

Initial Chip Configuration From a Motherboard Perspective

December 17, 1996

Curtis E. Stevens / 1394 Open HCI BIOS 101

GUID/EUI-64

- Global Unique IDentifier (GUID)
 - OpenHCI 1394 Terminology
- ♦ Extended Unique Identifier (EUI-64)
 - IEEE EUI-64
- Terms can be used interchangeably
- This presentation uses GUID
 - Its shorter!!!

GUID Requirements

- Each 1394 controller must have a unique GUID
- The GUID must be set before an OS is launched
- The GUID must be stored in an area which the user can't flash
 - BIOS upgrades could erase the GUID
 - BIOS upgrades could propagate non-unique GUID's

Initialization Sequence

BASIC initialization

• Store the GUID

• Initialize the Asynchronous Receive Unit (ARU)

- The ARU allows the host to enumerate the bus
- If the BIOS does not enumerate the bus the ARU does not need to be enabled
- Configure bus specific registers
- Store a pointer to Config ROM
- Enable the Link
 - All required registers must be initialized before the Link is enabled

Initialization Sequence After Link Enable

- Requests for config ROM information are processed by the chip without host intervention
 - The host CPU need not have IRQ's enabled
 - The host CPU need not respond to any device
 - The host CPU need not respond to unsolicited requests in the ARU
 - The host need not enable the ARU

Requirements

- Very similar to motherboard requirements
- Must use serial ROM initialization
 - The serialROM bit in the version register is 1!
 - Ensures that correct GUID is always stored
 - Prevents tampering
- Serial ROM *should* not be removable
 - User pops the Serial ROM and BIOS off the card
 - Uses device driver which can load anything

Bootability

Requires an option ROM

- May be socketed
- Does NOT load the GUID, this is a function of the serial ROM
- Option ROM is not required if bootability is not important
- For x86 this option ROM provides INT 13 services

PCI System Resource Summary

♦ 1 IRQ

- 1k PCI register space
- 1K 1394 memory mapped register space not required
- Config ROM from 24 bytes min to 1k
- .5k ARU (minimum suggested RAM)

Config ROM

- Initial Config ROM can be a simple copy of an internal ROM data structure
- Motherboard BIOS
 - Will normally reside in BIOS shadow area
 - Possibly copied from flash
 - BIOS Shadow is respected by most memory managers
 - May also reside in UMB space
- Adapter BIOS
 - Config ROM will be in the Option ROM or corresponding shadow region

Config ROM (Cont)

- Minimum size is 24 bytes (6 quadlets), includes:
 - Header
 - Bus Info Block (resides in host controller)
 - A note for device manufacturers: If you want to boot your device be sure to set the "bootable" bit in the Bus Info Block
 - Empty Root Directory
- Can grow larger by expanding the root directory

Config ROM Pitfalls

eXtended BIOS Data Area (XBDA)

• If the system is booting from 1394

- Config ROM must not be located here
- Memory Managers such as EMM386, QEMM, and 386MAX by default relocate XBDA to UMB, or the bottom of DOS
- 1394 Register pointers get lost
- Once the OS is loaded device drivers can provide a new config ROM

BEN Asynchronous Receive Unit

- The following is only 1 design possibility
- Use 2 256 byte buffers to form a circular que
 - This imposes a 512 byte requirement which the BIOS must place in system memory
 - The only place a motherboard BIOS can reliably allocate memory is the eXtended BIOS Data Area (XBDA)
 - Adapter cards can use "private" memory for this capability

1394

HCI

Asynchronous Receive Unit (Runtime)

- During boot the BIOS must ...
 - Check the pointer to the ARU for validity
 - At some point a memory manager may move XBDA
 - The Physical XBDA start address must be calculated if the system is in v86
 - If the ARU pointer is invalid a valid pointer must be provided

Overview

- Provides a method for ordering boot devices
- Provides a method for ordering adapter ROMs which hook INT 13
- Provides support for legacy devices

- Requires a \$PnP header in PCI adapter ROMs
- Provides formatting requirements for the product ID string

INT 13 Hookers

- Provides a method for ordering adapter ROMs which hook INT 13
 - Requires \$PnP header
 - Device must be Boot Connection Vector (BCV)
- Defines how \$PnP adapter ROM headers apply to booting
- Allows for BIOS level product differentiation

- Numbers 60-6F are now reserved for BBS
- 32 Bit protect mode capable

BBS Provides the Following:

- A structured way for adapter ROMs to gain access to system resources such as INT 13
- A structured way for the BIOS to enumerate boot devices before an OS is launched
- A structured way for the system to reboot with a different boot device under program control

For More Information...

♦ BIOS Boot Specification v1.01

- Can be downloaded from WWW.PHOENIX.COM/TECHS/SPECS.HTML
- Contact Scott Townsend at Scott_Townsend@PTLTD.COM

Sample PMM Header

Offset	Name	Size	Value	Description

In the PMM Spec. you will find...

- How to locate and verify \$PMM services with sample code
- Sample calls to Allocate and Deallocate
- Usage models for the PMM functions

For More Information...

- Post Memory Manager v1.0
 - Can be downloaded from WWW.PHOENIX.COM/TECHS/SPECS.HTML
 - Contact Scott Townsend at Scott_Townsend@PTLTD.COM

INT 13 Support (Cont)

INT 13 is single threaded

- The BIOS does not respond to random requests
- The BIOS responds to a boot device only after that device has been enumerated and a command has been issued
- In effect, the BIOS acts as the root
- Hot Swapping is not supported
 - Drives are enumerated by the OS at boot
 - Device driver is needed for hot plugging

BEN Asynchronous Receive Unit

- ♦ 1394 ARU can be supported
 - Use the ARU to enumerate the bus
 - Motherboard BIOS will place this in eXtended BIOS Data Area (XBDA)
 - Option ROM BIOS may place this information elsewhere
 - Minimum .5k is required
 - Unexpected messages will be dumped from the ARU
 - The BIOS only responds to devices it enumerates

1394

HCI

DMA (Cont)

- If the INT 13 services detect v86
 - User buffer is converted to a page table
 - This table is stored in XBDA
 - The page table is used in all media access commands to the 1394 device
- If INT 13 services do not detect v86
 - The user buffer address is used directly
 - XBDA is not required

