
1394
Open Host Controller Interface

Specification

Draft 0.91
Released: Monday, January 27, 1997
Modified: Monday, January 27, 1997

Copyright © 1996,1997 by the Promoters of the 1394 Open HCI.

Copyright © 1996,1997 All rights reserved. Page ii

1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Copyright © 1996,1997 All rights reserved. Page iii

PREFACE 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

PREFACE

Intellectual Property

This specification may contain and sometimes even require the use of intellectual property owned by others.
Rights to such intellectual property are not conveyed except as provided by the 1394 Open HCI Developers agree-
ment and the 1394 Open HCI Adopters agreement.

Release 0.90 Notice

This specification has reached a level of maturity suitable for device development. The authors of this specification
do not believe that it is reasonable to expect that all problems can be discovered before implementations are
attempted. Implementors are encouraged to use the 1394 Open HCI reflector (1394ohci-l@austin.ibm.com) to ask
questions about portions of the specification that are not perfectly clear; to point out inconsistencies; and to
identify and propose fixes to errors.

Workshops will be scheduled as required to review the specification and to correct any deficiencies in function or inade-
quacies in specification of the 1394 OpenHCI.

Updates to the specification and notices about the specification will be maintained on an ftp site
(ftp://www.austin.ibm.com/pub/chrptech/1394ohci).

Copyright © 1996,1997 All rights reserved. Page iv

PREFACE 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Promoters

The Promoters of record on Wednesday, January 22, 1997 , the date of publication of the 1394 Open Host Controller
Interface Specification, Draft 0.91, are:

Apple Computer, Inc.
Compaq Computer Corp.
Intel Corporation
Microsoft Corporation
National Semiconductor Corporation
Sun Microsystems, Inc.
Texas Instruments, Inc.

Contributors

This specification was developed using Apple Computer’sPele design as a starting point. ThePele contributors were Jim
Baldwin, Kevin Christiansen, Nikhil Jayaram, Michael Johas Teener and Rahoul Puri. The original Editor of the 1394
OpenHCI specification up through Draft 0.7, was Michael Johas Teener.

The following is a list of key contributors to the 1394 Open Host Controller Interface specification.

Lee Wilson, Chair
Diana Klashman, Editor

Eric W. Anderson
Richard Baker
Mike Eneboe
John Fuller
Rahoul Puri

Michael Johas Teener
Peter Teng

Scott Smyers
Erik Staats

David Wooten

The following is a list of other major participants (those who attended at least three meetings and/or conference calls).

Joe Bennett
Larry Blackledge
Dmitriy L. Budko
Josh Collier
Jerry Hauck

Carl Humphreys
Robert Macomber
Yehuda Peled
Gerhard Ringel
Curtis Stevens

Copyright © 1996,1997 All rights reserved. Page v

1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

PREFACE .. iii

Intellectual Property ..iii
Release 0.90 Notice ..iii
Promoters ... iv
Contributors .. iv

List of figures .. xi

List of tables .. xiii

1. Introduction ... 1

1.1 Related documents ... 1
1.2 Overview.. 1

1.2.1 Asynchronous functions .. 1
1.2.2 Isochronous functions ... 1
1.2.3 Miscellaneous functions .. 2

1.3 Hardware description ... 3
1.3.1 Host bus interface.. 3
1.3.2 DMA ... 4

1.3.2.1 Asynchronous transmit DMA ... 4
1.3.2.2 Asynchronous receive DMA... 4
1.3.2.3 Isochronous transmit DMA .. 5
1.3.2.4 Isochronous receive DMA .. 5
1.3.2.5 Self-ID receive DMA.. 5

1.3.3 Global unique ID (GUID) interface... 5
1.3.4 FIFOs .. 5

1.3.4.1 Asynchronous transmit FIFOs .. 6
1.3.4.2 Isochronous transmit FIFO ... 6
1.3.4.3 Receive FIFOs .. 6

1.3.5 Link ... 6
1.4 IEEE P1394A enhancements required for 1394 Open HCI.. 7
1.5 Software interface overview... 7

1.5.1 Registers.. 7
1.5.2 DMA operation ... 7
1.5.3 Interrupts ... 8

1.6 System Requirements... 8
1.7 Alignment .. 8

1.7.1 Data alignment .. 8
1.7.2 Memory structure and buffer alignment .. 8

2. Conventions - Notation and Terms .. 9

2.1 Notation ... 9
2.1.1 Numeric Notation.. 9
2.1.2 Register Notation... 9

2.1.2.1 Read/Write registers ... 9
2.1.2.2 Set and Clear registers .. 9
2.1.2.3 Register Reset Values ... 10
2.1.2.4 Reserved fields.. 10
2.1.2.5 Reserved registers... 10
2.1.2.6 Register field notation... 10

2.2 Terms ... 11

Copyright © 1996,1997 All rights reserved. Page vi

1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

3. DMA overview...13

3.1 Context Registers..13
3.1.1 ContextControl.run ..15
3.1.2 ContextControl.wake ...16
3.1.3 ContextControl.active ..16
3.1.4 ContextControl.dead ..17

3.1.4.1 Bad Z Value...17
3.1.5 CommandPtr ..17

3.2 List Management ..18
3.2.1 Software Behavior ...18

3.2.1.1 Context Initialization...18
3.2.1.2 Appending to Running List ...18
3.2.1.3 Stopping a Context ..18

3.2.2 Hardware Behavior ..18
3.3 Asynchronous Receive ...20
3.4 DMA Summary ..22

4. Register addressing ..23

4.1 DMA Context Number Assignments ..23
4.2 Register Map ..24

5. 1394 Open HCI Registers ..27

5.1 Register Conventions..27
5.2 Version Register ...27
5.3 GUID ROM register (optional)...28
5.4 ATRetries Register..28
5.5 Autonomous CSR Resources..29

5.5.1 Bus Management CSR Registers ...29
5.5.2 Config ROM header ...31
5.5.3 Bus identification register ..31
5.5.4 Bus options register ...32
5.5.5 Global Unique ID ..32
5.5.6 Configuration ROM mapping register..33

5.6 Vendor ID register ..34
5.7 HCControl registers (set and clear) ..34
5.8 LinkControl registers (set and clear) ..36
5.9 Node identification and status register..37
5.10 PHY control register...37
5.11 Isochronous Cycle Timer Register..38
5.12 Asynchronous Request Filters ..39

5.12.1 AsynchronousRequestFilter Registers (set and clear) ..39
5.12.2 PhysicalRequestFilter Registers (set and clear) ...41

6. Interrupts..43

6.1 Overview ..43
6.2 Interrupt Registers ..43

6.2.1 IntEvent (set and clear) ..43
6.2.1.1 busReset ..45

6.2.2 IntMask (set and clear) ..45
6.2.3 IsochTx interrupt registers ...47

Copyright © 1996,1997 All rights reserved. Page vii

1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

6.2.3.1 isoXmitIntEvent (set and clear) .. 47
6.2.3.2 isoXmitIntMask (set and clear)... 47

6.2.4 IsochRx interrupt registers .. 48
6.2.4.1 isoRecvIntEvent (set and clear) .. 48
6.2.4.2 isoRecvIntMask (set and clear)... 48

7. Asynchronous Transmit DMA... 49

7.1 Asynchronous transmit DMA context programs.. 49
7.1.1 OUTPUT_MORE descriptor ... 50
7.1.2 OUTPUT_MORE_Immediate descriptor .. 51
7.1.3 OUTPUT_LAST descriptor .. 52
7.1.4 OUTPUT_LAST_Immediate descriptor.. 53
7.1.5 AT command descriptor usage .. 54

7.1.5.1 Command.Z .. 54
7.1.5.2 Command.xferStatus .. 54
7.1.5.3 Command.timeStamp ... 55

7.1.5.3.1 timeStamp value for Requests.. 55
7.1.5.3.2 timeStamp value for Responses ... 55

7.2 AT DMA context registers ... 57
7.2.1 CommandPtr ... 57
7.2.2 ContextControl register (set and clear).. 58

7.2.2.1 Bus Reset.. 58
7.2.2.2 Writing status back to context command descriptors.. 59

7.3 AT Retries .. 59
7.4 AT Interrupts .. 59
7.5 AT Data Formats .. 59

7.5.1 Asynchronous Transmit Requests ... 60
7.5.1.1 No-data transmit ... 60
7.5.1.2 Quadlet Transmit .. 61
7.5.1.3 Block transmit .. 62
7.5.1.4 PHY packet transmit... 64

7.5.2 Asynchronous Transmit Responses ... 64
7.5.2.1 No-data transmit ... 64
7.5.2.2 Quadlet Transmit .. 65
7.5.2.3 Block transmit .. 66

8. Asynchronous Receive DMA .. 69

8.1 AR Context Programs .. 69
8.1.1 INPUT_MORE descriptor... 69
8.1.2 Using AR command descriptors.. 70

8.2 bufferFill mode .. 70
8.3 Asynchronous Receive Context Registers.. 71

8.3.1 AR DMA CommandPtr register .. 71
8.3.2 AR ContextControl register (set and clear) ... 72

8.4 AR DMA Controller .. 72
8.4.1 Asynchronous Filter Registers .. 72
8.4.2 AR DMA Controller processing.. 73

8.4.2.1 AR DMA Packet Trailer ... 74
8.4.2.2 Error Handling.. 74
8.4.2.3 Bus Reset Packet .. 74

8.5 Asynchronous Receive Interrupts .. 75
8.6 Asynchronous Receive Data Formats... 75

Copyright © 1996,1997 All rights reserved. Page viii

1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

8.6.1 No-data receive ..76
8.6.2 Quadlet Receive ...77
8.6.3 Block receive ...79
8.6.4 PHY packet receive..82

9. Isochronous Transmit DMA...83

9.1 IT DMA Context Programs ..83
9.1.1 IT DMA command descriptor overview ..83
9.1.2 OUTPUT_MORE descriptor ...84
9.1.3 OUTPUT_MORE-Immediate descriptor ...85
9.1.4 OUTPUT_LAST descriptor ...86
9.1.5 OUTPUT_LAST-Immediate descriptor ...87
9.1.6 STORE_VALUE descriptor ...88
9.1.7 IT DMA descriptor usage ..88

9.2 IT Context Registers...89
9.2.1 CommandPtr ..89
9.2.2 IT ContextControl Register..90

9.3 Isochronous transmit DMA controller ..91
9.3.1 IT DMA Processing ...92
9.3.2 Isochronous transmit cycle loss ...93
9.3.3 Determining the number of implemented IT DMA contexts..94

9.4 IT Interrupts ...95
9.5 IT Data Format ...95

10. Isochronous Receive DMA ..97

10.1 Context Programs ...97
10.2 Receive Modes ...98

10.2.1 Buffer Fill Mode ..99
10.2.2 Packet-per-Buffer Mode... 100

10.2.2.1 Command.xferStatus and Command.resCount updates... 101
10.3 IR Context Registers... 101

10.3.1 CommandPtr .. 101
10.3.2 IRContextControl register (set and clear) .. 102
10.3.3 Isochronous receive contextMatch register .. 103

10.4 Isochronous receive DMA controller.. 104
10.4.1 Isochronous receive multi-channel support.. 104

10.4.1.1 IRMultiChanMask registers (set and clear) ... 104
10.4.2 Isochronous receive single-channel support... 105
10.4.3 Duplicate channels... 106
10.4.4 Determining the number of implemented IR DMA contexts ... 106

10.5 IR Interrupts ... 106
10.6 IR Data Formats ... 106

10.6.1 bufferFill mode formats ... 107
10.6.1.1 IR with header/trailer .. 107
10.6.1.2 IR without header/trailer ... 108

10.6.2 packet-per-buffer mode formats ... 108
10.6.2.1 IR with header/trailer .. 108

10.6.3 IR without header/trailer .. 109

11. Self ID Receive .. 111

11.1 Self ID Buffer Pointer Register .. 111

Copyright © 1996,1997 All rights reserved. Page ix

1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

11.2 Self ID Count Register ..111
11.3 Self-ID receive ..113
11.4 Enabling the SelfID DMA ..113
11.5 Interrupt Considerations for SelfID DMA ..113
11.6 SelfIDs Received Outside of Bus Initialization...113

12. Physical Requests ...115

12.1 Filtering Physical Requests ...115
12.2 Write Requests: ack_codes and host bus errors...115
12.3 PostedWriteAddress registers ...116

12.3.1 Queue Rules ...118
12.4 Interrupt Considerations for Physical Requests ..118
12.5 Physical Responses ...119
12.6 Response to Bus Reset ..119

13. Host Bus Errors ..121

13.1 Causes of Host Bus Errors ..121
13.2 Host Controller Actions When Host Bus Error Occurs ...121

13.2.1 Descriptor Read Error ..121
13.2.2 xferStatus Write Error ..121
13.2.3 Transmit Data Read Error...121
13.2.4 Isochronous Transmit Data Write Error ...122
13.2.5 Asynchronous Receive Data Write Error..122
13.2.6 Isochronous Receive Data Write Error ...122
13.2.7 Physical Read Error..122
13.2.8 Write Request Error ...122

Annex A. P1394A enhancements required for 1394 Open HCI ...123

Annex B. PCI Interface ..125

B.1 PCI Configuration Space ..125
B.2 Busmastering Requirements ...125
B.3 PCI Configuration Space for 1394 OpenHCI With PCI Interface...125

B.3.1 COMMAND Register..126
B.3.2 CLASS_CODE Register ..127
B.3.3 Revision_ID Register...127
B.3.4 Base_Adr_0 Register ...127

B.4 PCI_HCI_Control Register...128
B.5 PCI Expansion ROM for 1394 OpenHCI ...128
B.6 PCI Bus Errors ...128

Copyright © 1996,1997 All rights reserved. Page x

1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Copyright © 1996,1997 All rights reserved. Page xi

List of figures 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

List of figures

Figure 1-1 — 1394 Open HCI conceptual block diagram .. 3
Figure 3-1 — ContextControl (set and clear) register format ... 13
Figure 3-2 — CommandPtr register format .. 15
Figure 3-3 — Flow Chart for processing a descriptor .. 19
Figure 5-1 — Version register .. 27
Figure 5-2 — GUID ROM register ... 28
Figure 5-3 — ATRetries register .. 28
Figure 5-4 — CSR data register ... 30
Figure 5-5 — CSR compare register .. 30
Figure 5-6 — CSR control register ... 30
Figure 5-7 — Config ROM header register .. 31
Figure 5-8 — Bus ID register ... 31
Figure 5-9 — Bus options register .. 32
Figure 5-10 — GlobalUniqueIDHi register .. 32
Figure 5-11 — GlobalUniqueIDLo register .. 33
Figure 5-12 — Configuration ROM mapping register .. 33
Figure 5-13 — VendorID register ... 34
Figure 5-14 — HCControl register ... 35
Figure 5-15 — LinkControl register ... 36
Figure 5-16 — Node ID register ... 37
Figure 5-17 — PHY control register .. 38
Figure 5-18 — Isochronous cycle timer register ... 39
Figure 5-19 — AsynchronousRequestFilterHi (set and clear) register ... 40
Figure 5-20 — AsynchronousRequestFilterLo (set and clear) register ... 40
Figure 5-21 — PhysicalRequestFilterHi (set and clear) register .. 41
Figure 5-22 — PhysicalRequestFilterLo (set and clear) register .. 41
Figure 6-1 — IntEvent register ... 44
Figure 6-2 — IntMask register ... 46
Figure 6-3 — isoXmitIntEvent (set and clear) register ... 47
Figure 6-4 — isoRecvIntEvent (set and clear) register ... 48
Figure 7-1 — OUTPUT_MORE descriptor format .. 50
Figure 7-2 — OUTPUT_MORE-Immediate descriptor format .. 51
Figure 7-3 — OUTPUT_LAST descriptor format .. 52
Figure 7-4 — OUTPUT_LAST-Immediate descriptor format .. 53
Figure 7-5 — timeStamp format ... 55
Figure 7-6 — CommandPtr register format .. 57
Figure 7-7 — ContextControl (set and clear) register format ... 58
Figure 7-8 — Quadlet read request transmit format ... 60
Figure 7-9 — Quadlet write request transmit format .. 61
Figure 7-10 — Block read request transmit format .. 61
Figure 7-11 — Write request transmit format .. 62
Figure 7-12 — Lock request transmit format ... 63
Figure 7-13 — PHY packet transmit format ... 64
Figure 7-14 — Write response transmit format .. 64
Figure 7-15 — Quadlet read response transmit format ... 65
Figure 7-16 — Block read response transmit format .. 66
Figure 7-17 — Lock response transmit format ... 67
Figure 8-1 — Asynchronous receive descriptor ... 69
Figure 8-2 — bufferFill receive mode .. 71
Figure 8-3 — CommandPtr register format .. 71
Figure 8-4 — AR ContextControl (set and clear) register format ... 72
Figure 8-5 — AR DMA packet trailer format .. 74

Copyright © 1996,1997 All rights reserved. Page xii

List of figures 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Figure 8-6 — AR Request Context Bus Reset packet format ..74
Figure 8-7 — Quadlet read request receive format ...76
Figure 8-8 — Write response receive format ..77
Figure 8-9 — Quadlet write request receive format ..77
Figure 8-10 — Quadlet read response receive format ...78
Figure 8-11 — Block read request receive format ..78
Figure 8-12 — Block write request receive format ...79
Figure 8-13 — Lock request receive format ...80
Figure 8-14 — Block read response receive format ..80
Figure 8-15 — Lock response receive format ...81
Figure 8-16 — PHY packet receive format ...82
Figure 9-1 — OUTPUT_MORE command descriptor format ..84
Figure 9-2 — OUTPUT_MORE-Immediate descriptor format ...85
Figure 9-3 — OUTPUT_LAST command descriptor format ..86
Figure 9-4 — OUTPUT_LAST-Immediate command descriptor format ..87
Figure 9-5 — STORE_VALUE descriptor ..88
Figure 9-6 — CommandPtr register format ..90
Figure 9-7 — IT DMA ContextControl (set and clear) register format ...90
Figure 9-8 — ITDMA summary ...92
Figure 9-9 — Isochronous transmit cycle loss example ..94
Figure 9-10 — Isochronous transmit format with header/cycleNumber ..95
Figure 10-1 — Isochronous receive descriptor ...97
Figure 10-2 — IR Buffer Fill Mode ..99
Figure 10-3 — packet-per-buffer receive mode .. 100
Figure 10-4 — CommandPtr register format .. 101
Figure 10-5 — IR DMA ContextControl (set and clear) register format ... 102
Figure 10-6 — IR DMA ContextMatch (set and clear) register format ... 103
Figure 10-7 — IRMultiChanMaskHi (set and clear) register .. 105
Figure 10-8 — IRMultiChanMaskLo (set and clear) register .. 105
Figure 10-9 — Receive isochronous format in bufferFill mode with header/trailer .. 107
Figure 10-10 — Receive isochronous format in bufferFill mode without header/trailer ... 108
Figure 10-11 — Receive isochronous format in packet-per-buffer mode with header/trailer .. 108
Figure 10-12 — Receive isochronous format in packet-per-buffer mode without header/trailer 109
Figure 11-1 — Self ID Buffer Pointer register .. 111
Figure 11-2 — Self ID Count register ... 111
Figure 11-3 — Self-ID receive format .. 113
Figure 12-1 — PostedWriteAddressHi register ... 116
Figure 12-2 — PostedWriteAddressLo register .. 117
Figure 12-3 — Posted Write Error Queue ... 118
Figure B-1 — PCI Configuration Space ... 125
Figure B-2 — Pointers to OHCI Resources in PCI Configuration Space .. 126

Copyright © 1996,1997 All rights reserved. Page xiii

List of tables 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

List of tables

Table 1-1 — DMA controllers and contexts ... 4
Table 1-2 — Link generated acknowledges .. 7
Table 2-1 — read/write register field access tags .. 9
Table 2-2 — Set and Clear register field access tags .. 10
Table 2-3 — Register field reset values .. 10
Table 3-1 — ContextControl (set and clear) register description .. 13
Table 3-2 — Packet event codes ... 14
Table 3-3 — CommandPtr register description .. 15
Table 3-4 — CommandPtr read values ... 17
Table 3-5 — DMA Summary ... 22
Table 4-1 — 1394 Open HCI register space map ... 23
Table 4-2 — Asynchronous DMA Context number assignments ... 23
Table 4-3 — Register addresses .. 24
Table 5-1 — Version register .. 27
Table 5-2 — GUID ROM register .. 28
Table 5-3 — ATRetries register .. 29
Table 5-4 — Serial Bus Registers ... 29
Table 5-5 — CSR registers ... 30
Table 5-6 — Config ROM header register fields ... 31
Table 5-7 — Bus ID register fields ... 31
Table 5-8 — Bus options register fields .. 32
Table 5-9 — Configuration ROM mapping register .. 34
Table 5-10 — VendorID register .. 34
Table 5-11 — HCControl register ... 35
Table 5-12 — LinkControl register ... 36
Table 5-13 — Node ID register .. 37
Table 5-14 — PHY control register .. 38
Table 5-15 — Isochronous cycle timer register .. 39
Table 6-1 — IntEvent register description .. 44
Table 6-2 — IntMask register description .. 46
Table 7-1 — OUTPUT_MORE descriptor element summary .. 50
Table 7-2 — OUTPUT_MORE-Immediate descriptor element summary .. 51
Table 7-3 — OUTPUT_LAST descriptor element summary .. 52
Table 7-4 — OUTPUT_LAST-Immediate descriptor element summary .. 53
Table 7-5 — Z value encoding ... 54
Table 7-6 — timeStamp description ... 55
Table 7-7 — Results of timeStamp.cycleSeconds - cycleTimer.cycleSeconds ... 56
Table 7-8 — timeStamp.cycleCount-cycleTime.cycleCount Example 1 .. 56
Table 7-9 — timeStamp.cycleCount-cycleTime.cycleCount Example 2 .. 56
Table 7-10 — timeStamp.cycleCount-cycleTime.cycleCount Example 3 .. 56
Table 7-11 — ContextControl (set and clear) register description .. 58
Table 7-12 — Quadlet read request transmit fields ... 60
Table 7-13 — Quadlet transmit fields ... 61
Table 7-14 — Block transmit fields .. 63
Table 7-15 — Write response transmit fields .. 65
Table 7-16 — Quadlet transmit fields ... 66
Table 7-17 — Block transmit fields .. 67
Table 8-1 — Asynchronous receive descriptor element summary .. 69
Table 8-2 — AR ContextControl (set and clear) register description ... 72
Table 8-3 — AR DMA trailer fields ... 74
Table 8-4 — AR Request Context Bus Reset packet description .. 75
Table 8-5 — Asynch receive fields ... 75

Copyright © 1996,1997 All rights reserved. Page xiv

List of tables 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Table 9-1 — OUTPUT_MORE descriptor element summary ...84
Table 9-2 — OUTPUT_MORE-Immediate descriptor element summary ...85
Table 9-3 — OUTPUT_LAST descriptor element summary ..86
Table 9-4 — OUTPUT_LAST-Immediate descriptor element summary ...87
Table 9-5 — STORE_VALUE descriptor element summary ..88
Table 9-6 — Z value encoding ..88
Table 9-7 — IT DMA ContextControl (set and clear) register description ...90
Table 9-8 — Isochronous transmit fields ...95
Table 10-1 — Descriptor element summary ..97
Table 10-2 — Z value encoding ..98
Table 10-3 — IR DMA ContextControl (set and clear) register description ... 102
Table 10-4 — IR DMA ContextMatch (set and clear) register description ... 104
Table 10-5 — Isochronous receive fields .. 106
Table 11-1 — Self ID Buffer Pointer register ... 111
Table 11-2 — Self ID Count register .. 112
Table 11-3 — Self-ID receive fields .. 113
Table B-1 — COMMAND Register .. 126
Table B-2 — CLASS_CODE Register .. 127
Table B-3 — Base_Adr_0 Register ... 127
Table B-4 — PCI_HCI_Control Register .. 128

Copyright © 1996,1997 All rights reserved. Page 1

Introduction 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

1. Introduction

1.1 Related documents

The following documents may be useful in understanding the terms and concepts used in this specification. The docu-
ments are for general background purposes only and are not incorporated into and do not form a part of this specification.

[A] IEEE 1394-1995 High Performance Serial Bus
IEEE, 1995

[B] ISO/IEC 13213:1994 Control and Status Register Architecture for Microcomputer Busses
International Standards Organization, 1994

All references in this document to 1394 refer to IEEE 1394-1995 ([A] above) unless otherwise specified.
Following IEEE conventions, the term “quadlet” is used throughout this document to specify a 32-bit word.

1.2 Overview

The 1394 Open Host Controller Interface (Open HCI) is an implementation of the link layer protocol of the 1394 Serial
Bus, with additional features to support the transaction and bus management layers. The 1394 Open HCI also includes
DMA engines for high-performance data transfer and a host bus interface.

IEEE 1394 (and the 1394 Open HCI) supports two types of data transfer: asynchronous and isochronous. Asynchronous
data transfer puts the emphasis on guaranteed delivery of data, with less emphasis on guaranteed timing. Isochronous data
transfer is the opposite, with the emphasis on the guaranteed timing of the data, and less emphasis on delivery.

1.2.1 Asynchronous functions

The 1394 Open HCI can transmit and receive all of the defined 1394 packet formats. Packets to be transmitted are read
out of host memory and received packets are written into host memory, both using DMA. The 1394 Open HCI can also
be programmed to act as a bus bridge between host bus and 1394 by directly executing 1394 read and write requests to
the first 4 GB of node offset addresses as reads and writes to host bus memory space.

1.2.2 Isochronous functions

The 1394 Open HCI is capable of performing the cycle master function as defined by 1394. This means it contains a cycle
timer and counter, and can queue the transmission of a special packet called a “cycle start” after every rising edge of the
8 kHz cycle clock. The 1394 Open HCI can either generate the cycle clock internally or use an external reference. When
not the cycle master, the 1394 Open HCI keeps its internal cycle timer synchronized with the cycle master node by
correcting its own cycle timer with the reload value from the cycle start packet.

The 1394 Open HCI supports one DMA controllereach for isochronous transmit and isochronous receive, for a total of
two isochronous DMA controllers. Each DMA controller can be implemented to support up to 32 different contexts.

The isochronous transmit DMA controller can transmit from each context during each cycle. Each context can transmit
data for a single isochronous channel.

The isochronous receive DMA controller can receive data for each context during each cycle. Each context can be config-
ured to receive data from a single isochronous channel. Additionally, one context can be configured to receive data from
multiple isochronous channels.

Copyright © 1996,1997 All rights reserved. Page 2

Introduction 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

1.2.3 Miscellaneous functions

Upon detecting a bus reset, the 1394 Open HCI automatically flushes all packets queued for asynchronous transmission.
Asynchronous packet reception continues without interruption, and a token appears in the received request packet stream
to indicate the occurance of the bus reset. When the PHY provides the new local node ID, the 1394 Open HCI loads this
value into its Node ID register. Asynchronous packet transmit will not resume until directed to by software. Because
target node ID values may have changed during the bus reset, software will not generally be able to re-issue old asynchro-
nous requests until software has determined the new target node IDs.

Isochronous transmit and receive functions are not halted by a bus reset, instead they restart as soon as the bus initializa-
tion process is complete.

A number of management functions are also implemented by the 1394 Open HCI:

a) A global unique ID register of 64 bits which can only be written once. For full compliance with higher level
standards, this register must be written before the boot block is read. To make this implementation simpler, the
1394 Open HCI optionally has an interface to an external hardware global unique ID (GUID, also know as the
IEEE EUI-64). An example device is the Dallas Semiconductor DS2501-EUI-64.

b) Four registers that implement the compare-swap operation needed for isochronous resource management.

Copyright © 1996,1997 All rights reserved. Page 3

Introduction 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

1.3 Hardware description

Figure 1-1 provides a conceptual block diagram of the 1394 Open HCI, and its connections in the host system. The 1394
Open HCI attaches to the host via the host bus. The host bus is assumed to be at least 32 bits wide with adequate perfor-
mance to support the data rate of the particular implementation (100Mbit/sec or higher plus overhead for DMA structures)
as well as bounded latency so that the FIFOs can have a reasonable size.

1.3.1 Host bus interface

This block acts both as a master and a slave on the host bus. As a slave, it decodes and responds to register access within
the 1394 Open HCI. As a master, it acts on behalf of the 1394 Open HCI DMA units to generate transactions on the host
bus. These transactions are used to move streams of data between system memory and the devices, as well as to read and
write the DMA command lists.

Figure 1-1 — 1394 Open HCI conceptual block diagram

1394 bushost bus

13
94

 L
in

k
an

d
P

H
Y

H
os

t
B

us
 I

nt
er

fa
ce

(b
us

 m
as

te
r)

IT
DMA

Physical Read
Request FIFO

S
W
A
P

IT
FIFO

S
W
A
P

AT Request
FIFO

S
W
A
P

AT Response
FIFO

S
W
A
P

AT Physical
Response FIFO

S
W
A
P

Physical Write
Request FIFO

S
W
A
P

AR Request
FIFO

S
W
A
P

AR Response
FIFO

S
W
A
P

IR
FIFO

S
W
A
P

Self-ID Receive
FIFO

AT Request
DMA

AT Response
DMA

Physical Re-
sponse Unit

Phys Read
Request Rcv

Phys Write
Request Rcv

Gen Request
Receive DMA

Gen Response
Receive DMA

IR
DMA

Self-ID
Receive DMA

Phy Read Req
internal
registers

Serial
ROM (Opt)

Parallel
ROM (Opt)

Copyright © 1996,1997 All rights reserved. Page 4

Introduction 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

1.3.2 DMA

The 1394 Open HCI supports six independent programmableDMA controllers. Each DMA controller has reserved
register space and can support at least one distinct logical data stream referred to as aDMA context.

Each asynchronous and isochronous context is comprised of a buffer descriptor list called aDMA context program, stored
in main memory. Buffers are specified within the DMA context program byDMA descriptors. Although there are some
differences from controller to controller as to how the DMA descriptors are used, all DMA descriptors use the same basic
format. The DMA controller sequences through its DMA context program(s) to find the necessary data buffers. This frees
the system from stringent interrupt response requirements after buffer completions. The mechanism for sequencing
through DMA contexts differs somewhat from one controller to the next and is described in detail for each controller in
their respective chapters.

The Self-ID receive controller does not utilize a DMA context program and consists instead of a pair of registers; one to
be configured by software, and one to be maintained by hardware.

The 1394 Open HCI also has physical request DMA controller that processes incoming requests that read directly from
host memory. This controller does not have a DMA context, it is instead controlled by dedicated registers.

1.3.2.1 Asynchronous transmit DMA

Asynchronous transmit DMA (ATDMA) consists of 3 DMA controllers: AT DMA request, AT DMA response, and the
Physical Response Unit. These three functions can share resources.

The AT DMA request controller and AT DMA response controller move transmit packets from buffers in memory to the
corresponding FIFO (request transmit FIFO - RQTF, or response transmit FIFO - RSTF). For each packet sent, it waits for
the acknowledge to be returned. If the acknowledge is busy, the DMA context will resend the packet up to a software-
configurable number of times.

When the receive DMA indicates that a physical read has been received, the Physical Response Unit takes over to send
the response packet. The Physical Response Unit can only interrupt the AT DMA response controller or AT DMA request
controller between packets.

The asynchronous transmit DMA only supports the single phase retry protocol (retry-X).

1.3.2.2 Asynchronous receive DMA

The asynchronous receive DMA (AR DMA), contains 2 DMA controllers: the Physical Request Unit and the AR DMA
controller.

Table 1-1 — DMA controllers and contexts

DMA controller number of contexts

Asynchronous Transmit Request 1

Asynchronous Transmit Response 1

Asynchronous Receive 2

Isochronous Transmit 4 minimum, 32 maximum

Isochronous Receive 4 minimum, 32 maximum

Self-ID Receive 1

Physical Receive 1

Physical Response 1

Copyright © 1996,1997 All rights reserved. Page 5

Introduction 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

The Physical Request Unit takes control when a request with a physical address is received. There are three types of
physical addresses: host memory addresses (corresponding to the 4Gbyte address of a typical 32-bit CPU), compare-swap
management addresses, and the bus_info_block. A “complete” acknowledge is sent to all accepted write requests handled
by the Physical Request Unit so no response packets are necessary.

The AR DMA controller handles all incoming asynchronous packets not handled by one of the other functions in the AR
DMA. It consists of two contexts, one for asynchronous response packets, and one for asynchronous request packets.
Each packet is copied into the buffers described by the corresponding DMA program. Note that received lock requests not
targeted to one of the four compare-swap management registers are always handled by the AR DMA request context.

1.3.2.3 Isochronous transmit DMA

The isochronous transmit DMA controller supports a minimum of four isochronous transmit DMA contexts and can be
implemented to support up to 32 isochronous transmit DMA contexts. Each context is used to transmit data for a single
isochronous channel. Data can be transmitted from each IT DMA context during each isochronous cycle.

1.3.2.4 Isochronous receive DMA

The isochronous receive DMA controller supports a minimum of four isochronous receive DMA contexts and can be
implemented to support up to 32 isochronous receive DMA contexts. All but one IR DMA context is used to receive
packets from a single isochronous stream (channel). One context, as selected by software, can be used to receive packets
from multiple isochronous streams (channels).

Isochronous packets in the receive FIFO are processed by the context configured to receive their respective isochronous
channel numbers. Each DMA context can be configured to strip packet headers or include the headers and trailers when
moving the packets into the buffers. In addition, each DMA context can be configured to concatenate multiple packets
into its buffers (bufferFill mode) or to place just a single packet into each buffer (packet-per-buffer mode).

1.3.2.5 Self-ID receive DMA

Self-ID packets (received during the bus initialization self-ID phase) are automatically routed to a single designated host
memory buffer by 1394 Open HCI self-ID receive DMA. Each time bus initialization occurs, the new self-ID packets will
be written into the self-ID buffer from the beginning of the buffer, thereby overwriting the old self-ID packets.

1.3.3 Global unique ID (GUID) interface

The optional GUID (EUI-64) interface is intended to interface to an external ROM device from which the 1394 64-bit
"node_unique_ID" may be loaded. If this interface is provided and an external device is present, the serialROM bit in the
Version Register is set and the GUID will be automatically loaded from the external ROM device following a hardware
reset. This interface is required for Host Controllers that are intended to be used on add-in cards. The specifics of the
interface to the external ROM device are outside the scope of this specification.

1.3.4 FIFOs

Data entering or leaving the FIFOs is conditionally byte-swapped. The 1394 Open HCI is designed to run in both little-
endian environments (x86/PCI) and byte-swapped big-endian environments (PowerMac/PCI). Note, however, that the
1394 standard specifies that data is treated as big-endian, with the most significant byte of a doublet, quadlet, or octlet
transmitted first. This means that the data coming through the FIFOs should be byte swapped if it is intended for a byte-
swapped little-endian PCI like the PowerMac (two byte-swap operations leaves the data in the original big-endian 1394
format). Little-endian x86 systems may or may not want the data byte swapped, so there are two flags that individually
enable byte swapping for header and data portions of the 1394 packets.

Copyright © 1996,1997 All rights reserved. Page 6

Introduction 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

1.3.4.1 Asynchronous transmit FIFOs

The asynchronous transmit FIFOs are temporary storage for non-isochronous packets that will be sent from the Host
Controller to devices on 1394. The asynchronous request FIFO is loaded by the asynchronous request DMA unit, the
asynchronous response FIFO is loaded by the asynchronous response DMA unit and the physical response FIFO is loaded
by the physical DMA response unit.

It is not required that these FIFOs be implemented as separate physical entities. A single FIFO can be used for all asyn-
chronous transmit packets as long as the implementation prevents pending asynchronous requests from blocking asyn-
chronous responses. For example, if a read request is being sent to a 1394 device that is returning ack_busy, this should
not prevent responses from either the physical DMA unit or the asynchronous response unit from being sent. Furthermore,
a busied response from the asynchronous response unit should not block responses from the physical DMA unit. Other
sections of this specification will provide implementation guidelines that will help ensure that the non-blocking require-
ments can be met with a single asynchronous transmit FIFO.

1.3.4.2 Isochronous transmit FIFO

The isochronous transmit FIFO (ITF), is temporary storage for the isochronous transmit data. The ITF is filled by the
ITDMA and is emptied by the transmitter.

1.3.4.3 Receive FIFOs

Conceptually there are several receive FIFOs for handling incoming asynchronous requests, asynchronous responses,
isochronous packets and self-ID packets. The FIFOs are used as a staging area for packets which will be routed to the
appropriate handler. There is no requirement on the number of hardware FIFOs that must be implemented to provide the
required functionality set forth in this document.

1.3.5 Link

The link module sends packets which appear at the transmit FIFO interfaces, and places correctly addressed packets into
the receive FIFO. It includes the following features:

• Transmits and receives correctly formatted 1394 serial bus packets
• Generates the appropriate acknowledge for all received asynch packets, including support for both the single and

dual phase retry protocol for received packets.
• Performs function of cycle master
• Generates and checks 32-bit CRC
• Detects missing cycle start packets.
• Interfaces to Open-HCI-compliant PHY (see section 1.4)
• Receives isoch packets at all times (does not ignore isoch packets received outside of the expected period between

cycle start and a subaction gap). This allows isoch data to be received even if there is a CRC error in a received cycle
start.

Copyright © 1996,1997 All rights reserved. Page 7

Introduction 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

The acknowledges generated by the link depend on the type of received packet, the address, and the state of the OpenHCI
FIFOs:

1.4 IEEE P1394A enhancements required for 1394 Open HCI

The 1394 Open HCI requires certain features proposed for the IEEE P1394A update. There are features proposed for the
PHY layer, link layer and for the bus manager. See Annex A., “P1394A enhancements required for 1394 Open HCI,” for
the complete list.

1.5 Software interface overview

There are three basic means by which software communicates with the 1394 Open HCI - registers, DMA, and interrupts.

1.5.1 Registers

The host architecture (PCI, for example) is responsible for mapping the 1394 Open HCI’s registers into a portion of the
processor’s address space.

1.5.2 DMA operation

DMA transfers in the 1394 Open HCI are accomplished through one of two methods:

a) DMA. Memory resident data structures are used to describe lists of data buffers. The 1394 Open HCI
automatically sequences through this buffer descriptor list. This data structure also contains status information
regarding the transfers. Upon completion of each data transfer, the DMA controller conditionally updates the
corresponding DMA Context Command and conditionally interrupts the processor so it can observe the status of
the transaction. A set of registers within the 1394 Open HCI is used to initialize each DMA context, and to
perform control actions such as starting the transfer.

Table 1-2 — Link generated acknowledges

Acknowledge Condition

ack_complete a) Any response with good CRC in both the header and data block (if there is one) that
can be fully loaded into the receive buffer.

b) A write request with the offset address between 48’h0 and 48’hFFFE_FFFF_FFFF
that can be fully loaded into the receive buffer.

ack_pending a) Any read request with good CRC in the header that can be fully loaded into the
receive buffer.

b) Any lock request with good CRC in both the header and data block that can be fully
loaded into the receive buffer.

c) A write request with the offset address between 48’hFFFF_0000_0000 and
48’hFFFF_FFFF_FFFF (the top 4GB, which includes the register space) that can be
fully loaded into the receive buffer.

ack_busy_X,
ack_busy_A,
ack_busy_B

Any received packet with a good CRC in both the header and data block (if there is one) that
cannot be fully loaded into the receive buffer. (The choice of _X, _A, or _B depends on the
choice of acknowledge algorithm and the particular “rt” value of the received packet.)

ack_data_error Any received packet with a good header CRC and a bad data CRC.

ack_type_error May be returned when the data_length for a block write request is larger than the size indicated
in the max_rec field of the Bus_Info_Block of the Host Controller. Always returned if
data_length is larger than max_recand the request is not handled by the physical response unit.

Copyright © 1996,1997 All rights reserved. Page 8

Introduction 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

b) Physical response DMA. The 1394 Open HCI can be programmed to accept 1394 read and write transactions to
the first 4 GB of node-offset address and treat them as reads and writes to the 32-bit memory space. In this mode,
the 1394 Open HCI acts as a bus bridge from 1394 into host memory.

The formats for the data sent and received in all these modes are specified in the applicable chapters.

1.5.3 Interrupts

When any DMA transfer completes (or aborts) an interrupt may be sent to the host system. In addition to the interrupt
sources which correspond to each DMA context completion, there is also a set of interrupts which correspond to other
1394 Open HCI functions/units. For example, one of these interrupts could be sent when a selfID packet stream has been
received.

The processor interrupt line is controlled by the IntEvent and IntMask registers. The IntEvent register indicates which
interrupt events have occurred, and the IntMask register is used to enable selected interrupts. Software writes to the
IntEventClear register to clear interrupt conditions in IntEvent.

In addition, there are registers used by the isochronous transmit and isochronous receive controllers to indicate interrupt
conditions for each context.

1.6 System Requirements

This Host Controller specification is intended to be largely independent of the type of system to which it is attached. The
intent is that Host Controller designs that follow this specification may be built for many different types of systems and
still adhere to the same programming model. The required system facilities are:

a) Host Controller must be able to initiate accesses of host system memory;

b) Host Controller must be able to modify system memory with byte granularity;

c) Host Controller must be able to signal an exception/interrupt to the host CPU;

d) access of 32-bit entities in either system memory or on the Host Controller must be endian neutral and atomic.

1.7 Alignment

1.7.1 Data alignment

The 1394 Open HCI must perform these two alignment functions:

a) Translate between the byte alignments of the host-based data and the quadlet aligned FIFO. For instance, if a 5
byte 1394 data packet is to be stored at host bus address 6, then the first two bytes of the first data quadlet in the
FIFO must be stored at host bus address 6 and 7 using a single word write, then the next two bytes of the first
quadlet in the FIFO combined with the first byte of the next quadlet in the FIFO are written to host bus address 8,
9, and 10.

b) Stuff extra zero bytes into the transmit FIFO when the number of bytes to transmit is not an integral number of
quadlets

1.7.2 Memory structure and buffer alignment

Alignment requirements for host memory data structures and host memory buffers can be found in sections of this
document where those elements are described.

Copyright © 1996,1997 All rights reserved. Page 9

Conventions - Notation and Terms 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

2. Conventions - Notation and Terms

2.1 Notation

2.1.1 Numeric Notation

Unless otherwise specified, numbers will be represented in Verilog language style. In particular, numbers with a “’h”
prefix are hexadecimal, “’b” are binary, and “’d” or those without a prefix are decimal. If a number precedes the “ ’ ”,
then it indicates the length of the number in bits. For example, 4’h8 is the binary number ’b1000.

2.1.2 Register Notation

2.1.2.1 Read/Write registers

All register field descriptions are tagged with one or more of the following:

2.1.2.2 Set and Clear registers

Throughout this document there are Host Controller registers that are identified asSet and Clear registers. These registers
have the property of having two addresses by which they may be referenced by the host. Unless otherwise stated in the
description of the register, a host read of either address will return the current contents of the register. Host writes,
however, have different effects when addressing the different addresses.

When the host writes to theSet address the value written is taken as a bit mask indicating which bits in the underlying
register are to be set to one. A one bit in the value written indicates that the corresponding bit in the register is to be set
to one, while a zero bit in the value written indicates that the corresponding bit in the register is not to be changed. Simi-
larly, host writes to theClear address specify a value that is a bit mask of bits to clear to zero in the underlying register,
a one bit means to clear the corresponding bit while a zero bit means to leave the corresponding bit unchanged. It is
intended that writing zero bits to these addresses has no effect on the corresponding bits in the underlying register,
including transient effects that could affect the operation of the Host Controller.

There are several reasons to use this type of register:

• The host doesn’t need to do both a read and a write to affect only a single bit.
• The host doesn’t risk the Host Controller modifying a bit while the host does a read-modify-write operation, thus

causing unintended effects.
• The host doesn’t have to serialize its access to frequently used registers in order to ensure that conflict with another

process doesn’t cause unintended effects.

Table 2-1 — read/write register field access tags

access tag
(rwu) name meaning

r read field may be read

w write field may be written from the host bus

u update field may be autonomously updated by Open HCI hardware

Copyright © 1996,1997 All rights reserved. Page 10

Conventions - Notation and Terms 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

2.1.2.3 Register Reset Values

Register field descriptions may be tagged with one or more of the following reset values. This column indicates the value of
the field immediately following a software reset or hardware reset. Except where otherwise noted, the results from a software
reset and hardware reset are the same. Note that the reset column is for software and hardware resets only and does not
include bus reset values (those are discussed as needed in the applicable text).

Unless otherwise specified, all fields will remain unchanged after a bus reset.

2.1.2.4 Reserved fields

All reserved fields (indicated by a hatched or grayed-out pattern) are read as zeros (but must be ignored) and must be
written as zeros.

2.1.2.5 Reserved registers

Addresses within the OpenHCI Register Address space that are marked as reserved must return zeros when read and must
ignore writes.

2.1.2.6 Register field notation

In descriptions which refer to specific register fields, the notation Rrrrr.fffff will be used where Rrrrr refers to the register
name andfffff refers to the referenced field within that register.

Table 2-2 — Set and Clear register field access tags

access tag
(rscu) name meaning

r read field may be read

s set field may be set from the host bus

c clear field may be cleared from the host bus

u update field may be autonomously updated by Open HCI hardware

Table 2-3 — Register field reset values

reset value meaning

x’by or x’hy Indicates the value (in binary or hexadecimal) of the field upon
completion of a reset. For description of Verilog notation see
section 2.1.1.

undef Following a reset, the value of this field is undefined and may
contain (any combination of) zero(s) or one(s).

N/A Not applicable. A reset does not have any affect on this field.

Copyright © 1996,1997 All rights reserved. Page 11

Conventions - Notation and Terms 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

2.2 Terms

The following terms and acronyms are used throughout this document.

AR DMA A synchronousReceiveDMA .

AR DMA Request Refers to the asynchronous receive DMA context that handles all incoming request packets not
handled by thephysical request unit.

AR DMA Response Refers to the asynchronous receive DMA context that handles all incoming response packets.

AT DMA A synchronousTransmitDMA .

AT DMA Request Unit Refers to the asynchronous transmit DMA subunit which moves transmit packets from buffers in
memory to the request transmit FIFO.

AT DMA Response Unit Refers to the asynchronous transmit DMA subunit which moves transmit packets from buffers in
memory to the response transmit FIFO.

big endian A term used to describe the arithmetic significance of data-byte addresses. With big-endian, the
data byte with the largest address is the least significant.a

bridge A hardware adapter that forwards transactions between buses.a

channel Refers to anisochronous channel number

CSR architecture ISO/IEC 13213: 1994 [ANSI/IEEE Std 1212, 1994 Edition],Information technology - Micropro-
cessor systems - Control and Status Registers (CSR) Architecture for microcomputer buses. The
CSR architecture supports the concept of bus bridges, which can transparently forward transac-
tions from one compliant bus to another.a

DMA context A distinct logical stream (not necessarily physical) through the Open HCI which can be described
by aDMA context program and a minimum of two registers: ContextControl and CommandPtr.

DMA context program A list of DMA descriptors which identify buffers used for data transfer.

DMA controller Refers to the mechanism used in support of a specific DMA function. Each controller utilizes and
maintains its own set of registers to perform its specified functionality.

DMA descriptor A data structure used to describe buffers and buffer-list control.

DMA descriptor block A group of DMA descriptors that are contiguous in host memory and can therefore be prefetched
by the Host Controller. The last DMA descriptor in a block contains the address of the next block
as well as a count of the number of descriptors contained in the next block. This count is referred
to as the Z value.

EUI-64 Extended Unique Identifier. SeeGlobal Unique ID below.

Global Unique ID A 64-bit node unique identifier, comprised of a 24-bit node company ID and a 40-bit chip ID.

GUID SeeGlobal UniqueID.

hardware reset Refers to a host power reset.

HC HostController. The device who’s interface is defined by this specification.

HCI H ostController Interface. The interface defined by this specification.

INPUT_* Abbreviated notation for INPUT_MORE and INPUT_LAST DMA commands.

IR DMA I sochronousReceiveDMA.

isochronous channel Within the packet header of an IEEE 1394 isochronous packet there is a 6 bit channel number.
Receivers “listen” for packets transmitted with particular channel number(s).

IT DMA I sochronousTransmitDMA.

ITF I sochronousTransmitFIFO.

Copyright © 1996,1997 All rights reserved. Page 12

Conventions - Notation and Terms 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

a. Information technology - Microprocessor systems - Control and Status Registers (CSR) Architecture for microcom-
puter buses, ISO/IEC 13213 [1994], The Institute of Electrical And Electronics Engineers, Inc., New York, NY.

b. Shanley, T. and Anderson, D. [February 1995],PCI System Architecture, Addison-Wesley, Reading, MA.
c. IEEE Standard for a High Performance Serial Bus, Std 1394-1995, The Institute of Electrical And Electronics Engi-

neers, Inc., New York, NY.

link layer (LINK) The layer, in a stack of three protocol layers defined for the Serial Bus, that provides the service
to the transaction layer of one-way data transfer with confirmation of reception. The link layer
also provides addressing, data checking, and data framing. The link layer also provides an isoch-
ronous data transfer service directly to the application.c

little endian A term used to describe the arithmetic significance of data-byte addresses. With little-endian, the
data byte with the smallest address is the least significant.a

Node ID This is a unique 16-bit number, which distinguishes the node from other nodes in the system.c

OHCI O penHostController Interface.

OUTPUT_* Abbreviated notation for OUTPUT_MORE and OUTPUT_LAST DMA commands.

PCI PeripheralComponentInterconnect. Specification that defines the PCI bus. This bus is intended
to define the interconnect and bus transfer protocol between highly-integrated peripheral adapters
that reside on a common local bus on the system board (or add-in expansion cards on the PCI
bus)b.

PHY Abbreviation for the physical layer.c

physical layer The layer, in a stack of three protocol layers defined for the Serial Bus, that translates the logical
symbols used by the link layer into electrical signals on the different Serial Bus media. The
physical layer guarantees that only one node at a time is sending data and defines the mechanical
interfaces for the Serial Bus.c

Physical Request Unit PhysicalRequestUnit. Refers to the asynchronous receive DMA subunit that handles physical
requests.

Physical Response Unit Refers to the asynchronous transmit DMA subunit that handles physical responses.

posted write A write request received by the Host Controller for which the Host Controller sends an
ack_complete before the data is actually written to system memory.

RQTF RequestTransmitFIFO. Refers to the FIFO used for asynchronous transmit requests.

RSTF ResponseTransmitFIFO. Refers to the FIFO used for asynchronous transmit responses. Used
for AT DMA responses and physical responses.

quadlet A 32-bit word.

RDMA R eceiveDMA .

ROM ReadOnly Memory.

software reset Refers to a Host Controller reset that is initiated by host software. See section 5.7, “HCControl
registers (set and clear).”

Z block SeeDMA descriptor block.

Copyright © 1996,1997 All rights reserved. Page 13

DMA overview 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

3. DMA overview

The 1394 Open HCI provides several types of DMA functionality:

a) General-purpose DMA handling asynchronous transmit and receive packets and isochronous transmit and receive
packets.

b) An inbound bus bridge function that allows 1394 devices to directly access system memory called “physical
DMA.”

c) A separate write buffer for the received self-ID packets.

d) A mapping between a 1K byte block in system memory and the first 1K of 1394 Configuration ROM.

This section will describe the common controller features and attributes.

3.1 Context Registers

A context provides the basic information to the Host Controller to allow it to fetch and process descriptors for one of the
several DMA controllers. All contexts (except for SelfID) minimally have a ContextControl Register and a CommandPtr
Register. The formats of the ContextControl Registers is DMA controller specific but all ContextControl registers mini-
mally have the bits as shown in figure 3-1 and described in table 3-1. The CommandPtr Registers for all controllers are
the same and follow the format shown in figure 3-2 and described in table 3-3.

Figure 3-1 — ContextControl (set and clear) register format

Table 3-1 — ContextControl (set and clear) register description

Field rscu reset Description

run rscu 1’b0 The run bit is set by software to enable descriptor processing for a context and
cleared by software to stop descriptor processing. The Host Controller will only
change this bit on a hardware or software reset to set it to 0. See section 3.1.1 for
details.

wake rsu undef Software sets this bit to 1 to cause the Host Controller to continue or resume descrip-
tor processing. The Host Controller will clear this bit on every descriptor fetch. See
section 3.1.2 for details.

dead ru 1’b0 The Host Controller sets this bit when it encounters a fatal error. The Host controller
clears this bit when software clears the run bit. See section 3.1.4 for details.

active ru 1’b0 The Host Controller sets this bit to 1 when it is processing descriptors. See
section 3.1.3 for details.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

dead
active

wake

run

spd ack/err
code

Copyright © 1996,1997 All rights reserved. Page 14

DMA overview 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

spd ru undef This field indicates the speed at which the packet was received or transmitted. 3’b000
= 100 Mbits/sec, 3’b001 = 200 Mbits/sec and 3’b010 = 400 Mbits/sec. All other
values are reserved. Spd only contains meaningful information for receive contexts.

ack/err code ru undef This field holds the acknowledge sent by the Link core for this packet, or an inter-
nally generated error code (evt_*) if the packet was not transferred successfully. All
possible ack/err codes are shown in Table 3-2, “Packet event codes,” below.

Table 3-2 — Packet event codes

Code Name DMA Meaning

5’h00 reserved

5’h01 ack_complete AT,AR
IT,IR

The destination node has successfully accepted the packet. If the packet was a request sub-
action, the destination node has successfully completed the transaction and no response
subaction shall follow.
The ack/err code for transmitted PHY, isochronous and broadcast packets, none of which
yields an ack code, will be set by hardware to ack_complete unless an evt_underrun or
evt_data_read occurs.

5’h02 ack_pending AT,AR The destination node has successfully accepted the packet. If the packet was a request sub-
action, a response subaction will follow at a later time. This code is not returned for a
response subaction.

5’h03 reserved

5’h04 ack_busy_X AT The packet could not be accepted after max ATRetries (see section 5.4) attempts, and the
last ack received was ack_busy_X.

5’h05 ack_busy_A AT The packet could not be accepted after max ATRetries (see section 5.4) attempts, and the
last ack received was ack_busy_A.

NOTE: The 1394 Open HCI does not support the dual phase retry protocol for transmitted
packets, so this ack should not be received.

5’h06 ack_busy_B AT The packet could not be accepted after max AT Retries (see section 5.4) attempts, and the
last ack received was ack_busy_B. (See note for “ack_busy_A”)

5’h07 -
5’h0C

reserved

5’h0D ack_data_error AT,IR The destination node could not accept the block packet because the data field failed the
CRC check, or because the length of the data block payload did not match the length con-
tained in the data_length field. This code is not returned for any packet that does not have
a data block payload.

5’h0E ack_type_error AT A field in the request packet header was set to an unsupported or incorrect value, or an
invalid transaction was attempted (e.g., a write to a read-only address).

5’h0F reserved

5’h10 evt_tcode_err AT A bad tCode is associated with this packet. The packet was flushed.

5’h11 evt_short_packet IR For IRpacket-per-buffer mode only. The received data length was less than the packet’s
data_length.

5’h12 evt_long_packet IR For IRpacket-per-buffer mode only. The received data length was greater than the
packet’s data_length.

5’h13 evt_missing_ack AT A subaction gap was detected before an ack arrived.

5’h14 evt_underrun AT Underrun on the corresponding FIFO. The packet was truncated. See Section 13.2.3 for
further details.

Table 3-1 — ContextControl (set and clear) register description

Field rscu reset Description

Copyright © 1996,1997 All rights reserved. Page 15

DMA overview 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

.

3.1.1 ContextControl.run

The ContextControl.run bit is set by software when the Host Controller is to begin processing descriptors for the context.
Before software sets ContextControl.run, ContextControl.active must not be set, and the CommandPtr Register for the
context must contain a valid descriptor block address and a Z value that is appropriate for the descriptor block address.

5’h15 evt_overrun IR A receive FIFO overflowed during the reception of an isochronous packet.

5’h16 evt_descriptor_read AT,AR
IT,IR

An unrecoverable error occurred while the Host Controller was reading a descriptor
block.

5’h17 evt_data_read AT,IT An error occurred while the Host Controller was attempting to read from host memory in
the data stage of descriptor processing.

5’h18 evt_data_write AR,IR An error occurred while the Host Controller was attempting to write to host memory in
the data stage of descriptor processing.

5’h19 evt_bus_reset AR Identifies a PHY packet in the receive buffer as being the synthesized bus reset packet.
(See section 8.4.2.3).

5’h1A evt_timeout AT Indicates that the asynchronous transmit response packet expired and was not transmitted.

5’h1B-
5’h1D

reserved

5’h1E evt_unknown AT,AR
IT,IR

An error condition has occurred that cannot be represented by any other event codes
defined herein.

5’h1F evt_flushed AT Sent by the link side of the output FIFO when asynchronous packets are being flushed due
to a bus reset.

Figure 3-2 — CommandPtr register format

Table 3-3 — CommandPtr register description

Field rwu reset Description

descriptorAddress rwu undef Contains the upper 28 bits of the address of a 16-byte aligned descriptor block. See
section 3.1.5 for details.

Z rwu undef Indicates the number of contiguous descriptors at the address pointed to by descriptorAd-
dress. If Z is 0, it indicates that the descriptorAddress is not valid. See sections 3.1.4.1 and
3.1.5 for details.

Table 3-2 — Packet event codes (Continued)

Code Name DMA Meaning

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

descriptorAddress [31:4] Z

Copyright © 1996,1997 All rights reserved. Page 16

DMA overview 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Software may stop the Host Controller from further processing of a context by clearing ContextControl.run. When a
ContextControl.run is cleared, the Host Controller will stop processing of the context in a manner that will not impact the
operation of any other context or DMA controller. The Host Controller may require a significant amount of time to safely
stop processing for a context but when the Host Controller does stop, it will clear ContextControl.active. If software
clears a ContextControl.run for an isochronous context while the Host Controller is processing a packet for the context,
the Host Controller will continue to receive or transmit the packet and update descriptor status. The Host Controller will,
however, stop at the conclusion of that packet. If ContextControl.run is cleared for a non-isochronous context, the Host
Controller may stop processing at any convenient point as long as the context and descriptors end up in a consistent state
(e.g., status updated if a packet was sent and acknowledged).

Clearing ContextControl.run may have other side effects that are DMA controller dependent. These effects are described
in the chapters that cover each of the DMA controllers.

When software clears ContextControl.run and the Host Controller has stopped, the Host Controller is not necessarily in a
state that can be restarted simply by setting ContextControl.run. Software should always ensure that
CommandPtr.descriptorAddress and CommandPtr.Z are set to valid values before setting ContextControl.run.

3.1.2 ContextControl.wake

When software adds to a list of descriptors for a context, the Host Controller may have already read the descriptor that
was at the end of the list before it was updated. The value that the Host Controller read may contain a Z value of zero
indicating the end of the descriptor list. The ContextControl.wake bit provides a simple semaphore to the hardware to
indicate that the list may be changed since the last time that Host Controller read a descriptor. Therefore, if the Host
Controller had fetched a descriptor and the indicated branch address had a Z value of zero, then the Host Controller
should reread the pointer value. If, on the reread, the Z value is still zero, then the end of the list has been reached and the
Host Controller should clear ContextControl.active. If, however, the Z value is now non-zero, the Host Controller will
continue processing.

In order to ensure that a wake condition is not missed, the Host Controller should clear ContextControl.wake before it
reads or rereads a descriptor.

ContextControl.wake is ignored when ContextControl.run is zero.

3.1.3 ContextControl.active

ContextControl.active is set and cleared only by the Host Controller. It is set when the Host Controller receives an indi-
cation from software that a valid descriptor is available for processing. This indication can come as a result of software
setting the ContextControl.run or by software setting ContextControl.wake while ContextControl.run is set. There are four
cases in which the Host Controller will clear ContextControl.active: when a branch is indicated by a descriptor but the Z
value of the branch address is 0; when software clears ContextControl.run and the Host Controller has reached a safe
stopping point; while ContextControl.dead is set; and after a hardware or software reset of the Host Controller. Addition-
ally, for the asynchronous transmit contexts (request and response), the Host Controller will clear ContextControl.active
when a bus reset occurs.

When ContextControl.active is cleared and ContextControl.run is already clear, the Host Controller will set the IntEvent
bit for the context. This interrupt is the same interrupt that would have been generated by the context if a completed
descriptor had indicated that an interrupt should be generated.

Copyright © 1996,1997 All rights reserved. Page 17

DMA overview 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

3.1.4 ContextControl.dead

ContextControl.dead is used to indicate a fatal error in processing a descriptor. When ContextControl.dead is set by the
Host Controller, ContextControl.active is cleared but ContextControl.run remains set. In addition, setting ContextCon-
trol.dead causes an unrecoverableError interrupt event (see Table 6-1) and blocks a normal context event interrupt from
being set.

ContextControl.dead is cleared when software clears ContextControl.run or by either a hardware or software reset of the
Host Controller.

Software can determine the cause of a context going dead by checking the ContextControl.ack/err code (table 3-2). The
defined reasons for the Host Controller to set ContextControl.dead are described in section 3.1.4.1 and section 13., “Host
Bus Errors.”

3.1.4.1 Bad Z Value

When software sets ContextControl.run and CommandPtr.Z contains an invalid value for the controller and context (e.g.,
not equal to 1 for asynchronous receive or set to 0), the Host Controller will set ContextControl.dead and not process any
descriptors in that context.

3.1.5 CommandPtr

Software initializes CommandPtr.descriptorAddress to contain the address of the first descriptor block that the Host
Controller will access when software enables the context by setting ContextControl.run. Software also initializes
CommandPtr.Z to indicate the number of descriptors in the first descriptor block. Software shall only write to this register
when both ContextControl.run and ContextControl.active are zero. The Host Controller is not required to enforce this rule
and its behavior when this rule is violated is undefined.

Since the Host Controller utilizes the CommandPtr register while processing a context, there is a set of guidelines by
which software may safely and deterministically read CommandPtr. These guidelines are based on the ContextControl bits
as follows (X=’don’t care’):

If ContextControl.run is set and ContextControl.dead is not set, then the contents of CommandPtr are only specified if
both ContextControl.active and ContextControl.wake are clear. In this instance, CommandPtr.descriptorAddress will
contain the address of a descriptor within the last descriptor block that was executed. If ContextControl.run and Context-
Control.dead are both set, then descriptorAddress points to a descriptor within the descriptor block in which an unrecov-
erable error occurred.

Table 3-4 — CommandPtr read values

ContextControl fields

CommandPtr.descriptorAddress Valuerun dead active wake

0 0 X X A descriptor block address. Either last
written or last executed

1 0 0 0 Refers to the descriptor block that con-
tains the Z=0 that caused the Host Con-
troller to set active to 0.

1 0 0 1 Contents unspecified.

1 0 1 0 Contents unspecified.

1 0 1 1 Contents unspecified.

1 1 X X Points to the descriptor block in which
a fatal error occurred.

Copyright © 1996,1997 All rights reserved. Page 18

DMA overview 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Except for the case where software initializes CommandPtr, the value of CommandPtr.Z is undefined and Z may contain
a value that is implementation dependant.

The value of CommandPtr is undefined after a hardware or software reset of the Host Controller.

3.2 List Management

All contexts use an identical method for controlling the processing of descriptors associated with the context. This
presents a uniform interface to controlling software and allows reuse of hardware on the Host Controller.

3.2.1 Software Behavior

3.2.1.1 Context Initialization

Software initializes the context by first checking to see that ContextControl.run, ContextControl.active and ContextCon-
trol.dead are all 0. Then, CommandPtr.descriptorAddress is written to point to a valid descriptor block and CommandPtr.Z
is set to a value that is consistent with the descriptor block. Then ContextControl.run can be set.

3.2.1.2 Appending to Running List

Software may append to a list of descriptors at any time. Software may append either a single descriptor or a linked list
of descriptors. When the to-be-appended list is properly formatted, software updates the branch address and Z value of the
descriptor that was at the end of the list being processed by the Host Controller.

When software completes linking process it must set ContextControl.wake for the context. This ensures that the Host
Controller will resume operation if it had previously reached the end of the list and gone inactive.

3.2.1.3 Stopping a Context

Software can stop a running context by clearing ContextControl.run. The context might not stop immediately. To ensure
that the context has stopped, software must wait for ContextControl.active to be cleared by the Host Controller. This indi-
cates that the Host Controller has completed all processing associated with the context.

3.2.2 Hardware Behavior

The Host Controller has several DMA controllers each of which has one or more contexts. Each DMA controller is
expected to examine each of its contexts on a periodic basis and make operational decisions based on the context state as
contained in ContextControl. The flow-chart for how a DMA controller uses the ContextControl state to govern descriptor
processing is shown below. This process is executed once each time a context is ‘scheduled’. Scheduling of a context is
dependent on the DMA controller. For example, an isochronous transmit context will be scheduled once per cycle while
an asynchronous request transmit context will only be scheduled once per fairness interval.

Copyright © 1996,1997 All rights reserved. Page 19

DMA overview 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

.

Figure 3-3 — Flow Chart for processing a descriptor

get branch
addr***

no

yes

dead=0? set
active=0

run=1? no

yes

active=0? no set
wake=0

process
descriptor

block**
Z>0?

set
active=0 done

no

yes

set cmd=
branch addr

done

yes

wake=1?
no done

yes

set
wake=0

Z>0? no done

set cmd=
branch addr

set
active=1

done

**fetches and processes the descriptor
block. yields the branch entry
(addr+Z) of the next cmd descriptor

***refetch last known cmd’s
branch entry

done

iso_context
?
yes

no

start

yes

set
active=0

done

Copyright © 1996,1997 All rights reserved. Page 20

DMA overview 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

3.3 Asynchronous Receive

The Host Controller accepts 1394 transactions and groups them as follows:

1) physical read requests - physical read requests are handled directly by the Host Controller and are not made
visible to system software. DMA contexts and controllers that are used in a Host Controller for the physical
read request unit are implementation specific. This specification places no limits on the physical response
unit other than its effective address range and the requirement that the Host Controller may not block
processing of other transaction types while dealing with physical requests.

2) self-ID packets - PHY packets with the selfID format can be received at any time. However, only those
packets that are received during the selfID phase of bus initialization which immediately follows a bus reset
are considered to be selfID packets. Others are considered simply to be PHY packets which are handled like
asynchronous requests. The Host Controller can be programmed to accept or ignore selfID packets. When
selfID packets are accepted, they are stored in a special memory buffer which has a dedicated controller and
context. Because of this special memory buffer, selfID packets can never get ‘stuck’ in a FIFO.

3) asynchronous responses - when the host system initiates a request through the asynchronous transmit request
context, the response will be handled by the asynchronous receive response context. The fact that host system
software initiates the process and the fact that the Host Controller has a separate context for responses allows
system software to budget for all responses which ensures that the Host Controller will always have a place
in system memory to store a response when it arrives. In the unlikely event that the Host Controller does not
have a place for the response it is allowed to drop the response when it arrives. This will cause a split-
transaction timeout which is an error condition with which the software is already able to deal.

4) asynchronous requests - a request may arrive at the Host Controller at any time. Additionally, a request can
be of any size up to the limits imposed by the max_rec field in the Bus_Info_Block. Because of the
unpredictable nature of this transaction type, it is impractical for the system software to ensure that there is
always sufficient buffer space defined in the asynchronous request receive buffers.

The limitations and requirements for handling each of the transaction types suggest some ways of simplifying the
hardware implementation so that a FIFO is not needed for each of the input transaction types. One simplification would
be to place asynchronous requests into a first FIFO and then send all other transaction types (except for physical reads)
through a second FIFO. This two FIFO scheme provides the necessary non-blocking behavior because the Host Controller
will always be able to remove transactions from the second FIFO whether or not buffer space exists for the transaction.
The selfID, isochronous and asynchronous response transactions will either have a buffer defined for the transaction or it
is permissible to discard the transaction if no buffer exists to receive it. This leaves requests to be sent to the first FIFO.
When that FIFO fills, additional requests will receive ack_busy until system software makes space available to the Host
Controller by adding descriptors to the context.

There is an alternative implementation which is to use a single physical FIFO but ensure that it provides the behavior of
the multiple FIFOs. This is a bit more complex than the dual FIFO case but may result in a net savings in hardware. The
issue with using a single physical FIFO for all incoming transactions is to make sure that no request is placed in the FIFO
unless there is a place for it in system memory. There are several way of accomplishing this with one given as an example
here.

On the link side of the input FIFO a counter is maintained. This counter is initialized to 0 when, for the AR request
context, ContextControl.run is not set. When the system side of the FIFO reads a request descriptor, the reqLength value
from the descriptor is passed to the link side of the FIFO. The link side then adds this value to the current count value.
When the count value on the link side is greater than zero, the link can accept request data and place it into the FIFO.
After each request, other than a physical write request, quadlet is placed in the FIFO the link side decrements the counter.
When the counter reaches 1, the link checks to see if the end of packet has been reached. If it has, the link uses the last
entry for the footer value (cycleCount, speed and ackSent.) If the end of the packet has not been reached, the link places
an error value in the last quadlet to indicate that the packet was not totally received and then the link returns an ack_busy
to the requestor. The system side of the fifo can indicate that additional space has been made available by writing a new
value to the link side. The link side will add these values to the current count value.

Copyright © 1996,1997 All rights reserved. Page 21

DMA overview 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

The system side of the FIFO will send count values to the link side on two occasions. The first is when a descriptor is
initially fetched and the reqLength in the descriptor is sent to the link side. It is required that the Host Controller have a
look ahead of at least one descriptor (current plus next). If the Host Controller does not look ahead, the link side will not
be able to accept packets that cross descriptor boundaries.

The second instance when the system side of the input FIFO sends a count value to the link side is when the system side
sees a packet that has an error. Packets that contain errors (e.g., CRC) are always 'backed out' of the buffer when the
context is in buffer fill mode. The AR request context can only be in buffer fill mode so all bad packets must be 'backed
out'. When a packet is backed out, the space that was allocated for that packet is made available for other packets and the
link side of the FIFO must be informed of the amount of data that has been backed out. A simple implementation of this
is to maintain a counter on the system side of the FIFO that is reset at the beginning of each packet. As each quadlet is
removed from the FIFO, the counter is incremented. At the end of the packet, the Host Controller checks the error code.
If it indicates that there was an error, and the packet was a request, the count value is sent to the link side of the FIFO to
indicate the amount of space that has been 'reclaimed'.

The reqLength field in a descriptor may indicate a size as large as 65,532 bytes (16,383 quadlets.) If quadlet counts are
maintained this means that 14 bits are required to indicate the maximum number of quadlets (0x3FFF). To allow for look
ahead, the link side counter should be able to hold a value equal to two maximum sized buffers which is 32,766
(0x7FFFE) quadlets or 15 bits. Since the system software is required to allocate buffers that are sized to accept the
maximum sized packet (as described in max_rec of the Bus_Info_Block) the Host Controller need only do one level of
look ahead on the buffer descriptors to make sure that the maximum sized packet can be accepted.

If an unrecoverable error occurs when the Host Controller is writing to the AR request buffer, a fail indication is sent to
the link side of the FIFO. This indicates that the link side should set its count to zero which will busy further read
requests and write requests that are destined for the AR request buffer.

If the AR request context has an unrecoverable error, requests may be in the FIFO some of which may be posted writes.
The system side of the FIFO will continue to unload the FIFO even though the AR request context is dead. If a read
request is found, a response is returned with the response code set to resp_conflict_error which means that the request can
be retired. If a write request is found and that write request would have been sent to the AR request queue, the Host
Controller saves the error information for the request (source node ID and offset address) and continues to unload the
FIFO, discarding all the write data. When the end of the packet is found, the ackSent code is inspected. If ack_pending
was sent, then a response packet is sent with the response code set to resp_conflict_error. If ack_complete had been sent
and the write was to physical memory space (below offset 48’h0001_0000_0000) then a posted write error is reported.
Note that the host controller will hold the error information until a packet is successfully written so that if an error occurs
in the middle of writing a packet, the proper recovery can be made (send resp_conflict_error or generate posted write
error as appropriate).

Copyright © 1996,1997 All rights reserved. Page 22

DMA overview 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

3.4 DMA Summary

The table below is a summary of registers and features used by the OpenHCI DMA controllers. Each controller is fully
described later in this document.

Table 3-5 — DMA Summary

DMA Contexts
Per Context

Registers
Per Context
Interrupts Receive mode DMA commands Z

tcodes
(4’hx)

Asynchronous
Transmit

(section 7.0)

1 Request ContextControl
CommandPtr

reqTxComplete OUTPUT_MORE
OUTPUT_MORE-Immediate
OUTPUT_LAST
OUTPUT_LAST-Immediate

2-8

0, 1, 4,
5, 9, E

1 ResponseContextControl
CommandPtr

respTxComplete 2, 6, 7,
B

Asynchronous
Receive

(section 8.0)

1 Request ContextControl
CommandPtr

ARRQ
RQPkt buffer-fill INPUT_MORE 1

0, 1, 4,
5, 9, E

1 ResponseContextControl
CommandPtr

ARRS
RSPkt

2, 6, 7,
B

Isochronous
Transmit

(section 9.0) 4-32 ContextControl
CommandPtr

isochTx
isoXmitIntEventn
isoXmitIntMaskn

OUTPUT_MORE
OUTPUT_MORE-Quadlet
OUTPUT_LAST
OUTPUT_LAST-Quadlet
STORE_VALUE

1-8 A

Isochronous
Receive

(section 10.0) 4-32
ContextControl
CommandPtr
ContextMatch

isochRx
isoRecvIntEventn
isoRecvIntMaskn

packet-per-bufferINPUT_MORE
INPUT_LAST

1-8
as

recv’dbuffer-fill INPUT_MORE 1

Self-ID
(section 11.0)

1 SelfIDBuffer
SelfIDCount

SelfIDComplete buffer-fill N/A

Copyright © 1996,1997 All rights reserved. Page 23

Register addressing 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

4. Register addressing

The 1394 Open HCI’s registers occupy a 2048 byte address space. This 2048 byte space is allocated to control registers,
common DMA controller registers and individual DMA context registers as indicated below. Writes to reserved addresses
of the 1394 Open HCI address space may have unexpected results and are disallowed. Reads of reserved addresses is
undefined. Host processors may only access Host Controller registers with quadlet reads or writes on quadlet boundaries.

All addresses within this 2K address space are reserved for OpenHCI and not for vendor defined registers.

Annex B. describes how this memory space is accessed from PCI.

4.1 DMA Context Number Assignments

The 1394 Open HCI contains up to 68 DMA contexts, 4 for asynchronous and from 8 up to 64 for isochronous. The
controller number assignments for asynchronous DMA are illustrated below. Note that these numbers correspond to the
“cc” DMA controller select values in the table above.

For the isochronous transmit contexts,t_tttt represents IT contexts numbered 0-31.
For the isochronous receive contexts,vv_vvv represents IR contexts numbered 0-31.

Table 4-1 — 1394 Open HCI register space map

Offset (binary) Space

00R_RRRR_RR00
(11’h000 to 11’h17C)

control register space

R_RRRR_RR selects register

001_1ccR_RR00
(11’h180 to 11’h1FC)

Asynchronous DMA context register space

cc = 2’h0-2’h3 selects DMA context
R_RR selects DMA context register

01t_tttt_RR00
(11’h200 to 11’h3FC)

Isochronous Transmit DMA context register space

t_tttt = 5’h00-5’h1F selects IT DMA context
RR selects DMA context register

1vv_vvvR_RR00
(11’h400 to 11’7FC)

Isochronous Receive DMA context register space

vv_vvv = 5’h00-5’h1F selects IR DMA context
R_RR selects DMA context register

Table 4-2 — Asynchronous DMA Context number assignments

DMA Context
Number Context Name

2’h0 Asynchronous Transmit Request

2’h1 Asynchronous Transmit Response

2’h2 Asynchronous Request Recieve

2’h3 Asynchronous Response Receive

Copyright © 1996,1997 All rights reserved. Page 24

Register addressing 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

4.2 Register Map

Table 4-3 — Register addresses (Sheet 1 of 3)

Offset DMA Context Read value Write value See clause

11’h000 Version - 5.2

11’h004 GUID_ROM GUID_ROM 5.3

11’h008 ATRetries ATRetries 5.4

11’h00C CSRReadData CSRWriteData 5.5.1

11’h010 CSRCompareData CSRCompareData 5.5.1

11’h014 CSRControl CSRControl 5.5.1

11’h018 ConfigROMhdr ConfigROMhdr 5.5.2

11’h01C BusID - 5.5.3

11’h020 BusOptions BusOptions 5.5.4

11’h024 GUIDHi GUIDHi 5.5.5

11’h028 GUIDLo GUIDLo 5.5.5

11’h02C Reserved Reserved

11’h030 Reserved Reserved

11’h034 ConfigROMmap ConfigROMmap 5.5.6

11’h038 PostedWriteAddressLo PostedWriteAddressLo 12.3

11’h03C PostedWriteAddressHi PostedWriteAddressHi

11’h040 Vendor ID - 5.6

11’h044 -
11’h04C

Reserved Reserved

11’h050 HCControl HCControlSet 5.7

11’h054 HCControlClear 5.7

11’h058 -
11’h05C

Reserved Reserved

11’h060 Self ID Reserved Reserved

11’h064 SelfIDBuffer SelfIDBuffer 11.1

11’h068 SelfIDCount 11.2

11’h06C Reserved Reserved

11’h070 IRChannelMaskHi IRChannelMaskHiSet 10.4.1.1

11’h074 IRChannelMaskHiClear

11’h078 IRChannelMaskLo IRChannelMaskLoSet

11’h07C IRChannelMaskLoClear

Copyright © 1996,1997 All rights reserved. Page 25

Register addressing 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

11’h080 IntEvent IntEventSet 6.2.1

11’h084 (IntEvent & IntMask) IntEventClear

11’h088 IntMask IntMaskSet 6.2.2

11’h08C - IntMaskClear

11’h090 IsoXmitIntEvent IsoXmitIntEventSet 6.2.3.1

11’h094 IsoXmitIntEventClear

11’h098 IsoXmitIntMask IsoXmitIntMaskSet 6.2.3.2

11’h09C IsoXmitIntMaskClear

11’h0A0 IsoRecvIntEvent IsoRecvIntEventSet 6.2.4.1

11’h0A4 IsoRecvIntEventClear

11’h0A8 IsoRecvIntMask IsoRecvIntMaskSet 6.2.4.2

11’h0AC IsoRecvIntMaskClear

11’h0B0-
11’h0DC

Reserved Reserved

11’h0E0 LinkControl LinkControlSet 5.8

11’h0E4 LinkControlClear

11’h0E8 Node ID Node ID 5.9

11’h0EC Phy Control Phy Control 5.10

11’h0F0 Isochronous Cycle Timer Isochronous Cycle Timer 5.11

11’h0F4-
11’h0FC

Reserved Reserved

11’h100 AsynchronousRequestFilterHi AsynchronousRequestFilterHiSet 5.12.1

11’h104 AsynchronousRequestFilterHiClear

11’h108 AsynchronousRequestFilterLo AsynchronousRequestFilterLoSet

11’h10C AsynchronousRequestFilterLoClear

11’h110 PhysicalRequestFilterHi PhysicalRequestFilterHiSet 5.12.2

11’h114 PhysicalRequestFilterHiClear

11’h118 PhysicalRequestFilterLo PhysicalRequestFilterLoSet

11’h11C PhysicalRequestFilterLoClear

11’h120-
11’h17C

Reserved Reserved

11’h180 Async request
transmit

ContextControl ContextControlSet 3.1, 7.2.2

11’h184 ContextControlClear

11’h188 Reserved Reserved

11’h18C CommandPtr CommandPtr 3.1.5, 7.2.1

11’h190-
11’h19C

Reserved Reserved

Table 4-3 — Register addresses (Sheet 2 of 3)

Offset DMA Context Read value Write value See clause

Copyright © 1996,1997 All rights reserved. Page 26

Register addressing 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

11’h1A0 Async response
transmit

ContextControl ContextControlSet 3.1, 7.2.2

11’h1A4 ContextControlClear

11’h1A8 Reserved Reserved

11’h1AC CommandPtr CommandPtr 3.1.5, 7.2.1

11’h1B0-
11’h1BF

Reserved Reserved

11’h1C0 Async request
receive

ContextControl ContextControlSet 3.1, 8.3.2

11’h1C4 ContextControlClear

11’h1C8 Reserved Reserved

11’h1CC CommandPtr CommandPtr 3.1.5, 8.3.1

11’h1D0-
11’h1DF

Reserved Reserved

11’h1E0 Async response
receive

ContextControl ContextControlSet 3.1, 8.3.2

11’h1E4 ContextControlClear

11’h1E8 Reserved Reserved

11’h1EC CommandPtr CommandPtr 3.1.5, 8.3.1

11’h1F0-
11’h1FF

Reserved Reserved

11’h200 +
16*n

Isoch transmit n,
where “n” = 0 for
context 0, 1 for
context 1, etc...

ContextControl ContextControlSet 3.1, 9.2.2

11’h204+
16*n

ContextControlClear

11’h208+
16*n

Reserved Reserved

11’h20C +
16*n

CommandPtr CommandPtr 3.1.5, 9.2.1

11’h400 +
32*n

Isoch Receive n,
where “n” = 0 for
context 0, 1 for
context 1, etc.

ContextControl ContextControlSet 3.1, 10.3.2

11’h404 +
32*n

ContextControlClear

11’h408 +
32*n

Reserved Reserved

11’h40C +
32*n

CommandPtr CommandPtr 3.1.5, 10.3.1

11’h410+
32*n

ContextMatch ContextMatch 10.3.3

11’h414+
32*n

Reserved Reserved

11’h418+
32*n

Reserved Reserved

11’h41C+
32*n

Reserved Reserved

Table 4-3 — Register addresses (Sheet 3 of 3)

Offset DMA Context Read value Write value See clause

Copyright © 1996,1997 All rights reserved. Page 27

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

5. 1394 Open HCI Registers

5.1 Register Conventions

Unless otherwise specified, all register fields will initialize as zeros. For software, reads of reserved locations (indicated
by a hatched or grayed-out pattern) yield undefined results.

Similarly, unless otherwise specified, all fields will remain unchanged after a 1394 bus reset.

Refer to Section 2.1.2 for an explanation of register notation.

5.2 Version Register

This register contains a 32 bit value which indicates the version and capabilities of the interface. The register is expected
to be used to indicate the level of functionality present in the 1394 Open HCI. This register is read only.

Figure 5-1 — Version register

Table 5-1 — Version register

field name rwu reset description

GUID_ROM r N/A The bus_info_block will be automatically loaded on hardware reset.

version r N/A Major version of the Open HCI. This field contains the bcd encoded value
representing the major version of the highest numbered 1394 OpenHCI
specification with which this controller is compliant. For example, a Host
Controller implemented to this specification (Draft 0.91) will have a version
value of 8’h00 and a Host Controller implemented to version 2.25 of this
specification will have a vaue of 8’h02.

revision r N/A Minor version of the Open HCI. This field contains the bcd encoded value
representing the minor version of the highest numbered 1394 OpenHCI
specification with which this controller is compliant. For example, a Host
Controller implemented to this specification (Draft 0.91) will have a revision
value of 8’h91 and a Host Controller implemented to version 2.25 of this
specification will have a vaue of 8’h25.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

version

GUID_ROM

revision

Copyright © 1996,1997 All rights reserved. Page 28

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

5.3 GUID ROM register (optional)

The GUID ROM register is used to access the GUID ROM, and is only present if the Version.GUID_ROM bit is set.

To initialize the GUID ROM read address, software sets GUIDROM.addrReset to 1 then subsequently sets it to 0. When
software reads a ROM byte - by setting GUIDROM.rdStart, then reading this register until GUIDROM.dataReady is 1 -
the Host Controller automatically increments the ROM address to set up for the next read.

5.4 ATRetries Register

The AT retries register holds the number of times the 1394 Open HCI will attempt to do a retry for asynchronous DMA
request transmit and for asynchronous physical and DMA response transmit.

Figure 5-2 — GUID ROM register

Table 5-2 — GUID ROM register

field name rwu reset description

addrReset rw undef This bit is set to one to reset the ROM address to zero. It must be cleared for
any reads.

rdStart rw 1’b0 A read of the currently addressed ROM byte is started on the transition of this
bit from a zero to a one.

dataReady ru undef This bit is cleared when the rdStart bit goes from a zero to a one and is set when
the currently addressed byte is available in the rdData field. The ROM address
is then incremented to the next byte.

rdData ru undef The data read from the ROM.

Figure 5-3 — ATRetries register

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

addrReset
rdStart

dataReady

rdData

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

{ { {

maxPhysRespRetries maxATRespRetries maxATReqRetries

Copyright © 1996,1997 All rights reserved. Page 29

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

The Host Controller is required to wait for a fairness interval before retrying a response packet. Further, when one
response is retried all other responses are blocked.

5.5 Autonomous CSR Resources

The 1394 Open HCI implements a number of autonomous CSR resources. In particular the 1394 compare-swap bus
management registers are implemented in hardware, as is the config ROM header, the bus_info_block and access to the
first 1K bytes of the configuration ROM. The DMA units handle external 1394 bus requests to these resources automati-
cally, and the following registers manage this function for the local host

5.5.1 Bus Management CSR Registers

1394 requires certain 1394 bus management resource registers be accessible only via "quadlet read and quadlet lock"
(compare-and-swap) transactions. These special bus management resource registers are implemented internal to the 1394
Open Host Controller to allow atomic compare-and-swap access from either the host system or from the 1394 bus.

Table 5-3 — ATRetries register

field name rwu reset description

maxPhysRespRetries rw undef The maxPhysRespRetries field tells the Physical Response Unit how many
times to attempt to retry the transmit operation for the response packet when a
“busy” acknowledge is received from the target node. Note that this value is
used only for responses to physical requests.

maxATRespRetries rw undef The maxATRespRetries field tells the Asynchronous Transmit Response Unit
how many times to attempt to retry the transmit operation for the response
packet when a “busy” acknowledge is received from the target node. Note that
this value is used only for responses sent by software via the Asynchronous
Transmit Response DMA context.

maxATReqRetries rw undef The maxATRetries field tells the Asynchronous Transmit DMA Request Unit
how many times to attempt to retry the transmit operation for a packet when a
“busy” acknowledge is received from the target node. Note that this value is
used only for requests sent by software via the Asynchronous Transmit
Request DMA context.

Table 5-4 — Serial Bus Registers

CSR address csrSel description

reset
(hardware reset or

bus reset)

48'hFFFF_F000_021C 2’h0 Bus Manager ID 6’3F

48'hFFFF_F000_0220 2’h1 BANDWIDTH_AVAILABLE 13’h1333
(’d4915)

48'hFFFF_F000_0224 2’h2 CHANNELS_AVAILABLE_HI 32’hFFFF_FFFF

48'hFFFF_F000_0228 2’h3 CHANNELS_AVAILABLE_LO 32’hFFFF_FFFF

Copyright © 1996,1997 All rights reserved. Page 30

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

When these bus management resource registers are accessed from the 1394 bus, the atomic compare-and-swap transaction
is autonomous, without software intervention.:

To access these bus management resource registers from the host bus, first load the CSRData register with the new data
value to be loaded into the appropriate resource. Then load the CSRCompare register with the expected value. Finally,
write the CSRControl register with the selector value of the resource. A write to the CSRControl register initiates a
compare-and-swap operation on the selected resource. When the compare-and-swap operation is complete, the
CSRControl register csrDone bit will be set, and the CSRData register will contain the value of the selected resource prior
to the host initiated compare-and-swap operation.

Figure 5-4 — CSR data register

Figure 5-5 — CSR compare register

Figure 5-6 — CSR control register

Table 5-5 — CSR registers

field name rwu reset description

csrData rwu undef At start of operation, the data to be stored if the compare is successful.

csrCompare rw undef The data to be compared with the existing value of the CSR resource.

csrDone ru 1’b1 This bit is set when a compare-swap operation is completed. It is reset when-
ever this register is written.

csrSel rw undef This field selects the CSR resource:

2’h0 - BUS_MANAGER_ID
2’h1 - BANDWIDTH_AVAILABLE
2’h2 - CHANNELS_AVAILABLE_HI
2’h3 - CHANNELS_AVAILABLE_LO

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

csrData

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

csrCompare

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

csrDone

csrSel

Copyright © 1996,1997 All rights reserved. Page 31

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Note that an arbitrary update of these resources cannot be done. Only compare-and-swap operations can be used to
modify the contents of these internal resource registers.

5.5.2 Config ROM header

The config ROM header register is a 32-bit number that externally maps to the 1st quadlet of the 1394 configuration ROM
(offset 48’hFFFF_F000_0400). This register is written locally at the following register (the field names match the IEEE
1394 names):

*The reset value for rom_crc_value is undefined if no GUID ROM is present. If a GUID ROM is present, this field is
loaded from the GUID ROM.

5.5.3 Bus identification register

The bus identification register is a 32-bit number that externally maps to the first quadlet of the Bus_Info_Block. This
register is read locally at the following register:

Figure 5-7 — Config ROM header register

Table 5-6 — Config ROM header register fields

field name rwu reset description

info_length rw 8’h04 IEEE 1394 bus management field. Must be set by firmware before the
HCControl.linkEnable bit is set.

crc_length rw 8’h04 IEEE 1394 bus management field. Must be set by firmware before the
HCControl.linkEnable bit is set.

rom_crc_value rw GUID
Rom
Value*

IEEE 1394 bus management field. Must be set by firmware before the
HCControl.linkEnable bit is set.

Figure 5-8 — Bus ID register

Table 5-7 — Bus ID register fields

field name rwu reset description

busID r N/A Contains the constant 32’h31333934, which is the ASCII value for “1394”.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

crc_length rom_crc_valueinfo_length

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

busID

Copyright © 1996,1997 All rights reserved. Page 32

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

5.5.4 Bus options register

The bus options register is a 32-bit number that externally maps to the 2nd quadlet of the Bus_Info_Block. This register
is written locally at the following register (the field names match the IEEE 1394 names):

5.5.5 Global Unique ID

The global unique ID (GUID) is a 64-bit number that externally maps to the third and fourth quadlets of the
Bus_Info_Block. These registers are written locally at the following registers (the field names match the IEEE 1394
names):

Figure 5-9 — Bus options register

Table 5-8 — Bus options register fields

field name rwu reset description

irmc, cmc, isc, bmc,
cyc_clk_acc

rw undef IEEE 1394 bus management fields. Must be set by firmware before the
HCControl.linkEnable bit is set.

max_rec rw undef IEEE 1394 bus management field. Must be set by firmware before the
HCControl.linkEnable bit is set. Note that received block write request packets
with a length greater than max_rec may generate an ack_type_error (see
table 1-2).

bits 0-11 and 24-27 rw undef Currently reserved in 1394-1995.

Figure 5-10 — GlobalUniqueIDHi register

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

cyc_clk_acc max_rec

bmc
isc

cmc
irmc

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

node_vendor_ID chip_ID_hi

Copyright © 1996,1997 All rights reserved. Page 33

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

**The Global Unique ID (GUID) Registers are reset to 0 after a host power (hardware) reset. A value of 0 is an illegal
value. These registers are not affected by a software reset. These GUID registers shall be written only once after host
power reset, by either

1) an autonomous load operation from a local,un-modifiable resource (i.e. local serial ROM or local parallel
ROM) performed by the 1394 OHCI hardware, or

2) a single host write to each register performedonly by firmware that is always executed on a hardware reset
which affects the Host Controller. This firmware, as well as the GUID value that is loaded,may not be
modifiable by any user action.

After one of these load mechanisms has executed, the GUID registers areread-only.

5.5.6 Configuration ROM mapping register

The configuration ROM mapping register contains the start address within system bus space that will map to the start
address of the 1394 configuration ROM for this node. Only quadlet reads to the first 1K bytes of the configuration ROM
will map to system bus space, all other transactions to this space will be rejected with a 1394 “ack_type_error”. Since the
low order 10 bits of this address are reserved and assumed to be zero, the system address for the config ROM must start
on a 1K byte boundary. Note that the first five quadlets of the 1394 config ROM space are mapped to the config ROM
header and the bus_info_block, and so are handled directly by the 1394 Open HC as described in sections 5.5.2, 5.5.3,
5.5.4 and 5.5.5. This means that the first five quadlets addressed by the config ROM mapping register are not used.

This register must be set to a valid address before HCControl.linkEnable is set to one.

Figure 5-11 — GlobalUniqueIDLo register

field name rwu reset description

node_vendor_ID,
chip_ID_hi, chip_ID_lo

rw **see
comments

IEEE 1394 bus management fields. Must be set by firmware before the
HCControl.linkEnable bit is set.

Figure 5-12 — Configuration ROM mapping register

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

chip_ID_lo

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

configROMaddr

Copyright © 1996,1997 All rights reserved. Page 34

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

5.6 Vendor ID register

The vendor ID register holds the company ID of an organization that specified any vendor-unique registers.

To obtain a company ID (also known as an Organizationally Unique Identifier, OUI), contact:

Registration Authority Committee
The Institute of Electrical and Electronic Engineers, Inc.
445 Hoes Lane
Piscataway, NJ 08855-1331
USA
(908) 562-3812

Your company need not obtain a company ID if it has been previously assigned an IEEE48-bit Globally Assigned
Address Block or an IEEE-assignedOrganizationally Unique Identifier (OUI) for use in network applications. However,
be aware that the (left through right) order of the bits within the company ID value is not the same as the (first through
last) network-transmission order of the bits within these other identifiers. Consult the IEEE Registration Authority for
clarifying documentation.

5.7 HCControl registers (set and clear)

This register provides flags for controlling the Host Controller. There are two addresses for this register: HCControlSet
and HCControlClear. On read, both addresses return the contents of the control register. For writes, the two addresses
have different behavior: a one bit written to HCControlSet causes the corresponding bit in the Control register to be set,

Table 5-9 — Configuration ROM mapping register

field name rwu reset description

configROMaddr rw undef If a quadlet read request to 1394 offset 48’hFFFF_F000_0400 through offset
48’FFFF_F000_07FF is received, then the low order 10 bits of the offset are
added to this register to determine the host memory address of the returned
quadlet.

Figure 5-13 — VendorID register

Table 5-10 — VendorID register

field name rwu reset description

vendorCompanyID r N/A The company ID of the organization that specified the particular set of vendor
unique registers and behaviors of this particular implementation of the 1394
Open HCI. If no additional features are implemented, this field shall be 24’h0.

vendorUnique r N/A Vendor defined.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

VendorCompanyIDVendorUnique

Copyright © 1996,1997 All rights reserved. Page 35

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

while a zero bit leaves the corresponding bit in the Control register unaffected. On the other hand, a one bit written to
HCControlClear causes the corresponding bit in the Control register to be cleared, while a zero bit leaves the corre-
sponding bit in the HCControl register unaffected.

The 1394 bus is big endian. By convention, when quadlets are sent in big endian order, the leftmost byte (bits 31-24) of
a quadlet is sent first. When sent in little endian order, the right most byte (bits 7-0) is sent first with the leftmost bit of
each byte sent first.

When the Host Controller sends/receives a packet, the header information is always sent/received in big endian order
(leftmost byte first). Since header information is composed of a sequence of quadlets which is invariant over big and little
endian system, software need not change the structure of header information.

When the HCControl.noByteSwapData bit is not set, data quadlets are sent/received in little endian order and when
HCControl.noByteSwapData is set, data quadlets are sent/received in big endian order. The data quadlets that are subject
to swap are:

1) any data quadlet covered by data CRC (tcodes 4'h1, 4'h7, 4'h9, 4'hA an 4'hB)

2) the data quadlet in a quadlet write request (tcode 4'h0)
3) the data quadlet in a quadlet read response (tcode 4'h6)

Figure 5-14 — HCControl register

Table 5-11 — HCControl register

field name rscu reset description

noByteSwapData rsc undef When clear, data quadlets are sent/received in little endian order. When set,
data quadlets are sent/received in big endian order. See the explanation follow-
ing this table.

postedWriteEnable rsc undef This bit is used to enable or disable postedWrites. See Section 12., “Physical
Requests,” for information about posted writes.

linkEnable rsc 1’b0 This bit is cleared by a hardware reset or software reset. Software must set this
bit when the system is ready to begin operation and then force a bus reset. This
bit is necessary to keep other nodes from sending transactions before the local
system is ready. When this bit is clear the Host Controller is logicallyand
immediately disconnected from the 1394 bus, no packets will be received or
processed nor will packets be transmitted.
Software should not set the linkEnable bit until the Configuration ROM map-
ping register is valid (see section 5.5.6).

softReset rscu 1’b0 When set, all Host Controller state is reset, all FIFOs are flushed and all Host
Controller registers are set to their hardware reset values unless otherwise
specified. Registers outside of the OpenHCI realm, i.e. host attachment regis-
ters such as those for PCI, are not affected. This bit remains set to one while
the softReset is in progress, and reverts back to 0 when the reset has com-
pleted.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

linkEnable
softReset

noByteSwapData

postedWriteEnable

Copyright © 1996,1997 All rights reserved. Page 36

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

The cycle_time_data in a cycle start packet isnot swapped regardless of the setting of the noByteSwapData bit. The data
in a PHY packet (identified internally with tcode 4'hE) is not byte swapped for send or receive.

5.8 LinkControl registers (set and clear)

This register provides the control flags that enable and configure the link core protocol portions of the 1394 Open HCI. It
contains controls for the receiver, and cycle timer. There are two addresses for this register: LinkControlSet and LinkCon-
trolClear. On read, both addresses return the contents of the control register. For writes, the two addresses have different
behavior: a one bit written to LinkControlSet causes the corresponding bit in the LinkControl register to be set, while a
zero bit leaves the corresponding bit in the LinkControl register unaffected. On the other hand, a one bit written to Link-
ControlClear causes the corresponding bit in the LinkControl register to be cleared, while a zero bit leaves the corre-
sponding bit in the LinkControl register unaffected.

Figure 5-15 — LinkControl register

Table 5-12 — LinkControl register

field name rscu reset description

cycleSource rsc undef When set, the cycle timer will use an external source to determine when to roll
over the cycle timer. When cleared, the 1394 Open HCI will roll the cycle
timer over when the timer reaches 3072 cycles of the 24.576 MHz clock (i.e.
8 kHz).

cycleMaster rscu undef When set and the PHY has notified the 1394 Open HCI that it is root, the 1394
Open HCI will generate a cycle start packet every time the cycle timer rolls
over, based on the setting of the cycleSource bit. When cleared, the 1394 Open
HCI will accept received cycle start packets to maintain synchronization with
the node which is sending them. This bit is automatically cleared when the
IntEvent.cycleTooLong event occurs and cannot be set until the
IntEvent.cycleTooLongbit is cleared.

cycleTimerEnable rsc undef When set, the cycle timer offset will count cycles of the 24.576 MHz clock and
roll over at the appropriate time based on the settings of the above bits. When
cleared, the cycle timer offset will not count.

rcvPhyPkt rsc undef When set, the receiver will accept incoming PHY packets into the AR request
context if the AR request context is enabled. This doesnot control receipt of
self-identification packets.

rcvSelfID rsc undef When set, the receiver will accept incoming self-identification packets. Before
setting this bit, software must ensure that the self ID buffer pointer register
contains a valid address.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

cycleSource
cycleMaster

cycleTimerEnable

rcvSelfID
rcvPhyPkt

Copyright © 1996,1997 All rights reserved. Page 37

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

5.9 Node identification and status register

This register contains the CSR address for the node on which this chip resides. The 16-bit combination of busNumber and
nodeNumber is referred to as the node ID.

5.10 PHY control register

The PHY control register is used to read or write a PHY register. To read a register, the address of the register is written
to the regAddr field along with a 1 in the rdReg bit. When the read request has been sent to the PHY (through the PhyReq
pin), the read bit is cleared. When the PHY returns the register (through a status transfer), the rdDone bit is set. The
address of the register received is placed in the rdAddr field and the contents in the rdData field. Note that the rdAddr
field should be compared to the value expected because the PHY can automatically send a register, such as the nodeID
register, and thus replace the contents of the read before software can look at it.

To write to a PHY register, the address of the register is written to the regAddr field, the value to write to the wrData field,
and a 1 to the wrReg bit. The wrReg bit is cleared when the write request has been transferred to the PHY.

Figure 5-16 — Node ID register

Table 5-13 — Node ID register

field name rwu reset description

iDValid ru 1’b0 This bit indicates whether or not the 1394 Open HCI has a valid node number.
It is cleared when the bus reset state is detected and set again when the 1394
Open HCI receives a new node number from the PHY.

root ru 1’b0 This bit is set during the bus reset process if the attached PHY is root.

CPS ru 1’b0 Set if the PHY is reporting that cable power status is OK (VP ³ 8V).

busNumber rwu 10’h3FF This number is used to identify the specific 1394 bus this node belongs to
when multiple 1394-compatible busses are connected via a bridge.

nodeNumber ru undef This number is the physical node number established by the PHY during self-
identification. It is automatically set to the value received from the PHY after
the self-identification phase. If the PHY sets the nodeNumber to 63, all link-
level transmits are disabled.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

iDValid

busNumber nodeNumber

root

CPS

Copyright © 1996,1997 All rights reserved. Page 38

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Note that the PHY can autonomously send the contents of register 0 to the link. If there is a pending PHY register request,
the register 0 data is automatically written to both the NodeID register and the PHY control register. If there is no pending
PHY register request, then this data is automatically routed to the NodeID register and does affect the PHY control
register. If register 0 is explicitly read, the data is written to both the NodeID register and the PHY control register.

5.11 Isochronous Cycle Timer Register

The isochronous cycle timer register is a read/write register that shows the current cycle number and offset. The cycle
timer register is split up into three fields. The lower order 12 bits are the cycle offset, the middle 13 bits are the cycle
number, and the upper order 7 bits count time in seconds. When the 1394 Open HCI is cycle master, this register is trans-

Figure 5-17 — PHY control register

Table 5-14 — PHY control register

field name rwu reset description

rdDone ru undef This bit is cleared when rdReg is set. This bit is set when a register transfer is
received from the PHY.

rdAddr ru undef This is the address of the register most recently received from the PHY

rdData ru undef This is the contents of a PHY register which has been read

rdReg rwu 1’b0 Set this bit to initiate a read request to a PHY register. This bit is cleared when
the read request has been sent. The wrReg bit must not be set while the rdReg
bit is set.

wrReg rwu 1’b0 Set this bit to initiate a write request to a PHY register. This bit is cleared when
the write request has been sent. The rdReg bit must not be set while the wrReg
bit is set.

regAddr rw undef This is the address of the PHY register to be written or read.

wrData rw undef This is the contents to be written to a PHY register. Ignored for a read.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

regAddr

rdDone
rdReg

wrReg

wrDatardAddr rdData

Copyright © 1996,1997 All rights reserved. Page 39

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

mitted with the cycle start message. When the 1394 Open HCI is not cycle master, this register is loaded with the data
field in an incoming cycle start. In the event that the cycle start message is not received, the fields continue incrementing
on their own (when cycleTimerEnable is set in the LinkControl register) to maintain a local time reference.

5.12 Asynchronous Request Filters

The 1394 OpenHCI allows for selective access to host memory and the Asynchronous Receive Request context so that
software can maintain host memory integrity. The selective access is provided by two sets of 64-bit registers:
PhysRequestFilter and AsynchRequestFilter. These registers allow access to physical memory and the AR Request
context on a nodeID basis. The request filters are not applied to quadlet read requests directed at the Config ROM
(including the ConfigROM header, BusID, Bus Options, and Global Unique ID registers) nor to accesses directed to the
isochronous resource management registers. When the link is enabled, access by any node to the first 1K of CSR config
ROM is enabled(see section 5.5.6). The Asynchronous Request Filtersdo not have any effect on Asynchronous Response
packets.

5.12.1 AsynchronousRequestFilter Registers (set and clear)

When a request is received by the Host Controller from the 1394 bus and that request does not access the first 1K of CSR
config ROM on the Host Controller, then the sourceID is used to index into the AsynchronousRequestFilter. If the corre-
sponding bit in the AsynchronousRequestFilter is set to 0, then requests from that device are not enabled; there will be no
ack_ sent, and the requests will be ignored by the Host Controller. If however, the bit is set to 1, the requests are accepted
and will be processed according to the address of the request and the setting of the PhysicalRequestFilter register.

Figure 5-18 — Isochronous cycle timer register

Table 5-15 — Isochronous cycle timer register

field name rwu reset description

cycleSeconds rwu N/A This field counts seconds (cycleCount rollovers) modulo 128

cycleCount rwu N/A This field counts cycles (cycleOffset rollovers) modulo 8000.

cycleOffset rwu N/A This field counts 24.576MHz clocks modulo 3072, i.e. 125 us. If an external
8KHz clock configuration is being used, cycleOffset must be set to 0 at each
tick of the external clock.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

cycleOffsetcycleCountcycleSeconds

Copyright © 1996,1997 All rights reserved. Page 40

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Requests to offsets above 48’h0000_FFFF_FFFF are always sent to the Asynchronous Receive Request DMA context. If
the AR Request DMA context is not enabled, then the Host Controller will ignore the request.

The AsynchronousRequestFilter bits are set by writing a one to the corresponding bit in the AsynchronousRequestFilter-
HiSet or AsynchronousRequestFilterLoSet address. They are cleared by writing a one to the corresponding bit in the
AsynchronousRequestFilterHiClear or AsynchronousRequestFilterLoClear address. If bit “asynReqResourceN” is set,
then requests with a sourceID of either {10’h3FF, #n} or {busID, #n} will be accepted. If the asynReqResourceAllBuses
bit is set in AsynchronousRequestFilterHi, requests from any device on any other bus are accepted (bus number other than
10’h3FF and busID).

Reading the AsynchronousRequestFilter registers returns their current state. All bits in the AsynchronousRequestFilter
register are set to 0 on a 1394 bus reset.

Figure 5-19 — AsynchronousRequestFilterHi (set and clear) register

Figure 5-20 — AsynchronousRequestFilterLo (set and clear) register

field name rwu reset description

asynReqResourceN rw 1’b0 If set to one for local bus node number N, asynchronous requests received
by the Host Controller from that node will be accepted.

asynReqResourceAllBuses rw 1’b0 If set to one, all asynchronous requests received by the Host Controller from
non-local bus nodes will be accepted.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

asynReqResource62
asynReqResource61

asynReqResource60 asynReqResource35
asynReqResource34

asynReqResourceAllBuses
asynReqResource33

asynReqResource32

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

asynReqResource30
asynReqResource29

asynReqResource28 asynReqResource3
asynReqResource2

asynReqResource31
asynReqResource1

asynReqResource0

Copyright © 1996,1997 All rights reserved. Page 41

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

5.12.2 PhysicalRequestFilter Registers (set and clear)

If an asynchronous request is allowed from a node, and the offset is below 48’h0001_0000_0000, the sourceID of the
request is used as an index into the PhysicalRequestFilter. If the corresponding bit in the PhysicalRequestFilter is set to 0,
then the request is forwarded to the Asynchronous Receive Request DMA context. If however, the bit is set to 1, then the
request is sent to the physical response unit.:

The PhysicalRequestFilter bits are set by writing a one to the corresponding bit in the PhysicalRequestFilterHiSet or
PhysicalRequestFilterLoSet address. They are cleared by writing a one to the corresponding bit in the
PhysicalRequestFilterHiClear or PhysicalRequestFilterLoClear address. If bit “physReqResourcen” is set, then requests
with a sourceID of either {10’h3FF, #n} or {busID, #n} will be accepted. If the physReqResourceAllBuses bit is set in
PhysicalRequestFilterHi, physical requests from any device on any other bus are accepted (bus number other than
10’h3FF and busID).

Physical requests that are rejected by the PhysicalRequestFilter are sent to the AR Request DMA context if the AR
Request DMA context is enabled. If it is disabled then the Host Controller ignores the requests.

Reading the PhysicalRequestFilter registers returns their current state. All bits in the PhysicalRequestFilter are set to 0 on
a 1394 bus reset.

Figure 5-21 — PhysicalRequestFilterHi (set and clear) register

Figure 5-22 — PhysicalRequestFilterLo (set and clear) register

field name rwu reset description

physReqResourceN rw 1’b0 If set to one for local bus node number N, then asynchronous physical
requests received by the Host Controller from that node will be accepted.

physReqResourceAllBuses rw 1’b0 If set to one, all asynchronous physical requests received by the Host Con-
troller from non-local bus nodes will be accepted.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

physReqResource62
physReqResource61

physReqResource60 physReqResource35
physReqResource34

physReqResourceAllBuses
physReqResource33

physReqResource32

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

physReqResource30
physReqResource29

physReqResource28 physReqResource3
physReqResource2

physReqResource31
physReqResource1

physReqResource0

Copyright © 1996,1997 All rights reserved. Page 42

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Copyright © 1996,1997 All rights reserved. Page 43

Interrupts 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

6. Interrupts

6.1 Overview

The 1394 Open HCI reports two classes of interrupts to the host: DMA interrupts and device interrupts. DMA interrupts
are generated when DMA transfers complete (or are aborted). Device interrupts come directly from the remaining 1394
Open HCI logic. For example, one of these interrupts could be sent in response to the asserting edge cycleStart, a signal
which indicates that a new isochronous cycle has started.

The 1394 Open HCI contains two primary 32-bit registers to report and control interrupts: IntEvent and IntMask. Both
registers have two addresses: a “Set” address and a “Clear” address. For a write to either register, a “one” bit written to
the “Set” address causes the corresponding bit in the register to be set, while a “one” bit written to the “Clear” address
causes the corresponding bit to be cleared. For both addresses, writing a “zero” bit has no effect on the corresponding bit
in the register.

The IntEvent register contains the actual interrupt request bits. Each of these bits corresponds to either a DMA completion
event, or a transition on a device interrupt line. The IntMask register is ANDed with the IntEvent register to enable
selected bits to generate processor interrupts. Software writes to the IntEventClear register to clear interrupt conditions
reported in the IntEvent register.

A processor interrupt is generated when one or more unmasked bits are set in the IntEvent register. Low-level software
responds to the interrupt by reading the IntEvent register, then writing the value read to the IntEventClear register. At this
point the interrupt request is deasserted (assuming no new interrupt bit has been set). Software can proceed to process the
reported interrupts in whatever priority order it chooses, and is free to re-enable interrupts as soon as the IntEventClear
register is written.

In addition, the 1394 Open HCI contains four secondary 32-bit registers to report and control interrupts for isochronous
transmit and receive contexts. Each register has two addresses: a “Set” address and a “Clear” address.

6.2 Interrupt Registers

6.2.1 IntEvent (set and clear)

This register reflects the state of the various interrupt sources from the 1394 Open HCI. The interrupt bits are set by an
asserting edge of the corresponding interrupt signal, or by software by writing a one to the corresponding bit in the
IntEventSet address. They are cleared by writing a one to the corresponding bit in the IntEventClear address.

Reading the IntEventSet register returns the current state of the IntEvent register. Reading the IntEventClear register
returns themasked version of the IntEvent register (IntEvent & IntMask).

Copyright © 1996,1997 All rights reserved. Page 44

Interrupts 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

On a hardware reset or soft reset, the values of all bits in this register are undefined.

Figure 6-1 — IntEvent register

Table 6-1 — IntEvent register description (Sheet 1 of 2)

Field Bit # rscu Description

reqTxComplete 0 rscu Asynchronous request transmit DMA interrupt. This bit is conditionally set upon
completion of an AT DMA request command.

respTxComplete 1 rscu Asynchronous response transmit DMA interrupt. This bit is conditionally set upon
completion of an AT DMA response command.

ARRQ 2 rscu Asynchronous Receive Request DMA interrupt. This bit is conditionally set upon
completion of an AR DMA Request context command descriptor.

ARRS 3 rscu Asynchronous Receive Response DMA interrupt. This bit is conditionally set upon
completion of an AR DMA Response context command descriptor.

RQPkt 4 rscu Indicates that a packet was sent to an asynchronous receive request context buffer.

RSPkt 5 rscu Indicates that a packet was sent to an asynchronous receive response context buffer.

isochTx 6 ru Isochronous Transmit DMA interrupt. Indicates that one or more isochronous
transmit contexts have generated an interrupt. This is not a latched event, it is the
OR’ing all bits in (isoXmitIntEvent & isoXmitIntMask). The isoXmitIntEvent
register indicates which contexts have interrupted. See section 6.2.3.

isochRx 7 ru Isochronous Receive DMA interrupt. Indicates that one or more isochronous
receive contexts have generated an interrupt. This is not a latched event, it is the
OR’ing all bits in (isoRecvIntEvent & isoRecvIntMask). The isoRecvIntEvent
register indicates which contexts have interrupted. See section 6.2.4.

postedWriteErr 8 rscu Indicates that a host bus error occurred while the Host Controller was trying to write
a 1394 write request, which had already been given an ack_complete, into system
memory. The 1394 destination offset and sourceID are available in the
PostedWriteAddress registers described in section 12.3.

reserved 9-15

selfIDcomplete 16 rscu A selfID packet stream has been received. Will be generated at the end of the bus
initialization process.

busReset 17 rscu Indicates that the PHY chip has entered bus reset mode. See section 6.2.1.1 below
for information on when to clear this interrupt.

reserved 18

phy 19 rscu Generated when the PHY requests an interrupt through a status transfer.

cycleSynch 20 rscu Indicates that a new isochronous cycle has started. Set when the low order bit of the
cycle count toggles.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

RQPkt
RSPkt

isochTx
isochRx

postedWriteErr

ARRS
ARRQ

respTxComplete
reqTxCompletebusReset

selfIDComplete

cycleLost
cycle64Seconds

cycleSynch

phy

unrecoverableError

cycleTooLong
phyRegRcvd

cycleInconsistent

vendorSpecific

Copyright © 1996,1997 All rights reserved. Page 45

Interrupts 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

6.2.1.1 busReset

When a bus reset occurs and the busReset interrupt is raised, software must wait for both asynchronous transmit contexts
(request and response) to have contextControl.active = 0 before clearing the interrupt condition. This is to ensure that all
queued asynchronous packets (with potentially stale node numbers) are flushed. Once they are no longer active, software
may clear the busReset interrupt condition, and hardware will discontinue flushing of the asynchronous transmit FIFO(s).
See section 7.2.2.1 for further details.

6.2.2 IntMask (set and clear)

The bits in the IntMask register have the same format as the IntEvent register, with the addition of masterIntEnable (bit
31). A one bit in the IntMask register enables the corresponding IntEvent register bit to generate a processor interrupt. A
zero bit in IntMask disables the corresponding IntEvent register bit from generating a processor interrupt. A bit is set in
the IntMask register by writing a one to the corresponding bit in the IntMaskSet address and cleared by writing a one to
the corresponding bit in the IntMaskClear address.

If masterIntEnable is 0, all interrupts are disabled regardless of the values of all other bits in the IntMask register. The
value of masterIntEnable has no effect on the value returned by reading the IntEventClear; even if masterIntEnable is 0,
reading IntEventClear will return (IntEvent & IntMask) as described earlier in section 6.2.1.

cycle64Seconds 21 rscu Indicates that the 7th bit of the cycle second counter has changed.

cycleLost 22 rscu Indicates that an expected cycle start has not been received. This will be set when-
ever a cycle start is not received immediately after the first subaction gap after the
cycleSynch event, or if an arbitration reset gap is detected after a cycleSynch event
without an intervening cycle start.

cycleInconsistent 23 rscu A cycle start was received that had a cycle count different from the value in the
CycleTimer register.

unrecoverableError 24 rscu This event occurs when the Host Controller encounters any error that forces it to
stop operations on any or all of its subunits. For example, when a DMA context sets
its contextControl.dead bit.
While unrecoverableError is set, all normal interrupts for each causal context will
be blocked from being set.

cycleTooLong 25 rscu If LinkControl.cycleMaster is set, this indicates that over 125 usec elapsed between
the start of sending a cycle start packet and the end of a subaction gap. LinkCon-
trol.cycleMaster is cleared by this event.

phyRegRcvd 26 rscu The 1394 Open HCI has received a PHY register data byte which can be read from
the PHY control register (see 5.10).

reserved 27-29

vendorSpecific 30 Vendor defined.

reserved 31

Table 6-1 — IntEvent register description (Sheet 2 of 2)

Field Bit # rscu Description

Copyright © 1996,1997 All rights reserved. Page 46

Interrupts 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

On a reset, the IntMask.masterIntEnable bit (31) is set to 0 and the values of all other bits is undefined.

Figure 6-2 — IntMask register

Table 6-2 — IntMask register description

Field Bit # rscu Description

reqTxComplete 0 rsc

See Table 6-1.

respTxComplete 1 rsc

ARRQ 2 rsc

ARRS 3 rsc

RQPkt 4 rsc

RSPkt 5 rsc

isochTx 6 rsc

isochRx 7 rsc

postedWriteErr 8 rsc

reserved 9-15

selfIDcomplete 16 rsc

busReset 17 rsc

reserved 18

phy 19 rsc

cycleSynch 20 rsc

cycle64Seconds 21 rsc

cycleLost 22 rsc

cycleInconsistent 23 rsc

unrecoverableError 24 rsc

cycleTooLong 25 rsc

phyRegRcvd 26 rsc

reserved 27-29

vendorSpecific 30 Vendor defined.

masterIntEnable 31 rsc If set, external interrupts will be generated in accordance with the IntMask register.
If clear, no external interrupts will be generated regardless of the IntMask register
settings.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

vendorSpecific

RQPkt
RSPkt

isochTx
isochRx

postedWriteErr

ARRS
ARRQ

respTxComplete
busReset

selfIDComplete

cycleLost
cycle64Seconds

cycleSynch

phy

unrecoverableError

cycleTooLong
phyRegRcvd

cycleInconsistent

masterIntEnable

Copyright © 1996,1997 All rights reserved. Page 47

Interrupts 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

6.2.3 IsochTx interrupt registers

There are two 32-bit registers to report isochronous transmit context interrupts: isoXmitIntEvent and isoXmitIntMask.
Both registers have two addresses: a “Set” address and a “Clear” address. For a write to either register, a “one” bit written
to the “Set” address causes the corresponding bit in the register to be set, while a “one” bit written to the “Clear” address
causes the corresponding bit to be cleared. For all four addresses, writing a “zero” bit has no effect on the corresponding
bit in the register.

The isoXmitIntEvent register contains the actual interrupt request bits. Each of these bits corresponds to a DMA
completion event for the indicated isochronous transmit context. The isoXmitIntMask register is ANDed with the
isoXmitIntEvent register to enable selected bits to generate processor interrupts. If (isoXmitIntMask & isoXmitIntEvent)
is not zero, then the IntEvent.isochTx bit will be set to one, and if enabled via the IntMask register it will generate a
processor interrupt. A software write to the isoXmitIntEventSet register can therefore cause an interrupt (if not otherwise
masked). A software write to the isoXmitIntEventClear register will clear interrupt conditions reported in the
isoXmitIntEvent register.

Reading the isoXmitIntEventSet register returns the current state of the isoXmitIntEvent register. Reading the
isoXmitIntEventClear register returns themasked version of the isoXmitIntEvent register (isoXmitIntEvent &
isoXmitIntMask).

6.2.3.1 isoXmitIntEvent (set and clear)

This register reflects the interrupt state of the isochronous transmit contexts. An interrupt is generated on behalf of an
isochronous transmit context if an OUTPUT_LAST DMA command completes and itsi bits are set to 2’b11 (interrupt
always). Upon determining that the IntEvent.isochTx interrupt has occurred, software can check the isoXmitIntEvent
register to determine which context(s) caused the interrupt.

On a hardware reset or soft reset, values of all bits in this register are undefined.

6.2.3.2 isoXmitIntMask (set and clear)

The bits in the isoXmitIntMask register have the same format as the isoXmitIntEvent register. Setting a bit in this register
enables the corresponding bit in the isoXmitIntMaskSet address and cleared by writing a one to the corresponding bit in
the isoXmitIntMaskClear address.

Bits for all unimplemented contexts must read as 0’s. Software can use this register to determine which contexts are
supported by writing to it with all 1’s, then reading it back. Contexts with a 1 are implemented, and those with a 0 are not.

On a hardware reset or soft reset, values for all bits in this register are undefined.

Figure 6-3 — isoXmitIntEvent (set and clear) register

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

isoXmit30
isoXmit29

isoXmit28 isoXmit3
isoXmit2

isoXmit31
isoXmit1

isoXmit0

Copyright © 1996,1997 All rights reserved. Page 48

Interrupts 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

6.2.4 IsochRx interrupt registers

There are two 32-bit registers to report isochronous receive context interrupts: isoRecvIntEvent and isoRecvIntMask.
Both registers have two addresses: a “Set” address and a “Clear” address. For a write to either register, a “one” bit written
to the “Set” address causes the corresponding bit in the register to be set, while a “one” bit written to the “Clear” address
causes the corresponding bit to be cleared. For all four addresses, writing a “zero” bit has no effect on the corresponding
bit in the register.

The isoRecvIntEvent register contains the actual interrupt request bits. Each of these bits corresponds to a DMA comple-
tion event for the indicated isochronous receive context. The isoRecvIntMask register is ANDed with the isoRecvIntEvent
register to enable selected bits to generate processor interrupts. If (isoRecvIntMask & isoRecvIntEvent) is not zero, then
the IntEvent.isochRx bit will be set to one, and if enabled via the IntMask register it will generate a processor interrupt. A
software write to the isoRecvIntEventSet register can therefore cause an interrupt (if not otherwise masked). A software
write to the isoRecvIntEventClear register will clear interrupt conditions reported in the isoRecvIntEvent register.

Reading the isoRecvIntEventSet register returns the current state of the isoRecvIntEvent register. Reading the
isoRecvIntEventClear register returns themasked version of the isoRecvIntEvent register (isoRecvIntEvent & isoRecvInt-
Mask).

6.2.4.1 isoRecvIntEvent (set and clear)

This register reflects the interrupt state of the isochronous receive contexts. An interrupt is generated on behalf of an
isochronous receive context if an INPUT_LAST DMA command completes and itsi bits are set to 2’b11 (interrupt
always). Upon determining that the IntEvent.isochRx interrupt has occurred, software can check the isoRecvIntEvent
register to determine which context(s) caused the interrupt.

On a hardware reset or soft reset, values of all bits in this register are undefined.

6.2.4.2 isoRecvIntMask (set and clear)

The bits in the isoRecvIntMask register have the same format as the isoRecvIntEvent register. Setting a bit in this register
enables the corresponding bit in the isoRecvIntMaskSet address and cleared by writing a one to the corresponding bit in
the isoRecvIntMaskClear address.

Bits for all unimplemented contexts must read as 0’s. Software can use this register to determine which contexts are
supported by writing to it with all 1’s then reading it back. Contexts with a 1 are implemented, and those with a 0 are not.

On a hardware reset or soft reset, values of all bits in this register are undefined.

Figure 6-4 — isoRecvIntEvent (set and clear) register

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

isoRecv30
isoRecv29

isoRecv28 isoRecv3
isoRecv2

isoRecv31
isoRecv1

isoRecv0

Copyright © 1996,1997 All rights reserved. Page 49

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

7. Asynchronous Transmit DMA

The 1394 OpenHCI divides the transmission of asynchronous packets into three categories: asynchronous requests, asyn-
chronous responses, and physical responses. This chapter describes how to use DMA to transmit asynchronous requests
and asynchronous responses. For information regarding physical responses, see section 12., “Physical Requests.”

There is one DMA controller for each transmit context: the Asynchronous Transmit (AT) Request Controller for the AT
request context, and the AT Response Controller for the AT response context. Although OpenHCI does not specify how
many FIFOs are required to support the AT DMA controllers, it is required that the re-transmission of request packets
never blocks the transmission of response packets.

The AT Request context is used by software to transmit read, write and lock request packets and the AT Response context
is used to send response packets to read, write, and lock requests that have earlier been received into the asynchronous
receive request context buffers (see section 8., “Asynchronous Receive DMA,”).

Each context consists of a context program and two registers. A context program is a list of commands for that context
which direct the Host Controller on how to assemble packets for transmission. The DMA controller for that context
executes each command, inserting data into the appropriate FIFO and interrupting as requested.

The following sections describe how to set up and manage an AT DMA context program and describe the data formats for
the various asynchronous request and response packet types.

7.1 Asynchronous transmit DMA context programs

Each asynchronous transmit packet, whether a request or response packet, shall be described by a contiguous list of
command descriptors referred to as adescriptor block. A chain of descriptor blocks is referred to as a context program.
There are four different command descriptors that can be used within each descriptor block: OUTPUT_MORE,
OUTPUT_MORE-Immediate, OUTPUT_LAST and OUTPUT_LAST-Immediate. In the descriptions that follow,
OUTPUT_MORE* refers to both the OUTPUT_MORE and OUTPUT_MORE-Immediate commands, OUTPUT_LAST*
refers to both the OUTPUT_LAST and OUTPUT_LAST-Immediate commands and *-Immediate refers to both the
OUTPUT_MORE-Immediate and OUTPUT_LAST-Immediate commands.

Each packet shall be specified in one descriptor block. A descriptor block may have either one single OUTPUT_LAST-
Immediate descriptor, or may have one OUTPUT_MORE-Immediate descriptor followed by zero to five
OUTPUT_MORE descriptors, followed by one OUTPUT_LAST descriptor. This allows software to combine up to eight
fragments to specify a single packet. In addition, the first command descriptor in a descriptor block must be one of the *-
Immediate commands totransmit the full 1394 packet header for the packet’s tcode type, wherepacket header is defined
as all quadlets that appear before the 1394 packet header CRC quadlet and that are required by the respective packet
format (defined in section 7.5). Further, a descriptor block for a packet shall not exceed 128 bytes. The OUTPUT_MORE
and OUTPUT_LAST command descriptors are 16-bytes in length, and the *-Immediate descriptors are 32-bytes in length.
All descriptors must be aligned on a 16-byte boundary.

In the sections below, the format for each command descriptor is shown. The shaded fields are reserved and should be set
to 0 by software. Fields with a hardcoded value must be set to that value by software. The values of all other fields are
described in each command’s descriptor element summary.

Copyright © 1996,1997 All rights reserved. Page 50

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

7.1.1 OUTPUT_MORE descriptor

The OUTPUT_MORE command descriptor is used to specify a host memory buffer from which the AT DMA controller
will insert bytes into the appropriate transmit FIFO. It has the following format.

Figure 7-1 — OUTPUT_MORE descriptor format

Table 7-1 — OUTPUT_MORE descriptor element summary

Element Bits Description

cmd 4 Set to 4’h0 for OUTPUT_MORE.

s 1 Status control. Must be set to 0.

key 3 Set to 3’h0 for OUTPUT_MORE.

b 2 Branch control. Software must set this field to 2’b00. Values of 2’b11, 2’b10, 2’b01 will
result in unspecified behavior.

reqCount 16 Request Count: The number of transmit packet bytes starting at dataAddress.

dataAddress 32 Address of transmit data.

cmd=0 0 reqCount

dataAddress

2’b
003’h0

key=

Copyright © 1996,1997 All rights reserved. Page 51

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

7.1.2 OUTPUT_MORE_Immediate descriptor

The OUTPUT_MORE-Immediate command descriptor is used to four quadlets of packet header information to be
inserted into the appropriate transmit FIFO. It has the following format.

The OUTPUT_MORE-Immediate command shall only be used to specify the four quadlet 1394 transmit packet header
for a block payload or lock packet. All OUTPUT_MORE-Immediate command descriptors are 32-bytes in length.

Figure 7-2 — OUTPUT_MORE-Immediate descriptor format

Table 7-2 — OUTPUT_MORE-Immediate descriptor element summary

Element Bits Description

cmd 4 Set to 4’h0 for OUTPUT_MORE-Immediate

s 1 Status control. Must be set to 0.

key 3 Set to 3’h2 for OUTPUT_MORE-Immediate.

b 2 Branch control. Software must set this field to 2’b00. Values of 2’b11, 2’b10, 2’b01 will
result in unspecified behavior.

reqCount 16 Request Count: The number of transmit packet bytes immediately following the 16th byte
of this descriptor. This value must be 16(four quadlets). Specifying any other value will
result in unspecified behavior. This descriptor is always 32 bytes long.

timeStamp 16 Valid only in the ATresponse context. This field contains the three low order bits of
cycleSeconds and all 13 bits of cycleCount. See section 5.11, “Isochronous Cycle Timer
Register,” for information about these fields.
For AT response packets, timeStamp indicates a time after which the packet should not be
transmitted. For further information on the use of this field, see section 7.1.5.3 below.

first, second, third, and
fourth quadlets

128 Data quadlets to be inserted into the applicable FIFO.

first quadlet

cmd=0 0 reqCount=162’b
00

timeStamp

third quadlet

fourth quadlet

second quadlet

key=
3’h2

Copyright © 1996,1997 All rights reserved. Page 52

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

7.1.3 OUTPUT_LAST descriptor

The OUTPUT_LAST command descriptor is used to specify a host memory buffer from which the AT DMA controller
will insert bytes into the appropriate transmit FIFO. This command indicates the end of a packet to the Host Controller. It
has the following format.

Figure 7-3 — OUTPUT_LAST descriptor format

Table 7-3 — OUTPUT_LAST descriptor element summary

Element Bits Description

cmd 4 Set to 4’h1 for OUTPUT_LAST.

s 1 Status control. Controls update of xferStatus and resCount after descriptor is processed
(update if s = 1).

key 3 Set to 3’h0 for OUTPUT_LAST.

i 2 Interrupt control. Options:
2’b11 - Always interrupt upon command completion.
2’b01 - Interrupt only if did not receive an ack_complete or ack_pending. See table 3-2
for a list of possible ack and evt values.
2’b00 - Never interrupt.

Specifying a value of 2’b10 will result in unspecified behavior.

b 2 Branch control. Software must set this field to 2’b11. Values of 2’b10, 2’b01, and 2’b00
will result in unspecified behavior.

reqCount 16 Request Count: The number of transmit packet bytes described by this descriptor, begin-
ning at dataAddress.

dataAddress 32 Address of transferred data.

branchAddress 28 16-byte aligned address of the next descriptor. A valid host memory address must be pro-
vided in this field unless the Z field is 0.

Z 4 This field indicates the number of 16-byte command blocks that comprise the next packet.
If this is the last descriptor in the list, the Z value must be 0. Otherwise, valid values are
2 to 8. Note that each *-Immediate command descriptor is counted as two 16-byte blocks
and each non-immediate command is counted as one 16-byte block.

xferStatus 16 Written with ContextControl [15:0] after descriptor is processed (if s = 1).

timeStamp 16 This field contains the three low order bits of cycleSeconds and all 13 bits of cycleCount.
See section 5.11, “Isochronous Cycle Timer Register,” for information about these fields.
For AT request packets, timeStamp is a software read-only value written by hardware if
status is enabled (s=1) and indicates the transmission time of the packet. For ATresponse
packets, timeStamp is not valid (it is only valid in the first descriptor of a response descrip-
tor block.) For further information on the use of the timeStamp field, see section 7.1.5.3.

3’h0
key=cmd=1 s reqCount

dataAddress

xferStatus

2’b
11

branchAddress Z

i

timeStamp (AT requests only)

Copyright © 1996,1997 All rights reserved. Page 53

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

7.1.4 OUTPUT_LAST_Immediate descriptor

The OUTPUT_LAST-Immediate command descriptor is used to specify two to four quadlets of packet header information
to be inserted into the appropriate transmit FIFO. This command indicates the end of a packet to the Host Controller. It
has the following format.

Figure 7-4 — OUTPUT_LAST-Immediate descriptor format

Table 7-4 — OUTPUT_LAST-Immediate descriptor element summary

Element Bits Description

cmd 4 Set to 4’h1 for OUTPUT_LAST-Immediate.

s 1 Status control. Controls update of xferStatus and resCount after descriptor is processed
(update if s = 1).

key 3 Set to 3’h2 for OUTPUT_LAST-Immediate.

i 2 Interrupt control. Options:
2’b11 - Always interrupt upon command completion.
2’b01 - Interrupt only if did not receive an ack_complete or ack_pending. See table 3-2
for a list of possible ack and evt values.
2’b00 - Never interrupt.

Specifying a value of 2’b10 will result in unspecified behavior.

b 2 Branch control. Software must set this field to 2’b11. Values of 2’b10, 2’b01, and 2’b00
will result in unspecified behavior.

reqCount 16 Request Count: The number of transmit packet bytes immediately following the 16th byte
of this descriptor. Valid values are 4 (one quadlet), 8(two quadlets) and 12(three quadlets).
Specifying any other values will result in unspecified behavior. Regardless of the
reqCount value, this descriptor is always 32 bytes long.

branchAddress 28 16-byte aligned address of the next descriptor. A valid host memory address must be pro-
vided in this field unless the Z field is 0.

Z 4 This field indicates the number of 16-byte command blocks that comprise the next packet.
If this is the last descriptor in the list, the Z value must be 0. Otherwise, valid values are
2 to 8. Note that each *-Immediate command descriptor is counted as two 16-byte blocks
and each non-immediate command is counted as one 16-byte block.

xferStatus 16 Written with ContextControl [15:0] after descriptor is processed if s = 1.

first quadlet

cmd=1 s reqCount=8, 12 or 16

xferStatus

2’b
11

timeStamp

third quadlet

fourth quadlet

second quadlet

key=
3’h2

branchAddress Z

i

Copyright © 1996,1997 All rights reserved. Page 54

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

The OUTPUT_LAST-Immediate command will be used to specify information that is protected by the header CRC or for
sending a PHY packet. OUTPUT_LAST-Immediate command descriptors are 32-bytes in length regardless of the value of
reqCount.

7.1.5 AT command descriptor usage

Fields in the command descriptor are further described below.

7.1.5.1 Command.Z

The Z value is used by the Host Controller to enable several descriptors to be fetched at once, for improved efficiency. Z
values must always be encoded correctly. The contiguous descriptors described by a Z value are called adescriptor block.
The following table summarizes all legal Z values:

A single packet that is to be transmitted must be entirely described by one descriptor block. This requirement permits the
Host Controller to prefetch all the descriptors for a packet, in order to avoid fetching additional descriptors during a
packet transfer. The branch address+Z allows the Host Controller to learn the Z value of the next block. Only the
OUTPUT_LAST* descriptor shall specify a branch address+Z for the next packet. BranchAddress+Z values are ignored
in all OUTPUT_MORE* descriptors, and should not be specified.

All DMA context programs must use a Z = 0 command to indicate the end of the program. A program which ends in Z=0
can be appended to while the DMA runs, even if the DMA has already reached the end. The mechanism for doing this is
described in section 3.2.1.2.

7.1.5.2 Command.xferStatus

Upon the completion of an OUTPUT_LAST* descriptor, the 16 least significant bits of the current contents of the DMA
ContextControl register are written to the completed descriptor’s Command.xferStatus field, if the Command.s bit is one.
See section 7.2.2 for the contents of this field.

timeStamp 16 This field contains the three low order bits of cycleSeconds and all 13 bits of cycleCount.
See section 5.11, “Isochronous Cycle Timer Register,” for information about these fields.
For AT response packets, timeStamp indicates a time after which the packet should not be
transmitted. For ATrequest packets, timeStamp is a software read-only value written by
hardware if status is enabled (s = 1) and indicates the transmission time of the packet.
For further information on the use of the timeStamp field, see section 7.1.5.3 below.

first, second, third, and
fourth quadlets

128 Data quadlets to be inserted into the applicable FIFO.

Table 7-5 — Z value encoding

Z value Use

0 Indicates that the current descriptor is the last descriptor in the context program.

1 reserved. (Since all descriptor blocks must start with a *-Immediate command, they are
by definition a minimum of two 16-byte blocks in size.)

2-8 Indicates that two to eight 16-byte command descriptors starting at branchAddress are
physically contiguous and specify a single packet. Note that the 32-byte *-Immediate
command descriptors must be counted as two 16-byte command descriptors when cal-
culating the Z value.

9-15 reserved

Table 7-4 — OUTPUT_LAST-Immediate descriptor element summary

Element Bits Description

Copyright © 1996,1997 All rights reserved. Page 55

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

7.1.5.3 Command.timeStamp

The timeStamp field is encoded as follows:

7.1.5.3.1 timeStamp value for Requests

Asynchronous transmit request packets may initiate a transaction which should complete by a specific time. So that host
software will know when the transaction began, the Host Controller will update the timeStamp value in all
OUTPUT_LAST* descriptors whose Command.s bit is one at the time when the ack is received. TimeStamp is written in
the same bus operation in which xferStatus is written.

Note that a transmit request packet may sit in the transmit FIFO for some time before the PHY wins normal arbitration.
This delay is usually brief, but could be over 200 cycles (over 25 milliseconds) in the case of a bus with 80% isochronous
traffic and 63 nodes each sending maximum-size async packets as often as possible.

7.1.5.3.2 timeStamp value for Responses

Typically, asynchronous transmit response packets expire at a certain time, and should not be transmitted after that time.
A timeStamp value can be placed in the first OUTPUT_* descriptor for such packets.

The timeStamp used for asynchronous transmit contains a 3-bit seconds field and a 13-bit cycle number which counts
modulo 8000. Before an asynchronous response is put into the transmit FIFO, whether for the initial transmission attempt
or for a retry attempt, this timeStamp value is compared to the current cycleTimer. This comparison is used to determine
whether or not the packet will be sent or rejected as being too old.

The comparison is broken into two parts. The first compare is done on the seconds field of the timeStamp and the low
order three bits of the seconds field in the cycleTimer. The low three bits of the cycleTime is subtracted from the
timeStamp.seconds field using three bit arithmetic. If the most significant bit of the subtraction is 1, then the timeStamp
is considered ‘late’ and the packet is rejected. If the most significant bit is 0 but the other two bits are not 0, then the
timeStamp is considered to be for some time in the ‘distant’ future and the packet can be sent. If the difference is 0, then
the timeStamp and cycleTimer are referring to the same second so the cycle number portion of the timeStamp is compared
to the cycle number portion of the cycleTimer to determine if the cycle is early, late or matches. This comparison is done

Figure 7-5 — timeStamp format

Table 7-6 — timeStamp description

Field Bits Description

cycleSeconds 3 Low order three bits of the seven-bit isochronous cycle timer second count.
Possible values are 0 to 7.

cycleCount 13 Full 13 bits of the 13-bit isochronous cycle timer cycle count.
Possible values are 0 to 7999.

cycle
Seconds

15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

cycleCount

Copyright © 1996,1997 All rights reserved. Page 56

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

by subtracting the cycleTimer cycle number from the timeStamp cycle number. If the result is negative, then the time for
the packet has passed and the packet is rejected. If the difference is positive and the timeout value is positive or zero, then
the packet can be sent. This subtraction is signed so a sign bit is assumed to be prepended to both cycle number values.

NOTE: Shaded entries denote ‘late’ values.

For those entries in the table above which are 000, the cycleTimer.cycleCount field is subtracted from the
timeStamp.cycleCount field. If the result is positive or 0, it indicates that the packet can be sent. If the result is negative
the packet cannot be sent and the status error code is set to evt_timeout.

Table 7-7 — Results of timeStamp.cycleSeconds - cycleTimer.cycleSeconds

timeStamp.seconds

cycleTimer.seconds

000 001 010 011 100 101 110 111

000 000 111 110 101 100 011 010 001

001 001 000 111 110 101 100 011 010

010 010 001 000111 110 101 100 011

011 011 010 001 000111 110 101 100

100 100 011 010 001 000111 110 101

101 101 100 011 010 001 000111 110

110 110 101 100 011 010 001 000111

111 111 110 101 100 011 010 001 000

Table 7-8 — timeStamp.cycleCount-cycleTime.cycleCount Example 1

timeStamp.cycleCount cycleTime.cycleCount difference action

14’h0FA0 14’h0F9E 14’h0002 send packet

14’h0FA0 14’h0F9F 14’h0001 send packet

14’h0FA0 14’h0FA0 14’h0000 send packet

14’h0FA0 14’h0FA1 14’h3FFF reject packet

Table 7-9 — timeStamp.cycleCount-cycleTime.cycleCount Example 2

timeStamp.cycleCount cycleTime.cycleCount difference action

14’h1000 14’h0FFE 14’h0002 send packet

14’h1000 14’h0FFF 14’h0001 send packet

14’h1000 14’h1000 14’h0000 send packet

14’h1000 14’h1001 14’h3FFF reject packet

Table 7-10 — timeStamp.cycleCount-cycleTime.cycleCount Example 3

timeStamp.cycleCount cycleTime.cycleCount difference action

14’h0000 14’h0000 14’h0000 send packet

14’h0000 14’h0001 14’h3FFF reject packet

...

14’h0000 14’h1000 14’h3000 reject packet

14’h0000 14’h1001 14’h2FFF reject packet

Copyright © 1996,1997 All rights reserved. Page 57

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

After a transmit packet has passed the timeStamp check, it may sit in the transmit FIFO for some time before the PHY
wins normal arbitration. The Host Controller does not re-examine the timeStamp while the packet waits, even if the
descriptor is still active because only part of the packet fits into the FIFO. This delay is usually brief, but could be over
200 cycles (over 25 milliseconds) in the case of a bus with 80% isochronous traffic and 63 nodes each sending maximum-
size async packets as often as possible.

Software can compute the worst-case FIFO delay based on knowledge of the current node count and the current (or
maximum) isochronous load. Software can use this delay to compute an earlier expiration timeStamp to prevent late trans-
mission due to FIFO delay. Using the maximum (not current) isochronous load is advisable, because additional isochro-
nous reservations could be made while the packet is waiting in the transmit FIFO.

Because the Host Controller examines the timeStamp before the packet is loaded into the transmit FIFO, and because the
packet may remain in the FIFO for some period until the PHY attached to the Host Controller wins normal arbitration, it
is not possible to guarantee that the packet will not be transmitted after it expires. The maximum time the packet waits in
the FIFO can be computed by software based on dynamic bus parameters, and this time can be factored into the packet’s
expiration timeStamp. (Note, this could be over 200 cycles, in unlikely case where 80% of the bus is isochronous, and 63
nodes are each sending maximum-size async packets.)

7.2 AT DMA context registers

Each AT DMA context (request and response) has two registers: CommandPtr and ContextControl. CommandPtr is used
by software to tell the Host Controller where the DMA context program begins. ContextControl is used by software to
control the context’s behavior, and is used by hardware to indicate current status.

7.2.1 CommandPtr

The CommandPtr register specifies the address of the context program which will be executed when a DMA context is
started. All descriptors are 16-byte aligned, so the four least-significant bits of any descriptor address must be zero. The
four least-significant bits of the CommandPtr register are used to encode a Z value that indicates how many physically
contiguous descriptors are pointed to by descriptorAddress.

Refer to Section 3.1.5 for a complete description of the CommandPtr register.

...

14’h0000 14’h1F3E 14’h20C2 reject packet

14’h0000 14’h1F3F 14’h20C1 reject packet

Figure 7-6 — CommandPtr register format

Table 7-10 — timeStamp.cycleCount-cycleTime.cycleCount Example 3

timeStamp.cycleCount cycleTime.cycleCount difference action

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

descriptorAddress [31:4] Z

Copyright © 1996,1997 All rights reserved. Page 58

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

7.2.2 ContextControl register (set and clear)

The ContextControlSet andContextControlClear registers contain bits that control options, operational state, and status
for a DMA context. Software can set selected bits by writing ones to the corresponding bits in theContextControlSet
register. Software can clear selected bits by writing ones to the corresponding bits in theContextControlClear register. It
is not possible for software to set some bits and clear others in an atomic operation. A read from either register will return
the same value.

7.2.2.1 Bus Reset

When a bus reset occurs, the Host Controller will flush the asynchronous transmit FIFO(s) until the busReset interrupt
condition is cleared. While packets are being flushed, the link side of the FIFO returns evt_flushed. Software must make
sure however that IntEvent.busResetis not cleared until 1) software has cleared the ContextControl.run bits for both
Asynchronous Transmit contexts, and 2) both Asynchronous Transmit contexts have quiesced and both contextCon-
trol.active fields are zero. This is to ensure that all queued asynchronous packets (with potentially stale node numbers) are
flushed. Once the contexts are no longer active, software may clear the busReset interrupt condition, and hardware will
stop flushing the asynchronous transmit FIFO(s).

Figure 7-7 — ContextControl (set and clear) register format

Table 7-11 — ContextControl (set and clear) register description

Field rsci Description

run rscu Refer to section 3.1.1 for an explanation of the contextControl.run bit.

wake rsu Refer to section 3.1.2 for an explanation of the contextControl.wake bit.

dead ru Refer to section 3.1.4 for an explanation of the contextControl.dead bit.

active ru Refer to section 3.1.3 for an explanation of the contextControl.active bit.

spd ru This field is not meaningful for asynchronous transmit contexts.

ack/err code ru Following an OUTPUT_LAST* command, the received ack_ code or an “evt_” error code
is indicated in this field. Possible values are: ack_complete, ack_pending, ack_busy_X,
ack_busy_A, ack_busy_B, ack_data_error, ack_type_error, evt_tcode_err,
evt_missing_ack, evt_underrun, evt_descriptor_read, evt_data_read ,evt_timeout,
evt_flushed and evt_unknown.
See Table 3-2, “Packet event codes,” for descriptions and values for these codes.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

ack/err
code

dead
active

wake

run

spd

Copyright © 1996,1997 All rights reserved. Page 59

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

7.2.2.2 Writing status back to context command descriptors

Upon OUTPUT_LAST* completion, if the command’s s bit is set to one, bits 15-8 of the contextControl register are
written to the command’sxferStatus field. When Command.xferStatus is written to memory, the active bit is always one.
If software prepared the descriptor’s xferStatus.active bit to be zero, this change indicates that the descriptor has been
executed, and the xferStatus and timeStamp fields have been updated.

7.3 AT Retries

The Host Controller will retry busied asynchronous transmit request and response packets based on the configuration of
the AT Retries register.

For the Asynchronous Transmit Response context, the initial transmission of a response packet is not required to wait for
a fairness interval. However, if a response packet needs to be retried the Host Controller must wait for a fairness interval
and therefore all other response packets (including physical responses) are blocked. In addition, each time a response
packet is retried the descriptor block’s timestamp value must be checked to ensure that the packet has not expired.

For a detailed description of the ATRetries register see section 5.4.

7.4 AT Interrupts

Each asynchronous DMA controller/context has one interrupt indication bit in the intEvent register (section 6.2.1). For
requests, it is thereqTx bit and for responses it is therespTx bit. This interrupt indication bit will be set to one if a
completed OUTPUT_LAST* command has thei field set to 2’b11, or if thei field is set to 2’b01 and transmission of the
packet did not yield an ack_complete or an ack_pending.

7.5 AT Data Formats

There are four basic formats for asynchronous data to be transmitted:

a) no-data packets (used for quadlet read requests and all write responses)

b) quadlet packets (used for quadlet write requests, quadlet read responses and block read requests)

c) block packets (used for lock requests and responses, block write requests and block read responses)

d) PHY packets

All formats are shown below in two sections, one for asynchronous request formats and one for asynchronous response
formats.

Note that packets to go out over the 1394 wire are constructed from these Host Controller internal formats, and are not
sent in the exact order as shown below. For example, destinationID is transmitted in the first quadlet, and source ID is
automatically provided and transmitted in the second quadlet.

Copyright © 1996,1997 All rights reserved. Page 60

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

7.5.1 Asynchronous Transmit Requests

7.5.1.1 No-data transmit

The no-data request transmit format is shown below. The first word contains packet control information. The second and
third words contain 16-bit destination ID and either the 48-bit, quadlet-aligned destination offset (for requests) or the
response code (for responses).

Figure 7-8 — Quadlet read request transmit format

Table 7-12 — Quadlet read request transmit fields

field name bits description

srcBusID 1 Source bus ID selector. If clear, the high order 10 bits of the source_ID field of the trans-
mitted packet will be 10’h3FF. If set, the high order 10 bits of the source_ID field of
the transmitted packet will be busNumber.Node_ID (see section 5.9).

spd 3 This field indicates the speed at which this packet is to be sent. 000 = 100 Mbits/sec,001
= 200 Mbits/sec, and 010 = 400 Mbits/sec, other values are reserved.

tLabel 6 This field is the transaction label, which is used to pair up a response packet with its
corresponding request packet.

rt 2 The retry code for this packet. Must be 2’h01 == retryX for the 1394 Open HCI.

tCode 4 The transaction code for this packet.

1394 reserved Required by IEEE 1394-1995 to be all zeros. OpenHCI will pass these bits along as-is
and will not verify or modify them.

destinationID 16 This is the concatenation of the 10-bit bus number and the 6-bit node number for the
destination of this packet.

destinationOffsetHigh,

destinationOffsetLow

16
32

The concatenation of these two fields addresses a quadlet in the destination node’s
address space. This address must be quadlet-aligned (modulo 4).

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h4

destinationOffsetHigh

destinationOffsetLow

destinationID

spd rt
1394

sr
cB

us
ID

reserved

Copyright © 1996,1997 All rights reserved. Page 61

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

7.5.1.2 Quadlet Transmit

The quadlet request transmit formats are shown below. The first word contains packet control information. The second
and third words contain 16-bit destination ID and the 48-bit, quadlet-aligned destination offset. The fourth word is the
quadlet data for write quadlet requests, and is the data length and reserved for block read requests.

Figure 7-9 — Quadlet write request transmit format

Figure 7-10 — Block read request transmit format

Table 7-13 — Quadlet transmit fields

field name bits description

srcBusID, spd, tLabel, rt,
tCode, 1394 reserved, des-
tinationID, destinationOff-
setHigh,
destinationOffsetLow

See Table 7-12.

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h0

destinationOffsetHigh

destinationOffsetLow

quadlet data

destinationID

spd rt

sr
cB

us
ID

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h5

destinationOffsetHigh

destinationOffsetLow

destinationID

spd rt

dataLength

sr
cB

us
ID

1394
reserved

Copyright © 1996,1997 All rights reserved. Page 62

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

7.5.1.3 Block transmit

The block request transmit formats are shown below. The first word contains packet control information. The second and
third words contain the 16-bit destination node ID and the 48-bit destination offset. The fourth word contains the length
of the data field and the extended transaction code (all zeros except for lock transactions). The block data, if any, follows
the extended code.

quadlet data 32 For quadlet write requests and quadlet read responses this field holds the data to be
transferred.

dataLength 16 The number of bytes requested in a block read request.

Figure 7-11 — Write request transmit format

Table 7-13 — Quadlet transmit fields (Continued)

field name bits description

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h1

destinationOffsetHigh

destinationOffsetLow

destinationID

spd rt

dataLength extendedTcode

block data

padding (if needed)

sr
cB

us
ID

Copyright © 1996,1997 All rights reserved. Page 63

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Figure 7-12 — Lock request transmit format

Table 7-14 — Block transmit fields

field name bits description

srcBusID, spd, tLabel, rt,
tCode, 1394 reserved, des-
tinationID, destinationOff-
setHigh,
destinationOffsetLow

See Table 7-12.

dataLength 16 The number of bytes of data to be transmitted in this packet.

extendedTcode 16 If the tCode indicates a lock transaction, this specifies the actual lock action to be per-
formed with the data in this packet.

block data The data to be sent. If dataLength==0, no data should be written into the FIFO for this
field. Regardless of the destination or source alignment of the data, the first byte of the
block must appear in the high order byte of the first word.

padding If the dataLength mod 4 is not zero, then zero-value bytes are added onto the end of the
packet to guarantee that a whole number of quadlets is sent.

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h9

destinationOffsetHigh

destinationOffsetLow

destinationID

spd rt

dataLength extendedTcode

block data (up to 4 quadlets)

sr
cB

us
ID

Copyright © 1996,1997 All rights reserved. Page 64

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

7.5.1.4 PHY packet transmit

The PHY packet transmit format is shown below. The first quadlet contains packet control information. The remaining
two quadlets contain data that is transmitted without any formatting on the bus. No CRC is appended to the packet, nor is
any data in the first quadlet sent. This packet is used to send PHY configuration and Link-on packets.

7.5.2 Asynchronous Transmit Responses

7.5.2.1 No-data transmit

The no-data transmit formats are shown below. The first word contains packet control information. The second and third
words contain 16-bit destination ID and either the 48-bit quadlet-aligned destination offset (for requests) or the response
code (for responses).

Figure 7-13 — PHY packet transmit format

Figure 7-14 — Write response transmit format

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tcode=4’hEspd

phy packet quadlet 1

phy packet quadlet 2

1394
reserved

1394
reserved

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h2

destinationID

spd rt

write response transmit format

rCode

sr
cB

us
ID

Copyright © 1996,1997 All rights reserved. Page 65

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

7.5.2.2 Quadlet Transmit

The quadlet read response transmit format is shown below. The first word contains packet control information. The
second and third words contain 16-bit destination ID and the 4-bit response code. The fourth word is the quadlet data for
read responses.

Table 7-15 — Write response transmit fields

field name bits description

srcBusID 1 Source bus ID selector. If clear, the high order 10 bits of the source_ID field of the trans-
mitted packet will be 10’h3FF. If set, the high order 10 bits of the source_ID field of
the transmitted packet will be busNumber.Node_ID (see section 5.9).

spd 3 This field indicates the speed at which this packet is to be sent. 000 = 100 Mbits/sec,001
= 200 Mbits/sec, and 010 = 400 Mbits/sec, other values are reserved.

tLabel 6 This field is the transaction label, which is used to pair up a response packet with its
corresponding request packet.

rt 2 The retry code for this packet. Must be 2’h01 == retryX for the 1394 Open HCI.

tCode 4 The transaction code for this packet.

1394 reserved Required by IEEE 1394-1995 to be all zeros. OpenHCI will pass these bits along as-is
and will not verify them or modify them.

destinationID 16 This is the concatenation of the 10-bit bus number and the 6-bit node number for the
destination of this packet.

rCode 4 Response code for write response packet.

Figure 7-15 — Quadlet read response transmit format

1394
reserved

1394
reserved

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h6

quadlet data

spd rt

destinationID rCode

sr
cB

us
ID

Copyright © 1996,1997 All rights reserved. Page 66

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

7.5.2.3 Block transmit

The block response transmit formats are shown below. The first word contains packet control information. The second and
third words contain the 16-bit destination node ID and the response code and reserved data. The fourth word contains the
length of the data field and the extended transaction code (all zeros except for lock transactions). The block data, if any,
follows the extended code.

Table 7-16 — Quadlet transmit fields

field name bits description

srcBusID, spd, tLabel, rt,
tCode, 1394 reserved, des-
tinationID, rCode

See Table 7-15.

quadlet data 32 For quadlet write requests and quadlet read responses, this field holds the data to be
transferred.

Figure 7-16 — Block read response transmit format

1394
reserved

1394
reserved

1394
reserved

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h7spd rt

dataLength

block data

destinationID rCode

padding (if needed)

sr
cB

us
ID

Copyright © 1996,1997 All rights reserved. Page 67

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Figure 7-17 — Lock response transmit format

Table 7-17 — Block transmit fields

field name bits description

srcBusID, spd, tLabel, rt,
tCode, 1394 reserved, des-
tinationID, rCode

See Table 7-15.

dataLength 16 The number of bytes of data to be transmitted in this packet.

extendedTcode 16 If the tCode indicates a lock transaction, this specifies the actual lock action to be per-
formed with the data in this packet.

block data The data to be sent. If dataLength==0, no data should be written into the fifo for this
field. Regardless of the destination or source alignment of the data, the first byte of the
block must appear in the high order byte of the first word.

padding If the dataLength mod 4 is not zero, then zero-value bytes are added onto the end of the
packet to guarantee that a whole number of quadlets is sent.

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’hBspd rt

dataLength extendedTcode

block data (up to 2 quadlets)

destinationID rCode

sr
cB

us
ID

1394
reserved

1394
reserved

Copyright © 1996,1997 All rights reserved. Page 68

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Copyright © 1996,1997 All rights reserved. Page 69

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

8. Asynchronous Receive DMA

The Asynchronous Receive DMA controller performs the function of accepting packets for which there is no explicit
destination. This includes all packets which are accepted by the link module, but are not handled by any other receive
DMA function. There are two asynchronous receive (AR) contexts, an AR Request context and an AR Response context.
Each context uses a DMA context program to move such packets into memory to be interpreted by the host processor
software.

Since the collection of packets that must be handled by the AR contexts may be of widely varying lengths, each context
operates inbuffer-fill mode in which multiple packets may be concatenated into the supplied buffers. Software is respon-
sible for parsing through these buffers and taking the appropriate action required for a packet, and hardware is required to
make these buffers parsable.

This chapter describes the AR context program components, how the AR contexts are managed and how the Asynchro-
nous Receive controller operates.

8.1 AR Context Programs

The Asynchronous Receive DMA controller consists of two contexts for handling all asynchronous packets not handled
by the physical DMA controller. A context program is a list of DMA descriptors used to identify buffers in host memory
into which the Host Controller places received asynchronous packets.

The DMA descriptors are 16-bytes in length and must be aligned on a 16-byte boundary. There is one type of command
descriptor used in an AR context program: INPUT_MORE.

8.1.1 INPUT_MORE descriptor

The INPUT_MORE command descriptor is used to specify a host memory buffer into which the AR controller will place
the received asynchronous packets from the Host Controller receive FIFO. It has the following format.

Figure 8-1 — Asynchronous receive descriptor

Table 8-1 — Asynchronous receive descriptor element summary

Element Bits Description

cmd 4 Software must set this field in all AR command descriptors to 4’h2 for INPUT_MORE,
and hardware may assume that all AR descriptors are INPUT_MORE commands.
This indicates to the AR controller that this descriptor contains a buffer address for storing
received asynchronous packets.

s 1 Status control. Software must set this field to 1. Hardware always writes status regardless
of the setting of this bit.

key 3 This field must be set to 3’b0.

dataAddress

Z

cmd=
4’h2

s=
1 i reqCount

resCountxferStatus

branchAddress

2’b
11

key=
3’b0

Copyright © 1996,1997 All rights reserved. Page 70

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Note that the Command.resCount and Command.xferStatus fields are updated in an indivisible operation.

8.1.2 Using AR command descriptors

An asynchronous receive context program consists of a list of INPUT_MORE command descriptors. Each
INPUT_MORE is required to provide a branchAddress along with a Z value of 1 for the next block. Further, it must use
Z=0 to indicate the end of the context program. A program which ends in Z=0 can be appended to while the DMA runs,
even if the DMA has already reached the final descriptor. The exact mechanism for appending to a running list is the same
for all OpenHCI controllers and is described in section 3.2.1.2.

Software may only modify a descriptor that may have been prefetched if a) the descriptor’s current Z value is 0, and b)
only the branchAddress and Z fields of the descriptor are modified.

8.2 bufferFill mode

Received asynchronous packets can be either solicited responses or unsolicited requests. Since software must be prepared
to handle several packets of variable size, the Asynchronous Receive DMA contexts operate in bufferFill mode. In buffer-
Fill mode, all received packets are concatenated into a contiguous stream of data. This data is then metered out into

i 2 Interrupt control. Valid values are 2’b11 to generate an AsynchRx interrupt when the
descriptor is completed (see section 6.2.1), or 2’b00 for no interrupt. Behavior is unspec-
ified if set to 2’b01 or 2’b10.

b 2 Branch control. Software must set this field to 2’b11. Values of 2’b10, 2’b01, and 2’b00
will result in unspecified behavior.

reqCount 16 Request count: The size in bytes of the input buffer pointed to by dataAddress. ReqCount
must be a multiple of 4 (representing a whole number of quadlets).

dataAddress 32 Host memory address of receive buffer. This address must be aligned on a quadlet bound-
ary.

branchAddress 28 16-byte aligned address of the next descriptor. A valid address must be provided in this
field unless the Z field is 0.

Z 4 Z may be set to 0 or 1. If this is the last descriptor in the context program, Z must be set
to 0, otherwise it must be set to 1.

xferStatus 16 Written with ContextControl [15:0] whenever resCount is updated.

resCount 16 Residual count: while this descriptor is in-use by the Host Controller, resCount is updated
each time a packet is written to the receive buffer to indicate the number of bytes (out of
a max of reqCount) which have not been filled with received data.
For further information on resCount see section 8.4.2, “AR DMA Controller processing.”

Table 8-1 — Asynchronous receive descriptor element summary

Element Bits Description

Copyright © 1996,1997 All rights reserved. Page 71

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

buffers described by a DMA context program, filling each buffer completely. Packets may straddle multiple buffers in this
mode (see packet 2 in the illustration below) In addition to the overall concept of bufferFill mode, there are several
nuances for Asynchronous receive which are described in detail below in section 8.4.2.

8.3 Asynchronous Receive Context Registers

The AR request context and AR response context each have a CommandPtr register and a ContextControl register.
CommandPtr is used by software to tell the Host Controller where the DMA context program begins. ContextControl is
used by software to control the context’s behavior, and is used by hardware to indicate current status.

8.3.1 AR DMA CommandPtr register

The CommandPtr register specifies the address of the context program which will be executed when a DMA context is
started. All descriptors are 16-byte aligned, so the four least-significant bits of any descriptor address must be zero. The
least-significant bit of the CommandPtr register is used to encode a Z value. For each AR context (Request and Receive)
Z may be either 1 to indicate that descriptorAddress points to a valid command descriptor, or 0 to indicate that there are
no descriptors in the context program.

Refer to section 3.1.5 for a full description of the CommandPtr register.

Figure 8-2 — bufferFill receive mode

Figure 8-3 — CommandPtr register format

et 2 packet 3

MORE s key=0 i b=3 reqCount

dataAddress

Z=1

resCount=0xferStatus

branchAddress

MORE s key=0 i b=3 reqCount

dataAddress

Z=1

resCountxferStatus

branchAddress

packet 1 pack

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

descriptorAddress [31:4] Z

Copyright © 1996,1997 All rights reserved. Page 72

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

8.3.2 AR ContextControl register (set and clear)

The ContextControlSet andContextControlClear registers contain bits that control options, operational state, and status
for a DMA context. Software can set selected bits by writing ones to the corresponding bits in theContextControlSet
register. Software can clear selected bits by writing ones to the corresponding bits in theContextControlClear register. It
is not possible for software to set some bits and clear others in an atomic operation. A read from either register will return
the same value and is referred to as theContextControlStatus register.

8.4 AR DMA Controller

8.4.1 Asynchronous Filter Registers

Software can control from which nodes it will receiverequest packets by utilizing the asynchronous filter registers. There
are two registers, one for filtering out all requests from a specified set of nodes (AsynchronousRequestFilter register) and
one for filtering out physical requests from a specified set of nodes (PhysicalRequestFilter register). The settings in both
registers have a direct impact on how the AR Request context is used, e.g. disabling only physical receives from a node
will cause all request packets from that node to be routed to the AR Request context buffer(s). The usage and interrela-
tionship between these registers is fully described in section 5.12, “Asynchronous Request Filters.” Asynchronous
response packets are never filtered.

Figure 8-4 — AR ContextControl (set and clear) register format

Table 8-2 — AR ContextControl (set and clear) register description

Field RSC Description

run rsc Refer to section 3.1.1 for an explanation of the contextControl.run bit.

wake rs Refer to section 3.1.2 for an explanation of the contextControl.wake bit.

dead ru Refer to section 3.1.4 for an explanation of the contextControl.dead bit.

active ru Refer to section 3.1.3 for an explanation of the contextControl.active bit.

spd ru This field indicates the speed at which the packet was received. 3’b000 = 100 Mbits/sec,
3’b001 = 200 Mbits/sec and 3’b010 = 400 Mbits/sec. All other values are reserved.

ack/err code ru Following an INPUT_MORE command, the received ack_ code or an “evt_” error code is
indicated in this field. Possible values are: ack_complete, ack_pending,
evt_descriptor_read, evt_data_write, evt_bus_reset and evt_unknown.
See Table 3-2, “Packet event codes,” for descriptions and values for these codes.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 6 5 4 3 2 1 0

dead
active

wake

run

ack/err
code

spd

9 810 7

Copyright © 1996,1997 All rights reserved. Page 73

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

8.4.2 AR DMA Controller processing

The AR DMA controller writes the entire packet, as described in the Asynchronous Receive Data Formats section, into
memory for software to process. This includes the packet header and packet reception status. Data chaining across context
commands is supported.

For the AR request context, command.reqCount should always be set to at least the maximum possible packet length for
an asynchronous packet as specified in the max_rec field of the bus_info_block,plus five quadlets for the header and
trailer (2^(max_rec+1) + 20 bytes). This means a single packet can cross at most one buffer boundary. This requirement
also makes it easier for the Host Controller implementation to combine asynchronous receive FIFOs (see section 3.3).

When the host software transmits an asynchronous request, it must first ensure that there is enough buffer space allocated
in the AR response context’s context program to receive the response packet including headers and timestamp. Failure to
preallocate this space may result in the hardware discarding responses that arrive when the AR response context is out of
descriptors even though ack_complete may have been sent to the source node.

Since the AR request context and AR response context buffers must always be parseable by software there are three
essential requirements.

a) The Host Controller must write a packet into a buffer(s) by first writing the asynchronous packet header, followed
by the packet data, followed by a packet trailer.

b) Requests or responses with data-length errors, CRC errors, FIFO overrun errors or buffer overrun errors must not
be presented to the software. Although the host memory buffers may have been written in anticipation of a good
packet, the xferStatus and resCount will not be updated. This in effect “backs out” the packet.

c) After each packet is written into the buffer(s), hardware must update the resCount for the INPUT_MORE
descriptor(s) for the buffer(s), to accurately reflect the number of unused bytes remaining.

Software does not have to initialize resCount. Upon the first packet arrival into a buffer, the Host Controller must write
the appropriate residual count, based on (reqCount - (packetHeaderLen + dataLength + statusquadlet)). Note that neither
the header CRC nor data CRC quadlets are inserted into the buffer.

As depicted in figure 8-2 on page 71, it is possible for a received packet to straddle multiple buffers. For the AR Request
context, the buffer size requirements (mentioned above) ensure that a packet can only straddle two buffers. However, the
AR Response context does not have a buffer size requirement and therefore AR response packets may straddle more than
two buffers. To ensure that the receive buffers for a context remain parsable, hardware must follow the procedure shown
below. (First buffer refers to the buffer receiving the first byte of the packet or packet header, and final buffer refers to the
buffer receiving the last byte of the packet or packet trailer.)

1) After filling to the end of a buffer with a partial packet, advance to the next descriptor block and obtain the
next buffer (dataAddress), retaining all state for the first buffer as well as for the new buffer.

2) Continue writing packet bytes into the new buffer. If the end of the buffer is reached, advance to the next
buffer without updating xferStatus and without retaining state for it or any other interim buffers. Write the
remaining packet bytes into the final buffer (for the packet).

3) If there is no error: 1) write the trailer quadlet into the final buffer, 2) update xferStatus and resCount into the
final buffer’s descriptor, and 3) update xferStatus and resCount into the first buffer’s descriptor. At that point
the first buffer’s state is no longer needed.

4) If there is an error, then the packet must be ‘backed-out’ by reverting back to the previous state of the first
buffer (as saved earlier). XferStatus and resCount arenot updated for either descriptor.

By following these steps, the AR context buffers remain intact and can be parsed. Since interim buffers (those containing
an inner portion of one packet) for the AR Response context will not have their status updated, software must only use
resCount values when the corresponding xferStatus indicates the run bit is set to one. It follows from this that if the xfer-
Status.run bit is set in a descriptor, then all prior descriptors have been filled.

Copyright © 1996,1997 All rights reserved. Page 74

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

8.4.2.1 AR DMA Packet Trailer

The trailer quadlet written by the Host Controller at the end of each packet has the following format.

8.4.2.2 Error Handling

Packets resulting in an ack_data_error will, in effect, not go into an AR DMA buffer. Since an ack_data_error condition
is not known until all data (plus data CRC) has arrived, many “corrupted” data bytes may have been moved into an AR
DMA buffer by the time the error situation is discovered. In this circumstance, hardware is required to halt its writing of
the packet into the AR DMA buffer without updating the resCount field. By not advancing the residual count location, it
will appear as though the packet never was written into the AR DMA buffer at all.

8.4.2.3 Bus Reset Packet

To assist software in determining which asynchronous request packets arrived before and after a bus reset (necessary since
node numbers may have changed), the Host Controller inserts a synthesized PHY packet into the AR DMA Request
Context buffer as soon as a bus reset condition is detected. This packet has the following format.

Figure 8-5 — AR DMA packet trailer format

Table 8-3 — AR DMA trailer fields

field name bits description

xferStatus 16 Written with ContextControl[15:0].

timeStamp 16 The low order 3 bits of cycleTimer.cycleSeconds and the full 13 bits of
cycleTimer.cycleCount at some time during receipt of the packet.

Figure 8-6 — AR Request Context Bus Reset packet format

timeStampxferStatus

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

2122

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tcode=4’hE 4’h0

timeStamp3’h0 errCode=5’h19

selfIDGeneration

Copyright © 1996,1997 All rights reserved. Page 75

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Software can distinguish the bus-reset packet from authentic PHY packets based on the size (bus-reset packet is four
quadlets, PHY is three). Bus-reset packets are further distinguished by the value of errCode which is set to evt_bus_reset.
Software can further interpret and coordinate received asynchronous packets across multiple bus resets by using the self-
IDGeneration number provided in the bus-reset packet. Since the bus-reset packet is fabricated when a bus reset is
initially detected, the selfIDGeneration number is for the previous (not new) generation.

If the input FIFO is full when a bus reset occurs, the link side of the FIFO must later insert the bus-reset packet when
space becomes available.

8.5 Asynchronous Receive Interrupts

There are two interrupts for each context (request and response) that software can use to gauge the usage of the receive
buffers. If software needs to be informed of the arrival of each packet being sent to the context buffers, it can use the
RQPkt or RSPkt interrupts in the IntEvent register (see section 6.2.1). If software needs to be informed of the completion
of a buffer, it can set the context command.i field to 2’b11, which will trigger either the ARRQ or ARRS interrupt in the
IntEvent register.

8.6 Asynchronous Receive Data Formats

There are four basic formats for asynchronous data to be received:

a) no-data packets (used for quadlet read requests and all write responses)

b) quadlet packets (used for quadlet write requests, quadlet read responses, and block read requests)

c) block packets (used for lock requests and responses, block write requests, and block read responses)

d) PHY packets

The names and descriptions of the fields in the received data are given in table 8-5.

Table 8-4 — AR Request Context Bus Reset packet description

Field bits Description

tcode 4 Set to 4’hE to indicate a PHY packet.

selfIDGeneration 8 The selfIDCount.selfIDGeneration value at the time this packet is created.

errCode 5 A value of 5’h19 (evt_bus_reset) identifies this as a synthesized bus_reset packet.

timeStamp 16 The low order 3 bits of cycleTimer.cycleSeconds and the full 13 bits of
cycleTimer.cycleCount when this packet was created.

Table 8-5 — Asynch receive fields

field name bits description

destinationID 16 This field is the concatenation of busNumber (or all ones for “local bus”) and node-
Number (or all ones for broadcast) for this node.

tLabel 6 This field is the transaction label, which is used to pair up a response packet with its
corresponding request packet.

rt 2 The retry code for this packet. 00=retry1, 01=retryX, 10=retryA, 11=retryB

tCode 4 The transaction code for this packet.

1394 reserved Required by IEEE 1394-1995 to be all zeros. OpenHCI will pass these bits along as-is
and will not verify or modify them.

sourceID 16 This is the node ID of the sender of this packet.

Copyright © 1996,1997 All rights reserved. Page 76

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

8.6.1 No-data receive

The no-data receive formats are shown below. The first word contains the destination node ID and the rest of the packet
header. The second and third words contain 16-bit source ID and either the 48-bit, quadlet-aligned destination offset (for
requests) or the response code (for responses). The last word contains packet reception status.

destinationOffsetHigh,

destinationOffsetLow

16
32

The concatenation of these two fields addresses a quadlet in this node’s address space.
This address must be quadlet-aligned (modulo 4).

rCode 4 Response code for response packets.

quadlet data 32 For quadlet write requests and quadlet read responses, this field holds the data received.

dataLength 16 The number of bytes of data to be received in a block packet.

extendedTcode 16 If the tCode indicates a lock transaction, this specifies the actual lock action to be per-
formed with the data in this packet.

block data The data received. If dataLength==0, no data will be written into the fifo for this field.
Regardless of the destination or source alignment of the data, the first byte of the block
will appear in the high order byte of the first word.

padding If the dataLength mod 4 is not zero, then bytes have been added onto the end of the
packet by the transmitting node to guarantee that a whole number of quadlets is
received.

xferStatus 16 Written with ContextControl[15:0]. The ContextControl bits [7:0] written into the
descriptor’s xferStatus pertain to no particular packet in the buffer and are likely not to
be of any use to software.

timeStamp 16 The low order 3 bits ofcycleSeconds and the full 13 bits ofcycleCountfrom the most
recently received (or sent) cycle start packet. If there is no cycle master, a synthesized
value will be used from the cycleTimer register.

Figure 8-7 — Quadlet read request receive format

Table 8-5 — Asynch receive fields (Continued)

field name bits description

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h4

destinationOffsetHigh

destinationOffsetLow

sourceID

rtdestinationID

xferStatus timeStamp

Copyright © 1996,1997 All rights reserved. Page 77

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

8.6.2 Quadlet Receive

The quadlet receive formats are shown below. The first word contains the destination node ID and the rest of the packet
header. The second and third words contain 16-bit source ID and either the 48-bit, quadlet-aligned destination offset (for
requests) or the response code (for responses). The fourth word is the quadlet data for read responses and write quadlet
requests, and is the data length and reserved for block read requests. The last word contains packet reception status.

Figure 8-8 — Write response receive format

Figure 8-9 — Quadlet write request receive format

1394
reserved

1394
reserved

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h2destinationID rt

rCodesourceID

xferStatus timeStamp

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h0

destinationOffsetHigh

destinationOffsetLow

quadlet data

destinationID rt

sourceID

1394
reserved

xferStatus timeStamp

Copyright © 1996,1997 All rights reserved. Page 78

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Figure 8-10 — Quadlet read response receive format

Figure 8-11 — Block read request receive format

1394
reserved

1394
reserved

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h6

quadlet data

rtdestinationID

rCodesourceID

xferStatus timeStamp

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h5

destinationOffsetHigh

destinationOffsetLow

destinationID rt

dataLength

sourceID

xferStatus timeStamp

1394
reserved

Copyright © 1996,1997 All rights reserved. Page 79

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

8.6.3 Block receive

The block receive format is shown below. The first word contains the destination node ID and the rest of the packet
header. The second and third words contain 16-bit source ID and either the 48-bit destination offset (for requests) or the
response code and reserved data (for responses). The fourth word contains the length of the data field and the extended
transaction code (all zeros except for lock transactions). The block data, if any, follows the extended code. The last word
contains packet reception status.

Figure 8-12 — Block write request receive format

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h1

destinationOffsetHigh

destinationOffsetLow

destinationID rt

dataLength extendedTcode

block data

sourceID

padding (if needed)

xferStatus timeStamp

Copyright © 1996,1997 All rights reserved. Page 80

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Figure 8-13 — Lock request receive format

Figure 8-14 — Block read response receive format

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h9

destinationOffsetHigh

destinationOffsetLow

destinationID rt

dataLength extendedTcode

block data

sourceID

padding (if needed)

xferStatus timeStamp

1394
reserved

1394
reserved

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h7rt

dataLength extendedTcode

block data

destinationID

rCodesourceID

padding (if needed)

xferStatus timeStamp

Copyright © 1996,1997 All rights reserved. Page 81

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Figure 8-15 — Lock response receive format

1394
reserved

1394
reserved

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’hBrt

dataLength extendedTcode

block data

destinationID

rCodesourceID

padding (if needed)

xferStatus timeStamp

Copyright © 1996,1997 All rights reserved. Page 82

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

8.6.4 PHY packet receive

The PHY packet receive format is shown below. The first word contains a synthesized packet header with a tCode of
4’hE. The second quadlet contains the PHY quadlet and the third quadlet contains the inverse of the first quadlet.
Software is required to verify the integrity of the second quadlet by checking it against the third quadlet. The final (fourth)
quadlet contains the packet trailer. Self-ID packets not arriving during the bus initialization self-ID phase are received as
PHY packets.

Figure 8-16 — PHY packet receive format

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tcode=4’hE 4’h0

PHY packet first quadlet

errCode timeStamp

PHY packet second quadlet

Copyright © 1996,1997 All rights reserved. Page 83

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

9. Isochronous Transmit DMA

The Isochronous Transmit DMA (IT DMA) controller has a required minimum of four and an implementation maximum
of 32 isochronous transmit contexts. Each context is controlled by a DMA context program. Each IT DMA context will
transmit data for a single isochronous channel.

9.1 IT DMA Context Programs

For isochronous transmit DMA, a context program is a list of DMA command descriptors used to identify buffers in host
memory from which the Host Controller transmits packets onto the 1394 bus. The descriptors are 16 bytes in length and
must be aligned on a 16-byte boundary. There are five kinds of DMA command descriptors that can be used:
OUTPUT_MORE, OUTPUT_MORE-Immediate, OUTPUT_LAST, OUTPUT_LAST-Immediate and STORE_VALUE.

9.1.1 IT DMA command descriptor overview

There are two components to a 1394 isochronous packet, the packet header and the packet data, and there are many ways
in which software may need to organize this information in host memory. To accommodate the variety of packet organi-
zation, there are four IT DMA descriptor commands used to instruct the Host Controller on how to assemble the packets,
and one descriptor command for writing a quadlet into host memory for software tracking purposes.

If a packet has two or more data fragments an OUTPUT_MORE-Immediate and possibly some OUTPUT_MORE
commands are used. The OUTPUT_MORE-Immediate command is used to specify the packet header, and each
OUTPUT_MORE command allows for the specification of one packet fragment.

To indicate the end of a packet, either the OUTPUT_LAST or OUTPUT_LAST-Immediate command must be used. The
OUTPUT_LAST command allows for the specification of one data fragment, and the OUTPUT_LAST-Immediate is used
to specify a packet solely consisting of an isochronous packet header. Unlike the OUTPUT_MORE commands, the
OUTPUT_LAST commands indicate to the Host Controller that there is no more data to send for a packet.

The STORE_VALUE command descriptor provides a mechanism for software to monitor progress on a context without
using interrupts. This command will write a quadlet to a specified host memory location.

Copyright © 1996,1997 All rights reserved. Page 84

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

9.1.2 OUTPUT_MORE descriptor

The OUTPUT_MORE descriptor is used to specify one data fragment for the packet. DataAddress has no alignment
restrictions.

Figure 9-1 — OUTPUT_MORE command descriptor format

Table 9-1 — OUTPUT_MORE descriptor element summary

Element Bits Description

cmd 4 Set to 4’h0 for OUTPUT_MORE.
Identifies one data (or header) fragment used to build the packet.

key 3 This field must be set to 3’b000.

b 2 Branch control. Must be set to 2’b00. Behavior is unspecified if set to 2’b01, 2’b10 or
2’b11.

reqCount 16 Request count. The size of the specified buffer in bytes pointed to by dataAddress.

dataAddress 32 Address of transmit buffer.

2’b0 reqCount

dataAddress

cmd=0 key=
3’b0

Copyright © 1996,1997 All rights reserved. Page 85

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

9.1.3 OUTPUT_MORE-Immediate descriptor

The OUTPUT_MORE-Immediate descriptor must be used, and must only be used, to specify the isochronous header for
a non-zero data length packet. This is an efficient way for software to provide the packet header information since the data
is built into the descriptor and does not need to be fetched from a separate memory buffer.

OUTPUT_MORE-Immediate command descriptors are 32 bytes in length regardless of the value of reqCount.

Figure 9-2 — OUTPUT_MORE-Immediate descriptor format

Table 9-2 — OUTPUT_MORE-Immediate descriptor element summary

Element Bits Description

cmd 4 Set to 4’h0 for OUTPUT_MORE-Immediate.

key 3 This field must be set to 3’b001.

b 2 Branch control. Must be set to 2’b00. Behavior is unspecified if set to 2’b01, 2’b10 or
2’b11.

reqCount 16 Must be set to 8 to accomodate the IT packet header. Using any other value yields unspec-
ified results.

immediate data 32 Quadlet to be inserted into the isochronous transmit FIFO. Typically an isochronous
packet header.

skipAddress 28 16-byte aligned address of the next descriptor to be used if a missed cycle is detected.
Used only within the first command descriptor in a descriptor block. The first command
must either have a valid skipAddress, or must set the Z field to 0.

Z 4 Used to indicate the number of descriptors needed for theskipdescriptor block. Z may be
a value from 0 to 8. A zero indicates there is no skipAddress, and the DMA for this context
stops. A value of 1 to 8 indicates that there are 1 to 8 descriptors used in the skip packet.

quadlets 32*4 The first and second quadlets are used to specify the 2 quadlets required for the isochro-
nous packet header. (See section 9.5).

reqCount = 16’h0008

ZskipAddress

key=
3’b1cmd=0 2’b0

first quadlet

second quadlet

tthird quadlet

fourth quadlet

Copyright © 1996,1997 All rights reserved. Page 86

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

9.1.4 OUTPUT_LAST descriptor

Figure 9-3 — OUTPUT_LAST command descriptor format

Table 9-3 — OUTPUT_LAST descriptor element summary

Element Bits Description

cmd 4 Set to 4’h1 for OUTPUT_LAST.
Each command identifies one data (or header) fragment used to build the packet.
OUTPUT_LAST is used to signify the end of the isochronous packet to be transmitted.

s 1 Status control. If set to one, xferStatus and timeStamp will be updated upon descriptor
completion. If set to zero, neither field is updated.

key 3 This field must be set to 3’b000.

i 2 Interrupt control. Valid values are 2’b11 to generate an IsochTx interrupt when the
descriptor is completed (see section 6.2.1), or 2’b00 for no interrupt. Behavior is unspec-
ified if set to 2’b01 or 2’b10.

b 2 Branch control. This field must be set to 2’b11 to branch to the location specified in the
branchAddress field. Behavior is unspecified for all other values.

reqCount 16 Request count: The size of the buffer in bytes pointed to by dataAddress.

dataAddress 32 Address of transmit buffer.

branchAddress 28 16-byte aligned address of the next descriptor. Used only within OUTPUT_LAST com-
mands.

skipAddress 16-byte aligned address of the next descriptor to be used if a missed cycle is detected.
Used only within the first command descriptor in a descriptor block.

Z 4 Used in OUTPUT_LAST only to indicate the number of descriptors needed in thenext
descriptor block. Z may be a value from 0 to 8. A zero indicates this is the last descriptor
in the list for this IT DMA context. A value of 1 to 8 indicates that there are 1 to 8
descriptors used in the next descriptor block.

xferStatus 16 Written with ContextControl [15:0] after the descriptor is processed if s = 1.

timeStamp 16 Contains the three low order bits of cycleSeconds and all 13 bits of cycleCount, and is
written when xferStatus is written. TimeStamp indicates the cycle for which the IT DMA
controller queued the transmission of this packet. See section section 5.11, “Isochronous
Cycle Timer Register,” for information about cycle* fields.

s i b=
2’b11 reqCount

dataAddress

Z

xferStatus

skip or descriptor branch Address

cmd=1

timeStamp

key=
3’b0

Copyright © 1996,1997 All rights reserved. Page 87

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

9.1.5 OUTPUT_LAST-Immediate descriptor

The OUTPUT_LAST-Immediate descriptor must be used, and must only be used, to specify the isochronous header for a
packet with zero data bytes. OUTPUT_LAST-Immediate command descriptors are 32-bytes in length regardless of the
value of reqCount.

Figure 9-4 — OUTPUT_LAST-Immediate command descriptor format

Table 9-4 — OUTPUT_LAST-Immediate descriptor element summary

Element Bits Description

cmd, s Same as in Table 9-3.

key 3 This field must be set to 3’b001.

i, b Same as in Table 9-3.

reqCount 16 Must be set to 16’h0008 to accomodate the IT packet header. Using any other value yields
unspecified results.

branchAddress,
skipAddress, Z,
xferStatus, timeStamp

Same as in Table 9-3.

quadlets 32*4 The first and second quadlets are used to specify the 2 quadlets required for the isochro-
nous packet header. (See section 9.5).

s i b reqCount = 16’h0008

immediate data

Z

xferStatus

skip and descriptor branch Address

cmd=1

timeStamp

key=
3’b1

first quadlet

second quadlet

tthird quadlet

fourth quadlet

Copyright © 1996,1997 All rights reserved. Page 88

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

9.1.6 STORE_VALUE descriptor

The STORE_VALUE command descriptor instructs the Host Controller to write a specified 32-bit value to a specified
host memory location. If used, STORE_VALUE must be the first command descriptor in a descriptor block, and only one
is permitted per descriptor block. It has the following format.

9.1.7 IT DMA descriptor usage

The Z value is used by the Host Controller to enable several descriptors to be fetched at once, for improved efficiency. Z
values must always be encoded correctly. The contiguous descriptors described by a Z value are called adescriptor block.
The following table summarizes all legal Z values:

Each isochronous transmit descriptor block for a packet shall be specified with the command descriptors according to the
following rules:

• A maximum of 8 command descriptors may be used.
• Only one STORE_VALUE may be used, and it must be the first descriptor in a descriptor block.
• If the packet dataLength is not zero, one OUTPUT_MORE-Immediate must be used, followed by zero to five

OUTPUT_MORE’s, followed by one OUTPUT_LAST.
• If the packet dataLength is zero, one OUTPUT_LAST-Immediate must be used.

Figure 9-5 — STORE_VALUE descriptor

Table 9-5 — STORE_VALUE descriptor element summary

Element Bits Description

cmd 4 Set to 4’h8 for STORE_VALUE.

key 3 This field must be set to 3’b6.

storeDoublet 16 16-bit value to be stored into the quadlet aligned dataAddress upon execution of this com-
mand. StoreDoublet is written as a 32 bit value, where bits 31:16 are 0’s and bits 15:0 con-
tain the storeDoublet value provided in the descriptor.

dataAddress 32 Quadlet aligned host memory address into which storeDoublet (padded to 32) bits is
written.

skipAddress, Z 28 Same as in Table 9-1.

Table 9-6 — Z value encoding

Z value Use

0 Indicates that the current descriptor is the last descriptor in the context program.

1-8 Indicates that 1 to 8 descriptors starting at descriptorAddress are physically contiguous.

9-15 reserved

dataAddress

cmd=8 storeDoubletkey=
3’b6

ZskipAddress

Copyright © 1996,1997 All rights reserved. Page 89

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

The isochronous packet header must be specified using a *-Immediate command. The OUTPUT_LAST* command must
have a branch control value of 2’b11. All other commands must have a branch control value of 2’b00. Within a descriptor
block the sum of all descriptors’ reqCount values must be four or more. This is the minimum number of bytes needed to
describe an isochronous packet header. Depending on the aggregate number of bytes being transmitted for one descriptor
block, hardware may assist with padding. If the sum of all reqCounts modulo 4 is 0, then padding is not necessary. If the
sum of all reqCounts module 4 is not 0, then hardware will insert padding up to a quadlet boundary.

To indicate the end of the context program, all IT DMA context programs must use an OUTPUT_LAST or
OUTPUT_LAST-Immediate command with a branch (b) value of 2’b11 (branch always) and a Z value of 0 to indicate the
end of the program. A program which ends can be appended to while the DMA runs, even if the DMA has already
reached the last descriptor.

The first command in an isochronous packet descriptor block must have a skipAddress which points to the descriptor to
branch to if this packet cannot be transmitted (typically due to a lost cycle). The value of the Command.b field in that
descriptor does not affect a skip branch.

The use of many OUTPUT_MORE* commands to describe a single packet will generally cause extra fetch latencies, as
the Host Controller fetches payload buffers from different parts of memory. These latencies may differ for each Host
Controller implementation, bus, and host memory architecture. Software is expected to construct IT DMA context
programs with a sufficiently low number of OUTPUT_MORE* commands so that the Host Controller can satisfy applica-
tion-specific latency requirements.

ITDMA context programs must contain exactly one descriptor block to be transmitted per cycle. Each descriptor block
must be identified with an accurate Z value, both when the program is started, and on each branch within the program.
Each descriptor block must end with an unconditional branch to the next descriptor block, even if the next block follows
immediately in consecutive memory. (The branch enables the ITDMA to learn the Z value for the next descriptor block).
Each descriptor block must begin with a command that contains a branch to the skipAddress (also with a Z code).

Some applications of isochronous transfer do not transfer a packet on every isochronous cycle. Therefore the ITDMA will
sometimes not transmit a packet for one or more channels. Within a context program, a non-transmit cycle is indicated by
a descriptor block whose only transfer command is an OUTPUT_LAST with a length of zero. (This is not a zero-length
packet, which would be sent with an OUTPUT_LAST-Immediate.)

9.2 IT Context Registers

Each isochronous transmit context consists of two registers: CommandPtr and IT ContextControl. CommandPtr is used by
software to tell the IT DMA controller where the DMA context program begins. IT ContextControl is used by software to
control the context’s behavior, and is used by hardware to indicate current status.

9.2.1 CommandPtr

The CommandPtr register specifies the address of the context program which will be executed when a DMA context is
started. All descriptors are 16-byte aligned, so the four least-significant bits of any descriptor address must be zero. The
four least-significant bits of the CommandPtr register are used to encode a Z value that indicates how many physically
contiguous descriptors are pointed to by descriptorAddress.

Copyright © 1996,1997 All rights reserved. Page 90

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Refer to section 3.1.5 for a full description of the CommandPtr register.

9.2.2 IT ContextControl Register

The IT ContextControl set and clear registers contains bits that control options, operational state, and status for the isoch-
ronous transmit DMA contexts. Software can set selected bits by writing ones to the corresponding bits in theContext-
ControlSet register. Software can clear selected bits by writing ones to the corresponding bits in theContextControlClear
register. It is not possible for software to set some bits and clear others in an atomic operation. A read from either register
will return the same value.

The context control register used for isochronous transmit DMA contexts is shown below. It includes several fields which
permit software to filter packets based on various combinations of fields within the isochronous packet header.

Figure 9-6 — CommandPtr register format

Figure 9-7 — IT DMA ContextControl (set and clear) register format

Table 9-7 — IT DMA ContextControl (set and clear) register description

field rscu description

cycleMatchEnable rscu In general, when set to one,, the context will begin running only when the 13-bit cycleM-
atch field matches the 13-bit cycleCount in the cycleStart packet. The effects of this bit
however are impacted by the values of other bits in this register and are explained below.
Once the context has become active, hardware clears the cycleMatchEnable bit.

cycleMatch rsc Contains a 13-bit value, corresponding to the 13-bit cycleCount field. If contextCon-
trol.cycleMatchEnable is set, then this IT DMA context will become enabled for transmits
when the bus cycletime.cycleCount value equals the cycleMatch value.

run rsc Refer to section 3.1.1 and the description following this table for an explanation of the
contextControl.run bit.

wake rsu Refer to section 3.1.2 for an explanation of the contextControl.wake bit.

dead ru Refer to section 3.1.4 for an explanation of the contextControl.dead bit.

active ru Refer to section 3.1.3 for an explanation of the contextControl.active bit.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

descriptorAddress [31:4] Z

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

dead
active

wake

run

cycleMatch

cycleMatchEnable

ack/err
code

spd

Copyright © 1996,1997 All rights reserved. Page 91

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

The cycleMatch field is used to start an IT DMA context program on a specified cycle. Software enables matching by
setting the cycleMatchEnable bit. When the cycleStart.cycleCount value matches the cycleMatch value, hardware sets the
cycleMatchEnable bit to 0, sets the contextControl.active bit to 1, and begins executing descriptor blocks for the context.
The transition of an IT DMA context to the active state, from the not-active state is dependent upon the values of the run
and cycleMatchEnable bits.

• If run transitions to 1 when cycleMatchEnable is 0, then the context will become active (active = 1).
• If both run and cycleMatchEnable are set to 1, then the context will become active when the 13-bit cycleCount field

in the cycleStart packet matches the 13-bit cycleMatch value.
• If both run and cycleMatchEnable are set to 1, and cycleMatchEnable is subsequently cleared, the context becomes

active.
• If both run and active are 1 (the context is active), and then cycleMatchEnable is set to 1, this will result in

unspecified behavior.

9.3 Isochronous transmit DMA controller

The following sections describe how software manages the multiple isochronous transmit DMA contexts. Each context
has a commandPtr pointing to the current DMA descriptor. For every cycle start packet that the Host Controller receives
or sends, the IT DMA controller can transmit one descriptor block from each DMA context that is in the ContextCon-
trol.run state.

spd ru This field is not meaningful for isochronous transmit contexts.

ack/err code ru Following an OUTPUT_LAST* command, the error code is indicated in this field.
Possible values are: ack_complete, evt_descriptor_read , evt_data_read and evt_unknown.
See Table 3-2, “Packet event codes,” for descriptions and values for these codes.

Table 9-7 — IT DMA ContextControl (set and clear) register description

field rscu description

Copyright © 1996,1997 All rights reserved. Page 92

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

9.3.1 IT DMA Processing

Each of the DMA command pointers in thisisochronous transmit command array corresponds to a list of packets to be
sent on successive cycles. Generally, each list represents a single isochronous channel. Isochronous channel numbers are
not tied to the entry index in the isochronous transmit command array. The DMA context program pointed to by each
array entry will specify the entire isochronous packet header, including the isochronous channel number, for each packet
that is transmitted. The entire ITDMA is summarized in the following figure:

In the example, three channels are being transmitted. Three cycles of transmit are shown. Context 0 is sending on isoch-
ronous channel 9, using an OUTPUT_MORE-Immediate to send each packet header and an OUTPUT_LAST for each
payload. In cycle 2002 the payload spans a page boundary, so channel 9 uses an extra OUTPUT_MORE. Channel 9 will
skip to the next packet if any cycle is lost. Context 1 is sending on isochronous channel 6, with zero length packets and
only headers. Because channel 6 uses a single descriptor per packet, the skip branch is equal to the normal next packet
branch. Context 2 is sending on isochronous channel 42, with each skip branch pointing to itself. If a cycle is lost,
channels 6 and 9 will advance to the next packet, while channel 42 will fall behind by one packet, without skipping any
packets.

For each cycle, the IT DMA controller will complete one descriptor block for each active IT DMA context. If there is a
disruption while the IT DMA controller is processing a context, such as a bus reset or the loss of the isochronous phase,
the IT DMA controller is required to continue through its list of active contexts taking the skip branch address for each of
the remaining contexts.

Figure 9-8 — ITDMA summary

OUTPUT_MORE-I OUTPUT_MORE-I

OUTPUT_LAST

OUTPUT_MORE-I

OUTPUT_LAST

OUTPUT_LAST-I OUTPUT_LAST-I

OUTPUT_MORE-I

OUTPUT_LAST

OUTPUT_MORE-IcommandPtr 0 Z OUTPUT_MORE-I

OUTPUT_LAST OUTPUT_MORE

OUTPUT_LAST

ch
an

ne
l

9
ch

an
ne

l
42

ch
an

ne
l

6
cycle 2001 cycle 2002 cycle 2003

skip

normal branch

commandPtr 2 Z

commandPtr 1 Z

OUTPUT_LAST-I

OUTPUT_LAST

Copyright © 1996,1997 All rights reserved. Page 93

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

9.3.2 Isochronous transmit cycle loss

The IT DMA controller can send multiple packets (multiple isochronous channels) in each isochronous cycle. Because
isochronous cycles can be lost, the ITDMA is organized so that one cycle’s worth of packets can be skipped, if necessary,
to catch up. The loss of an isochronous cycle is usually uncommon, and typically results from a bus reset.

If isochronous cycles were lost, and no corrective action was taken, the transmitter would gradually fall behind, sending
each packet some number of cycles after the transmission time intended by software.

In order to permit the transmitter to avoid falling behind, each packet in an IT DMA context program contains a skip
branch address. Any time the IT DMA wants to correct for a cycle loss, it will follow this branch instead of transmitting
the packet. Software can use this branch in at least three ways. 1) Branching to the next packet will cause the IT DMA to
skip packets to recover from cycle loss. 2) Branching to the same packet will cause the IT DMA to fall behind (on that
channel only) without skipping any packets due to cycle loss. 3) Branching to an alternate context program can allow the
generation of an interrupt, and the possible early completion of transmission. 4) Stopping the IT DMA context program
due to cycle loss. Software can use the third and fourth methods to cease transmission on cycle loss in the application-
specific case that the receiver cannot tolerate either late or lost packets.

Because the Host Controller will generally load isochronous transmit packets into a FIFO in advance of transmission,
some packets may be considered complete when cycle loss is detected, even though they have not yet left the transmit
FIFO. In this situation, the Host Controller will hold those packets in the FIFO until they can be transmitted, and will then
complete the transmission of all other packets that had been intended to go out in the same cycle. The Host Controller
will then apply the skip branching on the packets for the next cycle (the first cycle for which no transmission has been
performed). If a context in the ITDMA is arranged to skip packets on cycle loss, the packet skipped will be the one sched-
uled for the cycle following the cycle that was lost. If the Host Controller preloads more than one cycle’s worth of
packets, the skip may be delayed by a similar number of cycles, so that the transmit FIFO can empty normally, without
being flushed.

The illustration below shows how each of these cases works. In this example, the ITDMA attempts to keep two cycles
ahead of the bus. In other words, it tries to have two complete cycles in the transmit FIFO (if they will fit) whenever
possible. Context A illustrates case 1 (above), where the skip branch is chosen so that packets are skipped. Note that
because of the FIFO preload, the two packets skipped on Context A (A4 and A5) follow a delayed packet (A3) that was
already in the FIFO. While it might have been possible to skip only one packet if the FIFO was flushed, it would be much
harder for the Host Controller to have packet A5 ready in time to send it on cycle 6. Context B illustrates case 2, where
packets are not skipped. While context A loses two packets, context B instead falls two cycles behind. Context C illus-
trates case 3, where transmission ends in response to a detected cycle loss. Packets C2 and C3 were already in the FIFO,
so they are transmitted, followed by the end-of-program packet Cx. The descriptor block for packet Cx loops to itself in
case additional cycles are lost before Cx is sent. This loop guarantees that Cx will be sent before the program ends.
Context D illustrates case 4, where transmission ends in response to a detected cycle loss without an end-of-program
packet. The skip address indicates the end of list (Z=0) and no more packets are loaded into the FIFO upon detection of
cycle loss.

Copyright © 1996,1997 All rights reserved. Page 94

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

In these examples, the packets that are “in the FIFO” assume an infinitely large transmit FIFO. The Host Controller will
transmit packets as shown, even if they are too big to actually fit into the FIFO. The behavior of the Host Controller in
response to a lost cycle does not depend on the implementation-specific transmit FIFO size.

If a cycle loss is detected while the IT DMA is mid packet, that context’s descriptor block will not branch to the skipAd-
dress, but will advance to the next descriptor block.

9.3.3 Determining the number of implemented IT DMA contexts

The number of supported isochronous transmit DMA contexts will vary for 1394 OpenHCI implementations from a
minimum of four to a maximum of 32. Software can determine the number of supported IT DMA contexts by writing
32’hFFFF_FFFF to isoXmitIntMask register (see section 6.2.3.1), and then reading it back. Bits returned as 1’s indicate
supported contexts, and bits returned as 0’s indicate unsupported/unimplemented contexts.

Figure 9-9 — Isochronous transmit cycle loss example

3 4 5 6 7 8 9 10

A1

C1

A2 A3 A4 A5 A6

B1 B2 B3 B4 B5 B6

C2 C3 C4 C5 C6

Cx

context A

context B

context C

A1 B1 C1 A2 B2 C2 A3 B3 C3 A6 B4 Cx A7 B5

A1

B1

C1

D1

A2

B2

A2

B2

C2

D2

A3

B3

B2

C2

D2

A3

B3

B2

C2

D2

A3

B3

A3

B3

C3

D3

A6

B4

A6

B4

Cx

A7

B5

A7

B5

A8

B6

BUS RESET ID

Tr
an

sm
it

F
IF

O

D1context D
0 0 0 0 0 0

C2

D2

D1

C3

D3

C3

D3

C3

D3

D2

Cx

D3

0

D2 D3 D4 D5 D6

Copyright © 1996,1997 All rights reserved. Page 95

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

9.4 IT Interrupts

Each of the possible 32 isochronous transmit contexts can generate an interrupt, so each IT context has a bit in the
isoXmitIntEvent register. Software can enable interrupts on a per-context basis by setting the corresponding isoXmitMask
bit to one.

To efficiently handle interrupts which could conceivably be generated from 32 different contexts in close proximity to one
another, there is a single bit for all IT DMA contexts in the Host Controller IntEvent register. This bit signifies that at
least one but potentially several IT DMA contexts attempted to generate an interrupt. Software can read the isoXmitInt-
Event register to find out which context(s) are involved. For more information on the isoXmitIntEvent register, see
section 6.2.3.1.

9.5 IT Data Format

An isochronous transmit packet consists of two header quadlets (as specified in either the OUTPUT_MORE-Immediate or
OUTPUT_LAST-Immediate descriptor) and a data payload. The data payload in host memory is not required be aligned
on a quadlet boundary. Padding is added by the Host Controller if needed. The format is as follows.

Figure 9-10 — Isochronous transmit format with header/cycleNumber

Table 9-8 — Isochronous transmit fields

field name bits description

spd 3 The speed at which the packet will be transmitted.

tag 2 The data format of the isochronous data (see IEEE 1394 specification)

chanNum 6 The channel number this data is associated with.

tcode 4 The transaction code for this packet.

sy 4 Transaction layer specific synchronization bits.

dataLength 16 Indicates the number of bytes in this packet.

isochronous data

reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

chanNum tcode=4’hA sytag

padding (if needed)

dataLength reserved

spd
or 4’hC

Copyright © 1996,1997 All rights reserved. Page 96

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

isochronous data The data to be sent with this packet. The first byte of data must appear in byte 0 of the
first quadlet of this field. The last quadlet should be padded with zeroes, if necessary.

padding If the dataLength mod 4 is not zero, then zero-value bytes are added onto the end of the
packet to guarantee that a whole number of quadlets is sent.

Table 9-8 — Isochronous transmit fields (Continued)

field name bits description

Copyright © 1996,1997 All rights reserved. Page 97

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

10. Isochronous Receive DMA

The Isochronous Receive DMA (IR DMA) controller has a required minimum of four and an implementation maximum
of 32 isochronous receive DMA contexts. Each context is controlled by a DMA context program. One single IR DMA
context can receive packets from multiple isochronous channels, and the remaining DMA contexts can each receive
packets from a single isochronous channel. IR DMA contexts can either receive exactly one packet per buffer, or they can
concatenate packets into a stream that completely fills each of a series of buffers. Packets may be received with or without
isochronous packet headers and timeStamps.

10.1 Context Programs

For isochronous receive DMA, a context program is a list of DMA descriptors used to identify buffers in host memory
into which the Host Controller places received isochronous packets. The descriptors are 16 bytes in length and must be
aligned on a 16 byte boundary. There are two kinds of descriptor commands available: INPUT_MORE and
INPUT_LAST.

Figure 10-1 — Isochronous receive descriptor

Table 10-1 — Descriptor element summary

Element Bits Description

cmd 4 Set to 4’h2 for INPUT_MORE, or set to 4’h3 for INPUT_LAST.
INPUT_MORE is required for receiving packets in buffer-fill mode (see section 10.2.1),
and may also be used in packet-per-buffer mode.
INPUT_LAST is required for receiving packets in packet-per-buffer mode (see
section 10.2.2), and must be the final descriptor in a descriptor block. It is not permitted
in buffer-fill mode.

s 1 Used withpacket-per-buffer mode only (see section 10.2.2). If set to one, xferStatus and
resCount will be updated upon descriptor completion. If set to zero, neither field is
updated. Assumed to be one for buffer-fill mode.

key 3 This field must be set to 3’b0.

i 2 Interrupt control. Valid values are 2’b11 to generate an IsochRx interrupt when the
descriptor is completed (see section 6.2.1), or 2’b00 for no interrupt. Behavior is unspec-
ified for 2’b01 and 2’b10.

b 2 Branch control. Valid values are 2’b11 to branch to branchAddress, and 2’b00 not to
branch. Behavior is unspecified for 2’b01 and 2’b10.
For buffer-fill mode (see section 10.2.1), this field must always be set to 2’b11.
For packet-per-buffer mode (see section 10.2.2), this field must be 2’b00 for
INPUT_MORE commands and 2’b11 for INPUT_LAST commands.

w 2 Wait control. Valid values are 2’b11 to wait for a packet with a sync field which matches
thy sync specified in the context’s IRContextMatch register (see section 10.3), or 2’b00
not to wait.Forpacket-per-buffer mode, 2’b11 can only be used in the first descriptor of a
descriptor block. Behavior is unspecified for 2’b01 and 2’b10.

reqCount 16 Request count: The size of the input buffer in bytes.

Z

bcmd=2
or 3 s key=

3’b0 i reqCount

dataAddress

resCountxferStatus

branchAddress

w

Copyright © 1996,1997 All rights reserved. Page 98

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

The Z value is used by the Host Controller to fetch multiple command descriptors at once, for improved efficiency. Z
values must always be encoded correctly. The contiguous descriptors described by a Z value are called adescriptor block.
The following table summarizes all legal Z values:

To indicate the end of the context program, all IR DMA context programs must indicate the end of the program by using
a command descriptor with ab value of 2’b11 (branch always) and aZ value of 0. A context program can be appended to
while the DMA runs, even if the DMA has already reached the last descriptor. section 3.2.1.2 describes how to append to
a context program.

When an IR DMA context is running and/or active, software shall not modify any command descriptors within the context
program with the exception of the last command descriptor (the one descriptor in a program withb=2’b11 andZ=4’h0).
The last command descriptor may only be modified according to the steps described in section 3.2.1.2.

10.2 Receive Modes

The Host Controller can write isochronous receive packets into host memory buffers in one of two ways. It can place
them using either buffer-fill mode or packet-per-buffer mode.

dataAddress 32 Address of receive buffer. If inpacket-per-buffer mode and receiving headers, dataAd-
dress must be quadlet aligned.

branchAddress 28 16-byte aligned address of the next descriptor. This field is not used for INPUT_MORE
commands in packet-per-buffer mode.

Z 4 Forbuffer-fill mode (see section 10.2.1), Z must be either 1 to indicate the branchAddress
is a valid address for the next INPUT_MORE, or 0 to indicate this descriptor is the end of
the context program.
Forpacket-per-buffer mode (see section 10.2.2), if the command is INPUT_LAST, Z may
be a value from 1 to 8 to indicate the number of descriptors in the next descriptor block,
or 0 to indicate the end of the context program. If the command is INPUT_MORE, then
Z is not used.

xferStatus 16 Composed of 16-bits from ContextControl[15:0].
For buffer-fill mode, xferStatus is written when resCount is updated.
Forpacket-per-buffer mode, xferStatus is written after the descriptor is processed if s = 1.

resCount 16 Residual count: The number of bytes remaining in the dataAddress buffer (out of a max-
imum of reqCount). Written if in packet-per-buffer mode and s = 1, or each time a packet
is received in buffer-fill mode. For further details on when resCount is updated in buffer-
fill mode, see section 10.2.1.

Table 10-2 — Z value encoding

Z value Use

0 Indicates that the current descriptor is the last descriptor in the context program.

1-8 Indicates that 1 to 8 descriptors starting at descriptorAddress are physically contiguous.

9-15 reserved

Table 10-1 — Descriptor element summary

Element Bits Description

Copyright © 1996,1997 All rights reserved. Page 99

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

10.2.1 Buffer Fill Mode

In bufferFill mode, all received packets are concatenated into a contiguous stream of data. This data is then metered out
into buffers described by a DMA context program, filling each buffer completely. Packets may straddle multiple buffers in
this mode (see packet 2 in the illustration below).

A context program for an isochronous receive context in buffer-fill mode consists of a list of independent INPUT_MORE
descriptors, each branching to the next descriptor in the list. Since each descriptor must always branch to the subsequent
one, theb field must always be set to 2’b11 to indicate a branch. If a buffer-fill mode INPUT_MORE descriptor is not the
last descriptor in the list, its Z value must be set to 1 to instruct the Host Controller to fetch the next single descriptor. If
it is the last one in the list, Z must be set to 0.

As depicted above, it is possible for a received packet to straddle multiple buffers. To ensure that the receive buffers for a
context remain parsable, hardware must follow the following procedure.

1) After filling to the end of a buffer with a partial packet, advance to the next descriptor block and obtain the
next buffer (dataAddress), retaining all state for the first buffer as well as for the new buffer.

2) Continue writing packet bytes into the subsequent buffer(s). If the end of a buffer is reached, advance to the
next buffer without updating status and without retaining state for any of the interim buffers. Write the
remaining packet bytes into the final packet buffer.

3) If there is no data error: a) conditionally write the trailer quadlet into the last buffer, b) update xferStatus and
resCount into thefinal buffer’s descriptor, and c) update xferStatus and resCount into thefirst buffer’s
descriptor. At that point the previous state of the first buffer is no longer needed.

4) If thereis a data-length or CRC error, then the packet must be ‘backed-out’ by reverting back to the previous
state (as saved earlier). XferStatus and resCount arenot updated for either descriptor.

By following these steps, the IR context buffers remain intact and can be parsed. Since interim buffers (those containing
an inner portion of one packet) will not have their status updated, software must only use resCount values when the corre-
sponding xferStatus indicates the run bit is set to one. It follows from this that if the xferStatus.run bit is set in a
descriptor, then all prior descriptors have been filled.

Figure 10-2 — IR Buffer Fill Mode

et 2 packet 3

MORE s key=0 i b=3 reqCount

dataAddress

Z=1

resCount=0xferStatus

branchAddress

MORE s key=0 i b=3 reqCount

dataAddress

Z=1

resCountxferStatus

branchAddress

packet 1 pack

Copyright © 1996,1997 All rights reserved. Page 100

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

10.2.2 Packet-per-Buffer Mode

In packet-per-buffer mode, each received packet is placed in the buffer(s) described by one descriptor block. Any leftover
bytes are discarded, and packets never straddle multiple descriptor blocks. Both INPUT_MORE and INPUT_LAST are
allowed in packet-per-buffer mode. Each INPUT_LAST marks the end of a packet, though the final byte may have been
used up in a previous INPUT_MORE (see packet 2 in the illustration below). Each packet starts in an INPUT_* command
that follows an INPUT_LAST.

A context program for an isochronous receive context in packet-per-buffer mode consists of a series of descriptor blocks.
Each descriptor block will receive one packet and must contain a contiguous set of 0 to 7 INPUT_MORE descriptors,
followed by one INPUT_LAST descriptor. This requirement permits the Host Controller to prefetch all the descriptors for
a packet, in order to avoid fetching additional descriptors during a packet transfer. INPUT_MORE descriptors must have
the b field set to 2’b00 (never branch). INPUT_LAST descriptors must have theb field set to 2’b11 (always branch), and
must either have a valid address in branchAddress with a Z value of 1 to 8, or must have a Z value of 0 to indicate it’s the
last descriptor in the context program.

Figure 10-3 — packet-per-buffer receive mode

MORE s key=0 i=0 b=0 reqCount

dataAddress

X

resCount [not written]xferStatus [not written]

X

w

LAST s key=0 i b=3 reqCount

dataAddress

Z=2

resCountxferStatus

branchAddress

pack

et 1

MORE s key=0 i=0 b=0 reqCount

dataAddress

X

resCountxferStatus

X

LAST s key=0 i b=3 reqCount

dataAddress

Z=2

resCount [not written]xferStatus [not written]

branchAddress

packet 2

MORE s key=0 i=0 b=0 reqCount

dataAddress

X

resCount [not written]xferStatus [not written]

X

LAST s key=0 i b=3 reqCount

dataAddress

Z=2

resCountxferStatus

branchAddress

p

acket 3

Copyright © 1996,1997 All rights reserved. Page 101

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

IR context programs may use the w (wait) fields to wait for a packet with a matching sync value (see section 10.3.3,
“Isochronous receive contextMatch register,”). Wait is only valid for the first descriptor in a descriptor block, and is set to
2’b11 to wait and 2’b00 to not wait. If w is 2’b11, the context will wait for the configured syn (and tag) match before
running/using the descriptor. The w field for all other descriptors in the descriptor block must be 2’b00.

10.2.2.1 Command.xferStatus and Command.resCount updates

In packet-per-buffer mode, the xferStatus and resCount fields are updated only in the descriptor for the buffer which
receives the last byte of the packet. ResCount is only valid in a descriptor, if the xferStatus field has the contextCon-
trol.run bit set. To obtain accurate values for xferStatus, it is recommended that software initialize xferStatus to zero.

In figure 10-3 above, there are 3 shaded xferStatus quadlets. The shaded quadlets are status fields that were never updated,
and the unshaded status quadlets reflect status fields that were updated. In the top descriptor block, the xferStatus quadlet
in the first descriptor was not written because packet 1 did not complete in the first descriptor’s buffer. In the middle
descriptor block, the first descriptor was big enough to hold packet 2 completely. Since the first descriptor’s buffer
received the last byte of packet 2, the first descriptor’s status was written, and the second descriptor’s status is ignored.

If a descriptor block describes buffer space that cannot fit an entire packet (including header if isochHeader mode is
enabled), then the overflow bytes are discarded. When this occurs, xferStatus.ack will be set to evt_long_packet.

10.3 IR Context Registers

Each isochronous receive context consists of three registers: CommandPtr, IRContextControl, and IRContextMatch.
CommandPtr is used by software to tell the IR DMA controller where the DMA context program begins. IRContextCon-
trol is used by software to control the context’s behavior, and is used by hardware to indicate current status. IRContext-
Match is used to start on a specified cycle number and to filter received packets based on their tag bits and possibly sync
bits. This section describes each register in detail.

10.3.1 CommandPtr

The CommandPtr register specifies the address of the context program which will be executed when a DMA context is
started. All descriptors are 16-byte aligned, so the four least-significant bits of any descriptor address must be zero. The
four least-significant bits of the CommandPtr register are used to encode a Z value that indicates how many physically
contiguous descriptors are pointed to by descriptorAddress. In buffer-fill mode, Z will be either one or zero. In packet-
per-buffer mode, Z will be from zero to eight.

Refer to section 3.1.5 for a full description of the CommandPtr register.

Figure 10-4 — CommandPtr register format

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

descriptorAddress [31:4] Z

Copyright © 1996,1997 All rights reserved. Page 102

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

10.3.2 IRContextControl register (set and clear)

The IRContextControl register contains bits that control options, operational state, and status for the isochronous receive
DMA contexts. Software can set selected bits by writing ones to the corresponding bits in theContextControlSet register.
Software can clear selected bits by writing ones to the corresponding bits in theContextControlClear register. It is not
possible for software to set some bits and clear others in an atomic operation. A read from either register will return the
same value.

The context control register used for isochronous receive DMA contexts is shown below. It includes several fields which
permit software to filter packets based on various combinations of fields within the isochronous packet header.

Figure 10-5 — IR DMA ContextControl (set and clear) register format

Table 10-3 — IR DMA ContextControl (set and clear) register description

field rscu description

bufferFill rsc When set to one, received packets are placed back-to-back to completely fill each receive
buffer (specified by an INPUT_MORE command). When clear, each received packet is
placed in a single buffer (described by zero to seven INPUT_MORE commands followed
by an INPUT_LAST command). If the multiChanMode bit is set to one, this bit must also
be set to one. The value of the bufferFill bit must not be changed while contextCon-
trol.active is set to one.

isochHeader rsc When set to one, received isochronous packets will include the complete 4-byte isochro-
nous packet header seen by the link layer. The end of the packet will be marked with a
xferStatus (bits 15:0 of this register) in the first doublet, and a 16-bit timeStamp indicating
the time of the most recently received (or sent) cycleStart packet. When clear, the packet
header is stripped off of received isochronous packets. The packet header, if received,
immediately precedes the packet payload. Details are shown in section 10.6.

cycleMatchEnable rscu In general, when set to one, the context will begin running only when the 13-bit cycleM-
atch field in the contextMatch register matches the 13-bit cycleCount in the cycleStart
packet. The effects of this bit however are impacted by the values of other bits in this reg-
ister and are explained below. Once the context has become active, hardware clears the
cycleMatchEnable bit.

multiChanMode rsc When set to one, the corresponding isochronous receive DMA context will receive packets
for all isochronous channels enabled in the IRChannelMaskHi and IRChannelMaskLo
registers (see section 10.4.1.1). The isochronous channel number specified in the IRDMA
context match register is ignored. When set to zero, the IRDMA context will receive pack-
ets for that single channel.

Only one IRDMA context may use the IRChannelMask registers. If more than one
IRDMA context control register has the multiChanMode bit set, results are undefined. See
section 10.4.3 for more information.

run rscu Refer to section 3.1.1 for an explanation of the contextControl.run bit.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

dead
active

wake
isochHeader

multiChanMode

bufferFill

run

cycleMatchEnable

ack/err
code

spd

Copyright © 1996,1997 All rights reserved. Page 103

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

The cycleMatchEnable bit is used to start an IR DMA context program on a specified cycle. When the
cycleStart.cycleCount value matches the cycleMatch value (in the IR contextMatch register), hardware sets the
cycleMatchEnable bit to 0, sets the contextControl.active bit to 1, and begins executing descriptor blocks for the context.
The transition of an IR DMA context to the active state, from the not-active state is dependent upon the values of the run
and cycleMatchEnable bits.

• If run transitions to 1 when cycleMatchEnable is 0, then the context will become active (active = 1).
• If both run and cycleMatchEnable are set to 1, then the context will become active when the 13-bit cycleCount field

in the cycleStart packet match the 13-bit cycleMatch value indicated in the IR contextMatch register.
• If both run and cycleMatchEnable are set to 1, and cycleMatchEnable is subsequently cleared, the context becomes

active.
• If both run and active are 1 (the context is active), and then cycleMatchEnable is set to 1, this will result in

unspecified behavior.

10.3.3 Isochronous receive contextMatch register

The IR ContextMatch register is used to start a context running on a specified cycle number, and is also used to filter
incoming isochronous packets based on specified sync and tag values. All packets are checked for a matching tag value,
and a compare on sync is only performed when the descriptor’sw field is set to 2’b11. See section 10.1 for restrictions in
setting thew field. This register should only be written when contextControl.active is 0, otherwise unspecified behavior
will result.

wake rsu Refer to section 3.1.2 for an explanation of the contextControl.wake bit.

dead ru Refer to section 3.1.4 for an explanation of the contextControl.dead bit.

active ru Refer to section 3.1.3 for an explanation of the contextControl.active bit.

spd ru This field indicates the speed at which the packet was received. 3’b000 = 100 Mbits/sec,
3’b001 = 200 Mbits/sec and 3’b010 = 400 Mbits/sec. All other values are reserved.

ack/err code ru Following an INPUT* command, the error code is indicated in this field.
For bufferFill mode, possible values are: ack_complete, ack_data_error, evt_overrun,
evt_descriptor_read , evt_data_write and evt_unknown. Packets with data errors (either
dataLength mismatches or dataCRC errors) are ‘backed-out’ as described in
section 10.2.1.
For packet-per-buffer mode, possible values are: ack_complete, ack_data_error,
evt_short_packet, evt_long_packet, evt_overrun, evt_descriptor_read, evt_data_write and
evt_unknown.
See Table 3-2, “Packet event codes,” for descriptions and values for these codes.

Figure 10-6 — IR DMA ContextMatch (set and clear) register format

Table 10-3 — IR DMA ContextControl (set and clear) register description

field rscu description

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

channelNumbercycleMatch

tag3
tag2

tag1

tag0

sync

copyrightDataEnable

Copyright © 1996,1997 All rights reserved. Page 104

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

At least one tag bit must be set to 1, otherwise no received packets will match and the context will, in effect, wait forever.

10.4 Isochronous receive DMA controller

The following sections describe how software manages the multiple isochronous receive DMA contexts. Each context has
a commandPtr pointing to the initial DMA descriptor, a contextControl register, and a contextMatch register to start the
context based on a cycle number and to filter packets. The IR DMA controller has one set of IRMultiChanMask registers
used to specify a set of isochronous channels for the single isochronous context in multiChanMode.

10.4.1 Isochronous receive multi-channel support

Any IR DMA context can receive packets from multiple isochronous channels per cycle by enabling contextControl.multi-
ChanMode and using the IRMultiChanMask registers. There is a single set of IRMultiChanMask registers available in the
IR DMA controller, and onlyone IR DMA context may be using them at any given time as determined by the setting of
contextControl.multiChanMode bit (see section section 10.3.2).

A context to be enabled for multiChanMode,must also be enabled for bufferFill and isochHeader modes. If multiChan-
Mode is enabled without bufferFill and isochHeader, the resulting behavior is undefined.

If an IR DMA context is in multi-channel mode, therefore using the IRMultiChanMask registers, the isochronous channel
field in the IR DMA context Match register (section 10.3.3) is ignored.

10.4.1.1 IRMultiChanMask registers (set and clear)

An isochronous channel mask is used to enable packet receives from up to 64 specified isochronous data channels.
Software enables receives for any number of isoch channels by writing ones to the corresponding bits in the IRMulti-
ChanMaskHiSet and IRMultiChanMaskLoSet addresses. To disable receives for any isoch channels, software writes ones
to the corresponding bits in the IRMultiChanMaskHiClear and IRMultiChanMaskLoClear addresses.

Table 10-4 — IR DMA ContextMatch (set and clear) register description

field rwu description

tag3 rw If set, this context will match on isochronous receive packets with a tag field of 2’b11.

tag2 rw If set, this context will match on isochronous receive packets with a tag field of 2’b10.

tag1 rw If set, this context will match on isochronous receive packets with a tag field of 2’b01.

tag0 rw If set, this context will match on isochronous receive packets with a tag field of 2’b00.

cycleMatch rw Contains a 13-bit value, corresponding to the 13-bit cycleCount field in the cycleTimer
register. If contextControl.cycleMatchEnable is set, then this IR DMA context will
become enabled for receives when the bus cycletime.cycleCount value equals the cycleM-
atch value.

sync rw This field contains the 4 bit field which is compared to the sync field of each isochronous
packet for this channel when the command descriptor’sw field is set to 2’b11.

copyrightDataEnable rw If set, this bit enables the reception of copyright information.

channelNumber rw This six bit field indicates the isochronous channel number for which this IR DMA context
will accept packets.

Copyright © 1996,1997 All rights reserved. Page 105

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

A read of each IRChanMask register shows which channels are enabled; a one for enabled, a zero for disabled. The
IRMultiChanMask registers are not changed by a bus reset. The state of these registers is undefined following a hard reset
or soft reset.

10.4.2 Isochronous receive single-channel support

Each isochronous receive DMA context can receive one packet per cycle from one isochronous data channel. Data
chaining across DMA context commands is supported when the contextControl.bufferFill bit is set.

To configure a context to receive packets from an isochronous channel, write the channel number into the contextMatch
register’s channelNumber field.

To start a context on a particular cycle, write the starting cycle time into the contextMatch register, and enable the
contextControl.cycleMatchEnable and contextControl.run bits. When the bus cycleTime.cycleCount value equals the
contextMatch.cycleMatch value, the IR DMA controller will clear the contextControl.cycleMatchEnable bit and the
context will begin receiving packets. (see sections 10.3.2 and 10.3.3).

To wait for a packet with specified sync value in the isochronous packet header, set the desired configuration in the sync
field of the contextMatch register and set the DMA command descriptor’sw (wait) field to 2’b11. When the IR DMA
controller detects aw field of 2’b11, it waits until a packet arrives matching the specified sync and directs it to the buffer
identified in the waiting descriptor’s dataAddress field. Packets with the specified channel number and tag bits but which
do not match the specified sync are discarded.

When an IR DMA context is stopped either because it reached the end of the context program or because the run bit is
cleared, some packets following the intended stop point may have already entered the receive FIFO. These packets will be
discarded when they reach the bottom of the FIFO, unless another IR DMA context is able to receive them.

Figure 10-7 — IRMultiChanMaskHi (set and clear) register

Figure 10-8 — IRMultiChanMaskLo (set and clear) register

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

isoChannel62
isoChannel61

isoChannel60 isoChannel35
isoChannel34

isoChannel63
isoChannel33

isoChannel32

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

isoChannel30
isoChannel29

isoChannel28 isoChannel3
isoChannel2

isoChannel31
isoChannel1

isoChannel0

Copyright © 1996,1997 All rights reserved. Page 106

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

The IRDMA can be stopped at any time by clearing the “run” bit in the ContextControl register. However, this might
mean that the last packet’s data was incompletely stored in memory.

10.4.3 Duplicate channels

If more than one IR DMA context specifies receives for packets from the same isochronous channel, the context destina-
tion for that channel’s packets is undefined.

If more than one IR DMA context has the contextControl.multiChanMode bit set, then the context destination for
IRmultiChanMask packets is undefined.

If an isochronous channel is specified both in a single channel context and in the multiChannel context, then the packet
will be routed to the multiChannel context.

10.4.4 Determining the number of implemented IR DMA contexts

The number of supported isochronous receive DMA contexts will vary for 1394 OpenHCI implementations from a
minimum of four to a maximum of 32. Software can determine the number of supported IR DMA contexts by writing
32’hFFFF_FFFF to the isoRecvtIntMask register (see section 6.2.4.1), and then reading it back. Bits returned as 1’s
indicate supported contexts, and bits returned as 0’s indicate unsupported/unimplemented contexts.

10.5 IR Interrupts

Each of the possible 32 isochronous receive contexts can generate an interrupt, so each IR DMA context has a bit in the
isoRecvIntEvent register. Software can enable interrupts on a per-context basis by setting the corresponding isoRecvMask
bit to one.

To efficiently handle interrupts which could conceivably be generated from 32 different contexts in close proximity to one
another, there is a single bit for all IR DMA contexts in the Host Controller IntEvent register. This bit signifies that at
least one but potentially several IR DMA contexts attempted to generate an interrupt. Software can read the
isoRecvIntEvent register to find out which context(s) are involved. For more information on the isoRecvIntEvent register,
see section 6.2.4.

10.6 IR Data Formats

There are four formats for isochronous receive packets depending upon the setting of the ContextControl.isochHeader and
ContextControl.bufferFill bits (see section 10.3). If the ContextControl.isochHeader bit is zero, then only the isochronous
data without any padding, header quadlet or timestamp quadlet is put in the buffer.

Table 10-5 — Isochronous receive fields

field name bits description

dataLength 16 Indicates the number of bytes in this packet.

tag 2 The data format of the isochronous data (see IEEE 1394 specification)

chanNum 6 The channel number this data is associated with.

tcode 4 The transaction code as received for this packet.

sy 4 Transaction layer specific synchronization bits.

isochronous data The data received with this packet. The first byte of data must appear in byte 0 of the
first quadlet of this field. The last quadlet should be padded with zeroes, if necessary.

Copyright © 1996,1997 All rights reserved. Page 107

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

10.6.1 bufferFill mode formats

10.6.1.1 IR with header/trailer

The format of an isochronous receive packet when ContextControl.bufferFill=1 and ContextControl.isochHeader=1 is
shown below.

padding If the dataLength mod 4 is not zero, then zero-value bytes have been added onto the end
of the packet to guarantee that a whole number of quadlets was sent. In three formats,
the pad bytes are stripped off the packet.

xferStatus 16 Contains bits [15:0] from the contextControl register.

timeStamp 16 The three low order bitscycleSeconds, and the full 13-bits ofcycleCount at the time of
the most recently received (or sent) cycle start packet.

Figure 10-9 — Receive isochronous format in buff erFill mode with header/trailer

Table 10-5 — Isochronous receive fields

field name bits description

isochronous data

dataLength

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

chanNum tcode sytag

padding (if needed)

xferStatus timeStamp

Copyright © 1996,1997 All rights reserved. Page 108

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

10.6.1.2 IR without header/trailer

The format of the isochronous receive packet when ContextControl.bufferFill=1 and ContextControl.isochHeader=0 is
shown below..

10.6.2 packet-per-buffer mode formats

10.6.2.1 IR with header/trailer

The format of an isochronous receive packet when ContextControl.bufferFill=0 and ContextControl.isochHeader=1 is
shown below. Note that although xferStatus is written as a side-effect of writing timeStamp, xferStatus does not contain
valid or otherwise useful values.

Figure 10-10 — Receive isochronous format in buff erFill mode without header/trailer

Figure 10-11 — Receive isochronous format in packet-per -buff er mode with header/trailer

isochronous data

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

Padding (if any) is stripped from the packet in this mode.

Data is appended to other byte-aligned data (if any) in the bufferFill mode buffer

isochronous data

dataLength

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

chanNum tcode sytag

xferStatus (INVALID) timeStamp

Padding (if any) is stripped from the packet in this mode.

Copyright © 1996,1997 All rights reserved. Page 109

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

10.6.3 IR without header/trailer

The format of the isochronous receive packet when ContextControl.bufferFill=0 and ContextControl.isochHeader=0 is
shown below..

Figure 10-12 — Receive isochronous format in packet-per -buff er mode without header/trailer

isochronous data

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

Padding (if any) is stripped from the packet in this mode.

Copyright © 1996,1997 All rights reserved. Page 110

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Copyright © 1996,1997 All rights reserved. Page 111

Self ID Receive 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

11. Self ID Receive

The purpose of the SelfID DMA controller is to receive self ID packets during the bus initialization process. The self ID
packets are received using a special pair of DMA registers, the Self ID Buffer Pointer register and the Self ID Count
register.

11.1 Self ID Buffer Pointer Register

The Self ID Buffer Pointer register points to the buffer the SelfID packets will be DMA’ed into during bus initialization.

Figure 11-1 — Self ID Buffer Pointer register

Table 11-1 — Self ID Buffer Pointer register

field name rw description

selfIDBufferPtr rw Contains the 2K-byte aligned base address of the buffer in host memory where received
self-ID packets are stored. The contents of this field are undefined after a chip reset.

11.2 Self ID Count Register

This register keeps a count of the number of times the bus self ID process has occurred, flags self ID packet errors and
keeps a count of the amount of self ID data in the Self ID buffer.

Figure 11-2 — Self ID Count register

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

selfIDBufferPtr

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

selfIDGeneration selfIDSize

selfIDError

Copyright © 1996,1997 All rights reserved. Page 112

Self ID Receive 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

The self ID stream can be (63 devices) * (4 packets/device) * (8 bytes/packet) = 2016 bytes. If a bus reset is received part
way through a self ID sequence, the old data will be overwritten. To keep things straight, the generation counter is written
into memory as the first quadlet of the stream. For a consistent stream, software reads the generation counter in memory,
then the stream, then the SelfIDCount register. If the generation counter in the register matches the one in memory, then
the self ID stream is consistent.

If the selfIDError flag is set, then there was either a hardware error in receiving the last self ID sequence or a host bus
error while writing to the host buffer, so the self ID data is not trustworthy. Any self ID data received after the error is
flushed. If all 2048 bytes are received, the selfIDSize field is set to 9’h7FF and the selfIDError flag is set. (This is only
possible if >64 nodes are on the bus... a gross error condition.)

Whenever a bus reset occurs, the Host Controller clears the selfIDSize field to zero, at the same time the bus reset inter-
rupt is triggered. This allows software responding to a bus reset to know that self IDs have not yet been received.

The Host Controller does not verify the integrity of the self-ID packets and software is responsible for performing this
function (i.e. using the logical inverse quadlet).

Table 11-2 — Self ID Count register

field name rwu description

selfIDError ru When this bit is one, an error was detected during the most recent self ID packet
reception. The contents of the self ID buffer are undefined. This bit is cleared after
a self ID reception in which no errors are detected. Note that an error can be a hard-
ware error or a host bus write error.

selfIDGeneration ru The value in this field increments each time the self ID reception process begins.
This field rolls over to 0 after reaching 255. The contents of this field are undefined
after a chip reset.

selfIDSize ru This field indicates the length (in quadlets) of self ID data that has been received.
This field is cleared to zero as soon as any bus reset begins. The contents of this field
are undefined after a chip reset.

Copyright © 1996,1997 All rights reserved. Page 113

Self ID Receive 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

11.3 Self-ID receive

The self-ID receive format is shown below. The first word contains the time stamp and the self ID generation number (see
section 11.2 “Self ID Count Register”). The remaining quadlets contain data that is received from the time a bus reset
ends to the first subaction gap. This is the concatenation of all the self-ID packets received. Note that the bit-inverted
check words are included in the FIFO and must be checked by the application..

11.4 Enabling the SelfID DMA

The RcvSelfID bit in the LinkControl register (see section 5.8, “LinkControl registers (set and clear),”) allows the receiver
to accept incoming self-identification packets. Before setting this bit, software must ensure that the self ID buffer pointer
register contains a valid address.

11.5 Interrupt Considerations for SelfID DMA

The SelfIDcomplete bit in the IntEvent register (see section 6.2.1) is set and an interrupt is generated when the selfID
phase of bus initialization completes. This will be generated at the end of the bus initialization process.

11.6 SelfIDs Received Outside of Bus Initialization

SelfID packets received outside of the bus initialization self-ID phase are routed to the AR DMA Request context and use
the PHY packet receive format.

Figure 11-3 — Self-ID receive format

Table 11-3 — Self-ID receive fields

field name description

selfIDGeneration See table 11-2.

timeStamp The three low order bits from cycleTimer.cycleSeconds, and the full 13-bits of
cycleTimer.cycleCount at the time this status quadlet was generated.

self ID packet data The data received during the selfID process of the bus initialization phase. Note that each
selfID packet includes the data quadlet and inverted quadlet.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

self ID packet data

selfIDGeneration timeStamp

Copyright © 1996,1997 All rights reserved. Page 114

Self ID Receive 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Copyright © 1996,1997 All rights reserved. Page 115

Physical Requests 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

12. Physical Requests

When a read or write request is received, the 1394 Open HCI chip handles the operation automatically without involving
software if the offset address in the request packet header meets a specific set of criteria listed below. Requests that do not
meet these criteria are directed to the AR DMA Request context.

The 1394 Open HCI checks to see if the offset address in the request packet header is one of the following.

a) If the high order 16-bits of the offset address is 16’h0000, then the lower 32 bits of the offset address are used as
the memory address for the transaction. Lock transactions are not supported in this address space... they are
diverted to the AR DMA Request context. For read requests, the information needed to formulate the response
packet is passed to the Physical Response Unit. Requests are only accepted if the source node ID of the request
has a corresponding bit in the Asynchronous Request Filter registers and Physical Request Filter
registers(section 5.12).

b) If the offset address selects one of the following addresses, the physical request unit will directly handle compare-
swaps and reads (other requests will be sent an ack_type_error) (section 5.5.1):

1) BUS_MANAGER_ID (48’hFFFFF000021C). Local register is BusManagerID.

2) BANDWIDTH_AVAILABLE (48’hFFFFF0000220). Local register is BandwidthAvailable.
3) CHANNELS_AVAILABLE_HI (48’hFFFFF0000224). Local register is ChannelsAvailableHi.
4) CHANNELS_AVAILABLE_LO (48’hFFFFF0000228). Local register is ChannelsAvailableLo.

c) If the offset address is one of the following addresses, the Physical Request controller will directly handle quadlet
reads:

1) Config ROM header (1st quadlet of the Config ROM) (48’hFFFFF0000400). Local register is
ConfigROMheader (section 5.5.2).

2) Bus ID (1st quadlet of the Bus_Info_Block) (48’hFFFFF0000404). Local register is BusID (section 5.5.3).
3) Bus options (2nd quadlet of the Bus_Info_Block) (48’hFFFFF0000408). Local register is BusOptions

(section 5.5.4).
4) Global unique ID (3rd and 4th quadlets of the Bus_Info_Block) (48’hFFFFF000040C and

48’hFFFFF0000410). Local registers are GlobalIDHi and GlobalIDLo (section 5.5.5).
5) Configuration ROM (48’hFFFFF0000414 to 48’hFFFFF00007FF). Mapped by the ConfigROMmapping

register to a 1K byte block of system memory (section 5.5.6)

12.1 Filtering Physical Requests

Software can control from which nodes it will receive packets by utilizing the asynchronous filter registers. There are two
registers, one for filtering out all requests from a specified set of nodes (AsynchronousRequestFilter register) and one for
filtering out physical requests from a specified set of nodes (PhysicalRequestFilter register). The settings in both registers
have a direct impact on how the AR DMA Request context is used, e.g. disabling only physical receives from a node will
cause all request packets from that node to be routed to the AR DMA Request context. The usage and interrelationship
between these registers is fully described in section 5.12, “Asynchronous Request Filters.”

12.2 Write Requests: ack_codes and host bus errors

For write requests which are handled by the Physical Request controller, the Host Controller may send an ack_complete
before the data is actually written to system memory. These writes are referred to asposted writes.The ack_code sent for
write requests to offsets in the range of 48’h0001_0000_0000 to 48’hFFFE_FFFF_FFFF when not busied is always
ack_complete. The ack_code sent for offsets in the range 48’hFFFF_0000_0000 to 48’hFFFF_FFFF_FFFF is always
ack_pending.

Copyright © 1996,1997 All rights reserved. Page 116

Physical Requests 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Write requests to the physical memory range of the host may be posted if the host controller supports the PostedWriteAd-
dressLo/Hi error registers (see section 12.3) and software has enabled posted writes (see section 5.7). If posting is not
enabled/supported, the Host Controller must not return a complete indication (ack_complete or resp_complete) until the
data has been successfully written to system memory to either the addressed location in physical memory or to the AR
request buffer.

If posting of physical writes is supported and enabled, then the Host Controller is allowed to return ack_complete to a
physical write request with certain restrictions.

When the Host Controller posts a write, that write is pending for error reporting purposes until the write is actually
complete. While the write is pending the Host Controller must retain the nodeID of the request’s source and the 48-bit
offset address. After the write is completed to either the offset address or to the AR request buffer, that write is no longer
pending. If an error occurs in writing the posted data packet, then the Host Controller sets the IntEvent.PostedWriteErr bit
to indicate that an error has occurred and the write remains pending. Software can then read the source node ID and offset
address from PostedWriteAddressLo and PostedWriteAddressHi and then clear IntEvent.PostedWriteErrWhen software
clears IntEvent.PostedWriteErr, that write is no longer pending.

A Host Controller implementation is allowed to support any number of posted writes. However, for each posted write,
there must be an error reporting register to hold the source node ID and offset address should that posted write fail.

If the Host Controller has as many pending physical writes as it has reporting registers additional physical writes may not
be posted. Instead the Host Controller will need to regurn ack_pending and only return a complete indication when the
write is actually done.

Although the Host Controller may allow several pending writes, error reporting is through a single pair of software visible
registers. If multiple posted write failures have occurred, software will access them one at a time through the Posted-
WriteAddress registers. When software clears IntEvent.PostedWriteErr, this is a signal to the Host Controller that
software has completed reading of the current contents of PostedWriteAddressLo/Hi and that the Host Controller can
report another error by again setting IntEvent.PostedWriteErr and presenting a new set of values when software reads
PostedWriteAddressLo/Hi.

12.3 PostedWriteAddress registers

When the Host Controller cannot complete the posted write operation due to a host bus error, since the sending node has
been notified that the action is complete the system must be notified by the Host Controller so that software can recover.
The mechanism for recovering is through the PostedWriteAddress register the postedWriteErr bits in the IntEvent and
IntMask registers, and the postedWriteEnable bit in the HCControl register.

If IntEvent.postedWriteErr is set, then these registers contain the 48 bits of the 1394 destination offset of the write request
that resulted in a host bus error.

Figure 12-1 — PostedWriteAddressHi register

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

sourceID offsetHi

Copyright © 1996,1997 All rights reserved. Page 117

Physical Requests 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

The PostedWriteAddress register is a 64-bit rgister which indicates the bus and node numbers (source ID) of the node that
issued the write that failed, and the address that node attempted to access. The IntEvent.PostedWriteErr bit allows
hardware to generate an interrupt when a write fails.

The PostedWriteAddress registers point to a queue in the Host Controller. This queue is accessed by software through the
PostedWriteAddress registers. When a posted write fails, its address and node’s source ID are placed in this queue, and
the interrupt is generated. In addition, that packet is removed from the FIFO. By removing the packet from the FIF, the
Host Controller is not blocked from performing future transactions on the 1394 and host busses.

When software reads from these registers, that entry is removed from the queue, the next address and source ID are placed
at the ehad of the queue, and another interrupt is generated. When the queue is empty, the Host Controller stops gener-
ating interrupts.

In order to guarantee the accuracy of the Posted Write error registers, software must perform the following algorithm
when the posted write error interrupt is encountered:

1) Clear the IntEvent.PostedWriteError bit.

2) Read the PostedWriteAddressHi register
3) Read the PostedWriteAddressLo register

This will guarantee that software receives all information it requires about the first posted write, allowing another inter-
rupt to be generated for future posted writes, and simplifies the Host Controller hardware. The Host Controller does not
have to monitor that all three events occur before it moves to the next item in the queue. It may consider the information
read once it sees the PostedWriteAddressLo register read.

Figure 12-2 — PostedWriteAddressLo register

field name rwu reset description

sourceID ru undef The busNumber and nodeNumber of the node that issued the write request
that failed.

offsetHi ru undef The upper 16-bits of the 1394 destination offset of the write request that
failed.

offsetLo ru undef The low 32-bits of the 1394 destination offset of the write request that
failed.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

offsetLo

Copyright © 1996,1997 All rights reserved. Page 118

Physical Requests 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

12.3.1 Queue Rules

The Host Controller is only allowed to post as many writes as its posted write error queue is deep. For example, if the
Host Controller has a queue depth of two, it shall only return “ack_complete” on two physical writes. All other physical
writes must return either “ack_pending” or ”ack_busy” event codes. Only when a previous posted write is successfully
transferred into host memory, or when a posted write that resulted in an error is removed from the queue through the
method described above by software, is the Host Controller allowed to accept more posted writes.

An example queue is shown in Figure 12-3. In this case, the queue is three entries deep, so this partular Host Contorller
can accept three posted writes.

Note that the Host Controller is not required to implement the posted write functionality at all. Software may enable
posted writes, but the Host Controller will never accept posted writes. It will therefore never report a posted write error,
and does not need to implement this queue.

However, posted writes represent a performance gain to the overall 1394 system. By accepting posted writes, the Host
Controller and 1394 nodes are able to transfer data without excessive overhead on the 1394 bus. The 1394 Open HCI does
not mandate that a certain level of posting be required, allowing individual hardware implementations to determine the
posting depth based upon system needs.

12.4 Interrupt Considerations for Physical Requests

Physical read request handling does not cause an interrupt to be generated under any circumstances. Physical write
requests will generate an interrupt when posted write processing yields an error.

Figure 12-3 — Posted Write Error Queue

PostedWriteErrorHi

PostedWriteErrorLo

PostedWriteErrorHi

PostedWriteErrorLo

PostedWriteErrorHi

PostedWriteErrorLo

Visible Registers

Invisible Registers

{

{

Copyright © 1996,1997 All rights reserved. Page 119

Physical Requests 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

12.5 Physical Responses

There is a separate nibble-wide MaxPhysRespRetries field in the ATRetries Register (see section 5.4) that tells the Physical
Response Unit how many times to attempt to retry the transmit operation for the response packet when a “busy” acknowledge
is received from the target node (see ATRetries Register on page 28).

12.6 Response to Bus Reset

On a bus reset, all pending physical requests will be discarded.

Rewrite. no int on phys read reqs. int on phys writes if posting error.

Copyright © 1996,1997 All rights reserved. Page 120

Physical Requests 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Copyright © 1996,1997 All rights reserved. Page 121

Host Bus Errors 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

13. Host Bus Errors

OpenHCI has three primary goals when dealing with host bus error conditions:

1) continue transmission and/or reception on all contexts not involved in the error;

2) provide information to software which is sufficient to allow recovery from the error when possible;
3) provide a means of error recovery on a context other than a general chip reset.

13.1 Causes of Host Bus Errors

Host bus errors can generally be classified as one of the following:

1) addressing error (e.g., non-existent memory location)

2) operation error (e.g., attempt to write to read-only memory)
3) data transfer error (e.g., parity or unrecoverable ECC) and
4) time out (e.g., reply on split transaction bus was not received in time).

Each of these errors can occur at three identifiable stages in the processing of a descriptor:

1) descriptor fetch,

2) data transfer (read or write), and
3) an optional descriptor status update.

In general, the nature of the bus error is not as significant as the stage of descriptor processing in which is occurs. For
example, the difference between an addressing error and a data parity error is not significant to the error processing.

13.2 Host Controller Actions When Host Bus Error Occurs

When a host bus error occurs, the Host Controller performs a defined set of actions for all context types. Additionally,
there are a set of actions that are performed that are dependent on the context type. The following sections outline these
actions.

13.2.1 Descriptor Read Error

When an error occurs during the reading of a descriptor or descriptor block, the behavior of the Host Controller is the
same regardless of the context type. The Host Controller will set ContextControl.dead and ContextControl.ack will be set
to evt_descriptor_read to indicate that the descriptor fetch failed. Additionally, CommandPtr will be set to point to a
descriptor within the descriptor block in which the error occurred. Descriptor xferStatus and resCount are not updated.

13.2.2 xferStatus Write Error

For any type of context, when the Host Controller encounters an error writing the status to a descriptor, it sets Context-
Control.dead. The values that would have been written to xferStatus of a descriptor are retained in ContextControl for
inspection by system software. The unrecoverable error IntEvent is generated and the context’s IntEvent is not set regard-
less of the setting of the interrupt (I) field in the descriptor.

13.2.3 Transmit Data Read Error

For asynchronous request transmit, asynchronous response transmit and isochronous transmit the Host Controller handles
system data read errors in a similar manner. The Host Controller will not stop processing for the context. Instead, the ack
code in the status of the OUTPUT_LAST_* descriptor is optionally set to indicate that there was an error and the nature

Copyright © 1996,1997 All rights reserved. Page 122

Host Bus Errors 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

of the error. The indicated errors are evt_data_read or evt_underrun. If the error occurs before a packet’s header is placed
in the output FIFO, the Host Controller can immediately abort the packet transfer, optionally set the descriptor status to
evt_data_read or evt_underrun and move on to the next descriptor block. If, however, the error occurs after the header has
been placed in the output FIFO, the Host Controller will stop placing data in the output FIFO. This will cause the Host
Controller to send a packet with a length that does not agree with the data_length field of the header. If the Host
Controller receives an ack_data_error from the addressed node, then the Host Controller will substitute evt_data_read or
evt_underrun as appropriate. If the device returns anything other than ack_data_error, then the Host Controller will store
that value in the status for the packet. It should be noted that this means that if the addressed node returns an ack_pending
on a block write, the error indication will be lost.

If the packet was a broadcast write or an isochronous packet, no ack code is received from any node. In this case, the Host
Controller assumes that ack_data_error was received and proceeds as outlined above.

13.2.4 Isochronous Transmit Data Write Error

A data write error can occur when the Host Controller attempts to write to the address indicated in a STORE_VALUE
descriptor. This error is handled like a data read error with the exception that the ack code is set to evt_data_write. The
Host Controller may not begin placing the packet associated with a STORE_VALUE into the output FIFO until the
STORE_VALUE operation is complete. This is to prevent the possibility of having multiple errors that cannot be properly
reported to system software.

13.2.5 Asynchronous Receive Data Write Error

When host bus error occurs while the Host Controller is attempting to write to either the request or response buffer, the
Host Controller will set the corresponding ContextControl.dead and set ContextControl.ack to evt_data_write.
CommandPtr.descriptorAddress will point to the descriptor that contained the buffer descriptor for the memory address at
which the error occurred. Any data in the input FIFO for the context is discarded.

13.2.6 Isochronous Receive Data Write Error

If a data write error occurs for a context that is in packet per buffer mode, the Host Controller will set ContextControl.ack
to evt_data_write or evt_overrun and conditionally update xferStatus of the descriptor in which the error occurred. Any
remaining data in the input FIFO for the packet is discarded. The resCount value in a descriptor that has an error will not
necessarily reflect the correct number of data bytes successfully written to memory. If a FIFO overrun occurs for a context
that is in buffer-fill mode, the packet is treated as if a data length error had occurred and is ‘backed out’ of the receive
buffer (xferStatus and resCount not updated) and the remainder of the packet is discarded from the input FIFO. If a host
bus error occurs for a context in buffer-fill mode the Host Controller will set ContextControl.dead and set ContextCon-
trol.ack to evt_data_write. CommandPtr.descriptorAddress will point to the descriptor that contained the buffer descriptor
for the memory address at which the error occurred. Any data in the input FIFO for the context is discarded.

13.2.7 Physical Read Error

When an external node does a physical access and the Host Controller’s read of system memory fails on the first read, the
Host Controller will return an error response to the requester with a response code of resp_data_error. If an error occurs
after a portion of packet has been returned, the Host Controller will simply stop transmitting the packet. This should
create a data_length mismatch at the requester. If the if the device replies with ack_busy or ack_data_error the host should
retry the packet. If the error was caused by a FIFO underrun, the Host Controller will retry with the same response. If,
however, the error was a host bus error, the response packet will be changed to resp_data_error.

13.2.8 Write Request Error

The behavior for handling host bus errors for a write request is fully described in section 12.2, “Write Requests:
ack_codes and host bus errors.”

Copyright © 1996,1997 All rights reserved. Page 123

P1394A enhancements required for 1394 Open HCI1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Annex A. P1394A enhancements required for 1394 Open HCI

For the PHY:

a) Add a “disable” bit to the port status registers. If this bit is set, the port will not source bias current on TP? and
will not pay attention to the status of either TPA or TPB. This function is needed to allow Open HCI systems to
run only on internal nodes.

b) During the self-ID process, the maximum Phy_ID will reach 63 and will remain at that number for all additional
PHYs.

c) A PHY with the phy_ID of 63 will ignore link-on or phy configuration requests.

d) Connection hysteresis.

e) Arbitrated short reset.

For the link:

a) A link with the phy_ID of 63 will not transmit any packets.

b) If the LK_EVENT.ind(CYCLE_TOO_LONG) signal is raised, the sending of cycle starts must be disabled.

For the bus manager:

c) Bus manager algorithms must support 3-bit speed codes.

Copyright © 1996,1997 All rights reserved. Page 124

P1394A enhancements required for 1394 Open HCI1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Copyright © 1996,1997 All rights reserved. Page 125

PCI Interface 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Annex B. PCI Interface

B.1 PCI Configuration Space

OpenHCIs may be on any number of buses, this appendix only discusses their designs with PCI bus. This section
describes the PCI requirements for IEEE 1394 Open Host Controller Interface compliant devices implemented using the
PCI bus (abbreviated as OHC’s herein). Only the registers and functions unique to a PCI-based OHC (basically, PCI
configuration registers) are described in this appendix. OpenHCI compliant 1394 controllers must adhere to the require-
ments given in the PCI Local Bus Specification, Revision 2.1.

Typically, the PCI registers and expansion ROM are only accessed during boot-up and PCI device initialization. They
are not typically accessed during runtime by device drivers. The PCI configuration registers, taken in total, are called the
PCI configuration space. The PCI confiuration space for OpenHCI is header type 0. Header type 8’h00 is the format for
the device’s configuration header region which is the first 16 dwords of PCI configuration space. Operational registers are
memory mapped into PCI memory address space and pointed to by Base_Adr_0 register in the PCI configuration space.
The operational registers are described in the body of this specification. PCI configuration space is not directly memory
or I/O mapped - it’s access is system dependent. Software reset issued through an OpenHCI control register does not
affect the contents of the PCI configuration space.

B.2 Busmastering Requirements

The 1394 OpenHCI controller requires a bursting capable busmaster ability on the PCI bus. If the busmaster bit in the
command register transitions from 1 to zero (see section B.3.1), the PCI logic supporting the OpenHCI controller logic
must kill all DMA contexts.

B.3 PCI Configuration Space for 1394 OpenHCI With PCI Interface

Figure B-1 shows the PCI configuration space for a 1394 OpenHCI controller designed for PCI attachment. The format of
this configuration space must be compliant withPCI Local Bus Specification, Revision 2.1 (PCI Special Interest Group,
1995). Any registers not pointed to by the Base_Adr_0 (OHCI registers) pointer are vendor specific. Vendor specific
registers must not be required for correct operation of the 1394 OpenHCI controller with a 1394 OpenHCI device driver.

Figure B-1 — PCI Configuration Space

Figure B-2 shows the resources pointed to by the various Base_Adr registers and the Expansion ROM Base Address
register.

0
4
8
C

10
14
18
1C
20
24
28
2C
30
34
38
3C

40

FC

Device ID Vendor ID
Status Command

Base Adr 0 - OHCI Regs

Class Code Rev
BIST Hdr Lat Cache

base 1 (vendor opt)
base 2 (vendor opt)
base 3 (vendor opt)
base 4 (vendor opt)
base 5 (vendor opt)

Expansion ROM Base
0
0

PCI_HCI_Control
0 (vendor opt)
0 (vendor opt)
0 (vendor opt)
0 (vendor opt)

Max_Lat Min_Gnt Int_Pin Int_Line

0 (vendor opt)
0 (vendor opt)
0 (vendor opt)

0 (vendor opt)
0 (vendor opt)
0 (vendor opt)

0 (vendor opt)

FC

0 (vendor opt)
0 (vendor opt)
0 (vendor opt)
0 (vendor opt)

Required PCI
Configuration Space

Vendor
Option

Cardbus CIS Ptr (opt)
Subsystem ID Subsystem Vendor ID

Copyright © 1996,1997 All rights reserved. Page 126

PCI Interface 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

Figure B-2 — Pointers to OHCI Resources in PCI Configuration Space

B.3.1 COMMAND Register

This register provides coarse control over the device’s ability to generate and respond to PCI cycles. For the 1394
OpenHCI it is required that the Host Controller support both PCI bus-mastering and memory-mapping of all operational
registers into the memory address space of the PC host. Consequently, the fieldsMA and BM should always be set to
1’b1 during device configuration.

Once the Host Controller starts processing DMA descriptor lists, the action of resetting either fieldMA or BM to 1’b0
will halt all PCI operations from the 1394 OHC. (Do this carefully). If the fieldMA is reset to 1’b0, the Host Controller
can no longer respond to any software command addressed to it and interrupt generation is halted.

Table B-1 — COMMAND Register

Field Bits
Read/
Write Description

0 rw Refer to PCI Local Bus Specification, Revision 2.1, for definition

Memory Space 1 rw MEMORY SPACE
Set to 1‘b1 so that the OpenHCI controller can respond to PCI memory cycles

BusMaster 2 rw BUS MASTER
Set to 1‘b1 so that the OpenHCI controller can act as a bus-master

3-5 rw Refer to PCI Specification, Revision 2.1, for definition

Parity Error Response 6 rw Parity Error Response
Set to 1‘b1 if error detection on the PCI bus is desired.

7 rw Refer to PCI Specification, Revision 2.1, for definition

p

Device ID Vendor ID
Status Command

Base Adr 0 - OHCI Regs

Class Code Rev
BIST Hdr Lat Cache

Base Adr 1 (opt)

Base Adr 5 (opt)
Cardbus CIS Ptr (opt)

Expansion ROM Base
0
0

10
14
18

Max_Lat Min_Gnt Int_Pin Int_Line

PCI Configuration Space

OHCI
Internal

Registers

Vendor
Option 1

PCI
Expansion

ROM

Vendor
Option x

@base_adr0

@base_adr1

@base_adr x

@rom_base

Subsystem ID Subsystem Vendor ID

Required

Vendor Option

Copyright © 1996,1997 All rights reserved. Page 127

PCI Interface 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

B.3.2 CLASS_CODE Register

This register identifies the basic function of the device, and a specific programming interface code for an 1394 OpenHCI-
compliant Host Controller.

B.3.3 Revision_ID Register

The Revision ID must contain the vendor’s revision level of their OpenHCI silicon. It is required that each new revision
of silicon receive a new revision ID.

B.3.4 Base_Adr_0 Register

The Base_Adr_0 register specifies the base address of a contiguous memory space in the PCI memory space of the host.
This memory space is assigned to the operational registers defined in this specification. All of the operational registers
described in this document are directly mapped into this 2 kilobyte memory space. Vendor unique registers are not
allowed within this 2 KB memory space.

Those hardware registers that are used to implement vendor specific features are not covered by this 1394 OpenHCI Spec-
ification. Additional vendor unique address spaces may be allocated by adding additional base address registers begining
at offset h14 in PCI configuration space.

Table B-2 — CLASS_CODE Register

Field Bits
Read/
Write Description

PI 7-0 r PROGRAMMING INTERFACE
A constant value of 8’h10 Identifies the device being a 1394 OpenHCI Host
Controller.

SC 15-8 r SUB CLASS
A constant value of 8’h00 Identifies the device being of IEEE 1394.

BC 23-
16

r BASE CLASS
A constant value of 8’h0C Identifies the device being a serial bus controller.

Table B-3 — Base_Adr_0 Register

Field Bits
Read/
Write Description

IND 0 r MEMORY SPACE INDICATOR
A constant value of 1’b0 Indicates that the operational registers of the device
are mapped into memory space of the main memory of the PC host system

TP 2-1 r This bit must be programmed consistent with thePCI Local Bus Specification,
Revision 2.1

PM 3 r PREFETCH MEMORY
A constant value of 1’b0 Indicates that there is no support for “prefetchable
memory”

11-4 rw Default value of 8‘h00 and is read only Represents a maximum of 4-KB
addressing space for the OpenHCI’s operational registers

OHCI_REG_PTR 31-
12

rw OHCI Register Pointer
Specifies the upper 20 bits of the 32-bit starting base address. This represents
a maximum of 2-KB addressing space for the OpenHCI’s operational regis-
ters.

Copyright © 1996,1997 All rights reserved. Page 128

PCI Interface 1394 Open Host Controller Interface Specification/Draft 0.91 Printed 1/27/97

B.4 PCI_HCI_Control Register

This register has 1394 OpenHCI specific control bits. Vendor options are not allowed in this register. It is reserved for
OpenHCI use only.

B.5 PCI Expansion ROM for 1394 OpenHCI

1394 OHCs on add-in adapters will clearly require PCI expansion ROMs that provide BIOS, Open Firmware, etc. to boot
and configure the card. If this ROM is non-writeable and soldered to the card (not socketed), it is also permitted that the
serial ROM image that the OHC autoloads at boot up can be included in this expansion ROM (saving the cost of a serial
ROM). If this is done, the serial ROM image must be loaded into the 1394 OHC by hardware state machine without
software intervention or control. It cannot be modifiable by software or 1394 devices under any circumstances.

B.6 PCI Bus Errors

When the “Parity Error Response” bit in the Command Register in PCI Configuration Space is enabled (see section
B.3.1), the PCI interface logic in the OpenHCI must assert PERR# when data with bad parity is received by the 1394
OpenHCI controller.

Any PCI bus error encountered must be reported to the OpenHCI operational logic for error handling. The nature of the
error response is context dependent and discussed in the body of the document. No distinction is made between the
various PCI bus errors. Basically, only one all encompassing error signal is provided to the operational logic by the PCI
specific interface logic. It is the responsibility of the implementer to insure that PCI bus errors are reported in a timely
fashion, consistent with their overall OpenHCI implementation, that insures that the errors are associated with the engine,
context, etc. that the error should be posted to.

When the “Parity Error Response” bit in the Command Register in PCI Configuration Space is enabled (see section
B.3.1), the PCI interface logic in the OpenHCI must assert PERR# in accordance with thePCI Local Bus Specification,
Revision 2.1 when data with bad parity is received by the 1394 OpenHCI controller.

Table B-4 — PCI_HCI_Control Register

Field Bits
Read/
Write Description

PCI_Global_Swap 0 rw PCI Global Swap Bit
When this bit is b1, all quadlets read from and written to the PCI interface are
byte swapped. PCI addresses, such as expansion ROM and PCI config regis-
ters, are unaffected by this bit (they are not byte swapped under any circum-
stances). The hardware reset value of this bit is b0.

This bit is not required for motherboard implementations.

31-1 rw These are reserved bits. They must be written as zeros and read as zeros.

