronous packet header.

31302928|27262524|23222120|191817161514131211109 8|7 6 5 4,3 2 1 0
L L L L L L L L L L L

cycleMatch spd ackferr
code

run

cycleMatchEnable

active
dead
wake
Figure 9-7 — IT DMA ContextControl (set and clear) register format

Table 9-7 — IT DMA ContextControl (set and clear) register description

field rscu | description

cycleMatchEnable rscu In general, when set to one,, the context will begin running only when the 13-bitjcycleM-
atch field matches the 13-bit cycleCount in the cycleStart packet. The effects of this bit
however are impacted by the values of other bits in this register and are explained below.
Once the context has become active, hardware clears the cycleMatchEnable bit.

cycleMatch rsc Contains a 13-bit value, corresponding to the 13-bit cycleCount field. If contextCpn-
trol.cycleMatchEnablés set, then this IT DMA context will become enabled for transpits
when the bus cycletimeycleCountvalue equals the cycleMatch value.

run rsc Refer to section 3.1.1 and the description following this table for an explanation df the
contextControkun bit.

wake rsu Refer to section 3.1.2 for an explanation of the contextCevekalbit.

dead ru Refer to section 3.1.4 for an explanation of the contextCaletadbit.

active ru Refer to section 3.1.3 for an explanation of the contextCattigk bit.

Copyright © 1996,1997 All rights reserved. Page 90

Isochronous Transmit DMA

1394 Open Host Controller Interface Specification/Draft 0.91

Printed 1/27/97

Table 9-7 — IT DMA ContextControl (set and clear) register description

field rscu | description
spd ru This field is not meaningful for isochronous transmit contexts.
ack/err code ru Following an OUTPUT_LAST* command, the error code is indicated in this field

Possible values are: ack_complete, evt_descriptor_read , evt_data_read and evt Junknown.

See Table 3-2, “Packet event codes,” for descriptions and values for these codes.

The cycleMatch field is used to start an IT DMA context program on a specified cycle. Software enables matching by
setting the cycleMatchEnable bit. When the cycleStgeteCountvalue matches the cycleMatch value, hardware sets the
cycleMatchEnable bit to 0, sets the contextCordntive bit to 1, and begins executing descriptor blocks for the context.
The transition of an IT DMA context to the active state, from the not-active state is dependent upon the values of the rur

and cycleMatchEnable bits.

« If run transitions to 1 when cycleMatchEnable is 0, then the context will become active (active = 1).

 If both run and cycleMatchEnable are set to 1, then the context will become active when the 13-bit cycleCount field
in the cycleStart packet matches the 13-bit cycleMatch value.

» If both run and cycleMatchEnable are set to 1, and cycleMatchEnable is subsequently cleared, the context become

active.

« If both run and active are 1 (the context is active), and then cycleMatchEnable is set to 1, this will result in
unspecified behavior.

9.3 Isochronous transmit DMA controller

The following sections describe how software manages the multiple isochronous transmit DMA contexts. Each context
has a commandPtr pointing to the current DMA descriptor. For every cycle start packet that the Host Controller receives
or sends, the IT DMA controller can transmit one descriptor block from each DMA context that is in the ContextCon-

trol.run state.

Copyright © 1996,1997 All rights reserved.

Page 91

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

9.3.1 IT DMA Processing

Each of the DMA command pointers in théochronous transmit command arraprresponds to a list of packets to be

sent on successive cycles. Generally, each list represents a single isochronous channel. Isochronous channel numbers are
not tied to the entry index in the isochronous transmit command array. The DMA context program pointed to by each
array entry will specify the entire isochronous packet header, including the isochronous channel number, for each packet
that is transmitted. The entire ITDMA is summarized in the following figure:

commandPtr 0 z OUTPUT_MORE-I - OUTPUT_MORE-I OUTPUT_MORE-I

commandPtr 1

commandPtr 2

channel 9

OUTPUT_LAST OUTPUT_MORE OUTPUT_LAST

OUTPUT_LAST

OUTPUT_LAST-I _I-' OUTPUT_LAST-I r-' OUTPUT_LAST-I

\
channel 6

| oUTPUT MORE] OUTPUT_MORE-| OUTPUT_MORE-|

channel 42

normal branch

OUTPUT_LAST OUTPUT_LAST OUTPUT_LAST

skip
;|—/
cycle 2001 cycle 2002 cycle 2003

Figure 9-8 — ITDMA summary

In the example, three channels are being transmitted. Three cycles of transmit are shown. Context 0 is sending on isoch-
ronous channel 9, using an OUTPUT_MORE-Immediate to send each packet header and an OUTPUT_LAST for each
payload. In cycle 2002 the payload spans a page boundary, so channel 9 uses an extra OUTPUT_MORE. Channel 9 will
skip to the next packet if any cycle is lost. Context 1 is sending on isochronous channel 6, with zero length packets and
only headers. Because channel 6 uses a single descriptor per packet, the skip branch is equal to the normal next packet
branch. Context 2 is sending on isochronous channel 42, with each skip branch pointing to itself. If a cycle is lost,
channels 6 and 9 will advance to the next packet, while channel 42 will fall behind by one packet, without skipping any
packets.

For each cycle, the IT DMA controller will complete one descriptor block for each active IT DMA context. If there is a
disruption while the IT DMA controller is processing a context, such as a bus reset or the loss of the isochronous phase,
the IT DMA controller is required to continue through its list of active contexts taking the skip branch address for each of
the remaining contexts.

Copyright © 1996,1997 All rights reserved. Page 92

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

9.3.2 Isochronous transmit cycle loss

The IT DMA controller can send multiple packets (multiple isochronous channels) in each isochronous cycle. Because
isochronous cycles can be lost, the ITDMA is organized so that one cycle’s worth of packets can be skipped, if necessary
to catch up. The loss of an isochronous cycle is usually uncommon, and typically results from a bus reset.

If isochronous cycles were lost, and no corrective action was taken, the transmitter would gradually fall behind, sending
each packet some number of cycles after the transmission time intended by software.

In order to permit the transmitter to avoid falling behind, each packet in an IT DMA context program contains a skip
branch address. Any time the IT DMA wants to correct for a cycle loss, it will follow this branch instead of transmitting
the packet. Software can use this branch in at least three ways. 1) Branching to the next packet will cause the IT DMA tc
skip packets to recover from cycle loss. 2) Branching to the same packet will cause the IT DMA to fall behind (on that
channel only) without skipping any packets due to cycle loss. 3) Branching to an alternate context program can allow the
generation of an interrupt, and the possible early completion of transmission. 4) Stopping the IT DMA context program
due to cycle loss. Software can use the third and fourth methods to cease transmission on cycle loss in the applicatior
specific case that the receiver cannot tolerate either late or lost packets.

Because the Host Controller will generally load isochronous transmit packets into a FIFO in advance of transmission,
some packets may be considered complete when cycle loss is detected, even though they have not yet left the transn
FIFO. In this situation, the Host Controller will hold those packets in the FIFO until they can be transmitted, and will then
complete the transmission of all other packets that had been intended to go out in the same cycle. The Host Controlle
will then apply the skip branching on the packets for the next cycle (the first cycle for which no transmission has been
performed). If a context in the ITDMA is arranged to skip packets on cycle loss, the packet skipped will be the one sched-
uled for the cycle following the cycle that was lost. If the Host Controller preloads more than one cycle’s worth of
packets, the skip may be delayed by a similar number of cycles, so that the transmit FIFO can empty normally, without
being flushed.

The illustration below shows how each of these cases works. In this example, the ITDMA attempts to keep two cycles
ahead of the bus. In other words, it tries to have two complete cycles in the transmit FIFO (if they will fit) whenever
possible. Context A illustrates case 1 (above), where the skip branch is chosen so that packets are skipped. Note th
because of the FIFO preload, the two packets skipped on Contexi an(AA;) follow a delayed packet @ that was

already in the FIFO. While it might have been possible to skip only one packet if the FIFO was flushed, it would be much
harder for the Host Controller to have packetrdady in time to send it on cycle 6. Context B illustrates case 2, where
packets are not skipped. While context A loses two packets, context B instead falls two cycles behind. Context C illus-
trates case 3, where transmission ends in response to a detected cycle loss. Parikts @ere already in the FIFO,

so they are transmitted, followed by the end-of-program packeTl@ descriptor block for packet @ops to itself in

case additional cycles are lost beforg i€ sent. This loop guarantees that Will be sent before the program ends.
Context D illustrates case 4, where transmission ends in response to a detected cycle loss without an end-of-progral
packet. The skip address indicates the end of list (Z=0) and no more packets are loaded into the FIFO upon detection ¢
cycle loss.

Copyright © 1996,1997 All rights reserved. Page 93

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

In these examples, the packets that are “in the FIFO” assume an infinitely large transmit FIFO. The Host Controller will
transmit packets as shown, even if they are too big to actually fit into the FIFO. The behavior of the Host Controller in
response to a lost cycle does not depend on the implementation-specific transmit FIFO size.

D

context A { Al AZ A3 A4 A5 A6

context B { Bl BZ B3 B4 BS Be

context C{ Ci I\

context D{ D,

Transmit FIFO

2][s][2][#]

Figure 9-9 — Isochronous transmit cycle loss example

If a cycle loss is detected while the IT DMA is mid packet, that context’s descriptor block will not branch to the skipAd-
dress, but will advance to the next descriptor block.

9.3.3 Determining the number of implemented IT DMA contexts

The number of supported isochronous transmit DMA contexts will vary for 1394 OpenHCI implementations from a
minimum of four to a maximum of 32. Software can determine the number of supported IT DMA contexts by writing
32’hFFFF_FFFF to isoXmitintMask register (see section 6.2.3.1), and then reading it back. Bits returned as 1's indicate
supported contexts, and bits returned as 0’s indicate unsupported/unimplemented contexts.

Copyright © 1996,1997 All rights reserved. Page 94

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

9.4 IT Interrupts

Each of the possible 32 isochronous transmit contexts can generate an interrupt, so each IT context has a bit in th
isoXmitIntEvent register. Software can enable interrupts on a per-context basis by setting the corresponding isoXmitMask
bit to one.

To efficiently handle interrupts which could conceivably be generated from 32 different contexts in close proximity to one
another, there is a single bit for all IT DMA contexts in the Host Controller IntEvent register. This bit signifies that at
least one but potentially several IT DMA contexts attempted to generate an interrupt. Software can read the isoXmitint-
Event register to find out which context(s) are involved. For more information on the isoXmitIntEvent register, see
section 6.2.3.1.

9.5 IT Data Format

An isochronous transmit packet consists of two header quadlets (as specified in either the OUTPUT_MORE-Immediate ol
OUTPUT_LAST-Immediate descriptor) and a data payload. The data payload in host memory is not required be aligned
on a quadlet boundary. Padding is added by the Host Controller if needed. The format is as follows.

31 30 29 28927 26 25 24|23 22 21 20919 18 17 16|15 14 13 12911 10 ¢ 8] 7 6 5 agz 2 1 0
reserved spd | tag chanNum tcode=4'hA sy
or 4hC
dataLength reserved
- . -
- isochronous data -
1 1
r---------------------
1 o
1 padding (if needed)
|
Figure 9-10 — Isochronous transmit format with header/cycleNumber
Table 9-8 — Isochronous transmit fields
field name bits | description
spd 3 | The speed at which the packet will be transmitted.
tag 2 | The data format of the isochronous data (see IEEE 1394 specification)
chanNum 6 | The channel number this data is associated with.
tcode 4 | The transaction code for this packet.
sy 4 | Transaction layer specific synchronization bits.
datalLength 16| Indicates the number of bytes in this packet.

Copyright © 1996,1997 All rights reserved. Page 95

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Table 9-8 — Isochronous transmit fields (Continued)

field name bits | description

isochronous data The data to be sent with this packet. The first byte of data must appear in bytg 0 of the
first quadlet of this field. The last quadlet should be padded with zeroes, if necdssary.

padding If the dataLength mod 4 is not zero, then zero-value bytes are added onto the epd of the
packet to guarantee that a whole number of quadlets is sent.

Copyright © 1996,1997 All rights reserved. Page 96

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

10. Isochronous Receive DMA

The Isochronous Receive DMA (IR DMA) controller has a required minimum of four and an implementation maximum
of 32 isochronous receive DMA contexts. Each context is controlled by a DMA context program. One single IR DMA
context can receive packets from multiple isochronous channels, and the remaining DMA contexts can each receive
packets from a single isochronous channel. IR DMA contexts can either receive exactly one packet per buffer, or they cal
concatenate packets into a stream that completely fills each of a series of buffers. Packets may be received with or witho
isochronous packet headers and timeStamps.

10.1 Context Programs

For isochronous receive DMA, a context program is a list of DMA descriptors used to identify buffers in host memory
into which the Host Controller places received isochronous packets. The descriptors are 16 bytes in length and must b
aligned on a 16 byte boundary. There are two kinds of descriptor commands available: INPUT_MORE and
INPUT_LAST.

o5 s| ol b w[, . rescoumt
. dmaaddess
..., |branchaddess | Z
. Mersws | resCount

Figure 10-1 — Isochronous receive descriptor

Table 10-1 — Descriptor element summary

Element Bits | Description

cmd 4 Set to 4’h2 for INPUT_MORE, or set to 4’h3 for INPUT_LAST.
INPUT_MORE is required for receiving packets in buffer-fill mode (see section 10}2.1),
and may also be used in packet-per-buffer mode.

INPUT_LAST is required for receiving packets in packet-per-buffer mode (see
section 10.2.2), and must be the final descriptor in a descriptor block. It is not perpitted
in buffer-fill mode.

s 1 Used withpaclet-perbuffer mode only (see section 10.2.2). If set to one, xferStatug and
resCount will be updated upon descriptor completion. If set to zero, neither field i
updated. Assumed to be one for buffer-fill mode.

key 3 This field must be set to 3'b0.

i 2 Interrupt control. Valid values are 2'b11 to generate an IsochRx interrupt when thé
descriptor is completed (see section 6.2.1), or 2'b00 for no interrupt. Behavior is ynspec-
ified for 2’b01 and 2’b10.

b 2 Branch control. Valid values are 2’b11 to branch to branchAddress, and 2'b00 nof to
branch. Behavior is unspecified for 2’b01 and 2’b10.

For buffer-fill mode (see section 10.2.1), this field must always be set to 2’'b11.
For paclet-perbuffer mode (see section 10.2.2), this field must be 2'b00 for
INPUT_MORE commands and 2'b11 for INPUT_LAST commands.

w 2 Wait control. Valid values are 2’'b11 to wait for a packet with a sync field which majches
thy sync specified in the context’s IRContextMatch register (see section 10.3), or P’b00
not to wait.Fopaclet-perbuffer mode, 2'b11 can only be used in the first descriptorfof a

descriptor block. Behavior is unspecified for 2’b01 and 2'b10.

reqCount 16 Request count: The size of the input buffer in bytes.

Copyright © 1996,1997 All rights reserved. Page 97

Isochronous Receive DMA

1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Table 10-1 — Descriptor element summary

Element

Bits

Description

dataAddress

32

Address of receive buffer. |patlet-perbuffer mode and receiving headers, dataAdq-

dress must be quadlet aligned.

branchAddress

28

16-byte aligned address of the next descriptor. This field is not used for INPUT |JMORE

commands in packet-per-buffer mode.

z

Forbuffer-fill mode (see section 10.2.1), Z must be either 1 to indicate the branchA¢ldress

is a valid address for the next INPUT_MORE, or 0 to indicate this descriptor is the
the context program.

Forpaclet-perbuffer mode (see section 10.2.2), if the command is INPUT_LAST, Z
be a value from 1 to 8 to indicate the number of descriptors in the next descriptor
or 0 to indicate the end of the context program. If the command is INPUT_MORE
Z is not used.

end of

may
block,
then

xferStatus

16

Composed of 16-bits from ContextControl[15:0].
For buffer-fill mode, xferStatus is written when resCount is updated.
For paclet-perbuffer mode, xferStatus is written after the descriptor is processed if

s=1.

resCount

16

Residual count: The number of bytes remaining in the dataAddress buffer (out o

a max-

imum of reqCount). Written if in packet-per-buffer mode and s = 1, or each time a packet

is received in buffer-fill mode. For further details on when resCount is updated in
fill mode, see section 10.2.1.

puffer-

The Z value is used by the Host Controller to fetch multiple command descriptors at once, for improved efficiency. Z
values must always be encoded correctly. The contiguous descriptors described by a Z value ardesaitgrdaa block
The following table summarizes all legal Z values:

Table 10-2 — Z value encoding

Z value

Use

0

Indicates that the current descriptor is the last descriptor in the context program

1-8

Indicates that 1 to 8 descriptors starting at descriptorAddress are physically conjiguous.

9-15

reserved

To indicate the end of the context program, all IR DMA context programs must indicate the end of the program by using
a command descriptor withtavalue of 2’b11 (branch always) andZavalue of 0. A context program can be appended to
while the DMA runs, even if the DMA has already reached the last descriptor. section 3.2.1.2 describes how to append to

a context program.

When an IR DMA context is running and/or active, software shall not modify any command descriptors within the context
program with the exception of the last command descriptor (the one descriptor in a program2itiil andZ=4'h0).
The last command descriptor may only be modified according to the steps described in section 3.2.1.2.

10.2 Receive Modes

The Host Controller can write isochronous receive packets into host memory buffers in one of two ways. It can place
them using either buffer-fill mode or packet-per-buffer mode.

Copyright © 1996,1997 All rights reserved.

Page 98

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

10.2.1 Buffer Fill Mode

In bufferFill mode, all received packets are concatenated into a contiguous stream of data. This data is then metered o
into buffers described by a DMA context program, filling each buffer completely. Packets may straddle multiple buffers in
this mode (see packet 2 in the illustration below).

MORE|s|key=0| | i |b=3| | reqCount
1 1
dataAddress
1 1
branchAddress Z=1 packet 1 pack
‘I 1
xferStatus | resCount=0
ORE|s|key:O| | i |b:3| | reqCount
L R T
T T T T branchAddress | z-1 et 2 packet 3
‘I 1
xferStatus resCount

Figure 10-2 — IR Buffer Fill Mode

A context program for an isochronous receive context in buffer-fill mode consists of a list of independent INPUT_MORE
descriptors, each branching to the next descriptor in the list. Since each descriptor must always branch to the subseque
one, theb field must always be set to 2'b11 to indicate a branch. If a buffer-fill mode INPUT_MORE descriptor is not the
last descriptor in the list, its Z value must be set to 1 to instruct the Host Controller to fetch the next single descriptor. If
it is the last one in the list, Z must be set to 0.

As depicted above, it is possible for a received packet to straddle multiple buffers. To ensure that the receive buffers for
context remain parsable, hardware must follow the following procedure.

1)

2)

3)

4)

After filling to the end of a buffer with a partial packet, advance to the next descriptor block and obtain the
next buffer (dataAddress), retaining all state for the first buffer as well as for the new buffer.

Continue writing packet bytes into the subsequent buffer(s). If the end of a buffer is reached, advance to the
next buffer without updating status and without retaining state for any of the interim buffers. Write the
remaining packet bytes into the final packet buffer.

If there is no data error: a) conditionally write the trailer quadlet into the last buffer, b) update xferStatus and
resCount into thdinal buffer's descriptor, and c) update xferStatus and resCount intdirshebuffer's
descriptor. At that point the previous state of the first buffer is no longer needed.

If thereis a data-length or CRC error, then the packet must be ‘backed-out’ by reverting back to the previous
state (as saved earlier). XferStatus and resCourmtarepdated for either descriptor.

By following these steps, the IR context buffers remain intact and can be parsed. Since interim buffers (those containing
an inner portion of one packet) will not have their status updated, software must only use resCount values when the corre
sponding xferStatus indicates the run bit is set to one. It follows from this that if the xferBtatis.is set in a
descriptor, then all prior descriptors have been filled.

Copyright © 1996,1997 All rights reserved. Page 99

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

10.2.2 Packet-per-Buffer Mode

In packet-per-buffer mode, each received packet is placed in the buffer(s) described by one descriptor block. Any leftover
bytes are discarded, and packets never straddle multiple descriptor blocks. Both INPUT_MORE and INPUT_LAST are
allowed in packet-per-buffer mode. Each INPUT_LAST marks the end of a packet, though the final byte may have been
used up in a previous INPUT_MORE (see packet 2 in the illustration below). Each packet starts in an INPUT_* command
that follows an INPUT_LAST.

MORE| |key 0| w|' O|b O| | reqCount
dataAddress
X pack
xferStatus [not wmten] resCount [not written]
LAST | |key 0| | |b 3 reqCount
. T e R
branchAddress Z=2 et 1
‘I 11 1 1 N N N R N T T | N N N N N T T | 11 1 1 1 1 1 11
xferStatus | resCount
ORE| |key =0 |i=0|b=0| | reqCount
1 1 1 1 1 1 1 1) N S N N N N I | 1 1 1
dataAddress
X packet 2
xferStatus resCount
LA's+i ikéy'o' ' | ' ib'si """ reqcount
1 1 1 1) N S N N N N I | 1 1 1
dataAddress
”””””b'ranchAddress”””””'Z;Z'
.I 11 1 1 11 1 1 1 N N N TR T T T |) S N T T T | 11 1
xferStatus [not written] | resCount [not written]
ORE| |key =0 |i=0|b=0| | reqCount
1 1 1 1 1 1 1 1 1 1) N S N N N N I | 1 1 1
dataAddress
11 1 1 N N N N N T T | N N N N N T T | T N N R N N T | 11 I.
X | X
xferStatus [not written] resCount [not written]
LAST | |key =0 | |b 3| reqCount
1 1 1 1 1 1) N S N N N N I | 1 1 1
dataAddress
branchAddress Z=2 acket 3
.I 11 1 N N N R N N T | N S N N N T T | N N N T T T | 11 1
xferStatus | resCount

Figure 10-3 — packet-per-buffer receive mode

A context program for an isochronous receive context in packet-per-buffer mode consists of a series of descriptor blocks.
Each descriptor block will receive one packet and must contain a contiguous set of 0 to 7 INPUT_MORE descriptors,
followed by one INPUT_LAST descriptor. This requirement permits the Host Controller to prefetch all the descriptors for
a packet, in order to avoid fetching additional descriptors during a packet transfer. INPUT_MORE descriptors must have
the b field set to 2’b00 (never branch). INPUT_LAST descriptors must havb fileéd set to 2'b11 (always branch), and

must either have a valid address in branchAddress with a Z value of 1 to 8, or must have a Z value of 0 to indicate it's the
last descriptor in the context program.

Copyright © 1996,1997 All rights reserved. Page 100

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

IR context programs may use the w (wait) fields to wait for a packet with a matching sync value (see section 10.3.3,
“Isochronous receive contextMatch register,”). Wait is only valid for the first descriptor in a descriptor block, and is set to
2’b11 to wait and 2’'b00 to not wait. If w is 2'b11, the context will wait for the configured syn (and tag) match before
running/using the descriptor. The w field for all other descriptors in the descriptor block must be 2'b00.

10.2.2.1 Command.xferStatus and Command.resCount updates

In packet-per-buffer mode, the xferStatus and resCount fields are updated only in the descriptor for the buffer which
receives the last byte of the packet. ResCount is only valid in a descriptor, if the xferStatus field has the contextCon-
trol.run bit set. To obtain accurate values for xferStatus, it is recommended that software initialize xferStatus to zero.

In figure 10-3 above, there are 3 shaded xferStatus quadlets. The shaded quadlets are status fields that were never upda
and the unshaded status quadlets reflect status fields that were updated. In the top descriptor block, the xferStatus quad
in the first descriptor was not written because packet 1 did not complete in the first descriptor's buffer. In the middle
descriptor block, the first descriptor was big enough to hold packet 2 completely. Since the first descriptor’'s buffer
received the last byte of packet 2, the first descriptor’s status was written, and the second descriptor’s status is ignored.

If a descriptor block describes buffer space that cannot fit an entire packet (including header if isochHeader mode is
enabled), then the overflow bytes are discarded. When this occurs, xferStatus.ack will be set to evt_long_packet.

10.3 IR Context Registers

Each isochronous receive context consists of three registers: CommandPtr, IRContextControl, and IRContextMatch
CommandPtr is used by software to tell the IR DMA controller where the DMA context program begins. IRContextCon-
trol is used by software to control the context's behavior, and is used by hardware to indicate current status. IRContext
Match is used to start on a specified cycle number and to filter received packets based on their tag bits and possibly syr
bits. This section describes each register in detail.

10.3.1 CommandPtr

The CommandPtr register specifies the address of the context program which will be executed when a DMA context is
started. All descriptors are 16-byte aligned, so the four least-significant bits of any descriptor address must be zero. Th
four least-significant bits of the CommandPtr register are used to encode a Z value that indicates how many physically
contiguous descriptors are pointed to by descriptorAddress. In buffer-fill mode, Z will be either one or zero. In packet-
per-buffer mode, Z will be from zero to eight.

Refer to section 3.1.5 for a full description of the CommandPtr register.

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 l6|15 14 13 12911 10 9 8|7 6 5 4,3 2 1 O
rrrrrrrrrrrrrrrrrrrrTrrrrrrrr T T T 1T 1T T 1T T T 7" 1T T/

descriptorAddress [31:4] Z

Figure 10-4 — CommandPtr register format

Copyright © 1996,1997 All rights reserved. Page 101

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

10.3.2 IRContextControl register (set and clear)

The IRContextControkegister contains bits that control options, operational state, and status for the isochronous receive
DMA contexts. Software can set selected bits by writing ones to the corresponding bit€ontagtControlSetegister.
Software can clear selected bits by writing ones to the corresponding bits QonkextControlClearegister. It is not
possible for software to set some bits and clear others in an atomic operation. A read from either register will return the
same value.

The context control register used for isochronous receive DMA contexts is shown below. It includes several fields which
permit software to filter packets based on various combinations of fields within the isochronous packet header.

31 30 29 28,27 26 25 2423 22 21 20;19 18 17 1615 14 13 12,11 10 9 8|7 6 5 4;3 2 1 0
| | | | | |

spd ack/err
code
|| | | | |
T
multiChanMode run
cycleMatchEnable active
isochHeader dead
bufferFill wake

Figure 10-5 — IR DMA ContextControl (set and clear) register format

Table 10-3 — IR DMA ContextControl (set and clear) register description

field rscu | description

bufferFill rsc When set to one, received packets are placed back-to-back to completely fill each receive
buffer (specified by an INPUT_MORE command). When clear, each received packet is
placed in a single buffer (described by zero to seven INPUT_MORE commands followed
by an INPUT_LAST command). If the multiChanMode bit is set to one, this bit must also
be set to one. The value of the bufferFill bit must not be changed while contextCon-
trol.activeis set to one.

isochHeader rsc When set to one, received isochronous packets will include the complete 4-bytq isochro-
nous packet header seen by the link layer. The end of the packet will be marked With a
xferStatus (bits 15:0 of this register) in the first doublet, and a 16-bit timeStamp indicating
the time of the most recently received (or sent) cycleStart packet. When clear, the] packet
header is stripped off of received isochronous packets. The packet header, if recqdived,
immediately precedes the packet payload. Details are shown in section 10.6.

cycleMatchEnable rscu In general, when set to one, the context will begin running only when the 13-bitfcycleM-
atch field in the contextMatch register matches the 13-bit cycleCount in the cycle$tart
packet. The effects of this bit however are impacted by the values of other bits in this reg-
ister and are explained below. Once the context has become active, hardware cleprs the
cycleMatchEnable bit.

multiChanMode rsc When set to one, the corresponding isochronous receive DMA context will receivelpackets
for all isochronous channels enabled in the IRChannelMaskHi and IRChannelMagkLo
registers (see section 10.4.1.1). The isochronous channel number specified in the [RDMA
context match register is ignored. When set to zero, the IRDMA context will receiveg pack-
ets for that single channel.

Only one IRDMA context may use the IRChannelMask registers. If more than one
IRDMA context control register has the multiChanMode bit set, results are undefingdd. See
section 10.4.3 for more information.

run rscu Refer to section 3.1.1 for an explanation of the contextCoutrdit.

Copyright © 1996,1997 All rights reserved. Page 102

Isochronous Receive DMA

1394 Open Host Controller Interface Specification/Draft 0.91

Printed 1/27/97

Table 10-3 — IR DMA ContextControl (set and clear) register description

field rscu | description

wake rsu Refer to section 3.1.2 for an explanation of the contextCavakalbit.

dead ru Refer to section 3.1.4 for an explanation of the contextCaletadbit.

active ru Refer to section 3.1.3 for an explanation of the contextCautiuk bit.

spd ru This field indicates the speed at which the packet was received. 3'b000 = 100 MRits/sec,
3'b001 = 200 Mbits/sec and 3'b010 = 400 Mbits/sec. All other values are reserveq.

ack/err code ru Following an INPUT* command, the error code is indicated in this field.

For bufferFill mode, possible values are: ack_complete, ack_data_error, evt_overqun,
evt_descriptor_read , evt_data_write and evt_unknown. Packets with data errors [either
dataLength mismatches or dataCRC errors) are ‘backed-out’ as described in
section 10.2.1.

For paclet-perbuffer mode, possible values are: ack_complete, ack_data_error,
evt_short_packet, evt_long_packet, evt_overrun, evt_descriptor_read, evt_data_wfite and
evt_unknown.

See Table 3-2, “Packet event codes,” for descriptions and values for these codes.

The cycleMatchEnable bit is used to start an IR DMA context program on a specified cycle. When the
cycleStartcycleCount value matches the cycleMatch value (in the IR contextMatch register), hardware sets the
cycleMatchEnable bit to 0, sets the contextCordntive bit to 1, and begins executing descriptor blocks for the context.

The transition of an IR DMA context to the active state, from the not-active state is dependent upon the values of the rur
and cycleMatchEnable bits.

« If run transitions to 1 when cycleMatchEnable is 0, then the context will become active (active = 1).

* If both run and cycleMatchEnable are set to 1, then the context will become active when the 13-bit cycleCount field
in the cycleStart packet match the 13-bit cycleMatch value indicated in the IR contextMatch register.

» If both run and cycleMatchEnable are set to 1, and cycleMatchEnable is subsequently cleared, the context become
active.

* If both run and active are 1 (the context is active), and then cycleMatchEnable is set to 1, this will result in
unspecified behavior.

10.3.3 Isochronous receive contextMatch register

The IR ContextMatch register is used to start a context running on a specified cycle number, and is also used to filte
incoming isochronous packets based on specified sync and tag values. All packets are checked for a matching tag valu
and a compare on sync is only performed when the descriptdiedd is set to 2'b11. See section 10.1 for restrictions in
setting thew field. This register should only be written when contextCorictize is 0, otherwise unspecified behavior

will result.

31 30 29 28

27 26 25 24| 23 22 21 20,19 18 17 16|15 14 13 12

11 10 9 8

7 6 5 4,3 2 1 0

cycleMatch

| | |
sync

channelNumber

|
tag3

tag2
tag
tag

|
copyrightDataEnable

Figure 10-6 — IR DMA ContextMatch (set and clear) register format

Copyright © 1996,1997 All rights reserved.

Page 103

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Table 10-4 — IR DMA ContextMatch (set and clear) register description

field rwu |description

tag3 rw If set, this context will match on isochronous receive packets with a tag field of 2’p11.
tag2 rw If set, this context will match on isochronous receive packets with a tag field of 2’p10.
tagl rw If set, this context will match on isochronous receive packets with a tag field of 2'p01.
tag0 rw If set, this context will match on isochronous receive packets with a tag field of 2’p00.
cycleMatch rw Contains a 13-bit value, corresponding to the 13-bit cycleCount field in the cycleTimer

register. If contextContralycleMatchEnablés set, then this IR DMA context will
become enabled for receives when the bus cyclatimmeCountalue equals the cycleNl-

atch value.
sync rw This field contains the 4 bit field which is compared to the sync field of each isochfonous
packet for this channel when the command descriptofisld is set to 2'b11.
copyrightDataEnable rw If set, this bit enables the reception of copyright information.
channelNumber rw This six bit field indicates the isochronous channel number for which this IR DMA ¢ontext

will accept packets.

At least one tag bit must be set to 1, otherwise no received packets will match and the context will, in effect, wait forever.

10.4 Isochronous receive DMA controller

The following sections describe how software manages the multiple isochronous receive DMA contexts. Each context has
a commandPtr pointing to the initial DMA descriptor, a contextControl register, and a contextMatch register to start the

context based on a cycle number and to filter packets. The IR DMA controller has one set of IRMultiChanMask registers
used to specify a set of isochronous channels for the single isochronous context in multiChanMode.

10.4.1 Isochronous receive multi-channel support

Any IR DMA context can receive packets from multiple isochronous channels per cycle by enabling context@dtitrol.
ChanModeand using the IRMultiChanMask registers. There is a single set of IRMultiChanMask registers available in the
IR DMA controller, and onlyone IR DMA context may be using them at any given time as determined by the setting of
contextContromultiChanModebit (see section section 10.3.2).

A context to be enabled for multiChanModeust also be enabled for bufferFill and isochHeader modes. If multiChan-
Mode is enabled without bufferFill and isochHeader, the resulting behavior is undefined.

If an IR DMA context is in multi-channel mode, therefore using the IRMultiChanMask registers, the isochronous channel
field in the IR DMA context Match register (section 10.3.3) is ignored.

10.4.1.1 IRMultiChanMask registers (set and clear)

An isochronous channel mask is used to enable packet receives from up to 64 specified isochronous data channels.
Software enables receives for any number of isoch channels by writing ones to the corresponding bits in the IRMulti-
ChanMaskHiSet and IRMultiChanMaskLoSet addresses. To disable receives for any isoch channels, software writes ones
to the corresponding bits in the IRMultiChanMaskHiClear and IRMultiChanMaskLoClear addresses.

Copyright © 1996,1997 All rights reserved. Page 104

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

A read of each IRChanMask register shows which channels are enabled; a one for enabled, a zero for disabled. Th
IRMultiChanMask registers are not changed by a bus reset. The state of these registers is undefined following a hard res
or soft reset.

31 30 29 28, 27 26 25 24|23 22 21 2019 18 17 16|15 14 13 1211 10 9 8|7 6 5 4,3 2 1 0

T T
| isoChannel60 isoChannel35 |
isoChannel61 [) [] [] isoChannel34

isoChannel62 isoChannel33
isoChannel63 isoChannel32

Figure 10-7 — IRMultiChanMaskHi (set and clear) register

31 30 29 28) 27 26 25 24|23 22 21 2019 18 17 16|15 14 13 1211 10 9 8|7 6 5 4;3 2 1 0

| iISOChanneI28 isoChanneI:l% |
isoChannel29 [] [] [] isoChannel2
isoChannel30 isoChannell
isoChannel31 isoChannel0

Figure 10-8 — IRMultiChanMaskLo (set and clear) register

10.4.2 Isochronous receive single-channel support

Each isochronous receive DMA context can receive one packet per cycle from one isochronous data channel. Dat
chaining across DMA context commands is supported when the contextGuritesFill bit is set.

To configure a context to receive packets from an isochronous channel, write the channel number into the contextMatcl
register's channelNumber field.

To start a context on a particular cycle, write the starting cycle time into the contextMatch register, and enable the
contextControkycleMatchEnableand contextContralun bits. When the bus cycleTinoycleCountvalue equals the
contextMatchcycleMatch value, the IR DMA controller will clear the contextContegtleMatchEnablebit and the

context will begin receiving packets. (see sections 10.3.2 and 10.3.3).

To wait for a packet with specified sync value in the isochronous packet header, set the desired configuration in the syn
field of the contextMatch register and set the DMA command descriptofigait) field to 2’'b11. When the IR DMA
controller detects @ field of 2’b11, it waits until a packet arrives matching the specified sync and directs it to the buffer
identified in the waiting descriptor’s dataAddress field. Packets with the specified channel number and tag bits but which
do not match the specified sync are discarded.

When an IR DMA context is stopped either because it reached the end of the context program or because the run bit |
cleared, some packets following the intended stop point may have already entered the receive FIFO. These packets will &
discarded when they reach the bottom of the FIFO, unless another IR DMA context is able to receive them.

Copyright © 1996,1997 All rights reserved. Page 105

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

The IRDMA can be stopped at any time by clearing the “run” bit in the ContextControl register. However, this might
mean that the last packet’'s data was incompletely stored in memory.

10.4.3 Duplicate channels

If more than one IR DMA context specifies receives for packets from the same isochronous channel, the context destina-
tion for that channel’'s packets is undefined.

If more than one IR DMA context has the contextContnaltiChanModebit set, then the context destination for
IRmultiChanMask packets is undefined.

If an isochronous channel is specified both in a single channel context and in the multiChannel context, then the packet
will be routed to the multiChannel context.

10.4.4 Determining the number of implemented IR DMA contexts

The number of supported isochronous receive DMA contexts will vary for 1394 OpenHCI implementations from a
minimum of four to a maximum of 32. Software can determine the number of supported IR DMA contexts by writing
32’hFFFF_FFFF to the isoRecvtintMask register (see section 6.2.4.1), and then reading it back. Bits returned as 1's
indicate supported contexts, and bits returned as 0’s indicate unsupported/unimplemented contexts.

10.5 IR Interrupts

Each of the possible 32 isochronous receive contexts can generate an interrupt, so each IR DMA context has a bit in the
isoRecviIntEvent register. Software can enable interrupts on a per-context basis by setting the corresponding isoRecvMask
bit to one.

To efficiently handle interrupts which could conceivably be generated from 32 different contexts in close proximity to one
another, there is a single bit for all IR DMA contexts in the Host Controller IntEvent register. This bit signifies that at
least one but potentially several IR DMA contexts attempted to generate an interrupt. Software can read the
isoRecvIntEvent register to find out which context(s) are involved. For more information on the isoRecvintEvent register,
see section 6.2.4.

10.6 IR Data Formats

There are four formats for isochronous receive packets depending upon the setting of the Conteis@uritedderand
ContextControbufferFill bits (see section 10.3). If the ContextContsolchHeademit is zero, then only the isochronous
data without any padding, header quadlet or timestamp quadlet is put in the buffer.

Table 10-5 — Isochronous receive fields

field name bits | description

dataLength 16| Indicates the number of bytes in this packet.

tag 2 | The data format of the isochronous data (see IEEE 1394 specification)

chanNum 6 | The channel number this data is associated with.

tcode 4 | The transaction code as received for this packet.

sy 4 | Transaction layer specific synchronization bits.

isochronous data The data received with this packet. The first byte of data must appear in byte|O of the
first quadlet of this field. The last quadlet should be padded with zeroes, if necqssary.

Copyright © 1996,1997 All rights reserved. Page 106

Isochronous Receive DMA

1394 Open Host Controller Interface Specification/Draft 0.91

Printed 1/27/97

Table 10-5 — Isochronous receive fields

the most recently received (or sent) cycle start packet.

field name bits | description

padding If the dataLength mod 4 is not zero, then zero-value bytes have been added ontp the end
of the packet to guarantee that a whole number of quadlets was sent. In three formats,
the pad bytes are stripped off the packet.

xferStatus 16 | Contains bits [15:0] from the contextControl register.

timeStamp 16 | The three low order bitgcleSecondsand the full 13-bits ofycleCountat the time of

10.6.1 bufferFill mode formats

10.6.1.1 IR with header/trailer

The format of an isochronous receive packet when ContextCdnifferFill=1 and ContextContrasochHeader1 is

shown below.

31 30 29 28§27 26 25 24'23 22 21 20p19 18 17 16'15 14 13 12911 10 9 837 6 5 4

datalength tag chanNum tcode

\\
\\\

isochronous data

padding (if needed)

3 2 1 0
sy
-
1

xferStatus timeStamp

Figure 10-9 — Receive isochronous format in

buff erFill mode with header/trailer

Copyright © 1996,1997 All rights reserved.

Page 107

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

10.6.1.2 IR without header/trailer

The format of the isochronous receive packet when ContextCdniifelFill=1 and ContextContratochHeadex0 is
shown below..

I31 30 29 28427 26 25 24IZ3 22 21 20p19 18 17 16I15 14 13 1211 10 9 87 6 5 433 2 1 O

Data is appended to other byte-aligned data (if any) in the bufferFill mode buffer

isochronous data -

T

\\
\\

Padding (if any) is stripped from the packet in this mode.

Figure 10-10 — Receive isochronous format in buff erFill mode without header/trailer
10.6.2 packet-per-buffer mode formats
10.6.2.1 IR with header/trailer
The format of an isochronous receive packet when ContextCdmitifekFill=0 and ContextContratochHeader1 is

shown below. Note that although xferStatus is written as a side-effect of writing timeStamp, xferStatus does not contain
valid or otherwise useful values.

31 30 29 28§27 26 25 24IZS 22 21 20§19 18 17 16I15 14 13 12311 10 9 8I 7 6 5 433 2 1 O

xferStatus (INVALID) timeStamp

dataLength tag chanNum tcode sy

\\
\\

isochronous data :r

Padding (if any) is stripped from the packet in this mode.

Figure 10-11 — Receive isochronous formatin packet-per -buff er mode with header/trailer

Copyright © 1996,1997 All rights reserved. Page 108

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

10.6.3 IR without header/trailer

The format of the isochronous receive packet when ContextCdntifelFill=-0 and ContextContratochHeadex0 is
shown below..

3130 29 28§27 26 25 24_l|23 22 21 20519 18 17 1415 14 13 12911 10 9 8| 7 6 5 433 2 1 oI
o .
- isochronous data T

Padding (if any) is stripped from the packet in this mode.

A\

Figure 10-12 — Receive isochronous format in packet-per -buffer mode without header/trailer

Copyright © 1996,1997 All rights reserved. Page 109

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Copyright © 1996,1997 All rights reserved. Page 110

Self ID Receive 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

11. SelfID Receive
The purpose of the SelfID DMA controller is to receive self ID packets during the bus initialization process. The self ID

packets are received using a special pair of DMA registers, the Self ID Buffer Pointer register and the Self ID Count
register.

11.1 Self ID Buffer Pointer Register

The Self ID Buffer Pointer register points to the buffer the SelflD packets will be DMA'ed into during bus initialization.

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 16/15 14 13 12;11 10 9 8[7 6 5 4,3 2 1 0
T T T T T T T T T T T T T

selfIDBufferPtr

Figure 11-1 — Self ID Buffer Pointer register

Table 11-1 — Self ID Buffer Pointer register

field name rw description
selfIDBufferPtr rw Contains the 2K-byte aligned base address of the buffer in host memory where r¢ceived
self-ID packets are stored. The contents of this field are undefined after a chip re;et.

11.2 Self ID Count Register

This register keeps a count of the number of times the bus self ID process has occurred, flags self ID packet errors an
keeps a count of the amount of self ID data in the Self ID buffer.

31 30 29 28, 27 26 25 24|23 22 21 20;19 18 17 16|15 14 13 12;11 10 9 8|7 6 5 4,3 2 1 0

T
selfIDError

Figure 11-2 — Self ID Count register

Copyright © 1996,1997 All rights reserved. Page 111

Self ID Receive 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Table 11-2 — Self ID Count register

field name rwu | description

selfIDError ru When this bit is one, an error was detected during the most recent self ID pgcket
reception. The contents of the self ID buffer are undefined. This bit is cleareq after
a self ID reception in which no errors are detected. Note that an error can beja hard-
ware error or a host bus write error.

selfIDGeneration ru The value in this field increments each time the self ID reception process bggins.
This field rolls over to 0 after reaching 255. The contents of this field are undgfined
after a chip reset.

selfIDSize ru This field indicates the length (in quadlets) of self ID data that has been recgived.
This field is cleared to zero as soon as any bus reset begins. The contents of this field
are undefined after a chip reset.

The self ID stream can be (63 devices) * (4 packets/device) * (8 bytes/packet) = 2016 bytes. If a bus reset is received part
way through a self ID sequence, the old data will be overwritten. To keep things straight, the generation counter is written
into memory as the first quadlet of the stream. For a consistent stream, software reads the generation counter in memory,
then the stream, then the SelfIDCount register. If the generation counter in the register matches the one in memory, then
the self ID stream is consistent.

If the selfIDError flag is set, then there was either a hardware error in receiving the last self ID sequence or a host bus
error while writing to the host buffer, so the self ID data is not trustworthy. Any self ID data received after the error is
flushed. If all 2048 bytes are received, the selfIDSize field is set to 9'h7FF and the selfIDError flag is set. (This is only
possible if >64 nodes are on the bus... a gross error condition.)

Whenever a bus reset occurs, the Host Controller clears the selflIDSize field to zero, at the same time the bus reset inter-
rupt is triggered. This allows software responding to a bus reset to know that self IDs have not yet been received.

The Host Controller does not verify the integrity of the self-ID packets and software is responsible for performing this
function (i.e. using the logical inverse quadlet).

Copyright © 1996,1997 All rights reserved. Page 112

Self ID Receive 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

11.3 Self-ID receive

The self-ID receive format is shown below. The first word contains the time stamp and the self ID generation number (see
section 11.2 “Self ID Count Register”). The remaining quadlets contain data that is received from the time a bus reset
ends to the first subaction gap. This is the concatenation of all the self-ID packets received. Note that the bit-invertec
check words are included in the FIFO and must be checked by the application..

31 30 29 2 27262524'23222120'1918171 15 14 13 12311 10 9 8|7 6 5 433 2 1 O

selfIDGeneration timeStamp

- -
: gt self ID packet data : -
Figure 11-3 — Self-ID receive format
Table 11-3 — Self-1D receive fields
field name description
selfIDGeneration See table 11-2.
timeStamp The three low order bits from cycleTirogeleSecondsand the full 13-bits of
cycleTimercycleCountat the time this status quadlet was generated.
self ID packet data The data received during the selfID process of the bus initialization phase. Note thjat each
selfID packet includes the data quadlet and inverted quadlet.

11.4 Enabling the SelfID DMA

The RcvSelfID bit in the LinkControl register (see section 5.8, “LinkControl registers (set and clear),”) allows the receiver
to accept incoming self-identification packets. Before setting this bit, software must ensure that the self ID buffer pointer
register contains a valid address.

11.5 Interrupt Considerations for SelfID DMA

The SelfIDcomplete bit in the IntEvent register (see section 6.2.1) is set and an interrupt is generated when the selfIC
phase of bus initialization completes. This will be generated at the end of the bus initialization process.

11.6 SelfIDs Received Outside of Bus Initialization

SelfID packets received outside of the bus initialization self-ID phase are routed to the AR DMA Request context and use
the PHY packet receive format.

Copyright © 1996,1997 All rights reserved. Page 113

Self ID Receive 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Copyright © 1996,1997 All rights reserved. Page 114

Physical Requests 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

12. Physical Requests

When a read or write request is received, the 1394 Open HCI chip handles the operation automatically without involving
software if the offset address in the request packet header meets a specific set of criteria listed below. Requests that do r
meet these criteria are directed to the AR DMA Request context.

The 1394 Open HCI checks to see if the offset address in the request packet header is one of the following.

a) If the high order 16-bits of the offset address is 16’h0000, then the lower 32 bits of the offset address are used a
the memory address for the transaction. Lock transactions are not supported in this address space... they ai
diverted to the AR DMA Request context. For read requests, the information needed to formulate the response
packet is passed to the Physical Response Unit. Requests are only accepted if the source node ID of the reque
has a corresponding bit in the Asynchronous Request Filter registers and Physical Request Filter
registers(section 5.12).

b) If the offset address selects one of the following addresses, the physical request unit will directly handle compare-
swaps and reads (other requests will be sent an ack_type_error) (section 5.5.1):

1) BUS_MANAGER_ID (48'hFFFFF000021C). Local register is BusManagerID.

2) BANDWIDTH_AVAILABLE (48'hFFFFF0000220). Local register is BandwidthAvailable.
3) CHANNELS_AVAILABLE_HI (48'hFFFFF0000224). Local register is ChannelsAvailableHi.
4) CHANNELS_AVAILABLE_LO (48'hFFFFF0000228). Local register is ChannelsAvailableLo.
c) If the offset address is one of the following addresses, the Physical Request controller will directly handle quadlet
reads:

1) Config ROM header (1st quadlet of the Config ROM) (48'hFFFFF0000400). Local register is
ConfigROMheader (section 5.5.2).

2) Bus ID (1st quadlet of the Bus_Info_Block) (48'hFFFFF0000404). Local register is BuslD (section 5.5.3).

3) Bus options (2nd quadlet of the Bus_Info_Block) (48'hFFFFF0000408). Local register is BusOptions
(section 5.5.4).

4) Global unique ID (3rd and 4th quadlets of the Bus_Info_Block) (48'hFFFFFO00040C and
48’hFFFFF0000410). Local registers are GloballDHi and GloballDLo (section 5.5.5).

5) Configuration ROM (48'hFFFFF0000414 to 48’'hFFFFFO0007FF). Mapped by the ConfigROMmapping
register to a 1K byte block of system memory (section 5.5.6)

12.1 Filtering Physical Requests

Software can control from which nodes it will receive packets by utilizing the asynchronous filter registers. There are two
registers, one for filtering out all requests from a specified set of nodes (AsynchronousRequestFilter register) and one fo
filtering out physical requests from a specified set of nodes (PhysicalRequestFilter register). The settings in both register
have a direct impact on how the AR DMA Request context is used, e.g. disabling only physical receives from a node will
cause all request packets from that node to be routed to the AR DMA Request context. The usage and interrelationshi
between these registers is fully described in section 5.12, “Asynchronous Request Filters.”

12.2 Write Requests: ack_codes and host bus errors

For write requests which are handled by the Physical Request controller, the Host Controller may send an ack_complet
before the data is actually written to system memory. These writes are referrqubsieaswritesThe ack _code sent for

write requests to offsets in the range of 48'’h0001_0000_0000 to 48'hFFFE_FFFF_FFFF when not busied is always
ack_complete. The ack_code sent for offsets in the range 48’hFFFF_0000_0000 to 48'hFFFF_FFFF_FFFF is alway:s
ack_pending.

Copyright © 1996,1997 All rights reserved. Page 115

Physical Requests 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Write requests to the physical memory range of the host may be posted if the host controller supports the PostedWriteAd-
dressLo/Hi error registers (see section 12.3) and software has enabled posted writes (see section 5.7). If posting is not
enabled/supported, the Host Controller must not return a complete indication (ack_complete or resp_complete) until the

data has been successfully written to system memory to either the addressed location in physical memory or to the AR
request buffer.

If posting of physical writes is supported and enabled, then the Host Controller is allowed to return ack_complete to a
physical write request with certain restrictions.

When the Host Controller posts a write, that write is pending for error reporting purposes until the write is actually
complete. While the write is pending the Host Controller must retain the nodelD of the request’s source and the 48-bit
offset address. After the write is completed to either the offset address or to the AR request buffer, that write is no longer
pending. If an error occurs in writing the posted data packet, then the Host Controller sets the Ru&tedhtriteErtit

to indicate that an error has occurred and the write remains pending. Software can then read the source node ID and offset
address from PostedWriteAddressLo and PostedWriteAddressHi and then clear IRtStedWriteErmWhen software

clears IntEvenRostedWriteErr that write is no longer pending.

A Host Controller implementation is allowed to support any number of posted writes. However, for each posted write,
there must be an error reporting register to hold the source node ID and offset address should that posted write fail.

If the Host Controller has as many pending physical writes as it has reporting registers additional physical writes may not
be posted. Instead the Host Controller will need to regurn ack_pending and only return a complete indication when the
write is actually done.

Although the Host Controller may allow several pending writes, error reporting is through a single pair of software visible
registers. If multiple posted write failures have occurred, software will access them one at a time through the Posted-
WriteAddress registers. When software clears IntEfestedWriteErr this is a signal to the Host Controller that
software has completed reading of the current contents of PostedWriteAddressLo/Hi and that the Host Controller can
report another error by again setting IntEvieostedWriteErrand presenting a new set of values when software reads
PostedWriteAddressLo/Hi.

12.3 PostedWriteAddress registers

When the Host Controller cannot complete the posted write operation due to a host bus error, since the sending node has
been notified that the action is complete the system must be notified by the Host Controller so that software can recover.
The mechanism for recovering is through the PostedWriteAddress register the postedWriteErr bits in the IntEvent and
IntMask registers, and the postedWriteEnable bit in the HCControl register.

If IntEventpostedWriteEriis set, then these registers contain the 48 bits of the 1394 destination offset of the write request
that resulted in a host bus error.

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 1615 14 13 12,11 10 9 8|7 6 5 4,3 2 1 0
| |

sourcelD offsetHi

Figure 12-1 — PostedWriteAddressHi register

Copyright © 1996,1997 All rights reserved. Page 116

Physical Requests 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

31 30 29 28, 27 26 25 24|23 22 21 20,19 18 17 16|15 14 13 12)11 10 9 8|7 6 5 4,3 2 1 0
L N N I Y U I Y N I NN U I N N I N BN I Y N I N B IO B

offsetLo

Figure 12-2 — PostedWriteAddressLo register

field name rwu | reset description

sourcelD ru | undef The busNumber and nodeNumber of the node that issued the write|request
that failed.

offsetHi ru | undef The upper 16-bits of the 1394 destination offset of the write reques| that
failed.

offsetLo ru | undef The low 32-bits of the 1394 destination offset of the write request tTat
failed.

The PostedWriteAddress register is a 64-bit rgister which indicates the bus and node numbers (source ID) of the node th:
issued the write that failed, and the address that node attempted to access. The PodfesdWiriteErrbit allows
hardware to generate an interrupt when a write fails.

The PostedWriteAddress registers point to a queue in the Host Controller. This queue is accessed by software through tt
PostedWriteAddress registers. When a posted write fails, its address and node’s source ID are placed in this queue, al
the interrupt is generated. In addition, that packet is removed from the FIFO. By removing the packet from the FIF, the
Host Controller is not blocked from performing future transactions on the 1394 and host busses.

When software reads from these registers, that entry is removed from the queue, the next address and source ID are plac
at the ehad of the queue, and another interrupt is generated. When the queue is empty, the Host Controller stops gent
ating interrupts.

In order to guarantee the accuracy of the Posted Write error registers, software must perform the following algorithm
when the posted write error interrupt is encountered:

1) Clear the IntEvenPostedWriteErrorbit.

2) Read the PostedWriteAddressHi register
3) Read the PostedWriteAddressLo register

This will guarantee that software receives all information it requires about the first posted write, allowing another inter-

rupt to be generated for future posted writes, and simplifies the Host Controller hardware. The Host Controller does nof
have to monitor that all three events occur before it moves to the next item in the queue. It may consider the informatior
read once it sees the PostedWriteAddressLo register read.

Copyright © 1996,1997 All rights reserved. Page 117

Physical Requests 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

12.3.1 Queue Rules

The Host Controller is only allowed to post as many writes as its posted write error queue is deep. For example, if the
Host Controller has a queue depth of two, it shall only return “ack_complete” on two physical writes. All other physical
writes must return either “ack_pending” or "ack_busy” event codes. Only when a previous posted write is successfully
transferred into host memory, or when a posted write that resulted in an error is removed from the queue through the
method described above by software, is the Host Controller allowed to accept more posted writes.

PostedWriteErrorHi
Visible Registers

PostedWriteErrorLo
- PostedWriteErrorHi
— PostedWriteErrorLo

Invisible Regist

L PostedWriteErrorHi
— PostedWriteErrorLo

Figure 12-3 — Posted Write Error Queue

An example queue is shown in Figure 12-3. In this case, the queue is three entries deep, so this partular Host Contorller
can accept three posted writes.

Note that the Host Controller is not required to implement the posted write functionality at all. Software may enable
posted writes, but the Host Controller will never accept posted writes. It will therefore never report a posted write error,
and does not need to implement this queue.

However, posted writes represent a performance gain to the overall 1394 system. By accepting posted writes, the Host
Controller and 1394 nodes are able to transfer data without excessive overhead on the 1394 bus. The 1394 Open HCI does

not mandate that a certain level of posting be required, allowing individual hardware implementations to determine the
posting depth based upon system needs.

12.4 Interrupt Considerations for Physical Requests

Physical read request handling does not cause an interrupt to be generated under any circumstances. Physical write
requests will generate an interrupt when posted write processing yields an error.

Copyright © 1996,1997 All rights reserved. Page 118

Physical Requests 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Rewrite. no int on phys read regs. int on phys writes if posting error.

12.5 Physical Responses

There is a separate nibble-wide MaxPhysRespRetries field in the ATRetries Register (see section 5.4) that tells the Physice
Response Unit how many times to attempt to retry the transmit operation for the response packet when a “busy” acknowledg
is received from the target node (see ATRetries Register on page 28).

12.6 Response to Bus Reset

On a bus reset, all pending physical requests will be discarded.

Copyright © 1996,1997 All rights reserved. Page 119

Physical Requests 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Copyright © 1996,1997 All rights reserved. Page 120

Host Bus Errors 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

13. HostBusErrors
OpenHCI has three primary goals when dealing with host bus error conditions:

1) continue transmission and/or reception on all contexts not involved in the error;

2) provide information to software which is sufficient to allow recovery from the error when possible;
3) provide a means of error recovery on a context other than a general chip reset.

13.1 Causes of Host Bus Errors
Host bus errors can generally be classified as one of the following:

1) addressing error (e.g., non-existent memory location)

2) operation error (e.g., attempt to write to read-only memory)
3) data transfer error (e.g., parity or unrecoverable ECC) and
4) time out (e.g., reply on split transaction bus was not received in time).

Each of these errors can occur at three identifiable stages in the processing of a descriptor:

1) descriptor fetch,

2) data transfer (read or write), and
3) an optional descriptor status update.

In general, the nature of the bus error is not as significant as the stage of descriptor processing in which is occurs. Fc
example, the difference between an addressing error and a data parity error is not significant to the error processing.

13.2 Host Controller Actions When Host Bus Error Occurs

When a host bus error occurs, the Host Controller performs a defined set of actions for all context types. Additionally,
there are a set of actions that are performed that are dependent on the context type. The following sections outline the:
actions.

13.2.1 Descriptor Read Error

When an error occurs during the reading of a descriptor or descriptor block, the behavior of the Host Controller is the
same regardless of the context type. The Host Controller will set ContextCaeruicbdnd ContextContradck will be set

to evt_descriptor_read to indicate that the descriptor fetch failed. Additionally, CommandPtr will be set to point to a
descriptor within the descriptor block in which the error occurred. Descriptor xferStatus and resCount are not updated.

13.2.2 xferStatus Write Error

For any type of context, when the Host Controller encounters an error writing the status to a descriptor, it sets Context
Controldead The values that would have been written to xferStatus of a descriptor are retained in ContextControl for
inspection by system software. The unrecoverable error IntEvent is generated and the context’s IntEvent is not set regarc
less of the setting of the interrupt (1) field in the descriptor.

13.2.3 Transmit Data Read Error
For asynchronous request transmit, asynchronous response transmit and isochronous transmit the Host Controller handl

system data read errors in a similar manner. The Host Controller will not stop processing for the context. Instead, the acl
code in the status of the OUTPUT_LAST_* descriptor is optionally set to indicate that there was an error and the nature

Copyright © 1996,1997 All rights reserved. Page 121

Host Bus Errors 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

of the error. The indicated errors are evt_data_read or evt_underrun. If the error occurs before a packet’'s header is placed
in the output FIFO, the Host Controller can immediately abort the packet transfer, optionally set the descriptor status to
evt_data_read or evt_underrun and move on to the next descriptor block. If, however, the error occurs after the header has
been placed in the output FIFO, the Host Controller will stop placing data in the output FIFO. This will cause the Host
Controller to send a packet with a length that does not agree with the data_length field of the header. If the Host
Controller receives an ack _data_error from the addressed node, then the Host Controller will substitute evt_data_read or
evt_underrun as appropriate. If the device returns anything other than ack_data_error, then the Host Controller will store
that value in the status for the packet. It should be noted that this means that if the addressed node returns an ack_pending
on a block write, the error indication will be lost.

If the packet was a broadcast write or an isochronous packet, no ack code is received from any node. In this case, the Host
Controller assumes that ack_data_error was received and proceeds as outlined above.

13.2.4 Isochronous Transmit Data Write Error

A data write error can occur when the Host Controller attempts to write to the address indicated in a STORE_VALUE
descriptor. This error is handled like a data read error with the exception that the ack code is set to evt_data_ write. The
Host Controller may not begin placing the packet associated with a STORE_VALUE into the output FIFO until the
STORE_VALUE operation is complete. This is to prevent the possibility of having multiple errors that cannot be properly
reported to system software.

13.2.5 Asynchronous Receive Data Write Error

When host bus error occurs while the Host Controller is attempting to write to either the request or response buffer, the
Host Controller will set the corresponding ContextContledd and set ContextContrakck to evt data write.
CommandPtdescriptorAddressvill point to the descriptor that contained the buffer descriptor for the memory address at
which the error occurred. Any data in the input FIFO for the context is discarded.

13.2.6 Isochronous Receive Data Write Error

If a data write error occurs for a context that is in packet per buffer mode, the Host Controller will set Contexa€lontrol.

to evt_data_write or evt_overrun and conditionally update xferStatus of the descriptor in which the error occurred. Any
remaining data in the input FIFO for the packet is discarded. The resCount value in a descriptor that has an error will not
necessarily reflect the correct number of data bytes successfully written to memory. If a FIFO overrun occurs for a context
that is in buffer-fill mode, the packet is treated as if a data length error had occurred and is ‘backed out’ of the receive
buffer (xferStatus and resCount not updated) and the remainder of the packet is discarded from the input FIFO. If a host
bus error occurs for a context in buffer-fill mode the Host Controller will set ContextCdetadand set ContextCon-
trol.ackto evt_data_write. CommandFelescriptorAddressvill point to the descriptor that contained the buffer descriptor

for the memory address at which the error occurred. Any data in the input FIFO for the context is discarded.

13.2.7 Physical Read Error

When an external node does a physical access and the Host Controller’s read of system memory fails on the first read, the
Host Controller will return an error response to the requester with a response code of resp_data_error. If an error occurs
after a portion of packet has been returned, the Host Controller will simply stop transmitting the packet. This should
create a data_length mismatch at the requester. If the if the device replies with ack_busy or ack_data_error the host should
retry the packet. If the error was caused by a FIFO underrun, the Host Controller will retry with the same response. If,
however, the error was a host bus error, the response packet will be changed to resp_data_error.

13.2.8 Write Request Error

The behavior for handling host bus errors for a write request is fully described in section 12.2, “Write Requests:
ack _codes and host bus errors.”

Copyright © 1996,1997 All rights reserved. Page 122

P1394A enhancements required for 1394 Open HCI1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

AnnexA. P1394Aenhancementsrequiredfor1394 OpenHCI

For the PHY:

a) Add a “disable” bit to the port status registers. If this bit is set, the port will not source bias current on TP? and
will not pay attention to the status of either TPA or TPB. This function is needed to allow Open HCI systems to
run only on internal nodes.

b) During the self-ID process, the maximum Phy_ID will reach 63 and will remain at that number for all additional
PHYs.

c) A PHY with the phy_ID of 63 will ignore link-on or phy configuration requests.

d) Connection hysteresis.

e) Arbitrated short reset.

For the link:

a) A link with the phy_ID of 63 will not transmit any packets.
b) If the LK_EVENT.ind(CYCLE_TOO_LONG) signal is raised, the sending of cycle starts must be disabled.

For the bus manager:

c) Bus manager algorithms must support 3-bit speed codes.

Copyright © 1996,1997 All rights reserved. Page 123

P1394A enhancements required for 1394 Open HCI1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Copyright © 1996,1997 All rights reserved. Page 124

PCI Interface 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Annex B. PClInterface

B.1 PCI Configuration Space

OpenHCIs may be on any number of buses, this appendix only discusses their designs with PCI bus. This sectiol
describes the PCI requirements for IEEE 1394 Open Host Controller Interface compliant devices implemented using the
PCI bus (abbreviated as OHC's herein). Only the registers and functions unique to a PCl-based OHC (basically, PC
configuration registers) are described in this appendix. OpenHCI compliant 1394 controllers must adhere to the require
ments given in the PCI Local Bus Specification, Revision 2.1.

Typically, the PCI registers and expansion ROM are only accessed during boot-up and PCI device initialization. They
are not typically accessed during runtime by device drivers. The PCI configuration registers, taken in total, are called the
PCI configuration space. The PCI confiuration space for OpenHCI is header type 0. Header type 8'h00 is the format fot
the device’s configuration header region which is the first 16 dwords of PCI configuration space. Operational registers are
memory mapped into PClI memory address space and pointed to by Base_Adr_0 register in the PCI configuration spac
The operational registers are described in the body of this specification. PCI configuration space is not directly memory
or I/O mapped - it's access is system dependent. Software reset issued through an OpenHCI control register does n
affect the contents of the PCI configuration space.

B.2 Busmastering Requirements

The 1394 OpenHCI controller requires a bursting capable busmaster ability on the PCI bus. If the busmaster bit in the
command register transitions from 1 to zero (see section B.3.1), the PCI logic supporting the OpenHCI controller logic
must kill all DMA contexts.

B.3 PCI Configuration Space for 1394 OpenHCI With PCI Interface

Figure B-1 shows the PCI configuration space for a 1394 OpenHCI controller designed for PCI attachment. The format of
this configuration space must be compliant vl Local Bus Specification, Revision ZRCI Special Interest Group,

1995). Any registers not pointed to by the Base_Adr_0 (OHCI registers) pointer are vendor specific. Vendor specific
registers must not be required for correct operation of the 1394 OpenHCI controller with a 1394 OpenHCI device driver.

Figure B-1 — PCI Configuration Space

Required PCI Vendor
Configuration Space Option
0 | Device ID Vendor ID 40 PCl HCI Control

4 Status Command 0 (vendor opt)
8 Class Code Rev 0 (vendor opt)
C | BIST § Hdr Lat [Cache 0 (vendor opt)
10 | Base Adr 0 - OHCI Regs 0 (vendor opt)
14 base 1 (vendor opt) 0 (vendor opt)
18 base 2 (vendor opt) 0 (vendor opt)
1c base 3 (vendor opt) 0 (vendor opt)
20 base 4 (vendor opt) 0 (vendor opt)
24 base 5 (vendor opt) 0 (vendor opt)
28 Cardbus CIS Ptr (opt 0 (vendor opt)
2C Subsystem 1D Subsystem Vendor ID 0 (vendor ODt)
30 | _Expansion ROM Base I 0 (vendor opt)
34 0 0 (vendor opt)
38 0 / 0 (vendor opt)
3C JMax_Lat Iv\in_Gm I\nt_Pin IIn(_Lme FC 0 (vendor opt)

Figure B-2 shows the resources pointed to by the various Base_Adr registers and the Expansion ROM Base Addres
register.

Copyright © 1996,1997 All rights reserved. Page 125

PCI Interface

1394 Open Host Controller Interface Specification/Draft 0.91

Figure B-2 — Pointers to OHCI Resources in PCI Configuration Space

B.3.1 COMMAND Register

This register provides coarse control over the device’s ability to generate and respond to PCI cycles. For the 1394
OpenHCI it is required that the Host Controller support both PCI bus-mastering and memory-mapping of all operational

PCI Configuration Space

@base_adr0

@base_adrl
i Vendor
/ Option 1
Base Ady 1 (opt)
@base_adr x
Base Adr 5 (opt)
Cardbus CIS Ptr (opt Vendor
Subsystem ID Subsystem Vendor ID Option X
@rom_base

registers into the memory address space of the PC host. Consequently, thdAiedsel BM should always be set to

1'b1 during device configuration.

Once the Host Controller starts processing DMA descriptor lists, the action of resetting eithetAfieldBM to 1'b0
will halt all PCI operations from the 1394 OHC. (Do this carefully). If the fiéAd is reset to 1'b0, the Host Controller
can no longer respond to any software command addressed to it and interrupt generation is halted.

Table B-1 — COMMAND Register

Read/
Field Bits | Write |Description
0 rw Refer to PCI Local Bus Specification, Revision 2.1, for definition
Memory Space 1 rw | MEMORY SPACE
Setto 1'b1 so that the OpenHCI controller can respond to PCI memory kycles
BusMaster 2 rw | BUS MASTER
Set to 1'b1 so that the OpenHCI controller can act as a bus-master
3-5 | rw Refer to PCI Specification, Revision 2.1, for definition
Parity Error Response rw | Parity Error Response
Set to 1'b1 if error detection on the PCI bus is desired.
7 rw Refer to PCI Specification, Revision 2.1, for definition

Copyright © 1996,1997 All rights reserved.

Page 126

Printed 1/27/97

PCI Interface 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

B.3.2 CLASS_CODE Register

This register identifies the basic function of the device, and a specific programming interface code for an 1394 OpenHCI-
compliant Host Controller.

Table B-2 — CLASS_CODE Register

Read/

Field Bits | Write |Description
PI 7-0 |r PROGRAMMING INTERFACE

A constant value of 8'h10 Identifies the device being a 1394 OpenHCI Host

Controller.
SC 15-8| r SUB CLASS

A constant value of 8'h00 Identifies the device being of IEEE 1394.
BC 23- |r BASE CLASS

16 A constant value of 8’h0C ldentifies the device being a serial bus contrfller.

B.3.3 Revision_ID Register

The Revision ID must contain the vendor’s revision level of their OpenHCI silicon. It is required that each new revision
of silicon receive a new revision ID.

B.3.4 Base_Adr_0 Register

The Base_Adr_0 register specifies the base address of a contiguous memory space in the PCI memory space of the hc
This memory space is assigned to the operational registers defined in this specification. All of the operational register:
described in this document are directly mapped into this 2 kilobyte memory space. Vendor unique registers are no
allowed within this 2 KB memory space.

Those hardware registers that are used to implement vendor specific features are not covered by this 1394 OpenHCI Spe
ification. Additional vendor unique address spaces may be allocated by adding additional base address registers beginir
at offset h14 in PCI configuration space.

Table B-3 — Base_Adr_0 Register

Read/
Field Bits | Write |Description
IND 0 r MEMORY SPACE INDICATOR

A constant value of 1'b0 Indicates that the operational registers of the device
are mapped into memory space of the main memory of the PC host sygtem

TP 2-1 |r This bit must be programmed consistent wittP@éLocal Bus Specification,
Revision 2.1

PM 3 r PREFETCH MEMORY
A constant value of 1'b0 Indicates that there is no support for “prefetchpble
memory”

11-4 | rw Default value of 8'h00 and is read only Represents a maximum of 4-KE
addressing space for the OpenHCI’s operational registers

OHCI_REG_PTR 31- |rw OHCI Register Pointer
12 Specifies the upper 20 bits of the 32-bit starting base address. This repfesents
a maximum of 2-KB addressing space for the OpenHCI’s operational rggis-
ters.

Copyright © 1996,1997 All rights reserved. Page 127

PCI Interface 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

B.4 PCI_HCI_Control Register

This register has 1394 OpenHCI specific control bits. Vendor options are not allowed in this register. It is reserved for
OpenHCI use only.

Table B-4 — PCI_HCI_Control Register

Read/
Field Bits | Write |Description
PCI_Global_Swap 0 rw | PCI Global Swap Bit

When this bit is b1, all quadlets read from and written to the PCI interfade are
byte swapped. PCI addresses, such as expansion ROM and PCI confid regis-
ters, are unaffected by this bit (they are not byte swapped under any cifcum-
stances). The hardware reset value of this bit is bO.

This bit is not required for motherboard implementations.

31-1 | rw These are reserved bits. They must be written as zeros and read as zqros.

B.5 PCI Expansion ROM for 1394 OpenHCI

1394 OHCs on add-in adapters will clearly require PCI expansion ROMs that provide BIOS, Open Firmware, etc. to boot
and configure the card. If this ROM is non-writeable and soldered to the card (not socketed), it is also permitted that the
serial ROM image that the OHC autoloads at boot up can be included in this expansion ROM (saving the cost of a serial
ROM). If this is done, the serial ROM image must be loaded into the 1394 OHC by hardware state machine without
software intervention or control. It cannot be modifiable by software or 1394 devices under any circumstances.

B.6 PCI Bus Errors

When the “Parity Error Response” bit in the Command Register in PCl Configuration Space is enabled (see section
B.3.1), the PCI interface logic in the OpenHCI must assert PERR# when data with bad parity is received by the 1394
OpenHCI controller.

Any PCI bus error encountered must be reported to the OpenHCI operational logic for error handling. The nature of the
error response is context dependent and discussed in the body of the document. No distinction is made between the
various PCI bus errors. Basically, only one all encompassing error signal is provided to the operational logic by the PCI
specific interface logic. It is the responsibility of the implementer to insure that PCI bus errors are reported in a timely
fashion, consistent with their overall OpenHCI implementation, that insures that the errors are associated with the engine,
context, etc. that the error should be posted to.

When the “Parity Error Response” bit in the Command Register in PCl Configuration Space is enabled (see section
B.3.1), the PCI interface logic in the OpenHCI must assert PERR# in accordance wat@lthecal Bus Specification,
Revision 2..when data with bad parity is received by the 1394 OpenHCI controller.

Copyright © 1996,1997 All rights reserved. Page 128

