
9/20/96 John Fuller/Copyright Microsoft Corp. Slide 1

logo slide

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 2

Win32® Driver
Model Seminar

Steve Timm
Senior Technical Evangelist

Microsoft Corporation

™

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 3

Device Drivers
New challenges and opportunities

New bus support, more devices
Multifunction devices
Common driver model

Windows NT® and future
versions of Windows®

Reduced latency
Lower development cost

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 4

New Development
Win32 Driver Model

Core architecture evolution for SIPC
Extensible for enhanced connectivity

New device and bus support

Based on Windows NT I/O subsystem
Source/(x86) binary-compatible drivers
across Windows and Windows NT

Driver structure simplifies development
Reusable driver modules

E.g., device class x on random busy

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 5

Win32 Driver Model
Backwards compatibility

Initial targets are new device
and bus support
The Win32 model coexists with
existing class-specific driver models

E.g., mass-storage and networking

Windows Virtualization Drivers can
virtualize legacy hardware interfaces

Send class-specific commands to the
appropriate Win32 class driver

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 6

Win32 Driver Model
Why WDM is important to you

Common I/O services
Source/(x86) binary-compatible
drivers across Windows and
Windows NT
Reduced latency
Higher-quality drivers
Lower development cost
Hardware innovation
Easy, new bus support

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 7

Agenda
Win32 Driver Model seminar

Windows NT, Win32 driver
architecture
Future developments in
the Win32 Driver Model
Win32 Driver Model
Questions and answers

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 8

logo slide

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 9

Windows NT®, Win32®

Driver Architecture

 Bob Rinne
Software Design Engineer
Windows NT Development

Microsoft Corporation
™

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 10

Introduction

Windows NT 4.0 kernel
Windows NT 4.0 device driver
Win32 Driver Model

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 11

Windows NT System Structure
Daemons Services Environments Applications

Security
monitor Object services

Local
IPC

Process
structure

Virtual
memory

I/O system

Object management/executive run time

Device drivers KernelHardware abstraction layer

Platform interface

Privileged
architecture

Interrupt
dispatch

I/O
devices

DMA
control Bus mapping Clocks/

timers Cache control

LPC LPC LPC LPC

File systems

Windows NT Executive

OtherOther
dBASE

Other
Spooler

File server
Security

Session manager

Replicator

Logon

Alerter
Event logger

Other

POSIX
MS-DOS/WOW

Win32

Corel DRAW
WordPerfect

Lotus
1-2-3

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 12

Windows NT Kernel
Architecture

Small, well-contained body of code
that implements:

Scheduling and context switching
MP synchronization
Exception and interrupt handling
Low-level hardware functions

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 13

Windows NT Kernel
Architecture

Nonpageable, nonpreemptable,
but interruptible
Allows for pageable system
components
Exports abstractions in the form of:

Dispatcher objects
Control objects

Provides generic wait operations

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 14

Dispatcher Objects
Control scheduling and synchronization
Have “signal” state and are waitable
Dispatch objects

Threads
Mutual exclusion
Event
Semaphore
Timer
Event pairs

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 15

Control Objects
Provide executive and device-
driver control
No “signal” state and not waitable
Control objects

Process
Interrupt
Device queue
Asynchronous procedure call (APC)
Deferred procedure call (DPC)

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 16

Threads
Execution agents
Register context
Process address space
Priority/affinity
Scheduling state

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 17

Priority Levels

Sixteen real-time levels

Fifteen variable levels

One system level
One idle thread level

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 18

Scheduling
Event-driven - no scheduler per se
Preemptive priority policy
Round robin at real-time levels
Priority boosts/decay at
variable levels
Highest priority thread
guaranteed running

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 19

Waiting
Wait for object to attain signal state
Wait for single object
Wait for multiple objects - any/all
Optional time-out
Express client/server event pair

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 20

Thread “Life”

Priority

Base

Priority
boost

Run Wait Run RunPreempt

Time

Round robin
at base

Quantum
 decay

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 21

APC Object
Breaks into the execution
of a target thread
Interrupts user mode
when alertable
Interrupts kernel mode
when enabled
Used to post asynchronous
events to a thread

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 22

DPC Object
Breaks into the execution of
any thread
Executes specified procedure
at dispatch level
Used to defer processing from
higher interrupt level
Used heavily for I/O
driver completion
Used for quantum-end
and timer expiration

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 23

Interrupt Object
Connects an interrupt vector
to an ISR
Allows for chained interrupts
at single vector
Automatically forces
synchronization on MP system
Used to synchronize execution
between I/O driver and ISR

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 24

Interrupt Dispatch

Transfer to interrupt
 Dispatch routine

Size Type

Interrupt object

List entry
ISR address

ISR context

Synchronization
 information

Dispatch
template
“routine”

Synchronize IRQL access
Synchronize MP access

Call ISR with context

Dismiss interrupt

Vector table

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 25

DPC Processing
Reduced latency

18HW12

DPC5DPC9

User thread1

ISR5

ISR9

IRQL

High

HW interrupts

DPC/dispatch

APC

Low
us

ISR5

SW2 SW2

31

0

HW12

HW18

SW2

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 26

Windows NT Executive API

Windows NT Driver Architecture

Security
monitor

Object
services

Local
IPC

Process
structure

Virtual
memory

Object management/executive run time

KernelDevice driver Hardware abstraction layer

I/O system

Platform interface

File
systems

Privileged
architecture

I/O
devices

DMA
control

Cache
control

Bus
mapping

Clocks/
timers

Interrupt
dispatch

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 27

Design Goals
Easy driver development
Portable
Secure
Multiuser
Support installable file systems
Layered drivers

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 28

Assumptions
Driver model assumes
scatter/gather hardware
Support for many devices
Security and robustness are
becoming increasingly important
Portability

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 29

I/O System Components

I/O subsystem
Device driver routines
File system driver routines
System service routines

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 30

I/O System Components
Driver API

Driver invokes IoXxx routines
I/O routines operate on “objects”
Communication via I/O request
packets (IRP)

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 31

I/O Routines
Examples

IoCallDriver
IoCompleteRequest
IoBuildAsynchronousFsdRequest
IoReadPartitionTable
IoStartNextPacket

There are approximately 80
IoXxx functions

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 32

I/O System
Data structures

Driver object
Device object
Controller object
Adapter object
Interrupt object

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 33

Data Structures
Driver object

Describes driver to I/O system
Contains size, dispatch routine
addresses, etc.

Device object
Represents physical device to
I/O system
Device-independent section
Device-dependent section

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 34

Data Structures
Controller object

Represents controller to I/O system
Allows allocation and
synchronization by devices

Adapter object
Represents hardware mapping
registers and channel
Allows allocation and
synchronization by devices

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 35

Data Structures
Interrupt object

Provided by the kernel
Allows drivers to associate ISR
with an interrupt vector
Allows driver to synchronize with
ISR via KeSynchronizeExecution

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 36

Driver Model Description
Drivers loaded on boot or dynamically
Two types of drivers

Device drivers (DD)
File system drivers (FSD)

Device drivers
Limited context
Execute in context of calling thread,
ISR, and DPC routine

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 37

Parts Of A Device Driver
Initialization routine
Dispatch routines
Start I/O routine
Interrupt service routine (ISR)
DPC routine
Unload routine
Completion routines (optional)
Error log routines (optional)

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 38

Driver Layering
Drivers can be layered

Allows “intermediate” drivers
between two drivers
Example: stripe or mirror drivers

Accomplished through “I/O stack
locations” in IRP

One stack location per driver layer
Allows reuse of IRP

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 39

Driver Layering
Each stack location allows
communication with next driver
Stack location contents

Major/minor function codes
File object pointer
Device object pointer
Parameter flags
Four function parameters
Completion routine information

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 40

IRP Contents

IRP body is accessible to all
drivers and contains information
such as buffer pointers, event
objects, etc.

Stack location contains disk
driver parameters

Stack location contains file system
driver parameters

IRP stack locations are reserved for
communications between adjacent layered drivers

Example: File system NtWrite gives the following IRP:

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 41

Typical SCSI Layering
Windows NT I/O system interface

HPFS file
system

Stripe driver

CD-ROM
file system

CD-ROM
class driver

Tape class
driver

Disk class
driver

Other class
driver

MINI PORT
 DRIVERS

NTFS file
system

Mirror
driver

Port driver

Miniport
drivers

Miniport
drivers

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 42

I/O
operations

Network Layering

NDIS wrapper

Multiple UNC
 provider

Other
Banyan
VINES

redirector

Novell
requestor

LAN
Manager

Redirector

I/O
operations

Transports

NDIS DRIVERNDIS driver

Windows NT I/O system interface

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 43

I/O System Features
Portable - drivers written for one platform
often port with few or no code changes
Secure - data from one process is protected
against access or corruption by others
Multiuser, multithread, multiprocessor -
I/O architecture allows effective use of
many threads of execution, even on
different processors

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 44

I/O System Features
Layered drivers - driver functionality
can be compartmentalized to make
developing drivers easier
Object-oriented - all knowledge of a
driver is confined to the knowledge in
objects exposed to the I/O subsystem - so
replacing or modifying a driver is easier
Fast - once the operation is in kernel
mode, all other drivers are a
function call away

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 45

Future Directions
Consolidate Windows Driver Model

Plug and Play advances
Power Management advances
New bus support
New device support

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 46

Win32 Driver Model (WDM)
Common model for driver development

Market-driven from USB, 1394 connectivity
enhancements and peripherals

Based on existing Windows NT
driver model

Brought forward features for SMP and
additional platform independence

Added missing features
Plug and Play

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 47

Areas Of Change
Windows NT To WDM
Device driver setup and shutdown

Drivers will be notified of device arrival
instead of having to “search” for devices
All drivers will be able to unload

Additional functions
Power state control
Bus enumeration

Steady-state operation is unchanged!

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 48

Win32 Driver Model
I/O chapter in “Inside Windows NT”
Windows NT DDK
Questions?

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 49

logo slide

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 50

Future Developments In The
Win32® Driver Model

Lonny McMichael
Software Design Engineer
Windows NT Development

Microsoft Corporation

™

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 51

Agenda
WDM goals/nongoals
Plug and Play/Power Management
Implementation overview
Plug and Play interaction for
WDM drivers
User-mode Plug and Play components
Summary

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 52

Goals
Common Plug and Play and
Power Management device driver
interfaces for future versions of
Windows NT® and Windows®

Support Plug and Play
hardware standards
Build on existing Windows NT
I/O infrastructure

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 53

Nongoals
Windows NT will not support VxDs

VxDs continue to work unchanged in
future versions of Windows as
non-WDM drivers

Future versions of Windows will not
support non-Plug and Play (legacy)
Windows NT drivers

Windows NT will continue to support
existing drivers, but with reduced
Plug and Play/Power Management
functionality

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 54

Implementation Overview
Plug and Play/Power Management bus
functionality via WDM bus driver
Control centralized in kernel-mode
Plug and Play/Power Manager

Directs bus driver (enumeration,
configuration, etc.)
Directs device driver (add device,
start device, etc.)

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 55

WDM Bus Drivers
Standard WDM driver that
exposes a bus
“Bus” is any device off of which
other devices are enumerated
(includes multifunction adapters)
Responds to standard bus IOCTLs
Extensible via filter drivers

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 56

Enumeration
Plug and Play Manager
enumerates devices off a bus
à la FindFirst/FindNext
Bus driver returns a reference to
a Physical Device Object (PDO)
for each device on the bus
PDO is conceptually the “handle”
to the physical device (analogous
to Windows 95 devnode)

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 57

Device Driver Initialization
Driver init

Global initialization only - no devices

Add device
Driver is given a PDO representing
a new device it will control
Driver creates its own Functional
Device Object (FDO) and attaches
it to the PDO
Resource requirements may be filtered

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 58

WDM Device Tree

Attachment (Functional Device Object →→ Physical Device Object)

Parent-child relationship

Logical device instance

PCI bus PDO
(Plug and Play Manager)

PCI bus FDO
(pci_bus.sys)

“Toaster” PDO
(pci_bus.sys)

“Toaster” FDO
(toaster.sys)

SCSI disk PDO
(scsiport.sys)

SCSI disk FDO
(disk.sys)

SCSI adapter PDO
(pci_bus.sys)

SCSI adapter FDO
(scsiport.sys)

SCSI CD-ROM PDO
(scsiport.sys)

SCSI CD-ROM FDO
(cdrom.sys)

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 59

Device Control
Start device

Device receives assigned resources
Driver begins controlling the device

Stop device
Driver releases resources, stops
controlling device
Preceded by query-stop
Driver may be stopped, then started
again, in order to assign new resources

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 60

User-Mode Plug And Play
Components

Common APIs on both
Windows NT and Windows 95:

32-bit-extended versions of
user-mode Windows 95-based
ConfigMgr APIs
32-bit device installer APIs,
functionally equivalent to
Windows 95 setupx
Win32 APIs

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 61

Summary
Single set of Plug and Play
interfaces for WDM drivers
Concepts familiar to Windows 95
DVxD developers
Addresses Windows NT goals

Portability, security, robustness

Power Management discussion
later this morning in session 2

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 62

logo slide

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 63

Win32® Driver Model

Forrest Foltz
 Software Design Engineer

Microsoft Corporation

™

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 64

Objective
To create a driver infrastructure that:

Is extensible, both for Microsoft and
third-party providers
Offers not only device abstraction but OS,
and bus abstraction, as well
Further enables code/binary sharing across the
Windows® and Windows NT®-based platforms
Lays the groundwork for OS-common bus
support...makes supporting a new bus class as
straightforward as supporting a new device class
Enables legacy hardware-specific applications to
interoperate with devices and buses of the future

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 65

Problems Today
Monolithic drivers under Windows
span many logical layers

VKD (keyboard driver) for example:
communicates with user/kernel at upper
edge, directly with 8042 at the bottom
Third parties must replace (possibly
already enhanced) VKD to add
keyboard device value

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 66

Problems Today
Inflexible architecture

Multiple pointing devices
are not supported
Support for multifunction
devices is difficult at best
Support for existing device classes
on new buses does not exist

Performance
Long latencies reduce response
time in interactive situations

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 67

Win32 Driver Model
Enables device, bus, and os-independent
functionality for device classes
Leverages existing Windows NT I/O
subsystem to provide reduced latency
for interactive applications
Can coexist with existing class-specific
driver models such as mass-storage
and networking

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 68

Win32 Driver Model
Enables legacy direct-to-hardware
applications (i.e., a real-mode
Sound Blaster™ application) over
a new sound device on an
arbitrary bus
Three main classes of drivers:

Minidrivers
Class drivers
Virtualization drivers

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 69

Minidrivers
Indirectly communicate with a
specific hardware device via a
specific bus class driver
Source and (x86) binary-compatible
across Windows and Windows NT
Dynamically loadable/unloadable

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 70

Minidrivers

Class driverClass driver

MD

MD MD

Class driver

System bus driver

MD MD MD MD MD

Sy
st

em
se

rv
ic

es

VxD

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 71

Minidrivers

Contain only hardware-specific functionality
Multifunction minidrivers can expose
multiple class interfaces
Class driver is sole client of a driver’s
interface, minidriver does not perform
client/processor arbitration
within an interface

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 72

Class Drivers
Define the class interface to the
rest of the OS
Lower edge communicates with
identical, class-specific interfaces,
exposed by minidrivers (except in
the case of the system bus driver,
a.k.a., HAL)
Source and (x86) binary-compatible
across Windows and Windows NT

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 73

Class Drivers

Class driverClass driver

MD

MD MD

Class driver

System bus driver

MD MD MD MD MD

Sy
st

em
se

rv
ic

es

VxD

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 74

Class Drivers
Provides class-specific functionality,
not hardware or bus-specific (except,
of course, where the bus type
is the class)
Dynamically loads/unloads
Contains only class-specific
functionality
Exposes a single, class-specific
interface, to multiple clients

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 75

Virtualization Drivers
Virtualize legacy hardware interfaces,
send class-specific commands to the
appropriate device class driver

Legacy game port access converted
to joystick class commands, sent to
joystick device on USB bus
Legacy Sound Blaster access converted
to sound device commands, sent to
audio device on 1394 bus

Do not drive hardware directly

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 76

Virtualization Drivers

Class driverClass driver

MD

MD MD

Class driver

System bus driver

MD MD MD MD MD

Sy
st

em
se

rv
ic

es

VxD

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 77

OS Services
Subset of DDIs available to
Windows NT kernel-mode
device drivers
Offer abstraction of OS-specific
functionality to minidrivers
Examples:

Driver communication
Plug and Play
Event services

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 78

OS Services

Class driverClass driver

MD

MD MD

Class driver

System bus driver

MD MD MD MD MD

Sy
st

em
se

rv
ic

es

VxD

Sample Windows-Based Input
Device Scenario

System bus class driver (a.k.a., HAL)

Bus controller minidriver

Bus class driver

Joystick minidriver Mouse minidriver8042
keyboard
controller

driver

Input device class driver (bus-generic)

vkd.vxdvkd.vxd

user.exeuser.exe

vjoyd.vxdvjoyd.vxd

DOS VM
keyboard.drvkeyboard.drv

Key:
OS-generic class drivers

OS-generic minidrivers

OS-specific drivers for legacy support

Windows-
specific

Windows and
Windows NT

Sample Windows-Based
Wave Audio Device Scenario

System bus class driver (a.k.a., HAL)

Bus controller minidriver

Bus class driver

Wave device Minidriver

Soundcard
minidriver

Wave device class driver (bus-generic)

sb16emul.vxdsb16emul.vxd

DOS VM

Key:
OS-generic class drivers

OS-generic minidrivers

OS-specific drivers for legacy support

Windows
Specific

Windows and
Windows NT

DirectSound DLLDirectSound DLL

Win32
Application

Windows
multimedia

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 81

Win32 Driver Model
Why WDM is important to you

Common I/O services
Source/(x86) binary-compatible drivers,
across Windows and Windows NT
Reduced latency
Higher-quality drivers
Lower development cost
Hardware innovation
Easy, new bus support

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 82

Win32 Driver Model
Actions and opportunities

Get familiar with the Win32
driver architecture

“Inside Windows NT” by Helen Custer
Windows NT DDK

MSDN Level 2 (msdn@microsoft.com)

Win32 Driver Development Kit
Common driver services
E-mail ihv@microsoft.com

9/20/96 J o h n F u l l e r / C o p y r i g h t M i c r o s o f t C o r p . S l i d e 83

Win32 Driver Model
Open process

Participate in Microsoft Developer Events
(confirmation required due to limited space)

Input Devices: April 23
Win32 Driver Model: May 15
Others to be announced

Send registration information to ihv@microsoft.com

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 84

Win32 Driver Model
Open process

Acquire the latest design specifications
http://www.microsoft.com/windows/
thirdparty/hardware

Power Management
Plug and Play
1394 design guidelines
Others to be announced

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 85

Win32 Driver Model
Provide feedback

ihv@microsoft.com
General feedback

rt@microsoft.com
Low latency requirements

1394@microsoft.com
Win32 class driver interfaces

1394 command and protocol standards

power@microsoft.com
Power Management - OnNow

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 86

Call To Action
Support Power Management
Build Plug and Play-
compliant hardware
Build USB and 1394 peripherals

Leverage Win32 standard
class/minidriver interfaces
Follow design guidelines for
Plug and Play busses

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 87

Win32 Driver Model
Microsoft commitment
Windows 95 OEM Service
Release 2 releases addressing
market demand
New device support

Consumer audio/video
Input
Storage

New bus support
USB
1394

Others to follow

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 88

Win32 Driver Model Seminar
Questions And Answers

9/20/96 John Fuller/Copyright Microsoft Corp. Slide 89

logo slide

