BIOS Issues for OpenHCI

Curtis E. Stevens

Consulting Engineer, Phoenix Technologies

Agenda

- **♦** Introduction
- **◆ Initial Chip Configuration**
- **♦** Adapter Cards
- **♦** System Requirements
- **◆ BIOS Boot (x86)**
- **♦ Legacy DOS Support**

Introduction

- ♦ Why BIOS?
 - Required for boot

• Desirable for legacy DOS support

Initial Chip Configuration From a Motherboard Perspective

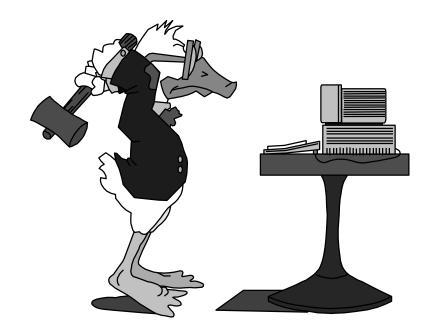
GUID Requirements

- ◆ Each 1394 controller must have a unique GUID/EUI-64
- **♦** The GUID must be set before an OS is launched
- ◆ The GUID must be stored in an area which the user can't flash
 - BIOS upgrades could erase the GUID
 - BIOS upgrades could propigate nonunique GUID's

Storage Options

- **♦** Boot Block
 - Not always available
 - Can not be corrupted by the user
 - Requires a custom Boot Block for each motherboard
- **♦** Alternative ROM storage
 - 1394 Serial ROM
 - Added cost
 - Better security

 Can also be used to store other system specific information


Initialization Sequence

- **♦** BASIC initialization
 - Configure bus specific registers
 - Store the GUID/EUI-64
 - Setup initial DBDMA script
 - Enable the GRU (Async Receive Enable)
 - Store a pointer to Config ROM
- **♦** Enable the Link
 - All required registers must be initialized before the Link is enabled

Initialization Sequence After Link Enable

- **♦** Requests for config ROM information are processed by the chip without host intervention
 - The host CPU need not have IRQ's enabled
 - The host CPU need not respond to any device
 - The host CPU need not respond to unsolicited requests in the GRU

Adapter Cards

Requirements

- **♦ Very similar to motherboard requirements**
- **♦** Must use serial ROM initialization
 - Ensures that correct GUID/EUI-64 is always stored
 - Prevents tampering
- **♦** Serial ROM should not be removable
 - User pops the Serial ROM and BIOS off the card
 - Uses device driver which can load anything

Bootability

- Requires and option ROM
 - May be socketed
 - Does NOT load the GUID/EUI-64, this is a function of the serial ROM
 - Option ROM is not required if bootability is not important
- ♦ For x86 this option ROM provides INT 13 services

System Requirements

System Resource Summary

- **◆** 1 IRQ
- **♦** 1k PCI register space
- ◆ 1K 1394 register space not required
- **♦** Config ROM from 24 bytes min to 1k
- **◆ .5k GRU (RAM)**

Config ROM

- Motherboard BIOS
 - Will normally reside in BIOS shadow area
 - Possibly copied from flash
 - BIOS Shadow is respected by most memory managers
 - May also reside in UMB space
 - Must be write protected
- **♦** Adapter BIOS
 - Config ROM will be in the Option ROM or corresponding shadow region

Config ROM (Cont)

- **♦** Minimum size is 24 bytes (6 quadlets), includes:
 - Header
 - Bus Info Block (resides in host controller)
 - Empty Root Directory
- **◆** Can grow larger by expanding the root directory

Config ROM Pitfalls

- **◆ Extended BIOS Data Area (XBDA)**
 - If the system is booting from 1394
 - Config ROM must not be located here
 - Memory Managers such as EMM386,
 QEMM, and 386MAX by default relocate
 XBDA to UMB, or the bottom of DOS
 - 1394 Register pointers get lost
 - Once the OS is loaded device drivers can provide a new config ROM

GRU

- ◆ Prior to OS load, at least .5k of XBDA must be assigned to GRU
- **♦** At runtime (during boot) the BIOS must ...
 - Check the pointer to the GRU for validity
 - At some point a memory manager may move XBDA
 - The Physical XBDA start address must be calculated if the system is in v86
 - If the GRU pointer is invalid a valid pointer must be provided

BIOS Boot Specification (x86)

Overview

- Provides a method for ordering boot devices
- ◆ Provides a method for ordering adapter ROMs which hook INT 13
- Provides support for legacy devices

Boot Devices

- **♦** Builds on the PnP specification
 - Requires a \$PnP header
 - Device may be Boot Entry Vector (BEV)
 - Or, device may be BIOS Aware IPL Device (BAID)
- Provides specifications for adapter ROM vendors
 - Requires a \$PnP header in PCI adapter ROMs
 - Provides formatting requirements for the product ID string

INT 13 Hookers

- Provides a method for ordering adapter ROMs which hook INT 13
 - Requires \$PnP header
 - Device must be Boot Connection Vector (BCV)
- ◆ Defines how \$PnP adapter ROM headers apply to booting
- **◆ Allows for BIOS level product differentiation**

Legacy Cards

- Allows legacy devices to be installed in any order
- ◆ PCI cards w/o the \$PnP header are treated as legacy devices
- Provides a runtime interface for managing boot devices
 - Extends the \$PnP interface by using pnp function numbers
 - Numbers 60-6F are now reserved for BBS
 - 32 Bit protect mode capable

In Short BBS Provides the Following:

- ◆ A structured way for adapter ROMs to gain access to system resources such as INT 13
- **♦** A structured way for the BIOS to enumerate boot devices before an OS is launched
- **♦** A structured way for the system to reboot with a different boot device under program control

For More Information

- **♦ BIOS Boot Specification v1.01**
 - Can be downloaded from WWW.PTLTD.COM/TECHS/SPECS.HTML
 - Contact Scott Townsend at Scott_Townsend@PTLTD.COM for more information

Legacy DOS Support x86

INT 13 Support

- Legacy DOS support is used by PC's to boot OS's
- **♦** Legacy INT 13 is required for DOS 6.22 and below
 - All addressing is CHS based
- DOS '95, Win NT and Win '95 can use INT 13 Extensions
 - Extensions are LBA based
 - See EDD BIOS Specification, a PC '97 requirment for a description of these extensions
- **♦** A CHS geometry must be derived for DOS 6.22 and below

INT 13 Support (Cont)

- **♦ INT 13 is single threaded**
 - The BIOS does not respond to random requests
 - The BIOS responds to a boot device only after that device has been enumerated and a command has been issued
 - In effect, the BIOS acts as the root
- Hot Swapping is not supported
 - Drives are enumerated by the OS at boot
 - Device driver is needed for hot plugging

Receive GRU

- **◆ 1394 Receive GRU must be supported**
 - Motherboard BIOS will place this in Extended BIOS Data Area
 - Option ROM BIOS may place this information elsewhere
 - Minimum 4k is required
 - Unexpected messages will be dumped from the GRU
 - The BIOS only responds to devices it enumerates

DMA

- **♦ DOS** provides virtual addresses
- **♦** BIOS is normally OS independent
- ◆ BIOS Data Area (BDA) has a flag which indicates when virtual memory services are available
 - OS/2, Win NT, Win '95, WFW, Himem.SYS, EMM386, QEMM, 386MAX and others
 - Some OS's do not.
 - These OS's will not be 1394 bootable

DMA (Cont)

- ◆ If the INT 13 services detect v86
 - User buffer is converted to a page table
 - This table is stored in Extended BDA
 - The page table is used in all media access commands to the 1394 device
- ◆ If INT 13 services do not detect v86
 - The user buffer address is used directly
 - Extended BDA is not required

Any Questions?

