
1394
Open Host Controller Interface

Specification

Release 1.00
October 20, 1997

Copyright © 1996,1997 by the Promoters of the 1394 Open HCI.

1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97
Copyright © 1996,1997 All rights reserved. Page ii

PREFACE 1394 Open Host Controller Interface Specification/Release 1.00 Printed 11/13/97

t

t

s.
e-
PREFACE

Notice

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR
SAMPLE. Apple Computer, Inc., Compaq Computer Corporation, Intel Corporation, Microsoft Corporation,
National Semiconductor Corporation, Sun Microsystems, Inc., and Texas Instruments, Inc. disclaim all liability,
including liability for infringement of any proprietary rights, relating to use of information in this specification. No
license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted herein. Excep
that a license is hereby granted to copy and reproduce this specification for internal use only. *Third-party brands
and names are the property of their respective owners.

Copyright © 1996, 1997 All Rights Reserved. Apple Computer, Inc., Compaq Computer Corporation, Intel
Corporation, Microsoft Corporation, National Semiconductor Corporation, Sun Microsystems, Inc., and Texas
Instruments, Inc.

Intellectual Property

Implementation of this Specification is governed by the terms of the 1394 Open Host Controller Interface Paten
License Agreement.

This specification may contain and sometimes even require the use of intellectual property owned by other
Rights to such intellectual property are not conveyed except as provided by the 1394 Open HCI Promoters agre
ment and the 1394 Open HCI Adopters agreement.

Information

An on-line copy, updates, and notices regarding this specification will be maintained on the following FTP site:
ftp://www.austin.ibm.com/pub/chrptech/1394ohci

Questions, comments, and issues concerning this document should be directed to the 1394 Open HCI reflector:
1394ohci-l@austin.ibm.com
Copyright © 1996,1997 All rights reserved. Page iii

PREFACE 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

 Speci-

 1394

calls).
Promoters

The Promoters of record on October 20, 1997, the date of publication of the 1394 Open Host Controller Interface
fication, Release 1.00, are:

Apple Computer, Inc.
Compaq Computer Corporation
Intel Corporation
Microsoft Corporation
National Semiconductor Corporation
Sun Microsystems, Inc.
Texas Instruments, Inc.

Contributors

This specification was developed using Apple Computer’sPele design as a starting point. ThePele contributors were Jim
Baldwin, Kevin Christiansen, Nikhil Jayaram, Michael Johas Teener and Rahoul Puri. The original Editor of the
OpenHCI specification up through Draft 0.7, was Michael Johas Teener.

The following is a list of key contributors to the 1394 Open Host Controller Interface specification.

Lee Wilson, Chair
Diana Klashman, Editor

Eric W. Anderson
Richard Baker

Joe Bennett
Mike Eneboe
John Fuller
Jerry Hauck

Robert Macomber
Rahoul Puri

Michael Johas Teener
Peter Teng

Scott Smyers
Erik Staats

David Wooten

The following is a list of other major participants (those who attended at least three meetings and/or conference

Larry Blackledge
Dmitriy L. Budko
Josh Collier
Nobuo Furuya
Carl Humphreys

Vasanta Madduri
Neil Morrow
Yehuda Peled
Gerhard Ringel
Curtis Stevens
Page iv Copyright © 1996,1997 All rights reserved.

Table of Contents 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

i

i

i

i

i

1

Table of Contents

PREFACE .. ii

Notice ..ii
Intellectual Property ..iii
Information ...ii
Promoters ... iv
Contributors .. iv

Table of Contents ... v

List of Figures ... x

List of Tables ... xii

1. Introduction ...

1.1 Related documents ... 1
1.2 Overview.. 1

1.2.1 Asynchronous functions .. 1
1.2.2 Isochronous functions ... 1
1.2.3 Miscellaneous functions .. 2

1.3 Hardware description ... 3
1.3.1 Host bus interface.. 3
1.3.2 DMA ... 4

1.3.2.1 Asynchronous transmit DMA ... 4
1.3.2.2 Asynchronous receive DMA... 5
1.3.2.3 Isochronous transmit DMA .. 5
1.3.2.4 Isochronous receive DMA .. 5
1.3.2.5 Self-ID receive DMA.. 5

1.3.3 Global unique ID (GUID) interface... 5
1.3.4 FIFOs .. 5

1.3.4.1 Asynchronous transmit FIFOs .. 6
1.3.4.2 Isochronous transmit FIFO ... 6
1.3.4.3 Receive FIFOs .. 6

1.3.5 Link ... 6
1.4 Software interface overview... 8

1.4.1 Registers.. 8
1.4.2 DMA operation ... 8
1.4.3 Interrupts ... 8

1.5 1394 Open HCI Node Offset (Address) Map ... 9
1.6 System Requirements... 10
1.7 Alignment .. 10

1.7.1 Data alignment .. 10
1.7.2 Memory structure and buffer alignment .. 10

2. Conventions - Notation and Terms .. 11

2.1 Notation ... 11
2.1.1 Numeric Notation.. 11
2.1.2 Register Notation... 11

2.1.2.1 Read/Write registers ... 11
2.1.2.2 Set and Clear registers .. 11
Copyright © 1996,1997 All rights reserved. Page v

Table of Contents 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

..
2.1.2.3 Register Reset Values ..12
2.1.2.4 Reserved fields ..12
2.1.2.5 Reserved registers ...12
2.1.2.6 Register field notation ...12

2.2 Terms..13

3. Common DMA Controller Features...17

3.1 Context Registers..17
3.1.1 ContextControl register..17

3.1.1.1 ContextControl.run..20
3.1.1.2 ContextControl.wake...20
3.1.1.3 ContextControl.active..20
3.1.1.4 ContextControl.dead ...21

3.1.2 CommandPtr register ...21
3.1.2.1 Bad Z Value...22

3.2 List Management ..22
3.2.1 Software Behavior ...23

3.2.1.1 Context Initialization...23
3.2.1.2 Appending to Running List ...23
3.2.1.3 Stopping a Context ..23

3.2.2 Hardware Behavior ..23
3.3 Asynchronous Receive ...25

3.3.1 FIFO Implementation ..25
3.3.1.1 Unrecoverable Error ..26

3.3.2 Ack Codes for Write Requests...26
3.3.3 Posted Writes ...27
3.3.4 Retries..27

3.4 DMA Summary ..28

4. Register addressing ..29

4.1 DMA Context Number Assignments ..29
4.2 Register Map ..30

5. 1394 Open HCI Registers ..35

5.1 Register Conventions..35
5.2 Version Register ...35
5.3 GUID ROM register (optional)...36
5.4 ATRetries Register..36
5.5 Autonomous CSR Resources..37

5.5.1 Bus Management CSR Registers ...38
5.5.2 Config ROM header ...39
5.5.3 Bus identification register ..40
5.5.4 Bus options register ...40
5.5.5 Global Unique ID ..41
5.5.6 Configuration ROM mapping register..42

5.6 Vendor ID register ..42
5.7 HCControl registers (set and clear) ..43

5.7.1 noByteSwapData ...45
5.7.2 programPhyEnable and aPhyEnhanceEnable...45
5.7.3 LPS and linkEnable ...47

5.8 FairnessControl register (optional) ...48
Page vi Copyright © 1996,1997 All rights reserved.

Table of Contents 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

..

7

....

.......
......

....... 7
5.9 LinkControl registers (set and clear) .. 48
5.10 Node identification and status register ... 50
5.11 PHY control register .. 51
5.12 Isochronous Cycle Timer Register ... 52
5.13 Asynchronous Request Filters.. 52

5.13.1 AsynchronousRequestFilter Registers (set and clear).. 52
5.13.2 PhysicalRequestFilter Registers (set and clear) ... 54

5.14 Physical Upper Bound register (optional) .. 55

6. Interrupts ... 5

6.1 IntEvent (set and clear) .. 57
6.1.1 busReset .. 59

6.2 IntMask (set and clear)... 60
6.3 IsochTx interrupt registers ... 60

6.3.1 isoXmitIntEvent (set and clear)... 61
6.3.2 isoXmitIntMask (set and clear) ... 61

6.4 IsochRx interrupt registers ... 61
6.4.1 isoRecvIntEvent (set and clear)... 62
6.4.2 isoRecvIntMask (set and clear) ... 62

7. Asynchronous Transmit DMA... 63

7.1 AT DMA Context Programs... 63
7.1.1 OUTPUT_MORE descriptor ... 64
7.1.2 OUTPUT_MORE_Immediate descriptor .. 65
7.1.3 OUTPUT_LAST descriptor .. 66
7.1.4 OUTPUT_LAST_Immediate descriptor.. 68
7.1.5 AT DMA descriptor usage... 70

7.1.5.1 Command.Z .. 70
7.1.5.2 Command.xferStatus .. 70
7.1.5.3 Command.timeStamp ... 70

7.1.5.3.1 timeStamp value for Requests.. 71
7.1.5.3.2 timeStamp value for Ping Requests...71
7.1.5.3.3 timeStamp value for Responses ... 71

7.2 AT DMA context registers ... 74
7.2.1 CommandPtr ... 74
7.2.2 ContextControl register (set and clear).. 74

7.2.2.1 Writing status back to context command descriptors...5
7.2.3 Bus Reset... 75

7.2.3.1 Host Controller Behavior for AT .. 75
7.2.3.2 Software Guidelines ... 75

7.3 Fairness .. 75
7.4 AT Retries .. 76
7.5 AT Interrupts .. 76
7.6 AT Data Formats .. 76

7.6.1 Asynchronous Transmit Requests ... 77
7.6.1.1 No-data transmit ... 77
7.6.1.2 Quadlet transmit ... 78
7.6.1.3 Block transmit .. 79
7.6.1.4 PHY packet transmit... 81

7.6.2 Asynchronous Transmit Responses ... 81
7.6.2.1 No-data transmit ... 81
7.6.2.2 Quadlet transmit ... 82
Copyright © 1996,1997 All rights reserved. Page vii

Table of Contents 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

.... 11
7.6.2.3 Block transmit ...83
7.6.3 Asynchronous Transmit Streams ...85

8. Asynchronous Receive DMA...87

8.1 AR DMA Context Programs...87
8.1.1 INPUT_MORE descriptor ...87
8.1.2 AR DMA descriptor usage...88

8.2 bufferFill mode...89
8.3 Asynchronous Receive Context Registers ..89

8.3.1 AR DMA CommandPtr register...89
8.3.2 AR ContextControl register (set and clear) ..90

8.4 AR DMA Controller...90
8.4.1 Asynchronous Filter Registers ...90
8.4.2 AR DMA Controller processing ..91

8.4.2.1 AR DMA Packet Trailer..92
8.4.2.2 Error Handling ..92
8.4.2.3 Bus Reset Packet ...92

8.5 PHY Packets...93
8.6 Asynchronous Receive Interrupts ...93
8.7 Asynchronous Receive Data Formats ...94

8.7.1 Asynchronous Receive Requests..95
8.7.1.1 No-data receive ...95
8.7.1.2 Quadlet Receive ..95
8.7.1.3 Block receive...97
8.7.1.4 PHY packet receive ...98

8.7.2 Asynchronous Receive Responses ...99
8.7.2.1 No-data receive ...99
8.7.2.2 Quadlet Receive ..99
8.7.2.3 Block receive... 100

9. Isochronous Transmit DMA... 103

9.1 IT DMA Context Programs .. 103
9.1.1 IT DMA command descriptor overview .. 103
9.1.2 OUTPUT_MORE descriptor ... 104
9.1.3 OUTPUT_MORE-Immediate descriptor ... 105
9.1.4 OUTPUT_LAST descriptor ... 106
9.1.5 OUTPUT_LAST-Immediate descriptor ... 107
9.1.6 STORE_VALUE descriptor ... 108
9.1.7 IT DMA descriptor usage .. 108

9.2 IT Context Registers... 110
9.2.1 CommandPtr .. 110
9.2.2 IT ContextControl Register.. 110

9.3 Isochronous transmit DMA controller .. 112
9.3.1 IT DMA Processing ... 112
9.3.2 Prefetching IT Packets ... 113
9.3.3 Isochronous Transmit Cycle Loss .. 113
9.3.4 FIFO Underrun .. 115
9.3.5 Determining the number of implemented IT DMA contexts..6

9.4 Appending to an IT DMA Context Program... 116
9.5 IT Interrupts ... 116

9.5.1 cycleInconsistent Interrupt... 116
9.5.2 busReset Interrupt .. 116
Page viii Copyright © 1996,1997 All rights reserved.

Table of Contents 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

.......123

...

....129

3

9.6 IT Data Format..117

10. Isochronous Receive DMA...119

10.1 IR DMA Context Programs...119
10.2 Receive Modes..121

10.2.1 Buffer Fill Mode...121
10.2.2 Packet-per-Buffer Mode ...122

10.2.2.1 Command.xferStatus and Command.resCount updates ..
10.3 IR Context Registers ...123

10.3.1 CommandPtr ..123
10.3.2 IRContextControl register (set and clear) ...124
10.3.3 Isochronous receive contextMatch register...126

10.4 Isochronous receive DMA controller ..127
10.4.1 Isochronous receive multi-channel support ..127

10.4.1.1 IRMultiChanMask registers (set and clear) ..127
10.4.2 Isochronous receive single-channel support ...128
10.4.3 Duplicate channels ...128
10.4.4 Determining the number of implemented IR DMA contexts..

10.5 IR Interrupts..129
10.5.1 cycleInconsistent Interrupt ...129
10.5.2 busReset Interrupt ..129

10.6 IR Data Formats..129
10.6.1 bufferFill mode formats..130

10.6.1.1 IR with header/trailer...130
10.6.1.2 IR without header/trailer..131

10.6.2 packet-per-buffer mode formats ...131
10.6.2.1 IR with header/trailer...131

10.6.3 IR without header/trailer ..132

11. Self ID Receive...13

11.1 Self ID Buffer Pointer Register ...133
11.2 Self ID Count Register ..133
11.3 Self-ID receive ..134
11.4 Enabling the SelfID DMA ..135
11.5 Interrupt Considerations for SelfID DMA ..135
11.6 SelfIDs Received Outside of Bus Initialization...135

12. Physical Requests ...137

12.1 Filtering Physical Requests ...137
12.2 Posted Writes ..138
12.3 Physical Responses ...138
12.4 Physical Response Retries ..138
12.5 Interrupt Considerations for Physical Requests ..138
12.6 Bus Reset ..138

13. Host Bus Errors ..139

13.1 Causes of Host Bus Errors ..139
13.2 Host Controller Actions When Host Bus Error Occurs ...139

13.2.1 Descriptor Read Error ..139
13.2.2 xferStatus Write Error ..139
Copyright © 1996,1997 All rights reserved. Page ix

Table of Contents 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

..
13.2.3 Transmit Data Read Error .. 140
13.2.4 Isochronous Transmit Data Write Error ... 140
13.2.5 Asynchronous Receive DMA Data Write Error ... 140
13.2.6 Isochronous Receive Data Write Error... 140
13.2.7 Physical Read Error ... 141
13.2.8 Posted Write Error ... 141

13.2.8.1 PostedWriteAddress Register .. 142
13.2.8.2 Queue Rules .. 143

Annex A. PCI Interface.. 145

A.1 PCI Configuration Space ... 145
A.2 Busmastering Requirements .. 145
A.3 PCI Configuration Space for 1394 OpenHCI With PCI Interface .. 145

A.3.1 COMMAND Register ... 146
A.3.2 STATUS Register .. 147
A.3.3 CLASS_CODE Register ... 147
A.3.4 Revision_ID Register .. 147
A.3.5 Base_Adr_0 Register .. 147
A.3.6 CAP_PTR Register (opt)... 148

A.4 PCI_HCI_Control Register.. 149
A.5 PCI Expansion ROM for 1394 OpenHCI... 149
A.6 PCI Bus Errors... 149

Annex B. Summary of Register Reset Values (Informative) .. 151

Annex C. Summary of Bus Reset Behavior (Informative) ... 157

C.1 Overview.. 157
C.2 Asynchronous Transmit: Request & Response .. 157
C.3 Asynchronous Receive: Request & Response.. 157
C.4 Isochronous Transmit... 157
C.5 Isochronous Receive .. 157
C.6 Self ID Receive.. 158
C.7 Physical Requests/Responses... 158

C.7.1 Physical Response... 158
C.7.2 Physical Requests.. 158

C.8 Control Registers ... 158

Annex D. IT DMA Supplement (Informative) .. 159

D.1 IT DMA Behavior.. 159
D.2 IT DMA Flowchart Summary... 159
D.3 DMA-side IT DMA flowchart .. 159

D.3.1 DMA-side top half ... 161
D.3.2 DMA-side bottom half .. 161

D.4 Link-side IT DMA flowchart ... 162
D.4.1 Link-side top half.. 162
D.4.2 Link-side bottom half.. 164

Annex E. Sample IT DMA Controller Implementation (Informative) ... 165
Page x Copyright © 1996,1997 All rights reserved.

List of Figures 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97
List of Figures

Figure 1-1 — 1394 Open HCI conceptual block diagram .. 3
Figure 1-2 — Node Offset Map .. 9
Figure 3-1 — ContextControl (set and clear) register format ... 17
Figure 3-2 — CommandPtr register format .. 21
Figure 3-3 — Flow Chart for Processing a DMA Context ... 24
Figure 5-1 — Version register .. 35
Figure 5-2 — GUID ROM register ... 36
Figure 5-3 — ATRetries register .. 36
Figure 5-4 — CSR data register ... 38
Figure 5-5 — CSR compare register .. 38
Figure 5-6 — CSR control register ... 38
Figure 5-7 — Config ROM header register .. 39
Figure 5-8 — Bus ID register ... 40
Figure 5-9 — Bus options register .. 40
Figure 5-10 — GlobalUniqueIDHi register .. 41
Figure 5-11 — GlobalUniqueIDLo register .. 41
Figure 5-12 — Configuration ROM mapping register .. 42
Figure 5-13 — VendorID register ... 42
Figure 5-14 — HCControl register ... 43
Figure 5-15 — FairnessControl register ... 48
Figure 5-16 — LinkControl register ... 48
Figure 5-17 — Node ID register ... 50
Figure 5-18 — PHY control register .. 51
Figure 5-19 — Isochronous cycle timer register ... 52
Figure 5-20 — AsynchronousRequestFilterHi (set and clear) register ... 53
Figure 5-21 — AsynchronousRequestFilterLo (set and clear) register ... 53
Figure 5-22 — PhysicalRequestFilterHi (set and clear) register .. 54
Figure 5-23 — PhysicalRequestFilterLo (set and clear) register .. 54
Figure 5-24 — 48-bit Physical Upper Bound ... 55
Figure 5-25 — Physical Upper Bound register ... 55
Figure 6-1 — IntEvent register ... 58
Figure 6-2 — IntMask register ... 60
Figure 6-3 — isoXmitIntEvent (set and clear) register ... 61
Figure 6-4 — isoRecvIntEvent (set and clear) register ... 62
Figure 7-1 — OUTPUT_MORE descriptor format .. 64
Figure 7-2 — OUTPUT_MORE-Immediate descriptor format .. 65
Figure 7-3 — OUTPUT_LAST descriptor format .. 66
Figure 7-4 — OUTPUT_LAST-Immediate descriptor format .. 68
Figure 7-5 — timeStamp format ... 70
Figure 7-6 — CommandPtr register format .. 74
Figure 7-7 — ContextControl (set and clear) register format ... 74
Figure 7-8 — Quadlet read request transmit format ... 77
Figure 7-9 — Quadlet write request transmit format .. 78
Figure 7-10 — Block read request transmit format .. 78
Figure 7-11 — Write request transmit format .. 79
Figure 7-12 — Lock request transmit format ... 80
Figure 7-13 — PHY packet transmit format ... 81
Figure 7-14 — Write response transmit format .. 81
Figure 7-15 — Quadlet read response transmit format ... 82
Figure 7-16 — Block read response transmit format .. 83
Figure 7-17 — Lock response transmit format ... 84
Figure 7-18 — Asynchronous stream packet format ... 85
Copyright © 1996,1997 All rights reserved. Page xi

List of Figures 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

....

......
Figure 8-1 — INPUT_MORE descriptor format ...87
Figure 8-2 — bufferFill receive mode ...89
Figure 8-3 — CommandPtr register format ..89
Figure 8-4 — AR ContextControl (set and clear) register format ...90
Figure 8-5 — AR DMA packet trailer format ...92
Figure 8-6 — AR Request Context Bus Reset packet format ..92
Figure 8-7 — Quadlet read request receive format ...95
Figure 8-8 — Quadlet write request receive format ..95
Figure 8-9 — Block read request receive format ..96
Figure 8-10 — Block write request receive format ...97
Figure 8-11 — Lock request receive format ...98
Figure 8-12 — PHY packet receive format ...98
Figure 8-13 — Write response receive format ..99
Figure 8-14 — Quadlet read response receive format ...99
Figure 8-15 — Block read response receive format .. 100
Figure 8-16 — Lock response receive format ... 101
Figure 9-1 — OUTPUT_MORE command descriptor format .. 104
Figure 9-2 — OUTPUT_MORE-Immediate descriptor format ... 105
Figure 9-3 — OUTPUT_LAST command descriptor format .. 106
Figure 9-4 — OUTPUT_LAST-Immediate command descriptor format .. 107
Figure 9-5 — STORE_VALUE descriptor .. 108
Figure 9-6 — CommandPtr register format .. 110
Figure 9-7 — IT DMA ContextControl (set and clear) register format ... 110
Figure 9-8 — ITDMA summary ... 112
Figure 9-9 — Isochronous transmit cycle loss example .. 115
Figure 9-10 — Isochronous transmit format .. 117
Figure 10-1 — INPUT_MORE/INPUT_LAST descriptor format .. 119
Figure 10-2 — IR Buffer Fill Mode .. 121
Figure 10-3 — packet-per-buffer receive mode .. 122
Figure 10-4 — CommandPtr register format .. 123
Figure 10-5 — IR DMA ContextControl (set and clear) register format ... 124
Figure 10-6 — IR DMA ContextMatch register format .. 126
Figure 10-7 — IRMultiChanMaskHi (set and clear) register .. 127
Figure 10-8 — IRMultiChanMaskLo (set and clear) register .. 128
Figure 10-9 — Receive isochronous format in bufferFill mode with header/trailer .. 130
Figure 10-10 — Receive isochronous format in bufferFill mode without header/trailer ... 131
Figure 10-11 — Receive isochronous format in packet-per-buffer mode with header/trailer .. 131
Figure 10-12 — Receive isochronous format in packet-per-buffer mode without header/trailer132
Figure 11-1 — Self ID Buffer Pointer register .. 133
Figure 11-2 — Self ID Count register ... 133
Figure 11-3 — Self-ID receive format .. 134
Figure 13-1 — PostedWriteAddressHi register ... 142
Figure 13-2 — PostedWriteAddressLo register .. 142
Figure 13-3 — Posted Write Error Queue ... 143
Figure A-1 — PCI Configuration Space ... 145
Figure A-2 — Pointers to OHCI Resources in PCI Configuration Space ... 146
Figure D-1 — IT DMA DMA-Side Flowchart .. 160
Figure D-2 — IT DMA Link-Side Flowchart ... 163
Figure E-1 — DMA Cycle Matching Continuum ... 165
Figure E-2 — IT DMA Controller counters and cycle matching logic ... 166
Figure E-3 — IT DMA Flowchart .. 167
Figure E-4 — Process IT Contexts Flowchart ... 168
Figure E-5 — Skip IT Contexts Flowchart ... 169
Page xii Copyright © 1996,1997 All rights reserved.

List of Tables 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

.

..
List of Tables

Table 1-1 — DMA types and contexts .. 4
Table 1-2 — Link generated acknowledges .. 7
Table 2-1 — read/write register field access tags .. 11
Table 2-2 — Set and Clear register field access tags .. 12
Table 2-3 — Register field reset values .. 12
Table 3-1 — ContextControl (set and clear) register description .. 17
Table 3-2 — Packet event codes ... 18
Table 3-3 — CommandPtr register description .. 21
Table 3-4 — CommandPtr read values ... 22
Table 3-5 — DMA Summary ... 28
Table 4-1 — 1394 Open HCI register space map ... 29
Table 4-2 — Asynchronous DMA Context number assignments ... 29
Table 4-3 — Register addresses .. 30
Table 5-1 — Version register fields .. 35
Table 5-2 — GUID ROM register fields ... 36
Table 5-3 — ATRetries register fields ... 37
Table 5-4 — Serial Bus Registers ... 38
Table 5-5 — CSR registers’ fields .. 39
Table 5-6 — Config ROM header register fields ... 39
Table 5-7 — Bus ID register fields ... 40
Table 5-8 — Bus options register fields .. 40
Table 5-9 — GlobalUniqueID register fields .. 41
Table 5-10 — Configuration ROM mapping register fields ... 42
Table 5-11 — VendorID register fields .. 42
Table 5-12 — HCControl register fields ... 44
Table 5-13 — programPhyEnable and aPhyEnhanceEnable Examples ... 46
Table 5-14 — LPS and linkEnable assertion .. 47
Table 5-15 — FairnessControl register fields ... 48
Table 5-16 — LinkControl register fields ... 49
Table 5-17 — Node ID register fields ... 50
Table 5-18 — PHY control register fields .. 51
Table 5-19 — Isochronous cycle timer register fields ... 52
Table 5-20 — AsynchronousRequestFilter register fields ... 53
Table 5-21 — PhysicalRequestFilter register fields .. 54
Table 5-22 — Physical Upper Bound register fields ... 55
Table 6-1 — IntEvent register description .. 58
Table 6-2 — IntMask register description .. 60
Table 7-1 — OUTPUT_MORE descriptor element summary .. 64
Table 7-2 — OUTPUT_MORE-Immediate descriptor element summary .. 65
Table 7-3 — OUTPUT_LAST descriptor element summary .. 66
Table 7-4 — OUTPUT_LAST-Immediate descriptor element summary .. 68
Table 7-5 — Z value encoding ... 70
Table 7-6 — timeStamp description ... 71
Table 7-7 — Results of timeStamp.cycleSeconds - cycleTimer.cycleSeconds ... 72
Table 7-8 — timeStamp.cycleCount-cycleTime.cycleCount Example 1 .. 72
Table 7-9 — timeStamp.cycleCount-cycleTime.cycleCount Example 2 .. 72
Table 7-10 — timeStamp.cycleCount-cycleTime.cycleCount Example 3 .. 73
Table 7-11 — ContextControl (set and clear) register description .. 74
Table 7-12 — Quadlet read request transmit fields ... 77
Table 7-13 — Quadlet transmit fields ... 78
Table 7-14 — Block transmit fields .. 80
Table 7-15 — Write response transmit fields .. 82
Copyright © 1996,1997 All rights reserved. Page xiii

List of Tables 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

..

....
Table 7-16 — Quadlet transmit fields ...83
Table 7-17 — Block transmit fields ..84
Table 7-18 — Asynchronous stream packet fields ..85
Table 8-1 — INPUT_MORE descriptor element summary ...87
Table 8-2 — AR ContextControl (set and clear) register description ..90
Table 8-3 — AR DMA trailer fields ..92
Table 8-4 — AR Request Context Bus Reset packet description ..93
Table 8-5 — Asynch receive fields ..94
Table 9-1 — OUTPUT_MORE descriptor element summary ... 104
Table 9-2 — OUTPUT_MORE-Immediate descriptor element summary ... 105
Table 9-3 — OUTPUT_LAST descriptor element summary .. 106
Table 9-4 — OUTPUT_LAST-Immediate descriptor element summary ... 107
Table 9-5 — STORE_VALUE descriptor element summary .. 108
Table 9-6 — Z value encoding .. 108
Table 9-7 — IT DMA ContextControl (set and clear) register description ... 111
Table 9-8 — Isochronous transmit fields ... 117
Table 10-1 — INPUT_MORE/INPUT_LAST descriptor element summary ..119
Table 10-2 — Z value encoding .. 120
Table 10-3 — IR DMA ContextControl (set and clear) register description ... 124
Table 10-4 — IR DMA ContextMatch register description ... 126
Table 10-5 — Isochronous receive fields .. 129
Table 11-1 — Self ID Buffer Pointer register ... 133
Table 11-2 — Self ID Count register .. 133
Table 11-3 — Self-ID receive fields .. 134
Table 13-1 — PostedWriteAddress register description .. 142
Table A-1 — COMMAND Register .. 146
Table A-2 — STATUS Register .. 147
Table A-3 — CLASS_CODE Register .. 147
Table A-4 — Base_Adr_0 Register ... 148
Table A-5 — CAP_PTR Register .. 148
Table A-6 — PCI_HCI_Control Register .. 149
Table B-1 — Register Reset Summary .. 151
Page xiv Copyright © 1996,1997 All rights reserved.

Introduction 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

e docu-
ification.

ial
 includes

chronous
nous data

 are read
an also
quests as

s a cycle
ge of the
ference
e cycle

receive.

ransmit
1. Introduction

1.1 Related documents

The following documents may be useful in understanding the terms and concepts used in this specification. Th
ments are for general background purposes only and are not incorporated into and do not form a part of this spec

[A] IEEE 1394-1995 High Performance Serial Bus
IEEE, 1995

[B] ISO/IEC 13213:1994 Control and Status Register Architecture for Microcomputer Busses
International Standards Organization, 1994

[C] IEEE P1394a
IEEE Draft Standard for a High Performance Serial bus (Supplement), Work-in-Progress

All references to 1394 in this document refer to IEEE 1394-1995 ([A] above) unless otherwise specified.
Following IEEE conventions, the term “quadlet” is used throughout this document to specify a 32-bit word.

1.2 Overview

The 1394 Open Host Controller Interface (Open HCI) is an implementation of the link layer protocol of the 1394 Ser
Bus, with additional features to support the transaction and bus management layers. The 1394 Open HCI also
DMA engines for high-performance data transfer and a host bus interface.

IEEE 1394 (and the 1394 Open HCI) supports two types of data transfer: asynchronous and isochronous. Asyn
data transfer puts the emphasis on guaranteed delivery of data, with less emphasis on guaranteed timing. Isochro
transfer is the opposite, with the emphasis on the guaranteed timing of the data, and less emphasis on delivery.

1.2.1 Asynchronous functions

The 1394 Open HCI can transmit and receive all of the defined 1394 packet formats. Packets to be transmitted
out of host memory and received packets are written into host memory, both using DMA. The 1394 Open HCI c
be programmed to act as a bus bridge between host bus and 1394 by directly executing 1394 read and write re
reads and writes to host bus memory space.

1.2.2 Isochronous functions

The 1394 Open HCI is capable of performing the cycle master function as defined by 1394. This means it contain
timer and counter, and can queue the transmission of a special packet called a “cycle start” after every rising ed
8 kHz cycle clock. The 1394 Open HCI can generate the cycle clock internally (required) or use an external re
(optional). When not the cycle master, the 1394 Open HCI keeps its internal cycle timer synchronized with th
master node by correcting its own cycle timer with the reload value from the cycle start packet.

Conceptually, the 1394 Open HCI supports one DMA controller each for isochronous transmit and isochronous
Each DMA controller can be implemented to support up to 32 different DMA channels, referred to asDMA contexts
within this document.

The isochronous transmit DMA controller can transmit from each context during each cycle. Each context can t
data for a single isochronous channel.
Copyright © 1996,1997 All rights reserved. Page 1

Introduction 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

e config-
ata from

smission.
et stream
ads this

ecause
synchro-

 initializa-

level
ler, the
as the

t.
The isochronous receive DMA controller can receive data for each context during each cycle. Each context can b
ured to receive data from a single isochronous channel. Additionally, one context can be configured to receive d
multiple isochronous channels.

1.2.3 Miscellaneous functions

Upon detecting a bus reset, the 1394 Open HCI automatically flushes all packets queued for asynchronous tran
Asynchronous packet reception continues without interruption, and a token appears in the received request pack
to indicate the occurrence of the bus reset. When the PHY provides the new local node ID, the 1394 Open HCI lo
value into its Node ID register. Asynchronous packet transmit will not resume until directed to by software. B
target node ID values may have changed during the bus reset, software will not generally be able to re-issue old a
nous requests until software has determined the new target node IDs.

Isochronous transmit and receive functions are not halted by a bus reset, instead they restart as soon as the bus
tion process is complete.

A number of management functions are also implemented by the 1394 Open HCI:

a) A global unique ID register of 64 bits which can only be written once. For full compliance with higher
standards, this register must be written before the boot block is read. To make this implementation simp
1394 Open HCI optionally has an interface to an external hardware global unique ID (GUID, also know
IEEE EUI-64). An example device is the Dallas Semiconductor DS2501-EUI-64.

b) Four registers that implement the compare-swap operation needed for isochronous resource managemen
Page 2 Copyright © 1996,1997 All rights reserved.

Introduction 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

he 1394
te perfor-
ctures)

cess within
the host
to read and
1.3 Hardware description

Figure 1-1 provides a conceptual block diagram of the 1394 Open HCI, and its connections in the host system. T
Open HCI attaches to the host via the host bus. The host bus is assumed to be at least 32 bits wide with adequa
mance to support the data rate of the particular implementation (100Mbit/sec or higher plus overhead for DMA stru
as well as bounded latency so that the FIFO’s can have a reasonable size.

1.3.1 Host bus interface

This block acts both as a master and a slave on the host bus. As a slave, it decodes and responds to register ac
the 1394 Open HCI. As a master, it acts on behalf of the 1394 Open HCI DMA units to generate transactions on
bus. These transactions are used to move streams of data between system memory and the devices, as well as
write the DMA command lists.

Figure 1-1 — 1394 Open HCI conceptual block diagram

1394 bushost bus

13
94

 L
in

k
an

d
P

H
Y

H
os

t
B

us
 I

nt
er

fa
ce

(b
us

 m
as

te
r)

IT
DMA

Physical Read
Request FIFO

S
W
A
P

IT
FIFO

S
W
A
P

AT Request
FIFO

S
W
A
P

AT Response
FIFO

S
W
A
P

AT Physical
Response FIFO

S
W
A
P

Physical Write
Request FIFO

S
W
A
P

AR Request
FIFO

S
W
A
P

AR Response
FIFO

S
W
A
P

IR
FIFO

S
W
A
P

Self-ID Receive
FIFO

AT Request
DMA

AT Response
DMA

Physical Re-
sponse Unit

Phys Read
Request Rcv

Phys Write
Request Rcv

Gen Request
Receive DMA

Gen Response
Receive DMA

IR
DMA

Self-ID
Receive DMA

internal
registers

Serial
ROM (Opt)

Parallel
ROM (Opt)
Copyright © 1996,1997 All rights reserved. Page 3

Introduction 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

pport at

e basic
is frees
uencing
f DMA

 one to

tly from

onse,

 FIFO
urned. If
s for

r to send
request

protocol
1.3.2 DMA

The 1394 Open HCI supports seven types of DMA. Each type of DMA has reserved register space and can su
least one distinct logical data stream referred to as aDMA context.

Each asynchronous and isochronous context is comprised of a buffer descriptor list called aDMA context program, stored
in main memory. Buffers are specified within the DMA context program byDMA descriptors. Although there are some
differences from controller to controller as to how the DMA descriptors are used, all DMA descriptors use the sam
format. The DMA controller sequences through its DMA context program(s) to find the necessary data buffers. Th
the system from stringent interrupt response requirements after buffer completions. The mechanism for seq
through DMA contexts differs somewhat from one controller to the next and is described in detail for each type o
in its respective chapter.

The Self-ID receive controller does not utilize a DMA context program and consists instead of a pair of registers;
be configured by software, and one to be maintained by hardware.

The 1394 Open HCI also has physical request DMA controller that processes incoming requests that read direc
host memory. This controller does not have a DMA context, it is instead controlled by dedicated registers.

1.3.2.1 Asynchronous transmit DMA

Asynchronous transmit DMA (AT DMA) utilizes three data streams, one each for AT DMA request, AT DMA resp
and the Physical Response Unit. These three functions can share resources.

AT DMA request and AT DMA response move transmit packets from buffers in memory to the corresponding
(request transmit FIFO or response transmit FIFO). For each packet sent, it waits for the acknowledge to be ret
the acknowledge isbusy, the DMA context will resend the packet up to a software-configurable number of time
single-phase retry, or up to a software-configurable time limit for dual-phase retry.

When the receive DMA indicates that a physical read has been received, the Physical Response Unit takes ove
the response packet. The Physical Response Unit can only interrupt the AT DMA response controller or AT DMA
controller between packets.

The asynchronous transmit DMA supports either the single-phase retry protocol (retry_X) or the dual-phase retry
(retry_1/retry_A/retry_B).

Table 1-1 — DMA types and contexts

DMA type number of contexts

Asynchronous Transmit 1 Request, 1 Response

Asynchronous Receive 1 Request, 1 Response

Isochronous Transmit 4 minimum, 32 maximum

Isochronous Receive 4 minimum, 32 maximum

Self-ID Receive 1

Physical Receive &
Physical Response

0 (not programmable like
those above)
Page 4 Copyright © 1996,1997 All rights reserved.

Introduction 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

DMA

 types of
pare-swap

 DMA.
ets. Each
equests
t context.

an be
a single

can be
eceive
ve packets

chronous
ers when
packets

ed host
ts will

64-bit
 bit in

ing a
 specifics

h little-
that the
or octlet
1.3.2.2 Asynchronous receive DMA

The asynchronous receive DMA (AR DMA), contains two DMA controllers: the Physical Request Unit and the AR
controller.

The Physical Request Unit takes control when a request with a physical address is received. There are three
physical addresses: host memory addresses (corresponding to the 4Gbyte address of a typical 32-bit CPU), com
management addresses, and the bus_info_block.

The AR DMA controller handles all incoming asynchronous packets not handled by the other functions in the AR
It consists of two contexts, one for asynchronous response packets, and one for asynchronous request pack
packet is copied into the buffers described by the corresponding DMA context program. Note that received lock r
not targeted to one of the four compare-swap management registers are always handled by the AR DMA reques

It is recommended that Open HCI asynchronous receive support dual-phase retry.

1.3.2.3 Isochronous transmit DMA

The isochronous transmit DMA controller supports a minimum of four isochronous transmit DMA contexts and c
implemented to support up to 32 isochronous transmit DMA contexts. Each context is used to transmit data for
isochronous channel. Data can be transmitted from each IT DMA context during each isochronous cycle.

1.3.2.4 Isochronous receive DMA

The isochronous receive DMA controller supports a minimum of four isochronous receive DMA contexts and
implemented to support up to 32 isochronous receive DMA contexts. All but one IR DMA context is used to r
packets from a single isochronous stream (channel). One context, as selected by software, can be used to recei
from multiple isochronous streams (channels).

Isochronous packets in the receive FIFO are processed by the context configured to receive their respective iso
channel numbers. Each DMA context can be configured to strip packet headers or include the headers and trail
moving the packets into the buffers. In addition, each DMA context can be configured to concatenate multiple
into its buffers (bufferFill mode) or to place just a single packet into each set of buffers (packet-per-buffer mode).

1.3.2.5 Self-ID receive DMA

Self-ID packets (received during the bus initialization self-ID phase) are automatically routed to a single designat
memory buffer by 1394 Open HCI self-ID receive DMA. Each time bus initialization occurs, the new self-ID packe
be written into the self-ID buffer from the beginning of the buffer, thereby overwriting the old self-ID packets.

1.3.3 Global unique ID (GUID) interface

The optional GUID (EUI-64) interface is intended to interface to an external ROM device from which the 1394
"node_unique_ID" may be loaded. If this interface is provided and an external device is present, the GUID_ROM
the Version Register is set and the GUID will be automatically loaded from the external ROM device follow
hardware reset. This interface is required for Host Controllers that are intended to be used on add-in cards. The
of the interface to the external ROM device are outside the scope of this specification.

1.3.4 FIFOs

Data entering or leaving the FIFO’s is conditionally byte-swapped. The 1394 Open HCI is designed to run in bot
endian environments (x86/PCI) and byte-swapped big-endian environments (PowerMac/PCI). Note, however,
1394 standard specifies that data is treated as big-endian, with the most significant byte of a doublet, quadlet,
Copyright © 1996,1997 All rights reserved. Page 5

Introduction 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

r a byte-
n 1394
l flag to

he Host
unit, the
 is loaded

 all asyn-
nchronous
returning
nit from
 from the
e that

 and is

sponses,
ed to the
vide the

hysical
ts proceed

all other
 must still
cification
 single

ckets into

e single
transmitted first. This means that the data coming through the FIFOs should be byte swapped if it is intended fo
swapped little-endian PCI like the PowerMac (two byte-swap operations leaves the data in the original big-endia
format). Little-endian x86 systems may or may not want the data byte swapped, so there is an Open HCI contro
enable byte swapping for 1394 packet data.

1.3.4.1 Asynchronous transmit FIFOs

The asynchronous transmit FIFOs are temporary storage for non-isochronous packets that will be sent from t
Controller to devices on 1394. The asynchronous request FIFO is loaded by the asynchronous request DMA
asynchronous response FIFO is loaded by the asynchronous response DMA unit and the physical response FIFO
by the physical DMA response unit.

It is not required that these FIFOs be implemented as separate physical entities. A single FIFO can be used for
chronous transmit packets as long as the implementation prevents pending asynchronous requests and asy
responses from blocking each other. For example, if a read request is being sent to a 1394 device that is
ack_busy, this should not prevent responses from either the physical DMA unit or the asynchronous response u
being sent. Furthermore, a busied response from the asynchronous response unit should not block responses
physical DMA unit. Other sections of this specification will provide implementation guidelines that will help ensur
the non-blocking requirements can be met with a single asynchronous transmit FIFO.

1.3.4.2 Isochronous transmit FIFO

The isochronous transmit FIFO, is temporary storage for the isochronous transmit data. It is filled by the ITDMA
emptied by the transmitter.

1.3.4.3 Receive FIFOs

Conceptually there are several receive FIFOs for handling incoming asynchronous requests, asynchronous re
isochronous packets and self-ID packets. The FIFOs are used as a staging area for packets which will be rout
appropriate handler. There is no requirement on the number of hardware FIFOs that must be implemented to pro
required functionality set forth in this document. However, any specific FIFO implementation must ensure that p
requests, asynchronous requests, asynchronous responses, isochronous packets, and self-ID receive contex
independently and do not block each other.

For example, if a unified receive FIFO is used and the transaction layer request queue is busy or stopped,
received packet types (physical requests, asynchronous responses, isochronous packets, and self-ID packets)
pass through the FIFO and be delivered to the transaction layer or host bus interface. Other sections of this spe
will provide implementation guidelines that will help ensure that the non-blocking requirements can be met with a
receive FIFO.

1.3.5 Link

The link module sends packets which appear at the transmit FIFO interfaces, and places correctly addressed pa
the receive FIFO. It includes the following features.

• Transmits and receives correctly formatted 1394 serial bus packets.
• Generates the appropriate acknowledge for all received asynchronous packets, including support for both th

and dual phase retry protocol for received packets.
• Performs the function of cycle master.
• Generates and checks 32-bit CRC.
• Detects missing cycle start packets.
• Interfaces to Open-HCI-compliant PHY.
Page 6 Copyright © 1996,1997 All rights reserved.

Introduction 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ected pe-
data to be

ochronous

 OpenHCI

alls

le

of

l)
n

.

alls

d
be

at

ck:
rec

en
of
• Receives isochronous packets at all times (does not ignore isochronous packets received outside of the exp
riod between cycle start and a subaction gap). This supports asynchronous streams and allows isochronous
received even if there is a CRC error in a received cycle start.

• Ignores asynchronous packets received during the isochronous phase (such packets are not ack’ed and is
phase continues).

The acknowledges generated by the link depend on the type of received packet, the address and the state of the
FIFOs:

Table 1-2 — Link generated acknowledges

Acknowledge Condition

ack_complete A packet with good CRC in both the header and data block (if there is one) and which also f
into one of the following classifications:

a) Any response that is accepted from 1394.

b) A write request with the offset address between 48’h0 and the configurab
(optional) PhysicalUpperBound-1 or 48’0000_FFFF_FFFF when i)posted writes are
enabled, ii) the request will be handled as a physical request, and iii) the number
outstanding posted writes is within the implementation specific limit.

c) A write request with the offset address between either the configurable (optiona
PhysicalUpperBound or 48’h0001_0000_0000, and 48’hFFFE_FFFF_FFFF that ca
be fully copied into the host memory receive buffer.

NOTE: For further information on implementation requirements for posted writes, see Section 3.3.3

ack_pending A packet with good CRC in both the header and data block (if there is one) and which also f
into one of the following classifications:

a) Any read request that can be fully loaded into the receive buffer.

b) Any lock request that can be fully loaded into the receive buffer.

c) Any block request with a non-zero extended tcode.

d) A write request with the offset address between 48’hFFFF_0000_0000 an
48’hFFFF_FFFF_FFFF (the top 4GB, which includes the register space) that can
fully loaded into the receive buffer.

ack_busy_X,
ack_busy_A,
ack_busy_B

Any received packet with a good CRC in both the header and data block (if there is one) th
cannot be fully loaded into the receive buffer. (The choice of _X, _A, or _B depends on the
choice of acknowledge algorithm and the particular “rt” value of the received packet.)

ack_data_error Any received packet with a good header CRC and a bad data CRC.

ack_type_error For a block write request with a good CRC in both the header and data block, this error a
• May be returned when the data_length is larger than the size indicated in the max_

field of the Bus_Info_Block of the Host Controller.
• Shall be returned if data_length is larger than max_recand the request is not handled

by the physical response unit.

For a block read request with a good CRC in the header, this error ack may be returned wh
the data length is larger than the size indicated in the max_rec field of the Bus_Info_Block
the Host Controller and the request is handled by the physical response unit.
Copyright © 1996,1997 All rights reserved. Page 7

Introduction 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

rrupts.

n of the

n HCI
rmation
es the
tatus of
nd to

ctions as
into host

nterrupt
to other
has been

 which
s to the

interrupt
1.4 Software interface overview

There are three basic means by which software communicates with the 1394 Open HCI: registers, DMA, and inte

1.4.1 Registers

The host architecture (PCI, for example) is responsible for mapping the 1394 Open HCI’s registers into a portio
host’s address space.

1.4.2 DMA operation

DMA transfers in the 1394 Open HCI are accomplished through one of two methods:

a) DMA. Memory resident data structures are used to describe lists of data buffers. The 1394 Ope
automatically sequences through this buffer descriptor list. This data structure also contains status info
regarding the transfers. Upon completion of each data transfer, the DMA controller conditionally updat
corresponding DMA Context Command and conditionally interrupts the processor so it can observe the s
the transaction. A set of registers within the 1394 Open HCI is used to initialize each DMA context a
perform control actions such as starting the transfer.

b) Physical response DMA. The 1394 Open HCI can be programmed to accept 1394 read and write transa
reads and writes to host memory space. In this mode, the 1394 Open HCI acts as a bus bridge from 1394
memory.

The formats for the data sent and received in all these modes are specified in the applicable chapters.

1.4.3 Interrupts

When any DMA transfer completes (or aborts) an interrupt may be sent to the host system. In addition to the i
sources which correspond to each DMA context completion, there is also a set of interrupts which correspond
1394 Open HCI functions/units. For example, one of these interrupts could be sent when a selfID packet stream
received.

The processor interrupt line is controlled by the IntEvent and IntMask registers. The IntEvent register indicates
interrupt events have occurred, and the IntMask register is used to enable selected interrupts. Software write
IntEventClear register to clear interrupt conditions in IntEvent.

In addition, there are registers used by the isochronous transmit and isochronous receive controllers to indicate
conditions for each context.
Page 8 Copyright © 1996,1997 All rights reserved.

Introduction 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

e can
chronous
on 12. For
omplete
 (this is
ing for

 change
bound of
sicalUp-

ffsets
assed to

ntroller
roadcast
de that
ay occur
CP/IP for
1.5 1394 Open HCI Node Offset (Address) Map

OpenHCI divides the 48-bit node offset space as depicted below:

Low Address Space is from 48’h0 up to physicalUpperBound. Asynchronous read and write requests into this rang
be handled by the Physical Request/Physical Response units, providing an efficient mechanism for moving asyn
data. Whether or not a request can be handled in this manner depends on a set of criteria as described in secti
write requests which are handled by the Physical Request unit, the Host Controller may issue an ack_c
immediately, even before the data has been written to host memory, to maximize packet transaction efficiency
referred to as aPosted Write). Or, depending on circumstances, the Host Controller may instead issue an ack_pend
such requests.

physicalUpperBound is an optional register that some Host Controllers may implement which provides a means to
the upper bound of the low address space. If not implemented, the Host Controller uses a default physical upper
48’h0001_0000_0000, which provides a physical range of 4GB. If implemented, 64-bit systems can use the phy
perBound register to increase the size of the Physical Range.

Middle Address Space is from physicalUpperBound through 48’hFFFE_FFFF_FFFF. Packets with destination o
within this range are not candidates for handling by the Physical Request/Response units, and are instead p
software for processing. Although there will be added latency while software performs processing, the Host Co
nevertheless issues an ack_complete for all write requests within this range which normally require an ack (e.g., b
write requests are never ack’ed). This is to maximize packet transaction efficiency. However, although the no
issued the write request is informed (via the ack_complete) that the write succeeded, it is possible that an error m
and that the write does not in fact reach its destination. This address range is best suited to protocols such as T
example which have their own mechanisms for detecting and recovering from lost packets.

Figure 1-2 — Node Offset Map

48’h0000_0000_0000

48’hFFFF_FFFF_FFFF

}} Physical Range

physicalUpperBound -1
physicalUpperBound

48’hFFFE_FFFF_FFFF
48’hFFFF_0000_0000

Low Address Space

Middle Address Space

Upper Address Space

CSR Space } some Physical48’hFFFF_F000_0000
48’hFFFF_EFFF_FFFF
Copyright © 1996,1997 All rights reserved. Page 9

Introduction 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ithin
oftware for
ill issue
e is best

s the
nge are

rocessing.

ed. The
s and

mic. No

ce, if a 5
let in the

f the first
ress 8,

ber of

 of this
Upper Address Space is from 48’hFFFF_0000_0000 to 48’hFFFF_EFFF_FFFF. Packets with destination offsets w
this range are not candidates for handling by the Physical Request/Response units, and are instead passed to s
processing. The Host Controller will respond to write requests to this range with an ack_pending, and software w
a write response with resp_complete only after the data has been written to its specified destination. This rang
suited to protocols that do not tolerate lost packets.

CSR Space is from 48’hFFFF_F000_0000 to 48’FFFF_FFFF_FFFF providing a range of 256MB. This range i
reserved register space as specified in ISO/IEC 13213:1994. Most packets with destination offsets within this ra
not candidates for handling by the Physical Request/Response units, and are instead passed to software for p
Some however are handled directly by the Host Controller without involving software and are listed in section 12.

1.6 System Requirements

This Host Controller specification is intended to be largely independent of the type of system to which it is attach
intent is that Host Controller designs that follow this specification may be built for many different types of system
still adhere to the same programming model. The required system facilities are:

a) Host Controller must be able to initiate accesses of host system memory,

b) Host Controller must be able to modify system memory with byte granularity,

c) Host Controller must be able to signal an exception/interrupt to the host CPU,

d) access of 32-bit entities in either system memory or on the Host Controller must be endian neutral and ato
8-bit or 16-bit access to Host Controller registers are supported.

The 1394 Open HCI does not preclude a system from having multiple 1394 Open HCI controllers.

1.7 Alignment

1.7.1 Data alignment

The 1394 Open HCI must perform these two alignment functions:

a) Translate between the byte alignments of the host-based data and the quadlet aligned FIFO. For instan
byte 1394 data packet is to be stored at host bus address 6, then the first two bytes of the first data quad
FIFO must be stored at host bus address 6 and 7 using a single quadlet write, then the next two bytes o
quadlet in the FIFO combined with the first byte of the next quadlet in the FIFO are written to host bus add
9, and 10.

b) Stuff extra zero bytes into the transmit FIFO when the number of bytes to transmit is not an integral num
quadlets

1.7.2 Memory structure and buffer alignment

Alignment requirements for host memory data structures and host memory buffers can be found in sections
document where those elements are described.
Page 10 Copyright © 1996,1997 All rights reserved.

Conventions - Notation and Terms 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

 a “’h”
 “ ’ ”,

 notation
ters.

h one or

ted in the
t writes,

lying
to be set
d. Simi-
gister,
ed. It is
register,

, thus

 another
2. Conventions - Notation and Terms

2.1 Notation

2.1.1 Numeric Notation

Unless otherwise specified, numbers will be represented in Verilog language style. In particular, numbers with
prefix are hexadecimal, “’b” are binary, and “’d” or those without a prefix are decimal. If a number precedes the
then it indicates the length of the number in bits. For example, 4’h8 is the binary number ’b1000.

2.1.2 Register Notation

There are two types of registers described in this document; read/write registers and set and clear registers. The
used for each is described below, as well as notation used for register reset values and reserved fields and regis

2.1.2.1 Read/Write registers

Read/write registers are registers for which a single address is defined and for which fields may be defined wit
more of the following attributes:

2.1.2.2 Set and Clear registers

Throughout this document there are Host Controller registers that are identified asSet and Clear registers. These registers
have the property of having two addresses by which they may be referenced by the host. Unless otherwise sta
description of the register, a host read of either address will return the current contents of the register. Hos
however, have different effects when addressing the different addresses.

When the host writes to theSet address the value written is taken as a bit mask indicating which bits in the under
register are to be set to one. A one bit in the value written indicates that the corresponding bit in the register is
to one, while a zero bit in the value written indicates that the corresponding bit in the register is not to be change
larly, host writes to theClear address specify a value that is a bit mask of bits to clear to zero in the underlying re
a one bit means to clear the corresponding bit while a zero bit means to leave the corresponding bit unchang
intended that writing zero bits to these addresses has no effect on the corresponding bits in the underlying
including transient effects that could affect the operation of the Host Controller.

There are several reasons to use this type of register:

• The host doesn’t need to do both a read and a write to affect only a single bit.
• The host doesn’t risk the Host Controller modifying a bit while the host does a read-modify-write operation

causing unintended effects.
• The host doesn’t have to serialize its access to frequently used registers in order to ensure that conflict with

process doesn’t cause unintended effects.

Table 2-1 — read/write register field access tags

access tag
(rwu) name meaning

r read field may be read

w write field may be written from the host bus

u update field may be autonomously updated by Open HCI hardware
Copyright © 1996,1997 All rights reserved. Page 11

Conventions - Notation and Terms1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

 all ones

value of
software
d does not

 must be

 and must

r

For set and clear registers that have an undefined value following a reset, it is recommended that software write
to the Clear address to ensure the register has a known value.

2.1.2.3 Register Reset Values

Register field descriptions may be tagged with one or more of the following reset values. This column indicates the
the field immediately following a software reset or hardware reset. Except where otherwise noted, the results from a
reset and hardware reset are the same. Note that the reset column is for software and hardware resets only an
include bus reset values (those are discussed as needed in the applicable text).

Unless otherwise specified, all fields will remain unchanged after a 1394 bus reset.

2.1.2.4 Reserved fields

All reserved fields (indicated by a hatched or grayed-out pattern) are read as zeros (but must be ignored) and
written as zeros.

2.1.2.5 Reserved registers

Addresses within the OpenHCI Register Address space that are marked as reserved must return zeros when read
ignore writes.

2.1.2.6 Register field notation

In descriptions which refer to specific register fields, the notation Rrrrr.fffff will be used where Rrrrr refers to the registe
name andfffff refers to the referenced field within that register.

Table 2-2 — Set and Clear register field access tags

access tag
(rscu) name meaning

r read field may be read

s set field may be set from the host bus

c clear field may be cleared from the host bus

u update field may be autonomously updated by Open HCI hardware

Table 2-3 — Register field reset values

reset value meaning

x’by or x’hy Indicates the value (in binary or hexadecimal) of the field upon
completion of a reset. For description of Verilog notation see
section 2.1.1.

undef Following a reset, the value of this field is undefined and may
contain (any combination of) zero(s) or one(s).

N/A Not applicable. A reset does not have any effect on this field.
Page 12 Copyright © 1996,1997 All rights reserved.

Conventions - Notation and Terms 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ts not

kets.

anager.
 not
ultiple
ration

ers in

ers in

an, the

es
ansac-

 and

cribed
Ptr.

s and

tched
 block
ferred

and
2.2 Terms

The following terms and acronyms are used throughout this document.

AR DMA A synchronousReceiveDMA .

AR DMA Request Refers to the asynchronous receive DMA context that handles all incoming request packe
handled by thephysical request unit.

AR DMA Response Refers to the asynchronous receive DMA context that handles all incoming response pac

asynchronous stream
packet

A stream packet for which only a channel has been reserved at the isochronous resource m
An asynchronous stream packet shall be transmitted during the asynchronous period and
during the isochronous period. For the same channel number, there is no restriction on m
talkers nor upon a single talker sending multiple asynchronous stream packets. Fair arbit
rules govern the transmission of these packets. See alsoisochronous stream packet andstream
packet.

AT DMA A synchronousTransmitDMA .

AT DMA Request Unit Refers to the asynchronous transmit DMA subunit which moves transmit packets from buff
memory to the request transmit FIFO.

AT DMA Response Unit Refers to the asynchronous transmit DMA subunit which moves transmit packets from buff
memory to the response transmit FIFO.

big endian A term used to describe the arithmetic significance of data-byte addresses. With big-endi
data byte with the largest address is the least significant.a

bridge A hardware adapter that forwards transactions between buses.a

channel Refers to anisochronous channel number.

CSR architecture ISO/IEC 13213: 1994 [ANSI/IEEE Std 1212, 1994 Edition],Information technology - Micropro-
cessor systems - Control and Status Registers (CSR) Architecture for microcomputer bus. The
CSR architecture supports the concept of bus bridges, which can transparently forward tr
tions from one compliant bus to another.

Config ROM A portion of a node’s 1394 address space defined by clause 8 of ISO/IEC 13213:1994
[ANSI/IEEE Std 1212, 1994 Edition]. The region contains information describing the node
it’s units. The region is read-only to other 1394 nodes. See alsoGUID ROM andPCI Expansion
ROM.

DMA context A distinct logical stream (not necessarily physical) through the Open HCI which can be des
by aDMA context program and a minimum of two registers: ContextControl and Command

DMA context program A list of DMA descriptors which identify buffers used for data transfer.

DMA controller Refers to the mechanism used in support of a specific DMA function. Each controller utilize
maintains its own set of registers to perform its specified functionality.

DMA descriptor A data structure used to describe buffers and buffer-list control.

DMA descriptor block A group of DMA descriptors that are contiguous in host memory and can therefore be prefe
by the Host Controller. The last DMA descriptor in a block contains the address of the next
as well as a count of the number of descriptors contained in the next block. This count is re
to as the Z value.

EUI-64 Extended Unique Identifier. SeeGlobal Unique ID below.

Global Unique ID SeeGUID.

GUID G lobalUniqueID -A 64-bit node unique identifier, comprised of a 24-bit node company ID
a 40-bit chip ID
Copyright © 1996,1997 All rights reserved. Page 13

Conventions - Notation and Terms1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

 the
ay

also

s.

nds.

mber.

onous
gle iso-

ronous

ervice
ayer
n isoch-

an, the

tem.

ds.

nded
dapters
e PCI

ware

logical
e
chanical

ical
GUID ROM A hardware component that holds the EUI-64 of the node and is automatically loaded into
GlobalUniqueID registers of the controller when power is applied. Additional information m
be stored in the GUID ROM and is available via the controller's GUID ROM register. See
Config ROM andPCI Expansion ROM.

hardware reset Refers to a host power reset.

HC HostController. The device whose interface is defined by this specification.

HCI H ostController Interface. The interface defined by this specification.

INPUT_* Abbreviated notation for INPUT_MORE and INPUT_LAST DMA descriptor commands.

INPUT_LAST* Abbreviated notation for INPUT_LAST and INPUT_LAST-Immediate descriptor command

INPUT_MORE* Abbreviated notation for INPUT_MORE and INPUT_MORE-Immediate descriptor comma

IR DMA I sochronousReceiveDMA.

isochronous channel Within the packet header of an IEEE 1394 isochronous packet there is a 6 bit channel nu
Receivers “listen” for packets transmitted with particular channel number(s).

isochronous stream
packet

A stream packet for which both channel and bandwidth have been reserved at the isochr
resource manager. Only one talker may transmit an isochronous stream packet during a sin
chronous cycle. Isochronous stream packets shall not be transmitted outside of the isoch
period. See alsoasynchronous stream packet andstream packet.

IT DMA I sochronousTransmitDMA.

ITF I sochronousTransmitFIFO.

link layer (LINK) The layer, in a stack of three protocol layers defined for the Serial Bus, that provides the s
to the transaction layer of one-way data transfer with confirmation of reception. The link l
also provides addressing, data checking, and data framing. The link layer also provides a
ronous data transfer service directly to the application.c

little endian A term used to describe the arithmetic significance of data-byte addresses. With little-endi
data byte with the smallest address is the least significant.a

Node ID This is a unique 16-bit number, which distinguishes the node from other nodes in the sysc

OHCI O penHostController Interface.

OUTPUT_* Abbreviated notation for OUTPUT_MORE and OUTPUT_LAST DMA descriptor comman

OUTPUT_LAST* Abbreviated notation for OUTPUT_LAST and OUTPUT_LAST-Immediate descriptor
commands.

OUTPUT_MORE* Abbreviated notation for OUTPUT_MORE and OUTPUT_MORE-Immediate descriptor
commands.

PCI PeripheralComponentInterconnect. Specification that defines the PCI bus. This bus is inte
to define the interconnect and bus transfer protocol between highly-integrated peripheral a
that reside on a common local bus on the system board (or add-in expansion cards on th
bus).b

PCI Expansion ROM A hardware component on a PCI add-in card that contains the x86 BIOS and/or Open Firm
required by the device. See alsoConfig ROM andGUID ROM.

PHY Abbreviation for the physical layer.c

physical layer The layer, in a stack of three protocol layers defined for the Serial Bus, that translates the
symbols used by the link layer into electrical signals on the different Serial Bus media. Th
physical layer guarantees that only one node at a time is sending data and defines the me
interfaces for the Serial Bus.c

Physical Request Unit PhysicalRequestUnit. Refers to the asynchronous receive DMA subunit that handles phys
requests.

Physical Response Unit Refers to the asynchronous transmit DMA subunit that handles physical responses.
Page 14 Copyright © 1996,1997 All rights reserved.

Conventions - Notation and Terms 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

om-

ngi-

sed

ontrol
a. Information technology - Microprocessor systems - Control and Status Registers (CSR) Architecture for microc
puter buses, ISO/IEC 13213 [1994], The Institute of Electrical And Electronics Engineers, Inc., New York, NY.

b. Shanley, T. and Anderson, D. [February 1995],PCI System Architecture, Addison-Wesley, Reading, MA.
c. IEEE Standard for a High Performance Serial Bus, Std 1394-1995, The Institute of Electrical And Electronics E

neers, Inc., New York, NY.

posted write A write request received by the Host Controller for which the Host Controller sends an
ack_complete before the data is actually written to system memory.

ROM SeeConfig ROM, GUID ROM andPCI Expansion ROM.

RQTF RequestTransmitFIFO. Refers to the FIFO used for asynchronous transmit requests.

RSTF ResponseTransmitFIFO. Refers to the FIFO used for asynchronous transmit responses. U
for AT DMA responses and physical responses.

stream packet A 1394 primary packet with transaction code 4’hA. See alsoasynchronous stream packet andiso-
chronous stream packet.

quadlet A 32-bit word.

RDMA R eceiveDMA .

ROM ReadOnly Memory.

software reset Refers to a Host Controller reset that is initiated by host software. See section 5.7, “HCC
registers (set and clear).”

Z block SeeDMA descriptor block.
Copyright © 1996,1997 All rights reserved. Page 15

Conventions - Notation and Terms1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97
Page 16 Copyright © 1996,1997 All rights reserved.

Common DMA Controller Features1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

 receive

hysical

 of the
ndPtr

 mini-
llers are

 for

scrip-
ee

oller
3. Common DMA Controller Features

The 1394 Open HCI provides several types of DMA functionality:

a) General-purpose DMA handling asynchronous transmit and receive packets and isochronous transmit and
packets.

b) An inbound bus bridge function that allows 1394 devices to directly access system memory called “p
DMA.”

c) A separate write buffer for the received self-ID packets.

d) A mapping between a 1K byte block in system memory and the first 1K of 1394 Configuration ROM.

This section will describe the common controller features and attributes.

3.1 Context Registers

A context provides the basic information to the Host Controller to allow it to fetch and process descriptors for one
several DMA controllers. All contexts (except for SelfID) minimally have a ContextControl Register and a Comma
Register. The format of the ContextControl Registers is DMA controller specific but all ContextControl registers
mally have the bits as shown in figure 3-1 and described in table 3-1. The CommandPtr Registers for all contro
the same and follow the format shown in figure 3-2 and described in table 3-3.

3.1.1 ContextControl register

Figure 3-1 — ContextControl (set and clear) register format

Table 3-1 — ContextControl (set and clear) register description

Field rscu reset Description

run rscu 1’b0 The run bit is set by software to enable descriptor processing for a context and
cleared by software to stop descriptor processing. The Host Controller will only
change this bit on a hardware or software reset to set it to 0. See section 3.1.1.1
details.

wake rsu undef Software sets this bit to 1 to cause the Host Controller to continue or resume de
tor processing. The Host Controller will clear this bit on every descriptor fetch. S
section 3.1.1.2 for details.

dead ru 1’b0 The Host Controller sets this bit when it encounters a fatal error. The Host contr
clears this bit when software clears the run bit. See section 3.1.1.4 for details.

active ru 1’b0 The Host Controller sets this bit to 1 when it is processing descriptors. See
section 3.1.1.3 for details.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

dead
active

wake

run

event
code

spd
Copyright © 1996,1997 All rights reserved. Page 17

Common DMA Controller Features1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ocument,
criptor

ay not
 and the

m 1394
elow is
n current

 to 0. In

re

ter-
 All

iptor

emory

ory
 single

t packet.

t

The packet event codes shown in the table below are possible values for the five-bit ContextControl.event field. This field
may contain either a 1394 defined ack code or an Open HCI generated event code. As described later in this d
bits 0-15 of the ContextControl register may be written into host memory to indicate packet and/or DMA des
status. However, all possible event codes which may appear in a particular context’s ContextControl register m
necessarily ever be written into host memory for a packet or DMA descriptor status, depending on circumstances
functionality of the context.

1394 ack codes are denoted by the high (fifth) bit set to 1 followed by the 1394 four-bit ack code as received fro
(e.g., 1394 ack_pending = 4’h2, OpenHCI ack_pending = 5’h12). The list of ack codes provided in the table b
informative not normative; i.e., for asynchronous packets the event code may be set to any ack code specified i
and future 1394 standards.

OpenHCI generated event codes have an “evt_” prefix and are denoted by a code with the high (fifth) bit equal
some cases for isochronous I/O Open HCI may generate a 1394 style ack code for ContextControl.event.

spd ru undef This field indicates the speed at which the packet was received. 3’b000 = 100
Mbits/sec, 3’b001 = 200 Mbits/sec and 3’b010 = 400 Mbits/sec. All other values a
reserved. Spd only contains meaningful information for receive contexts.

Software should not attempt to interpret the contents of this field while the
ContextControl.active or ContextControl.wake bits are set.

event code ru undef This field holds the acknowledge sent by the Link core for this packet, or an in
nally generated error code (evt_*) if the packet was not transferred successfully.
possible event codes are shown in Table 3-2, “Packet event codes,” below.

Table 3-2 — Packet event codes

Code Name DMA Meaning

5’h00 evt_no_status AT,AR
IT,IR

No event status.

5’h01 reserved

5’h02 evt_long_packet IR The received data length was greater than the buffer’s data_length.

5’h03 evt_missing_ack AT A subaction gap was detected before an ack arrivedor the received ack had a parity
error.

5’h04 evt_underrun AT, IT Underrun on the corresponding FIFO. The packet was truncated.

5’h05 evt_overrun IR A receive FIFO overflowed during the reception of an isochronous packet.

5’h06 evt_descriptor_read AT,AR
IT,IR

An unrecoverable error occurred while the Host Controller was reading a descr
block.

5’h07 evt_data_read AT, IT An error occurred while the Host Controller was attempting to read from host m
in the data stage of descriptor processing.

5’h08 evt_data_write AR,IR
IT

An error occurred while the Host Controller was attempting to write to host mem
either in the data stage of descriptor processing (AR, IR), or when processing a
16-bit host memory write (IT).

5’h09 evt_bus_reset AR Identifies a PHY packet in the receive buffer as being the synthesized bus rese
(See section 8.4.2.3).

5’h0A evt_timeout AT Indicates that the asynchronous transmit response packet expired and was no
transmitted.

5’h0B evt_tcode_err AT, IT A bad tCode is associated with this packet. The packet was flushed.

Table 3-1 — ContextControl (set and clear) register description

Field rscu reset Description
Page 18 Copyright © 1996,1997 All rights reserved.

Common DMA Controller Features1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

codes

 flushed

ation
on, the
ubaction

adcast
mplete

a request
ed for

pts, and

pts, and

pts, and

yers are

failed the
length
oes not

ue, or an
5’h0C-
5’h0D

reserved

5’h0E evt_unknown AT,AR
IT,IR

An error condition has occurred that cannot be represented by any other event
defined herein.

5’h0F evt_flushed AT Sent by the link side of the output FIFO when asynchronous packets are being
due to a bus reset.

5’h10 reserved Reserved for definition by future 1394 standards.

5’h11 ack_complete AT,AR
IT,IR

For asynchronous request and response packets, this event indicates the destin
node has successfully accepted the packet. If the packet was a request subacti
destination node has successfully completed the transaction and no response s
shall follow.
The event code for transmitted PHY, isochronous, asynchronous stream and bro
packets, none of which yields a 1394 ack code, will be set by hardware to ack_co
unless an event occurs.

5’h12 ack_pending AT,AR The destination node has successfully accepted the packet. If the packet was
subaction, a response subaction will follow at a later time. This code is not return
a response subaction.

5’h13 reserved Reserved for definition by future 1394 standards.

5’h14 ack_busy_X AT The packet could not be accepted after max ATRetries (see section 5.4) attem
the last ack received was ack_busy_X.

5’h15 ack_busy_A AT The packet could not be accepted after max ATRetries (see section 5.4) attem
the last ack received was ack_busy_A.

5’h16 ack_busy_B AT The packet could not be accepted after max AT Retries (see section 5.4) attem
the last ack received was ack_busy_B.

5’h17 -
5’h1A

reserved Reserved for definition by future 1394 standards.

5’h1B ack_tardy AT The destination node could not accept the packet because the link and higher la
in a suspended state.

5’h1C reserved Reserved for definition by future 1394 standards.

5’h1D ack_data_error AT,IR The destination node could not accept the block packet because the data field
CRC check, or because the length of the data block payload did not match the
contained in the data_length field. This code is not returned for any packet that d
have a data block payload.

5’h1E ack_type_error AT,AR A field in the request packet header was set to an unsupported or incorrect val
invalid transaction was attempted (e.g., a write to a read-only address).

5’h1F reserved Reserved for definition by future 1394 standards.

Table 3-2 — Packet event codes

Code Name DMA Meaning
Copyright © 1996,1997 All rights reserved. Page 19

Common DMA Controller Features1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ntext.
the
ddress.

ct the
safely

ntext,
ler will,
st
tent state

cribed

 in a
t

ptor that
 of zero
 to
he Host
ontroller

ive
the Host
he
propriate
count
 space

g.

es an
ult of
3.1.1.1 ContextControl.run

The ContextControl.run bit is set by software when the Host Controller is to begin processing descriptors for the co
Before software sets ContextControl.run, ContextControl.active must not be set, and the CommandPtr Register for
context must contain a valid descriptor block address and a Z value that is appropriate for the descriptor block a

Software may stop the Host Controller from further processing of a context by clearing ContextControl.run. When a
ContextControl.run is cleared, the Host Controller will stop processing of the context in a manner that will not impa
operation of any other context or DMA controller. The Host Controller may require a significant amount of time to
stop processing for a context but when the Host Controller does stop, it will clear ContextControl.active. If software
clears a ContextControl.run for an isochronous context while the Host Controller is processing a packet for the co
the Host Controller will continue to receive or transmit the packet and update descriptor status. The Host Control
however, stop at the conclusion of that packet. If ContextControl.run is cleared for a non-isochronous context, the Ho
Controller may stop processing at any convenient point as long as the context and descriptors end up in a consis
(e.g., status updated if a packet was sent and acknowledged).

Clearing ContextControl.run may have other side effects that are DMA controller dependent. These effects are des
in the chapters that cover each of the DMA controllers.

When software clears ContextControl.run and the Host Controller has stopped, the Host Controller is not necessarily
state that can be restarted simply by setting ContextControl.run. Software should always ensure tha
CommandPtr.descriptorAddress and CommandPtr.Z are set to valid values before setting ContextControl.run.

3.1.1.2 ContextControl.wake

When software adds to a list of descriptors for a context, the Host Controller may have already read the descri
was at the end of the list before it was updated. The value that the Host Controller read may contain a Z value
indicating the end of the descriptor list. The ContextControl.wake bit provides a simple semaphore to the hardware
indicate that the list may be changed since the last time that Host Controller read a descriptor. Therefore, if t
Controller had fetched a descriptor and the indicated branch address had a Z value of zero, then the Host C
should reread the pointer value.

For transmit contexts, and receive contexts inbuffer-fill mode (a mode described later in which a context can rece
multiple packets into one data buffer), if the Z value is still zero, then the end of the list has been reached and
Controller should clear ContextControl.active. For receive contexts in buffer-fill mode, if the Z value is still zero on t
reread, then the packet cannot be accepted. For asynchronous contexts, the Host Controller will return the ap
ack_busy* code. In addition, the Host Controller will “back out” the packet by not updating the buffer’s byte
(resCount), and will flush the packet from the FIFO. The Host Controller will not go inactive, as there is still buffer
available, and it is expected that software is attempting to provide more buffer space.

For both transmit and receive contexts, if the Z value is now non-zero, the Host Controller will continue processin

In order to ensure that a wake condition is not missed, the Host Controller should clear ContextControl.wake before it
reads or rereads a descriptor.

ContextControl.wake is ignored when ContextControl.run is zero.

3.1.1.3 ContextControl.active

ContextControl.active is set and cleared only by the Host Controller. It is set when the Host Controller receiv
indication from software that a valid descriptor is available for processing. This indication will occur as a res
software setting the ContextControl.run or by software setting ContextControl.wake while ContextControl.run is set.
There are four cases in which the Host Controller will clear ContextControl.active: when a branch is indicated by a
Page 20 Copyright © 1996,1997 All rights reserved.

Common DMA Controller Features1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ost
ll clear

nt
mpleted

t event

ost

ost

gister
ule

ck.

ted to
lid.
 in
descriptor but the Z value of the branch address is 0; when software clears ContextControl.run and the Host Controller
has reached a safe stopping point; while ContextControl.dead is set; and after a hardware or software reset of the H
Controller. Additionally, for the asynchronous transmit contexts (request and response), the Host Controller wi
ContextControl.active when a bus reset occurs.

When ContextControl.active is cleared and ContextControl.run is already clear, the Host Controller will set the IntEve
bit for the context. This interrupt is the same interrupt that would have been generated by the context if a co
descriptor had indicated that an interrupt should be generated.

3.1.1.4 ContextControl.dead

ContextControl.dead is used to indicate a fatal error in processing a descriptor. When ContextControl.dead is set by the
Host Controller, ContextControl.active is immediately cleared but ContextControl.run remains set. In addition, setting
ContextControl.dead causes an unrecoverableError interrupt event (see Table 6-1) and blocks a normal contex
interrupt from being set.

ContextControl.dead is immediately cleared when software clears ContextControl.run or by either a hardware or software
reset of the Host Controller.

Software can determine the cause of a context going dead by checking the ContextControl.event code (table 3-2). The
defined reasons for the Host Controller to set ContextControl.dead are described in section 3.1.2.1 and section 13., “H
Bus Errors.”

3.1.2 CommandPtr register

Software initializes CommandPtr.descriptorAddress to contain the address of the first descriptor block that the H
Controller will access when software enables the context by setting ContextControl.run. Software also initializes
CommandPtr.Z to indicate the number of descriptors in the first descriptor block. Software shall only write to this re
when both ContextControl.run and ContextControl.active are zero. The Host Controller is not required to enforce this r
and its behavior when this rule is violated is undefined.

Figure 3-2 — CommandPtr register format

Table 3-3 — CommandPtr register description

Field rwu reset Description

descriptorAddress rwu undef Contains the upper 28 bits of the address of a 16-byte aligned descriptor blo
See section 3.1.2 for details.

Z rwu undef Indicates the number of contiguous 16-byte aligned blocks at the address poin
by descriptorAddress. If Z is 0, it indicates that the descriptorAddress is not va
Valid values for Z are context specific. Handling of invalid Z values is described
section 3.1.2.1.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

descriptorAddress [31:4] Z
Copyright © 1996,1997 All rights reserved. Page 21

Common DMA Controller Features1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

lines by
ntrol bits

d if

ich an

t,

t. This
Since the Host Controller utilizes the CommandPtr register while processing a context, there is a set of guide
which software may safely and deterministically read CommandPtr. These guidelines are based on the ContextCo
as follows (X=’don’t care’):

If ContextControl.run is set and ContextControl.dead is not set, then the contents of CommandPtr are only specifie
both ContextControl.active and ContextControl.wake are clear. In this instance, CommandPtr.descriptorAddress will
contain the address of a descriptor within the last descriptor block that was executed. If ContextControl.run and
ContextControl.dead are both set, then descriptorAddress points to a descriptor within the descriptor block in wh
unrecoverable error occurred.

Except for the case where software initializes CommandPtr, the value of CommandPtr.Z is undefined and Z may contain
a value that is implementation dependent.

The value of CommandPtr is undefined after a hardware or software reset of the Host Controller.

3.1.2.1 Bad Z Value

When software sets ContextControl.run to 1 and CommandPtr.Z contains an invalid value for the controller and contex
or if a Z value is invalid for a fetched descriptor block in a running context, the Host Controller:

• will set ContextControl.dead to 1
• will set ContextControl.event to evt_unknown and
• will not process any descriptors in that context.

3.2 List Management

All contexts use an identical method for controlling the processing of descriptors associated with the contex
presents a uniform interface to controlling software and allows reuse of hardware on the Host Controller.

Table 3-4 — CommandPtr read values

ContextControl fields

CommandPtr.descriptorAddress Valuerun dead active wake

0 0 0 X A descriptor block address. Either last
written or last executed

0 0 1 X Contents unspecified.

1 0 0 0
Refers to the descriptor block that contains
the Z=0 that caused the Host Controller to
set active to 0.

1 0 0 1 Contents unspecified.

1 0 1 0 Contents unspecified.

1 0 1 1 Contents unspecified.

1 1 0 X Points to the descriptor block in which a
fatal error occurred.
Page 22 Copyright © 1996,1997 All rights reserved.

Common DMA Controller Features1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

d

nked list
lue of the

st

re
i-

ller is
xt state as
criptor
ontext is
le while
3.2.1 Software Behavior

3.2.1.1 Context Initialization

Software initializes the context by first checking to see that ContextControl.run, ContextControl.active and
ContextControl.dead are all 0. Then, CommandPtr.descriptorAddress is written to point to a valid descriptor block an
CommandPtr.Z is set to a value that is consistent with the descriptor block. Then ContextControl.run can be set.

3.2.1.2 Appending to Running List

Software may append to a list of descriptors at any time. Software may append either a single descriptor or a li
of descriptors. When the to-be-appended list is properly formatted, software updates the branch address and Z va
descriptor that was at the end of the list being processed by the Host Controller.

When software completes linking process it must set ContextControl.wake for the context. This ensures that the Ho
Controller will resume operation if it had previously reached the end of the list and gone inactive.

3.2.1.3 Stopping a Context

Software can stop a running context by clearing ContextControl.run. The context might not stop immediately. To ensu
that the context has stopped, software must wait for ContextControl.active to be cleared by the Host Controller. This ind
cates that the Host Controller has completed all processing associated with the context.

3.2.2 Hardware Behavior

The Host Controller has several DMA controllers each of which has one or more contexts. Each DMA contro
expected to examine each of its contexts on a periodic basis and make operational decisions based on the conte
contained in ContextControl. The flow-chart for how a DMA controller uses the ContextControl state to govern des
processing is shown below. This process is executed once each time a context is ‘scheduled’. Scheduling of a c
dependent on the DMA controller. For example, an isochronous transmit context will be scheduled once per cyc
an asynchronous request transmit context will only be scheduled once per fairness interval.
Copyright © 1996,1997 All rights reserved. Page 23

Common DMA Controller Features1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97
.

Figure 3-3 — Flow Chart for Processing a DMA Context

get branch
addr***

no

yes

dead=0? set
active=0

run=1? no

yes

active=0? set
wake=0

process
descriptor

block**
Z>0?

set
active=0 done

no

yes

set cmd=
branch addr

done

yes

wake=1?
no done

yes

set
wake=0

Z>0? no done

set cmd=
branch addr

set
active=1

done

**fetches and processes the descriptor
block. yields the branch entry (addr+Z)

of the next cmd descriptor

***refetch last known cmd’s
branch entry

“ done” = wait until the next time the
context runs.

done

iso_context
?

yes

no

start

yes

set
active=0

done

no
Page 24 Copyright © 1996,1997 All rights reserved.

Common DMA Controller Features1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

e CSR

it are
s
er
ails on

those
 reset
led like
. When
ller and

chapter

it request
t system
s allows

a place
oes not
a split-

est can
ictable
always
eiving

ing the
n would
al reads)
ontroller
saction.
tion or it
st FIFO.
he Host

avior of
re. The

he FIFO
 example

quest
t value
t value.

he FIFO.
rements

s, the link
3.3 Asynchronous Receive

The Host Controller accepts 1394 transactions and groups them as follows:

1) physical requests - physical requests, including physical read, physical write and lock requests to som
registers (section 5.5), are handled directly by the Host Controller and are not made visible to system
software. DMA contexts and controllers that are used in a Host Controller for the physical request un
implementation specific. This specification places no limits on the physical response unit other than it
effective address range and the requirement that the Host Controller may not block processing of oth
transaction types while dealing with physical requests. Chapter 12., “Physical Requests,” provides det
which requests can be processed as physical.

2) self-ID packets - PHY packets with the selfID format can be received at any time. However, only
packets that are received during the selfID phase of bus initialization which immediately follows a bus
are considered to be selfID packets. Others are considered simply to be PHY packets which are hand
asynchronous requests. The Host Controller can be programmed to accept or ignore selfID packets
selfID packets are accepted, they are stored in a special memory buffer which has a dedicated contro
context. Because of this special memory buffer, selfID packets can never get ‘stuck’ in a FIFO. See
11., “Self ID Receive,” for more information.

3) asynchronous responses - when the host system initiates a request through the asynchronous transm
context, the response will be handled by the asynchronous receive response context. The fact that hos
software initiates the process and the fact that the Host Controller has a separate context for response
system software to budget for all responses which ensures that the Host Controller will always have
in system memory to store a response when it arrives. In the unlikely event that the Host Controller d
have a place for the response it is allowed to drop the response when it arrives. This will cause
transaction timeout which is an error condition with which the software is already able to deal.

4) asynchronous requests - a request may arrive at the Host Controller at any time. Additionally, a requ
be of any size up to the limits imposed by the max_rec field in the Bus_Info_Block. Due to the unpred
nature of this transaction type, it is impractical for the system software to ensure that there is
sufficient buffer space defined in the asynchronous request receive buffers. If the FIFO which is rec
requests becomes full, all subsequent requests will be busied until there is room to receive them.

3.3.1 FIFO Implementation

The limitations and requirements for handling each of the transaction types suggest some ways of simplify
hardware implementation so that a FIFO is not needed for each of the input transaction types. One simplificatio
be to place asynchronous requests into a first FIFO and then send all other transaction types (except for physic
through a second FIFO. This two FIFO scheme provides the necessary non-blocking behavior because the Host C
will always be able to remove transactions from the second FIFO whether or not buffer space exists for the tran
The selfID, isochronous and asynchronous response transactions will either have a buffer defined for the transac
is permissible to discard the transaction if no buffer exists to receive it. This leaves requests to be sent to the fir
When that FIFO fills, additional requests will receive ack_busy until system software makes space available to t
Controller by adding descriptors to the context.

There is an alternative implementation which is to use a single physical FIFO but ensure that it provides the beh
the multiple FIFO’s. This is a bit more complex than the dual FIFO case but may result in a net savings in hardwa
issue with using a single physical FIFO for all incoming transactions is to make sure that no request is placed in t
unless there is a place for it in system memory. There are several way of accomplishing this with one given as an
here.

On the link side of the input FIFO a counter is maintained. This counter is initialized to 0 when, for the AR DMA re
context, ContextControl.run is not set. When the system side of the FIFO reads a request descriptor, the reqCoun
from the descriptor is passed to the link side of the FIFO. The link side then adds this value to the current coun
When the count value on the link side is greater than zero, the link can accept request data and place it into t
After each request quadlet is placed in the FIFO, other than those for a physical write request, the link side dec
the counter. When the counter reaches 1, the link checks to see if the end of packet has been reached. If it ha
Copyright © 1996,1997 All rights reserved. Page 25

Common DMA Controller Features1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ached, the
 returns
ailable by

riptor is
have a

 will not

stem side
when the

ust be
er packets
entation
As each

ecks the
k side of

unts are
llow for
 32,766
cept the
level of

ion is
er read

e FIFO
R DMA

s destined
actions
 physical

omplete
Physical

hen not
0000 to
uses the last entry for the footer value (cycleCount, speed and ackSent.) If the end of the packet has not been re
link places an error value in the last quadlet to indicate that the packet was not totally received and then the link
an ack_busy to the requestor. The system side of the fifo can indicate that additional space has been made av
writing a new value to the link side. The link side will add these values to the current count value.

The system side of the FIFO will send count values to the link side on two occasions. The first is when a desc
initially fetched and the reqCount in the descriptor is sent to the link side. It is required that the Host Controller
look ahead of at least one descriptor (current plus next). If the Host Controller does not look ahead, the link side
be able to accept packets that cross descriptor boundaries.

The second instance when the system side of the input FIFO sends a count value to the link side is when the sy
sees a packet that has an error. Packets that contain errors (e.g., CRC) are always 'backed out' of the buffer
context is in buffer fill mode. The AR DMA request context can only be in buffer fill mode so all bad packets m
'backed out'. When a packet is backed out, the space that was allocated for that packet is made available for oth
and the link side of the FIFO must be informed of the amount of data that has been backed out. A simple implem
of this is to maintain a counter on the system side of the FIFO that is reset at the beginning of each packet.
quadlet is removed from the FIFO, the counter is incremented. At the end of the packet, the Host Controller ch
error code. If it indicates that there was an error, and the packet was a request, the count value is sent to the lin
the FIFO to indicate the amount of space that has been 'reclaimed'.

The reqCount field in a descriptor may indicate a size as large as 65,532 bytes (16,383 quadlets.) If quadlet co
maintained this means that 14 bits are required to indicate the maximum number of quadlets (14’h3FFF). To a
look ahead, the link side counter should be able to hold a value equal to two maximum sized buffers which is
(15’h7FFE) quadlets or 15 bits. Since the system software is required to allocate buffers that are sized to ac
maximum sized packet (as described in max_rec of the Bus_Info_Block) the Host Controller need only do one
look ahead on the buffer descriptors to make sure that the maximum sized packet can be accepted.

3.3.1.1 Unrecoverable Error

If an unrecoverable error occurs when the Host Controller is writing to the AR DMA request buffer, a fail indicat
sent to the link side of the FIFO. This indicates that the link side should set its count to zero which will busy furth
requests and write requests that are destined for the AR DMA request buffer.

If the AR DMA request context has an unrecoverable error, the system side of the FIFO will continue to unload th
even though the AR DMA request context is dead. All asynchronous requests that would have been sent to the A
request queue shall be dropped and no responses for them shall be sent to the initiating node. Dropping request
for the AR DMA request queue is acceptable because i) AR DMA read requests are always split trans
(ack_pended), ii) write requests within the physical range have been ack_pended and iii) write requests above the
range which have been posted (ack_completed) are by definition permitted to fail.

3.3.2 Ack Codes for Write Requests

For write requests that will be handled by the Physical Request controller, the Host Controller may send an ack_c
before the data is actually written to system memory. For a full description of which requests are candidates for
Requests, refer to Chapter 12.

The ack_code sent for write requests to offsets in the range of PhysicalUpperBound to 48’hFFFE_FFFF_FFFF w
busied is always ack_complete. The ack_code sent for requests to offsets in the range 48’hFFFF_0000_
48’hFFFF_FFFF_FFFF and for block requests with a non-zero extended tcode is always ack_pending.
Page 26 Copyright © 1996,1997 All rights reserved.

Common DMA Controller Features1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

address
erate an
ferred to

rts the
ction 5.7).
lete or

te to a

orting
or each

bit offset
r must

y return

sted

tocol

ntents or

e side-

Request

) shall not

are and
ling of

 must be

nd may
are and
3.3.3 Posted Writes

As described above, a write request that will be handled by the Physical Request controller or which is in the
range PhysicalUpperBound to 48’hFFFE_FFFF_FFFF to be handled by the Asynchronous Request Unit, may gen
ack_complete before the data is actually written to the designated system memory location. These writes are re
asposted writes.

Write requests to the physical memory range of the host may be posted if the host controller suppo
PostedWriteAddressLo/Hi error registers (see section 13.2.8.1) and software has enabled posted writes (see se
If posting is not enabled/supported, the Host Controller must not return a complete indication (ack_comp
resp_complete) until the data has been successfully written to the addressed location in physical memory.

If posting of physical writes is supported and enabled, then the Host Controller is allowed to return ack_comple
physical write request with certain restrictions.

• A Host Controller implementation is allowed to support any number of posted writes. However, for error rep
purposes a posted write is considered pending until the write is actually completed to the offset address. F
pending posted write, there must be an error reporting register to hold the request’s source node ID and 48-
address should that posted write fail. If the maximum allowed posted writes are pending, the Host Controlle
return either ack_pending or ack_busy* for subsequent posted write request candidates and shall onl
resp_complete when those writes have actually been performed.

• Read and write requests within the Asynchronous Request FIFOshall not passany posted writes, whether posted in
the Physicalor Asynchronous Request FIFO’s.

• Within the Physical Request FIFO, read requestsmay coherently pass posted writes, but writes requests and po
writes shall not pass other writes posted in the Physical Request FIFO. Physical read and write requestsmay pass
writes posted to the Asynchronous Request FIFO.

In conjunction with the ordering rules set forth above for Host Controller implementations, the following pro
restrictions must be adhered to so that proper ordering and therefore data integrity is maintained. The termvisible side-
effectis used to mean an indirect action caused by a request or response which results in the alteration of the co
usage of host memory outside the address scope of the request or response.

• Write requests within the range PhysicalUpperBound to 48’hFFFE_FFFF_FFFF shall not have 1394 visibl
effects.

• Read or write requests within the range 48’h0 to PhysicalUpperBound-1, whether handled by the Physical
controller or not, shall not have 1394 visible side-effects.

• Read requests to CSR addresses which are processed autonomously by the Host Controller (see section 5.5
have 1394 visible side-effects

If an error occurs in writing the posted data packet, then the Host Controller sets an interrupt event to notify softw
provides information about the failed write in an error reporting register. For more information about error hand
posted writes, refer to section 13.2.8.

3.3.4 Retries

For asynchronous receive, it is recommended that the Host Controller support dual-phase retry for packets that
busied.

For asynchronous transmit, Host Controller implementations must support the single-phase retry protocol a
optionally support the dual-phase retry protocol. The implemented retry mechanism shall be managed by hardw
invisible to software. Refer to section 7.4 and table 7-12 for details.
Copyright © 1996,1997 All rights reserved. Page 27

Common DMA Controller Features1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

 types.
in the

llow any

EE 1394

A

(

,

,

A

(

,

,

(

(

(

3.4 DMA Summary

The following chapters provide details about Open HCI registers and interrupts, and about all the supported DMA
The table below is a summary of DMA information for reference purposes. Each DMA type is fully described
indicated chapter.

E* - this includes packets considered to be PHY packets and the synthesized phy (bus_reset) packet.

For transmit, software may use the tcodes as specified in the table above. The Host Controller hardware shall a
IEEE 1394-1995 tcode to be transmitted by any asynchronous transmit context.

For receive, the Host Controller shall only receive packets which have tcodes that are defined by an approved IE
standard. Packets with undefined tcodes shall be dropped.

Table 3-5 — DMA Summary

DMA Contexts
Per Context

Registers
Per Context
Interrupts Receive mode DMA commands Z

tcodes
(4’hx)

synchronous
Transmit

section 7.0)
1 Request ContextControl

CommandPtr
reqTxComplete OUTPUT_MORE

OUTPUT_MORE-Immediate
OUTPUT_LAST
OUTPUT_LAST-Immediate

2-8

0, 1, 4
5, 9,
A,E

1 ResponseContextControl
CommandPtr

respTxComplete 2, 6, 7
B

synchronous
Receive

section 8.0)

1 Request ContextControl
CommandPtr

ARRQ
RQPkt buffer-fill INPUT_MORE 1

0, 1, 4
5, 9, E*

1 ResponseContextControl
CommandPtr

ARRS
RSPkt

2, 6, 7
B

Isochronous
Transmit

section 9.0) 4-32 ContextControl
CommandPtr

isochTx
isoXmitIntEventn
isoXmitIntMaskn

OUTPUT_MORE
OUTPUT_MORE-Immediate
OUTPUT_LAST
OUTPUT_LAST-Immediate
STORE_VALUE

1-8 A

Isochronous
Receive

section 10.0) 4-32
ContextControl
CommandPtr
ContextMatch

isochRx
isoRecvIntEventn
isoRecvIntMaskn

packet-per-bufferINPUT_MORE
INPUT_LAST

1-8
A

buffer-fill INPUT_MORE 1

Self-ID
section 11.0)

1 SelfIDBuffer
SelfIDCount

SelfIDComplete buffer-fill N/A
Page 28 Copyright © 1996,1997 All rights reserved.

Register addressing 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

 registers,
cessed
es of the
s are unde-
ries.

sults.

and

s. The
d to the
4. Register addressing

The 1394 Open HCI’s registers occupy a 2048 byte address space. This 2048 byte space is allocated to control
common DMA controller registers and individual DMA context registers as indicated below. Registers shall be ac
as 32-bit entities; 8-bit or 16-bit access to Host Controller registers is not supported. Writes to reserved address
1394 Open HCI address space may have unexpected results and are disallowed. Reads of reserved addresse
fined. Host processors may only access Host Controller registers with quadlet reads or writes on quadlet bounda

Host Controller registers which are written through physical access to the Host Controller will yield unspecified re

When HCControl.LPS is 0, the only accessible registers are Version, VendorID, HCControl, GUID_ROM, GUIDHi
GUIDLo. Access to all other registers is undefined until HCControl.LPS is set to 1.

All addresses within this 2K address space are reserved for OpenHCI and not for vendor defined registers.

Annex A. describes how this memory space is accessed from PCI.

4.1 DMA Context Number Assignments

The 1394 Open HCI contains up to 68 DMA contexts, 4 for asynchronous and from 8 up to 64 for isochronou
controller number assignments for asynchronous DMA are illustrated below. Note that these numbers correspon
“cc” DMA controller select values in the table above.

For the isochronous transmit contexts,t_tttt represents IT contexts numbered 0-31.
For the isochronous receive contexts,vv_vvv represents IR contexts numbered 0-31.

Table 4-1 — 1394 Open HCI register space map

Offset (binary) Space

00R_RRRR_RR00
(11’h000 to 11’h17C)

control register space

R_RRRR_RR selects register

001_1ccR_RR00
(11’h180 to 11’h1FC)

Asynchronous DMA context register space

cc = 2’h0-2’h3 selects DMA context
R_RR selects DMA context register

01t_tttt_RR00
(11’h200 to 11’h3FC)

Isochronous Transmit DMA context register space

t_tttt = 5’h00-5’h1F selects IT DMA context
RR selects DMA context register

1vv_vvvR_RR00
(11’h400 to 11’7FC)

Isochronous Receive DMA context register space

vv_vvv = 5’h00-5’h1F selects IR DMA context
R_RR selects DMA context register

Table 4-2 — Asynchronous DMA Context number assignments

DMA Context
Number Context Name

2’h0 Asynchronous Transmit Request

2’h1 Asynchronous Transmit Response

2’h2 Asynchronous Request Receive

2’h3 Asynchronous Response Receive
Copyright © 1996,1997 All rights reserved. Page 29

Register addressing 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97
4.2 Register Map

Table 4-3 — Register addresses (Sheet 1 of 4)

Offset DMA Context Read value Write value See clause

11’h000 Version - 5.2

11’h004 GUID_ROM GUID_ROM 5.3

11’h008 ATRetries ATRetries 5.4

11’h00C CSRReadData CSRWriteData 5.5.1

11’h010 CSRCompareData CSRCompareData 5.5.1

11’h014 CSRControl CSRControl 5.5.1

11’h018 ConfigROMhdr ConfigROMhdr 5.5.2

11’h01C BusID - 5.5.3

11’h020 BusOptions BusOptions 5.5.4

11’h024 GUIDHi GUIDHi 5.5.5

11’h028 GUIDLo GUIDLo 5.5.5

11’h02C Reserved Reserved

11’h030 Reserved Reserved

11’h034 ConfigROMmap ConfigROMmap 5.5.6

11’h038 PostedWriteAddressLo PostedWriteAddressLo 13.2.8.1

11’h03C PostedWriteAddressHi PostedWriteAddressHi

11’h040 Vendor ID - 5.6

11’h044 -
11’h04C

Reserved Reserved

11’h050 HCControl HCControlSet 5.7

11’h054 HCControlClear 5.7

11’h058 -
11’h05C

Reserved Reserved

11’h060 Self ID Reserved Reserved

11’h064 SelfIDBuffer SelfIDBuffer 11.1

11’h068 SelfIDCount 11.2

11’h06C Reserved Reserved

11’h070 IRMultiChanMaskHi IRMultiChanMaskHiSet 10.4.1.1

11’h074 IRMultiChanMaskHiClear

11’h078 IRMultiChanMaskLo IRMultiChanMaskLoSet

11’h07C IRMultiChanMaskLoClear
Page 30 Copyright © 1996,1997 All rights reserved.

Register addressing 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97
11’h080 IntEvent IntEventSet 6.1

11’h084 (IntEvent & IntMask) IntEventClear

11’h088 IntMask IntMaskSet 6.2

11’h08C IntMaskClear

11’h090 IsoXmitIntEvent IsoXmitIntEventSet 6.3.1

11’h094 (IsoXmitIntEvent &
IsoXmitIntMask)

IsoXmitIntEventClear

11’h098 IsoXmitIntMask IsoXmitIntMaskSet 6.3.2

11’h09C IsoXmitIntMaskClear

11’h0A0 IsoRecvIntEvent IsoRecvIntEventSet 6.4.1

11’h0A4 (IsoRecvIntEvent &
IsoRecvIntMask)

IsoRecvIntEventClear

11’h0A8 IsoRecvIntMask IsoRecvIntMaskSet 6.4.2

11’h0AC IsoRecvIntMaskClear

11’h0B0-
11’h0D8

Reserved Reserved

11’h0DC Fairness Control Fairness Control 5.8

11’h0E0 LinkControl LinkControlSet 5.9

11’h0E4 LinkControlClear

11’h0E8 Node ID Node ID 5.10

11’h0EC Phy Control Phy Control 5.11

11’h0F0 Isochronous Cycle Timer Isochronous Cycle Timer 5.12

11’h0F4-
11’h0FC

Reserved Reserved

11’h100 AsynchronousRequestFilterHi AsynchronousRequestFilterHiSet 5.13.1

11’h104 AsynchronousRequestFilterHiClear

11’h108 AsynchronousRequestFilterLo AsynchronousRequestFilterLoSet

11’h10C AsynchronousRequestFilterLoClear

11’h110 PhysicalRequestFilterHi PhysicalRequestFilterHiSet 5.13.2

11’h114 PhysicalRequestFilterHiClear

11’h118 PhysicalRequestFilterLo PhysicalRequestFilterLoSet

11’h11C PhysicalRequestFilterLoClear

11’h120 PhysicalUpperBound PhysicalUpperBound 5.14

11’h124-
11’h17C

Reserved Reserved

11’h180 Async request
transmit

ContextControl ContextControlSet 3.1, 7.2.2

11’h184 ContextControlClear

11’h188 Reserved Reserved

11’h18C CommandPtr CommandPtr 3.1.2, 7.2.1

Table 4-3 — Register addresses (Sheet 2 of 4)

Offset DMA Context Read value Write value See clause
Copyright © 1996,1997 All rights reserved. Page 31

Register addressing 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97
11’h190-
11’h19C

Reserved Reserved

11’h1A0 Async response
transmit

ContextControl ContextControlSet 3.1, 7.2.2

11’h1A4 ContextControlClear

11’h1A8 Reserved Reserved

11’h1AC CommandPtr CommandPtr 3.1.2, 7.2.1

11’h1B0-
11’h1BF

Reserved Reserved

11’h1C0 Async request
receive

ContextControl ContextControlSet 3.1, 8.3.2

11’h1C4 ContextControlClear

11’h1C8 Reserved Reserved

11’h1CC CommandPtr CommandPtr 3.1.2, 8.3.1

11’h1D0-
11’h1DF

Reserved Reserved

11’h1E0 Async response
receive

ContextControl ContextControlSet 3.1, 8.3.2

11’h1E4 ContextControlClear

11’h1E8 Reserved Reserved

11’h1EC CommandPtr CommandPtr 3.1.2, 8.3.1

11’h1F0-
11’h1FF

Reserved Reserved

11’h200 +
16*n

Isoch transmit n,
where “n” = 0 for
context 0, 1 for
context 1, etc...

ContextControl ContextControlSet 3.1, 9.2.2

11’h204+
16*n

ContextControlClear

11’h208+
16*n

Reserved Reserved

11’h20C +
16*n

CommandPtr CommandPtr 3.1.2, 9.2.1

Table 4-3 — Register addresses (Sheet 3 of 4)

Offset DMA Context Read value Write value See clause
Page 32 Copyright © 1996,1997 All rights reserved.

Register addressing 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97
11’h400 +
32*n

Isoch Receive n,
where “n” = 0 for
context 0, 1 for
context 1, etc.

ContextControl ContextControlSet 3.1, 10.3.2

11’h404 +
32*n

ContextControlClear

11’h408 +
32*n

Reserved Reserved

11’h40C +
32*n

CommandPtr CommandPtr 3.1.2, 10.3.1

11’h410+
32*n

ContextMatch ContextMatch 10.3.3

11’h414+
32*n

Reserved Reserved

11’h418+
32*n

Reserved Reserved

11’h41C+
32*n

Reserved Reserved

Table 4-3 — Register addresses (Sheet 4 of 4)

Offset DMA Context Read value Write value See clause
Copyright © 1996,1997 All rights reserved. Page 33

Register addressing 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97
Page 34 Copyright © 1996,1997 All rights reserved.

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

dicated

xpected

n

f

5. 1394 Open HCI Registers

5.1 Register Conventions

Unless otherwise specified, all register fields will initialize as zeros. For software, reads of reserved locations (in
by a hatched or grayed-out pattern) yield undefined results.

Similarly, unless otherwise specified, all fields will remain unchanged after a 1394 bus reset.

Refer to Section 2.1.2 for an explanation of register notation.

5.2 Version Register

This register contains a 32 bit value which indicates the version and capabilities of the interface. The register is e
to be used to indicate the level of functionality present in the 1394 Open HCI. This register is read only.

Figure 5-1 — Version register

Table 5-1 — Version register fields

field name rwu reset description

GUID_ROM r N/A The third and fourth quadlets of the bus_info_block will be automatically
loaded on hardware reset.

version r N/A Major version of the Open HCI. This field contains the bcd encoded value
representing the major version of the highest numbered 1394 OpenHCI
specification with which this controller is compliant. For example, a Host
Controller implemented to this specification (Release 1.00) will have a versio
value of 8’h01 and a Host Controller implemented to version 2.25 of this
specification will have a value of 8’h02.

revision r N/A Minor version of the Open HCI. This field contains the BCD encoded value
representing the minor version of the highest numbered 1394 OpenHCI
specification with which this controller is compliant. For example, a Host
Controller implemented to this specification (Release 1.00) will have a
revision value of 8’h00 and a Host Controller implemented to version 2.25 o
this specification will have a value of 8’h25.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

version

GUID_ROM

revision
Copyright © 1996,1997 All rights reserved. Page 35

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

t

s DMA
a “busy”
 FIFO

n the
ting

ion
d,
yte.
5.3 GUID ROM register (optional)

The GUID ROM register is used to access the GUID ROM, and is only present if the Version.GUID_ROM bit is set.

To initialize the GUID ROM read address, software sets GUIDROM.addrReset to one. Once software detects tha
GUIDROM.addrReset is zero, indicating that the reset has completed, then software may set GUIDROM.rdStart to read a
byte. Upon the completion of each read, the Host Controller places the read byte into GUIDROM.rdData, advances the
GUID ROM address by one byte to set up for the next read, and clears GUIDROM.rdStart to 0 to indicate to software that
the requested byte has been read.

5.4 ATRetries Register

The AT retries register holds the number of times the 1394 Open HCI will attempt to do a retry for asynchronou
request transmit and for asynchronous physical and DMA response transmit. A packet may only be retried when
acknowledge or ack_data_error is received from the target node, including ack_data_error’s resulting from
underflows. A packet shall not be retried under any other circumstance, including receipt of evt_missing_ack.

Figure 5-2 — GUID ROM register

Table 5-2 — GUID ROM register fields

field name rwu reset description

addrReset rsu 1’b0 Software sets this bit to one to reset the GUID ROM address to zero. Whe
Host Controller completes the reset, it clears addrReset to zero. Upon reset
the GUID ROM address, the host controller doesnot automatically fill rdData
with the data from byte address 0.

rdStart rsu 1’b0 A read of the currently addressed GUID ROM byte is started on the transit
of this bit from a zero to a one. When the Host Controller completes the rea
it clears rdStart to zero and advances the GUID ROM byte address by one b

rdData ru undef The data read from the GUID ROM.

Figure 5-3 — ATRetries register

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

addrReset
rdStart

rdData

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

{ {

maxATRespRetries

maxATReqRetries

cycleLimit

{

maxPhysRespRetries

{

secondLimit
Page 36 Copyright © 1996,1997 All rights reserved.

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

scribed in

wap bus
ess to the
utomati-

the

any
te

the

 Unit

w

The Host Controller is required to pace the retries of both requests and responses using fairness intervals as de
P1394A and 1394-1995.

The interrelationship between retries and packet transmission is as follows:

• Retried requests shall not block responses.
• Retried requests may block other requests.
• Retried responses should not block requests.
• Retried AT DMA responses shall not block physical responses.
• Retried AT DMA and physical responses may block AT DMA responses.
• Retried physical responses may block other physical responses.

5.5 Autonomous CSR Resources

The 1394 Open HCI implements a number of autonomous CSR resources. In particular the 1394 compare-s
management registers are implemented in hardware, as is the config ROM header, the bus_info_block and acc
first 1K bytes of the configuration ROM. The DMA units handle external 1394 bus requests to these resources a
cally, and the following registers manage this function for the local host

Table 5-3 — ATRetries register fields

field name rwu reset description

secondLimit

ru
or
rwu

3’h0

Together the secondLimit and cycleLimit fields define a time limit for retry
attempts when the outbound dual-phase retry protocol is in use. The
secondLimit field represents a count in seconds modulo 8, and cycleLimit
represents a count in cycles modulo 8000.
If the retry time expires for a physical response, the packet is discarded by
Host Controller. Software isnot notified.
If outbound dual-phase retry isnot implemented, both fields shall be read-only
and shall read as 16’h0.
If outbound dual-phase retryis implemented, both fields shall be read/write,
and a value of 0 written to both fields shall disable dual phase retry.

cycleLimit 13’h0

maxPhysRespRetries rw undef The maxPhysRespRetries field tells the Physical Response Unit how m
times to attempt to retry the transmit operation for the response packet. No
that this value is used only for responses tophysical requests.
If the retry count expires for a physical response, the packet is discarded by
Host Controller. Software isnot notified.

maxATRespRetries rw undef The maxATRespRetries field tells the Asynchronous Transmit Response
how many times to attempt to retry the transmit operation for a software
transmitted (non-physical) asynchronous response packet.

maxATReqRetries rw undef The maxATRetries field tells the Asynchronous Transmit Request Unit ho
many times to attempt to retry the transmit operation for an asynchronous
request packet.
Copyright © 1996,1997 All rights reserved. Page 37

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

dlet lock"
urce regis-
ither the

 transaction
nerated
5.5.1 Bus Management CSR Registers

1394 requires certain 1394 bus management resource registers be accessible only via "quadlet read” and “qua
(compare-and-swap) transactions, otherwise ack_type_error shall be sent. These special bus management reso
ters are implemented internal to the 1394 Open Host Controller to allow atomic compare-and-swap access from e
host system or from the 1394 bus.

When these bus management resource registers are accessed from the 1394 bus, the atomic compare-and-swap
is autonomous, without software intervention. If ack_complete is not received to end the transaction for the ge
lock response, IntEvent.lockRespErr (table 6-1) shall be triggered.

To access these bus management resource registers from the host, the following registers are used.

Table 5-4 — Serial Bus Registers

CSR address csrSel description
1394-1995
Section #

reset
(hardware reset or

bus reset)

48'hFFFF_F000_021C 2’h0 BUS_MANAGER_ID 8.3.2.3.6 6’h3F

48'hFFFF_F000_0220 2’h1 BANDWIDTH_AVAILABLE 8.3.2.3.7 13’h1333
(’d4915)

48'hFFFF_F000_0224 2’h2 CHANNELS_AVAILABLE_HI 8.3.2.3.8 32’hFFFF_FFFF

48'hFFFF_F000_0228 2’h3 CHANNELS_AVAILABLE_LO 8.3.2.3.8 32’hFFFF_FFFF

Figure 5-4 — CSR data register

Figure 5-5 — CSR compare register

Figure 5-6 — CSR control register

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

csrData

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

csrCompare

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

csrDone

csrSel
Page 38 Copyright © 1996,1997 All rights reserved.

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

 new data
. Finally,
iates a
lete, the
rce prior

e used to

n ROM
 IEEE

.

hen-
To access these bus management resource registers from the host bus, first load the CSRData register with the
value to be loaded into the appropriate resource. Then load the CSRCompare register with the expected value
write the CSRControl register with the selector value of the resource. A write to the CSRControl register init
compare-and-swap operation on the selected resource. When the compare-and-swap operation is comp
CSRControl register csrDone bit will be set, and the CSRData register will contain the value of the selected resou
to the host initiated compare-and-swap operation.

Note that an arbitrary update of these resources cannot be done. Only compare-and-swap operations can b
modify the contents of these internal resource registers.

5.5.2 Config ROM header

The config ROM header register is a 32-bit number that externally maps to the 1st quadlet of the 1394 configuratio
(offset 48’hFFFF_F000_0400). This register is written locally at the following register (the field names match the
1394 names):

For a clarification of the meaning of Config ROM versus GUID ROM versus PCI Expansion ROM, see section 2.2

Table 5-5 — CSR registers’ fields

field name rwu reset description

csrData rwu undef At start of operation, the data to be stored if the compare is successful.

csrCompare rw undef The data to be compared with the existing value of the CSR resource.

csrDone ru 1’b1 This bit is set when a compare-swap operation is completed. It is reset w
ever this register is written.

csrSel rw undef This field selects the CSR resource:

2’h0 - BUS_MANAGER_ID
2’h1 - BANDWIDTH_AVAILABLE
2’h2 - CHANNELS_AVAILABLE_HI
2’h3 - CHANNELS_AVAILABLE_LO

Figure 5-7 — Config ROM header register

Table 5-6 — Config ROM header register fields

field name rwu
hard
reset

soft
reset description

info_length rwu 8’h0 N/A IEEE 1394 bus management field. Must be valid at any time the
HCControl.linkEnable bit is set.

crc_length rwu 8’h0 N/A IEEE 1394 bus management field. Must be valid at any time the
HCControl.linkEnable bit is set.

rom_crc_value rwu 16’h0 N/A IEEE 1394 bus management field. Must be valid at any time the
HCControl.linkEnable bit is set.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

crc_length rom_crc_valueinfo_length
Copyright © 1996,1997 All rights reserved. Page 39

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

k. This

register

ny

nd

e

5.5.3 Bus identification register

The bus identification register is a 32-bit number that externally maps to the first quadlet of the Bus_Info_Bloc
register is read locally at the following register:

5.5.4 Bus options register

The bus options register is a 32-bit number that externally maps to the 2nd quadlet of the Bus_Info_Block. This
is written locally at the following register (the field names match the IEEE 1394 names):

Figure 5-8 — Bus ID register

Table 5-7 — Bus ID register fields

field name rwu reset description

busID r N/A Contains the constant 32’h31333934, which is the ASCII value for “1394”.

Figure 5-9 — Bus options register

Table 5-8 — Bus options register fields

field name rwu reset description

irmc, cmc, isc, bmc, pmc,
cyc_clk_acc

rw undef IEEE 1394 bus management fields. Must be valid at any time the
HCControl.linkEnable bit is set.

max_rec rw ** IEEE 1394 bus management field. Hardware shall initialize max_rec to the
maximum value supported by the implementation which shall be 512 or
greater. Software may change max_rec, however this field must be valid at a
time the HCControl.linkEnable bit is set to 1. Note that received block write
request packets with a length greater than max_rec shall generate an
ack_type_error if the request is not handled by the physical response unit, a
may generate an ack_type_error otherwise (see table 1-2).

** Reset values: For a hardware reset, max_rec is set to the maximum valu
supported by the implementation, 512 or greater. For a soft reset,max_rec is
not changed.

g rw undef Generation counter. This field shall be incremented if any portion of
configuration ROM has changed since the prior bus reset.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

busID

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

cyc_clk_acc max_rec

bmc
isc

cmc
irmc

pmc

r g link_spdrr
Page 40 Copyright © 1996,1997 All rights reserved.

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

f the
 1394

 illegal
fter host

et

m

eed.

re
5.5.5 Global Unique ID

The global unique ID (GUID) is a 64-bit number that externally maps to the third and fourth quadlets o
Bus_Info_Block. These registers are written locally at the following registers (the field names match the IEEE
names):

**The Global Unique ID (GUID) Registers are reset to 0 after a host power (hardware) reset. A value of 0 is an
value. These registers are not affected by a software reset. These GUID registers shall be written only once a
power reset, by either

1) an autonomous load operation from a local,un-modifiable resource (i.e., local GUID ROM or local parallel
ROM) performed by the 1394 OHCI hardware, or

2) a single host write to each register performedonly by firmware that is always executed on a hardware res
which affects the Host Controller. This firmware, as well as the GUID value that is loaded,may not be
modifiable by any user action.

After one of these load mechanisms has executed, the GUID registers areread-only.

link_spd rwu
or

ru

** Link speed.

**On a hardware reset, link_spd is set by the Host Controller to the maximu
speed the link can send and receive. The Host Controller shall support the
maximum size asynchronous and isochronous packets for the reported sp
If implemented as read/write, software is permitted to change link_spd to a
lower value, which shall cause the link to reject packets arriving at higher
speeds. Link_spd may also be implemented as read-only.

**On a software reset, the value of link_spd is undefined.

bits 3-5, 8-11 and 24-26 rw undef Currently reserved in 1394-1995.

Figure 5-10 — GlobalUniqueIDHi register

Figure 5-11 — GlobalUniqueIDLo register

Table 5-9 — GlobalUniqueID register fields

field name rwu reset description

node_vendor_ID,
chip_ID_hi, chip_ID_lo

rw **see
comments

IEEE 1394 bus management fields. Must be set by firmware or hardwa
before the HCControl.linkEnable bit is set.

Table 5-8 — Bus options register fields

field name rwu reset description

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

node_vendor_ID chip_ID_hi

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

chip_ID_lo
Copyright © 1996,1997 All rights reserved. Page 41

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

the start
n ROM
ince the
must start
g ROM

 sections
r are not

et

dor
4
0.
5.5.6 Configuration ROM mapping register

The configuration ROM mapping register contains the start address within system bus space that will map to
address of the 1394 configuration ROM for this node. Only quadlet reads to the first 1K bytes of the configuratio
will map to system bus space, all other transactions to this space will be rejected with a 1394 “ack_type_error”. S
low order 10 bits of this address are reserved and assumed to be zero, the system address for the config ROM
on a 1K byte boundary. Note that the first five quadlets of the 1394 config ROM space are mapped to the confi
header and the bus_info_block, and so are handled directly by the 1394 Open Host Controller as described in
5.5.2, 5.5.3, 5.5.4 and 5.5.5. This means that the first five quadlets addressed by the config ROM mapping registe
used.

Software should ensure this address is valid before setting HCControl.linkEnable to one.

5.6 Vendor ID register

The vendor ID register holds the company ID of an organization that specified any vendor-unique registers.

To obtain a company ID (also known as an Organizationally Unique Identifier, OUI), contact:

Figure 5-12 — Configuration ROM mapping register

Table 5-10 — Configuration ROM mapping register fields

field name rwu reset description

configROMaddr rw undef If a quadlet read request to 1394 offset 48’hFFFF_F000_0400 through offs
48’FFFF_F000_07FF is received, then the low order 10 bits of the offset are
added to this register to determine the host memory address of the returned
quadlet.

Figure 5-13 — VendorID register

Table 5-11 — VendorID register fields

field name rwu reset description

vendorCompanyID r N/A The company ID of the organization that specified the particular set of ven
unique registers and behaviors of this particular implementation of the 139
Open HCI. If no additional features are implemented, this field shall be 24’h

vendorUnique r N/A Vendor defined.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

configROMaddr

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

vendorCompanyIDvendorUnique
Page 42 Copyright © 1996,1997 All rights reserved.

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

,
through
ity for

trolSet
ddresses
r to be

it written
e corre-
Registration Authority Committee
The Institute of Electrical and Electronic Engineers, Inc.
445 Hoes Lane
Piscataway, NJ 08855-1331
USA
(908) 562-3812

Your company need not obtain a company ID if it has been previously assigned an IEEE48-bit Globally Assigned
Address Block or an IEEE-assignedOrganizationally Unique Identifier (OUI) for use in network applications. However
be aware that the (left through right) order of the bits within the company ID value is not the same as the (first
last) network-transmission order of the bits within these other identifiers. Consult the IEEE Registration Author
clarifying documentation.

5.7 HCControl registers (set and clear)

This register provides flags for controlling the Host Controller. There are two addresses for this register: HCCon
and HCControlClear. On read, both addresses return the contents of the control register. For writes, the two a
have different behavior: a one bit written to HCControlSet causes the corresponding bit in the HCControl registe
set, while a zero bit leaves the corresponding bit in the HCControl register unaffected. On the other hand, a one b
to HCControlClear causes the corresponding bit in the HCControl register to be cleared, while a zero bit leaves th
sponding bit in the HCControl register unaffected.

Figure 5-14 — HCControl register

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

linkEnable
softReset

noByteSwapData postedWriteEnable
LPSaPhyEnhanceEnable

programPhyEnable
Copyright © 1996,1997 All rights reserved. Page 43

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

e the

er.

ly

d

)

ort
ay
e.

he
n

 is

o 1
o

l,
.
.

Table 5-12 — HCControl register fields

field name rscu reset description

noByteSwapData rsc undef This bit is used to control whether physical accesses to locations outsid
Host Controller itself as well as any other DMA data accesses should be
swapped or not. When 0, data quadlets are sent/received in little endian ord
When 1, data quadlets are sent/received in big endian order.
See the explanation following this table. Software should change this bit on
when linkEnable is 0, otherwise unspecified behavior will result.
Support of this bit is optional for motherboard implementations and require
for all other implementations.
See section 5.7.1 below for more information.

programPhyEnable rc

or

r

* This bit informs upper-level generic software (e.g., OHCI device driver) if
lower-level implementation specific software (e.g., BIOS or Open Firmware
has consistently configured P1394a enhancements in the Link and PHY.

When 1 and while linkEnable is 0, generic software is responsible for
configuring the P1394a enhancements within the PHY and the
aPhyEnhanceEnable bit within the Host Controller Link in a consistent
manner.

When 0, generic software may not modify the P1394a enhancement
configuration in either the Link or PHY and cannot interpret the setting of
aPhyEnhanceEnable

*On a hardware reset, this bit should be 1 for Host Controllers that can supp
the enabling of all P1394a PHY enhancements by generic software, and m
be 0 for Host Controllers which are always configured by lower-level softwar

A soft reset and a bus reset shall not affect this bit.

See section 5.7.2 below for more information.

aPhyEnhanceEnable rsc

or

r

** When the programPhyEnable bit is 1, this bit is used by generic,
implementation independent software (e.g., OHCI device driver) to enable t
Host Controller Link to useall of P1394a enhancements. Generic software ca
only modify this bit when the programPhyEnable bit is 1 and the linkEnable
bit is 0. This bit is meaningless to software when the programPhyEnable bit
0.
When 0, none of the P1394a enhancements are enabled within the Link.
When 1, the set of all P1394a enhancements is enabled within the Link.

**On a hardware reset, this bit should be 0 for Host Controllers which
initialize without all of the P1394a PHY enhancements enabled, and 1 for
those which initialize with all P1394a PHY enhancements enabled.

A soft reset and a bus reset shall not affect this bit.

See section 5.7.2 below for more information.

LPS rs 1’b0 This bit is used to control the Link Power Status. Software must set LPS t
to permit Link PHY communication. Once set, the link can use LREQs t
perform PHY reads and writes.
An LPS value of 0 prevents Link PHY communication. In this state, the
only accessible Host Controller registers are Version, VendorID, HCContro
GUID_ROM, GUIDHi and GUIDLo. Access to other registers is not defined
Hardware and software resets clear LPS to 0. Software shall not clear LPS

See section 5.7.3 below for more information.

postedWriteEnable rsc undef This bit is used to enable (1) or disable (0) physical posted writes. When
disabled (0) physical writes shall be handled but shall not be posted and
instead are ack’ed with ack_pending.
Software should change this bit only when linkEnable is 0, otherwise
unspecified behavior will result. See Section 12., “Physical Requests,” for
information about posted writes.
Page 44 Copyright © 1996,1997 All rights reserved.

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ost byte
ith the

an order
d little

when
 subject

g of the

date and

nsistent,
to enable

 and
ing

 be

 all
ise

s.
n
has
5.7.1 noByteSwapData

The 1394 bus is quadlet based big endian. By convention, when quadlets are sent in big endian order, the leftm
(bits 31-24) of a quadlet is sent first. When sent in little endian order, the right most byte (bits 7-0) is sent first w
leftmost bit of each byte sent first.

When the Host Controller sends/receives a packet, the header information is always sent/received in big endi
(leftmost byte first). Header information is composed of a sequence of quadlets which is invariant over big an
endian system.

When the HCControl.noByteSwapData bit is not set, data quadlets are sent/received in little endian order and
HCControl.noByteSwapData is set, data quadlets are sent/received in big endian order. The data quadlets that are
to swap are:

1) any data quadlet covered by data CRC (tcodes 4'h1, 4'h7, 4'h9, 4'hA an 4'hB)
2) the data quadlet in a quadlet write request (tcode 4'h0)
3) the data quadlet in a quadlet read response (tcode 4'h6)

Since the cycle_time is self contained within the Host Controller, it is never byte-swapped regardless of the settin
noByteSwapData bit.

The data in a PHY packet (identified internally with tcode 4'hE) is not byte swapped for send or receive.

[Note: due to some confusion regarding this bit, an explanation and some examples will be published at a later
made available on the OpenHCI FTP site.]

5.7.2 programPhyEnable and aPhyEnhanceEnable

After a hardware or software reset, system software must ensure that the PHY and the Link are set to a co
compatible set of P1394a enhancements. The programPhyEnable and aPhyEnhanceEnable bits are provided
software to accomplish this task.

linkEnable rsu 1’b0 Software must set this bit to 1 when the system is ready to begin operation
then force a bus reset. This bit is necessary to keep other nodes from send
transactions before the local system is ready.
When this bit is clear the Host Controller is logically and immediately
disconnected from the 1394 bus. The link shall not process or interpret any
packets received from the PHY, nor shall the link generate anybus requests.
However, the link may access PHY registers via the PHY control register.
This bit is cleared to 0 by a hardware reset or software reset, and shall not
cleared by software. Software should not set the linkEnable bit until the
Configuration ROM mapping register (section 5.5.6) is valid.

See section 5.7.3 below for more information.

softReset rsu *** When set to 1, all Host Controller state is reset, all FIFO’s are flushed and
Host Controller registers are set to their hardware reset values unless otherw
specified. Registers outside of the OpenHCI realm, i.e., host attachment
registers such as those for PCI, are not affected.

***The read value of this bit is 1 while a soft reset or a hard reset is in progres
The read value of this bit is 0 when neither a soft reset nor hard reset are i
progress. Software can use the value of this bit to determine when a reset
completed and the Host Controller is safe to operate.

Table 5-12 — HCControl register fields

field name rscu reset description
Copyright © 1996,1997 All rights reserved. Page 45

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

 to allow
eneric,
 1, it is

ither all
are that

oftware
1394a

control

 in the
rdwired
w the
nted as
ave been

isable all
 to use

the PHY.
are has

pret the

re. If the
. If the
ardware
ble for

k

k

k

Since different levels of software may be responsible for ensuring this setup, the programPhyEnable bit is defined
communication between implementation specific lower-level software (e.g., BIOS or Open Firmware) and g
implementation independent upper-level software (e.g., OHCI device driver). If generic software reads this bit as a
responsible for configuring the P1394a enhancements in both the Link and PHY in a consistent manner (e
enhancements enabled or all enhancements disabled). A 0 value for this bit informs the upper-level system softw
no further changes to the P1394a configurations of the Link and PHY are permitted since either: 1) lower-level s
has previously performed initialization appropriate to the Host Controller capabilities, or 2) the link has hardwired P
capabilities to match the PHY with which it is being used. Note that this bit is only a software flag and does not
any Host Controller functionality.

The programPhyEnable bit may be read-only, returning a zero value, if upper-level software will not be involved
configuration of P1394a enhancements for the Link and PHY. This is appropriate when the Link and PHY are ha
with compatible settings or when lower-level software will consistently configure both the Link and PHY. To allo
possibility for upper-level software control of P1394a enhancements, programPhyEnable should be impleme
read/clear with a hardware reset value of 1. Software should clear programPhyEnable once the PHY and Link h
programmed consistently by either lower-level or upper-level software.

When programPhyEnable is set to 1, then the aPhyEnhanceEnable bit allows generic software to enable or d
P1394a enhancements within the Host Controller Link. A value of 1 for aPhyEnhanceEnable configures the Link
all P1394a enhancements and is appropriate when software has enabled all of the enhancements within
Likewise, a value of 0 prevents the Link from using any P1394a enhancements and is appropriate when softw
disabled all of the enhancements within the PHY. Note that generic software must not attempt to modify or inter
setting of the aPhyEnhanceEnable bit if programPhyEnable contains a 0.

The aPhyEnhanceEnable bit may be read-only or read/set/clear depending on options implemented in the hardwa
aPhyEnhanceEnable bit is read/set/clear, it shall hardware reset to 0 for default compatibility with legacy PHYs
aPhyEnhanceEnable bit is read-only, it shall hardware reset to 0 if it only operates with legacy PHYs or shall h
reset to 1 if it only operates with P1394a PHYs. In either case, the upper-level software will be responsi
programming the PHY consistently (provided programPhyEnable is set).

The following table illustrates the responsibility of generic software for some example Link implementations.

In all cases, the PHY-Link enhancements shall be programmed only when linkEnable is 0.

Table 5-13 — programPhyEnable and aPhyEnhanceEnable Examples

Link Capabilities programPhyEnable aPhyEnhanceEnable comments

Legacy-only Link 0 (read-only) X(meaningless) Generic software shall not change PHY or Lin
enhancement configuration.

P1394a-only Link

0 (read/clear) X (meaningless) Generic software shall not change PHY or Lin
enhancement configuration.

1 (read/clear) 1 (read-only) Generic software must enable P1394a
enhancements in the PHY.

P1394a capable Link

0 (read/clear) X (meaningless) Generic software shall not change PHY or Lin
enhancement configuration.

1 (read/clear) 0 (read/set/clear) Generic software may modify
aPhyEnhanceEnable and shall configure PHY
consistently.

1 (read/clear) 1 (read/set/clear)
Page 46 Copyright © 1996,1997 All rights reserved.

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

any bus

nd link

ssible,

ollowing
or when
ressive

e

g

5.7.3 LPS and linkEnable

There are three basic tasks and ensuing requirements with respect to the PHY/Link interface:

• Bootstrap of Open HCI.
This requires a mechanism to configure the link and the PHY prior to receiving any packets or generating
requests.

• Recovery from a hung system.
This requires a mechanism which places Open HCI in a near pre-bootstrap condition, and allows the PHY a
to get back into sync if required.

• Power Management via Suspend/Resume
This requires a mechanism to inform the PHY that PHY/Link communication is no longer required and, if po
the PHY can suspend itself if no active ports remain.

To achieve proper behavior in satisfying these requirements, software shall always assert the signals in the f
sequence: LPS, then linkEnable, then any other individual context enables or runs. The Host Controller behavi
violating this order is undefined and can produce unreliable behavior. The table below illustrates the prog
functionality as these signals are asserted.

Following a hardware or software reset, LPS and linkEnable are Off as shown in stepa. Software proceeds to enable th
link power status (b) and when SCLK has started, software can configure PHY and Link registers as listed in stepc (e.g.,
Self-ID receive DMA registers). Setting linkEnable in stepd enables some DMA function, and assertin
contextControl.run (e) for the Host Controller contexts then yields full functionality.

Table 5-14 — LPS and linkEnable assertion

LPS linkEnable contextControl.run Sequence Comments

a. Off Off Off Initial State

b. On Off Off Allows SCLK to start

c. On Off Off Config PHY/Link registers

d. On On Off Initiate Bus Reset

e. On On Off Physical DMA/Cycle Starts Okay

f. On On On Normal Operation
Copyright © 1996,1997 All rights reserved. Page 47

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ronous

Budget
t context

 HCI. It
inkCon-
 different

while a
o Link-
e corre-

for
HY
r

ion.
5.8 FairnessControl register (optional)

This register provides a mechanism by which software can direct the Host Controller to transmit multiple asynch
request packets during a fairness interval as specified in P1394a.

The FairnessControl register is configured by software in conjunction with software support of the Fairness
Register specified in P1394a. Transmission of all asynchronous packets via the Asynchronous Transmit Reques
shall be governed by the fairness protocol supported by the Host Controller.

5.9 LinkControl registers (set and clear)

This register provides the control flags that enable and configure the link core protocol portions of the 1394 Open
contains controls for the receiver, and cycle timer. There are two addresses for this register: LinkControlSet and L
trolClear. On read, both addresses return the contents of the control register. For writes, the two addresses have
behavior: a one bit written to LinkControlSet causes the corresponding bit in the LinkControl register to be set,
zero bit leaves the corresponding bit in the LinkControl register unaffected. On the other hand, a one bit written t
ControlClear causes the corresponding bit in the LinkControl register to be cleared, while a zero bit leaves th
sponding bit in the LinkControl register unaffected.

Figure 5-15 — FairnessControl register

Table 5-15 — FairnessControl register fields

field name rw
hard
reset

soft &
bus-
reset description

pri_req rw undef N/A This field specifies the maximum number of priority arbitration requests
asynchronous request packets that the link is permitted to make of the P
during a fairness interval. Apri_req value of 8’h0 is equivalent to the behavio
specified by IEEE 1394-1995.

The number of implemented bits is variable as per the P1394a specificat
Unimplemented bits shall be read-only and shall read as 0’s.

Figure 5-16 — LinkControl register

pri_req

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

cycleSource
cycleMaster

cycleTimerEnable rcvPhyPkt
rcvSelfID
Page 48 Copyright © 1996,1997 All rights reserved.

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

e
et
ill

r
Hz).

394

en
h

ck
s.

est

A
lf-
Table 5-16 — LinkControl register fields

field name rscu reset description

cycleSource rsc
or
r

** Optional. When one, the cycle timer will use an external source to determin
when to increment cycleCount. When cycleCount is incremented, cycleOffs
is reset to 0. If cycleOffset reaches 3071 before an external event occurs, it w
remain at 3071 until the external signal is received and is then reset to 0.
When the cycleSource bit is zero, the 1394 Open HCI will roll the cycle time
over when the timer reaches 3072 cycles of the 24.576 MHz clock (i.e., 8 k
If not implemented, this bit will read as 0.
CycleSource has an effect only when cycleMaster is enabled.
** A hardware reset, clears this bit to 0. A software reset has no effect.

cycleMaster rscu undef When one and the PHY has notified the 1394 Open HCI that it is root, the 1
Open HCI will generate a cycle start packet every time the cycle timer rolls
over, based on the setting of the cycleSource bit. When zero, the 1394 Op
HCI will accept received cycle start packets to maintain synchronization wit
the node which is sending them. This bit is automatically zeroed when the
IntEvent.cycleTooLong event occurs and cannot be set until the
IntEvent.cycleTooLongbit is cleared.

cycleTimerEnable rsc undef When one, the cycle timer offset will count cycles of the 24.576 MHz clo
and roll over at the appropriate time based on the settings of the above bit
When zero, the cycle timer offset will not count.

rcvPhyPkt rsc undef When one, the receiver will accept incoming PHY packets into the AR requ
context if the AR request context is enabled. This doesnot control either the
receipt of self-identification packets during the Self-ID phase of bus
initialization or the queuing of synthesized bus reset packets in the AR DM
Request Context buffer (section 8.4.2.3). This does control receipt of any se
identification packets received outside of the Self-ID phase of bus
initialization.

rcvSelfID rsc undef When one, the receiver will accept incoming self-identification packets.
Before setting this bit to one, software must ensure that the self ID buffer
pointer register contains a valid address.
Copyright © 1996,1997 All rights reserved. Page 49

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ber and

ster 0

er.
394

ld

self-
r
re
5.10 Node identification and status register

This register contains the CSR address for the node on which this chip resides. The 16-bit combination of busNum
nodeNumber is referred to as the Node ID.

This register shall be written autonomously and atomically by the Host Controller with the value in PHY regi
following the self-identification phase of bus initialization. Although IntEvent.phyRegRcvdshall not be set when the
contents of PHY register 0 are written here, software can use the IntEvent.selfIDComplete interrupt to detect that the self-
identification phase has completed can then check for a new valid Node ID.

Figure 5-17 — Node ID register

Table 5-17 — Node ID register fields

field name rwu reset description

iDValid ru 1’b0 This bit indicates whether or not the 1394 Open HCI has a valid node numb
It is cleared when the bus reset state is detected and set again when the 1
Open HCI receives a new node number from the PHY.
If iDValid is clear, software should not set ContextControl.run for either of the
AT DMA contexts.

root ru 1’b0 This bit is set during the bus reset process if the attached PHY is root.

CPS ru 1’b0 Set if the PHY is reporting that cable power status is OK (VP 8V).

busNumber rwu 10’h3FF This number is used to identify the specific 1394 bus this node belongs to
when multiple 1394-compatible busses are connected via a bridge. This fie
is set to 10’h3FF on a bus reset.

nodeNumber ru undef This number is the physical node number established by the PHY during
identification. It is automatically set to the value received from the PHY afte
the self-identification phase. If the PHY sets the nodeNumber to 63, softwa
should not set ContextControl.run for either of the AT DMA contexts. As a
reminder, links must refrain from acknowledging any packet received with a
destination nodeNumber of 63 regardless of the setting of this field.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

iDValid

busNumber nodeNumber

root

CPS
Page 50 Copyright © 1996,1997 All rights reserved.

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

s written
he LReq
nsitions

 field

reflected
odeID

ta field,

pletes

et

shall be

 is
Y.

hen
Reg

en
eg
5.11 PHY control register

The PHY control register is used to read or write a PHY register. To read a register, the address of the register i
to the regAddr field along with a 1 in the rdReg bit. When the read request has been sent to the PHY (through t
pin), the rdReg bit is cleared to 0. When the PHY returns the register (through a status transfer), the rdDone bit tra
to one and then the IntEvent.phyRegRcvd interrupt is set. The address of the register received is placed in the rdAddr
and the contents in the rdData field.

Software shall not issue a read of PHY register 0. The most recently available contents of this register shall be
in the NodeID register (section 5.10). The Host Controller shall only write the contents of PHY register 0 into the n
register, and never into this register.

To write to a PHY register, the address of the register is written to the regAddr field, the value to write to the wrDa
and a 1 to the wrReg bit. The wrReg bit is cleared when the write request has been transferred to the PHY.

Software shall serialize all PHY register reads and writes. Only after the current PHY register read or write com
may software issue a different PHY register read or write.

This register shall be written atomically such that all bits are accumulated and written together when rdDone is s

To ensure a consistent interface regardless of the PHY/Link implementation, the register map of P1394A PHYs
supported.

Figure 5-18 — PHY control register

Table 5-18 — PHY control register fields

field name rwu reset description

rdDone ru undef rdDone is cleared to 0 by the Host Controller when either rdReg or wrReg
set to 1. This bit is set to 1 when a register transfer is received from the PH

rdAddr ru undef This is the address of the register most recently received from the PHY.

rdData ru undef Contains the data read from the PHY register at rdAddr

rdReg rwu 1’b0 Set rdReg to initiate a read request to a PHY register. This bit is cleared w
the read request has been sent. The wrReg bit must not be set while the rd
bit is set.

wrReg rwu 1’b0 Set wrReg to initiate a write request to a PHY register. This bit is cleared wh
the write request has been sent. The rdReg bit must not be set while the wrR
bit is set.

regAddr rw undef regAddr is the address of the PHY register to be written or read.

wrData rw undef This is the contents to be written to a PHY register. Ignored for a read.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

regAddr

rdDone
rdReg

wrReg

wrDatardAddr rdData
Copyright © 1996,1997 All rights reserved. Page 51

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

he cycle
e cycle
gister is
with the
continue
rence.

t so that
gisters:
Request

fig ROM
d to the
R config

K of CSR
 corre-
ill be no

accepted
er.

h

s
k.
5.12 Isochronous Cycle Timer Register

The isochronous cycle timer register is a read/write register that shows the current cycle number and offset. T
timer register is split up into three fields. The lower order 12 bits are the cycle offset, the middle 13 bits are th
count, and the upper order 7 bits count time in seconds. When the 1394 Open HCI is cycle master, this re
transmitted with the cycle start message. When the 1394 Open HCI is not cycle master, this register is loaded
data field in each incoming cycle start. In the event that the cycle start message is not received, the fields
incrementing on their own (when cycleTimerEnable is set in the LinkControl register) to maintain a local time refe

A host initiated write to the cycleTime register may evoke an IntEvent.cycleInconsistent in some implementations.

5.13 Asynchronous Request Filters

The 1394 OpenHCI allows for selective access to host memory and the Asynchronous Receive Request contex
software can maintain host memory integrity. The selective access is provided by two sets of 64-bit re
PhysRequestFilter and AsynchRequestFilter. These registers allow access to physical memory and the AR
context on a nodeID basis. The request filters are not applied to quadlet read requests directed at the Con
(including the ConfigROM header, BusID, Bus Options, and Global Unique ID registers) nor to accesses directe
isochronous resource management registers. When the link is enabled, access by any node to the first 1K of CS
ROM is enabled(see section 5.5.6). The Asynchronous Request Filtersdo not have any effect on Asynchronous Response
packets.

5.13.1 AsynchronousRequestFilter Registers (set and clear)

When a request is received by the Host Controller from the 1394 bus and that request does not access the first 1
config ROM on the Host Controller, then the sourceID is used to index into the AsynchronousRequestFilter. If the
sponding bit in the AsynchronousRequestFilter is set to 0, then requests from that device are not enabled; there w
ack_ sent, and the requests will be ignored by the Host Controller. If however, the bit is set to 1, the requests are
and will be processed according to the address of the request and the setting of the PhysicalRequestFilter regist

Figure 5-19 — Isochronous cycle timer register

Table 5-19 — Isochronous cycle timer register fields

field name rwu reset description

cycleSeconds rwu N/A This field counts seconds (cycleCount rollovers) modulo 128

cycleCount rwu N/A This field counts cycles (cycleOffset rollovers) modulo 8000.

cycleOffset rwu N/A This field counts 24.576MHz clocks modulo 3072, i.e., 125µs. If an external
8KHz clock configuration is being used, cycleOffset must be set to 0 at eac
tick of the external clock.
Note that the ability to support an external clock is optional. Implementation
whichcan support an external clock are not required to have an external cloc

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

cycleOffsetcycleCountcycleSeconds
Page 52 Copyright © 1996,1997 All rights reserved.

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

cally as
st DMA

stFilter-
it in the
 is set,
l bit is

 in the

ived

.

from
ll
Requests to offsets above PhysicalUpperBound (section 5.14), with the exception of offsets handled physi
described in Section 12., are always sent to the Asynchronous Receive Request DMA context. If the AR Reque
context is not enabled, then the Host Controller will ignore the request.

The AsynchronousRequestFilter bits are set by writing a one to the corresponding bit in the AsynchronousReque
HiSet or AsynchronousRequestFilterLoSet address. They are cleared by writing a one to the corresponding b
AsynchronousRequestFilterHiClear or AsynchronousRequestFilterLoClear address. If bit “asynReqResourceN”
then requests with a sourceID of either {10’h3FF, #n} or {busID, #n} will be accepted. If the asynReqResourceAl
set in AsynchronousRequestFilterHi, requests from all bus nodes including those on the local bus are accepted.

Reading the AsynchronousRequestFilter registers returns their current state. All asynReqResourceN bits
AsynchronousRequestFilter register are cleared to 0 on a 1394 bus reset.

Figure 5-20 — AsynchronousRequestFilterHi (set and clear) register

Figure 5-21 — AsynchronousRequestFilterLo (set and clear) register

Table 5-20 — AsynchronousRequestFilter register fields

field name rscu reset description

asynReqResourceN rscu 1’b0 If set to one for local bus node number N, asynchronous requests rece
by the Host Controller from that node will be accepted. All
asynReqResourceN bits shall be cleared to zero when a bus reset occurs

asynReqResourceAll rscu 1’b0 If set to one, all asynchronous requests received by the Host Controller
all bus nodes (including the local bus) will be accepted, and the values of a
asynReqResourceN bits shall be ignored. A bus reset does not affect the
value of the asynReqResourceAll bit.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

asynReqResource62
asynReqResource61

asynReqResource60 asynReqResource35
asynReqResource34

asynReqResourceAll
asynReqResource33

asynReqResource32

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

asynReqResource30
asynReqResource29

asynReqResource28 asynReqResource3
asynReqResource2

asynReqResource31
asynReqResource1

asynReqResource0
Copyright © 1996,1997 All rights reserved. Page 53

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

.14) the
sicalRe-
ver, the

 transac-
 Request

iSet or
in the

set in
her than

 the AR

t to 0 on

l

 Con-
5.13.2 PhysicalRequestFilter Registers (set and clear)

If an asynchronous request is allowed from a node, and the offset is below PhysicalUpperBound (section 5
sourceID of the request is used as an index into the PhysicalRequestFilter. If the corresponding bit in the Phy
questFilter is set to 0, then the request is forwarded to the Asynchronous Receive Request DMA context. If howe
bit is set to 1, then the request is sent to the physical response unit. (Note that within the Physical Range, lock
tions and block transactions with a non-zero extended tcode are always forwarded to the Asynchronous Receive
DMA context. See Section 12.)

The PhysicalRequestFilter bits are set by writing a one to the corresponding bit in the PhysicalRequestFilterH
PhysicalRequestFilterLoSet address. They are cleared by writing a one to the corresponding bit
PhysicalRequestFilterHiClear or PhysicalRequestFilterLoClear address. If bit “physReqResourcen” is set, then requests
with a sourceID of either {10’h3FF, #n} or {busID, #n} will be accepted. If the physReqResourceAllBuses bit is
PhysicalRequestFilterHi, physical requests from any device on any other bus are accepted (bus number ot
10’h3FF and busID).

Physical requests that are rejected by the PhysicalRequestFilter are sent to the AR Request DMA context if
Request DMA context is enabled. If it is disabled then the Host Controller ignores the requests.

Reading the PhysicalRequestFilter registers returns their current state. All bits in the PhysicalRequestFilter are se
a 1394 bus reset.

Figure 5-22 — PhysicalRequestFilterHi (set and clear) register

Figure 5-23 — PhysicalRequestFilterLo (set and clear) register

Table 5-21 — PhysicalRequestFilter register fields

field name rscu reset description

physReqResourceN rscu 1’b0 If set to one for local bus node number N, then asynchronous physica
requests received by the Host Controller from that node will be accepted.

physReqResourceAllBuses rscu 1’b0 If set to one, all asynchronous physical requests received by the Host
troller from non-local bus nodes will be accepted.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

physReqResource62
physReqResource61

physReqResource60 physReqResource35
physReqResource34

physReqResourceAllBuses
physReqResource33

physReqResource32

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

physReqResource30
physReqResource29

physReqResource28 physReqResource3
physReqResource2

physReqResource31
physReqResource1

physReqResource0
Page 54 Copyright © 1996,1997 All rights reserved.

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

at have a
 this
Request

set and
B).

 the
be

h0
000.
5.14 Physical Upper Bound register (optional)

Asynchronous requests which are candidates to be handled by the physical response unit include requests th
destination offset which falls within thephysical range. This range begins at 48’h0 and ends at the offset specified in
register. In general, requests at physUpperBoundOffset or higher will be handled by the Asynchronous Receive
context. Refer to Chapter 12. for details about Physical Requests.

For use with 64-bit implementations, the Physical Upper Bound register comprises the top 32 bits of a 48-bit off
provides a mechanism for implementations to specify physical access for offsets above 48’0000_FFFF_FFFF (4G

Figure 5-24 — 48-bit Physical Upper Bound

Figure 5-25 — Physical Upper Bound register

Table 5-22 — Physical Upper Bound register fields

field name rwu
hard
reset

soft &
bus-
reset description

physUpperBoundOffset rw
or
r

undef N/A Represents the high-order 32 bits of the 48 bit destination offset, with
remaining 16 bits set to 16’h0. Requests to this offset or higher shall
handled by the Asynchronous Receive Request context, with some
exceptions as outlined in Chapter 12..

Software shall not set physUpperBoundOffset to a value above
32’hFFFF_0000.

If implemented, this shall be a read/write register.

If not implemented, this register shall be read-only with a value of 32’
and the upper bound of the physical range shall be 48’h0001_0000_0

Physical Upper BoundOffset (0 to 32’hFFFF_0000) 16’h0000

Physical Upper Bound

48’h0000_0000_0000

48’hFFFF_FFFF_FFFF

Physical Upper Bound

}} Physical Range

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

physUpperBoundOffset
Copyright © 1996,1997 All rights reserved. Page 55

1394 Open HCI Registers 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97
Page 56 Copyright © 1996,1997 All rights reserved.

Interrupts 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

errupts
g 1394

leStart, a

. Both
ritten to
 a “one”
” bit has

mpletion
enable
nditions

software
. At this
rocess the
entClear

ronous

et by an
t in the

 register
6. Interrupts

The 1394 Open HCI reports two classes of interrupts to the host: DMA interrupts and device interrupts. DMA int
are generated when DMA transfers complete (or are aborted). Device interrupts come directly from the remainin
Open HCI logic. For example, one of these interrupts could be sent in response to the asserting edge of cyc
signal which indicates that a new isochronous cycle has started.

The 1394 Open HCI contains two primary 32-bit registers to report and control interrupts: IntEvent and IntMask
registers have two addresses: a “Set” address and a “Clear” address. For a write to either register, a “one” bit w
the “Set” address causes the corresponding bit in the register to be set (excluding bits which are read-only), while
bit written to the “Clear” address causes the corresponding bit to be cleared. For both addresses, writing a “zero
no effect on the corresponding bit in the register.

The IntEvent register contains the actual interrupt request bits. Each of these bits corresponds to either a DMA co
event, or a transition on a device interrupt line. The IntMask register is ANDed with the IntEvent register to
selected bits to generate processor interrupts. Software writes to the IntEventClear register to clear interrupt co
reported in the IntEvent register.

A processor interrupt is generated when one or more unmasked bits are set in the IntEvent register. Low-level
responds to the interrupt by reading the IntEvent register, then writing the value read to the IntEventClear register
point the interrupt request is deasserted (assuming no new interrupt bit has been set). Software can proceed to p
reported interrupts in whatever priority order it chooses, and is free to re-enable interrupts as soon as the IntEv
register is written.

In addition, the 1394 Open HCI contains four secondary 32-bit registers to report and control interrupts for isoch
transmit and receive contexts. Each register has two addresses: a “Set” address and a “Clear” address.

6.1 IntEvent (set and clear)

This register reflects the state of the various interrupt sources from the 1394 Open HCI. The interrupt bits are s
asserting edge of the corresponding interrupt signal, or by software by writing a one to the corresponding bi
IntEventSet address. They are cleared by writing a one to the corresponding bit in the IntEventClear address.

Reading the IntEventSet register returns the current state of the IntEvent register. Reading the IntEventClear
returns themasked version of the IntEvent register (IntEvent & IntMask).
Copyright © 1996,1997 All rights reserved. Page 57

Interrupts 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

n

on

n

on

uffer

uffer

e

e

rite
m

On a hardware reset or soft reset, the values of all bits in this register are undefined.

Figure 6-1 — IntEvent register

Table 6-1 — IntEvent register description (Sheet 1 of 2)

Field Bit # rscu Description

reqTxComplete 0 rscu Asynchronous request transmit DMA interrupt. This bit is conditionally set upo
completion of an AT DMA request OUTPUT_LAST* command.

respTxComplete 1 rscu Asynchronous response transmit DMA interrupt. This bit is conditionally set up
completion of an AT DMA response OUTPUT_LAST* command.

ARRQ 2 rscu Asynchronous Receive Request DMA interrupt. This bit is conditionally set upo
completion of an AR DMA Request context command descriptor.

ARRS 3 rscu Asynchronous Receive Response DMA interrupt. This bit is conditionally set up
completion of an AR DMA Response context command descriptor.

RQPkt 4 rscu Indicates that a packet was sent to an asynchronous receive request context b
and the descriptor’s xferStatus and resCount fields have been updated.
This differs from ARRQ above since RQPkt is a per-packet completion indication
and ARRQ is a per-command descriptor (buffer) completion indication. AR
Request buffers may contain more than one packet.

RSPkt 5 rscu Indicates that a packet was sent to an asynchronous receive response context b
and the descriptor’s xferStatus and resCount fields have been updated.
This differs from ARRS above since RSPkt is a per-packet completion indication
and ARRS is a per-command descriptor (buffer) completion indication. AR
Response buffers may contain more than one packet.

isochTx 6 ru Isochronous Transmit DMA interrupt. Indicates that one or more isochronous
transmit contexts have generated an interrupt. This is not a latched event, it is th
OR’ing all bits in (isoXmitIntEvent & isoXmitIntMask). The isoXmitIntEvent
register indicates which contexts have interrupted. See section 6.3.

isochRx 7 ru Isochronous Receive DMA interrupt. Indicates that one or more isochronous
receive contexts have generated an interrupt. This is not a latched event, it is th
OR’ing all bits in (isoRecvIntEvent & isoRecvIntMask). The isoRecvIntEvent
register indicates which contexts have interrupted. See section 6.4.

postedWriteErr 8 rscu Indicates that a host bus error occurred while the Host Controller was trying to w
a 1394 write request, which had already been given an ack_complete, into syste
memory. The 1394 destination offset and sourceID are available in the
PostedWriteAddress registers described in section 13.2.8.1.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

RQPkt
RSPkt

isochTx
isochRx

lockRespErr

ARRS
ARRQ

respTxComplete
reqTxCompletebusReset

selfIDComplete

cycleLost
cycle64Seconds

cycleSynch

phy

unrecoverableError

cycleTooLong
phyRegRcvd

cycleInconsistent

vendorSpecific

postedWriteErr
Page 58 Copyright © 1996,1997 All rights reserved.

Interrupts 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

y cleared
 of bus
terrupt.

k

 bus

w for

f the

wo

t to
ts

d

set

from
6.1.1 busReset

When a bus reset occurs and the busReset interrupt is set to one, the selfIDComplete interrupt is simultaneousl
to 0. The Host Controller shall prevent software from clearing the busReset interrupt bit during the self-ID phase
initialization. Software must take precautions regarding the asynchronous transmit contexts before clearing this in
Refer to section 7.2.3 for further details.

lockRespErr 9 rscu Indicates that the Host Controller attempted to return a lock response for a loc
request to a serial bus register described in Section 5.5.1, but did not receive an
ack_complete after exhausting all permissible retries.

reserved 10-15

selfIDcomplete 16 rscu A selfID packet stream has been received. Will be generated at the end of the
initialization process if LinkControl.rcvSelfID is set. This bit is turned off
simultaneously when IntEvent.busReset is turned on.

busReset 17 rscu Indicates that the PHY chip has entered bus reset mode. See section 6.1.1 belo
information on when to clear this interrupt.

reserved 18

phy 19 rscu Generated when the PHY requests an interrupt through a status transfer.

cycleSynch 20 rscu Indicates that a new isochronous cycle has started. Set when the low order bit o
internal isochronousCycleTimer.cycleCount toggles.

cycle64Seconds 21 rscu Indicates that the 7th bit of the cycle second counter has changed.

cycleLost 22 rscu A lost cycle is indicated when no cycle_start packet is sent/received between t
successive cycleSynch events.

cycleInconsistent 23 rscu A cycle start was received that had an isochronous cycleTimer.seconds and
isochronous cycleTimer.count different from the value in the CycleTimer register.
Implementations are free to indicate a cycleInconsistent if a host initiated write
changes the cycleSeconds or cycleCount fields of the cycleTimer register
(section 5.12). For the effect of this condition on isochronous transmit, refer to
section 9.5.1 and for isochronous receive refer to section 10.5.1.

unrecoverableError 24 rscu This event occurs when the Host Controller encounters any error that forces i
stop operations on any or all of its subunits. For example, when a DMA context se
its contextControl.dead bit.
While unrecoverableError is set, all normal interrupts for the context(s) that cause
this interrupt will be blocked from being set.

cycleTooLong 25 rscu If LinkControl.cycleMaster is set, this indicates that an isochronous cycle lasted
longer than the allotted time. For implementations with a discrete cycleTooLong
timer, hardware is expected to trigger this event no less than 115µsecs and no more
than 120µsecs after sending a cycle start packet unless a subaction gap or bus re
indication is first observed. LinkControl.cycleMaster is cleared by this event.

phyRegRcvd 26 rscu The 1394 Open HCI has received a PHY register data byte which can be read
the PHY control register (see 5.11).

reserved 27-29

vendorSpecific 30 Vendor defined.

reserved 31

Table 6-1 — IntEvent register description (Sheet 2 of 2)

Field Bit # rscu Description
Copyright © 1996,1997 All rights reserved. Page 59

Interrupts 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ble (bit
rrupt. A

s set in
 one to

ter. The
ble is 0,

tMask.
it written
address
sponding

ster.
er
6.2 IntMask (set and clear)

The bits in the IntMask register have the same format as the IntEvent register, with the addition of masterIntEna
31). A one bit in the IntMask register enables the corresponding IntEvent register bit to generate a processor inte
zero bit in IntMask disables the corresponding IntEvent register bit from generating a processor interrupt. A bit i
the IntMask register by writing a one to the corresponding bit in the IntMaskSet address and cleared by writing a
the corresponding bit in the IntMaskClear address.

If masterIntEnable is 0, all interrupts are disabled regardless of the values of all other bits in the IntMask regis
value of masterIntEnable has no effect on the value returned by reading the IntEventClear; even if masterIntEna
reading IntEventClear will return (IntEvent & IntMask) as described earlier in section 6.1.

On a reset, the IntMask.masterIntEnable bit (31) is set to 0 and the value of all other bits is undefined.

6.3 IsochTx interrupt registers

There are two 32-bit registers to report isochronous transmit context interrupts: isoXmitIntEvent and isoXmitIn
Both registers have two addresses: a “Set” address and a “Clear” address. For a write to either register, a “one” b
to the “Set” address causes the corresponding bit in the register to be set, while a “one” bit written to the “Clear”
causes the corresponding bit to be cleared. For all four addresses, writing a “zero” bit has no effect on the corre
bit in the register.

Figure 6-2 — IntMask register

Table 6-2 — IntMask register description

Field Bit # rscu Description

interrupt events for: 0-9 rsc See Table 6-1.

reserved 10-15

interrupt events for 16-17 rsc See Table 6-1.

reserved 18

interrupt events for 19-26 rsc See Table 6-1.

reserved 27-29

vendorSpecific 30 Vendor defined.

masterIntEnable 31 rscu If set, external interrupts will be generated in accordance with the IntMask regi
If clear, no external interrupts will be generated regardless of the IntMask regist
settings.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

vendorSpecific
busReset

selfIDComplete

cycleLost
cycle64Seconds

cycleSynch

phy

unrecoverableError

cycleTooLong
phyRegRcvd

cycleInconsistent

masterIntEnable

RQPkt
RSPkt

isochTx

isochRx

lockRespErr

ARRS
ARRQ

respTxComplete

reqTxComplete

postedWriteErr
Page 60 Copyright © 1996,1997 All rights reserved.

Interrupts 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

a DMA
h the
vent)

e a
herwise
 the

ng the

lf of an

ent

nces the

register
ng bit in

exts are
are not.

ntMask.
it written
address
sponding
The isoXmitIntEvent register contains the actual interrupt request bits. Each of these bits corresponds to
completion event for the indicated isochronous transmit context. The isoXmitIntMask register is ANDed wit
isoXmitIntEvent register to enable selected bits to generate processor interrupts. If (isoXmitIntMask & isoXmitIntE
is not zero, then the IntEvent.isochTx bit will be set to one, and if enabled via the IntMask register it will generat
processor interrupt. A software write to the isoXmitIntEventSet register can therefore cause an interrupt (if not ot
masked). A software write to the isoXmitIntEventClear register will clear interrupt conditions reported in
isoXmitIntEvent register.

Reading the isoXmitIntEventSet register returns the current state of the isoXmitIntEvent register. Readi
isoXmitIntEventClear register returns themasked version of the isoXmitIntEvent register (isoXmitIntEvent &
isoXmitIntMask).

6.3.1 isoXmitIntEvent (set and clear)

This register reflects the interrupt state of the isochronous transmit contexts. An interrupt is generated on beha
isochronous transmit context if an OUTPUT_LAST DMA command completes and itsi bits are set to 2’b11 (interrupt
always). Upon determining that the IntEvent.isochTx interrupt has occurred, software can check the isoXmitIntEv
register to determine which context(s) caused the interrupt.

On a hardware reset or soft reset, values of all bits in this register are undefined. Note that in these circumsta
IntMask.masterIntEnable is set to zero, therefore masking all interrupts until re-enabled by software.

6.3.2 isoXmitIntMask (set and clear)

The bits in the isoXmitIntMask register have the same format as the isoXmitIntEvent register. Setting a bit in this
enables the corresponding bit in the isoXmitIntMaskSet address and cleared by writing a one to the correspondi
the isoXmitIntMaskClear address.

Bits for all unimplemented contexts must read as 0’s. Software can use this register to determine which cont
supported by writing to it with all 1’s, then reading it back. Contexts with a 1 are implemented, and those with a 0

On a hardware reset or soft reset, values for all bits in this register are undefined.

6.4 IsochRx interrupt registers

There are two 32-bit registers to report isochronous receive context interrupts: isoRecvIntEvent and isoRecvI
Both registers have two addresses: a “Set” address and a “Clear” address. For a write to either register, a “one” b
to the “Set” address causes the corresponding bit in the register to be set, while a “one” bit written to the “Clear”
causes the corresponding bit to be cleared. For all four addresses, writing a “zero” bit has no effect on the corre
bit in the register.

Figure 6-3 — isoXmitIntEvent (set and clear) register

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

isoXmit30
isoXmit29

isoXmit28 isoXmit3
isoXmit2

isoXmit31
isoXmit1

isoXmit0
Copyright © 1996,1997 All rights reserved. Page 61

Interrupts 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

 comple-
tEvent
ro, then
pt. A
oftware

ing the

lf of an

ent

nces the

 register
ing bit in

exts are
are not.
The isoRecvIntEvent register contains the actual interrupt request bits. Each of these bits corresponds to a DMA
tion event for the indicated isochronous receive context. The isoRecvIntMask register is ANDed with the isoRecvIn
register to enable selected bits to generate processor interrupts. If (isoRecvIntMask & isoRecvIntEvent) is not ze
the IntEvent.isochRx bit will be set to one, and if enabled via the IntMask register it will generate a processor interru
software write to the isoRecvIntEventSet register can therefore cause an interrupt (if not otherwise masked). A s
write to the isoRecvIntEventClear register will clear interrupt conditions reported in the isoRecvIntEvent register.

Reading the isoRecvIntEventSet register returns the current state of the isoRecvIntEvent register. Read
isoRecvIntEventClear register returns themasked version of the isoRecvIntEvent register (isoRecvIntEvent & isoRecvInt-
Mask).

6.4.1 isoRecvIntEvent (set and clear)

This register reflects the interrupt state of the isochronous receive contexts. An interrupt is generated on beha
isochronous receive context if a final command of a DMA descriptor block completes and itsi bits are set to 2’b11 (inter-
rupt always). Upon determining that the IntEvent.isochRx interrupt has occurred, software can check the isoRecvIntEv
register to determine which context(s) caused the interrupt.

On a hardware reset or soft reset, values of all bits in this register are undefined. Note that in these circumsta
IntMask.masterIntEnable is set to zero, therefore masking all interrupts until re-enabled by software.

6.4.2 isoRecvIntMask (set and clear)

The bits in the isoRecvIntMask register have the same format as the isoRecvIntEvent register. Setting a bit in this
enables the corresponding bit in the isoRecvIntMaskSet address and cleared by writing a one to the correspond
the isoRecvIntMaskClear address.

Bits for all unimplemented contexts must read as 0’s. Software can use this register to determine which cont
supported by writing to it with all 1’s then reading it back. Contexts with a 1 are implemented, and those with a 0

On a hardware reset or soft reset, values of all bits in this register are undefined.

Figure 6-4 — isoRecvIntEvent (set and clear) register

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

isoRecv30
isoRecv29

isoRecv28 isoRecv3
isoRecv2

isoRecv31
isoRecv1

isoRecv0
Page 62 Copyright © 1996,1997 All rights reserved.

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

sts, asyn-
s requests
.”

he AT
cify how
ackets

e context
nchronous

 context
ontext

mats for

us list of
m.
ORE,

low,
ST*

th the

_LAST-
 five
seven
f the *-

ive packet
MORE
 length.

uld be set
elds are
7. Asynchronous Transmit DMA

The 1394 OpenHCI divides the transmission of asynchronous packets into three categories: asynchronous reque
chronous responses, and physical responses. This chapter describes how to use DMA to transmit asynchronou
and asynchronous responses. For information regarding physical responses, see section 12., “Physical Requests

There is one DMA controller for each transmit context: the Asynchronous Transmit (AT) Request Controller for t
request context, and the AT Response Controller for the AT response context. Although OpenHCI does not spe
many FIFO’s are required to support the AT DMA controllers, it is required that the re-transmission of request p
never blocks the transmission of response packets.

The AT Request context is used by software to transmit read, write and lock request packets and the AT Respons
is used to send response packets to read, write, and lock requests that have earlier been received into the asy
receive request context buffers (see section 8., “Asynchronous Receive DMA”).

Each context consists of a context program and two registers. A context program is a list of commands for that
which direct the Host Controller on how to assemble packets for transmission. The DMA controller for that c
executes each command, inserting data into the appropriate FIFO and interrupting as requested.

The following sections describe how to set up and manage an AT DMA context program and describe the data for
the various asynchronous request and response packet types.

7.1 AT DMA Context Programs

Each asynchronous transmit packet, whether a request or response packet, shall be described by a contiguo
command descriptors referred to as adescriptor block. A chain of descriptor blocks is referred to as a context progra
There are four different command descriptors that can be used within each descriptor block: OUTPUT_M
OUTPUT_MORE-Immediate, OUTPUT_LAST and OUTPUT_LAST-Immediate. In the descriptions that fol
OUTPUT_MORE* refers to both the OUTPUT_MORE and OUTPUT_MORE-Immediate commands, OUTPUT_LA
refers to both the OUTPUT_LAST and OUTPUT_LAST-Immediate commands and *-Immediate refers to bo
OUTPUT_MORE-Immediate and OUTPUT_LAST-Immediate commands.

Each packet shall be specified in one descriptor block. A descriptor block may have either one single OUTPUT
Immediate descriptor, or may have one OUTPUT_MORE-Immediate descriptor followed by zero to
OUTPUT_MORE descriptors, followed by one OUTPUT_LAST descriptor. This allows software to combine up to
fragments to specify a single packet. In addition, the first command descriptor in a descriptor block must be one o
Immediate commands totransmit the full 1394 packet header for the packet’s tcode type, wherepacket header is defined
as all quadlets that appear before the 1394 packet header CRC quadlet and that are required by the respect
format (defined in section 7.6). Further, a descriptor block for a packet shall not exceed 128 bytes. The OUTPUT_
and OUTPUT_LAST command descriptors are 16-bytes in length, and the *-Immediate descriptors are 32-bytes in
All descriptors must be aligned on a 16-byte boundary.

In the sections below, the format for each command descriptor is shown. The shaded fields are reserved and sho
to 0 by software. Fields with a hardcoded value must be set to that value by software. The values of all other fi
described in each command’s descriptor element summary.
Copyright © 1996,1997 All rights reserved. Page 63

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

troller

ill
7.1.1 OUTPUT_MORE descriptor

The OUTPUT_MORE command descriptor is used to specify a host memory buffer from which the AT DMA con
will insert bytes into the appropriate transmit FIFO. It has the following format.

Figure 7-1 — OUTPUT_MORE descriptor format

Table 7-1 — OUTPUT_MORE descriptor element summary

Element Bits Description

cmd 4 Set to 4’h0 for OUTPUT_MORE.

key 3 Set to 3’h0 for OUTPUT_MORE.

b 2 Branch control. Software must set this field to 2’b00. Values of 2’b11, 2’b10, 2’b01 w
result in unspecified behavior.

reqCount 16 Request Count: The number of transmit packet bytes starting at dataAddress.

dataAddress 32 Address of transmit data. dataAddress has no alignment restrictions.

cmd=0 reqCount

dataAddress

2’b
003’h0

key=
Page 64 Copyright © 1996,1997 All rights reserved.

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

rmation

 packet
hronous

 two 16-

ill

 byte
ci-

mer

ot be
.

7.1.2 OUTPUT_MORE_Immediate descriptor

The OUTPUT_MORE-Immediate command descriptor is used to specify up to four quadlets of packet header info
to be inserted into the appropriate transmit FIFO. It has the following format.

The OUTPUT_MORE-Immediate command shall only be used either to specify the four quadlet 1394 transmit
header for a block payload or lock packet, or to specify the two quadlet 1394 transmit packet header for an async
stream packet. All OUTPUT_MORE-Immediate command descriptors are 32-bytes in length and are counted as
byte aligned blocks when calculating the Z value.

Figure 7-2 — OUTPUT_MORE-Immediate descriptor format

Table 7-2 — OUTPUT_MORE-Immediate descriptor element summary

Element Bits Description

cmd 4 Set to 4’h0 for OUTPUT_MORE-Immediate

key 3 Set to 3’h2 for OUTPUT_MORE-Immediate.

b 2 Branch control. Software must set this field to 2’b00. Values of 2’b11, 2’b10, 2’b01 w
result in unspecified behavior.

reqCount 16 Request Count: The number of transmit packet bytes immediately following the 16th
of this descriptor. This value must be either 8(two quadlets) or 16(four quadlets). Spe
fying any other value will result in unspecified behavior. Regardless of the reqCount
value, this descriptor is always 32 bytes long.

timeStamp 16 Valid only in the ATresponse context. This field contains the three low order bits of
cycleSeconds and all 13 bits of cycleCount. See section 5.12, “Isochronous Cycle Ti
Register” for information about these fields.
For AT response packets, timeStamp indicates a time after which the packet should n
transmitted. For further information on the use of this field, see section 7.1.5.3 below

first, second, third, and
fourth quadlets

128 Packet header quadlets to be inserted into the applicable FIFO.

timeStamp (AT response only)

first quadlet

cmd=0 reqCount=8 or 162’b
00

third quadlet

fourth quadlet

second quadlet

key=
3’h2
Copyright © 1996,1997 All rights reserved. Page 65

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

roller
roller. It

 the
into
t is
urs.

-2

00

egin-

be pro-

ket.
are
cks
7.1.3 OUTPUT_LAST descriptor

The OUTPUT_LAST command descriptor is used to specify a host memory buffer from which the AT DMA cont
will insert bytes into the appropriate transmit FIFO. This command indicates the end of a packet to the Host Cont
has the following format.

Figure 7-3 — OUTPUT_LAST descriptor format

Table 7-3 — OUTPUT_LAST descriptor element summary

Element Bits Description

cmd 4 Set to 4’h1 for OUTPUT_LAST.

key 3 Set to 3’h0 for OUTPUT_LAST.

p 1 Ping Timing. A 1 indicates that this is a ping packet. A ping packet is used to discern
round-trip time of transmitting a packet to another node. The timeStamp value written
this descriptor for a ping packet shall be the time from when the last bit of the packe
transmitted from the link to the PHY until either data is received or a subaction gap occ
For more information on ping timing, see section 7.1.5.3.2.

A 0 indicates that this is not a ping packet.

i 2 Interrupt control. Options:
2’b11 - Always interrupt upon command completion.
2’b01 - Interrupt only if did not receive an ack_complete or ack_pending. See table 3
for a list of possible ack_ and evt_ values.
2’b00 - Never interrupt.

Specifying a value of 2’b10 will result in unspecified behavior.

b 2 Branch control. Software must set this field to 2’b11. Values of 2’b10, 2’b01, and 2’b
will result in unspecified behavior.

reqCount 16 Request Count: The number of transmit packet bytes described by this descriptor, b
ning at dataAddress.

dataAddress 32 Address of transferred data. dataAddress has no alignment restrictions.

branchAddress 28 16-byte aligned address of the next descriptor. A valid host memory address must
vided in this field unless the Z field is 0.

Z 4 This field indicates the number of 16-byte command blocks that comprise the next pac
If this is the last descriptor in the list, the Z value must be 0. Otherwise, valid values
2 to 8. Note that each *-Immediate command descriptor is counted as two 16-byte blo
and each non-immediate command is counted as one 16-byte block.

3’h0
key=cmd=1 reqCount

dataAddress

xferStatus

2’b
11

branchAddress Z

i

timeStamp (AT requests only)

p

Page 66 Copyright © 1996,1997 All rights reserved.

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

he

ate
xferStatus 16 Written with ContextControl [15:0] after descriptor is processed.

timeStamp 16 For ATrequest packets that are not ping packets, this field is written by hardware to
indicate the transmission time of the packet. This transmission timestamp contains t
three low order bits of cycleSeconds and all 13 bits of cycleCount. See section 5.12,
“Isochronous Cycle Timer Register” for information about those two fields.
For AT request packets that are ping packets, this field is written by hardware to indic
the measured ping duration in units of 49.152 MHz clocks. See section 7.1.5.3.2 for
information about this duration value.
For AT response packets, timeStamp is not valid (response descriptor blocks use a
timestamp in the *-Immediate descriptor).
For further information on the use of the timeStamp field, see section 7.1.5.3.

Table 7-3 — OUTPUT_LAST descriptor element summary

Element Bits Description
Copyright © 1996,1997 All rights reserved. Page 67

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

mation
roller. It

 the
into
t is
urs.

-2

00

 byte

 of

be pro-

ket.
are
cks
7.1.4 OUTPUT_LAST_Immediate descriptor

The OUTPUT_LAST-Immediate command descriptor is used to specify two to four quadlets of packet header infor
to be inserted into the appropriate transmit FIFO. This command indicates the end of a packet to the Host Cont
has the following format.

Figure 7-4 — OUTPUT_LAST-Immediate descriptor format

Table 7-4 — OUTPUT_LAST-Immediate descriptor element summary

Element Bits Description

cmd 4 Set to 4’h1 for OUTPUT_LAST-Immediate.

key 3 Set to 3’h2 for OUTPUT_LAST-Immediate.

p 1 Ping Timing. A 1 indicates that this is a ping packet. A ping packet is used to discern
round-trip time of transmitting a packet to another node. The timeStamp value written
this descriptor for a ping packet shall be the time from when the last bit of the packe
transmitted from the link to the PHY until either data is received or a subaction gap occ
For more information on ping timing, see section 7.1.5.3.2.

A 0 indicates that this is not a ping packet.

i 2 Interrupt control. Options:
2’b11 - Always interrupt upon command completion.
2’b01 - Interrupt only if did not receive an ack_complete or ack_pending. See table 3
for a list of possible ack and evt values.
2’b00 - Never interrupt.

Specifying a value of 2’b10 will result in unspecified behavior.

b 2 Branch control. Software must set this field to 2’b11. Values of 2’b10, 2’b01, and 2’b
will result in unspecified behavior.

reqCount 16 Request Count: The number of transmit packet bytes immediately following the 16th
of this descriptor. Valid values are 8(two quadlets), 12(three quadlets) and 16(four
quadlets). Specifying any other values will result in unspecified behavior. Regardless
the reqCount value, this descriptor is always 32 bytes long.

branchAddress 28 16-byte aligned address of the next descriptor. A valid host memory address must
vided in this field unless the Z field is 0.

Z 4 This field indicates the number of 16-byte command blocks that comprise the next pac
If this is the last descriptor in the list, the Z value must be 0. Otherwise, valid values
2 to 8. Note that each *-Immediate command descriptor is counted as two 16-byte blo
and each non-immediate command is counted as one 16-byte block.

xferStatus 16 Written with ContextControl [15:0] after descriptor is processed.

first quadlet

cmd=1 reqCount=8, 12 or 16

xferStatus

2’b
11

timeStamp

third quadlet

fourth quadlet

second quadlet

key=
3’h2

branchAddress Z

ip
Page 68 Copyright © 1996,1997 All rights reserved.

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

 or for
value of

he

ate

the
The OUTPUT_LAST-Immediate command will be used to specify information that is protected by the header CRC
sending a PHY packet. OUTPUT_LAST-Immediate command descriptors are 32-bytes in length regardless of the
reqCount and are counted as two 16-byte aligned blocks when calculating the Z value.

timeStamp 16 For ATrequest packets that are not ping packets, this field is written by hardware to
indicate the transmission time of the packet. This transmission timestamp contains t
three low order bits of cycleSeconds and all 13 bits of cycleCount. See section 5.12,
“Isochronous Cycle Timer Register” for information about those two fields.
For AT request packets that are ping packets, this field is written by hardware to indic
the measured ping duration in units of 49.152 MHz clocks. See section 7.1.5.3.2 for
information about this duration value.
For ATresponse packets, this field is written by software to indicate a time after which
packet should not be transmitted. This time is expressed in the same
cycleSeconds/cycleCount format as for request packets that are not ping packets.
For further information on the use of the timeStamp field, see section 7.1.5.3.

first, second, third, and
fourth quadlets

128 Data quadlets to be inserted into the applicable FIFO.

Table 7-4 — OUTPUT_LAST-Immediate descriptor element summary

Element Bits Description
Copyright © 1996,1997 All rights reserved. Page 69

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

iency. Z

mits the
ring a
nly the
ignored

 in Z=0
g this is

ontext-
7.1.5 AT DMA descriptor usage

Fields in the command descriptor are further described below.

7.1.5.1 Command.Z

The Z value is used by the Host Controller to enable several descriptors to be fetched at once, for improved effic
values must always be encoded correctly. The contiguous descriptors described by a Z value are called adescriptor block.
The following table summarizes all legal Z values for the Asynchronous Transmit contexts:

A single packet that is to be transmitted must be entirely described by one descriptor block. This requirement per
Host Controller to prefetch all the descriptors for a packet, in order to avoid fetching additional descriptors du
packet transfer. The branch address+Z allows the Host Controller to learn the Z value of the next block. O
OUTPUT_LAST* descriptor shall specify a branch address+Z for the next packet. BranchAddress+Z values are
in all OUTPUT_MORE* descriptors, and should not be specified.

All DMA context programs must use a Z = 0 command to indicate the end of the program. A program which ends
can be appended to while the DMA runs, even if the DMA has already reached the end. The mechanism for doin
described in section 3.2.1.2.

7.1.5.2 Command.xferStatus

Upon the transmission completion of a packet, the 16 least significant bits of the current contents of the DMA C
Control register are written to the completed packet’s OUTPUT_LAST* descriptor’s Command.xferStatus field. See
section 7.2.2 for the contents of this field.

7.1.5.3 Command.timeStamp

The timeStamp field is encoded as follows:

Table 7-5 — Z value encoding

Z value Use

0 Indicates that the current descriptor is the last descriptor in the context program.

1 reserved. (Since all descriptor blocks must start with a *-Immediate command, they are
by definition a minimum of two 16-byte blocks in size.)

2-8 Indicates that two to eight 16-byte aligned blocks starting at branchAddress are
physically contiguous and specify a single packet. Note that the 32-byte *-Immediate
command descriptors must be counted as two 16-byte blocks when calculating the Z
value.

9-15 reserved

Figure 7-5 — timeStamp format

cycle
Seconds

15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

cycleCount
Page 70 Copyright © 1996,1997 All rights reserved.

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

o permit
the 1394
onding
 written

itration.
hronous

one by
 done by
nse.

o
mber of

om the
rt with
liest of
ardized

nsfer

rned by
eat the

hat time.
e.

h counts
 attempt
termine
7.1.5.3.1 timeStamp value for Requests

An asynchronous transmit request packet may initiate a transaction which should complete by a specific time. T
host software to know when such a transaction began (i.e., when the request was successfully transmitted on
bus) the Host Controller shall write the timeStamp value in each OUTPUT_LAST* descriptor when the corresp
ack is received. If no ack is received, timeStamp will be written when the ack timeout occurs. TimeStamp shall be
in the same host bus operation in which xferStatus is written.

Note that a transmit request packet may sit in the transmit FIFO for some time before the PHY wins normal arb
This delay is usually brief, but could be over 200 cycles (over 25 milliseconds) in the case of a bus with 80% isoc
traffic and 63 nodes each sending maximum-size asynchronous packets as often as possible.

7.1.5.3.2 timeStamp value for Ping Requests

Pinging is used to discern the round-trip time of transmitting a packet to another node. In IEEE 1394-1995 this is d
transmitting a packet to a node and timing how long it takes to receive the corresponding ack. In P1394a, this is
transmitting a Ping packet to a node and timing how long it takes to receive that node’s self-ID packet as a respo

To achieve pinging with OpenHCI, software sets thep bit in the packet’s OUTPUT_LAST* command descriptor t
indicate it is a ping packet. The Host Controller shall transmit the packet and track the timing based on the nu
49.152MHz clocks, and shall place the final result in the descriptor’s timeStamp field.

The Ping timer begins counting from zero immediately after the last bit of each transmitted packet is delivered fr
link to the PHY. (For controllers that implement the P1394a standardized PHY/Link interface, the timer would sta
the first HOLD or IDLE driven by the link after each transmitted packet.) The Ping timer stops counting at the ear
either data reception or an indication of a subaction gap. (For controllers that implement the P1394a stand
PHY/Link interface, the timer stops with the first of either a RECEIVE indication from the PHY, or a STATUS tra
indicating a subaction gap.)

Aside from the difference in meaning of the timeStamp field when an OUTPUT_LAST has thep bit enabled, all other
behaviors of the AT Request DMA context remain unchanged for the packet. For example, if an ack_busy* is retu
the destination node, the AT Request DMA shall perform its normal retry behavior. Each retried transfer shall rep
ping timing, with the last attempt reported to the AT Request DMA command descriptor.

7.1.5.3.3 timeStamp value for Responses

Typically, asynchronous transmit response packets expire at a certain time and should not be transmitted after t
A timeStamp value can be placed in the first OUTPUT_* descriptor for such packets to indicate the expiration tim

The timeStamp used for asynchronous transmit contains a 3-bit seconds field and a 13-bit cycle number whic
modulo 8000. Before an asynchronous response is put into the transmit FIFO, whether for the initial transmission
or for a retry attempt, this timeStamp value is compared to the current cycleTimer. This comparison is used to de
whether or not the packet will be sent or rejected as being too old.

Table 7-6 — timeStamp description

Field Bits Description

cycleSeconds 3 Low order three bits of the seven-bit isochronous cycle timer second count.
Possible values are 0 to 7.

cycleCount 13 Full 13 bits of the 13-bit isochronous cycle timer cycle count.
Possible values are 0 to 7999.
Copyright © 1996,1997 All rights reserved. Page 71

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

 the low

 the
e not 0,
ifference

eStamp
s. This
sult is

e timeout
repended

gative
The comparison is broken into two parts. The first compare is done on the seconds field of the timeStamp and
order three bits of the seconds field in the cycleTimer. The low three bits of cycleTimer.cycleSeconds is subtracted from
the timeStamp.cycleSeconds field using three bit arithmetic. If the most significant bit of the subtraction is 1, then
timeStamp is considered ‘late’ and the packet is rejected. If the most significant bit is 0 but the other two bits ar
then the timeStamp is considered to be for some time in the ‘distant’ future and the packet can be sent. If the d
is 0, then the timeStamp and cycleTimer are referring to the same second so the cycle number portion of the tim
is compared to the cycle number portion of the cycleTimer to determine if the cycle is early, late or matche
comparison is done by subtracting the cycleTimer cycle number from the timeStamp cycle number. If the re
negative, then the time for the packet has passed and the packet is rejected. If the difference is positive and th
value is positive or zero, then the packet can be sent. This subtraction is signed so a sign bit is assumed to be p
to both cycle number values.

NOTE: Shaded entries denote ‘late’ values.

For those entries in the table above which are 000, the cycleTimer.cycleCount field is subtracted from the
timeStamp.cycleCount field. If the result is positive or 0, it indicates that the packet can be sent. If the result is ne
the packet cannot be sent and the status error code is set to evt_timeout.

Table 7-7 — Results of timeStamp.cycleSeconds - cycleTimer.cycleSeconds

timeStamp.seconds

cycleTimer.seconds

000 001 010 011 100 101 110 111

000 000 111 110 101 100 011 010 001

001 001 000 111 110 101 100 011 010

010 010 001 000111 110 101 100 011

011 011 010 001 000111 110 101 100

100 100 011 010 001 000111 110 101

101 101 100 011 010 001 000111 110

110 110 101 100 011 010 001 000111

111 111 110 101 100 011 010 001 000

Table 7-8 — timeStamp.cycleCount-cycleTime.cycleCount Example 1

timeStamp.cycleCount cycleTime.cycleCount difference action

14’h0FA0 14’h0F9E 14’h0002 send packet

14’h0FA0 14’h0F9F 14’h0001 send packet

14’h0FA0 14’h0FA0 14’h0000 send packet

14’h0FA0 14’h0FA1 14’h3FFF reject packet

Table 7-9 — timeStamp.cycleCount-cycleTime.cycleCount Example 2

timeStamp.cycleCount cycleTime.cycleCount difference action

14’h1000 14’h0FFE 14’h0002 send packet

14’h1000 14’h0FFF 14’h0001 send packet

14’h1000 14’h1000 14’h0000 send packet

14’h1000 14’h1001 14’h3FFF reject packet
Page 72 Copyright © 1996,1997 All rights reserved.

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

he PHY
 if the
e over
aximum-

rrent (or
te trans-
isochro-

cause the
tion, it

 waits in
e packet’s
, and 63
After a transmit packet has passed the timeStamp check, it may sit in the transmit FIFO for some time before t
wins normal arbitration. The Host Controller does not re-examine the timeStamp while the packet waits, even
descriptor is still active because only part of the packet fits into the FIFO. This delay is usually brief, but could b
200 cycles (over 25 milliseconds) in the case of a bus with 80% isochronous traffic and 63 nodes each sending m
size asynch packets as often as possible.

Software can compute the worst-case FIFO delay based on knowledge of the current node count and the cu
maximum) isochronous load. Software can use this delay to compute an earlier expiration timeStamp to prevent la
mission due to FIFO delay. Using the maximum (not current) isochronous load is advisable, because additional
nous reservations could be made while the packet is waiting in the transmit FIFO.

Because the Host Controller examines the timeStamp before the packet is loaded into the transmit FIFO, and be
packet may remain in the FIFO for some period until the PHY attached to the Host Controller wins normal arbitra
is not possible to guarantee that the packet will not be transmitted after it expires. The maximum time the packet
the FIFO can be computed by software based on dynamic bus parameters, and this time can be factored into th
expiration timeStamp. (Note, this could be over 200 cycles, in unlikely case where 80% of the bus is isochronous
nodes are each sending maximum-size asynch packets.)

Table 7-10 — timeStamp.cycleCount-cycleTime.cycleCount Example 3

timeStamp.cycleCount cycleTime.cycleCount difference action

14’h0000 14’h0000 14’h0000 send packet

14’h0000 14’h0001 14’h3FFF reject packet

...

14’h0000 14’h1000 14’h3000 reject packet

14’h0000 14’h1001 14’h2FFF reject packet

...

14’h0000 14’h1F3E 14’h20C2 reject packet

14’h0000 14’h1F3F 14’h20C1 reject packet
Copyright © 1996,1997 All rights reserved. Page 73

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

r is used
are to

ntext is
ero. The
ysically

s for

turn the
7.2 AT DMA context registers

Each AT DMA context (request and response) has two registers: CommandPtr and ContextControl. CommandPt
by software to tell the Host Controller where the DMA context program begins. ContextControl is used by softw
control the context’s behavior, and is used by hardware to indicate current status.

7.2.1 CommandPtr

The CommandPtr register specifies the address of the context program which will be executed when a DMA co
started. All descriptors are 16-byte aligned, so the four least-significant bits of any descriptor address must be z
four least-significant bits of the CommandPtr register are used to encode a Z value that indicates how many ph
contiguous 16-byte blocks of command descriptors are pointed to by descriptorAddress.

Refer to Section 3.1.2 for a complete description of the CommandPtr register.

7.2.2 ContextControl register (set and clear)

TheContextControlSet andContextControlClear registers contain bits that control options, operational state and statu
a DMA context. Software can set selected bits by writing ones to the corresponding bits in theContextControlSet register.
Software can clear selected bits by writing ones to the corresponding bits in theContextControlClear register. It is not
possible for software to set some bits and clear others in an atomic operation. A read from either register will re
same value.

Figure 7-6 — CommandPtr register format

Figure 7-7 — ContextControl (set and clear) register format

Table 7-11 — ContextControl (set and clear) register description

Field rscu Description

run rscu Refer to section 3.1.1.1 for an explanation of the ContextControl.run bit.

wake rsu Refer to section 3.1.1.2 for an explanation of the ContextControl.wake bit.

dead ru Refer to section 3.1.1.4 for an explanation of the ContextControl.dead bit.

active ru Refer to section 3.1.1.3 for an explanation of the ContextControl.active bit.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

descriptorAddress [31:4] Z

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

event
code

dead
active

wake

run {

reserved-
undefined
Page 74 Copyright © 1996,1997 All rights reserved.

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ST*
re
d, and

hen this

 category,

category,

), the Host

e
 have
(with
busReset
etting

oller (see
ules for

e

ode
X,
7.2.2.1 Writing status back to context command descriptors

Upon OUTPUT_LAST* completion, bits 15-0 of the ContextControl register are written to the OUTPUT_LA
command’sxferStatus field. When Command.xferStatus is written to memory, the active bit is always one. If softwa
prepared the descriptor’s xferStatus.active bit to be zero, this change indicates that the descriptor has been execute
the xferStatus and timeStamp fields have been updated.

7.2.3 Bus Reset

7.2.3.1 Host Controller Behavior for AT

Upon detection of a bus reset, the Host Controller will cease transmission of asynchronous transmit packets. W
occurs there are two possibilities for AT packets that are left in the FIFO.

• Case 1 is when a bus reset occurs after the packet was transmitted but before an ack was received. For this
the link side of the Host Controller will return evt_missing_ack.

• Case 2 is when a bus reset occurs after the packet is placed in the FIFO but before it is transmitted. For this
the link side of the Host Controller may return evt_flushed.

When each context becomes stable (all data transfers have been halted and status writes have been completed
Controller will clear the corresponding ContextControl.active bit.

7.2.3.2 Software Guidelines

When a bus reset occurs, the link side will flush the asynchronous transmit FIFO(s) until the IntEvent.busReset condition
is cleared. Software must make sure however that IntEvent.busResetis not cleared until 1) software has cleared th
ContextControl.run bits for both Asynchronous Transmit contexts, and 2) both Asynchronous Transmit contexts
quiesced and both ContextControl.active fields are zero. This is to ensure that all queued asynchronous packets
potentially stale node numbers) are flushed. Once the contexts are no longer active, software may clear the
interrupt condition, and hardware will stop flushing the asynchronous transmit FIFO(s). Before s
ContextControl.run for either context following a bus reset, software must ensure that NodeID.iDValid is set and that
NodeID.nodeNumber (section 5.10) does not equal 63.

7.3 Fairness

Packets transmitted via the AT Request queue shall abide by the fairness protocol as supported by the Host Contr
section 5.8, “FairnessControl register (optional)”). AT response packets shall be transmitted according to the r
response packets as specified in P1394a.

reserved undefined ru This field is specified as undefined and may contain any value without impacting th
intended processing of this packet.

event code ru Following an OUTPUT_LAST* command, the received ack_ code or an “evt_” error c
is indicated in this field. Possible values are: ack_complete, ack_pending, ack_busy_
ack_busy_A, ack_busy_B, ack_data_error, ack_type_error, evt_tcode_err,
evt_missing_ack, evt_underrun, evt_descriptor_read, evt_data_read,evt_timeout,
evt_flushed and evt_unknown.
See Table 3-2, “Packet event codes,” for descriptions and values for these codes.

Table 7-11 — ContextControl (set and clear) register description

Field rscu Description
Copyright © 1996,1997 All rights reserved. Page 75

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ration of

st insert

sts, it is

e

chronous

 are not
let, and
7.4 AT Retries

The Host Controller will retry busied asynchronous transmit request and response packets based on the configu
the AT Retries register. For a detailed description of the ATRetries register see section 5.4.

Hardware implementations that support dual-phase retry must ignore the retry code provided by software and mu
a retry code as appropriate with the current state of the retry protocol (retry_1, retry_A or retry_B).

7.5 AT Interrupts

Each asynchronous DMA context has one interrupt indication bit in the intEvent register (section 6.1). For reque
the reqTxComplete bit and for responses it is therespTxComplete bit. This interrupt indication bit will be set to one if a
completed OUTPUT_LAST* command has thei field set to 2’b11, or if thei field is set to 2’b01 and transmission of th
packet did not yield an ack_complete or an ack_pending.

7.6 AT Data Formats

There are five basic formats for asynchronous data to be transmitted:

a) no-data packets (used for quadlet read requests and all write responses)

b) quadlet packets (used for quadlet write requests, quadlet read responses and block read requests)

c) block packets (used for lock requests and responses, block write requests and block read responses)

d) PHY packets

e) asynchronous stream packets (tcode 4’hA packets sent during asynchronous period)

All formats are shown below in three sections, asynchronous requests, asynchronous responses, and asyn
streams.

Note that packets to go out over the 1394 wire are constructed from these Host Controller internal formats, and
sent in the exact order as shown in the formats below. For example, destinationID is transmitted in the first quad
source ID is automatically provided and transmitted in the second quadlet.
Page 76 Copyright © 1996,1997 All rights reserved.

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

 second
 packet
riptor’s

rans-
f

00

 its

ay
 for

 can

 or

 as-is

 the

’s
7.6.1 Asynchronous Transmit Requests

7.6.1.1 No-data transmit

The no-data request transmit format is shown below. The first quadlet contains packet control information. The
and third quadlets contain 16-bit destination ID and the 48-bit quadlet-aligned destination offset. Note that this
requires only three quadlets. Therefore when transmitted via an OUTPUT_LAST-Immediate descriptor, the desc
fourth quadlet is unused.

Figure 7-8 — Quadlet read request transmit format

Table 7-12 — Quadlet read request transmit fields

field name bits description

srcBusID 1 Source bus ID selector. If clear, the high order 10 bits of the source_ID field of the t
mitted packet will be 10’h3FF. If set, the high order 10 bits of the source_ID field o
the transmitted packet will be Node_ID.busNumber (see section 5.10).

spd 3 This field indicates the speed at which this packet is to be transmitted. 3’b000 = 1
Mbits/sec, 3’b001 = 200 Mbits/sec, and 3’b010 = 400 Mbits/sec, other values are
reserved.

tLabel 6 This field is the transaction label, which is used to pair up a response packet with
corresponding request packet.

rt 2 The retry code for this packet. Software should set rt to retry_X (2’b01). Hardware m
elect to ignore the software provided retry code and substitute an rt as appropriate
the implemented retry mechanism. I.e., hardware implementing single phase retry
use either the software provided rt or provide the equivalent 2’b01 constant, and
hardware implementing dual phase retry should provide the proper retry_1, retry_A
retry_B code upon transmission.

tCode 4 The transaction code for this packet.

1394 reserved Required by IEEE 1394-1995 to be all zeros. OpenHCI will pass these bits along
and will not verify or modify them.

destinationID 16 This is the concatenation of the 10-bit bus number and the 6-bit node number for
destination of this packet.

destinationOffsetHigh,

destinationOffsetLow

16
32

The concatenation of these two fields addresses a quadlet in the destination node
address space. This address must be quadlet-aligned (modulo 4).

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h4

destinationOffsetHigh

destinationOffsetLow

destinationID

spd rt
1394

sr
cB

us
ID

reserved
Copyright © 1996,1997 All rights reserved. Page 77

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

 second
uadlet
7.6.1.2 Quadlet transmit

The quadlet request transmit formats are shown below. The first quadlet contains packet control information. The
and third quadlets contain 16-bit destination ID and the 48-bit, quadlet-aligned destination offset. For write q
requests the fourth quadlet is the quadlet data.

Figure 7-9 — Quadlet write request transmit format

Figure 7-10 — Block read request transmit format

Table 7-13 — Quadlet transmit fields

field name bits description

srcBusID, spd, tLabel, rt,
tCode, 1394 reserved,
destinationID,
destinationOffsetHigh,
destinationOffsetLow

See Table 7-12.

quadlet data 32 For quadlet write requests this field holds the data to be transferred.

dataLength 16 The number of bytes requested in a block read request.

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h0

destinationOffsetHigh

destinationOffsetLow

quadlet data

destinationID

spd

sr
cB

us
ID

rt

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h5

destinationOffsetHigh

destinationOffsetLow

destinationID

spd

dataLength

sr
cB

us
ID

rt

1394 reserved
Page 78 Copyright © 1996,1997 All rights reserved.

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

 second
ains the
a, if any,
7.6.1.3 Block transmit

The block request transmit formats are shown below. The first quadlet contains packet control information. The
and third quadlets contain the 16-bit destination node ID and the 48-bit destination offset. The fourth quadlet cont
length of the data field and the extended transaction code (all zeros except for lock transactions). The block dat
follows the extended code.

Figure 7-11 — Write request transmit format

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h1

destinationOffsetHigh

destinationOffsetLow

destinationID

spd

dataLength

block data

padding (if needed)

sr
cB

us
ID

rt

1394 reserved
Copyright © 1996,1997 All rights reserved. Page 79

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

e per-

 this
f the

of the
Figure 7-12 — Lock request transmit format

Table 7-14 — Block transmit fields

field name bits description

srcBusID, spd, tLabel, rt,
tCode, 1394 reserved,
destinationID,
destinationOffsetHigh,
destinationOffsetLow

See Table 7-12.

dataLength 16 The number of bytes of data to be transmitted in this packet.

extendedTcode 16 If the tCode indicates a lock transaction, this specifies the actual lock action to b
formed with the data in this packet.

block data The data to be sent. If dataLength==0, no data should be written into the FIFO for
field. Regardless of the destination or source alignment of the data, the first byte o
block must appear in the leftmost byte of the first quadlet.

padding If the dataLength mod 4 is not zero, then zero-value bytes are added onto the end
packet to guarantee that a whole number of quadlets is sent.

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h9

destinationOffsetHigh

destinationOffsetLow

destinationID

spd

dataLength extendedTcode

block data (up to 4 quadlets)

sr
cB

us
ID

rt
Page 80 Copyright © 1996,1997 All rights reserved.

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

should
a that is
let sent.

nd third
Therefore
7.6.1.4 PHY packet transmit

The PHY packet transmit format is shown below. The first quadlet contains packet control information. Software
set spd to S100 (3’b000) for compliance with 1394-1995 and P1394a. The remaining two quadlets contain dat
transmitted without any formatting on the bus. No CRC is appended to the packet, nor is any data in the first quad
This packet is used to send a PHY configuration, Link-on, and P1394a Ping packets.

7.6.2 Asynchronous Transmit Responses

7.6.2.1 No-data transmit

The no-data transmit format is shown below. The first quadlet contains packet control information. The second a
quadlets contain 16-bit destination ID and the response code. Note that this packet requires only three quadlets.
when transmitted via an OUTPUT_LAST-Immediate descriptor, the descriptor’s fourth quadlet is unused.

Figure 7-13 — PHY packet transmit format

Figure 7-14 — Write response transmit format

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tcode=4’hEspd

PHY packet quadlet 1

PHY packet quadlet 2

1394
reserved

1394
reserved

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h2

destinationID

spd

write response transmit format

rCode

sr
cB

us
ID

rt
Copyright © 1996,1997 All rights reserved. Page 81

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

on. The
dlet data

rans-
f

00

 its

ay
 for

 can
ard-

 as-is

 the
7.6.2.2 Quadlet transmit

The quadlet read response transmit format is shown below. The first quadlet contains packet control informati
second and third quadlets contain 16-bit destination ID and the 4-bit response code. The fourth quadlet is the qua
for read responses.

Table 7-15 — Write response transmit fields

field name bits description

srcBusID 1 Source bus ID selector. If clear, the high order 10 bits of the source_ID field of the t
mitted packet will be 10’h3FF. If set, the high order 10 bits of the source_ID field o
the transmitted packet will be Node_ID.busNumber(see section 5.10).

spd 3 This field indicates the speed at which this packet is to be transmitted. 3’b000 = 1
Mbits/sec, 3’b001 = 200 Mbits/sec, and 3’b010 = 400 Mbits/sec, other values are
reserved.

tLabel 6 This field is the transaction label, which is used to pair up a response packet with
corresponding request packet.

rt 2 The retry code for this packet. Software should set rt to retry_X (2’b01). Hardware m
elect to ignore the software provided retry code and substitute an rt as appropriate
the implemented retry mechanism. I.e., hardware implementing single phase retry
use either the software provided rt or provide the equivalent 2’b01 constant, and h
ware implementing dual phase retry should provide the proper retry_1, retry_A or
retry_B code upon transmission.

tCode 4 The transaction code for this packet.

1394 reserved Required by IEEE 1394-1995 to be all zeros. OpenHCI will pass these bits along
and will not verify them or modify them.

destinationID 16 This is the concatenation of the 10-bit bus number and the 6-bit node number for
destination of this packet.

rCode 4 Response code for this response packet.

Figure 7-15 — Quadlet read response transmit format

1394
reserved

1394
reserved

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h6

quadlet data

spd

destinationID rCode

sr
cB

us
ID

rt
Page 82 Copyright © 1996,1997 All rights reserved.

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

 second
h quadlet
he block
7.6.2.3 Block transmit

The block response transmit formats are shown below. The first quadlet contains packet control information. The
and third quadlets contain the 16-bit destination node ID and the response code and reserved data. The fourt
contains the length of the data field and the extended transaction code (all zeros except for lock transactions). T
data, if any, follows the extended code.

Table 7-16 — Quadlet transmit fields

field name bits description

srcBusID, spd, tLabel, rt,
tCode, 1394 reserved,
destinationID, rCode

See Table 7-15.

quadlet data 32 For quadlet read responses, this field holds the data to be transferred.

Figure 7-16 — Block read response transmit format

1394
reserved

1394
reserved

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h7spd

dataLength

block data

destinationID rCode

padding (if needed)

sr
cB

us
ID

rt

1394 reserved
Copyright © 1996,1997 All rights reserved. Page 83

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

e per-

a, the

of the
Figure 7-17 — Lock response transmit format

Table 7-17 — Block transmit fields

field name bits description

srcBusID, spd, tLabel, rt,
tCode, 1394 reserved,
destinationID, rCode

See Table 7-15.

dataLength 16 The number of bytes of data to be transmitted in this packet.

extendedTcode 16 If the tCode indicates a lock transaction, this specifies the actual lock action to b
formed with the data in this packet.

block data The data to be sent. Regardless of the destination or source alignment of the dat
first byte of the block must appear in the leftmost byte of the first quadlet.

padding If the dataLength mod 4 is not zero, then zero-value bytes are added onto the end
packet to guarantee that a whole number of quadlets is sent.

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’hBspd

dataLength extendedTcode

block data (up to 2 quadlets)

destinationID rCode

sr
cB

us
ID

1394
reserved

1394
reserved

rt
Page 84 Copyright © 1996,1997 All rights reserved.

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

) that is
 as such,
o header
nd an
dding is

not sent
rt of the

00

most
ary.

of the
7.6.3 Asynchronous Transmit Streams

An asynchronous stream packet is a packet in the format of an isochronous packet (e.g., using tcode = 4’hA
transmitted during the asynchronous period. It is transmitted via the Asynchronous Transmit Request context and
it is governed by the same fairness rules as other asynchronous packets. This packet format consists of tw
quadlets (as specified in either the OUTPUT_MORE-Immediate or OUTPUT_LAST-Immediate descriptor) a
optional data payload. The data payload in host memory is not required be aligned on a quadlet boundary. Pa
added by the Host Controller if needed. The format is as follows.

Note that packets to go out over the 1394 wire are constructed from this Host Controller internal format, and are
in the exact order as shown above. For example, spd, shown in the first quadlet, is not transmitted at all as pa
asynchronous stream packet header.

Figure 7-18 — Asynchronous stream packet format

Table 7-18 — Asynchronous stream packet fields

field name bits description

spd 3 This field indicates the speed at which this packet is to be transmitted. 3’b000 = 1
Mbits/sec, 3’b001 = 200 Mbits/sec, and 3’b010 = 400 Mbits/sec, other values are
reserved.

tag 2 The data format of the isochronous data (see IEEE 1394 specification)

chanNum 6 The channel number this data is associated with.

tcode 4 The transaction code for this packet.

sy 4 Transaction layer specific synchronization bits.

dataLength 16 Indicates the number of bytes in this packet.

block data The data to be sent with this packet. The first byte of data must appear in the left
byte of the first quadlet. The last quadlet should be padded with zeroes, if necess

padding If the dataLength mod 4 is not zero, then zero-value bytes are added onto the end
packet to guarantee that a whole number of quadlets is sent.

block data

reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

chanNum tcode=4’hA sytag

padding (if needed)

dataLength reserved

spd
Copyright © 1996,1997 All rights reserved. Page 85

Asynchronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97
Page 86 Copyright © 1996,1997 All rights reserved.

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

xplicit
 receive
exts, an
kets into

 context
espon-
quired to

how the
on 3.3.

andled
mory

ommand

 place

,

ring

dless
8. Asynchronous Receive DMA

The Asynchronous Receive DMA controller performs the function of accepting packets for which there is no e
destination. This includes all packets which are accepted by the link module, but are not handled by any other
DMA function. However this does not include cycle start packets. There are two asynchronous receive (AR) cont
AR Request context and an AR Response context. Each context uses a DMA context program to move such pac
memory to be interpreted by the host processor software.

Since the collection of packets that must be handled by the AR contexts may be of widely varying lengths, each
operates inbuffer-fill mode in which multiple packets may be concatenated into the supplied buffers. Software is r
sible for parsing through these buffers and taking the appropriate action required for a packet, and hardware is re
make these buffers parsable.

This chapter describes the AR context program components, how the AR contexts are managed and
Asynchronous Receive controller operates. For information regarding receive FIFO implementation, refer to Secti

8.1 AR DMA Context Programs

The Asynchronous Receive DMA controller consists of two contexts for handling all asynchronous packets not h
by the physical DMA controller. A context program is a list of DMA descriptors used to identify buffers in host me
into which the Host Controller places received asynchronous packets.

The DMA descriptors are 16-bytes in length and must be aligned on a 16-byte boundary. There is one type of c
descriptor used in an AR context program: INPUT_MORE.

8.1.1 INPUT_MORE descriptor

The INPUT_MORE command descriptor is used to specify a host memory buffer into which the AR controller will
the received asynchronous packets from the Host Controller receive FIFO. It has the following format.

Figure 8-1 — INPUT_MORE descriptor format

Table 8-1 — INPUT_MORE descriptor element summary

Element Bits Description

cmd 4 Software must set this field in all AR command descriptors to 4’h2 for INPUT_MORE
and hardware may assume that all AR descriptors are INPUT_MORE commands.
This indicates to the AR controller that this descriptor contains a buffer address for sto
received asynchronous packets.

s 1 Status control. Software must set this field to 1. Hardware always writes status regar
of the setting of this bit.

key 3 This field must be set to 3’b0.

dataAddress

Z

cmd=
4’h2

s=
1 i reqCount

resCountxferStatus

branchAddress

2’b
11

key=
3’b0
Copyright © 1996,1997 All rights reserved. Page 87

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

scriptor,
mand

ethod by
less of

rrent Z

t.

ner-

not

00

ount

t

 this

 set

ated
t of

g.”
Note that the Command.resCount and Command.xferStatus fields are updated in an indivisible operation.

8.1.2 AR DMA descriptor usage

An asynchronous receive context program consists of one or more INPUT_MORE command descriptors. Each de
other than the final one, must provide a branchAddress with a Z value of 1 for the next block. The final com
descriptor must have a Z value of 0 to indicate the end of the context program. Section 3.2.1.2 describes a safe m
which additional INPUT_MORE command descriptors may be appended to an active DMA program, regard
whether or not the AR DMA has reached the final command descriptor.

Software may only modify a (non-completed) descriptor that may have been prefetched if a) the descriptor’s cu
value is 0, and b) only the branchAddress and Z fields of the descriptor are modified.

i 2 Interrupt control. Valid values are 2’b11 to generate an IntEvent.ARRQ or IntEvent.ARRS
interrupt when the descriptor is completed (see section 6.1), or 2’b00 for no interrup
Behavior is unspecified if set to 2’b01 or 2’b10.

Note that in addition to the per-descriptor (buffer) interrupts, interrupts can also be ge
ated on a per-packet basis for each complete packet received using the IntEvent.RQPkt
and IntEvent.RSPkt interrupts described in section 6.1. These per-packet interrupts are
affected by the setting of thei bit in an INPUT_MORE descriptor.

b 2 Branch control. Software must set this field to 2’b11. Values of 2’b10, 2’b01, and 2’b
will result in unspecified behavior.

reqCount 16 Request count: The size in bytes of the input buffer pointed to by dataAddress. ReqC
must be a multiple of 4 (representing a whole number of quadlets).

dataAddress 32 Host memory address of receive buffer. This address must be aligned on a quadle
boundary.

branchAddress 28 16-byte aligned address of the next descriptor. A valid address must be provided in
field unless the Z field is 0.

Z 4 Z may be set to 0 or 1. If this is the last descriptor in the context program, Z must be
to 0, otherwise it must be set to 1.

xferStatus 16 Written with ContextControl [15:0] whenever resCount is updated.

resCount 16 Residual count: while this descriptor is in-use by the Host Controller, resCount is upd
each time a packet is written to the receive buffer to indicate the number of bytes (ou
a max of reqCount) which have not been filled with received data.
For further information on resCount see section 8.4.2, “AR DMA Controller processin

Table 8-1 — INPUT_MORE descriptor element summary

Element Bits Description
Page 88 Copyright © 1996,1997 All rights reserved.

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

e prepared
 buffer-
 out into
er, the
straddle
mode,

 register.
ntrol is

ntext is
ero. The
Receive)
here are
8.2 bufferFill mode

Received asynchronous packets can be either solicited responses or unsolicited requests. Since software must b
to handle several packets of variable size, the Asynchronous Receive DMA contexts operate in bufferFill mode. In
Fill mode, all received packets are concatenated into a contiguous stream of data. This data is then metered
buffers described by a DMA context program, filling each buffer completely. As each packet is put into a buff
descriptor’s resCount is updated to reflect the number of remaining bytes available in the buffer. Packets may
multiple buffers in this mode (see packet 2 in the illustration below). In addition to the overall concept of bufferFill
there are several nuances for Asynchronous receive which are described in detail in section 8.4.2.

8.3 Asynchronous Receive Context Registers

The AR request context and AR response context each have a CommandPtr register and a ContextControl
CommandPtr is used by software to tell the Host Controller where the DMA context program begins. ContextCo
used by software to control the context’s behavior, and is used by hardware to indicate current status.

8.3.1 AR DMA CommandPtr register

The CommandPtr register specifies the address of the context program which will be executed when a DMA co
started. All descriptors are 16-byte aligned, so the four least-significant bits of any descriptor address must be z
least-significant bit of the CommandPtr register is used to encode a Z value. For each AR context (Request and
Z may be either 1 to indicate that descriptorAddress points to a valid command descriptor, or 0 to indicate that t
no descriptors in the context program.

Refer to section 3.1.2 for a full description of the CommandPtr register.

Figure 8-2 — bufferFill receive mode

Figure 8-3 — CommandPtr register format

et 2 packet 3

MORE s key=0 i b=3 reqCount

dataAddress

Z=1

resCount=0xferStatus

branchAddress

MORE s key=0 i b=3 reqCount

dataAddress

Z=1

resCountxferStatus

branchAddress

packet 1 pack

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

descriptorAddress [31:4] Z
Copyright © 1996,1997 All rights reserved. Page 89

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

tatus

ill return

re
ter) and
 in both
 a node

interrela-
ronous

b000
s

s are:
8.3.2 AR ContextControl register (set and clear)

The ContextControlSet andContextControlClear registers contain bits that control options, operational state, and s
for a DMA context. Software can set selected bits by writing ones to the corresponding bits in theContextControlSet
register. Software can clear selected bits by writing ones to the corresponding bits in theContextControlClear register. It
is not possible for software to set some bits and clear others in an atomic operation. A read from either register w
the same value and is referred to as theContextControlStatus register.

8.4 AR DMA Controller

8.4.1 Asynchronous Filter Registers

Software can control from which nodes it will receiverequest packets by utilizing the asynchronous filter registers. The
are two registers, one for filtering out all requests from a specified set of nodes (AsynchronousRequestFilter regis
one for filtering out physical requests from a specified set of nodes (PhysicalRequestFilter register). The settings
registers have a direct impact on how the AR Request context is used, e.g., disabling only physical receives from
will cause all request packets from that node to be routed to the AR Request context buffer(s). The usage and
tionship between these registers is fully described in section 5.13, “Asynchronous Request Filters.” Asynch
response packets are never filtered.

Figure 8-4 — AR ContextControl (set and clear) register format

Table 8-2 — AR ContextControl (set and clear) register description

Field RSC Description

run rscu Refer to section 3.1.1.1 for an explanation of the ContextControl.run bit.

wake rsu Refer to section 3.1.1.2 for an explanation of the ContextControl.wake bit.

dead ru Refer to section 3.1.1.4 for an explanation of the ContextControl.dead bit.

active ru Refer to section 3.1.1.3 for an explanation of the ContextControl.active bit.

spd ru This field indicates the speed at which the last packet was received by this context. 3’
= 100 Mbits/sec, 3’b001 = 200 Mbits/sec and 3’b010 = 400 Mbits/sec. All other value
are reserved.
Software should not attempt to interpret the contents of this field while the
ContextControl.active or ContextControl.wake bits are set.

event code ru The packet ack_ code or an “evt_” error code is indicated in this field. Possible value
ack_complete, ack_pending, ack_type_error, evt_descriptor_read, evt_data_write,
evt_bus_reset, evt_unknown, and evt_no_status.
See Table 3-2, “Packet event codes,” for descriptions and values for these codes.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 6 5 4 3 2 1 0

dead
active

wake

run

event
code

spd

9 810 7
Page 90 Copyright © 1996,1997 All rights reserved.

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

on, into
ss context

h for
d
uirement

3.3).

 allocated
Failure to
t is out of

are three

llowed

must not
 a good

ORE

ntroller
t)). Note

equest
ever, the
more than
e shown
s to the

n the

e next
e the

to the
where
nger

e first

ntaining
nly use

at if the
8.4.2 AR DMA Controller processing

The AR DMA controller writes the entire packet, as described in the Asynchronous Receive Data Formats secti
memory for software to process. This includes the packet header and packet reception status. Data chaining acro
commands is supported.

For the AR request context, command.reqCount should always be set to at least the maximum possible packet lengt
an asynchronous packet as specified in the max_rec field of the bus_info_block,plus five quadlets for the header an
trailer (2^(max_rec+1) + 20 bytes). This means a single packet can cross at most one buffer boundary. This req
also makes it easier for the Host Controller implementation to combine asynchronous receive FIFO’s (see section

When the host software transmits an asynchronous request, it must first ensure that there is enough buffer space
in the AR response context’s context program to receive the response packet including headers and timestamp.
preallocate this space may result in the hardware discarding responses that arrive when the AR response contex
descriptors even though ack_complete may have been sent to the source node.

Since the AR request context and AR response context buffers must always be parseable by software there
essential requirements.

a) The Host Controller must write a packet into a buffer(s) by first writing the asynchronous packet header, fo
by the packet data, followed by a packet trailer.

b) Requests or responses with data-length errors, CRC errors, FIFO overrun errors or buffer overrun errors
be presented to the software. Although the host memory buffers may have been written in anticipation of
packet, the xferStatus and resCount will not be updated. This in effect “backs out” the packet.

c) After each packet is written into the buffer(s), hardware must update the resCount for the INPUT_M
descriptor(s) for the buffer(s), to accurately reflect the number of unused bytes remaining.

Software must initialize resCount to the value of reqCount. Upon the first packet arrival into a buffer, the Host Co
must write the appropriate residual count, based on (resCount - (packetHeaderLen + dataLength + statusquadle
that neither the header CRC nor data CRC quadlets are inserted into the buffer.

As depicted in figure 8-2 on page 89, it is possible for a received packet to straddle multiple buffers. For the AR R
context, the buffer size requirements (mentioned above) ensure that a packet can only straddle two buffers. How
AR Response context does not have a buffer size requirement and therefore AR response packets may straddle
two buffers. To ensure that the receive buffers for a context remain parsable, hardware must follow the procedur
below. (First buffer refers to the buffer receiving the first byte of the packet or packet header, and final buffer refer
buffer receiving the last byte of the packet or packet trailer.)

1) After filling to the end of a buffer with a partial packet, advance to the next descriptor block and obtai
next buffer (dataAddress), retaining all state for the first buffer as well as for the new buffer.

2) Continue writing packet bytes into the new buffer. If the end of the buffer is reached, advance to th
buffer without updating xferStatus and without retaining state for it or any other interim buffers. Writ
remaining packet bytes into the final buffer (for the packet).

3) If there is no error: 1) write the trailer quadlet into the final buffer, 2) update xferStatus and resCount in
final buffer’s descriptor, and 3) update xferStatus and resCount into the first buffer’s descriptor (
xferStatus is the current value of ContextControl[15:0]). At that point the first buffer’s state is no lo
needed.

4) If there is an error, then the packet must be ‘backed-out’ by reverting back to the previous state of th
buffer (as saved earlier). XferStatus and resCount arenot updated for either descriptor.

By following these steps, the AR context buffers remain intact and can be parsed. Since interim buffers (those co
an inner portion of one packet) for the AR Response context will not have their status updated, software must o
resCount values when the corresponding xferStatus indicates the active bit is set to one. It follows from this th
xferStatus.activebit is set in a descriptor, then all prior descriptors have been filled.
Copyright © 1996,1997 All rights reserved. Page 91

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ndition
 an AR
ting of
tion, it

cked-out”

sary since
Request
8.4.2.1 AR DMA Packet Trailer

The trailer quadlet written by the Host Controller at the end of each packet has the following format.

8.4.2.2 Error Handling

Packets resulting in an ack_data_error will, in effect, not go into an AR DMA buffer. Since an ack_data_error co
is not known until all data (plus data CRC) has arrived, many “corrupted” data bytes may have been moved into
DMA buffer by the time the error situation is discovered. In this circumstance, hardware is required to halt its wri
the packet into the AR DMA buffer without updating the resCount field. By not advancing the residual count loca
will appear as though the packet never was written into the AR DMA buffer at all.

Similarly, if a bus reset occurs after a packet has been received but before the ack is sent, the packet may be “ba
of the buffer(s) as described for ack_data_error above.

8.4.2.3 Bus Reset Packet

To assist software in determining which asynchronous request packets arrived before and after a bus reset, neces
node numbers may have changed, the Host Controller inserts a synthesized PHY packet into the AR DMA
Context buffer (if active) as soon as a bus reset condition is detected. This packet has the following format.

Figure 8-5 — AR DMA packet trailer format

Table 8-3 — AR DMA trailer fields

field name bits description

xferStatus 16 Written with ContextControl[15:0].

timeStamp 16 The low order 3 bits of cycleTimer.cycleSeconds and the full 13 bits of
cycleTimer.cycleCount at some time during receipt of the packet.

Figure 8-6 — AR Request Context Bus Reset packet format

timeStampxferStatus

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tcode=4’hE 4’h0

reserved undefined3’h0 event = 5’h09

selfIDGeneration

reserved undefined
Page 92 Copyright © 1996,1997 All rights reserved.

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

is set to
 resets by
en a bus
ame as

result in

et when
acket, the

host
cket is no

uadlet
 shown

ket that

he receive
use the
pletion
e

Software can distinguish the bus-reset packet from authentic PHY packets by the value of eventCode which
evt_bus_reset. Software can further interpret and coordinate received asynchronous packets across multiple bus
using the selfIDGeneration number provided in the bus-reset packet. Since the bus-reset packet is fabricated wh
reset is initially detected, the selfIDGeneration number is for the new (not previous) generation and will be the s
the selfIDGeneration number in the SelfIDCount register as well as in the selfID buffer.

If more than one bus reset has occurred without any intervening packets, then only the “last” one is required to
a synthesized bus-reset packet.

If the input FIFO is full when a bus reset occurs, the link side of the FIFO must later insert the bus-reset pack
space becomes available. If the AR DMA request context does not have enough buffer space for the bus-reset p
packet shall be synthesized once buffer space becomes available.

The bus reset interrupt (IntEvent.busReset) is independent of the time when this packet goes from the FIFO into a
buffer. This interrupt shall occur as soon as possible after a bus reset has been detected. The bus-reset pa
different from any other packet going into the AR Request buffer in that IntEvent.RQPkt will be generated like it would
for other packets.

8.5 PHY Packets

PHY packets will be received by asynchronous receive DMA if LinkControl.rcvPhyPktis 1, and will be received by the
AR Request context. PHY packets in the AR Request context will include the phy packet’s “logical inverse” q
which must be verified by software to be the logical inverse of the previous quadlet. The format of this packet is
in section 8.7.1.4.

A packet is treated as a PHY packet if it is two quadlets and fails the CRC check. This includes any Self-ID pac
arrives outside of the Self-ID phase of bus initialization.

8.6 Asynchronous Receive Interrupts

There are two interrupts for each context (request and response) that software can use to gauge the usage of t
buffers. If software needs to be informed of the arrival of each packet being sent to the context buffers, it can
RQPkt or RSPkt interrupts in the IntEvent register (see section 6.1). If software needs to be informed of the com
of a buffer, it can set the context command.i field to 2’b11, which will trigger either the ARRQ or ARRS interrupt in th
IntEvent register.

Table 8-4 — AR Request Context Bus Reset packet description

Field bits a) Description

tcode 4 Set to 4’hE to indicate a PHY packet.

selfIDGeneration 8 The selfIDCount.selfIDGeneration value at the time this packet is created.

reserved undefined 8 +
16

This field is specified as undefined and may contain any value without impacting the
intended processing of this packet.

eventCode 5 A value of 5’h09 (evt_bus_reset) identifies this as a synthesized bus_reset packet.
Copyright © 1996,1997 All rights reserved. Page 93

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

tandard.

e-

 its

 as

pace.

ceived.

e per-

, the

 the
8.7 Asynchronous Receive Data Formats

The Host Controller shall only receive packets which have tcodes that are defined by an approved IEEE 1394 s
Packets with undefined tcodes will be dropped.

There are four basic formats for asynchronous data to be received:

a) no-data packets (used for quadlet read requests and all write responses)

b) quadlet packets (used for quadlet write requests, quadlet read responses, and block read requests)

c) block packets (used for lock requests and responses, block write requests, and block read responses)

d) PHY packets

The names and descriptions of the fields in the received data are given in table 8-5.

Table 8-5 — Asynch receive fields

field name bits description

destinationID 16 This field is the concatenation of busNumber (or all ones for “local bus”) and nod
Number (or all ones for broadcast) for this node.

tLabel 6 This field is the transaction label, which is used to pair up a response packet with
corresponding request packet.

rt 2 The retry code for this packet. 00=retry1, 01=retryX, 10=retryA, 11=retryB

tCode 4 The transaction code for this packet.

1394 reserved Required by IEEE 1394-1995 to be all zeros. OpenHCI will pass these bits along
received and will not verify or modify them.

sourceID 16 This is the node ID (bus number + node number) of the sender of this packet.

destinationOffsetHigh,

destinationOffsetLow

16
32

The concatenation of these two fields addresses a quadlet in this node’s address s
This address must be quadlet-aligned (modulo 4).

rCode 4 Response code for response packets.

quadlet data 32 For quadlet write requests and quadlet read responses, this field holds the data re

dataLength 16 The number of bytes of data to be received in a block packet.

extendedTcode 16 If the tCode indicates a lock transaction, this specifies the actual lock action to b
formed with the data in this packet.

block data The data received. Regardless of the destination or source alignment of the data
first byte of the block will appear in the leftmost byte of the first quadlet.

padding If the dataLength mod 4 is not zero, then bytes have been added onto the end of
packet by the transmitting node to guarantee that a whole number of quadlets is
received.

xferStatus 16 Written with ContextControl[15:0].

timeStamp 16 The low order 3 bits of cycleTimer.cycleSeconds and the full 13 bits of
cycleTimer.cycleCount at some time during receipt of the packet.
Page 94 Copyright © 1996,1997 All rights reserved.

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

e packet
 The last

e packet
set. The
requests.
8.7.1 Asynchronous Receive Requests

8.7.1.1 No-data receive

The no-data receive format is shown below. The first quadlet contains the destination node ID and the rest of th
header. The second and third quadlets contain 16-bit source ID and the 48-bit, quadlet-aligned destination offset.
quadlet contains packet reception status.

8.7.1.2 Quadlet Receive

The quadlet receive formats are shown below. The first quadlet contains the destination node ID and the rest of th
header. The second and third quadlets contain 16-bit source ID and the 48-bit, quadlet-aligned destination off
fourth quadlet is the quadlet data for write quadlet requests, and is the data length and reserved for block read
The last quadlet contains packet reception status.

Figure 8-7 — Quadlet read request receive format

Figure 8-8 — Quadlet write request receive format

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h4

destinationOffsetHigh

destinationOffsetLow

sourceID

rtdestinationID

xferStatus timeStamp

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h0

destinationOffsetHigh

destinationOffsetLow

quadlet data

destinationID rt

sourceID

1394
reserved

xferStatus timeStamp
Copyright © 1996,1997 All rights reserved. Page 95

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97
Figure 8-9 — Block read request receive format

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h5

destinationOffsetHigh

destinationOffsetLow

destinationID rt

dataLength

sourceID

xferStatus timeStamp

1394
reserved
Page 96 Copyright © 1996,1997 All rights reserved.

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

e packet
 quadlet
he block
8.7.1.3 Block receive

The block receive formats are shown below. The first quadlet contains the destination node ID and the rest of th
header. The second and third quadlets contain the 16-bit source ID and the 48-bit destination offset. The fourth
contains the length of the data field and the extended transaction code (all zeros except for lock transactions). T
data, if any, follows the extended Tcode. The last quadlet contains packet reception status.

Figure 8-10 — Block write request receive format

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h1

destinationOffsetHigh

destinationOffsetLow

destinationID rt

dataLength

block data

sourceID

padding (if needed)

xferStatus timeStamp

1394 reserved
Copyright © 1996,1997 All rights reserved. Page 97

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

tCode of
 quadlet.
fourth)
8.7.1.4 PHY packet receive

The PHY packet receive format is shown below. The first quadlet contains a synthesized packet header with a
4’hE. The second quadlet contains the PHY quadlet and the third quadlet contains the inverse of the previous
Software is required to verify the integrity of the second quadlet by checking it against the third quadlet. The final (
quadlet contains the packet trailer. The value of xferStatus.event shall be evt_no_status for PHY packets.

Figure 8-11 — Lock request receive format

Figure 8-12 — PHY packet receive format

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h9

destinationOffsetHigh

destinationOffsetLow

destinationID rt

dataLength extendedTcode

block data

sourceID

padding (if needed)

xferStatus timeStamp

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tcode=4’hE 4’h0

PHY packet first quadlet

xferStatus timeStamp

PHY packet second quadlet
Page 98 Copyright © 1996,1997 All rights reserved.

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

e packet
ins packet

e packet
e quadlet
8.7.2 Asynchronous Receive Responses

8.7.2.1 No-data receive

The no-data receive format is shown below. The first quadlet contains the destination node ID and the rest of th
header. The second and third quadlets contain 16-bit source ID and the response code. The last quadlet conta
reception status.

8.7.2.2 Quadlet Receive

The quadlet receive format is shown below. The first quadlet contains the destination node ID and the rest of th
header. The second and third quadlets contain 16-bit source ID and the response code. The fourth quadlet is th
data for read responses. The last quadlet contains packet reception status.

Figure 8-13 — Write response receive format

Figure 8-14 — Quadlet read response receive format

1394
reserved

1394
reserved

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h2destinationID rt

rCodesourceID

xferStatus timeStamp

1394
reserved

1394
reserved

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h6

quadlet data

rtdestinationID

rCodesourceID

xferStatus timeStamp
Copyright © 1996,1997 All rights reserved. Page 99

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

e packet
The fourth
ons). The
8.7.2.3 Block receive

The block receive formats are shown below. The first quadlet contains the destination node ID and the rest of th
header. The second and third quadlets contain the 16-bit source ID and the response code and reserved data.
quadlet contains the length of the data field and the extended transaction code (all zeros except for lock transacti
block data, if any, follows the extended Tcode. The last quadlet contains packet reception status.

Figure 8-15 — Block read response receive format

1394
reserved

1394
reserved

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’h7rt

dataLength

block data

destinationID

rCodesourceID

padding (if needed)

xferStatus timeStamp

1394 reserved
Page 100 Copyright © 1996,1997 All rights reserved.

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97
Figure 8-16 — Lock response receive format

1394
reserved

1394
reserved

1394
reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

tLabel tCode=4’hBrt

dataLength extendedTcode

block data

destinationID

rCodesourceID

padding (if needed)

xferStatus timeStamp
Copyright © 1996,1997 All rights reserved. Page 101

Asynchronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97
Page 102 Copyright © 1996,1997 All rights reserved.

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

imum
xt will

in host
bytes in

ORE,

many ways
packet
ble the

MORE
nd each

d. The
s used
ds, the

without
9. Isochronous Transmit DMA

The Isochronous Transmit DMA (IT DMA) controller has a required minimum of four and an implementation max
of 32 isochronous transmit contexts. Each context is controlled by a DMA context program. Each IT DMA conte
transmit data for a single isochronous channel.

9.1 IT DMA Context Programs

For isochronous transmit DMA, a context program is a list of DMA command descriptors used to identify buffers
memory from which the Host Controller transmits packets onto the 1394 bus. The descriptors are 16- and 32-
length and must be aligned on a 16-byte boundary. There are five IT DMA command descriptors: OUTPUT_M
OUTPUT_MORE-Immediate, OUTPUT_LAST, OUTPUT_LAST-Immediate and STORE_VALUE.

9.1.1 IT DMA command descriptor overview

There are two components to a 1394 isochronous packet, the packet header and the packet data, and there are
in which software may need to organize this information in host memory. To accommodate the variety of
organization, there are four IT DMA descriptor commands used to instruct the Host Controller on how to assem
packets, and one descriptor command for writing a quadlet into host memory for software tracking purposes.

If a packet has two or more data fragments an OUTPUT_MORE-Immediate and possibly some OUTPUT_
commands are used. The OUTPUT_MORE-Immediate command is used to specify the packet header, a
OUTPUT_MORE command allows for the specification of one packet fragment.

To indicate the end of a packet, either the OUTPUT_LAST or OUTPUT_LAST-Immediate command must be use
OUTPUT_LAST command allows for the specification of one data fragment, and the OUTPUT_LAST-Immediate i
to specify a packet solely consisting of an isochronous packet header. Unlike the OUTPUT_MORE comman
OUTPUT_LAST commands indicate to the Host Controller that there is no more data to send for a packet.

The STORE_VALUE command descriptor provides a mechanism for software to monitor progress on a context
using interrupts. This command will write a quadlet to a specified host memory location.
Copyright © 1996,1997 All rights reserved. Page 103

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ecifying

r

9.1.2 OUTPUT_MORE descriptor

The OUTPUT_MORE descriptor is used to specify one data fragment for the packet. It shall not be used for sp
the packet header, and must be preceded by an OUTPUT_MORE-Immediate or another OUTPUT_MORE.

Figure 9-1 — OUTPUT_MORE command descriptor format

Table 9-1 — OUTPUT_MORE descriptor element summary

Element Bits Description

cmd 4 Set to 4’h0 for OUTPUT_MORE.
Identifies one data fragment used to build the packet.

key 3 This field must be set to 3’h0.

b 2 Branch control. Must be set to 2’b00. Behavior is unspecified if set to 2’b01, 2’b10 o
2’b11.

reqCount 16 Request count. The size of the specified buffer in bytes pointed to by dataAddress.

dataAddress 32 Address of transmit buffer. dataAddress has no alignment restrictions.

dataAddress

2’b0 reqCountcmd=0 key=
3’h0
Page 104 Copyright © 1996,1997 All rights reserved.

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ader for
 the data

and are

r

s

ted.
nd

text
cket.

et
9.1.3 OUTPUT_MORE-Immediate descriptor

The OUTPUT_MORE-Immediate descriptor shall be used, and shall only be used, to specify the isochronous he
a non-zero data length packet. This is an efficient way for software to provide the packet header information since
is built into the descriptor and does not need to be fetched from a separate memory buffer.

OUTPUT_MORE-Immediate command descriptors are 32 bytes in length regardless of the value of reqCount,
counted as two 16-byte aligned blocks when calculating the Z value.

Figure 9-2 — OUTPUT_MORE-Immediate descriptor format

Table 9-2 — OUTPUT_MORE-Immediate descriptor element summary

Element Bits Description

cmd 4 Set to 4’h0 for OUTPUT_MORE-Immediate.

key 3 This field must be set to 3’h2.

b 2 Branch control. Must be set to 2’b00. Behavior is unspecified if set to 2’b01, 2’b10 o
2’b11.

reqCount 16 Must be set to 8 to accommodate the IT packet header. Using any other value yield
unspecified results.

skipAddress 28 16-byte aligned address of the next descriptor to be used if a missed cycle is detec
Used only within the first command descriptor in a descriptor block. The first comma
must either have a valid skipAddress, or must set the Z field to 0.

Z 4 Used to indicate the number of descriptors needed for theskipdescriptor block. Z may be
a value from 0 to 8. A zero indicates there is no skipAddress, and the DMA for this con
stops. A value of 1 to 8 indicates that there are 1 to 8 descriptors used in the skip pa

first quadlet
second quadlet

32
32

Quadlets to be inserted into the isochronous transmit FIFO for the isochronous pack
header (see section 9.6).

reqCount = 8

ZskipAddress

key=
3’h2cmd=0 2’b0

first quadlet

second quadlet
Copyright © 1996,1997 All rights reserved. Page 105

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

last data

LAST

T is

tor

ci-

the

ted.

ptor

d is
A

nous
9.1.4 OUTPUT_LAST descriptor

The OUTPUT_LAST descriptor is used to indicate the end of a packet. If reqCount is non-zero, this specifies the
fragment for the packet. It shall not be used for specifying the packet header.

An OUTPUT_LAST with reqCount=0 is used to indicate thatno packet is to be sent for the current cycle. The IT DMA
controller will advance the context to the next descriptor block (branchAddress) for the next cycle. An OUTPUT_
with a reqCount=0 shall not be preceded by any OUTPUT_MORE* descriptors in the descriptor block.

Figure 9-3 — OUTPUT_LAST command descriptor format

Table 9-3 — OUTPUT_LAST descriptor element summary

Element Bits Description

cmd 4 Set to 4’h1 for OUTPUT_LAST.
Each command identifies one data fragment used to build the packet. OUTPUT_LAS
used to signify the end of the isochronous packet to be transmitted.

s 1 Status control. If set to one, xferStatus and timeStamp will be updated upon descrip
completion. If set to zero, neither field is updated.

key 3 This field must be set to 3’h0.

i 2 Interrupt control. Valid values are 2’b11 to generate an IsochTx interrupt when the
descriptor is completed (see section 6.1), or 2’b00 for no interrupt. Behavior is unspe
fied if set to 2’b01 or 2’b10.

b 2 Branch control. This field must be set to 2’b11 to branch to the location specified in
branchAddress field. Behavior is unspecified for all other values.

reqCount 16 Request count: The size of the buffer in bytes pointed to by dataAddress.

dataAddress 32 Address of transmit buffer. dataAddress has no alignment restrictions.

branchAddress 28 16-byte aligned address of the next descriptor. Used only within OUTPUT_LAST*
commands.

skipAddress 16-byte aligned address of the next descriptor to be used if a missed cycle is detec
Used only within the first command descriptor in a descriptor block. OUTPUT_LAST
may only be the first descriptor in a descriptor block when reqCount is 0.

Z 4 Used in OUTPUT_LAST to indicate the number of descriptors needed in thenext
descriptor block. Z may be a value from 0 to 8. A zero indicates this is the last descri
in the list for this IT DMA context. A value of 1 to 8 indicates that there are 1 to 8
descriptors used in the next descriptor block.

xferStatus 16 Written with ContextControl [15:0] after the descriptor is processed if s = 1.

timeStamp 16 Contains the three low order bits of cycleSeconds and all 13 bits of cycleCount, an
written when xferStatus is written. TimeStamp indicates the cycle for which the IT DM
controller queued the transmission of this packet. See section section 5.12, “Isochro
Cycle Timer Register,” for information about cycle* fields.

s i b=
2’b11 reqCount

dataAddress

Z

xferStatus

skip or descriptor branch Address

cmd=1

timeStamp

key=
3’h0
Page 106 Copyright © 1996,1997 All rights reserved.

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

der for a
s of the

lue

ted.

ochro-
9.1.5 OUTPUT_LAST-Immediate descriptor

The OUTPUT_LAST-Immediate descriptor must be used, and must only be used, to specify the isochronous hea
packet with zero data bytes. OUTPUT_LAST-Immediate command descriptors are 32-bytes in length regardles
value of reqCount and are counted as two 16-byte aligned blocks when calculating the Z value.

Figure 9-4 — OUTPUT_LAST-Immediate command descriptor format

Table 9-4 — OUTPUT_LAST-Immediate descriptor element summary

Element Bits Description

cmd, s Same as in Table 9-3.

key 3 This field must be set to 3’h2.

i, b Same as in Table 9-3.

reqCount 16 Must be set to 16’h0008 to accommodate the IT packet header. Using any other va
yields unspecified results.

branchAddress 28 16-byte aligned address of the next descriptor. Used only within OUTPUT_LAST*
commands.

skipAddress 16-byte aligned address of the next descriptor to be used if a missed cycle is detec
Used only within the first command descriptor in a descriptor block.

Z, xferStatus,
timeStamp

Same as in Table 9-3.

quadlets 32*4 The first and second quadlets are used to specify the 2 quadlets required for the is
nous packet header. (See section 9.6).

s i reqCount = 8

Z

xferStatus

skip and descriptor branch Address

cmd=1

timeStamp

key=
3’h2

first quadlet

second quadlet

b=
2’b11
Copyright © 1996,1997 All rights reserved. Page 107

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ecified
nly one
all be

f using
y host

iency. Z

 com-
 con-

 is

d. The
tore

text
cket.
9.1.6 STORE_VALUE descriptor

The STORE_VALUE command descriptor instructs the Host Controller to write a specified 32-bit value to a sp
host memory location. If used, STORE_VALUE must be the first command descriptor in a descriptor block, and o
is permitted per descriptor block. STORE_VALUE must not be the only descriptor in a descriptor block and sh
followed by one or more OUTPUT_* descriptors. It has the following format.

The STORE_VALUE command provides a mechanism for software to monitor a context’s progress independent o
interrupts. For example a running IT context program could perform a STORE_VALUE periodically into a memor
location where software would look to determine the latest IT DMA context progress.

9.1.7 IT DMA descriptor usage

The Z value is used by the Host Controller to enable several descriptors to be fetched at once, for improved effic
values must always be encoded correctly. The contiguous descriptors described by a Z value are called adescriptor block.
The following table summarizes all legal Z values:

Figure 9-5 — STORE_VALUE descriptor

Table 9-5 — STORE_VALUE descriptor element summary

Element Bits Description

cmd 4 Set to 4’h8 for STORE_VALUE.

key 3 This field must be set to 3’h6.

storeDoublet 16 16-bit value to be stored into the quadlet aligned dataAddress upon execution of this
mand. StoreDoublet is written as a 32 bit value, where bits 31:16 are 0’s and bits 15:0
tain the storeDoublet value provided in the descriptor.

dataAddress 32 Quadlet aligned host memory address into which storeDoublet (padded to 32) bits
written.

skipAddress 28 16-byte aligned address of the next descriptor to be used if a missed cycle is detecte
skipAddress must be valid or the Z field must be 0. If the skip address is used, the s
action specified by this descriptor willnot be executed.

Z 4 Used to indicate the number of descriptors needed for theskipdescriptor block. Z may be
a value from 0 to 8. A zero indicates there is no skipAddress, and the DMA for this con
stops. A value of 1 to 8 indicates that there are 1 to 8 descriptors used in the skip pa

Table 9-6 — Z value encoding

Z value Use

0 Indicates that the current descriptor is the last descriptor in the context program.

1-8 Indicates that starting at descriptorAddress, there are one to eight 16-byte aligned
physically contiguous descriptors and descriptor components.

9-15 reserved

dataAddress

cmd=8 storeDoubletkey=
3’h6

ZskipAddress
Page 108 Copyright © 1996,1997 All rights reserved.

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

g to the

r the

to five

not be

nd must
 on the
m of all
are will

T or
ate the
already

riptor to

cies, as
h Host
ontext
plica-

r block
rogram.

follows
block).
).

MA will
cated by
 zero-
Each isochronous transmit descriptor block for a packet shall be specified with the command descriptors accordin
following rules:

• A maximum of 8 command descriptors may be used.
• Only one STORE_VALUE may be used, and it must be the first descriptor in a descriptor block.
• If STORE_VALUE is used, it shall be followed by at least one OUTPUT_* descriptor, and the Z value fo

descriptor block shall be between 2-8 inclusively.
• If the packet dataLength is not zero, one OUTPUT_MORE-Immediate must be used, followed by zero

OUTPUT_MORE’s, followed by one OUTPUT_LAST.
• If the packet dataLength is zero, one OUTPUT_LAST-Immediate must be used.
• If no packet is to be sent during a cycle, one OUTPUT_LAST with reqCount=0 must be used and shall

preceded by any other OUTPUT_* descriptor.

The isochronous packet header must be specified using a *-Immediate command. The OUTPUT_LAST* comma
have a branch control value of 2’b11. All other commands must have a branch control value of 2’b00. Depending
aggregate number of bytes being transmitted for one descriptor block, hardware may assist with padding. If the su
reqCounts modulo 4 is 0, then padding is not necessary. If the sum of all reqCounts module 4 is not 0, then hardw
insert padding up to a quadlet boundary.

To indicate the end of the context program, all IT DMA context programs must use an OUTPUT_LAS
OUTPUT_LAST-Immediate command with a branch (b) value of 2’b11 (branch always) and a Z value of 0 to indic
end of the program. A program which ends can be appended to while the DMA runs, even if the DMA has
reached the last descriptor.

The first command in an isochronous packet descriptor block must have a skipAddress which points to the desc
branch to if this packet cannot be transmitted (typically due to a lost cycle). The value of the Command.b field in that
descriptor does not affect a skip branch.

The use of many OUTPUT_MORE* commands to describe a single packet will generally cause extra fetch laten
the Host Controller fetches payload buffers from different parts of memory. These latencies may differ for eac
Controller implementation, bus, and host memory architecture. Software is expected to construct IT DMA c
programs with a sufficiently low number of OUTPUT_MORE* commands so that the Host Controller can satisfy ap
tion-specific latency requirements.

ITDMA context programs must contain exactly one descriptor block to be processed per cycle. Each descripto
must be identified with an accurate Z value, both when the program is started, and on each branch within the p
Each descriptor block must end with an unconditional branch to the next descriptor block, even if the next block
immediately in consecutive memory. (The branch enables the ITDMA to learn the Z value for the next descriptor
Each descriptor block must begin with a command that contains a branch to the skipAddress (also with a Z code

Some applications of isochronous transfer do not transfer a packet on every isochronous cycle. Therefore the ITD
sometimes not transmit a packet for one or more channels. Within a context program, a non-transmit cycle is indi
a descriptor block whose only transfer command is an OUTPUT_LAST with a reqCount of zero. (This is not a
length packet, which would be sent with an OUTPUT_LAST-Immediate.)
Copyright © 1996,1997 All rights reserved. Page 109

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

 used by
are to

ntext is
ero. The
ysically

for the
 in the

n the
tion. A

andard
cle time.
9.2 IT Context Registers

Each isochronous transmit context consists of two registers: CommandPtr and IT ContextControl. CommandPtr is
software to tell the IT DMA controller where the DMA context program begins. IT ContextControl is used by softw
control the context’s behavior, and is used by hardware to indicate current status.

9.2.1 CommandPtr

The CommandPtr register specifies the address of the context program which will be executed when a DMA co
started. All descriptors are 16-byte aligned, so the four least-significant bits of any descriptor address must be z
four least-significant bits of the CommandPtr register are used to encode a Z value that indicates how many ph
contiguous descriptors are pointed to by descriptorAddress.

Refer to section 3.1.2 for a full description of the CommandPtr register.

9.2.2 IT ContextControl Register

The IT ContextControl set and clear registers contains bits that control options, operational state, and status
isochronous transmit DMA contexts. Software can set selected bits by writing ones to the corresponding bits
ContextControlSet register. Software can clear selected bits by writing ones to the corresponding bits i
ContextControlClear register. It is not possible for software to set some bits and clear others in an atomic opera
read from either register will return the same value.

The context control register used for isochronous transmit DMA contexts is shown below. In addition to the st
ContextControl fields as described in section 3.1.1, it includes a mechanism for starting transmit at a specified cy

Figure 9-6 — CommandPtr register format

Figure 9-7 — IT DMA ContextControl (set and clear) register format

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

descriptorAddress [31:4] Z

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

dead
active

wake

run

cycleMatch

cycleMatchEnable

event
code

{

reserved-
undefined
Page 110 Copyright © 1996,1997 All rights reserved.

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

hing by

ts the
MA

le bits.

 bits of

becomes

sult in

ay not be

 Refer

ontext’s
 in
low
t
gins.
tor

 is

ister
are

on of

ting the

eld.

es.
The cycleMatch field is used to start an IT DMA context program on a specified cycle. Software enables matc
setting the cycleMatchEnable bit. When the low order two bits of the bus CycleTime.cycleSeconds and
CycleTime.cycleCount value matches the cycleMatch value, hardware clears the cycleMatchEnable bit to 0, se
ContextControl.active bit to 1, and begins executing descriptor blocks for the context. The transition of an IT D
context to the active state from the not-active state is dependent upon the values of the run and cycleMatchEnab

• If run transitions to 1 when cycleMatchEnable is 0, then the context will become active (active = 1).
• If both run and cycleMatchEnable are set to 1, then the context will become active when the low order two

the bus CycleTime.cycleSeconds and 13-bit CycleTime.cycleCount values match the 15-bit cycleMatch value.
• If both run and cycleMatchEnable are set to 1, and cycleMatchEnable is subsequently cleared, the context

active.
• If both run and active are 1 (the context is active), and then cycleMatchEnable is set to 1, this will re

unspecified behavior.

Due to software latencies, software attempts to manage the startup of a context too close to the current time m
effective.

In addition, the usability of cycleMatchEnable for IT contexts will be impacted by the cycleInconsistent interrupt.
to Section 9.5.1 for more information.

Table 9-7 — IT DMA ContextControl (set and clear) register description

field rscu reset description

cycleMatchEnable rscu undef When set to one, processing will occur such that the packet described by the c
first descriptor block will be transmitted in the cycle whose number is specified
the cycleMatch field of this register. The 15-bit cycleMatch field must match the
order two bits of cycleSeconds and the 13-bit cycleCount field in the cycle star
packet that is sent or received immediately before isochronous transmission be
Since the IT DMA controller may work ahead, the processing of the first descrip
block may begin slightly in advance of the actual cycle in which the first packet
transmitted.
The effects of this bit however are impacted by the values of other bits in this reg
and are explained below this table. Once the context has become active, hardw
clears the cycleMatchEnable bit.

cycleMatch rsc undef Contains a 15-bit value, corresponding to the low order two bits of the bus
CycleTime.cycleSeconds and the 13-bit CycleTime.cycleCount field. If
ContextControl.cycleMatchEnable is set, then this IT DMA context will become
enabled for transmits when the low order two bits of the bus
CycleTime.cycleSeconds and CycleTime.cycleCount value equals the cycleMatch
value.

run rscu 1’b0 Refer to section 3.1.1.1 and the description following this table for an explanati
the ContextControl.run bit.

wake rsu undef Refer to section 3.1.1.2 for an explanation of the ContextControl.wake bit.

dead ru 1’b0 Refer to section 3.1.1.4 for an explanation of the ContextControl.dead bit.

active ru 1’b0 Refer to section 3.1.1.3 for an explanation of the ContextControl.active bit.

reserved undefined ru undef This field is specified as undefined and may contain any value without impac
intended processing of this packet.

event code ru undef Following an OUTPUT_LAST* command, the error code is indicated in this fi
Possible values are: ack_complete, evt_underrun, evt_descriptor_read,
evt_data_read, evt_tcode_err and evt_unknown.
See Table 3-2, “Packet event codes,” for descriptions and values for these cod
Copyright © 1996,1997 All rights reserved. Page 111

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

context
eceives
h DMA

enerally,
 indexing
gram
channel

ding on
AST for
Channel 9
packets
rmal next
9.3 Isochronous transmit DMA controller

The following sections describe how software manages the multiple isochronous transmit DMA contexts. Each
has a CommandPtr pointing to the current DMA descriptor. For every cycle start packet that the Host Controller r
or sends, the IT DMA controller can transmit exactly one descriptor block describing exactly one packet from eac
context that is in the ContextControl.run state.

9.3.1 IT DMA Processing

Each IT DMA context command pointer corresponds to a list of packets to be sent on successive 1394 cycles. G
each list represents a single isochronous channel. Isochronous channel numbers are not tied to any internal
scheme utilized by the Host Controller to track all implemented IT DMA contexts. Each IT DMA context pro
pointed to by each CommandPtr will specify the entire isochronous packet header, including the isochronous
number, for each packet that is transmitted. The entire ITDMA is summarized in the following figure:

In the example, three channels are being transmitted. Three cycles of transmit are shown. Context 0 is sen
isochronous channel 9, using an OUTPUT_MORE-Immediate to send each packet header and an OUTPUT_L
each payload. In cycle 2002 the payload spans a page boundary, so channel 9 uses an extra OUTPUT_MORE.
will skip to the next packet if any cycle is lost. Context 1 is sending on isochronous channel 6, with zero length
and only headers. Because channel 6 uses a single descriptor per packet, the skip branch is equal to the no

Figure 9-8 — ITDMA summary

OUTPUT_MORE-I OUTPUT_MORE-I

OUTPUT_LAST

OUTPUT_MORE-I

OUTPUT_LAST

OUTPUT_LAST-I OUTPUT_LAST-I

OUTPUT_MORE-I

OUTPUT_LAST

OUTPUT_MORE-ICommandPtr 0 Z OUTPUT_MORE-I

OUTPUT_LAST OUTPUT_MORE

OUTPUT_LAST

ch
an

ne
l

9
ch

an
ne

l
42

ch
an

ne
l

6

cycle 2001 cycle 2002 cycle 2003

skip

normal branch

CommandPtr 2 Z

CommandPtr 1 Z

OUTPUT_LAST-I

OUTPUT_LAST
Page 112 Copyright © 1996,1997 All rights reserved.

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

 is lost,
ng any

context
r each

ent even

isochro-
ranch

ossible
coupling

is keeps
s.
ng things
 two, the

e time.
 into the
, the link

ecause
cessary,

sending

a
ting
to the

IFO and
ich the

to skip
hannel

 genera-
due to
-specific
packet branch. Context 2 is sending on isochronous channel 42, with each skip branch pointing to itself. If a cycle
channels 6 and 9 will advance to the next packet, while channel 42 will fall behind by one packet, without skippi
packets.

For every cycle, the IT DMA controller shall process each running context in order, from the lowest numbered
through the highest numbered context. For each cycle, the IT DMA controller will complete one descriptor block fo
active IT DMA context. Once a packet has been transferred into the transmit FIFO, the packet is considered s
though it may not have been transmitted yet on the 1394 wire.

If there is a disruption while the IT DMA controller is processing a context, such as a bus reset or the loss of the
nous phase, the IT DMA controller is required to continue through its list of active contexts taking the skip b
address for each of the remaining contexts.

9.3.2 Prefetching IT Packets

The Host Controller is permitted to work up to two cycles ahead of the current cycle time. The result is that it’s p
for data for a 1394 cycle to be put into the FIFO long before it is sent on the bus. This in effect creates a time de
of the host side (input) of the FIFO from the link side (output) of the FIFO.

Since the host side and the link side are not time synchronized, the host side may have its own cycle timer. Th
track of the cycle number for which data is being put into the FIFO. It isnot the same cycle timer that the link side use
When the Host Controller is initialized, the timers are set to the same value and then the host side can start putti
into the FIFO. Whenever the difference between the host side cycle time and the link side cycle time is less than
host can start putting packets into the FIFO.

By working up to two cycles ahead it’s possible for two 1394 cycles worth of packets to be in the FIFO at the sam
To convey to the link side where the 1394 cycle boundary is between the packets, the host side puts a delimiter
FIFO each time processing is completed for all contexts for a cycle. When a cycle start appears on the 1394 bus
starts taking packets out of the FIFO and sends the data on the bus until the link reaches the delimiter.

9.3.3 Isochronous Transmit Cycle Loss

The IT DMA controller can send multiple packets (multiple isochronous channels) in each isochronous cycle. B
isochronous cycles can be lost, the IT DMA is organized so that one cycle’s worth of packets can be skipped, if ne
to catch up. The loss of an isochronous cycle is usually uncommon, and typically results from a bus reset.

If isochronous cycles were lost, and no corrective action was taken, the transmitter would gradually fall behind,
each packet some number of cycles after the transmission time intended by software.

In order to permit the transmitter to avoid falling behind, each packet in an IT DMA context program contains skip
branch address. Any time the IT DMA wants to correct for a cycle loss, it will follow this branch instead of transmit
the packet. For each cycle’s worth of packets (descriptor blocks), the IT DMA will either put all of the packets in
FIFO and advance to the next descriptor block pointed to by branchAddress or will not put any packets into the F
will advance to the next descriptor block pointed to by skipAddress. SkipAddress is used for any condition in wh
IT DMA cannot acquire the bus to transmit all packets for a cycle within that cycle.

Software can use the skip branch in at least four ways. 1) Branching to the next packet will cause the IT DMA
packets to recover from cycle loss. 2) Branching to the same packet will cause the IT DMA to fall behind (on that c
only) without skipping any packets due to cycle loss. 3) Branching to an alternate context program can allow the
tion of an interrupt, and the possible early completion of transmission. 4) Stopping the IT DMA context program
cycle loss. Software can use the third and fourth methods to cease transmission on cycle loss in the application
case that the receiver cannot tolerate either late or lost packets.
Copyright © 1996,1997 All rights reserved. Page 113

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ission,
 transmit

ill then
ontroller

s been
 sched-
rth of
 without

 cycles
never

Note that

e much
ere
C illus-

.
-program
ection of
Because the Host Controller will generally load isochronous transmit packets into a FIFO in advance of transm
some packets may be considered complete when cycle loss is detected, even though they have not yet left the
FIFO. In this situation, the Host Controller will hold those packets in the FIFO until they can be transmitted, and w
complete the transmission of each context packet that had been intended to go out in the same cycle. The Host C
will then apply the skip branching on the packets for the next cycle (the first cycle for which no transmission ha
performed). If a context in the ITDMA is arranged to skip packets on cycle loss, the packet skipped will be the one
uled for the cycle following the cycle that was lost. If the Host Controller preloads more than one cycle’s wo
packets, the skip may be delayed by a similar number of cycles, so that the transmit FIFO can empty normally,
being flushed.

The illustration below shows how each of these cases works. In this example, the ITDMA attempts to keep two
ahead of the bus. In other words, it tries to have two complete cycles in the transmit FIFO (if they will fit) whe
possible. Context A illustrates case 1 (above), where the skip branch is chosen so that packets are skipped.
because of the FIFO preload, the two packets skipped on Context A (A4 and A5) follow a delayed packet (A3) that was
already in the FIFO. While it might have been possible to skip only one packet if the FIFO was flushed, it would b
harder for the Host Controller to have packet A5 ready in time to send it on cycle 6. Context B illustrates case 2, wh
packets are not skipped. While context A loses two packets, context B instead falls two cycles behind. Context
trates case 3, where transmission ends in response to a detected cycle loss. Packets C2 and C3 were already in the FIFO,
so they are transmitted, followed by the end-of-program packet Cx. The descriptor block for packet Cx loops to itself in
case additional cycles are lost before Cx is sent. This loop guarantees that Cx will be sent before the program ends
Context D illustrates case 4, where transmission ends in response to a detected cycle loss without an end-of
packet. The skip address indicates the end of list (Z=0) and no more packets are loaded into the FIFO upon det
cycle loss.
Page 114 Copyright © 1996,1997 All rights reserved.

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ller will

o the

d for that

fer to

ally and
In these examples, the packets that are “in the FIFO” assume an infinitely large transmit FIFO. The Host Contro
transmit packets as shown, even if they are too big to actually fit into the FIFO.

If a cycle loss is detected while the IT DMA is mid packet, that context’s descriptor block will not branch t
skipAddress, but will advance to the next descriptor block.

9.3.4 FIFO Underrun

If there is a FIFO underrun such that the isochronous period ends before all active contexts have been processe
cycle, then the following shall occur:

• The packet that underran is lost.
• The context with the underrun

1) records evt_underrun or evt_data_read in the event code of the OUTPUT_LAST_* as appropriate (re
section 13.2.3), and

2) advances to the branchAddress descriptor block.
• If there are contexts remaining to be processed for the now lost cycle, they continue to be processed norm

then advance to the next descriptor block pointed to by branchAddress.

Figure 9-9 — Isochronous transmit cycle loss example

3 4 5 6 7 8 9 10

A1

C1

A2 A3 A4 A5 A6

B1 B2 B3 B4 B5 B6

C2 C3 C4 C5 C6

Cx

context A

context B

context C

A1 B1 C1 A2 B2 C2 A3 B3 C3 A6 B4 Cx A7 B5

A1

B1

C1

D1

A2

B2

A2

B2

C2

D2

A3

B3

B2

C2

D2

A3

B3

B2

C2

D2

A3

B3

A3

B3

C3

D3

A6

B4

A6

B4

Cx

A7

B5

A7

B5

A8

B6

BUS RESET ID

Tr
an

sm
it

F
IF

O

D1context D
0 0 0 0 0 0

C2

D2

D1

C3

D3

C3

D3

C3

D3

D2

Cx

D3

0

D2 D3 D4 D5 D6
Copyright © 1996,1997 All rights reserved. Page 115

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ring the

ntinues

e.

rom a
riting

indicate

ithout
 DMA
and the
 result in
h, for

bit in the
itMask

to one
hat at
XmitInt-
r, see

ing

ust first

y
o cycles
• If there were contexts processed subsequent to the underrun, then all contexts will follow the skip branch du
next cycle.

• If there wereno contexts to be processed after the context that underran, then processing for the next cycle co
as normal.

Through these steps, the Host Controller ensures that either all contexts skip or no contexts skip for a given cycl

9.3.5 Determining the number of implemented IT DMA contexts

The number of supported isochronous transmit DMA contexts will vary for 1394 OpenHCI implementations f
minimum of four to a maximum of 32. Software can determine the number of supported IT DMA contexts by w
32’hFFFF_FFFF to isoXmitIntMask register (see section 6.3.1), and then reading it back. Bits returned as 1’s
supported contexts, and bits returned as 0’s indicate unsupported/unimplemented contexts.

9.4 Appending to an IT DMA Context Program

As described in Section 3.2.1.2, “Appending to Running List,” software may freely append to a context program w
knowledge of where the controller is in processing the list of descriptor blocks. Unlike other DMA contexts, the IT
contexts can have two pointers that may require updating in the known last descriptor block; the skipAddress
branchAddress. When an IT context has reached the end of its context program and active is 0, setting wake will
using the descriptor (not descriptor block) which had Z=0 and will use the provided address, be it a skip or branc
retrieving the next descriptor block.

9.5 IT Interrupts

Each of the possible 32 isochronous transmit contexts can generate an interrupt, so each IT context has a
isoXmitIntEvent register. Software can enable interrupts on a per-context basis by setting the corresponding isoXm
bit to one.

To efficiently handle interrupts which could conceivably be generated from 32 different contexts in close proximity
another, there is a single bit for all IT DMA contexts in the Host Controller IntEvent register. This bit signifies t
least one but potentially several IT DMA contexts attempted to generate an interrupt. Software can read the iso
Event register to find out which context(s) are involved. For more information on the isoXmitIntEvent registe
section 6.3.1.

9.5.1 cycleInconsistent Interrupt

When the IntEvent.cycleInconsistent condition occurs (table 6-1), the IT DMA controller shall continue process
running contexts normally, with the exception that contexts with the ContextControl.cycleMatchEnable bit set will remain
inactive and cycleMatch processing shall be, in effect, disabled. To re-enable cycleMatch processing, software m
stop the IT contexts for which cycleMatch is enabled (by clearing ContextControl.run to 0 and waiting for
ContextControl.active to go to 0), then must clear the IntEvent.cycleInconsistent interrupt. The stopped IT contexts ma
then be started, but software should not schedule any transmits to occur for these contexts for at least tw
immediately following the clearing of the interrupt condition.

9.5.2 busReset Interrupt

Bus reset does not affect isochronous transmit.
Page 116 Copyright © 1996,1997 All rights reserved.

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

diate or
uired be

not sent
rt of the

00

ftmost
s, if

of the
9.6 IT Data Format

An isochronous transmit packet consists of two header quadlets (as specified in either the OUTPUT_MORE-Imme
OUTPUT_LAST-Immediate descriptor) and an optional data payload. The data payload in host memory is not req
aligned on a quadlet boundary. Padding is added by the Host Controller if needed. The format is as follows.

Note that packets to go out over the 1394 wire are constructed from this Host Controller internal format, and are
in the exact order as shown above. For example, spd, shown in the first quadlet, is not transmitted at all as pa
isochronous packet header.

Figure 9-10 — Isochronous transmit format

Table 9-8 — Isochronous transmit fields

field name bits description

spd 3 This field indicates the speed at which this packet is to be transmitted. 3’b000 = 1
Mbits/sec, 3’b001 = 200 Mbits/sec, and 3’b010 = 400 Mbits/sec, other values are
reserved.

tag 2 The data format of the isochronous data (see IEEE 1394 specification)

chanNum 6 The channel number this data is associated with.

tcode 4 The transaction code for this packet.

sy 4 Transaction layer specific synchronization bits.

dataLength 16 Indicates the number of bytes in this packet.

isochronous data The data to be sent with this packet. The first byte of data must appear in the le
byte of the first quadlet of this field. The last quadlet should be padded with zeroe
necessary.

padding If the dataLength mod 4 is not zero, then zero-value bytes are added onto the end
packet to guarantee that a whole number of quadlets is sent.

isochronous data

reserved

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

chanNum tcode=4’hA sytag

padding (if needed)

dataLength reserved

spd
Copyright © 1996,1997 All rights reserved. Page 117

Isochronous Transmit DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97
Page 118 Copyright © 1996,1997 All rights reserved.

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

imum
 DMA
 receive
they can
r without

emory
 must be
E and

),

ted

d

10. Isochronous Receive DMA

The Isochronous Receive DMA (IR DMA) controller has a required minimum of four and an implementation max
of 32 isochronous receive DMA contexts. Each context is controlled by a DMA context program. One single IR
context can receive packets from multiple isochronous channels, and the remaining DMA contexts can each
packets from a single isochronous channel. IR DMA contexts can either receive exactly one packet per buffer, or
concatenate packets into a stream that completely fills each of a series of buffers. Packets may be received with o
isochronous packet headers and timeStamps.

10.1 IR DMA Context Programs

For isochronous receive DMA, a context program is a list of DMA descriptors used to identify buffers in host m
into which the Host Controller places received isochronous packets. The descriptors are 16 bytes in length and
aligned on a 16 byte boundary. There are two kinds of descriptor commands available: INPUT_MOR
INPUT_LAST.

Figure 10-1 — INPUT_MORE/INPUT_LAST descriptor format

Table 10-1 — INPUT_MORE/INPUT_LAST descriptor element summary

Element Bits Description

cmd 4 Set to 4’h2 for INPUT_MORE, or set to 4’h3 for INPUT_LAST.
INPUT_MORE is required for receiving packets in buffer-fill mode (see section 10.2.1
and may also be used in packet-per-buffer mode.
INPUT_LAST is required for receiving packets in packet-per-buffer mode (see
section 10.2.2), and must be the final descriptor in a descriptor block. It is not permit
in buffer-fill mode.

s 1 Used withpacket-per-buffer mode only (see section 10.2.2). If set to one, xferStatus an
resCount will be updated upon descriptor completion. If set to zero, neither field is
updated. Assumed to be one for buffer-fill mode.

key 3 This field must be set to 3’b0.

i 2 Interrupt control. Valid values are 2’b11 to generate an IsochRx interrupt when the
descriptor is completed (see section 6.1), or 2’b00 for no interrupt. Behavior is
unspecified for 2’b01 and 2’b10.
In packet-per-buffer mode (see section 10.2.2), software must seti to 0 in INPUT_MORE
descriptors and may be ignored by hardware.

b 2 Branch control. Valid values are 2’b11 to branch to branchAddress, and 2’b00 not to
branch. Behavior is unspecified for 2’b01 and 2’b10.
For buffer-fill mode (see section 10.2.1), this field must always be set to 2’b11.
For packet-per-buffer mode (see section 10.2.2), this field must be 2’b00 for
INPUT_MORE commands and 2’b11 for INPUT_LAST commands.

Z

bcmd=2
or 3 s key=

3’b0 i reqCount

dataAddress

resCountxferStatus

branchAddress

w

Copyright © 1996,1997 All rights reserved. Page 119

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ncy. Z

y using
 to
pend to

ch
0.3),

tor

it

ded

f the

RE

ess
 of

y
ck,
en

 1.

a
 in
The Z value is used by the Host Controller to fetch multiple command descriptors at once, for improved efficie
values must always be encoded correctly. The contiguous descriptors described by a Z value are called adescriptor block.
The following table summarizes all legal Z values:

To indicate the end of the context program, all IR DMA context programs must indicate the end of the program b
a command descriptor with ab value of 2’b11 (branch always) and aZ value of 0. A context program can be appended
while the DMA runs, even if the DMA has already reached the last descriptor. section 3.2.1.2 describes how to ap
a context program.

w 2 Wait control. Valid values are 2’b11 to wait for a packet with a sync field whi
matches the sync specified in the context’s IRContextMatch register (see section 1
or 2’b00 not to wait.
For packet-per-buffer mode, 2’b11 can only be used in the first descriptor of a descrip
block.
For buffer-fill mode a w of 2’b11 affects all packets received into the buffer - the wa
condition will apply the sync match requirement toeach packet to be received into the
indicated buffer and not just to the first packet. Therefore, if needed it is recommen
that w only be set to 2’b11 for the very first descriptor only in a buffer-fill context.
Note that all packets are filtered on the IRContextMatch tag values regardless o
value of this (w) field. Behavior is unspecified for 2’b01 and 2’b10.

reqCount 16 Request count: The size of the input buffer in bytes.

dataAddress 32 Address of receive buffer. Any receive buffer which will contain one or more packet
headers must have a quadlet aligned dataAddress. Buffers to containdata only and no
headers may have a byte aligned dataAddress.

branchAddress 28 16-byte aligned address of the next descriptor. This field is not used for INPUT_MO
commands in packet-per-buffer mode.

Z 4 Forbuffer-fill mode (see section 10.2.1), Z must be either 1 to indicate the branchAddr
is a valid address for the next INPUT_MORE, or 0 to indicate this descriptor is the end
the context program.
Forpacket-per-buffer mode (see section 10.2.2), if the command is INPUT_LAST, Z ma
be a value from 1 to 8 to indicate the number of descriptors in the next descriptor blo
or 0 to indicate the end of the context program. If the command is INPUT_MORE, th
Z is not used.

xferStatus 16 Composed of 16-bits from ContextControl[15:0].
For buffer-fill mode, xferStatus is written when resCount is updated.
Forpacket-per-buffer mode, xferStatus is written after the descriptor is processed if s =

resCount 16 Residual count: The number of bytes remaining in the dataAddress buffer (out of a
maximum of reqCount). Written if in packet-per-buffer mode and s = 1, or each time
packet is received in buffer-fill mode. For further details on when resCount is updated
buffer-fill mode, see section 10.2.1.

Table 10-2 — Z value encoding

Z value Use

0 Indicates that the current descriptor is the last descriptor in the context program.

1-8 Indicates that 1 to 8 descriptors starting at descriptorAddress are physically contiguous.

9-15 reserved

Table 10-1 — INPUT_MORE/INPUT_LAST descriptor element summary

Element Bits Description
Page 120 Copyright © 1996,1997 All rights reserved.

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ontext

n place

tered out
ffers in

MORE
bsequent

ot the
iptor.

ers for a

n the

e to the
e the

s and

uffer’s

 saved
When an IR DMA context is running and/or active, software shall not modify any command descriptors within the c
program with the exception of the last command descriptor (the one descriptor in a program withb=2’b11 andZ=4’h0).
The last command descriptor may only be modified according to the steps described in section 3.2.1.2.

10.2 Receive Modes

The Host Controller can write isochronous receive packets into host memory buffers in one of two ways. It ca
them using either buffer-fill mode or packet-per-buffer mode.

10.2.1 Buffer Fill Mode

In bufferFill mode, all received packets are concatenated into a contiguous stream of data. This data is then me
into buffers described by a DMA context program, filling each buffer completely. Packets may straddle multiple bu
this mode (see packet 2 in the illustration below).

A context program for an isochronous receive context in buffer-fill mode consists of a list of independent INPUT_
descriptors, each branching to the next descriptor in the list. Since each descriptor must always branch to the su
one, theb field must always be set to 2’b11 to indicate a branch. If a buffer-fill mode INPUT_MORE descriptor is n
last descriptor in the list, its Z value must be set to 1 to instruct the Host Controller to fetch the next single descrIf
it is the last one in the list, Z must be set to 0. Also, to ensure an accurateresCount value software must initialize
resCount to the value of reqCount.

As depicted above, it is possible for a received packet to straddle multiple buffers. To ensure that the receive buff
context remain parsable, hardware must follow the following procedure.

1) After filling to the end of a buffer with a partial packet, advance to the next descriptor block and obtai
next buffer (dataAddress), retaining all state for the first buffer as well as for the new buffer.

2) Continue writing packet bytes into the subsequent buffer(s). If the end of a buffer is reached, advanc
next buffer without updating status and without retaining state for any of the interim buffers. Writ
remaining packet bytes into the final packet buffer.

3) If there is no data error: a) conditionally write the trailer quadlet into the last buffer, b) update xferStatu
resCount into thefinal buffer’s descriptor, and c) update xferStatus and resCount into thefirst buffer’s
descriptor. At that point the previous state of the first buffer is no longer needed and the first b
descriptor is completed.

4) If there is an error, then the packet must be ‘backed-out’ by reverting back to the previous state (as
earlier). XferStatus and resCount arenot updated for either descriptor.

Figure 10-2 — IR Buffer Fill Mode

et 2 packet 3

MORE s key=0 i b=3 reqCount

dataAddress

Z=1

resCount=0xferStatus

branchAddress

MORE s key=0 i b=3 reqCount

dataAddress

Z=1

resCountxferStatus

branchAddress

packet 1 pack

w

w

Copyright © 1996,1997 All rights reserved. Page 121

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ntaining
hen the

 leftover
ST are
e been

mmand

r blocks.
riptors,

ors for
By following these steps, the IR context buffers remain intact and can be parsed. Since interim buffers (those co
an inner portion of one packet) will not have their status updated, software must only use resCount values w
corresponding xferStatus indicates the active bit is set to one. It follows from this that if the xferStatus.active bit is set in
a descriptor, then all prior descriptors have been filled.

For information on the effect of a host bus error on an IR DMA context in buffer-fill mode, refer to section 13.2.6.

10.2.2 Packet-per-Buffer Mode

In packet-per-buffer mode, each received packet is placed in the buffer(s) described by one descriptor block. Any
bytes are discarded, and packets never straddle multiple descriptor blocks. Both INPUT_MORE and INPUT_LA
allowed in packet-per-buffer mode. Each INPUT_LAST marks the end of a packet, though the final byte may hav
used up in a previous INPUT_MORE (see packet 2 in the illustration below). Each packet starts in an INPUT_* co
that follows an INPUT_LAST.

A context program for an isochronous receive context in packet-per-buffer mode consists of a series of descripto
Each descriptor block will receive one packet and must contain a contiguous set of 0 to 7 INPUT_MORE desc
followed by one INPUT_LAST descriptor. This requirement permits the Host Controller to prefetch all the descript

Figure 10-3 — packet-per-buffer receive mode

w

w

MORE s key=0 i=0 b=0 reqCount

dataAddress

X

resCount [not written]xferStatus [not written]

X

w

LAST s key=0 i b=3 reqCount

dataAddress

Z=2

resCountxferStatus

branchAddress

pack

et 1

MORE s key=0 i=0 b=0 reqCount

dataAddress

X

resCountxferStatus

X

LAST s key=0 i b=3 reqCount

dataAddress

Z=2

resCount [not written]xferStatus [not written]

branchAddress

packet 2

MORE s key=0 i=0 b=0 reqCount

dataAddress

X

resCount [not written]xferStatus [not written]

X

LAST s key=0 i b=3 reqCount

dataAddress

Z=2

resCountxferStatus

branchAddress

p

acket 3
Page 122 Copyright © 1996,1997 All rights reserved.

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

st have

e it’s the

13.2.6.

e buffer
as the
Status

er updated,
us quadlet
middle
 buffer
 ignored.
pt

mode is

tMatch.
tCon-
ontext-

ibly sync

ntext is
ero. The
ysically
acket-
a packet, in order to avoid fetching additional descriptors during a packet transfer. INPUT_MORE descriptors mu
the b field set to 2’b00 (never branch). INPUT_LAST descriptors must have theb field set to 2’b11 (always branch), and
must either have a valid address in branchAddress with a Z value of 1 to 8, or must have a Z value of 0 to indicat
last descriptor in the context program.

For information on the effect of a host bus error on an IR DMA context in packet-per-buffer mode, refer to section

10.2.2.1 Command.xferStatus and Command.resCount updates

In packet-per-buffer mode, when s=1 the xferStatus and resCount fields are updated only in the descriptor for th
which receives the last byte of the packet. ResCount is only valid in a descriptor if the xferStatus field h
ContextControl.run bit set. To obtain accurate values for xferStatus, it is recommended that software initialize xfer
to zero (evt_no_status).

In figure 10-3 above, there are 3 shaded xferStatus quadlets. The shaded quadlets are status fields that were nev
and the unshaded status quadlets reflect status fields that were updated. In the top descriptor block, the xferStat
in the first descriptor was not written because packet 1 did not complete in the first descriptor’s buffer. In the
descriptor block, the first descriptor was big enough to hold packet 2 completely. Since the first descriptor’s
received the last byte of packet 2, the first descriptor’s status was written, and the second descriptor’s status is
Although the OUTPUT_LAST’s status is ignored in this example, its i bit is used to determine whether or not an interru
is triggered for this descriptor block.

If a descriptor block describes buffer space that cannot fit an entire packet (including header if isochHeader
enabled), then the overflow bytes are discarded. When this occurs, xferStatus.ack will be set to evt_long_packet.

10.3 IR Context Registers

Each isochronous receive context consists of three registers: CommandPtr, IRContextControl, and IRContex
CommandPtr is used by software to tell the IR DMA controller where the DMA context program begins. IRContex
trol is used by software to control the context’s behavior, and is used by hardware to indicate current status. IRC
Match is used to start on a specified cycle number and to filter received packets based on their tag bits and poss
bits. This section describes each register in detail.

10.3.1 CommandPtr

The CommandPtr register specifies the address of the context program which will be executed when a DMA co
started. All descriptors are 16-byte aligned, so the four least-significant bits of any descriptor address must be z
four least-significant bits of the CommandPtr register are used to encode a Z value that indicates how many ph
contiguous descriptors are pointed to by descriptorAddress. In buffer-fill mode, Z will be either one or zero. In p
per-buffer mode, Z will be from zero to eight.

Refer to section 3.1.2 for a full description of the CommandPtr register.

Figure 10-4 — CommandPtr register format

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

descriptorAddress [31:4] Z
Copyright © 1996,1997 All rights reserved. Page 123

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

receive

turn the

 which

ach
ived
om-
 to

yte iso-
rked
S-
et.
 The
re

bit
10.3.2 IRContextControl register (set and clear)

The IRContextControl register contains bits that control options, operational state, and status for the isochronous
DMA contexts. Software can set selected bits by writing ones to the corresponding bits in theContextControlSet register.
Software can clear selected bits by writing ones to the corresponding bits in theContextControlClear register. It is not
possible for software to set some bits and clear others in an atomic operation. A read from either register will re
same value.

The context control register used for isochronous receive DMA contexts is shown below. It includes several fields
permit software to filter packets based on various combinations of fields within the isochronous packet header.

Figure 10-5 — IR DMA ContextControl (set and clear) register format

Table 10-3 — IR DMA ContextControl (set and clear) register description

field rscu reset description

bufferFill rsc undef When set to one, received packets are placed back-to-back to completely fill e
receive buffer (specified by an INPUT_MORE command). When clear, each rece
packet is placed in a single buffer (described by zero to seven INPUT_MORE c
mands followed by an INPUT_LAST command). If the multiChanMode bit is set
one, this bit must also be set to one.
The value of bufferFill must not be changed whileactive or run are set to one.

isochHeader rsc undef When set to one, received isochronous packets will include the complete 4-b
chronous packet header seen by the link layer. The end of the packet will be ma
with a xferStatus (bits 15:0 of this register) in the first doublet, and a 16-bit time
tamp indicating the time of the most recently received (or sent) cycleStart pack
When clear, the packet header is stripped off of received isochronous packets.
packet header, if received, immediately precedes the packet payload. Details a
shown in section 10.6.
The value of isochHeader must not be changed whileactive or run are set to one.

cycleMatchEnable rscu undef In general, when set to one, the context will begin running only when the 15-
cycleMatch field in the contextMatch register matches the two bits of the bus
CycleTime.cycleSeconds and 13-bit CycleTime.cycleCountvalues. The effects of
this bit however are impacted by the values of other bits in this register and are
explained below. Once the context has become active, hardware clears the
cycleMatchEnable bit.
The value of cycleMatchEnable must not be changed whileactive or run are set to
one.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

dead
active

wake
isochHeader

multiChanMode

bufferFill

run

cycleMatchEnable

event
code

spd
Page 124 Copyright © 1996,1997 All rights reserved.

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

packet’s
he IR

-active

et’s low
 the IR

becomes

sult in

ceive
han-

speci-
A

ne
e-

on of

 are

mis-
re

es.
The cycleMatchEnable bit is used to start an IR DMA context program on a specified cycle. When the cycleStart
low order two bits of cycleSeconds and 13-bit cycleCount values match the 15-bit cycleMatch value (in t
contextMatch register), hardware sets the cycleMatchEnable bit to 0, sets the ContextControl.active bit to 1, and begins
executing descriptor blocks for the context. The transition of an IR DMA context to the active state, from the not
state is dependent upon the values of the run and cycleMatchEnable bits.

• If run transitions to 1 when cycleMatchEnable is 0, then the context will become active (active = 1).
• If both run and cycleMatchEnable are set to 1, then the context will become active when the cycleStart pack

order two bits of cycleSeconds and 13-bit cycleCount values match the 15-bit cycleMatch value indicated in
contextMatch register.

• If both run and cycleMatchEnable are set to 1, and cycleMatchEnable is subsequently cleared, the context
active.

• If both run and active are 1 (the context is active), and then cycleMatchEnable is set to 1, this will re
unspecified behavior.

multiChanMode rsc undef When set to one, the corresponding isochronous receive DMA context will re
packets for all isochronous channels enabled in the IRChannelMaskHi and IRC
nelMaskLo registers (see section 10.4.1.1). The isochronous channel number
fied in the IRDMA context match register is ignored. When set to zero, the IRDM
context will receive packets for that single channel.

Only one IRDMA context may use the IRChannelMask registers. If more than o
IRDMA context control register has the multiChanMode bit set, results are und
fined. See section 10.4.3 for more information.
The value of multiChanMode must not be changed whileactive or run are set to one

run rscu 1’b0 Refer to section 3.1.1.1 and the description following this table for an explanati
the ContextControl.run bit.

wake rsu undef Refer to section 3.1.1.2 for an explanation of the ContextControl.wake bit.

dead ru 1’b0 Refer to section 3.1.1.4 for an explanation of the ContextControl.dead bit.

active ru 1’b0 Refer to section 3.1.1.3 for an explanation of the ContextControl.active bit.

spd ru undef This field indicates the speed at which the packet was received. 3’b000 = 100
Mbits/sec, 3’b001 = 200 Mbits/sec and 3’b010 = 400 Mbits/sec. All other values
reserved.

event code ru undef ForbufferFill mode, possible values are: ack_complete, evt_descriptor_read,
evt_data_write and evt_unknown. Packets with data errors (either dataLength
matches or dataCRC errors) and packets for which a FIFO overrun occurred a
‘backed-out’ as described in section 10.2.1.
For packet-per-buffer mode, possible values are: ack_complete, ack_data_error,
evt_long_packet, evt_overrun, evt_descriptor_read, evt_data_write and
evt_unknown.
See Table 3-2, “Packet event codes,” for descriptions and values for these cod

Table 10-3 — IR DMA ContextControl (set and clear) register description

field rscu reset description
Copyright © 1996,1997 All rights reserved. Page 125

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

sochro-
ed for a

forever.

2’b11.

2’b10.

2’b01.

2’b00.

s and

 are
 tag0,

e

A con-
10.3.3 Isochronous receive contextMatch register

The IR ContextMatch register is used to start a context running on a specified cycle number, to filter incoming i
nous packets based on tag values and to wait for packets with a specified sync value. All packets are check
matching tag value, and a compare on sync is only performed when the descriptor’sw field is set to 2’b11. See
section 10.1 for proper usage of thew field. This register should only be written when ContextControl.active is 0, other-
wise unspecified behavior will result.

At least one tag bit must be set to 1, otherwise no received packets will match and the context will, in effect, wait

Figure 10-6 — IR DMA ContextMatch register format

Table 10-4 — IR DMA ContextMatch register description

field rwu reset description

tag3 rw undef If set, this context will match on isochronous receive packets with a tag field of

tag2 rw undef If set, this context will match on isochronous receive packets with a tag field of

tag1 rw undef If set, this context will match on isochronous receive packets with a tag field of

tag0 rw undef If set, this context will match on isochronous receive packets with a tag field of

cycleMatch rw undef Contains a 15-bit value, corresponding to the low order two bits of cycleSecond
the 13-bit cycleCount field in the cycleStart packet. If
ContextControl.cycleMatchEnable is set, then this IR DMA context will become
enabled for receives when the two low order bits of the bus cycleTime.cycleSeconds
and cycleTime.cycleCount values equal the cycleMatch value.

sync rw undef This field contains the 4 bit field which is compared to the sync field of each
isochronous packet for this channel when the command descriptor’sw field is set to
2’b11.

tag1SyncFilter rw undef If set and the contextMatch.tag1 bit is set, then packets with tag 2’b01 shall only be
accepted into the context if the two most-significant bits of the packet’s sync field
2’b00. Packets with tag values other than 2’b01 shall be filtered according to the
tag2 and tag3 bits above with no additional restrictions.

If clear, this context will match on isochronous receive packets as specified in th
tag0-3 bits above with no additional restrictions.

channelNumber rw undef This six bit field indicates the isochronous channel number for which this IR DM
text will accept packets.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

channelNumbercycleMatch

tag3
tag2

tag1

tag0

sync

tag1SyncFilter
Page 126 Copyright © 1996,1997 All rights reserved.

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

text has
tart the
egisters

xtCon-
avail-
 the

an-

hannel

channels.
RMulti-
ites ones

led. The
ard reset
10.4 Isochronous receive DMA controller

The following sections describe how software manages the multiple isochronous receive DMA contexts. Each con
a CommandPtr pointing to the initial DMA descriptor, a ContextControl register, and a contextMatch register to s
context based on a cycle number and to filter packets. The IR DMA controller has one set of IRMultiChanMask r
used to specify a set of isochronous channels for the single isochronous context in multiChanMode.

10.4.1 Isochronous receive multi-channel support

Any IR DMA context can receive packets from multiple isochronous channels per cycle by enabling Conte
trol.multiChanMode and using the IRMultiChanMask registers. There is a single set of IRMultiChanMask registers
able in the IR DMA controller, and onlyone IR DMA context may be using them at any given time as determined by
setting of ContextControl.multiChanMode bit (see section section 10.3.2).

A context to be enabled for multiChanMode,must also be enabled for bufferFill and isochHeader modes. If multiCh
Mode is enabled without bufferFill and isochHeader, the resulting behavior is undefined.

If an IR DMA context is in multi-channel mode, therefore using the IRMultiChanMask registers, the isochronous c
field in the IR DMA context Match register (section 10.3.3) is ignored.

10.4.1.1 IRMultiChanMask registers (set and clear)

An isochronous channel mask is used to enable packet receives from up to 64 specified isochronous data
Software enables receives for any number of isoch channels by writing ones to the corresponding bits in the I
ChanMaskHiSet and IRMultiChanMaskLoSet addresses. To disable receives for any isoch channels, software wr
to the corresponding bits in the IRMultiChanMaskHiClear and IRMultiChanMaskLoClear addresses.

A read of each IRChanMask register shows which channels are enabled; a one for enabled, a zero for disab
IRMultiChanMask registers are not changed by a bus reset. The state of these registers is undefined following a h
or soft reset.

Figure 10-7 — IRMultiChanMaskHi (set and clear) register

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

isoChannel62
isoChannel61

isoChannel60 isoChannel35
isoChannel34

isoChannel63
isoChannel33

isoChannel32
Copyright © 1996,1997 All rights reserved. Page 127

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

el. Data

xtMatch

ble the
s

ns

the sync

uffer
t which

run bit is
ts will be

 destina-

r

e packet
10.4.2 Isochronous receive single-channel support

Each isochronous receive DMA context can receive one packet per cycle from one isochronous data chann
chaining across DMA context commands is supported when the ContextControl.bufferFill bit is set.

To configure a context to receive packets from an isochronous channel, write the channel number into the conte
register’s channelNumber field.

To start a context on a particular cycle, write the starting cycle time into the ContextMatch register, and ena
ContextControl.cycleMatchEnable and ContextControl.run bits. When the low order two bits of the bu
CycleTime.cycleSeconds and CycleTime.cycleCount values equal the ContextMatch.cycleMatch value, the IR DMA
controller will clear the ContextControl.cycleMatchEnable bit and the context will begin receiving packets. (see sectio
10.3.2 and 10.3.3).

To wait for a packet with specified sync value in the isochronous packet header, set the desired configuration in
field of the ContextMatch register and set the DMA command descriptor’sw (wait) field to 2’b11. When the IR DMA
controller detects aw field of 2’b11, it waits until a packet arrives matching the specified sync and directs it to the b
identified in the waiting descriptor’s dataAddress field. Packets with the specified channel number and tag bits bu
do not match the specified sync are discarded.

When an IR DMA context is stopped either because it reached the end of the context program or because the
cleared, some packets following the intended stop point may have already entered the receive FIFO. These packe
discarded when they reach the bottom of the FIFO, unless another IR DMA context is able to receive them.

10.4.3 Duplicate channels

If more than one IR DMA context specifies receives for packets from the same isochronous channel, the context
tion for that channel’s packets is undefined.

If more than one IR DMA context has the ContextControl.multiChanMode bit set, then the context destination fo
IRmultiChanMask packets is undefined.

If an isochronous channel is specified both in a single channel context and in the multiChannel context, then th
will be routed to the multiChannel context and the single channel context shall remain active.

Figure 10-8 — IRMultiChanMaskLo (set and clear) register

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

isoChannel30
isoChannel29

isoChannel28 isoChannel3
isoChannel2

isoChannel31
isoChannel1

isoChannel0
Page 128 Copyright © 1996,1997 All rights reserved.

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

rom a
riting

 indicate

has a bit
ponding

to one
hat at
ad the
gister,

ing

ust first

y

tandard.

s

10.4.4 Determining the number of implemented IR DMA contexts

The number of supported isochronous receive DMA contexts will vary for 1394 OpenHCI implementations f
minimum of four to a maximum of 32. Software can determine the number of supported IR DMA contexts by w
32’hFFFF_FFFF to the isoRecvtIntMask register (see section 6.4.1), and then reading it back. Bits returned as 1’s
supported contexts, and bits returned as 0’s indicate unsupported/unimplemented contexts.

10.5 IR Interrupts

Each of the possible 32 isochronous receive contexts can generate an interrupt, therefore each IR DMA context
in the isoRecvIntEvent register. Software can enable interrupts on a per-context basis by setting the corres
isoRecvIntMask bit to one.

To efficiently handle interrupts which could conceivably be generated from 32 different contexts in close proximity
another, there is a single bit for all IR DMA contexts in the Host Controller IntEvent register. This bit signifies t
least one but potentially several IR DMA contexts attempted to generate an interrupt. Software can re
isoRecvIntEvent register to find out which context(s) are involved. For more information on the isoRecvIntEvent re
see section 6.4.

10.5.1 cycleInconsistent Interrupt

When the IntEvent.cycleInconsistent condition occurs (table 6-1), the IR DMA controller shall continue process
running contexts normally, with the exception that contexts with the ContextControl.cycleMatchEnable bit set will remain
inactive and cycleMatch processing shall be, in effect, disabled. To re-enable cycleMatch processing, software m
stop the IR contexts for which cycleMatch is enabled (by clearing ContextControl.run to 0 and waiting for
ContextControl.active to go to 0), then must clear the IntEvent.cycleInconsistent interrupt. The stopped IR contexts ma
then be started.

10.5.2 busReset Interrupt

Bus reset does not affect isochronous receive.

10.6 IR Data Formats

The Host Controller shall only receive packets which have tcodes that are defined by an approved IEEE 1394 s
Packets with undefined tcodes will be dropped.

There are four formats for isochronous receive packets depending upon the setting of the ContextControl.isochHeader and
ContextControl.bufferFill bits (see section 10.3). If the ContextControl.isochHeader bit is zero, then only the isochronou
data without any padding, header quadlet or timestamp quadlet is put in the buffer.

Table 10-5 — Isochronous receive fields

field name bits description

dataLength 16 Indicates the number of bytes in this packet.

tag 2 The data format of the isochronous data (see IEEE 1394 specification)

chanNum 6 The channel number this data is associated with.

tcode 4 The transaction code as received for this packet.

sy 4 Transaction layer specific synchronization bits.
Copyright © 1996,1997 All rights reserved. Page 129

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ost
s, if

e end
ats,

rder
ved
10.6.1 bufferFill mode formats

10.6.1.1 IR with header/trailer

The format of an isochronous receive packet when ContextControl.bufferFill=1 and ContextControl.isochHeader=1 is
shown below.

isochronous data The data received with this packet. The first byte of data must appear in the leftm
byte of the first quadlet of this field. The last quadlet should be padded with zeroe
necessary.

padding If the dataLength mod 4 is not zero, then zero-value bytes have been added onto th
of the packet to guarantee that a whole number of quadlets was sent. In three form
the pad bytes are stripped off the packet.

xferStatus 16 Contains bits [15:0] from the ContextControl register.

timeStamp 16 The time at which this packet was received into the link, specified by the three low o
bits of cycleSeconds, and the full 13-bits of cycleCount from the most recently recei
(or sent) cycle start packet.

Figure 10-9 — Receive isochronous format in buff erFill mode with header/trailer

Table 10-5 — Isochronous receive fields

field name bits description

isochronous data

dataLength

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

chanNum tcode sytag

padding (if needed)

xferStatus timeStamp
Page 130 Copyright © 1996,1997 All rights reserved.

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

oes not
10.6.1.2 IR without header/trailer

The format of the isochronous receive packet when ContextControl.bufferFill=1 and ContextControl.isochHeader=0 is
shown below.

10.6.2 packet-per-buffer mode formats

10.6.2.1 IR with header/trailer

The format of an isochronous receive packet when ContextControl.bufferFill=0 and ContextControl.isochHeader=1 is
shown below. Note that although xferStatus may be written as a side-effect of writing timeStamp, xferStatus d
contain valid or otherwise useful values.

Figure 10-10 — Receive isochronous format in buff erFill mode without header/trailer

Figure 10-11 — Receive isochronous format in packet-per -buff er mode with header/trailer

isochronous data

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

Padding (if any) is stripped from the packet in this mode.

Data is appended to other byte-aligned data (if any) in the bufferFill mode buffer

isochronous data

dataLength

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

chanNum tcode sytag

INVALID timeStamp

Padding (if any) is stripped from the packet in this mode.

If headers & data are in the same buffer, then the data shall be quadlet aligned.

If headers are in a separate buffer from the data,
then the data buffer may be byte aligned.
Copyright © 1996,1997 All rights reserved. Page 131

Isochronous Receive DMA 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97
10.6.3 IR without header/trailer

The format of the isochronous receive packet when ContextControl.bufferFill=0 and ContextControl.isochHeader=0 is
shown below.

Figure 10-12 — Receive isochronous format in packet-per -buff er mode without header/trailer

isochronous data

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

Padding (if any) is stripped from the packet in this mode.

Buffers with data only (no headers), like this, may be byte aligned
Page 132 Copyright © 1996,1997 All rights reserved.

Self ID Receive 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

elf ID
 Count

tion.

rrors and

eived
.

 a
are

 over

ta.
11. Self ID Receive

The purpose of the SelfID DMA controller is to receive self ID packets during the bus initialization process. The s
packets are received using a special pair of DMA registers, the Self ID Buffer Pointer register and the Self ID
register.

11.1 Self ID Buffer Pointer Register

The Self ID Buffer Pointer register points to the buffer the SelfID packets will be DMA’ed into during bus initializa

11.2 Self ID Count Register

This register keeps a count of the number of times the bus self ID process has occurred, flags self ID packet e
keeps a count of the amount of self ID data in the Self ID buffer.

Figure 11-1 — Self ID Buffer Pointer register

Table 11-1 — Self ID Buffer Pointer register

field name rwu reset description

selfIDBufferPtr rw undef Contains the 2K-byte aligned base address of the buffer in host memory where rec
self-ID packets are stored. The contents of this field are undefined after a chip reset

Figure 11-2 — Self ID Count register

Table 11-2 — Self ID Count register

field name rwu reset description

selfIDError ru undef When this bit is one, an error was detected during the most recent self ID packet
reception. The contents of the self ID buffer are undefined. This bit is cleared after
self ID reception in which no errors are detected. Note that an error can be a hardw
error or a host bus write error.

selfIDGeneration ru undef The value in this field increments each time a bus reset is detected. This field rolls
to 0 after reaching 255.

selfIDSize ru undef This field indicates the number ofquadlets that have been written into the selfID buffer
for the current selfIDGeneration. This includes the header quadlet and the selfID da
This field is cleared to zero as soon as a bus reset is detected.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

selfIDBufferPtr

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

selfIDGeneration selfIDSize (quadlets)

selfIDError
Copyright © 1996,1997 All rights reserved. Page 133

Self ID Receive 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ived part
 written
 memory,
ory, then

host bus
rror is
is only

set inter-
.

g this

number
us reset
inverted

each
The self ID stream can be (63 devices) * (4 packets/device) * (8 bytes/packet) = 2016 bytes. If a bus reset is rece
way through a self ID sequence, the old data will be overwritten. To keep things straight, the generation counter is
into memory as the first quadlet of the stream. For a consistent stream, software reads the generation counter in
then the stream, then the SelfIDCount register. If the generation counter in the register matches the one in mem
the self ID stream is consistent.

If the selfIDError flag is set, then there was either a hardware error in receiving the last self ID sequence or a
error while writing to the host buffer, so the self ID data is not trustworthy. Any self ID data received after the e
flushed. If all 2048 bytes are received, the selfIDSize field is set to 9’h7FF and the selfIDError flag is set. (This
possible if >64 nodes are on the bus... a gross error condition.)

Whenever a bus reset occurs, the Host Controller clears the selfIDSize field to zero, at the same time the bus re
rupt is triggered. This allows software responding to a bus reset to know that self IDs have not yet been received

The Host Controller does not verify the integrity of the self-ID packets and software is responsible for performin
function (i.e., using the logical inverse quadlet).

11.3 Self-ID receive

The self-ID receive format is shown below. The first quadlet contains the time stamp and the self ID generation
(see section 11.2 “Self ID Count Register”). The remaining quadlets contain data that is received from the time a b
ends to the first subaction gap. This is the concatenation of all the self-ID packets received. Note that the bit-
check quadlets are included in the FIFO and must be checked by the application.

Figure 11-3 — Self-ID receive format

Table 11-3 — Self-ID receive fields

field name description

selfIDGeneration See table 11-2.

timeStamp The three low order bits from cycleTimer.cycleSeconds, and the full 13-bits of
cycleTimer.cycleCount at the time this status quadlet was generated.

self ID packet data The data received during the selfID process of the bus initialization phase. Note that
selfID packet includes the data quadlet and inverted quadlet.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

self ID packet data

selfIDGeneration timeStamp
Page 134 Copyright © 1996,1997 All rights reserved.

Self ID Receive 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ceiver
ointer

and use
11.4 Enabling the SelfID DMA

The RcvSelfID bit in the LinkControl register (see section 5.9, “LinkControl registers (set and clear),”) allows the re
to accept incoming self-identification packets. Before setting this bit, software must ensure that the self ID buffer p
register contains a valid address.

11.5 Interrupt Considerations for SelfID DMA

IntEvent.SelfIDcomplete (section 6.1) is set when the selfID phase of bus initialization completes.

11.6 SelfIDs Received Outside of Bus Initialization

SelfID packets received outside of the bus initialization self-ID phase are routed to the AR DMA Request context
the PHY packet receive format.
Copyright © 1996,1997 All rights reserved. Page 135

Self ID Receive 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97
Page 136 Copyright © 1996,1997 All rights reserved.

Physical Requests 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ndles the
cific set

t unless
l yield

ck or
n upper
if the
00 and
memory

ss space,
rmulate
ode ID of
st Filter

quadlet

quadlet

.3).
tions

and

ping

are two
 one for
registers
ode will
ationship
12. Physical Requests

When a block or quadlet read request or a block or quadlet write request is received, the 1394 Open HCI chip ha
operation automatically without involving software if the offset address in the request packet header meets a spe
of criteria listed below. Requests that do not meet these criteria are directed to the AR DMA Request contex
otherwise specified. Host Controller registers which are written via physical access to the Host Controller wil
unspecified results.

The 1394 Open HCI checks to see if the offset address in the request packet header is one of the following.

a) If the offset falls within thephysical range, then the offset address is used as the memory address for the blo
quadlet transaction. Physical range is defined by offsets inclusively between a lower bound of 48’h0 and a
bound of either the PhysicalUpperBound offset minus one (section 5.14), or 48’h0000_FFFF_FFFF
PhysicalUpperBound register is not implemented. If the high order 16-bits of the offset address is 16’h00
PhysicalUpperBound is not implemented, then the lower 32 bits of the offset address are used as the
address for the block or quadlet transaction.

Lock transactions and block transactions with a non-zero extended tcode are not supported in this addre
instead they are diverted to the AR DMA Request context. For read requests, the information needed to fo
the response packet is passed to the Physical Response Unit. Requests are only accepted if the source n
the request has a corresponding bit in the Asynchronous Request Filter registers and Physical Reque
registers(section 5.13).

b) If the offset address selects one of the following addresses, the physical request unit will directly handle
compare-swaps and quadlet reads. Other requests shall be sent an ack_type_error. (See section 5.5.1.)

1) BUS_MANAGER_ID (48’hFFFFF000021C). Local register is BusManagerID.
2) BANDWIDTH_AVAILABLE (48’hFFFFF0000220). Local register is BandwidthAvailable.
3) CHANNELS_AVAILABLE_HI (48’hFFFFF0000224). Local register is ChannelsAvailableHi.
4) CHANNELS_AVAILABLE_LO (48’hFFFFF0000228). Local register is ChannelsAvailableLo.

c) If the offset address is one of the following addresses, the Physical Request controller will directly handle
reads. Other requests shall be sent an ack_type_error.

1) Config ROM header (1st quadlet of the Config ROM) (48’hFFFFF0000400). Local register is
ConfigROMheader (section 5.5.2).

2) Bus ID (1st quadlet of the Bus_Info_Block) (48’hFFFFF0000404). Local register is BusID (section 5.5
3) Bus options (2nd quadlet of the Bus_Info_Block) (48’hFFFFF0000408). Local register is BusOp

(section 5.5.4).
4) Global unique ID (3rd and 4th quadlets of the Bus_Info_Block) (48’hFFFFF000040C

48’hFFFFF0000410). Local registers are GlobalIDHi and GlobalIDLo (section 5.5.5).
5) Configuration ROM (48’hFFFFF0000414 to 48’hFFFFF00007FF). Mapped by the ConfigROMmap

register to a 1K byte block of system memory (section 5.5.6)

For information about ack codes for write requests, see section 3.3.2.

12.1 Filtering Physical Requests

Software can control from which nodes it will receive packets by utilizing the asynchronous filter registers. There
registers, one for filtering out all requests from a specified set of nodes (AsynchronousRequestFilter register) and
filtering out physical requests from a specified set of nodes (PhysicalRequestFilter register). The settings in both
have a direct impact on how the AR DMA Request context is used, e.g., disabling only physical receives from a n
cause all request packets from that node to be routed to the AR DMA Request context. The usage and interrel
between these registers is fully described in section 5.13, “Asynchronous Request Filters.”
Copyright © 1996,1997 All rights reserved. Page 137

Physical Requests 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

complete

n about
rites is

tion label
ed at the
ion bus ID
he Open

 Physical
sy* or

ical write
 registers

ing a bus
ely. Other
12.2 Posted Writes

For write requests which are handled by the Physical Request controller, the Host Controller may send an ack_
before the data is actually written to system memory. These writes are referred to asposted writes.Since posted writes
impact the Physical Request controller and the Asynchronous Receive Request DMA context, further informatio
posted writes is located in section 3.3.3, “Posted Writes.” Information on host bus error handling of posted w
provided in section 13.2.8, “Posted Write Error.”

12.3 Physical Responses

The response packet generated for a physical read, non-posted write, and lock request shall contain the transac
as it appeared in the request, the destination_ID as provided in the request’s source_ID, and shall be transmitt
speed at which the request was received. The source bus ID in the response packet shall be equal to the destinat
from the original request; note that this is not necessarily the same as the contents of the busNumber field in t
HCI Node ID register.

Unlike AR Response packets, physical responses do not track a SPLIT_TIMEOUT expiration time.

12.4 Physical Response Retries

There is a separate nibble-wide MaxPhysRespRetries field in the ATRetries Register (see section 5.4) that tells the
Response Unit how many times to attempt to retry the transmit operation for the response packet when an ack_bu
ack_data_error is received from the target node. If the retry count expires, the packet is dropped and software isnot notified.

12.5 Interrupt Considerations for Physical Requests

Physical read request handling does not cause an interrupt to be generated under any circumstances. Phys
requests will generate an interrupt when posted write processing yields an error. Lock requests to the serial bus
will generate an interrupt when the Host Controller is unable to deliver a lock response packet.

12.6 Bus Reset

On a bus reset, all pending physical requests (those for which ack_pending was sent) shall be discarded. Follow
reset, only physical requests to the autonomous CSR resources (see section 5.5) can be handled immediat
physical requests may be processed after software initializes the filter registers (section 5.13).
Page 138 Copyright © 1996,1997 All rights reserved.

Host Bus Errors 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

curs. For
sing.

tionally,
line these

r is the

ated and
 block
en with

it sets
ontrol
 not set
t to a
13. Host Bus Errors

OpenHCI has three primary goals when dealing with host bus error conditions:

1) continue transmission and/or reception on all contexts not involved in the error;
2) provide information to software which is sufficient to allow recovery from the error when possible;
3) provide a means of error recovery on a context other than a general chip reset.

13.1 Causes of Host Bus Errors

Host bus errors can generally be classified as one of the following:

1) addressing error (e.g., non-existent memory location)
2) operation error (e.g., attempt to write to read-only memory)
3) data transfer error (e.g., parity or unrecoverable ECC) and
4) time out (e.g., reply on split transaction bus was not received in time).

Each of these errors can occur at three identifiable stages in the processing of a descriptor:

1) descriptor fetch,
2) data transfer (read or write), and
3) an optional descriptor status update.

In general, the nature of the bus error is not as significant as the stage of descriptor processing in which is oc
example, the difference between an addressing error and a data parity error is not significant to the error proces

13.2 Host Controller Actions When Host Bus Error Occurs

When a host bus error occurs, the Host Controller performs a defined set of actions for all context types. Addi
there are a set of actions that are performed that are dependent on the context type. The following sections out
actions.

13.2.1 Descriptor Read Error

When an error occurs during the reading of a descriptor or descriptor block, the behavior of the Host Controlle
same regardless of the context type. The Host Controller will set ContextControl.dead and ContextControl.event will be
set to evt_descriptor_read to indicate that the descriptor fetch failed. The unrecoverable error IntEvent is gener
the context’s IntEvent is not set. Additionally, CommandPtr will be set to point to a descriptor within the descriptor
in which the error occurred. Since the descriptor could not be read, its xferStatus and resCount will not be writt
current values, and software must refer to ContextControl.event for the status.

13.2.2 xferStatus Write Error

For any type of context, when the Host Controller encounters an error writing the status to a descriptor,
ContextControl.dead. The values that would have been written to xferStatus of a descriptor are retained in ContextC
for inspection by system software. The unrecoverable error IntEvent is generated and the context’s IntEvent is
regardless of the setting of the interrupt (I) field in the descriptor. Additionally, CommandPtr will be set to poin
descriptor within the descriptor block in which the error occurred.
Copyright © 1996,1997 All rights reserved. Page 139

Host Bus Errors 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

r handles
ad, the

re of the
ced in the
atus to
ader has

e Host
e Host
_read or
ill store

k_pending

s received
 outlined

esult such

VALUE
rite. The
til the
operly

ffer, the

errupt (I)
for

l set
h the
tor that
 FIFO

d and is
ded from

 is not

he input
13.2.3 Transmit Data Read Error

For asynchronous request transmit, asynchronous response transmit and isochronous transmit the Host Controlle
system data read errors in a similar manner. The Host Controller will not stop processing for the context. Inste
event code in the status of the OUTPUT_LAST* descriptor is set to indicate that there was an error and the natu
error. The indicated errors are evt_data_read or evt_underrun. If the error occurs before a packet’s header is pla
output FIFO, the Host Controller can immediately abort the packet transfer, optionally set the descriptor st
evt_data_read or evt_underrun and move on to the next descriptor block. If, however, the error occurs after the he
been placed in the output FIFO, the Host Controller will stop placing data in the output FIFO. This will cause th
Controller to send a packet with a length that does not agree with the data_length field of the header. If th
Controller receives an ack_data_error from the addressed node, then the Host Controller will substitute evt_data
evt_underrun as appropriate. If the device returns anything other than ack_data_error, then the Host Controller w
that value in the status for the packet. It should be noted that this means that if the addressed node returns an ac
on a block write, the error indication will be lost.

If the packet was a broadcast write, an isochronous packet, or an asynchronous stream packet, no ack code i
from any node. In this case, the Host Controller assumes that ack_data_error was received and proceeds as
above.

Note: Underruns which occur due to host bus latency shall not be construed to be host bus data errors, and as a r
asynchronous request and response packets may be retried as described in section 5.4.

13.2.4 Isochronous Transmit Data Write Error

A data write error can occur when the Host Controller attempts to write to the address indicated in a STORE_
descriptor. This error is handled like a data read error with the exception that the event code is set to evt_data_w
Host Controller may not begin placing the packet associated with a STORE_VALUE into the output FIFO un
STORE_VALUE operation is complete. This is to prevent the possibility of having multiple errors that cannot be pr
reported to system software.

13.2.5 Asynchronous Receive DMA Data Write Error

When host bus error occurs while the Host Controller is attempting to write to either the request or response bu
Host Controller will set the corresponding ContextControl.dead and set ContextControl.event to evt_data_write. The
unrecoverable error IntEvent is generated and the context’s IntEvent is not set regardless of the setting of the int
field in the descriptor. CommandPtr.descriptorAddress will point to the descriptor that contained the buffer descriptor
the memory address at which the error occurred. Any data in the input FIFO for the context is discarded.

13.2.6 Isochronous Receive Data Write Error

If a data write error occurs for a context that is in packet-per-buffer mode, the Host Controller wil
ContextControl.event to evt_data_write or evt_overrun and conditionally update xferStatus of the descriptor in whic
error occurred. Any remaining data in the input FIFO for the packet is discarded. The resCount value in a descrip
has an error will not necessarily reflect the correct number of data bytes successfully written to memory. If a
overrun occurs for a context that is in buffer-fill mode, the packet is treated as if a data length error had occurre
‘backed out’ of the receive buffer (xferStatus and resCount not updated) and the remainder of the packet is discar
the input FIFO.

If a host bus error occurs for a context in buffer-fill mode the Host Controller will set ContextControl.dead and set
ContextControl.event to evt_data_write. The unrecoverable error IntEvent is generated and the context’s IntEvent
set regardless of the setting of the interrupt (I) field in the descriptor. CommandPtr.descriptorAddress will point to the
descriptor that contained the buffer descriptor for the memory address at which the error occurred. Any data in t
FIFO for the context is discarded.
Page 140 Copyright © 1996,1997 All rights reserved.

Host Bus Errors 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ontroller
ata_error
ce replies
the Host
 will be

 requests
e data is
the Host
tware

nd offset

 write,
fail.

may not
hen the

visible
gh the
t
ller can
ads
13.2.7 Physical Read Error

When an external node does a physical access and the Host Controller’s read of system memory fails, the Host C
will return an error indication to the requester either by forming a response containing a response code of resp_d
or by purposely truncating the response packet which forces a data_length mismatch at the requester. If the devi
with ack_busy or ack_data_error the host should retry the packet. If the error was caused by a FIFO underrun,
Controller will retry with the same response. If, however, the error was a host bus error, the response packet
changed to resp_data_error.

13.2.8 Posted Write Error

Whether to be handled by the Physical Request controller or by the Asychronous Receive Request context, write
to certain address ranges (see chapter 12., “Physical Requests,”) may be acked with ack_complete before th
actually written to system memory. Since the sending node has been notified that the action is complete, when
Controller cannot complete aposted write operation due to a host bus error the system must be notified so that sof
can recover.

If an error occurs in writing the posted data packet, then the Host Controller sets the IntEvent.PostedWriteErr bit to
indicate that an error has occurred and the write remains pending. Software can then read the source node ID a
address from PostedWriteAddressLo and PostedWriteAddressHi and then clear IntEvent.PostedWriteErr.When software
clears IntEvent.PostedWriteErr, that write is no longer pending.

A Host Controller implementation is allowed to support any number of posted writes. However, for each posted
there must be an error reporting register to hold the source node ID and offset address should that posted write

If the Host Controller has as many pending physical writes as it has reporting registers additional physical writes
be posted. Instead the Host Controller will need to return ack_pending and only return a complete indication w
write is actually done.

Although the Host Controller may allow several pending writes, error reporting is through a single pair of software
registers. If multiple posted write failures have occurred, software will access them one at a time throu
PostedWriteAddress registers. When software clears IntEvent.PostedWriteErr, this is a signal to the Host Controller tha
software has completed reading of the current contents of PostedWriteAddressLo/Hi and that the Host Contro
report another error by again setting IntEvent.PostedWriteErr and presenting a new set of values when software re
PostedWriteAddressLo/Hi.
Copyright © 1996,1997 All rights reserved. Page 141

Host Bus Errors 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

equest

the node

rough the
eue, and

FO, the

are placed
ps gener-

gorithm

uest

at
13.2.8.1 PostedWriteAddress Register

If IntEvent.postedWriteErr is set, then these registers contain the 48 bits of the 1394 destination offset of the write r
that resulted in a host bus error.

The PostedWriteAddress register is a 64-bit register which indicates the bus and node numbers (source ID) of
that issued the write that failed, and the address that node attempted to access. The IntEvent.PostedWriteErr bit allows
hardware to generate an interrupt when a write fails.

The PostedWriteAddress registers point to a queue in the Host Controller. This queue is accessed by software th
PostedWriteAddress registers. When a posted write fails, its address and node’s source ID are placed in this qu
the interrupt is generated. In addition, that packet is removed from the FIFO. By removing the packet from the FI
Host Controller is not blocked from performing future transactions on the 1394 and host buses.

When software reads from these registers, that entry is removed from the queue, the next address and source ID
at the head of the queue, and another interrupt is generated. When the queue is empty, the Host Controller sto
ating interrupts.

In order to guarantee the accuracy of the Posted Write error registers, software must perform the following al
when the posted write error interrupt is encountered:

1) Read the PostedWriteAddressHi register
2) Read the PostedWriteAddressLo register
3) Clear the IntEvent.PostedWriteError bit.

Figure 13-1 — PostedWriteAddressHi register

Figure 13-2 — PostedWriteAddressLo register

Table 13-1 — PostedWriteAddress register description

field name rwu reset description

sourceID ru undef The busNumber and nodeNumber of the node that issued the write req
that failed.

offsetHi ru undef The upper 16-bits of the 1394 destination offset of the write request th
failed.

offsetLo ru undef The low 32-bits of the 1394 destination offset of the write request that
failed.

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

sourceID offsetHi

31 30 29 28 27 25 2426 23 22 21 20 19 18 17 16 15 14 13 12 11 9 810 7 6 5 4 3 2 1 0

offsetLo
Page 142 Copyright © 1996,1997 All rights reserved.

Host Bus Errors 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

r inter-
oes not
rmation

e, if the
ysical
ssfully
ugh the

ontroller

enable
e error,

the Host
 HCI does
ine the
This will guarantee that software receives all information it requires about the first posted write, allowing anothe
rupt to be generated for future posted writes, and simplifies the Host Controller hardware. The Host Controller d
have to monitor that all three events occur before it moves to the next item in the queue. It may consider the info
read once it sees the IntEvent.PostedWriteError bit cleared to 0.

13.2.8.2 Queue Rules

The Host Controller is only allowed to post as many writes as its posted write error queue is deep. For exampl
Host Controller has a queue depth of two, it shall only return “ack_complete” on two physical writes. All other ph
writes must return either “ack_pending” or “ack_busy” event codes. Only when a previous posted write is succe
transferred into host memory, or when a posted write that resulted in an error is removed from the queue thro
method described above by software, is the Host Controller allowed to accept more posted writes.

An example queue is shown in Figure 13-3. In this case, the queue is three entries deep, so this particular Host C
can accept three posted writes.

Note that the Host Controller is not required to implement the posted write functionality at all. Software may
posted writes, but the Host Controller will never accept posted writes. It will therefore never report a posted writ
and does not need to implement this queue.

However, posted writes represent a performance gain to the overall 1394 system. By accepting posted writes,
Controller and 1394 nodes are able to transfer data without excessive overhead on the 1394 bus. The 1394 Open
not mandate that a certain level of posting be required, allowing individual hardware implementations to determ
posting depth based upon system needs.

Figure 13-3 — Posted Write Error Queue

PostedWriteErrorHi

PostedWriteErrorLo

PostedWriteErrorLo

Visible Registers

Invisible Registers

{

{{ PostedWriteErrorHi

PostedWriteErrorLo

PostedWriteErrorHi
Copyright © 1996,1997 All rights reserved. Page 143

Host Bus Errors 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97
Page 144 Copyright © 1996,1997 All rights reserved.

PCI Interface 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

 section
sing the
lly, PCI
require-

hey are
the PCI
t for the
ters are
n space.

memory
does not

it in the
r logic

rmat of

pecific
 driver.

Address
Annex A. PCI Interface

A.1 PCI Configuration Space

OpenHCI’s may be on any number of buses, this appendix only discusses their designs with PCI bus. This
describes the PCI requirements for IEEE 1394 Open Host Controller Interface compliant devices implemented u
PCI bus (abbreviated as OHC’s herein). Only the registers and functions unique to a PCI-based OHC (basica
configuration registers) are described in this appendix. OpenHCI compliant 1394 controllers must adhere to the
ments given in the PCI Local Bus Specification, Revision 2.1.

Typically, the PCI registers and expansion ROM are only accessed during boot-up and PCI device initialization. T
not typically accessed during runtime by device drivers. The PCI configuration registers, taken in total, are called
configuration space. The PCI configuration space for OpenHCI is header type 0. Header type 8’h00 is the forma
device’s configuration header region which is the first 16 dwords of PCI configuration space. Operational regis
memory mapped into PCI memory address space and pointed to by Base_Adr_0 register in the PCI configuratio
The operational registers are described in the body of this specification. PCI configuration space is not directly
or I/O mapped - it’s access is system dependent. Software reset issued through an OpenHCI control register
affect the contents of the PCI configuration space.

A.2 Busmastering Requirements

The 1394 OpenHCI controller requires a bursting capable busmaster ability on the PCI bus. If the busmaster b
command register transitions from 1 to zero (see section A.3.1), the PCI logic supporting the OpenHCI controlle
must kill all DMA contexts.

A.3 PCI Configuration Space for 1394 OpenHCI With PCI Interface

Figure A-1 shows the PCI configuration space for a 1394 OpenHCI controller designed for PCI attachment. The fo
this configuration space must be compliant withPCI Local Bus Specification, Revision 2.1 (PCI Special Interest Group,
1995). Any registers not pointed to by the Base_Adr_0 (OHCI registers) pointer are vendor specific. Vendor s
registers must not be required for correct operation of the 1394 OpenHCI controller with a 1394 OpenHCI device

Figure A-1 — PCI Configuration Space

Figure A-2 shows the resources pointed to by the various Base_Adr registers and the Expansion ROM Base
register.

Required PCI
Configuration Space

Device ID Vendor ID

Status Command

Class Code Rev

BIST Hdr Lat Cache

Base Adr 0 - OHCI Regs

base 2 (vendor opt)

base 3 (vendor opt)
base 4 (vendor opt)

Cardbus CIS Ptr (opt)

Expansion ROM Base
0

0

Max_Lat Int_Pin Int_lineMin_Gnt

Subsystem ID Subsys. Vendor ID

0

4

8

20

24

28

2C

30

34

38

3C

1C

18

14

10

C

PCI_HCI_Control
0 (vendor opt)
0 (vendor opt)

0 (vendor opt)

0 (vendor opt)

0 (vendor opt)

0 (vendor opt)

0 (vendor opt)

0 (vendor opt)

0 (vendor opt)

0 (vendor opt)

0 (vendor opt)

0 (vendor opt)

0 (vendor opt)

0 (vendor opt)

0 (vendor opt)

40

FC

Vendor
Option

base 5 (vendor opt)

base 1 (vendor opt)

Cap_Ptr
Copyright © 1996,1997 All rights reserved. Page 145

PCI Interface 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

e 1394
rational

les
Figure A-2 — Pointers to OHCI Resources in PCI Configuration Space

A.3.1 COMMAND Register

This register provides coarse control over the device’s ability to generate and respond to PCI cycles. For th
OpenHCI it is required that the Host Controller support both PCI bus-mastering and memory-mapping of all ope
registers into the memory address space of the PC host. Consequently, the fieldsMA and BM should always be set to
1’b1 during device configuration.

Once the Host Controller starts processing DMA descriptor lists, the action of resetting either fieldMA or BM to 1’b0
will halt all PCI operations from the 1394 OHC. (Do this carefully). If the fieldMA is reset to 1’b0, the Host Controller
can no longer respond to any software command addressed to it and interrupt generation is halted.

Table A-1 — COMMAND Register

Field Bits
Read/
Write Description

0 rw Refer to PCI Local Bus Specification, Revision 2.1, for definition

Memory Space 1 rw MEMORY SPACE
Set to 1‘b1 so that the OpenHCI controller can respond to PCI memory cyc

BusMaster 2 rw BUS MASTER
Set to 1‘b1 so that the OpenHCI controller can act as a bus-master

3-5 rw Refer to PCI Specification, Revision 2.1, for definition

Parity Error Response 6 rw Parity Error Response
Set to 1‘b1 if error detection on the PCI bus is desired.

7 rw Refer to PCI Specification, Revision 2.1, for definition

Vendor
Option 1

Vendor
Option X

Required

Vendor Option

PCI
Expansion

ROM

OHCI
Internal

Registers

@rom_base

@base_adr 0

@base_adr 1

@base_adr x

Device ID Vendor ID

Status Command

Class Code Rev

BIST Hdr Lat Cache

Base Adr 0 - OHCI Regs

base Adr 1(opt)

base Adr 5 (opt)

Cardbus CIS Ptr (opt)

Expansion ROM Base

0

0
Max_Lat Int_Pin Int_lineMin_Gnt

Subsystem ID Subsys. Vendor ID

18

14

10

PCI Configuration Space

Cap_Ptr
Page 146 Copyright © 1996,1997 All rights reserved.

PCI Interface 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

enHCI-

vision

f the host.
egisters
ters are

ult

t

r.
A.3.2 STATUS Register

This register tracks the status of PCI bus-related events.

A.3.3 CLASS_CODE Register

This register identifies the basic function of the device, and a specific programming interface code for an 1394 Op
compliant Host Controller.

A.3.4 Revision_ID Register

The Revision ID must contain the vendor’s revision level of their OpenHCI silicon. It is required that each new re
of silicon receive a new revision ID.

A.3.5 Base_Adr_0 Register

The Base_Adr_0 register specifies the base address of a contiguous memory space in the PCI memory space o
This memory space is assigned to the operational registers defined in this specification. All of the operational r
described in this document are directly mapped into the first 2 kilobyte of this memory space. Vendor unique regis
not allowed within the first 2 KB of this memory space.

Table A-2 — STATUS Register

Field Bits
Read/
Write Description

3-0 r Reserved.

4 r CAPABILITIES LIST
SeePCI Power Management Specification 0.99a. May be 0 for motherboard-
only OHCI controllers such as those integrated into a south bridge. The defa
value of this bit is 1.

- 15-5 - SeethePCI Local Bus Specification, Revision 2.1.

Table A-3 — CLASS_CODE Register

Field Bits
Read/
Write Description

PI 7-0 r PROGRAMMING INTERFACE
A constant value of 8’h10 Identifies the device being a 1394 OpenHCI Hos
Controller.

SC 15-8 r SUB CLASS
A constant value of 8’h00 Identifies the device being of IEEE 1394.

BC 23-
16

r BASE CLASS
A constant value of 8’h0C Identifies the device being a serial bus controlle
Copyright © 1996,1997 All rights reserved. Page 147

PCI Interface 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

CI Spec-
beginning

ice
m

le

B

ts a
rs.

ed
g
al

ce

ee
Those hardware registers that are used to implement vendor specific features are not covered by this 1394 OpenH
ification. Additional vendor unique address spaces may be allocated by adding additional base address registers
at offset h14 in PCI configuration space.

A.3.6 CAP_PTR Register (opt)

This register is a pointer to a linked list of additional capabilities.

Table A-4 — Base_Adr_0 Register

Field Bits
Read/
Write Description

IND 0 r MEMORY SPACE INDICATOR
A constant value of 1’b0 Indicates that the operational registers of the dev
are mapped into memory space of the main memory of the PC host syste

TP 2-1 r This bit must be programmed consistent with thePCI Local Bus Specification,
Revision 2.1

PM 3 r PREFETCH MEMORY
A constant value of 1’b0 Indicates that there is no support for “prefetchab
memory”

X-4 rw Default value of 0 and is read only. 10 <= X. Represents a minimum of 2-K
addressing space for the OpenHCI’s operational registers.

OHCI_REG_PTR 31-
(X+1)

rw OHCI Register Pointer
Specifies the upper bits of the 32-bit starting base address. This represen
minimum of 2-KB addressing space for the OpenHCI’s operational registe
X > 10. If X is 11 the addressing space is 2KB, if 12 it’s 4KB etc...
On x86 systems which will be booting from a 1394 device, the BIOS may ne
to map this address range into the option ROM area below 1M. Requestin
large blocks of address space using the register may result in a non-optim
system configuration.

Table A-5 — CAP_PTR Register

Field Bits
Read/
Write Description

7-0 r CAP_PTR
The CAP_PTR provides an offset into the function’s PCI configuration spa
for the location of the first item in the Capabilities Linked List. The CAP_PTR
offset is dWord aligned so the two least significant bits are always “8’h00.” S
thePCI Power Management Specification 0.99a for more details. This field
only has meaning if bit 4 in the Status register is set.
Page 148 Copyright © 1996,1997 All rights reserved.

PCI Interface 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ved for

, Open
d), it is
 in this
e 1394
ble by

e of the
ween the
the PCI
 timely
 engine,

 section

re

.

A.4 PCI_HCI_Control Register

This register has 1394 OpenHCI specific control bits. Vendor options are not allowed in this register. It is reser
OpenHCI use only.

A.5 PCI Expansion ROM for 1394 OpenHCI

1394 Open Host Controller’s used on add-in adapters will clearly require PCI expansion ROMs that provide BIOS
Firmware, etc. to boot and configure the card. If this ROM is non-writable and soldered to the card (not sockete
also permitted that the serial ROM image which the Open Host Controller autoloads at boot up can be included
expansion ROM (saving the cost of a serial ROM). If this is done, the serial ROM image must be loaded into th
Open Host Controller by hardware state machine without software intervention or control. It cannot be modifia
software or 1394 devices under any circumstances.

A.6 PCI Bus Errors

Any PCI bus error encountered must be reported to the OpenHCI operational logic for error handling. The natur
error response is context dependent and discussed in the body of the document. No distinction is made bet
various PCI bus errors. Basically, only one all encompassing error signal is provided to the operational logic by
specific interface logic. It is the responsibility of the implementer to insure that PCI bus errors are reported in a
fashion, consistent with their overall OpenHCI implementation, that insures that the errors are associated with the
context, etc. that the error should be posted to.

When the “Parity Error Response” bit in the Command Register in PCI Configuration Space is enabled (see
A.3.1), the PCI interface logic in the OpenHCI must assert PERR# in accordance with thePCI Local Bus Specification,
Revision 2.1 when data with bad parity is received by the 1394 OpenHCI controller.

Table A-6 — PCI_HCI_Control Register

Field Bits
Read/
Write Description

PCI_Global_Swap 0 rw PCI Global Swap Bit
When this bit is b1, all quadlets read from and written to the PCI interface a
byte swapped. PCI addresses, such as expansion ROM and PCI config
registers, are unaffected by this bit (they are not byte swapped under any
circumstances). The hardware reset value of this bit is b0.

This bit is not required for motherboard implementations.

31-1 rw These are reserved bits. They must be written as zeros and read as zeros
Copyright © 1996,1997 All rights reserved. Page 149

PCI Interface 1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97
Page 150 Copyright © 1996,1997 All rights reserved.

Summary of Register Reset Values (Informative)1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ience. In
ative part

or each
Refer to
ed.
Annex B. Summary of Register Reset Values (Informative)

The table below is a summary of all register reset values described in this document and is provided for conven
the event of a discrepancy between values shown in this table and the normative part of this document, the norm
of this document shall be considered correct.

All registers are shown below in address order. Refer to section 4.2, “Register Map,” for the complete list. Fields f
register are shown along with their values following a hardware reset, a software reset and a bus reset.
section 2.1.2.3 for interpretation of reset values notation. All values for bus reset are N/A unless otherwise specifi

Table B-1 — Register Reset Summary

Register Fields

RESET See
clause(s)Hardware Software Bus

Version 5.2

GUID_ROM N/A

version N/A

revision N/A

GUID_ROM 5.3

addrReset undef

rdStart 1’b0

rdData undef

ATRetries 5.4

secondLimit 3’h0

cycleLimit 13’h0

maxPhysRespRetries undef

maxATRespRetries undef

maxATReqRetries undef

Bus Management CSR registers 5.5.1

BUS_MANAGER_ID 6’3F undef 6’3F

BANDWIDTH_AVAILABLE 13’h1333 undef 13’h1333

CHANNELS_AVAILABLE_HI 32’h
FFFF_FFFF

undef 32’h
FFFF_FFFF

CHANNELS_AVAILABLE_LO 32’h
FFFF_FFFF

undef 32’h
FFFF_FFFF

CSRReadData undef 5.5.1

CSRCompareData undef 5.5.1

CSRControl 5.5.1

csrDone 1’b1

csrSel undef

ConfigROMhdr 5.5.2

info_length 8’h00 N/A

crc_length 8’h00 N/A

rom_crc_value 16’h0000
Copyright © 1996,1997 All rights reserved. Page 151

Summary of Register Reset Values (Informative)1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97
BusID N/A 5.5.3

BusOptions 5.5.4

irmc undef

cmc undef

isc undef

bmc undef

pmc undef

cyc_clk_acc undef

max_rec max
implemented

N/A

g undef

link_spd max link
speed

undef

GUIDHi 5.5.5

node_vendor_ID 24’b0 N/A

chip_ID_hi 8’b0 N/A

GUIDLo 5.5.5

chip_ID_lo 32’b0 N/A

ConfigROMmap 5.5.6

configROMaddr undef

PostedWriteAddressLo 13.2.8.1

offsetLo undef

PostedWriteAddressHi 13.2.8.1

sourceID undef

offsetHi undef

VendorID 5.6

VendorUnique N/A

VendorCompanyID N/A

HCControl 5.7

noByteSwapData undef

programPhyEnable ** see
table 5-12

N/A

aPhyEnhanceEnable ** see
table 5-12

N/A

LPS 1’b0

postedWriteEnable undef

linkEnable 1’b0

softReset **see table 5-12

Table B-1 — Register Reset Summary

Register Fields

RESET See
clause(s)Hardware Software Bus
Page 152 Copyright © 1996,1997 All rights reserved.

Summary of Register Reset Values (Informative)1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97
SelfIDBuffer 11.1

selfIDBufferPtr undef

SelfIDCount 11.2

selfIDError undef *

selfIDGeneration undef *

selfIDSize undef 9’b0 -> *

IRMultiChanMaskHi
IRMultiChanMaskLo

10.4.1.1

isoChannelN undef

IntEvent 6.1

selfIDcomplete undef 1’b0

busReset undef 1’b1

all other bits undef

IntMask 6.2

masterIntEnable 1’b0

all other bits undef

IsoXmitIntEvent 6.3.1

isoXmitN undef

IsoXmitIntMask 6.3.2

isoXmitN undef

IsoRecvIntEvent 6.4.1

isoRecvN undef

IsoRecvIntMask 6.4.2

isoRecvN undef

FairnessControl 5.8

pri_req undef N/A

LinkControl 5.9

cycleSource undef

cycleMaster undef

cycleTimerEnable undef

rcvPhyPkt undef

rcvSelfID undef

Table B-1 — Register Reset Summary

Register Fields

RESET See
clause(s)Hardware Software Bus
Copyright © 1996,1997 All rights reserved. Page 153

Summary of Register Reset Values (Informative)1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97
NodeID 5.10

iDValid 1’b0 1’b0 -> 1’b1

root 1’b0 1’b1
(conditional)

CPS 1’b0

busNumber 10’h3FF 10’h3FF

nodeNumber undef from phy

PhyControl 5.11

rdDone undef

rdAddr undef

rdData undef

rdReg 1’b0

wrReg 1’b0

regAddr undef

wrData undef

Isochronous Cycle Timer 5.12

cycleSeconds N/A

cycleCount N/A

cycleOffset N/A

AsynchronousRequestFilterHi
AsynchronousRequestFilterLo

5.13.1

asynReqResourceN 1’b0 1’b0

asynReqResourceAll 1’b0

PhysicalRequestFilterHi
PhysicalRequestFilterLo

5.13.2

physReqResourceN 1’b0 1’b0

physReqResourceAllBuses 1’b0 1’b0

PhysicalUpperBound 5.14

physUpperBoundOffset undef N/A

CommandPtr 3.1.2, 7.2.1,
8.3.1, 9.2.1,
10.3.1

descriptorAddress undef

Z undef

Table B-1 — Register Reset Summary

Register Fields

RESET See
clause(s)Hardware Software Bus
Page 154 Copyright © 1996,1997 All rights reserved.

Summary of Register Reset Values (Informative)1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97
AT Request ContextControl 3.1, 7.2.2,
7.2.3AT Response ContextControl

run 1’b0

wake undef

dead 1’b0

active 1’b0 1’b0

event code undef

AR Request ContextControl
AR Response ContextControl

3.1, 8.3.2

run 1’b0

wake undef

dead 1’b0

active 1’b0

spd undef

event code undef

IT ContextControl 3.1, 9.2.2

cycleMatchEnable undef

cycleMatch undef

run 1’b0

wake undef

dead 1’b0

active 1’b0

event code undef

IR ContextControl 3.1, 10.3.2

bufferFill undef

isochHeader undef

cycleMatchEnable undef

multiChanMode undef

run 1’b0

wake undef

dead 1’b0

active 1’b0

spd undef

event code undef

Table B-1 — Register Reset Summary

Register Fields

RESET See
clause(s)Hardware Software Bus
Copyright © 1996,1997 All rights reserved. Page 155

Summary of Register Reset Values (Informative)1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97
IR ContextMatch 10.3.3

tag3 undef

tag2 undef

tag1 undef

tag0 undef

cycleMatch undef

sync undef

tag1SyncFilter undef

channelNumber undef

Table B-1 — Register Reset Summary

Register Fields

RESET See
clause(s)Hardware Software Bus
Page 156 Copyright © 1996,1997 All rights reserved.

Summary of Bus Reset Behavior (Informative)1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

resented
.

o the bus

must be
real-time
ch DMA

se
oth AT
 and

 the most
rdware. To
 inserts a
ceive

ich
nabling

hronous

assigned
ake any

channels.
quired to
Annex C. Summary of Bus Reset Behavior (Informative)

This section is a summary of Open HCI bus reset behavior. In the event of a discrepancy between information p
here and in the normative part of this document, the normative part of this document shall be considered correct

C.1 Overview

Following a bus reset, node ID’s for nodes on the bus may have changed from the values they had been prior t
reset. Since asynchronous packets include a source and destination node ID, it is imperative that packets withstale node
ID’s do not go out on the 1394 bus. Isochronous packets do not include any node ID information and therefore
allowed to continue un-interrupted after a bus reset. To accomplish this behavior, several things must happen in
by the Open Host Controller when a bus reset occurs. The following sections describe bus reset behavior for ea
type.

C.2 Asynchronous Transmit: Request & Response

While the bus reset interrupt, IntEvent.busReset, is active, the Host Controller will inhibit AT Request and AT Respon
transmits and flush all packets from the AT Request & AT Response FIFO(s). The host software must wait until b
contexts are inactive (ContextControl.active == 0) before clearing the bus reset interrupt. Refer to sections 7.2.3.1
7.2.3.2 for more information.

C.3 Asynchronous Receive: Request & Response

Since all nodes are required to only transmit asynchronous packets that have node ID’s as they were assigned in
recent bus reset/ Self ID process, AR Requests and AR Responses continue to be processed normally by the ha
assist software in determining which Request packets arrived before and after the bus reset, the Host Controller
fabricatedbus reset packet in the appropriate location in the receive queue. This way, packets which arrive in the re
buffer after the bus reset packet can be interpreted using the current node ID assignments.

Also upon detection of a bus reset the Host Controller will clear all bits in the Asynchronous Filter registersexcept for the
Asynchronous Request Filter HI.asynReqResourceAll bit. If this bit is also 0, receipt of all asynchronous requests wh
do not reference the first 1K of CSR config ROM will be prevented and software is responsible for subsequently e
the Asynchronous Filter registers as appropriate.

Refer to section 8.4.2.3 for information on the bus reset packet, and section 5.13 for information on the async
filter registers.

C.4 Isochronous Transmit

A bus reset does not affect the transmission of isochronous packets, which continue being transmitted for their
channels. It is software’s responsibility to perform the necessary isochronous resource re-allocation and m
communication to the talker’s and/or receivers’ control registers.

C.5 Isochronous Receive

A bus reset does not affect the receipt of isochronous packets, which continue being received for their assigned
It is software’s responsibility to perform the necessary isochronous resource re-allocation and communicate as re
the talkers and/or receivers.
Copyright © 1996,1997 All rights reserved. Page 157

Summary of Bus Reset Behavior (Informative)1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

eset bit is
 the

hapter

ransmit
s reset.

ssed, will

, normal

 requests
hysical

alid
tion has

Refer to
C.6 Self ID Receive

The receipt of self ID packets is part of the bus reset process. When a bus reset occurs, and the IntEvent.busR
set, the IntEvent.selfIDComplete interrupt is cleared. Once the Self ID phase of bus initialization has completed
IntEvent.selfIDComplete is set to inform software that bus initialization self ID packets have been received. See C
11.0 for further information.

C.7 Physical Requests/Responses

C.7.1 Physical Response

The Host Controller will flush all Physical Asynchronous Transmit Response packets from all asynchronous t
FIFO’s. The Physical AT Response engine will resume processing incoming requests which arrive following the bu

C.7.2 Physical Requests

Posted write requests, that is, write requests for which ack_complete was sent but which have not yet been proce
be processed normally.

All split transaction AR Requests are flushed until a bus reset boundary is detected. After the bus reset boundary
physical receive transactions are resumed.

In response to a bus reset, Host Controller clears the Physical Request Filter registers and physical handling of
outside the first 1K of CSR config ROM is disabled. Software is responsible for subsequently enabling the P
Request Filter registers as appropriate. See section 5.13.2 for further information.

C.8 Control Registers

In response to a bus reset, the NodeID.iDValid bit is cleared indicating that the Host Controller does not yet have a v
node ID, and therefore software must not enable asynchronous transmits. When the self ID phase of bus initializa
completed and the new Node ID has been determined, the PHY returns status which initializes NodeID.nodeNumber and
the Host Controller sets NodeID.iDValid at which point software may restart asynchronous transmit.

A bus reset will also cause the Host Controller’s Isochronous Resource Management registers to be reset.
section 5.5.1 for further information.
Page 158 Copyright © 1996,1997 All rights reserved.

IT DMA Supplement (Informative)1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

entary
ly with
nnex.

. These
f events
yield
 strategy.
 “Link
rticular
menta-

hat is
 likely
ously,
local cycle
r a stop
rever. In

. Only
 sense,
ose that

al way of
 poten-
g the
plemen-

upled
Annex D. IT DMA Supplement (Informative)

The OpenHCI Isochronous Transmit DMA (IT DMA) is documented in Chapter 9.0. This Annex provides supplem
explanation and example, to aid in understanding the IT DMA. It is intended that this Annex will agree complete
Chapter 9.0. If there is any disagreement, this Annex is faulty, and the information in Chapter 9.0 overrides this A

D.1 IT DMA Behavior

The flowcharts given in the next two sections illustrate the behavior of the IT DMA as documented in Chapter 9.0
flowcharts are provided in order to help the reader visualize the end result of IT DMA operation, through a set o
that could occur within the IT DMA. These flowcharts do not specify the IT DMA algorithm, although they should
the same output as that specified by Chapter 9.0. Furthermore, these flowcharts do not dictate an implementation
The variables such asM andN do not necessarily correspond to OpenHCI registers. The presence of a task on the
side” flowchart or the “DMA side” flowchart does not mandate that the associated logic be implemented in any pa
part of OpenHCI. Such distinctions also do not imply anything about clock domains, signal routing, or other imple
tion-specific aspects of an OpenHCI product.

D.2 IT DMA Flowchart Summary

The output of the IT DMA is illustrated in this Annex using two flowcharts. One flowchart represents activity t
likely to take place within the DMA engines of a particular OpenHCI. The other flowchart represents activity that is
to take place in the Link (or “Link Core”) portion of a particular OpenHCI. These two flowcharts execute simultane
with no interdependencies other than those shown by the shared variables, and other shared state such as the
timer or the cycle start value most recently received or sent. Note also that neither flowchart contains an exit o
condition. It is intended that both flowcharts begin execution at the same instant, and then remain in operation fo
practice, the flowcharts might be restarted after a full chip reset, or other similar OpenHCI event.

The flowcharts do not attempt to capture every possible error condition, such as a dead condition in the IT DMA
the states required for ordinary IT DMA processing are shown, and the level of detail varies somewhat. In this
cycle loss and cycle match are considered normal IT DMA events. Bus resets are not specifically identified, but th
cause cycle loss will be handled by the flowchart algorithm.

Because the flowcharts do not mandate implementation details, they also do not necessarily show the most optim
implementing the IT DMA. For example, the detection of a cycle loss could possibly be performed with less delay,
tially giving the IT DMA more time to recover, thus improving the FIFO readiness for following cycles, and reducin
chance of further cycle losses. The presentation of these example flowcharts does not preclude a more efficient im
tation, within the behavior specified in Chapter 9.0.

D.3 DMA-side IT DMA flowchart

The following flowchart shows logic for processing the DMA component of the IT DMA in a manner that (when co
with the Link side shown below) agrees with that specified in Chapter 9.0.
Copyright © 1996,1997 All rights reserved. Page 159

IT DMA Supplement (Informative)1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

 of the
 large,
 cycle
es one
The DMA-side flowchart has two major components. The top half consists of a loop that synchronizes the activity
DMA side to the correct cycle number. This loop implements a two-cycle workahead. If the FIFO were arbitrarily
this algorithm would always keep two cycles worth of packets in the FIFO, in addition to the packets for any
currently being transmitted. The bottom half consists of a loop for each of the IT DMA contexts. This loop process
cycles worth of packets, either loading them all into the FIFO, or performing skip processing for all of them.

Figure D-1 — IT DMA DMA-Side Flowchart

ContextControl [C] . cycleMatchEnable = 0

CommandPtr [C] = skipAddress [C] CommandPtr [C] packet -> FIFO

CommandPtr [C] = branchAddress [C]

C++

C = 0

Skip = 1

Skip = 0

Put 2 cycle end tokens in FIFO

Flush FIFOLost = 0N = current cycle # + 3

(Skip == 1) OR (Last cycle start # sent / received >= (N - 2)) ?

N++ Lost - -

Put cycle end token in FIFO

NO

YES

Lost > 0 ? YES

NO

ContextControl [C] . cycleMatchEnable == 1 ? NO

YES

ContextControl [C] . run == 1 ?NO

YES

C < # of IT contexts ? NO

YES

ContextControl [C] . cycleMatch == N ?NO

YES

Skip == 1 ? NO

YES

CommandPtr [C] . Z == 0 ?YES

NO

Skip == 1 ? YES

NO

Start
Page 160 Copyright © 1996,1997 All rights reserved.

IT DMA Supplement (Informative)1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

 corre-
ate two-
IFO is
te - in the
 work
tting a
kets for
flushed
 (even-

empt
t, both
a variable

commu-
A side

 to also

so that
s into
ill hold

 FIFO.
current
on how
midst of
, plus

om-half
y skip

 the top-
ceived is

there is
n this is
sing can
the DMA
n zero.

ntext
hether or
ntext even
le skip
A key point in understanding the DMA side flowchart is that neither the top loop nor the bottom loop necessarily
sponds to a single cycle of real time (although, on average, they do). For example, the top loop tries to coordin
cycle workahead. In most systems, the FIFO is likely to be too small for full two-cycle workahead. In fact, if the F
smaller than the largest packet, there will be times when the workahead is zero cycles. The top loop acts as a ga
rare case that the DMA really achieves two cycles of workahead, the top loop will idle the DMA until there is more
to do. Similarly, the bottom loop may correspond to more than one cycle of real time. If, in the middle of transmi
cycle, a cycle loss occurs, the bottom loop does not exit. It will continue to attempt to transmit the remaining pac
the original cycle, and will not exit until it does. This behavior agrees with Chapter 9.0, in that packets are never
to compensate for a cycle loss. Any packet already in the FIFO, or even potentially in the FIFO, will be transmitted
tually).

D.3.1 DMA-side top half

The top half of the DMA-side flowchart regulates the IT DMA workahead, if any. The flowchart illustrated will att
to maintain a two-cycle workahead. To do this, the algorithm communicates with the Link side in three ways. Firs
sides share access to the local cycle timer and the most recent cycle start packet. Second, both sides share
called Lost, which is a count of the number of lost cycles that have not yet been handled. Finally, the two sides
nicate through the IT FIFO. The DMA side places packets into the FIFO, and the Link side removes them. The DM
also places end-of-cycle tokens in the FIFO, which are removed by the Link side. Many implementations are likely
use an end-of-packet token. This flowchart does not show such tokens, and it does not prohibit them.

Because the DMA side wants to work two cycles ahead, when it first starts running it must hold off the Link side,
it can try to put two cycles worth of packets in the FIFO. The DMA side immediately places two end-of-cycle token
the FIFO. The Link side will consume one end-of-cycle token per cycle, as detailed below, so these two tokens w
off the Link side for two cycles, while the DMA side tries to work ahead.

The DMA side keeps a private variable N, to indicate the cycle number for which it wants to load packets into the
If the DMA side were always able to maintain two-cycle workahead, N would usually be two greater than the
cycle number. More likely, N will vary between zero and two greater than the current cycle number, depending
much of the desired two-cycle workahead can actually fit into the FIFO. Because the flowchart is entered in the
some cycle, and it is too late to perform any IT DMA for that cycle, N is initialized to the current cycle number
three.

The DMA side also has a private variable called Skip. This variable is changed only between entries to the bott
loop, and it controls whether the bottom-half loop will attempt to transmit a cycles worth of packets, or appl
processing to a cycles worth of packets.

The top-half loop acts as a gate to the bottom-half loop. The bottom-half can be entered for two reasons. First,
half can determine that the workahead is less than two cycles, because the last cycle start number sent or re
greater than or equal to N minus two. Second, the top-half will immediately enter the bottom half if it learns that
a lost cycle to be handled. This condition is indicated by the shared variable Lost being greater than zero. Whe
the case, the DMA side will enter the bottom half loop regardless of the current cycle number, so that skip proces
begin as soon as possible. Because cycles cannot be lost more often than once per cycle, it is not possible for
side to achieve excess workahead due to immediately entering the bottom-half loop whenever Lost is greater tha

D.3.2 DMA-side bottom half

The bottom-half loop begins by initializing a private variable C to zero. The variable C will count the IT DMA co
index currently being processed. For each context, cycle match processing is applied, if needed, regardless of w
not a cycle loss has caused cycle skip processing. This causes the cycle match mechanism to correctly start a co
if the desired starting cycle is lost. In such a case, the first packet of that context will be subjected to cyc
Copyright © 1996,1997 All rights reserved. Page 161

IT DMA Supplement (Informative)1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ne just
y cycle

ng as
rkahead
ng this
e DMA

s of the

s been
 FIFO.

ed in the
token is

ne lost

when

wants
ycle in
cycle

er, and
 Unlike
 cycle’s

ion can
ur outside
, it wil

t packet
r the
If the
d. There
processing, rather than being loaded into the FIFO. Within the bottom-half loop, each active context (including o
activated due to cycle match) will either load one packet into the FIFO, or receive skip processing. [Nit: an empt
might not load anything into the FIFO.]

When a packet is loaded into the FIFO, the DMA side flowchart will remain in the block “packet -> FIFO” as lo
necessary to complete loading the packet into the FIFO. If the packet is larger than the FIFO, but two-cycle wo
had been achieved prior to this packet, the DMA side might remain in this block for about two whole cycles. Duri
time, the workahead drops from two to zero, and when the end of the packet is finally loaded into the FIFO, th
will immediately begin work on the next packet (same or next cycle).

When skip processing is applied, the DMA side merely replaces a context’s command pointer with the skip addres
descriptor pointed to by the current value of the command pointer.

At the end of the bottom-half loop, the private variable N is incremented, to indicate that one more cycle ha
processed. If the cycle’s packets were loaded into the FIFO normally, an end-of-cycle token is placed in the
However, if skip processing was applied, no packets were loaded into the FIFO, and no end-of-cycle token is plac
FIFO. As described below, the Link side consumes an end-of-cycle token only for cycles that are not lost, so no
required when skip processing is applied.

If skip processing was applied, the DMA side atomically decrements the shared variable Lost, to indicate that o
cycle has been handled.

D.4 Link-side IT DMA flowchart

The following flowchart shows logic for processing the Link-side component of the IT DMA in a manner that (
coupled with the DMA side shown above) agrees with that specified in Chapter 9.0.

Like the DMA side flowchart, the Link side flowchart keeps a private variable M to indicate what cycle number it
to work on next. Because the Link side begins work simultaneously with the DMA side, there will already be a c
progress for which it is too late to possibly do any IT DMA work. So, the Link side initializes M to the current
number plus one.

Like the DMA side, the Link side flowchart has a top half and a bottom half. The top half watches the cycle numb
tries to keep transmission synchronized with the cycle timer. The bottom half transmits packets from the FIFO.
the DMA side, the Link side flowchart can move between the top and bottom halves several times during a single
worth of packets. However, in the absence of cycle loss, the top and bottom halves each run once per cycle.

D.4.1 Link-side top half

The top-half has two roles. First, it watches for the cycle start event that indicates that isochronous transmiss
begin. When this happens, it sends control to the bottom half. Second, the top half detects cycle losses that occ
of the isochronous period. If, while waiting for a cycle start, the top half determines that a cycle loss has occurredl
communicate this to the DMA side, and then wait to begin work on the following cycle.

In normal operation, the top half waits until cycle M occurs, due to the transmission or reception of the cycle star
for cycle M. After processing cycle M, or if cycle M is lost, the top half increments M and then begins waiting fo
next cycle. While waiting for cycle M, the top half tries to detect cycle loss. The detection algorithm is simple:
cycle timer rolls over twice, without the receipt or transmission of a cycle start packet, then cycle loss has occurre
Page 162 Copyright © 1996,1997 All rights reserved.

IT DMA Supplement (Informative)1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

ap on the
ptimiza-
are various ways to more quickly determine that a cycle has been lost, such as the observance of a subaction g
bus after the cycle timer has rolled over once. Such strategies, if compatible with Chapter 9.0, may be valuable o
tions, but they are not illustrated here.

Figure D-2 — IT DMA Link-Side Flowchart

Clear roll-over detect

M = current cycle # + 1

Cycle timer rolled over twice ?

Lost++

Iso arbitrate

Remove token

NO

YES

Last cycle start # sent / received == M ? YES

NO

Cycle end token at FIFO head ?
YES

Have bus ? YES

NO

Start

M++

NO

Iso period ?NO

YES

Transmit packet

FIFO empty ?

YES

NO

Underflow ? NO

YES

Delete remainder of packet (if any) from FIFO

Cycle timer rolled over twice ?NO

YES
Copyright © 1996,1997 All rights reserved. Page 163

IT DMA Supplement (Informative)1394 Open Host Controller Interface Specification/Release 1.00 Printed 10/20/97

94 bus.
m half,
 being

hen the
ed, and

rt will
transmit
f is first
s period.
ttom half
loss and

 attempt
pose of
dy sent

cted.
ronous
ways to
 These

(while
A may
 FIFO is

 begin
smission,
ed (but
cated.
be lost).

 been
f incre-
 packet
ted, and
D.4.2 Link-side bottom half

The bottom half of the Link-side flowchart attempts to remove packets from the FIFO and transmit them on the 13
The bottom half will process at most one cycle’s worth of packets. However, if cycle loss occurs during the botto
it will indicate this to the DMA side and then return to the top half. The remainder (if any) of the cycle that was
transmitted will be transmitted by a future visit to the bottom half.

The bottom half begins by checking for an end-of-cycle token on the output of the FIFO. If this token is present, t
bottom half has finished work on transmitting one (possibly empty) cycle. The token is removed, M is increment
the top half now waits for the next cycle.

If the bottom of the FIFO does not contain an end-of-cycle token, then the bottom half of the Link side flowcha
attempt to transmit packets on the 1394 bus until it does reach an end-of-cycle token. When attempting to
packets, the bottom half first checks to see if the 1394 bus is in an isochronous period. When the bottom hal
entered, due to the sending or reception of cycle start packet M, the bus should always be in an isochronou
However, after some time in the bottom half, the isochronous period may have ended due to a cycle loss. The bo
checks this before each packet, and if it finds that the bus is not in an isochronous period, it indicates a cycle
exits to the top half.

If the bottom half has a packet to transmit, and the 1394 bus is in an isochronous period, the bottom half will then
to arbitrate for the 1394 bus. In most silicon implementations, arbitration may have begun earlier, but for the pur
this flowchart, this is the point at which arbitration actually matters, so it is shown here. Note that if we have alrea
at least one packet in the bottom half, then we should already have won arbitration at this point.

If we have not yet won arbitration, the bottom half will loop tightly until we do win arbitration, or a cycle loss is dete
If the cycle timer rolls over twice while we attempt to arbitrate, or if we receive any other indication that the isoch
period has ended, then we indicate a cycle loss and exit the bottom half. As with the top half, there may be
optimize the detection of a cycle loss, in order to more rapidly signal the DMA side that recovery is required.
methods are not illustrated here, but as long as they comply with Chapter 9.0, they are not precluded.

If the bottom half does win arbitration, it must then immediately transmit an isochronous packet. Until this time
arbitrating) it did not matter if the FIFO was empty (due to the DMA having fallen behind). In such a case, the DM
have caught up and loaded something into the FIFO, in which case transmission can proceed. However, if the
empty after arbitration is won, then a cycle loss is indicated.

After winning arbitration without detecting a cycle loss and with some data in the FIFO, the bottom half can then
transmitting a packet on the bus. This process continues until a single packet has been transmitted. If, during tran
the FIFO underflows, the Link side will clean up the FIFO by eating any leftover parts of the packet that underflow
not any following packets). If an end-of-cycle token does not follow immediately, then a cycle loss will be indi
However, an underflow on the last packet of a cycle does not cause a cycle loss (although the packet itself may

Finally, after transmitting a packet, with or without underflow, the bottom half checks to see if the cycle has
completed, by looking for an end-of-cycle token at the bottom of the FIFO. If the cycle is complete, the bottom hal
ments M and returns to the top half. If the cycle is not complete, the bottom half will attempt to transmit the next
for the current cycle. In this case, if an underflow occurred and the bus was lost, a cycle loss will then be indica
the transmission of the next packet will be delayed until the following cycle, as specified in Chapter 9.0.
Page 164 Copyright © 1996,1997 All rights reserved.

Sample IT DMA Controller Implementation (Informative)1394 Open Host Controller Interface Specification/Release 1.00 Printed

ement

nd” it

ork
he cycle
needs to

1

)(
Annex E. Sample IT DMA Controller Implementation (Informative)

The OpenHCI IT DMA controller is documented in Chapter 9.0. This Annex describes a sampleimplementation of the IT
DMA controller. It is intended to faithfully implement the behaviors specified in Chapter 9.0. If there is any disagre
the information in Chapter 9.0 overrides this Annex.

The basic idea behind this IT DMA implementation is that the DMA side keeps track of how far “ahead” or “behi
is from the link side. When theahead_ctr is positive the DMA side is working ahead of the link. When theahead_ctr is
negative the DMA side is catching up. The DMA sidecycle_count is calculated by adding theahead_ctr value to a
version of the link sidecycle_count that has been exported to the DMA side. This allows the IT DMA controller to w
reliably after a cycle inconsistent event. CycleInconsistent events do not affect contexts that don’t care about t
number. There is no need to shutdown all contexts when a cycleInconsistent condition is detected. Software only
stop/reconfigure/restart contexts that care about the cycle number.

Figure E-1 — DMA Cycle Matching Continuum

cycle_count

ahead_ctr / match_cycle +-

034 1035 1036 1037 1038 1039 1040 1041

(0, 1038) (1, 1039) (2, 1040) (3, 1041(-1, 1037)(-2, 1036)(-3, 1035)-4, 1034)
Copyright © 1996,1997 All rights reserved. Page 165

Sample IT DMA Controller Implementation (Informative)1394 Open Host Controller Interface Specification/Release 1.00 Printed

p

nous

hen
This IT DMA controller implementation also maintains a lost counter (lost_ctr) that indicates the number of cycle to ski
and the logic needed to calculate a current cycle count value for cycle matching purposes.

The following pseudo-code is included to describe how the counters can be implemented.

always @(posedge dma_clk or negedge reset_z)
 if(reset_z)
 ahead_ctr <= #1 0;
 else if(it_traverse_done && !cycle_sync && (ahead_ctr != AHEAD_MAX))
 ahead_ctr <= #1 ahead_ctr + 1;
 else if(!it_traverse_done && cycle_sync && (ahead_ctr != AHEAD_MIN))
 ahead_ctr <= #1 ahead_ctr - 1;

always @(posedge dma_clk or negedge reset_z)
 if(reset_z)
 lost_ctr <= #1 0;
 else if(!it_skipped && cycle_lost && (lost_ctr != LOST_MAX))
 lost_ctr <= #1 lost_ctr + 1;
 else if(it_skipped && !cycle_lost && (lost_ctr != LOST_MIN))
 lost_ctr <= #1 lost_ctr - 1;

// signed arithmetic assumed here

match_cycle = (cycle_count + ahead_ctr) % 8000;

it_skipped = it_traverse_done && skipping_this_cycle

At start-up time, the IT DMA controller “primes the pump” by writing two “isochronous end” tokens into the isochro
transmit FIFO. This causes theahead_ctr to begin with a value of 2. When the followingcycle_sync event is received
from the link-side theahead_ctr is decremented. The IT DMA controller attempts to service the IT contexts w

Figure E-2 — IT DMA Controller counters and cycle matching logic

Lost Counter

Ahead Counter

Cycle Matching Arithmetic

Link

cycle_lost

cycle_sync

cycle_count

it_skipped

lost_ctr

ahead_ctr

it_traversed

match_cycle

Link side
clock domain

DMA side
clock domain

+

+
-

-

Page 166 Copyright © 1996,1997 All rights reserved.

Sample IT DMA Controller Implementation (Informative)1394 Open Host Controller Interface Specification/Release 1.00 Printed

hen

-
 the

nchroni-
al

skip
ahead_ctr is less than 2 or thelost_ctr is greater than 0. So the IT DMA controller will service the IT contexts and t
write an isochronous end token (when not skipping) into the FIFO, causing theahead_ctr to increment back to 2. The IT
DMA controller is then stalled until the nextcycle_sync or cycle_lost event.

The IT DMA controller uses a calculated cycle count value,match_cycle, for matching purposes. It compares the cycleM
atch value to the link’s cycle_count plus theahead_ctr value (modulo 8000). Some care must be taken to synchronize
updates to theahead_ctr with the changes to thecycle_count. This is actually not too difficult since thecycle_sync event
pulse originates from the link, too. The Host Controller designer just needs to be careful about balancing the sy
zation of thecycle_count andcycle_sync signals. Thecycle_lost signal needs to be synchronized, too; but it isn’t critic
that it be balanced with the others. The pseudo-code shown above assumes thecycle_lost is translated into single clock
cycle pulse on thedma_clk.

If the DMA side is unable to service the IT contexts for a span of several 1394 cycles theahead_ctr will continue to
decrement and become a negative number. At the same time the link side will generatecycle_lost events and thelost_ctr
will increment. When the DMA side is able to continue it will iteratively traverse the IT contexts performing
processing untillost_ctr equals 0. It can then start stuffing packets into the isochronous transmit FIFO untilahead_ctr
equals 2.

Figure E-3 — IT DMA Flowchart

lost_ctr > 0?

process
IT contexts

(re)start

Y

N

assert
it_traversed

skip
IT contexts

ahead_ctr < 2?

Y

N

assert
it_skipped

initialize
FIFO

write
iso-end token
Copyright © 1996,1997 All rights reserved. Page 167

Sample IT DMA Controller Implementation (Informative)1394 Open Host Controller Interface Specification/Release 1.00 Printed
Figure E-4 — Process IT Contexts Flowchart

Enter

i < #Contexts?

i = 0

matchEnable?

cycleMatch?

Z > 0?

matchEnable = 0

process
descriptor

cmdptr[i] =
branchAddr

i = i + 1

Exit

Y

Y

Y

N

N

N

Y

Process IT contexts

N

Page 168 Copyright © 1996,1997 All rights reserved.

Sample IT DMA Controller Implementation (Informative)1394 Open Host Controller Interface Specification/Release 1.00 Printed
Figure E-5 — Skip IT Contexts Flowchart

Enter

i < #Contexts?

i = 0

matchEnable?

cycleMatch?

Z > 0?

matchEnable = 0

cmdptr[i] =
skipAddr

i = i + 1

Exit

Y

Y

Y

N

N

N

Y

Skip IT contexts

N

Copyright © 1996,1997 All rights reserved. Page 169

Sample IT DMA Controller Implementation (Informative)1394 Open Host Controller Interface Specification/Release 1.00 Printed
Page 170 Copyright © 1996,1997 All rights reserved.

	1394 Open Host Controller Interface Specification
	PREFACE
	Notice
	Intellectual Property
	Information
	Promoters
	Contributors

	Table of Contents
	List of Figures
	List of Tables
	1.�� Introduction
	1.1�� Related documents
	1.2�� Overview
	1.2.1�� Asynchronous functions
	1.2.2�� Isochronous functions
	1.2.3�� Miscellaneous functions

	1.3�� Hardware description
	Figure�1-1�—� 1394 Open HCI conceptual block diagr...
	1.3.1�� Host bus interface
	1.3.2�� DMA
	Table�1-1�—� DMA types and contexts
	1.3.2.1�� Asynchronous transmit DMA
	1.3.2.2�� Asynchronous receive DMA
	1.3.2.3�� Isochronous transmit DMA
	1.3.2.4�� Isochronous receive DMA
	1.3.2.5�� Self-ID receive DMA

	1.3.3�� Global unique ID (GUID) interface
	1.3.4�� FIFOs
	1.3.4.1�� Asynchronous transmit FIFOs
	1.3.4.2�� Isochronous transmit FIFO
	1.3.4.3�� Receive FIFOs

	1.3.5�� Link
	Table�1-2�—� Link generated acknowledges

	1.4�� Software interface overview
	1.4.1�� Registers
	1.4.2�� DMA operation
	1.4.3�� Interrupts

	1.5�� 1394 Open HCI Node Offset (Address) Map
	Figure�1-2�—� Node Offset Map

	1.6�� System Requirements
	1.7�� Alignment
	1.7.1�� Data alignment
	1.7.2�� Memory structure and buffer alignment

	2.�� Conventions - Notation and Terms
	2.1�� Notation
	2.1.1�� Numeric Notation
	2.1.2�� Register Notation
	2.1.2.1�� Read/Write registers
	Table�2-1�—� read/write register field access tags...

	2.1.2.2�� Set and Clear registers
	Table�2-2�—� Set and Clear register field access t...

	2.1.2.3�� Register Reset Values
	Table�2-3�—� Register field reset values

	2.1.2.4�� Reserved fields
	2.1.2.5�� Reserved registers
	2.1.2.6�� Register field notation

	2.2�� Terms

	3.�� Common DMA Controller Features
	3.1�� Context Registers
	3.1.1�� ContextControl register
	Figure�3-1�—� ContextControl (set and clear) regis...
	Table�3-1�—� ContextControl (set and clear) regist...
	Table�3-2�—� Packet event codes

	3.1.1.1�� ContextControl.run
	3.1.1.2�� ContextControl.wake
	3.1.1.3�� ContextControl.active
	3.1.1.4�� ContextControl.dead

	3.1.2�� CommandPtr register
	Figure�3-2�—� CommandPtr register format
	Table�3-3�—� CommandPtr register description
	Table�3-4�—� CommandPtr read values

	3.1.2.1�� Bad Z Value

	3.2�� List Management
	3.2.1�� Software Behavior
	3.2.1.1�� Context Initialization
	3.2.1.2�� Appending to Running List
	3.2.1.3�� Stopping a Context

	3.2.2�� Hardware Behavior
	Figure�3-3�—� Flow Chart for Processing a DMA Cont...

	3.3�� Asynchronous Receive
	3.3.1�� FIFO Implementation
	3.3.1.1�� Unrecoverable Error

	3.3.2�� Ack Codes for Write Requests
	3.3.3�� Posted Writes
	3.3.4�� Retries

	3.4�� DMA Summary
	Table�3-5�—� DMA Summary

	4.�� Register addressing
	Table�4-1�—� 1394 Open HCI register space map
	4.1�� DMA Context Number Assignments
	Table�4-2�—� Asynchronous DMA Context number assig...

	4.2�� Register Map
	Table�4-3�—� Register addresses (Sheet 4 of 4)

	5.�� 1394 Open HCI Registers
	5.1�� Register Conventions
	5.2�� Version Register
	Figure�5-1�—� Version register
	Table�5-1�—� Version register�fields

	5.3�� GUID ROM register (optional)
	Figure�5-2�—� GUID ROM register
	Table�5-2�—� GUID ROM register�fields

	5.4�� ATRetries Register
	Figure�5-3�—� ATRetries register
	Table�5-3�—� ATRetries register �fields

	5.5�� Autonomous CSR Resources
	5.5.1�� Bus Management CSR Registers
	Table�5-4�—� Serial Bus Registers
	Figure�5-4�—� CSR data register
	Figure�5-5�—� CSR compare register
	Figure�5-6�—� CSR control register
	Table�5-5�—� CSR registers’ fields�

	5.5.2�� Config ROM header
	Figure�5-7�—� Config ROM header register
	Table�5-6�—� Config ROM header register fields

	5.5.3�� Bus identification register
	Figure�5-8�—� Bus ID register
	Table�5-7�—� Bus ID register fields

	5.5.4�� Bus options register
	Figure�5-9�—� Bus options register
	Table�5-8�—� Bus options register fields

	5.5.5�� Global Unique ID
	Figure�5-10�—� GlobalUniqueIDHi register
	Figure�5-11�—� GlobalUniqueIDLo register
	Table�5-9�—� GlobalUniqueID register fields

	5.5.6�� Configuration ROM mapping register
	Figure�5-12�—� Configuration ROM mapping register
	Table�5-10�—� Configuration ROM mapping register �...

	5.6�� Vendor ID register
	Figure�5-13�—� VendorID register
	Table�5-11�—� VendorID register �fields

	5.7�� HCControl registers (set and clear)
	Figure�5-14�—� HCControl register
	Table�5-12�—� HCControl register fields

	5.7.1�� noByteSwapData
	5.7.2�� programPhyEnable and aPhyEnhanceEnable
	Table�5-13�—� programPhyEnable and aPhyEnhanceEnab...

	5.7.3�� LPS and linkEnable
	Table�5-14�—� LPS and linkEnable assertion

	5.8�� FairnessControl register (optional)
	Figure�5-15�—� FairnessControl register
	Table�5-15�—� FairnessControl register fields�

	5.9�� LinkControl registers (set and clear)
	Figure�5-16�—� LinkControl register
	Table�5-16�—� LinkControl register fields�

	5.10�� Node identification and status register
	Figure�5-17�—� Node ID register
	Table�5-17�—� Node ID register fields�

	5.11�� PHY control register
	Figure�5-18�—� PHY control register
	Table�5-18�—� PHY control register fields�

	5.12�� Isochronous Cycle Timer Register
	Figure�5-19�—� Isochronous cycle timer register
	Table�5-19�—� Isochronous cycle timer register fie...

	5.13�� Asynchronous Request Filters
	5.13.1�� AsynchronousRequestFilter Registers (set ...
	Figure�5-20�—� AsynchronousRequestFilterHi (set an...
	Figure�5-21�—� AsynchronousRequestFilterLo (set an...
	Table�5-20�—� AsynchronousRequestFilter register f...

	5.13.2�� PhysicalRequestFilter Registers (set and ...
	Figure�5-22�—� PhysicalRequestFilterHi (set and cl...
	Figure�5-23�—� PhysicalRequestFilterLo (set and cl...
	Table�5-21�—� PhysicalRequestFilter register field...

	5.14�� Physical Upper Bound register (optional)
	Figure�5-24�—� 48-bit Physical Upper Bound
	Figure�5-25�—� Physical Upper Bound register
	Table�5-22�—� Physical Upper Bound register fields...

	6.�� Interrupts
	6.1�� IntEvent (set and clear)
	Figure�6-1�—� IntEvent register
	Table�6-1�—� IntEvent register description (Sheet ...

	6.1.1�� busReset

	6.2�� IntMask (set and clear)
	Figure�6-2�—� IntMask register
	Table�6-2�—� IntMask register description�

	6.3�� IsochTx interrupt registers
	6.3.1�� isoXmitIntEvent (set and clear)
	Figure�6-3�—� isoXmitIntEvent (set and clear) regi...

	6.3.2�� isoXmitIntMask (set and clear)

	6.4�� IsochRx interrupt registers
	6.4.1�� isoRecvIntEvent (set and clear)
	Figure�6-4�—� isoRecvIntEvent (set and clear) regi...

	6.4.2�� isoRecvIntMask (set and clear)

	7.�� Asynchronous Transmit DMA
	7.1�� AT DMA Context Programs
	7.1.1�� OUTPUT_MORE descriptor
	Figure�7-1�—� OUTPUT_MORE descriptor format
	Table�7-1�—� OUTPUT_MORE descriptor element summar...

	7.1.2�� OUTPUT_MORE_Immediate descriptor
	Figure�7-2�—� OUTPUT_MORE-Immediate descriptor for...
	Table�7-2�—� OUTPUT_MORE-Immediate descriptor elem...

	7.1.3�� OUTPUT_LAST descriptor
	Figure�7-3�—� OUTPUT_LAST descriptor format
	Table�7-3�—� OUTPUT_LAST descriptor element summar...

	7.1.4�� OUTPUT_LAST_Immediate descriptor
	Figure�7-4�—� OUTPUT_LAST-Immediate descriptor for...
	Table�7-4�—� OUTPUT_LAST-Immediate descriptor elem...

	7.1.5�� AT DMA descriptor usage
	7.1.5.1�� Command.Z
	Table�7-5�—� Z value encoding

	7.1.5.2�� Command.xferStatus
	7.1.5.3�� Command.timeStamp
	Figure�7-5�—� timeStamp format
	Table�7-6�—� timeStamp description

	7.1.5.3.1�� timeStamp value for Requests
	7.1.5.3.2�� timeStamp value for Ping Requests
	7.1.5.3.3�� timeStamp value for Responses
	Table�7-7�—� Results of timeStamp.cycleSeconds - c...
	Table�7-8�—� timeStamp.cycleCount-cycleTime.cycleC...
	Table�7-9�—� timeStamp.cycleCount-cycleTime.cycleC...
	Table�7-10�—� timeStamp.cycleCount-cycleTime.cycle...

	7.2�� AT DMA context registers
	7.2.1�� CommandPtr
	Figure�7-6�—� CommandPtr register format

	7.2.2�� ContextControl register (set and clear)
	Figure�7-7�—� ContextControl (set and clear) regis...
	Table�7-11�—� ContextControl (set and clear) regis...

	7.2.2.1�� Writing status back to context command d...

	7.2.3�� Bus Reset
	7.2.3.1�� Host Controller Behavior for AT
	7.2.3.2�� Software Guidelines

	7.3�� Fairness
	7.4�� AT Retries
	7.5�� AT Interrupts
	7.6�� AT Data Formats
	7.6.1�� Asynchronous Transmit Requests
	7.6.1.1�� No-data transmit
	Figure�7-8�—� Quadlet read request transmit format...
	Table�7-12�—� Quadlet read request transmit fields...

	7.6.1.2�� Quadlet transmit
	Figure�7-9�—� Quadlet write request transmit forma...
	Figure�7-10�—� Block read request transmit format
	Table�7-13�—� Quadlet transmit fields�

	7.6.1.3�� Block transmit
	Figure�7-11�—� Write request transmit format
	Figure�7-12�—� Lock request transmit format
	Table�7-14�—� Block transmit fields�

	7.6.1.4�� PHY packet transmit
	Figure�7-13�—� PHY packet transmit format

	7.6.2�� Asynchronous Transmit Responses
	7.6.2.1�� No-data transmit
	Figure�7-14�—� Write response transmit format
	Table�7-15�—� Write response transmit fields�

	7.6.2.2�� Quadlet transmit
	Figure�7-15�—� Quadlet read response transmit form...
	Table�7-16�—� Quadlet transmit fields�

	7.6.2.3�� Block transmit
	Figure�7-16�—� Block read response transmit format...
	Figure�7-17�—� Lock response transmit format
	Table�7-17�—� Block transmit fields�

	7.6.3�� Asynchronous Transmit Streams
	Figure�7-18�—� Asynchronous stream packet format
	Table�7-18�—� Asynchronous stream packet fields�

	8.�� Asynchronous Receive DMA
	8.1�� AR DMA Context Programs
	8.1.1�� INPUT_MORE descriptor
	Figure�8-1�—� INPUT_MORE descriptor format
	Table�8-1�—� INPUT_MORE descriptor element summary...

	8.1.2�� AR DMA descriptor usage

	8.2�� bufferFill mode
	Figure�8-2�—� bufferFill receive mode

	8.3�� Asynchronous Receive Context Registers
	8.3.1�� AR DMA CommandPtr register
	Figure�8-3�—� CommandPtr register format

	8.3.2�� AR ContextControl register (set and clear)...
	Figure�8-4�—� AR ContextControl (set and clear) re...
	Table�8-2�—� AR ContextControl (set and clear) reg...

	8.4�� AR DMA Controller
	8.4.1�� Asynchronous Filter Registers
	8.4.2�� AR DMA Controller processing
	8.4.2.1�� AR DMA Packet Trailer
	Figure�8-5�—� AR DMA packet trailer format
	Table�8-3�—� AR DMA trailer fields

	8.4.2.2�� Error Handling
	8.4.2.3�� Bus Reset Packet
	Figure�8-6�—� AR Request Context Bus Reset packet ...
	Table�8-4�—� AR Request Context Bus Reset packet d...

	8.5�� PHY Packets
	8.6�� Asynchronous Receive Interrupts
	8.7�� Asynchronous Receive Data Formats
	Table�8-5�—� Asynch receive fields�
	8.7.1�� Asynchronous Receive Requests
	8.7.1.1�� No-data receive
	Figure�8-7�—� Quadlet read request receive format

	8.7.1.2�� Quadlet Receive
	Figure�8-8�—� Quadlet write request receive format...
	Figure�8-9�—� Block read request receive format

	8.7.1.3�� Block receive
	Figure�8-10�—� Block write request receive format
	Figure�8-11�—� Lock request receive format

	8.7.1.4�� PHY packet receive
	Figure�8-12�—� PHY packet receive format

	8.7.2�� Asynchronous Receive Responses
	8.7.2.1�� No-data receive
	Figure�8-13�—� Write response receive format

	8.7.2.2�� Quadlet Receive
	Figure�8-14�—� Quadlet read response receive forma...

	8.7.2.3�� Block receive
	Figure�8-15�—� Block read response receive format
	Figure�8-16�—� Lock response receive format

	9.�� Isochronous Transmit DMA
	9.1�� IT DMA Context Programs
	9.1.1�� IT DMA command descriptor overview
	9.1.2�� OUTPUT_MORE descriptor
	Figure�9-1�—� OUTPUT_MORE command descriptor forma...
	Table�9-1�—� OUTPUT_MORE descriptor element summar...

	9.1.3�� OUTPUT_MORE-Immediate descriptor
	Figure�9-2�—� OUTPUT_MORE-Immediate descriptor for...
	Table�9-2�—� OUTPUT_MORE-Immediate descriptor elem...

	9.1.4�� OUTPUT_LAST descriptor
	Figure�9-3�—� OUTPUT_LAST command descriptor forma...
	Table�9-3�—� OUTPUT_LAST descriptor element summar...

	9.1.5�� OUTPUT_LAST-Immediate descriptor
	Figure�9-4�—� OUTPUT_LAST-Immediate command descri...
	Table�9-4�—� OUTPUT_LAST-Immediate descriptor elem...

	9.1.6�� STORE_VALUE descriptor
	Figure�9-5�—� STORE_VALUE descriptor
	Table�9-5�—� STORE_VALUE descriptor element summar...

	9.1.7�� IT DMA descriptor usage
	Table�9-6�—� Z value encoding

	9.2�� IT Context Registers
	9.2.1�� CommandPtr
	Figure�9-6�—� CommandPtr register format

	9.2.2�� IT ContextControl Register
	Figure�9-7�—� IT DMA ContextControl (set and clear...
	Table�9-7�—� IT DMA ContextControl (set and clear)...

	9.3�� Isochronous transmit DMA controller
	9.3.1�� IT DMA Processing
	Figure�9-8�—� ITDMA summary

	9.3.2�� Prefetching IT Packets
	9.3.3�� Isochronous Transmit Cycle Loss
	Figure�9-9�—� Isochronous transmit cycle loss exam...

	9.3.4�� FIFO Underrun
	9.3.5�� Determining the number of implemented IT D...

	9.4�� Appending to an IT DMA Context Program
	9.5�� IT Interrupts
	9.5.1�� cycleInconsistent Interrupt
	9.5.2�� busReset Interrupt

	9.6�� IT Data Format
	Figure�9-10�—� Isochronous transmit format
	Table�9-8�—� Isochronous transmit fields�

	10.�� Isochronous Receive DMA
	10.1�� IR DMA Context Programs
	Figure�10-1�—� INPUT_MORE/INPUT_LAST descriptor fo...
	Table�10-1�—� INPUT_MORE/INPUT_LAST descriptor ele...
	Table�10-2�—� Z value encoding

	10.2�� Receive Modes
	10.2.1�� Buffer Fill Mode
	Figure�10-2�—� IR Buffer Fill Mode

	10.2.2�� Packet-per-Buffer Mode
	Figure�10-3�—� packet-per-buffer receive mode
	10.2.2.1�� Command.xferStatus and Command.resCount...

	10.3�� IR Context Registers
	10.3.1�� CommandPtr
	Figure�10-4�—� CommandPtr register format

	10.3.2�� IRContextControl register (set and clear)...
	Figure�10-5�—� IR DMA ContextControl (set and clea...
	Table�10-3�—� IR DMA ContextControl (set and clear...

	10.3.3�� Isochronous receive contextMatch register...
	Figure�10-6�—� IR DMA ContextMatch register format...
	Table�10-4�—� IR DMA ContextMatch register descrip...

	10.4�� Isochronous receive DMA controller
	10.4.1�� Isochronous receive multi-channel support...
	10.4.1.1�� IRMultiChanMask registers (set and clea...
	Figure�10-7�—� IRMultiChanMaskHi (set and clear) r...
	Figure�10-8�—� IRMultiChanMaskLo (set and clear) r...

	10.4.2�� Isochronous receive single-channel suppor...
	10.4.3�� Duplicate channels
	10.4.4�� Determining the number of implemented IR ...

	10.5�� IR Interrupts
	10.5.1�� cycleInconsistent Interrupt
	10.5.2�� busReset Interrupt

	10.6�� IR Data Formats
	Table�10-5�—� Isochronous receive fields
	10.6.1�� bufferFill mode formats
	10.6.1.1�� IR with header/trailer
	Figure�10-9�—� Receive isochronous format in buffe...

	10.6.1.2�� IR without header/trailer
	Figure�10-10�—� Receive isochronous format in buff...

	10.6.2�� packet-per-buffer mode formats
	10.6.2.1�� IR with header/trailer
	Figure�10-11�—� Receive isochronous format in pack...

	10.6.3�� IR without header/trailer
	Figure�10-12�—� Receive isochronous format in pack...

	11.�� Self ID Receive
	11.1�� Self ID Buffer Pointer Register
	Figure�11-1�—� Self ID Buffer Pointer register
	Table�11-1�—� Self ID Buffer Pointer register

	11.2�� Self ID Count Register
	Figure�11-2�—� Self ID Count register
	Table�11-2�—� Self ID Count register

	11.3�� Self-ID receive
	Figure�11-3�—� Self-ID receive format
	Table�11-3�—� Self-ID receive fields

	11.4�� Enabling the SelfID DMA
	11.5�� Interrupt Considerations for SelfID DMA
	11.6�� SelfIDs Received Outside of Bus Initializat...

	12.�� Physical Requests
	12.1�� Filtering Physical Requests
	12.2�� Posted Writes
	12.3�� Physical Responses
	12.4�� Physical Response Retries
	12.5�� Interrupt Considerations for Physical Reque...
	12.6�� Bus Reset

	13.�� Host Bus Errors
	13.1�� Causes of Host Bus Errors
	13.2�� Host Controller Actions When Host Bus Error...
	13.2.1�� Descriptor Read Error
	13.2.2�� xferStatus Write Error
	13.2.3�� Transmit Data Read Error
	13.2.4�� Isochronous Transmit Data Write Error
	13.2.5�� Asynchronous Receive DMA Data Write Error...
	13.2.6�� Isochronous Receive Data Write Error
	13.2.7�� Physical Read Error
	13.2.8�� Posted Write Error
	13.2.8.1�� PostedWriteAddress Register
	Figure�13-1�—� PostedWriteAddressHi register
	Figure�13-2�—� PostedWriteAddressLo register
	Table�13-1�—� PostedWriteAddress register descript...

	13.2.8.2�� Queue Rules
	Figure�13-3�—� Posted Write Error Queue

	Annex A.�� PCI Interface
	A.1�� PCI Configuration Space
	A.2�� Busmastering Requirements
	A.3�� PCI Configuration Space for 1394 OpenHCI Wit...
	Figure�A-1�—� PCI Configuration Space
	Figure�A-2�—� Pointers to OHCI Resources in PCI Co...
	A.3.1�� COMMAND Register
	Table�A-1�—� COMMAND Register

	A.3.2�� STATUS Register
	Table�A-2�—� STATUS Register

	A.3.3�� CLASS_CODE Register
	Table�A-3�—� CLASS_CODE Register

	A.3.4�� Revision_ID Register
	A.3.5�� Base_Adr_0 Register
	Table�A-4�—� Base_Adr_0 Register

	A.3.6�� CAP_PTR Register (opt)
	Table�A-5�—� CAP_PTR Register

	A.4�� PCI_HCI_Control Register
	Table�A-6�—� PCI_HCI_Control Register

	A.5�� PCI Expansion ROM for 1394 OpenHCI
	A.6�� PCI Bus Errors

	Annex B.�� Summary of Register Reset Values (Infor...
	Table�B-1�—� Register Reset Summary

	Annex C.�� Summary of Bus Reset Behavior (Informat...
	C.1�� Overview
	C.2�� Asynchronous Transmit: Request & Response
	C.3�� Asynchronous Receive: Request & Response
	C.4�� Isochronous Transmit
	C.5�� Isochronous Receive
	C.6�� Self ID Receive
	C.7�� Physical Requests/Responses
	C.7.1�� Physical Response
	C.7.2�� Physical Requests

	C.8�� Control Registers

	Annex D.�� IT DMA Supplement (Informative)
	D.1�� IT DMA Behavior
	D.2�� IT DMA Flowchart Summary
	D.3�� DMA-side IT DMA flowchart
	Figure�D-1�—� IT DMA DMA-Side Flowchart
	D.3.1�� DMA-side top half
	D.3.2�� DMA-side bottom half

	D.4�� Link-side IT DMA flowchart
	D.4.1�� Link-side top half
	Figure�D-2�—� IT DMA Link-Side Flowchart

	D.4.2�� Link-side bottom half

	Annex E.�� Sample IT DMA Controller Implementation...
	Figure�E-1�—� DMA Cycle Matching Continuum
	Figure�E-2�—� IT DMA Controller counters and cycle...
	Figure�E-3�—� IT DMA Flowchart
	Figure�E-4�—� Process IT Contexts Flowchart
	Figure�E-5�—� Skip IT Contexts Flowchart

